1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
99 */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
107
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
110
111 /* EFER defaults:
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
114 */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121
122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123
124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125
126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
127 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128
129 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
130 static void process_nmi(struct kvm_vcpu *vcpu);
131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
132 static void store_regs(struct kvm_vcpu *vcpu);
133 static int sync_regs(struct kvm_vcpu *vcpu);
134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135
136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138
139 static DEFINE_MUTEX(vendor_module_lock);
140 struct kvm_x86_ops kvm_x86_ops __read_mostly;
141
142 #define KVM_X86_OP(func) \
143 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
144 *(((struct kvm_x86_ops *)0)->func));
145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
147 #include <asm/kvm-x86-ops.h>
148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150
151 static bool __read_mostly ignore_msrs = 0;
152 module_param(ignore_msrs, bool, 0644);
153
154 bool __read_mostly report_ignored_msrs = true;
155 module_param(report_ignored_msrs, bool, 0644);
156 EXPORT_SYMBOL_GPL(report_ignored_msrs);
157
158 unsigned int min_timer_period_us = 200;
159 module_param(min_timer_period_us, uint, 0644);
160
161 static bool __read_mostly kvmclock_periodic_sync = true;
162 module_param(kvmclock_periodic_sync, bool, 0444);
163
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, 0644);
167
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, 0444);
170
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, 0444);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174
175 /*
176 * Flags to manipulate forced emulation behavior (any non-zero value will
177 * enable forced emulation).
178 */
179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, 0644);
185
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193
194 /* Enable/disable SMT_RSB bug mitigation */
195 static bool __read_mostly mitigate_smt_rsb;
196 module_param(mitigate_smt_rsb, bool, 0444);
197
198 /*
199 * Restoring the host value for MSRs that are only consumed when running in
200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201 * returns to userspace, i.e. the kernel can run with the guest's value.
202 */
203 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204
205 struct kvm_user_return_msrs {
206 struct user_return_notifier urn;
207 bool registered;
208 struct kvm_user_return_msr_values {
209 u64 host;
210 u64 curr;
211 } values[KVM_MAX_NR_USER_RETURN_MSRS];
212 };
213
214 u32 __read_mostly kvm_nr_uret_msrs;
215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218
219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231 KVM_GENERIC_VM_STATS(),
232 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233 STATS_DESC_COUNTER(VM, mmu_pte_write),
234 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235 STATS_DESC_COUNTER(VM, mmu_flooded),
236 STATS_DESC_COUNTER(VM, mmu_recycled),
237 STATS_DESC_COUNTER(VM, mmu_cache_miss),
238 STATS_DESC_ICOUNTER(VM, mmu_unsync),
239 STATS_DESC_ICOUNTER(VM, pages_4k),
240 STATS_DESC_ICOUNTER(VM, pages_2m),
241 STATS_DESC_ICOUNTER(VM, pages_1g),
242 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245 };
246
247 const struct kvm_stats_header kvm_vm_stats_header = {
248 .name_size = KVM_STATS_NAME_SIZE,
249 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250 .id_offset = sizeof(struct kvm_stats_header),
251 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253 sizeof(kvm_vm_stats_desc),
254 };
255
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257 KVM_GENERIC_VCPU_STATS(),
258 STATS_DESC_COUNTER(VCPU, pf_taken),
259 STATS_DESC_COUNTER(VCPU, pf_fixed),
260 STATS_DESC_COUNTER(VCPU, pf_emulate),
261 STATS_DESC_COUNTER(VCPU, pf_spurious),
262 STATS_DESC_COUNTER(VCPU, pf_fast),
263 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
264 STATS_DESC_COUNTER(VCPU, pf_guest),
265 STATS_DESC_COUNTER(VCPU, tlb_flush),
266 STATS_DESC_COUNTER(VCPU, invlpg),
267 STATS_DESC_COUNTER(VCPU, exits),
268 STATS_DESC_COUNTER(VCPU, io_exits),
269 STATS_DESC_COUNTER(VCPU, mmio_exits),
270 STATS_DESC_COUNTER(VCPU, signal_exits),
271 STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 STATS_DESC_COUNTER(VCPU, l1d_flush),
274 STATS_DESC_COUNTER(VCPU, halt_exits),
275 STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 STATS_DESC_COUNTER(VCPU, irq_exits),
277 STATS_DESC_COUNTER(VCPU, host_state_reload),
278 STATS_DESC_COUNTER(VCPU, fpu_reload),
279 STATS_DESC_COUNTER(VCPU, insn_emulation),
280 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 STATS_DESC_COUNTER(VCPU, hypercalls),
282 STATS_DESC_COUNTER(VCPU, irq_injections),
283 STATS_DESC_COUNTER(VCPU, nmi_injections),
284 STATS_DESC_COUNTER(VCPU, req_event),
285 STATS_DESC_COUNTER(VCPU, nested_run),
286 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 STATS_DESC_COUNTER(VCPU, preemption_reported),
289 STATS_DESC_COUNTER(VCPU, preemption_other),
290 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
291 STATS_DESC_COUNTER(VCPU, notify_window_exits),
292 };
293
294 const struct kvm_stats_header kvm_vcpu_stats_header = {
295 .name_size = KVM_STATS_NAME_SIZE,
296 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
297 .id_offset = sizeof(struct kvm_stats_header),
298 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
299 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
300 sizeof(kvm_vcpu_stats_desc),
301 };
302
303 static struct kmem_cache *x86_emulator_cache;
304
305 /*
306 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
307 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
308 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
309 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
310 * MSRs that KVM emulates without strictly requiring host support.
311 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
312 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
313 * msrs_to_save and emulated_msrs.
314 */
315
316 static const u32 msrs_to_save_base[] = {
317 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
318 MSR_STAR,
319 #ifdef CONFIG_X86_64
320 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
321 #endif
322 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
323 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
324 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
325 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
326 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
327 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
328 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
329 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
330 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
331 MSR_IA32_UMWAIT_CONTROL,
332
333 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
334 };
335
336 static const u32 msrs_to_save_pmu[] = {
337 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
338 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
339 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
340 MSR_CORE_PERF_GLOBAL_CTRL,
341 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
342
343 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
344 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
345 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
346 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
347 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
348 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
349 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
350 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
352
353 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
354 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
355
356 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
357 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
358 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
359 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
360 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
361
362 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
363 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
364 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
365 };
366
367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
368 ARRAY_SIZE(msrs_to_save_pmu)];
369 static unsigned num_msrs_to_save;
370
371 static const u32 emulated_msrs_all[] = {
372 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
373 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
374
375 #ifdef CONFIG_KVM_HYPERV
376 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
377 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
378 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
379 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
380 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
381 HV_X64_MSR_RESET,
382 HV_X64_MSR_VP_INDEX,
383 HV_X64_MSR_VP_RUNTIME,
384 HV_X64_MSR_SCONTROL,
385 HV_X64_MSR_STIMER0_CONFIG,
386 HV_X64_MSR_VP_ASSIST_PAGE,
387 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
388 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
389 HV_X64_MSR_SYNDBG_OPTIONS,
390 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
391 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
392 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
393 #endif
394
395 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
396 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
397
398 MSR_IA32_TSC_ADJUST,
399 MSR_IA32_TSC_DEADLINE,
400 MSR_IA32_ARCH_CAPABILITIES,
401 MSR_IA32_PERF_CAPABILITIES,
402 MSR_IA32_MISC_ENABLE,
403 MSR_IA32_MCG_STATUS,
404 MSR_IA32_MCG_CTL,
405 MSR_IA32_MCG_EXT_CTL,
406 MSR_IA32_SMBASE,
407 MSR_SMI_COUNT,
408 MSR_PLATFORM_INFO,
409 MSR_MISC_FEATURES_ENABLES,
410 MSR_AMD64_VIRT_SPEC_CTRL,
411 MSR_AMD64_TSC_RATIO,
412 MSR_IA32_POWER_CTL,
413 MSR_IA32_UCODE_REV,
414
415 /*
416 * KVM always supports the "true" VMX control MSRs, even if the host
417 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
418 * doesn't strictly require them to exist in the host (ignoring that
419 * KVM would refuse to load in the first place if the core set of MSRs
420 * aren't supported).
421 */
422 MSR_IA32_VMX_BASIC,
423 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
424 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
425 MSR_IA32_VMX_TRUE_EXIT_CTLS,
426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
427 MSR_IA32_VMX_MISC,
428 MSR_IA32_VMX_CR0_FIXED0,
429 MSR_IA32_VMX_CR4_FIXED0,
430 MSR_IA32_VMX_VMCS_ENUM,
431 MSR_IA32_VMX_PROCBASED_CTLS2,
432 MSR_IA32_VMX_EPT_VPID_CAP,
433 MSR_IA32_VMX_VMFUNC,
434
435 MSR_K7_HWCR,
436 MSR_KVM_POLL_CONTROL,
437 };
438
439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
440 static unsigned num_emulated_msrs;
441
442 /*
443 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
444 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
445 * feature MSRs, but are handled separately to allow expedited lookups.
446 */
447 static const u32 msr_based_features_all_except_vmx[] = {
448 MSR_AMD64_DE_CFG,
449 MSR_IA32_UCODE_REV,
450 MSR_IA32_ARCH_CAPABILITIES,
451 MSR_IA32_PERF_CAPABILITIES,
452 MSR_PLATFORM_INFO,
453 };
454
455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
456 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
457 static unsigned int num_msr_based_features;
458
459 /*
460 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
461 * patch, are immutable once the vCPU model is defined.
462 */
kvm_is_immutable_feature_msr(u32 msr)463 static bool kvm_is_immutable_feature_msr(u32 msr)
464 {
465 int i;
466
467 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
468 return true;
469
470 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
471 if (msr == msr_based_features_all_except_vmx[i])
472 return msr != MSR_IA32_UCODE_REV;
473 }
474
475 return false;
476 }
477
kvm_is_advertised_msr(u32 msr_index)478 static bool kvm_is_advertised_msr(u32 msr_index)
479 {
480 unsigned int i;
481
482 for (i = 0; i < num_msrs_to_save; i++) {
483 if (msrs_to_save[i] == msr_index)
484 return true;
485 }
486
487 for (i = 0; i < num_emulated_msrs; i++) {
488 if (emulated_msrs[i] == msr_index)
489 return true;
490 }
491
492 return false;
493 }
494
495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
496 bool host_initiated);
497
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
499 u64 *data, bool host_initiated,
500 enum kvm_msr_access rw,
501 msr_access_t msr_access_fn)
502 {
503 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
504 int ret;
505
506 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
507
508 /*
509 * Zero the data on read failures to avoid leaking stack data to the
510 * guest and/or userspace, e.g. if the failure is ignored below.
511 */
512 ret = msr_access_fn(vcpu, msr, data, host_initiated);
513 if (ret && rw == MSR_TYPE_R)
514 *data = 0;
515
516 if (ret != KVM_MSR_RET_UNSUPPORTED)
517 return ret;
518
519 /*
520 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
521 * advertises to userspace, even if an MSR isn't fully supported.
522 * Simply check that @data is '0', which covers both the write '0' case
523 * and all reads (in which case @data is zeroed on failure; see above).
524 */
525 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
526 return 0;
527
528 if (!ignore_msrs) {
529 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
530 op, msr, *data);
531 return ret;
532 }
533
534 if (report_ignored_msrs)
535 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
536
537 return 0;
538 }
539
kvm_alloc_emulator_cache(void)540 static struct kmem_cache *kvm_alloc_emulator_cache(void)
541 {
542 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
543 unsigned int size = sizeof(struct x86_emulate_ctxt);
544
545 return kmem_cache_create_usercopy("x86_emulator", size,
546 __alignof__(struct x86_emulate_ctxt),
547 SLAB_ACCOUNT, useroffset,
548 size - useroffset, NULL);
549 }
550
551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
552
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
554 {
555 int i;
556 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
557 vcpu->arch.apf.gfns[i] = ~0;
558 }
559
kvm_on_user_return(struct user_return_notifier * urn)560 static void kvm_on_user_return(struct user_return_notifier *urn)
561 {
562 unsigned slot;
563 struct kvm_user_return_msrs *msrs
564 = container_of(urn, struct kvm_user_return_msrs, urn);
565 struct kvm_user_return_msr_values *values;
566 unsigned long flags;
567
568 /*
569 * Disabling irqs at this point since the following code could be
570 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
571 */
572 local_irq_save(flags);
573 if (msrs->registered) {
574 msrs->registered = false;
575 user_return_notifier_unregister(urn);
576 }
577 local_irq_restore(flags);
578 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
579 values = &msrs->values[slot];
580 if (values->host != values->curr) {
581 wrmsrl(kvm_uret_msrs_list[slot], values->host);
582 values->curr = values->host;
583 }
584 }
585 }
586
kvm_probe_user_return_msr(u32 msr)587 static int kvm_probe_user_return_msr(u32 msr)
588 {
589 u64 val;
590 int ret;
591
592 preempt_disable();
593 ret = rdmsrl_safe(msr, &val);
594 if (ret)
595 goto out;
596 ret = wrmsrl_safe(msr, val);
597 out:
598 preempt_enable();
599 return ret;
600 }
601
kvm_add_user_return_msr(u32 msr)602 int kvm_add_user_return_msr(u32 msr)
603 {
604 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
605
606 if (kvm_probe_user_return_msr(msr))
607 return -1;
608
609 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
610 return kvm_nr_uret_msrs++;
611 }
612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
613
kvm_find_user_return_msr(u32 msr)614 int kvm_find_user_return_msr(u32 msr)
615 {
616 int i;
617
618 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
619 if (kvm_uret_msrs_list[i] == msr)
620 return i;
621 }
622 return -1;
623 }
624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
625
kvm_user_return_msr_cpu_online(void)626 static void kvm_user_return_msr_cpu_online(void)
627 {
628 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
629 u64 value;
630 int i;
631
632 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
633 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
634 msrs->values[i].host = value;
635 msrs->values[i].curr = value;
636 }
637 }
638
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
640 {
641 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
642 int err;
643
644 value = (value & mask) | (msrs->values[slot].host & ~mask);
645 if (value == msrs->values[slot].curr)
646 return 0;
647 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
648 if (err)
649 return 1;
650
651 msrs->values[slot].curr = value;
652 if (!msrs->registered) {
653 msrs->urn.on_user_return = kvm_on_user_return;
654 user_return_notifier_register(&msrs->urn);
655 msrs->registered = true;
656 }
657 return 0;
658 }
659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
660
drop_user_return_notifiers(void)661 static void drop_user_return_notifiers(void)
662 {
663 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
664
665 if (msrs->registered)
666 kvm_on_user_return(&msrs->urn);
667 }
668
669 /*
670 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
671 *
672 * Hardware virtualization extension instructions may fault if a reboot turns
673 * off virtualization while processes are running. Usually after catching the
674 * fault we just panic; during reboot instead the instruction is ignored.
675 */
kvm_spurious_fault(void)676 noinstr void kvm_spurious_fault(void)
677 {
678 /* Fault while not rebooting. We want the trace. */
679 BUG_ON(!kvm_rebooting);
680 }
681 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
682
683 #define EXCPT_BENIGN 0
684 #define EXCPT_CONTRIBUTORY 1
685 #define EXCPT_PF 2
686
exception_class(int vector)687 static int exception_class(int vector)
688 {
689 switch (vector) {
690 case PF_VECTOR:
691 return EXCPT_PF;
692 case DE_VECTOR:
693 case TS_VECTOR:
694 case NP_VECTOR:
695 case SS_VECTOR:
696 case GP_VECTOR:
697 return EXCPT_CONTRIBUTORY;
698 default:
699 break;
700 }
701 return EXCPT_BENIGN;
702 }
703
704 #define EXCPT_FAULT 0
705 #define EXCPT_TRAP 1
706 #define EXCPT_ABORT 2
707 #define EXCPT_INTERRUPT 3
708 #define EXCPT_DB 4
709
exception_type(int vector)710 static int exception_type(int vector)
711 {
712 unsigned int mask;
713
714 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
715 return EXCPT_INTERRUPT;
716
717 mask = 1 << vector;
718
719 /*
720 * #DBs can be trap-like or fault-like, the caller must check other CPU
721 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
722 */
723 if (mask & (1 << DB_VECTOR))
724 return EXCPT_DB;
725
726 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
727 return EXCPT_TRAP;
728
729 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
730 return EXCPT_ABORT;
731
732 /* Reserved exceptions will result in fault */
733 return EXCPT_FAULT;
734 }
735
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
737 struct kvm_queued_exception *ex)
738 {
739 if (!ex->has_payload)
740 return;
741
742 switch (ex->vector) {
743 case DB_VECTOR:
744 /*
745 * "Certain debug exceptions may clear bit 0-3. The
746 * remaining contents of the DR6 register are never
747 * cleared by the processor".
748 */
749 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
750 /*
751 * In order to reflect the #DB exception payload in guest
752 * dr6, three components need to be considered: active low
753 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
754 * DR6_BS and DR6_BT)
755 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
756 * In the target guest dr6:
757 * FIXED_1 bits should always be set.
758 * Active low bits should be cleared if 1-setting in payload.
759 * Active high bits should be set if 1-setting in payload.
760 *
761 * Note, the payload is compatible with the pending debug
762 * exceptions/exit qualification under VMX, that active_low bits
763 * are active high in payload.
764 * So they need to be flipped for DR6.
765 */
766 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
767 vcpu->arch.dr6 |= ex->payload;
768 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
769
770 /*
771 * The #DB payload is defined as compatible with the 'pending
772 * debug exceptions' field under VMX, not DR6. While bit 12 is
773 * defined in the 'pending debug exceptions' field (enabled
774 * breakpoint), it is reserved and must be zero in DR6.
775 */
776 vcpu->arch.dr6 &= ~BIT(12);
777 break;
778 case PF_VECTOR:
779 vcpu->arch.cr2 = ex->payload;
780 break;
781 }
782
783 ex->has_payload = false;
784 ex->payload = 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
787
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
789 bool has_error_code, u32 error_code,
790 bool has_payload, unsigned long payload)
791 {
792 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
793
794 ex->vector = vector;
795 ex->injected = false;
796 ex->pending = true;
797 ex->has_error_code = has_error_code;
798 ex->error_code = error_code;
799 ex->has_payload = has_payload;
800 ex->payload = payload;
801 }
802
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
804 bool has_error, u32 error_code,
805 bool has_payload, unsigned long payload)
806 {
807 u32 prev_nr;
808 int class1, class2;
809
810 kvm_make_request(KVM_REQ_EVENT, vcpu);
811
812 /*
813 * If the exception is destined for L2, morph it to a VM-Exit if L1
814 * wants to intercept the exception.
815 */
816 if (is_guest_mode(vcpu) &&
817 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
818 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
819 has_payload, payload);
820 return;
821 }
822
823 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
824 queue:
825 vcpu->arch.exception.pending = true;
826 vcpu->arch.exception.injected = false;
827
828 vcpu->arch.exception.has_error_code = has_error;
829 vcpu->arch.exception.vector = nr;
830 vcpu->arch.exception.error_code = error_code;
831 vcpu->arch.exception.has_payload = has_payload;
832 vcpu->arch.exception.payload = payload;
833 if (!is_guest_mode(vcpu))
834 kvm_deliver_exception_payload(vcpu,
835 &vcpu->arch.exception);
836 return;
837 }
838
839 /* to check exception */
840 prev_nr = vcpu->arch.exception.vector;
841 if (prev_nr == DF_VECTOR) {
842 /* triple fault -> shutdown */
843 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
844 return;
845 }
846 class1 = exception_class(prev_nr);
847 class2 = exception_class(nr);
848 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
849 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
850 /*
851 * Synthesize #DF. Clear the previously injected or pending
852 * exception so as not to incorrectly trigger shutdown.
853 */
854 vcpu->arch.exception.injected = false;
855 vcpu->arch.exception.pending = false;
856
857 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
858 } else {
859 /* replace previous exception with a new one in a hope
860 that instruction re-execution will regenerate lost
861 exception */
862 goto queue;
863 }
864 }
865
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)866 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
867 {
868 kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
869 }
870 EXPORT_SYMBOL_GPL(kvm_queue_exception);
871
872
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)873 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
874 unsigned long payload)
875 {
876 kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
877 }
878 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
879
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)880 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
881 u32 error_code, unsigned long payload)
882 {
883 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
884 }
885
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)886 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
887 bool has_error_code, u32 error_code)
888 {
889
890 /*
891 * On VM-Entry, an exception can be pending if and only if event
892 * injection was blocked by nested_run_pending. In that case, however,
893 * vcpu_enter_guest() requests an immediate exit, and the guest
894 * shouldn't proceed far enough to need reinjection.
895 */
896 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
897
898 /*
899 * Do not check for interception when injecting an event for L2, as the
900 * exception was checked for intercept when it was original queued, and
901 * re-checking is incorrect if _L1_ injected the exception, in which
902 * case it's exempt from interception.
903 */
904 kvm_make_request(KVM_REQ_EVENT, vcpu);
905
906 vcpu->arch.exception.injected = true;
907 vcpu->arch.exception.has_error_code = has_error_code;
908 vcpu->arch.exception.vector = nr;
909 vcpu->arch.exception.error_code = error_code;
910 vcpu->arch.exception.has_payload = false;
911 vcpu->arch.exception.payload = 0;
912 }
913 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
914
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)915 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
916 {
917 if (err)
918 kvm_inject_gp(vcpu, 0);
919 else
920 return kvm_skip_emulated_instruction(vcpu);
921
922 return 1;
923 }
924 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
925
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)926 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
927 {
928 if (err) {
929 kvm_inject_gp(vcpu, 0);
930 return 1;
931 }
932
933 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
934 EMULTYPE_COMPLETE_USER_EXIT);
935 }
936
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)937 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
938 {
939 ++vcpu->stat.pf_guest;
940
941 /*
942 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
943 * whether or not L1 wants to intercept "regular" #PF.
944 */
945 if (is_guest_mode(vcpu) && fault->async_page_fault)
946 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
947 true, fault->error_code,
948 true, fault->address);
949 else
950 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
951 fault->address);
952 }
953
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)954 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
955 struct x86_exception *fault)
956 {
957 struct kvm_mmu *fault_mmu;
958 WARN_ON_ONCE(fault->vector != PF_VECTOR);
959
960 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
961 vcpu->arch.walk_mmu;
962
963 /*
964 * Invalidate the TLB entry for the faulting address, if it exists,
965 * else the access will fault indefinitely (and to emulate hardware).
966 */
967 if ((fault->error_code & PFERR_PRESENT_MASK) &&
968 !(fault->error_code & PFERR_RSVD_MASK))
969 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
970 KVM_MMU_ROOT_CURRENT);
971
972 fault_mmu->inject_page_fault(vcpu, fault);
973 }
974 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
975
kvm_inject_nmi(struct kvm_vcpu * vcpu)976 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
977 {
978 atomic_inc(&vcpu->arch.nmi_queued);
979 kvm_make_request(KVM_REQ_NMI, vcpu);
980 }
981
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)982 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
983 {
984 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
985 }
986 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
987
988 /*
989 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
990 * a #GP and return false.
991 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)992 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
993 {
994 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
995 return true;
996 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
997 return false;
998 }
999
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1000 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1001 {
1002 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1003 return true;
1004
1005 kvm_queue_exception(vcpu, UD_VECTOR);
1006 return false;
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_require_dr);
1009
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1010 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1011 {
1012 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1013 }
1014
1015 /*
1016 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1017 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1018 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1019 {
1020 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1021 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1022 gpa_t real_gpa;
1023 int i;
1024 int ret;
1025 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1026
1027 /*
1028 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1029 * to an L1 GPA.
1030 */
1031 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1032 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1033 if (real_gpa == INVALID_GPA)
1034 return 0;
1035
1036 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1037 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1038 cr3 & GENMASK(11, 5), sizeof(pdpte));
1039 if (ret < 0)
1040 return 0;
1041
1042 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1043 if ((pdpte[i] & PT_PRESENT_MASK) &&
1044 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1045 return 0;
1046 }
1047 }
1048
1049 /*
1050 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1051 * Shadow page roots need to be reconstructed instead.
1052 */
1053 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1054 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1055
1056 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1057 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1058 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1059 vcpu->arch.pdptrs_from_userspace = false;
1060
1061 return 1;
1062 }
1063 EXPORT_SYMBOL_GPL(load_pdptrs);
1064
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1065 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1066 {
1067 #ifdef CONFIG_X86_64
1068 if (cr0 & 0xffffffff00000000UL)
1069 return false;
1070 #endif
1071
1072 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1073 return false;
1074
1075 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1076 return false;
1077
1078 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1079 }
1080
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1081 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1082 {
1083 /*
1084 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1085 * indirect shadow MMUs. If paging is disabled, no updates are needed
1086 * as there are no permission bits to emulate. If TDP is enabled, the
1087 * MMU's metadata needs to be updated, e.g. so that emulating guest
1088 * translations does the right thing, but there's no need to unload the
1089 * root as CR0.WP doesn't affect SPTEs.
1090 */
1091 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1092 if (!(cr0 & X86_CR0_PG))
1093 return;
1094
1095 if (tdp_enabled) {
1096 kvm_init_mmu(vcpu);
1097 return;
1098 }
1099 }
1100
1101 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1102 kvm_clear_async_pf_completion_queue(vcpu);
1103 kvm_async_pf_hash_reset(vcpu);
1104
1105 /*
1106 * Clearing CR0.PG is defined to flush the TLB from the guest's
1107 * perspective.
1108 */
1109 if (!(cr0 & X86_CR0_PG))
1110 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1111 }
1112
1113 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1114 kvm_mmu_reset_context(vcpu);
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1117
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1118 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1119 {
1120 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1121
1122 if (!kvm_is_valid_cr0(vcpu, cr0))
1123 return 1;
1124
1125 cr0 |= X86_CR0_ET;
1126
1127 /* Write to CR0 reserved bits are ignored, even on Intel. */
1128 cr0 &= ~CR0_RESERVED_BITS;
1129
1130 #ifdef CONFIG_X86_64
1131 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1132 (cr0 & X86_CR0_PG)) {
1133 int cs_db, cs_l;
1134
1135 if (!is_pae(vcpu))
1136 return 1;
1137 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1138 if (cs_l)
1139 return 1;
1140 }
1141 #endif
1142 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1143 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1144 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1145 return 1;
1146
1147 if (!(cr0 & X86_CR0_PG) &&
1148 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1149 return 1;
1150
1151 kvm_x86_call(set_cr0)(vcpu, cr0);
1152
1153 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1154
1155 return 0;
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1158
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1159 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1160 {
1161 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1162 }
1163 EXPORT_SYMBOL_GPL(kvm_lmsw);
1164
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1165 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1166 {
1167 if (vcpu->arch.guest_state_protected)
1168 return;
1169
1170 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1171
1172 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1173 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1174
1175 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1176 vcpu->arch.ia32_xss != kvm_host.xss)
1177 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1178 }
1179
1180 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1181 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1182 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1183 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1184 wrpkru(vcpu->arch.pkru);
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1187
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1188 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1189 {
1190 if (vcpu->arch.guest_state_protected)
1191 return;
1192
1193 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1194 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1195 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1196 vcpu->arch.pkru = rdpkru();
1197 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1198 wrpkru(vcpu->arch.host_pkru);
1199 }
1200
1201 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1202
1203 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1204 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1205
1206 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1207 vcpu->arch.ia32_xss != kvm_host.xss)
1208 wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1209 }
1210
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1213
1214 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1215 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1216 {
1217 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1218 }
1219 #endif
1220
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1221 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1222 {
1223 u64 xcr0 = xcr;
1224 u64 old_xcr0 = vcpu->arch.xcr0;
1225 u64 valid_bits;
1226
1227 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1228 if (index != XCR_XFEATURE_ENABLED_MASK)
1229 return 1;
1230 if (!(xcr0 & XFEATURE_MASK_FP))
1231 return 1;
1232 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1233 return 1;
1234
1235 /*
1236 * Do not allow the guest to set bits that we do not support
1237 * saving. However, xcr0 bit 0 is always set, even if the
1238 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1239 */
1240 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1241 if (xcr0 & ~valid_bits)
1242 return 1;
1243
1244 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1245 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1246 return 1;
1247
1248 if (xcr0 & XFEATURE_MASK_AVX512) {
1249 if (!(xcr0 & XFEATURE_MASK_YMM))
1250 return 1;
1251 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1252 return 1;
1253 }
1254
1255 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1256 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1257 return 1;
1258
1259 vcpu->arch.xcr0 = xcr0;
1260
1261 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1262 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1263 return 0;
1264 }
1265
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1266 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1267 {
1268 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1269 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1270 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1271 kvm_inject_gp(vcpu, 0);
1272 return 1;
1273 }
1274
1275 return kvm_skip_emulated_instruction(vcpu);
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1278
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1279 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1280 {
1281 return __kvm_is_valid_cr4(vcpu, cr4) &&
1282 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1283 }
1284
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1285 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1286 {
1287 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1288 kvm_mmu_reset_context(vcpu);
1289
1290 /*
1291 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1292 * according to the SDM; however, stale prev_roots could be reused
1293 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1294 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1295 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1296 * so fall through.
1297 */
1298 if (!tdp_enabled &&
1299 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1300 kvm_mmu_unload(vcpu);
1301
1302 /*
1303 * The TLB has to be flushed for all PCIDs if any of the following
1304 * (architecturally required) changes happen:
1305 * - CR4.PCIDE is changed from 1 to 0
1306 * - CR4.PGE is toggled
1307 *
1308 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1309 */
1310 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1311 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1312 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1313
1314 /*
1315 * The TLB has to be flushed for the current PCID if any of the
1316 * following (architecturally required) changes happen:
1317 * - CR4.SMEP is changed from 0 to 1
1318 * - CR4.PAE is toggled
1319 */
1320 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1321 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1322 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1323
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1326
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1327 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1328 {
1329 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1330
1331 if (!kvm_is_valid_cr4(vcpu, cr4))
1332 return 1;
1333
1334 if (is_long_mode(vcpu)) {
1335 if (!(cr4 & X86_CR4_PAE))
1336 return 1;
1337 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1338 return 1;
1339 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1340 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1341 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1342 return 1;
1343
1344 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1345 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1346 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1347 return 1;
1348 }
1349
1350 kvm_x86_call(set_cr4)(vcpu, cr4);
1351
1352 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1353
1354 return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1357
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1358 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1359 {
1360 struct kvm_mmu *mmu = vcpu->arch.mmu;
1361 unsigned long roots_to_free = 0;
1362 int i;
1363
1364 /*
1365 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1366 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1367 * also via the emulator. KVM's TDP page tables are not in the scope of
1368 * the invalidation, but the guest's TLB entries need to be flushed as
1369 * the CPU may have cached entries in its TLB for the target PCID.
1370 */
1371 if (unlikely(tdp_enabled)) {
1372 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1373 return;
1374 }
1375
1376 /*
1377 * If neither the current CR3 nor any of the prev_roots use the given
1378 * PCID, then nothing needs to be done here because a resync will
1379 * happen anyway before switching to any other CR3.
1380 */
1381 if (kvm_get_active_pcid(vcpu) == pcid) {
1382 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1383 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1384 }
1385
1386 /*
1387 * If PCID is disabled, there is no need to free prev_roots even if the
1388 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1389 * with PCIDE=0.
1390 */
1391 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1392 return;
1393
1394 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1395 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1396 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1397
1398 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1399 }
1400
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1401 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1402 {
1403 bool skip_tlb_flush = false;
1404 unsigned long pcid = 0;
1405 #ifdef CONFIG_X86_64
1406 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1407 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1408 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1409 pcid = cr3 & X86_CR3_PCID_MASK;
1410 }
1411 #endif
1412
1413 /* PDPTRs are always reloaded for PAE paging. */
1414 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1415 goto handle_tlb_flush;
1416
1417 /*
1418 * Do not condition the GPA check on long mode, this helper is used to
1419 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1420 * the current vCPU mode is accurate.
1421 */
1422 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1423 return 1;
1424
1425 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1426 return 1;
1427
1428 if (cr3 != kvm_read_cr3(vcpu))
1429 kvm_mmu_new_pgd(vcpu, cr3);
1430
1431 vcpu->arch.cr3 = cr3;
1432 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1433 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1434
1435 handle_tlb_flush:
1436 /*
1437 * A load of CR3 that flushes the TLB flushes only the current PCID,
1438 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1439 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1440 * and it's impossible to use a non-zero PCID when PCID is disabled,
1441 * i.e. only PCID=0 can be relevant.
1442 */
1443 if (!skip_tlb_flush)
1444 kvm_invalidate_pcid(vcpu, pcid);
1445
1446 return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1449
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1450 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1451 {
1452 if (cr8 & CR8_RESERVED_BITS)
1453 return 1;
1454 if (lapic_in_kernel(vcpu))
1455 kvm_lapic_set_tpr(vcpu, cr8);
1456 else
1457 vcpu->arch.cr8 = cr8;
1458 return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1461
kvm_get_cr8(struct kvm_vcpu * vcpu)1462 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1463 {
1464 if (lapic_in_kernel(vcpu))
1465 return kvm_lapic_get_cr8(vcpu);
1466 else
1467 return vcpu->arch.cr8;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1470
kvm_update_dr0123(struct kvm_vcpu * vcpu)1471 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1472 {
1473 int i;
1474
1475 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1476 for (i = 0; i < KVM_NR_DB_REGS; i++)
1477 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1478 }
1479 }
1480
kvm_update_dr7(struct kvm_vcpu * vcpu)1481 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1482 {
1483 unsigned long dr7;
1484
1485 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1486 dr7 = vcpu->arch.guest_debug_dr7;
1487 else
1488 dr7 = vcpu->arch.dr7;
1489 kvm_x86_call(set_dr7)(vcpu, dr7);
1490 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1491 if (dr7 & DR7_BP_EN_MASK)
1492 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1495
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1496 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1497 {
1498 u64 fixed = DR6_FIXED_1;
1499
1500 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1501 fixed |= DR6_RTM;
1502
1503 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1504 fixed |= DR6_BUS_LOCK;
1505 return fixed;
1506 }
1507
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1508 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1509 {
1510 size_t size = ARRAY_SIZE(vcpu->arch.db);
1511
1512 switch (dr) {
1513 case 0 ... 3:
1514 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1515 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1516 vcpu->arch.eff_db[dr] = val;
1517 break;
1518 case 4:
1519 case 6:
1520 if (!kvm_dr6_valid(val))
1521 return 1; /* #GP */
1522 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1523 break;
1524 case 5:
1525 default: /* 7 */
1526 if (!kvm_dr7_valid(val))
1527 return 1; /* #GP */
1528 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1529 kvm_update_dr7(vcpu);
1530 break;
1531 }
1532
1533 return 0;
1534 }
1535 EXPORT_SYMBOL_GPL(kvm_set_dr);
1536
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1537 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1538 {
1539 size_t size = ARRAY_SIZE(vcpu->arch.db);
1540
1541 switch (dr) {
1542 case 0 ... 3:
1543 return vcpu->arch.db[array_index_nospec(dr, size)];
1544 case 4:
1545 case 6:
1546 return vcpu->arch.dr6;
1547 case 5:
1548 default: /* 7 */
1549 return vcpu->arch.dr7;
1550 }
1551 }
1552 EXPORT_SYMBOL_GPL(kvm_get_dr);
1553
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1554 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1555 {
1556 u32 ecx = kvm_rcx_read(vcpu);
1557 u64 data;
1558
1559 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1560 kvm_inject_gp(vcpu, 0);
1561 return 1;
1562 }
1563
1564 kvm_rax_write(vcpu, (u32)data);
1565 kvm_rdx_write(vcpu, data >> 32);
1566 return kvm_skip_emulated_instruction(vcpu);
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1569
1570 /*
1571 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1572 * does not yet virtualize. These include:
1573 * 10 - MISC_PACKAGE_CTRLS
1574 * 11 - ENERGY_FILTERING_CTL
1575 * 12 - DOITM
1576 * 18 - FB_CLEAR_CTRL
1577 * 21 - XAPIC_DISABLE_STATUS
1578 * 23 - OVERCLOCKING_STATUS
1579 */
1580
1581 #define KVM_SUPPORTED_ARCH_CAP \
1582 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1583 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1584 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1585 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1586 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1587 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1588
kvm_get_arch_capabilities(void)1589 static u64 kvm_get_arch_capabilities(void)
1590 {
1591 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1592
1593 /*
1594 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1595 * the nested hypervisor runs with NX huge pages. If it is not,
1596 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1597 * L1 guests, so it need not worry about its own (L2) guests.
1598 */
1599 data |= ARCH_CAP_PSCHANGE_MC_NO;
1600
1601 /*
1602 * If we're doing cache flushes (either "always" or "cond")
1603 * we will do one whenever the guest does a vmlaunch/vmresume.
1604 * If an outer hypervisor is doing the cache flush for us
1605 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1606 * capability to the guest too, and if EPT is disabled we're not
1607 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1608 * require a nested hypervisor to do a flush of its own.
1609 */
1610 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1611 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1612
1613 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1614 data |= ARCH_CAP_RDCL_NO;
1615 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1616 data |= ARCH_CAP_SSB_NO;
1617 if (!boot_cpu_has_bug(X86_BUG_MDS))
1618 data |= ARCH_CAP_MDS_NO;
1619 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1620 data |= ARCH_CAP_RFDS_NO;
1621
1622 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1623 /*
1624 * If RTM=0 because the kernel has disabled TSX, the host might
1625 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1626 * and therefore knows that there cannot be TAA) but keep
1627 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1628 * and we want to allow migrating those guests to tsx=off hosts.
1629 */
1630 data &= ~ARCH_CAP_TAA_NO;
1631 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1632 data |= ARCH_CAP_TAA_NO;
1633 } else {
1634 /*
1635 * Nothing to do here; we emulate TSX_CTRL if present on the
1636 * host so the guest can choose between disabling TSX or
1637 * using VERW to clear CPU buffers.
1638 */
1639 }
1640
1641 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1642 data |= ARCH_CAP_GDS_NO;
1643
1644 return data;
1645 }
1646
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1647 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1648 bool host_initiated)
1649 {
1650 WARN_ON_ONCE(!host_initiated);
1651
1652 switch (index) {
1653 case MSR_IA32_ARCH_CAPABILITIES:
1654 *data = kvm_get_arch_capabilities();
1655 break;
1656 case MSR_IA32_PERF_CAPABILITIES:
1657 *data = kvm_caps.supported_perf_cap;
1658 break;
1659 case MSR_PLATFORM_INFO:
1660 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1661 break;
1662 case MSR_IA32_UCODE_REV:
1663 rdmsrl_safe(index, data);
1664 break;
1665 default:
1666 return kvm_x86_call(get_feature_msr)(index, data);
1667 }
1668 return 0;
1669 }
1670
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1671 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1672 {
1673 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1674 kvm_get_feature_msr);
1675 }
1676
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1677 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1678 {
1679 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1680 return false;
1681
1682 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1683 return false;
1684
1685 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1686 return false;
1687
1688 if (efer & (EFER_LME | EFER_LMA) &&
1689 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1690 return false;
1691
1692 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1693 return false;
1694
1695 return true;
1696
1697 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1698 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1699 {
1700 if (efer & efer_reserved_bits)
1701 return false;
1702
1703 return __kvm_valid_efer(vcpu, efer);
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1706
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1707 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1708 {
1709 u64 old_efer = vcpu->arch.efer;
1710 u64 efer = msr_info->data;
1711 int r;
1712
1713 if (efer & efer_reserved_bits)
1714 return 1;
1715
1716 if (!msr_info->host_initiated) {
1717 if (!__kvm_valid_efer(vcpu, efer))
1718 return 1;
1719
1720 if (is_paging(vcpu) &&
1721 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1722 return 1;
1723 }
1724
1725 efer &= ~EFER_LMA;
1726 efer |= vcpu->arch.efer & EFER_LMA;
1727
1728 r = kvm_x86_call(set_efer)(vcpu, efer);
1729 if (r) {
1730 WARN_ON(r > 0);
1731 return r;
1732 }
1733
1734 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1735 kvm_mmu_reset_context(vcpu);
1736
1737 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1738 (efer & EFER_SVME))
1739 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1740
1741 return 0;
1742 }
1743
kvm_enable_efer_bits(u64 mask)1744 void kvm_enable_efer_bits(u64 mask)
1745 {
1746 efer_reserved_bits &= ~mask;
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1749
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1750 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1751 {
1752 struct kvm_x86_msr_filter *msr_filter;
1753 struct msr_bitmap_range *ranges;
1754 struct kvm *kvm = vcpu->kvm;
1755 bool allowed;
1756 int idx;
1757 u32 i;
1758
1759 /* x2APIC MSRs do not support filtering. */
1760 if (index >= 0x800 && index <= 0x8ff)
1761 return true;
1762
1763 idx = srcu_read_lock(&kvm->srcu);
1764
1765 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1766 if (!msr_filter) {
1767 allowed = true;
1768 goto out;
1769 }
1770
1771 allowed = msr_filter->default_allow;
1772 ranges = msr_filter->ranges;
1773
1774 for (i = 0; i < msr_filter->count; i++) {
1775 u32 start = ranges[i].base;
1776 u32 end = start + ranges[i].nmsrs;
1777 u32 flags = ranges[i].flags;
1778 unsigned long *bitmap = ranges[i].bitmap;
1779
1780 if ((index >= start) && (index < end) && (flags & type)) {
1781 allowed = test_bit(index - start, bitmap);
1782 break;
1783 }
1784 }
1785
1786 out:
1787 srcu_read_unlock(&kvm->srcu, idx);
1788
1789 return allowed;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1792
1793 /*
1794 * Write @data into the MSR specified by @index. Select MSR specific fault
1795 * checks are bypassed if @host_initiated is %true.
1796 * Returns 0 on success, non-0 otherwise.
1797 * Assumes vcpu_load() was already called.
1798 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1799 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1800 bool host_initiated)
1801 {
1802 struct msr_data msr;
1803
1804 switch (index) {
1805 case MSR_FS_BASE:
1806 case MSR_GS_BASE:
1807 case MSR_KERNEL_GS_BASE:
1808 case MSR_CSTAR:
1809 case MSR_LSTAR:
1810 if (is_noncanonical_msr_address(data, vcpu))
1811 return 1;
1812 break;
1813 case MSR_IA32_SYSENTER_EIP:
1814 case MSR_IA32_SYSENTER_ESP:
1815 /*
1816 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1817 * non-canonical address is written on Intel but not on
1818 * AMD (which ignores the top 32-bits, because it does
1819 * not implement 64-bit SYSENTER).
1820 *
1821 * 64-bit code should hence be able to write a non-canonical
1822 * value on AMD. Making the address canonical ensures that
1823 * vmentry does not fail on Intel after writing a non-canonical
1824 * value, and that something deterministic happens if the guest
1825 * invokes 64-bit SYSENTER.
1826 */
1827 data = __canonical_address(data, max_host_virt_addr_bits());
1828 break;
1829 case MSR_TSC_AUX:
1830 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1831 return 1;
1832
1833 if (!host_initiated &&
1834 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1835 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1836 return 1;
1837
1838 /*
1839 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1840 * incomplete and conflicting architectural behavior. Current
1841 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1842 * reserved and always read as zeros. Enforce Intel's reserved
1843 * bits check if the guest CPU is Intel compatible, otherwise
1844 * clear the bits. This ensures cross-vendor migration will
1845 * provide consistent behavior for the guest.
1846 */
1847 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1848 return 1;
1849
1850 data = (u32)data;
1851 break;
1852 }
1853
1854 msr.data = data;
1855 msr.index = index;
1856 msr.host_initiated = host_initiated;
1857
1858 return kvm_x86_call(set_msr)(vcpu, &msr);
1859 }
1860
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1861 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1862 bool host_initiated)
1863 {
1864 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1865 }
1866
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1867 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1868 u32 index, u64 data, bool host_initiated)
1869 {
1870 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1871 _kvm_set_msr);
1872 }
1873
1874 /*
1875 * Read the MSR specified by @index into @data. Select MSR specific fault
1876 * checks are bypassed if @host_initiated is %true.
1877 * Returns 0 on success, non-0 otherwise.
1878 * Assumes vcpu_load() was already called.
1879 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1880 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1881 bool host_initiated)
1882 {
1883 struct msr_data msr;
1884 int ret;
1885
1886 switch (index) {
1887 case MSR_TSC_AUX:
1888 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1889 return 1;
1890
1891 if (!host_initiated &&
1892 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1893 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1894 return 1;
1895 break;
1896 }
1897
1898 msr.index = index;
1899 msr.host_initiated = host_initiated;
1900
1901 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1902 if (!ret)
1903 *data = msr.data;
1904 return ret;
1905 }
1906
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1907 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1908 u32 index, u64 *data, bool host_initiated)
1909 {
1910 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1911 __kvm_get_msr);
1912 }
1913
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1914 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1915 {
1916 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1917 return KVM_MSR_RET_FILTERED;
1918 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1921
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1922 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1923 {
1924 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1925 return KVM_MSR_RET_FILTERED;
1926 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1929
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1930 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1931 {
1932 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_get_msr);
1935
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1936 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1937 {
1938 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_set_msr);
1941
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1942 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1943 {
1944 if (!vcpu->run->msr.error) {
1945 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1946 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1947 }
1948 }
1949
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1950 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1951 {
1952 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1953 }
1954
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1955 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1956 {
1957 complete_userspace_rdmsr(vcpu);
1958 return complete_emulated_msr_access(vcpu);
1959 }
1960
complete_fast_msr_access(struct kvm_vcpu * vcpu)1961 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1962 {
1963 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1964 }
1965
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1966 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1967 {
1968 complete_userspace_rdmsr(vcpu);
1969 return complete_fast_msr_access(vcpu);
1970 }
1971
kvm_msr_reason(int r)1972 static u64 kvm_msr_reason(int r)
1973 {
1974 switch (r) {
1975 case KVM_MSR_RET_UNSUPPORTED:
1976 return KVM_MSR_EXIT_REASON_UNKNOWN;
1977 case KVM_MSR_RET_FILTERED:
1978 return KVM_MSR_EXIT_REASON_FILTER;
1979 default:
1980 return KVM_MSR_EXIT_REASON_INVAL;
1981 }
1982 }
1983
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1984 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1985 u32 exit_reason, u64 data,
1986 int (*completion)(struct kvm_vcpu *vcpu),
1987 int r)
1988 {
1989 u64 msr_reason = kvm_msr_reason(r);
1990
1991 /* Check if the user wanted to know about this MSR fault */
1992 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1993 return 0;
1994
1995 vcpu->run->exit_reason = exit_reason;
1996 vcpu->run->msr.error = 0;
1997 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1998 vcpu->run->msr.reason = msr_reason;
1999 vcpu->run->msr.index = index;
2000 vcpu->run->msr.data = data;
2001 vcpu->arch.complete_userspace_io = completion;
2002
2003 return 1;
2004 }
2005
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2006 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2007 {
2008 u32 ecx = kvm_rcx_read(vcpu);
2009 u64 data;
2010 int r;
2011
2012 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2013
2014 if (!r) {
2015 trace_kvm_msr_read(ecx, data);
2016
2017 kvm_rax_write(vcpu, data & -1u);
2018 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2019 } else {
2020 /* MSR read failed? See if we should ask user space */
2021 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2022 complete_fast_rdmsr, r))
2023 return 0;
2024 trace_kvm_msr_read_ex(ecx);
2025 }
2026
2027 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2030
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2031 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2032 {
2033 u32 ecx = kvm_rcx_read(vcpu);
2034 u64 data = kvm_read_edx_eax(vcpu);
2035 int r;
2036
2037 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2038
2039 if (!r) {
2040 trace_kvm_msr_write(ecx, data);
2041 } else {
2042 /* MSR write failed? See if we should ask user space */
2043 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2044 complete_fast_msr_access, r))
2045 return 0;
2046 /* Signal all other negative errors to userspace */
2047 if (r < 0)
2048 return r;
2049 trace_kvm_msr_write_ex(ecx, data);
2050 }
2051
2052 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2055
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2056 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2057 {
2058 return kvm_skip_emulated_instruction(vcpu);
2059 }
2060
kvm_emulate_invd(struct kvm_vcpu * vcpu)2061 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2062 {
2063 /* Treat an INVD instruction as a NOP and just skip it. */
2064 return kvm_emulate_as_nop(vcpu);
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2067
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2068 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2069 {
2070 kvm_queue_exception(vcpu, UD_VECTOR);
2071 return 1;
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2074
2075
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2076 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2077 {
2078 bool enabled;
2079
2080 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2081 goto emulate_as_nop;
2082
2083 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2084 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2085 else
2086 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2087
2088 if (!enabled)
2089 return kvm_handle_invalid_op(vcpu);
2090
2091 emulate_as_nop:
2092 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2093 return kvm_emulate_as_nop(vcpu);
2094 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2095 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2096 {
2097 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2100
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2101 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2102 {
2103 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2106
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2107 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2108 {
2109 xfer_to_guest_mode_prepare();
2110
2111 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2112 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2113 }
2114
2115 /*
2116 * The fast path for frequent and performance sensitive wrmsr emulation,
2117 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2118 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2119 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2120 * other cases which must be called after interrupts are enabled on the host.
2121 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2122 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2123 {
2124 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2125 return 1;
2126
2127 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2128 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2129 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2130 ((u32)(data >> 32) != X2APIC_BROADCAST))
2131 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2132
2133 return 1;
2134 }
2135
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2136 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2137 {
2138 if (!kvm_can_use_hv_timer(vcpu))
2139 return 1;
2140
2141 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2142 return 0;
2143 }
2144
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2145 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2146 {
2147 u32 msr = kvm_rcx_read(vcpu);
2148 u64 data;
2149 fastpath_t ret;
2150 bool handled;
2151
2152 kvm_vcpu_srcu_read_lock(vcpu);
2153
2154 switch (msr) {
2155 case APIC_BASE_MSR + (APIC_ICR >> 4):
2156 data = kvm_read_edx_eax(vcpu);
2157 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2158 break;
2159 case MSR_IA32_TSC_DEADLINE:
2160 data = kvm_read_edx_eax(vcpu);
2161 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2162 break;
2163 default:
2164 handled = false;
2165 break;
2166 }
2167
2168 if (handled) {
2169 if (!kvm_skip_emulated_instruction(vcpu))
2170 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2171 else
2172 ret = EXIT_FASTPATH_REENTER_GUEST;
2173 trace_kvm_msr_write(msr, data);
2174 } else {
2175 ret = EXIT_FASTPATH_NONE;
2176 }
2177
2178 kvm_vcpu_srcu_read_unlock(vcpu);
2179
2180 return ret;
2181 }
2182 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2183
2184 /*
2185 * Adapt set_msr() to msr_io()'s calling convention
2186 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2187 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2188 {
2189 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2190 }
2191
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2192 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2193 {
2194 u64 val;
2195
2196 /*
2197 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2198 * not support modifying the guest vCPU model on the fly, e.g. changing
2199 * the nVMX capabilities while L2 is running is nonsensical. Allow
2200 * writes of the same value, e.g. to allow userspace to blindly stuff
2201 * all MSRs when emulating RESET.
2202 */
2203 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2204 (do_get_msr(vcpu, index, &val) || *data != val))
2205 return -EINVAL;
2206
2207 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2208 }
2209
2210 #ifdef CONFIG_X86_64
2211 struct pvclock_clock {
2212 int vclock_mode;
2213 u64 cycle_last;
2214 u64 mask;
2215 u32 mult;
2216 u32 shift;
2217 u64 base_cycles;
2218 u64 offset;
2219 };
2220
2221 struct pvclock_gtod_data {
2222 seqcount_t seq;
2223
2224 struct pvclock_clock clock; /* extract of a clocksource struct */
2225 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2226
2227 ktime_t offs_boot;
2228 u64 wall_time_sec;
2229 };
2230
2231 static struct pvclock_gtod_data pvclock_gtod_data;
2232
update_pvclock_gtod(struct timekeeper * tk)2233 static void update_pvclock_gtod(struct timekeeper *tk)
2234 {
2235 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2236
2237 write_seqcount_begin(&vdata->seq);
2238
2239 /* copy pvclock gtod data */
2240 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2241 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2242 vdata->clock.mask = tk->tkr_mono.mask;
2243 vdata->clock.mult = tk->tkr_mono.mult;
2244 vdata->clock.shift = tk->tkr_mono.shift;
2245 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2246 vdata->clock.offset = tk->tkr_mono.base;
2247
2248 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2249 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2250 vdata->raw_clock.mask = tk->tkr_raw.mask;
2251 vdata->raw_clock.mult = tk->tkr_raw.mult;
2252 vdata->raw_clock.shift = tk->tkr_raw.shift;
2253 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2254 vdata->raw_clock.offset = tk->tkr_raw.base;
2255
2256 vdata->wall_time_sec = tk->xtime_sec;
2257
2258 vdata->offs_boot = tk->offs_boot;
2259
2260 write_seqcount_end(&vdata->seq);
2261 }
2262
get_kvmclock_base_ns(void)2263 static s64 get_kvmclock_base_ns(void)
2264 {
2265 /* Count up from boot time, but with the frequency of the raw clock. */
2266 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2267 }
2268 #else
get_kvmclock_base_ns(void)2269 static s64 get_kvmclock_base_ns(void)
2270 {
2271 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2272 return ktime_get_boottime_ns();
2273 }
2274 #endif
2275
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2276 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2277 {
2278 int version;
2279 int r;
2280 struct pvclock_wall_clock wc;
2281 u32 wc_sec_hi;
2282 u64 wall_nsec;
2283
2284 if (!wall_clock)
2285 return;
2286
2287 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2288 if (r)
2289 return;
2290
2291 if (version & 1)
2292 ++version; /* first time write, random junk */
2293
2294 ++version;
2295
2296 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2297 return;
2298
2299 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2300
2301 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2302 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2303 wc.version = version;
2304
2305 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2306
2307 if (sec_hi_ofs) {
2308 wc_sec_hi = wall_nsec >> 32;
2309 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2310 &wc_sec_hi, sizeof(wc_sec_hi));
2311 }
2312
2313 version++;
2314 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2315 }
2316
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2317 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2318 bool old_msr, bool host_initiated)
2319 {
2320 struct kvm_arch *ka = &vcpu->kvm->arch;
2321
2322 if (vcpu->vcpu_id == 0 && !host_initiated) {
2323 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2324 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2325
2326 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2327 }
2328
2329 vcpu->arch.time = system_time;
2330 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2331
2332 /* we verify if the enable bit is set... */
2333 if (system_time & 1)
2334 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2335 sizeof(struct pvclock_vcpu_time_info));
2336 else
2337 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2338
2339 return;
2340 }
2341
div_frac(uint32_t dividend,uint32_t divisor)2342 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2343 {
2344 do_shl32_div32(dividend, divisor);
2345 return dividend;
2346 }
2347
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2348 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2349 s8 *pshift, u32 *pmultiplier)
2350 {
2351 uint64_t scaled64;
2352 int32_t shift = 0;
2353 uint64_t tps64;
2354 uint32_t tps32;
2355
2356 tps64 = base_hz;
2357 scaled64 = scaled_hz;
2358 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2359 tps64 >>= 1;
2360 shift--;
2361 }
2362
2363 tps32 = (uint32_t)tps64;
2364 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2365 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2366 scaled64 >>= 1;
2367 else
2368 tps32 <<= 1;
2369 shift++;
2370 }
2371
2372 *pshift = shift;
2373 *pmultiplier = div_frac(scaled64, tps32);
2374 }
2375
2376 #ifdef CONFIG_X86_64
2377 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2378 #endif
2379
2380 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2381 static unsigned long max_tsc_khz;
2382
adjust_tsc_khz(u32 khz,s32 ppm)2383 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2384 {
2385 u64 v = (u64)khz * (1000000 + ppm);
2386 do_div(v, 1000000);
2387 return v;
2388 }
2389
2390 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2391
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2392 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2393 {
2394 u64 ratio;
2395
2396 /* Guest TSC same frequency as host TSC? */
2397 if (!scale) {
2398 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2399 return 0;
2400 }
2401
2402 /* TSC scaling supported? */
2403 if (!kvm_caps.has_tsc_control) {
2404 if (user_tsc_khz > tsc_khz) {
2405 vcpu->arch.tsc_catchup = 1;
2406 vcpu->arch.tsc_always_catchup = 1;
2407 return 0;
2408 } else {
2409 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2410 return -1;
2411 }
2412 }
2413
2414 /* TSC scaling required - calculate ratio */
2415 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2416 user_tsc_khz, tsc_khz);
2417
2418 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2419 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2420 user_tsc_khz);
2421 return -1;
2422 }
2423
2424 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2425 return 0;
2426 }
2427
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2428 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2429 {
2430 u32 thresh_lo, thresh_hi;
2431 int use_scaling = 0;
2432
2433 /* tsc_khz can be zero if TSC calibration fails */
2434 if (user_tsc_khz == 0) {
2435 /* set tsc_scaling_ratio to a safe value */
2436 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2437 return -1;
2438 }
2439
2440 /* Compute a scale to convert nanoseconds in TSC cycles */
2441 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2442 &vcpu->arch.virtual_tsc_shift,
2443 &vcpu->arch.virtual_tsc_mult);
2444 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2445
2446 /*
2447 * Compute the variation in TSC rate which is acceptable
2448 * within the range of tolerance and decide if the
2449 * rate being applied is within that bounds of the hardware
2450 * rate. If so, no scaling or compensation need be done.
2451 */
2452 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2453 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2454 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2455 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2456 user_tsc_khz, thresh_lo, thresh_hi);
2457 use_scaling = 1;
2458 }
2459 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2460 }
2461
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2462 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2463 {
2464 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2465 vcpu->arch.virtual_tsc_mult,
2466 vcpu->arch.virtual_tsc_shift);
2467 tsc += vcpu->arch.this_tsc_write;
2468 return tsc;
2469 }
2470
2471 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2472 static inline bool gtod_is_based_on_tsc(int mode)
2473 {
2474 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2475 }
2476 #endif
2477
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2478 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2479 {
2480 #ifdef CONFIG_X86_64
2481 struct kvm_arch *ka = &vcpu->kvm->arch;
2482 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2483
2484 /*
2485 * To use the masterclock, the host clocksource must be based on TSC
2486 * and all vCPUs must have matching TSCs. Note, the count for matching
2487 * vCPUs doesn't include the reference vCPU, hence "+1".
2488 */
2489 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2490 atomic_read(&vcpu->kvm->online_vcpus)) &&
2491 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2492
2493 /*
2494 * Request a masterclock update if the masterclock needs to be toggled
2495 * on/off, or when starting a new generation and the masterclock is
2496 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2497 * taken _after_ the new generation is created).
2498 */
2499 if ((ka->use_master_clock && new_generation) ||
2500 (ka->use_master_clock != use_master_clock))
2501 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2502
2503 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2504 atomic_read(&vcpu->kvm->online_vcpus),
2505 ka->use_master_clock, gtod->clock.vclock_mode);
2506 #endif
2507 }
2508
2509 /*
2510 * Multiply tsc by a fixed point number represented by ratio.
2511 *
2512 * The most significant 64-N bits (mult) of ratio represent the
2513 * integral part of the fixed point number; the remaining N bits
2514 * (frac) represent the fractional part, ie. ratio represents a fixed
2515 * point number (mult + frac * 2^(-N)).
2516 *
2517 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2518 */
__scale_tsc(u64 ratio,u64 tsc)2519 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2520 {
2521 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2522 }
2523
kvm_scale_tsc(u64 tsc,u64 ratio)2524 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2525 {
2526 u64 _tsc = tsc;
2527
2528 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2529 _tsc = __scale_tsc(ratio, tsc);
2530
2531 return _tsc;
2532 }
2533
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2534 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2535 {
2536 u64 tsc;
2537
2538 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2539
2540 return target_tsc - tsc;
2541 }
2542
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2543 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2544 {
2545 return vcpu->arch.l1_tsc_offset +
2546 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2547 }
2548 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2549
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2550 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2551 {
2552 u64 nested_offset;
2553
2554 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2555 nested_offset = l1_offset;
2556 else
2557 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2558 kvm_caps.tsc_scaling_ratio_frac_bits);
2559
2560 nested_offset += l2_offset;
2561 return nested_offset;
2562 }
2563 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2564
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2565 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2566 {
2567 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2568 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2569 kvm_caps.tsc_scaling_ratio_frac_bits);
2570
2571 return l1_multiplier;
2572 }
2573 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2574
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2575 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2576 {
2577 if (vcpu->arch.guest_tsc_protected)
2578 return;
2579
2580 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2581 vcpu->arch.l1_tsc_offset,
2582 l1_offset);
2583
2584 vcpu->arch.l1_tsc_offset = l1_offset;
2585
2586 /*
2587 * If we are here because L1 chose not to trap WRMSR to TSC then
2588 * according to the spec this should set L1's TSC (as opposed to
2589 * setting L1's offset for L2).
2590 */
2591 if (is_guest_mode(vcpu))
2592 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2593 l1_offset,
2594 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2595 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2596 else
2597 vcpu->arch.tsc_offset = l1_offset;
2598
2599 kvm_x86_call(write_tsc_offset)(vcpu);
2600 }
2601
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2602 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2603 {
2604 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2605
2606 /* Userspace is changing the multiplier while L2 is active */
2607 if (is_guest_mode(vcpu))
2608 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2609 l1_multiplier,
2610 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2611 else
2612 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2613
2614 if (kvm_caps.has_tsc_control)
2615 kvm_x86_call(write_tsc_multiplier)(vcpu);
2616 }
2617
kvm_check_tsc_unstable(void)2618 static inline bool kvm_check_tsc_unstable(void)
2619 {
2620 #ifdef CONFIG_X86_64
2621 /*
2622 * TSC is marked unstable when we're running on Hyper-V,
2623 * 'TSC page' clocksource is good.
2624 */
2625 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2626 return false;
2627 #endif
2628 return check_tsc_unstable();
2629 }
2630
2631 /*
2632 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2633 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2634 * participates in.
2635 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2636 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2637 u64 ns, bool matched, bool user_set_tsc)
2638 {
2639 struct kvm *kvm = vcpu->kvm;
2640
2641 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2642
2643 if (vcpu->arch.guest_tsc_protected)
2644 return;
2645
2646 if (user_set_tsc)
2647 vcpu->kvm->arch.user_set_tsc = true;
2648
2649 /*
2650 * We also track th most recent recorded KHZ, write and time to
2651 * allow the matching interval to be extended at each write.
2652 */
2653 kvm->arch.last_tsc_nsec = ns;
2654 kvm->arch.last_tsc_write = tsc;
2655 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2656 kvm->arch.last_tsc_offset = offset;
2657
2658 vcpu->arch.last_guest_tsc = tsc;
2659
2660 kvm_vcpu_write_tsc_offset(vcpu, offset);
2661
2662 if (!matched) {
2663 /*
2664 * We split periods of matched TSC writes into generations.
2665 * For each generation, we track the original measured
2666 * nanosecond time, offset, and write, so if TSCs are in
2667 * sync, we can match exact offset, and if not, we can match
2668 * exact software computation in compute_guest_tsc()
2669 *
2670 * These values are tracked in kvm->arch.cur_xxx variables.
2671 */
2672 kvm->arch.cur_tsc_generation++;
2673 kvm->arch.cur_tsc_nsec = ns;
2674 kvm->arch.cur_tsc_write = tsc;
2675 kvm->arch.cur_tsc_offset = offset;
2676 kvm->arch.nr_vcpus_matched_tsc = 0;
2677 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2678 kvm->arch.nr_vcpus_matched_tsc++;
2679 }
2680
2681 /* Keep track of which generation this VCPU has synchronized to */
2682 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2683 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2684 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2685
2686 kvm_track_tsc_matching(vcpu, !matched);
2687 }
2688
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2689 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2690 {
2691 u64 data = user_value ? *user_value : 0;
2692 struct kvm *kvm = vcpu->kvm;
2693 u64 offset, ns, elapsed;
2694 unsigned long flags;
2695 bool matched = false;
2696 bool synchronizing = false;
2697
2698 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2699 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2700 ns = get_kvmclock_base_ns();
2701 elapsed = ns - kvm->arch.last_tsc_nsec;
2702
2703 if (vcpu->arch.virtual_tsc_khz) {
2704 if (data == 0) {
2705 /*
2706 * Force synchronization when creating a vCPU, or when
2707 * userspace explicitly writes a zero value.
2708 */
2709 synchronizing = true;
2710 } else if (kvm->arch.user_set_tsc) {
2711 u64 tsc_exp = kvm->arch.last_tsc_write +
2712 nsec_to_cycles(vcpu, elapsed);
2713 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2714 /*
2715 * Here lies UAPI baggage: when a user-initiated TSC write has
2716 * a small delta (1 second) of virtual cycle time against the
2717 * previously set vCPU, we assume that they were intended to be
2718 * in sync and the delta was only due to the racy nature of the
2719 * legacy API.
2720 *
2721 * This trick falls down when restoring a guest which genuinely
2722 * has been running for less time than the 1 second of imprecision
2723 * which we allow for in the legacy API. In this case, the first
2724 * value written by userspace (on any vCPU) should not be subject
2725 * to this 'correction' to make it sync up with values that only
2726 * come from the kernel's default vCPU creation. Make the 1-second
2727 * slop hack only trigger if the user_set_tsc flag is already set.
2728 */
2729 synchronizing = data < tsc_exp + tsc_hz &&
2730 data + tsc_hz > tsc_exp;
2731 }
2732 }
2733
2734
2735 /*
2736 * For a reliable TSC, we can match TSC offsets, and for an unstable
2737 * TSC, we add elapsed time in this computation. We could let the
2738 * compensation code attempt to catch up if we fall behind, but
2739 * it's better to try to match offsets from the beginning.
2740 */
2741 if (synchronizing &&
2742 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2743 if (!kvm_check_tsc_unstable()) {
2744 offset = kvm->arch.cur_tsc_offset;
2745 } else {
2746 u64 delta = nsec_to_cycles(vcpu, elapsed);
2747 data += delta;
2748 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2749 }
2750 matched = true;
2751 }
2752
2753 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2754 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2755 }
2756
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2757 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2758 s64 adjustment)
2759 {
2760 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2761 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2762 }
2763
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2764 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2765 {
2766 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2767 WARN_ON(adjustment < 0);
2768 adjustment = kvm_scale_tsc((u64) adjustment,
2769 vcpu->arch.l1_tsc_scaling_ratio);
2770 adjust_tsc_offset_guest(vcpu, adjustment);
2771 }
2772
2773 #ifdef CONFIG_X86_64
2774
read_tsc(void)2775 static u64 read_tsc(void)
2776 {
2777 u64 ret = (u64)rdtsc_ordered();
2778 u64 last = pvclock_gtod_data.clock.cycle_last;
2779
2780 if (likely(ret >= last))
2781 return ret;
2782
2783 /*
2784 * GCC likes to generate cmov here, but this branch is extremely
2785 * predictable (it's just a function of time and the likely is
2786 * very likely) and there's a data dependence, so force GCC
2787 * to generate a branch instead. I don't barrier() because
2788 * we don't actually need a barrier, and if this function
2789 * ever gets inlined it will generate worse code.
2790 */
2791 asm volatile ("");
2792 return last;
2793 }
2794
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2795 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2796 int *mode)
2797 {
2798 u64 tsc_pg_val;
2799 long v;
2800
2801 switch (clock->vclock_mode) {
2802 case VDSO_CLOCKMODE_HVCLOCK:
2803 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2804 tsc_timestamp, &tsc_pg_val)) {
2805 /* TSC page valid */
2806 *mode = VDSO_CLOCKMODE_HVCLOCK;
2807 v = (tsc_pg_val - clock->cycle_last) &
2808 clock->mask;
2809 } else {
2810 /* TSC page invalid */
2811 *mode = VDSO_CLOCKMODE_NONE;
2812 }
2813 break;
2814 case VDSO_CLOCKMODE_TSC:
2815 *mode = VDSO_CLOCKMODE_TSC;
2816 *tsc_timestamp = read_tsc();
2817 v = (*tsc_timestamp - clock->cycle_last) &
2818 clock->mask;
2819 break;
2820 default:
2821 *mode = VDSO_CLOCKMODE_NONE;
2822 }
2823
2824 if (*mode == VDSO_CLOCKMODE_NONE)
2825 *tsc_timestamp = v = 0;
2826
2827 return v * clock->mult;
2828 }
2829
2830 /*
2831 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2832 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2833 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2834 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2835 {
2836 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2837 unsigned long seq;
2838 int mode;
2839 u64 ns;
2840
2841 do {
2842 seq = read_seqcount_begin(>od->seq);
2843 ns = gtod->raw_clock.base_cycles;
2844 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2845 ns >>= gtod->raw_clock.shift;
2846 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2847 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2848 *t = ns;
2849
2850 return mode;
2851 }
2852
2853 /*
2854 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2855 * no boot time offset.
2856 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2857 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2858 {
2859 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2860 unsigned long seq;
2861 int mode;
2862 u64 ns;
2863
2864 do {
2865 seq = read_seqcount_begin(>od->seq);
2866 ns = gtod->clock.base_cycles;
2867 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2868 ns >>= gtod->clock.shift;
2869 ns += ktime_to_ns(gtod->clock.offset);
2870 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2871 *t = ns;
2872
2873 return mode;
2874 }
2875
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2876 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2877 {
2878 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2879 unsigned long seq;
2880 int mode;
2881 u64 ns;
2882
2883 do {
2884 seq = read_seqcount_begin(>od->seq);
2885 ts->tv_sec = gtod->wall_time_sec;
2886 ns = gtod->clock.base_cycles;
2887 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2888 ns >>= gtod->clock.shift;
2889 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2890
2891 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2892 ts->tv_nsec = ns;
2893
2894 return mode;
2895 }
2896
2897 /*
2898 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2899 * reports the TSC value from which it do so. Returns true if host is
2900 * using TSC based clocksource.
2901 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2902 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2903 {
2904 /* checked again under seqlock below */
2905 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2906 return false;
2907
2908 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2909 tsc_timestamp));
2910 }
2911
2912 /*
2913 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2914 * so. Returns true if host is using TSC based clocksource.
2915 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2916 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2917 {
2918 /* checked again under seqlock below */
2919 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2920 return false;
2921
2922 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2923 tsc_timestamp));
2924 }
2925
2926 /*
2927 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2928 * so. Returns true if host is using TSC based clocksource.
2929 *
2930 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2931 * for that.
2932 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2933 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2934 u64 *tsc_timestamp)
2935 {
2936 /* checked again under seqlock below */
2937 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2938 return false;
2939
2940 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2941 }
2942 #endif
2943
2944 /*
2945 *
2946 * Assuming a stable TSC across physical CPUS, and a stable TSC
2947 * across virtual CPUs, the following condition is possible.
2948 * Each numbered line represents an event visible to both
2949 * CPUs at the next numbered event.
2950 *
2951 * "timespecX" represents host monotonic time. "tscX" represents
2952 * RDTSC value.
2953 *
2954 * VCPU0 on CPU0 | VCPU1 on CPU1
2955 *
2956 * 1. read timespec0,tsc0
2957 * 2. | timespec1 = timespec0 + N
2958 * | tsc1 = tsc0 + M
2959 * 3. transition to guest | transition to guest
2960 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2961 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2962 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2963 *
2964 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2965 *
2966 * - ret0 < ret1
2967 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2968 * ...
2969 * - 0 < N - M => M < N
2970 *
2971 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2972 * always the case (the difference between two distinct xtime instances
2973 * might be smaller then the difference between corresponding TSC reads,
2974 * when updating guest vcpus pvclock areas).
2975 *
2976 * To avoid that problem, do not allow visibility of distinct
2977 * system_timestamp/tsc_timestamp values simultaneously: use a master
2978 * copy of host monotonic time values. Update that master copy
2979 * in lockstep.
2980 *
2981 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2982 *
2983 */
2984
pvclock_update_vm_gtod_copy(struct kvm * kvm)2985 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2986 {
2987 #ifdef CONFIG_X86_64
2988 struct kvm_arch *ka = &kvm->arch;
2989 int vclock_mode;
2990 bool host_tsc_clocksource, vcpus_matched;
2991
2992 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2993 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2994 atomic_read(&kvm->online_vcpus));
2995
2996 /*
2997 * If the host uses TSC clock, then passthrough TSC as stable
2998 * to the guest.
2999 */
3000 host_tsc_clocksource = kvm_get_time_and_clockread(
3001 &ka->master_kernel_ns,
3002 &ka->master_cycle_now);
3003
3004 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3005 && !ka->backwards_tsc_observed
3006 && !ka->boot_vcpu_runs_old_kvmclock;
3007
3008 if (ka->use_master_clock)
3009 atomic_set(&kvm_guest_has_master_clock, 1);
3010
3011 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3012 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3013 vcpus_matched);
3014 #endif
3015 }
3016
kvm_make_mclock_inprogress_request(struct kvm * kvm)3017 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3018 {
3019 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3020 }
3021
__kvm_start_pvclock_update(struct kvm * kvm)3022 static void __kvm_start_pvclock_update(struct kvm *kvm)
3023 {
3024 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3025 write_seqcount_begin(&kvm->arch.pvclock_sc);
3026 }
3027
kvm_start_pvclock_update(struct kvm * kvm)3028 static void kvm_start_pvclock_update(struct kvm *kvm)
3029 {
3030 kvm_make_mclock_inprogress_request(kvm);
3031
3032 /* no guest entries from this point */
3033 __kvm_start_pvclock_update(kvm);
3034 }
3035
kvm_end_pvclock_update(struct kvm * kvm)3036 static void kvm_end_pvclock_update(struct kvm *kvm)
3037 {
3038 struct kvm_arch *ka = &kvm->arch;
3039 struct kvm_vcpu *vcpu;
3040 unsigned long i;
3041
3042 write_seqcount_end(&ka->pvclock_sc);
3043 raw_spin_unlock_irq(&ka->tsc_write_lock);
3044 kvm_for_each_vcpu(i, vcpu, kvm)
3045 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3046
3047 /* guest entries allowed */
3048 kvm_for_each_vcpu(i, vcpu, kvm)
3049 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3050 }
3051
kvm_update_masterclock(struct kvm * kvm)3052 static void kvm_update_masterclock(struct kvm *kvm)
3053 {
3054 kvm_hv_request_tsc_page_update(kvm);
3055 kvm_start_pvclock_update(kvm);
3056 pvclock_update_vm_gtod_copy(kvm);
3057 kvm_end_pvclock_update(kvm);
3058 }
3059
3060 /*
3061 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3062 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3063 * can change during boot even if the TSC is constant, as it's possible for KVM
3064 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3065 * notification when calibration completes, but practically speaking calibration
3066 * will complete before userspace is alive enough to create VMs.
3067 */
get_cpu_tsc_khz(void)3068 static unsigned long get_cpu_tsc_khz(void)
3069 {
3070 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3071 return tsc_khz;
3072 else
3073 return __this_cpu_read(cpu_tsc_khz);
3074 }
3075
3076 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3077 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3078 {
3079 struct kvm_arch *ka = &kvm->arch;
3080 struct pvclock_vcpu_time_info hv_clock;
3081
3082 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3083 get_cpu();
3084
3085 data->flags = 0;
3086 if (ka->use_master_clock &&
3087 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3088 #ifdef CONFIG_X86_64
3089 struct timespec64 ts;
3090
3091 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3092 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3093 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3094 } else
3095 #endif
3096 data->host_tsc = rdtsc();
3097
3098 data->flags |= KVM_CLOCK_TSC_STABLE;
3099 hv_clock.tsc_timestamp = ka->master_cycle_now;
3100 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3101 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3102 &hv_clock.tsc_shift,
3103 &hv_clock.tsc_to_system_mul);
3104 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3105 } else {
3106 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3107 }
3108
3109 put_cpu();
3110 }
3111
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3112 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3113 {
3114 struct kvm_arch *ka = &kvm->arch;
3115 unsigned seq;
3116
3117 do {
3118 seq = read_seqcount_begin(&ka->pvclock_sc);
3119 __get_kvmclock(kvm, data);
3120 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3121 }
3122
get_kvmclock_ns(struct kvm * kvm)3123 u64 get_kvmclock_ns(struct kvm *kvm)
3124 {
3125 struct kvm_clock_data data;
3126
3127 get_kvmclock(kvm, &data);
3128 return data.clock;
3129 }
3130
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3131 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3132 struct kvm_vcpu *vcpu,
3133 struct gfn_to_pfn_cache *gpc,
3134 unsigned int offset)
3135 {
3136 struct pvclock_vcpu_time_info *guest_hv_clock;
3137 struct pvclock_vcpu_time_info hv_clock;
3138 unsigned long flags;
3139
3140 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3141
3142 read_lock_irqsave(&gpc->lock, flags);
3143 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3144 read_unlock_irqrestore(&gpc->lock, flags);
3145
3146 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3147 return;
3148
3149 read_lock_irqsave(&gpc->lock, flags);
3150 }
3151
3152 guest_hv_clock = (void *)(gpc->khva + offset);
3153
3154 /*
3155 * This VCPU is paused, but it's legal for a guest to read another
3156 * VCPU's kvmclock, so we really have to follow the specification where
3157 * it says that version is odd if data is being modified, and even after
3158 * it is consistent.
3159 */
3160
3161 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3162 smp_wmb();
3163
3164 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3165 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3166
3167 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3168
3169 smp_wmb();
3170
3171 guest_hv_clock->version = ++hv_clock.version;
3172
3173 kvm_gpc_mark_dirty_in_slot(gpc);
3174 read_unlock_irqrestore(&gpc->lock, flags);
3175
3176 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3177 }
3178
kvm_guest_time_update(struct kvm_vcpu * v)3179 int kvm_guest_time_update(struct kvm_vcpu *v)
3180 {
3181 struct pvclock_vcpu_time_info hv_clock = {};
3182 unsigned long flags, tgt_tsc_khz;
3183 unsigned seq;
3184 struct kvm_vcpu_arch *vcpu = &v->arch;
3185 struct kvm_arch *ka = &v->kvm->arch;
3186 s64 kernel_ns;
3187 u64 tsc_timestamp, host_tsc;
3188 bool use_master_clock;
3189
3190 kernel_ns = 0;
3191 host_tsc = 0;
3192
3193 /*
3194 * If the host uses TSC clock, then passthrough TSC as stable
3195 * to the guest.
3196 */
3197 do {
3198 seq = read_seqcount_begin(&ka->pvclock_sc);
3199 use_master_clock = ka->use_master_clock;
3200 if (use_master_clock) {
3201 host_tsc = ka->master_cycle_now;
3202 kernel_ns = ka->master_kernel_ns;
3203 }
3204 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3205
3206 /* Keep irq disabled to prevent changes to the clock */
3207 local_irq_save(flags);
3208 tgt_tsc_khz = get_cpu_tsc_khz();
3209 if (unlikely(tgt_tsc_khz == 0)) {
3210 local_irq_restore(flags);
3211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3212 return 1;
3213 }
3214 if (!use_master_clock) {
3215 host_tsc = rdtsc();
3216 kernel_ns = get_kvmclock_base_ns();
3217 }
3218
3219 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3220
3221 /*
3222 * We may have to catch up the TSC to match elapsed wall clock
3223 * time for two reasons, even if kvmclock is used.
3224 * 1) CPU could have been running below the maximum TSC rate
3225 * 2) Broken TSC compensation resets the base at each VCPU
3226 * entry to avoid unknown leaps of TSC even when running
3227 * again on the same CPU. This may cause apparent elapsed
3228 * time to disappear, and the guest to stand still or run
3229 * very slowly.
3230 */
3231 if (vcpu->tsc_catchup) {
3232 u64 tsc = compute_guest_tsc(v, kernel_ns);
3233 if (tsc > tsc_timestamp) {
3234 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3235 tsc_timestamp = tsc;
3236 }
3237 }
3238
3239 local_irq_restore(flags);
3240
3241 /* With all the info we got, fill in the values */
3242
3243 if (kvm_caps.has_tsc_control)
3244 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3245 v->arch.l1_tsc_scaling_ratio);
3246
3247 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3248 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3249 &vcpu->pvclock_tsc_shift,
3250 &vcpu->pvclock_tsc_mul);
3251 vcpu->hw_tsc_khz = tgt_tsc_khz;
3252 }
3253
3254 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3255 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3256 hv_clock.tsc_timestamp = tsc_timestamp;
3257 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3258 vcpu->last_guest_tsc = tsc_timestamp;
3259
3260 /* If the host uses TSC clocksource, then it is stable */
3261 hv_clock.flags = 0;
3262 if (use_master_clock)
3263 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3264
3265 if (vcpu->pv_time.active) {
3266 /*
3267 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3268 * historic behavior is to only process the request if kvmclock
3269 * is active/enabled.
3270 */
3271 if (vcpu->pvclock_set_guest_stopped_request) {
3272 hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3273 vcpu->pvclock_set_guest_stopped_request = false;
3274 }
3275 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3276
3277 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3278 }
3279
3280 kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3281
3282 #ifdef CONFIG_KVM_XEN
3283 /*
3284 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3285 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3286 * This default behaviour led to bugs in some guest kernels which cause
3287 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3288 *
3289 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3290 */
3291 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3292 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3293
3294 if (vcpu->xen.vcpu_info_cache.active)
3295 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3296 offsetof(struct compat_vcpu_info, time));
3297 if (vcpu->xen.vcpu_time_info_cache.active)
3298 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3299 #endif
3300 return 0;
3301 }
3302
3303 /*
3304 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3305 * which it started (i.e. its epoch, when its kvmclock was zero).
3306 *
3307 * In fact those clocks are subtly different; wall clock frequency is
3308 * adjusted by NTP and has leap seconds, while the kvmclock is a
3309 * simple function of the TSC without any such adjustment.
3310 *
3311 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3312 * that and kvmclock, but even that would be subject to change over
3313 * time.
3314 *
3315 * Attempt to calculate the epoch at a given moment using the *same*
3316 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3317 * wallclock and kvmclock times, and subtracting one from the other.
3318 *
3319 * Fall back to using their values at slightly different moments by
3320 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3321 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3322 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3323 {
3324 #ifdef CONFIG_X86_64
3325 struct pvclock_vcpu_time_info hv_clock;
3326 struct kvm_arch *ka = &kvm->arch;
3327 unsigned long seq, local_tsc_khz;
3328 struct timespec64 ts;
3329 uint64_t host_tsc;
3330
3331 do {
3332 seq = read_seqcount_begin(&ka->pvclock_sc);
3333
3334 local_tsc_khz = 0;
3335 if (!ka->use_master_clock)
3336 break;
3337
3338 /*
3339 * The TSC read and the call to get_cpu_tsc_khz() must happen
3340 * on the same CPU.
3341 */
3342 get_cpu();
3343
3344 local_tsc_khz = get_cpu_tsc_khz();
3345
3346 if (local_tsc_khz &&
3347 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3348 local_tsc_khz = 0; /* Fall back to old method */
3349
3350 put_cpu();
3351
3352 /*
3353 * These values must be snapshotted within the seqcount loop.
3354 * After that, it's just mathematics which can happen on any
3355 * CPU at any time.
3356 */
3357 hv_clock.tsc_timestamp = ka->master_cycle_now;
3358 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3359
3360 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3361
3362 /*
3363 * If the conditions were right, and obtaining the wallclock+TSC was
3364 * successful, calculate the KVM clock at the corresponding time and
3365 * subtract one from the other to get the guest's epoch in nanoseconds
3366 * since 1970-01-01.
3367 */
3368 if (local_tsc_khz) {
3369 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3370 &hv_clock.tsc_shift,
3371 &hv_clock.tsc_to_system_mul);
3372 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3373 __pvclock_read_cycles(&hv_clock, host_tsc);
3374 }
3375 #endif
3376 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3377 }
3378
3379 /*
3380 * kvmclock updates which are isolated to a given vcpu, such as
3381 * vcpu->cpu migration, should not allow system_timestamp from
3382 * the rest of the vcpus to remain static. Otherwise ntp frequency
3383 * correction applies to one vcpu's system_timestamp but not
3384 * the others.
3385 *
3386 * So in those cases, request a kvmclock update for all vcpus.
3387 * We need to rate-limit these requests though, as they can
3388 * considerably slow guests that have a large number of vcpus.
3389 * The time for a remote vcpu to update its kvmclock is bound
3390 * by the delay we use to rate-limit the updates.
3391 */
3392
3393 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3394
kvmclock_update_fn(struct work_struct * work)3395 static void kvmclock_update_fn(struct work_struct *work)
3396 {
3397 unsigned long i;
3398 struct delayed_work *dwork = to_delayed_work(work);
3399 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3400 kvmclock_update_work);
3401 struct kvm *kvm = container_of(ka, struct kvm, arch);
3402 struct kvm_vcpu *vcpu;
3403
3404 kvm_for_each_vcpu(i, vcpu, kvm) {
3405 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3406 kvm_vcpu_kick(vcpu);
3407 }
3408 }
3409
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3410 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3411 {
3412 struct kvm *kvm = v->kvm;
3413
3414 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3415 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3416 KVMCLOCK_UPDATE_DELAY);
3417 }
3418
3419 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3420
kvmclock_sync_fn(struct work_struct * work)3421 static void kvmclock_sync_fn(struct work_struct *work)
3422 {
3423 struct delayed_work *dwork = to_delayed_work(work);
3424 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3425 kvmclock_sync_work);
3426 struct kvm *kvm = container_of(ka, struct kvm, arch);
3427
3428 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3429 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3430 KVMCLOCK_SYNC_PERIOD);
3431 }
3432
3433 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3434 static bool is_mci_control_msr(u32 msr)
3435 {
3436 return (msr & 3) == 0;
3437 }
is_mci_status_msr(u32 msr)3438 static bool is_mci_status_msr(u32 msr)
3439 {
3440 return (msr & 3) == 1;
3441 }
3442
3443 /*
3444 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3445 */
can_set_mci_status(struct kvm_vcpu * vcpu)3446 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3447 {
3448 /* McStatusWrEn enabled? */
3449 if (guest_cpuid_is_amd_compatible(vcpu))
3450 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3451
3452 return false;
3453 }
3454
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3455 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3456 {
3457 u64 mcg_cap = vcpu->arch.mcg_cap;
3458 unsigned bank_num = mcg_cap & 0xff;
3459 u32 msr = msr_info->index;
3460 u64 data = msr_info->data;
3461 u32 offset, last_msr;
3462
3463 switch (msr) {
3464 case MSR_IA32_MCG_STATUS:
3465 vcpu->arch.mcg_status = data;
3466 break;
3467 case MSR_IA32_MCG_CTL:
3468 if (!(mcg_cap & MCG_CTL_P) &&
3469 (data || !msr_info->host_initiated))
3470 return 1;
3471 if (data != 0 && data != ~(u64)0)
3472 return 1;
3473 vcpu->arch.mcg_ctl = data;
3474 break;
3475 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3476 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3477 if (msr > last_msr)
3478 return 1;
3479
3480 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3481 return 1;
3482 /* An attempt to write a 1 to a reserved bit raises #GP */
3483 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3484 return 1;
3485 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3486 last_msr + 1 - MSR_IA32_MC0_CTL2);
3487 vcpu->arch.mci_ctl2_banks[offset] = data;
3488 break;
3489 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3490 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3491 if (msr > last_msr)
3492 return 1;
3493
3494 /*
3495 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3496 * values are architecturally undefined. But, some Linux
3497 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3498 * issue on AMD K8s, allow bit 10 to be clear when setting all
3499 * other bits in order to avoid an uncaught #GP in the guest.
3500 *
3501 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3502 * single-bit ECC data errors.
3503 */
3504 if (is_mci_control_msr(msr) &&
3505 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3506 return 1;
3507
3508 /*
3509 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3510 * AMD-based CPUs allow non-zero values, but if and only if
3511 * HWCR[McStatusWrEn] is set.
3512 */
3513 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3514 data != 0 && !can_set_mci_status(vcpu))
3515 return 1;
3516
3517 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3518 last_msr + 1 - MSR_IA32_MC0_CTL);
3519 vcpu->arch.mce_banks[offset] = data;
3520 break;
3521 default:
3522 return 1;
3523 }
3524 return 0;
3525 }
3526
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3527 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3528 {
3529 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3530
3531 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3532 }
3533
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3534 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3535 {
3536 gpa_t gpa = data & ~0x3f;
3537
3538 /* Bits 4:5 are reserved, Should be zero */
3539 if (data & 0x30)
3540 return 1;
3541
3542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3543 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3544 return 1;
3545
3546 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3547 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3548 return 1;
3549
3550 if (!lapic_in_kernel(vcpu))
3551 return data ? 1 : 0;
3552
3553 vcpu->arch.apf.msr_en_val = data;
3554
3555 if (!kvm_pv_async_pf_enabled(vcpu)) {
3556 kvm_clear_async_pf_completion_queue(vcpu);
3557 kvm_async_pf_hash_reset(vcpu);
3558 return 0;
3559 }
3560
3561 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3562 sizeof(u64)))
3563 return 1;
3564
3565 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3566 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3567
3568 kvm_async_pf_wakeup_all(vcpu);
3569
3570 return 0;
3571 }
3572
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3573 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3574 {
3575 /* Bits 8-63 are reserved */
3576 if (data >> 8)
3577 return 1;
3578
3579 if (!lapic_in_kernel(vcpu))
3580 return 1;
3581
3582 vcpu->arch.apf.msr_int_val = data;
3583
3584 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3585
3586 return 0;
3587 }
3588
kvmclock_reset(struct kvm_vcpu * vcpu)3589 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3590 {
3591 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3592 vcpu->arch.time = 0;
3593 }
3594
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3595 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3596 {
3597 ++vcpu->stat.tlb_flush;
3598 kvm_x86_call(flush_tlb_all)(vcpu);
3599
3600 /* Flushing all ASIDs flushes the current ASID... */
3601 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3602 }
3603
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3604 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3605 {
3606 ++vcpu->stat.tlb_flush;
3607
3608 if (!tdp_enabled) {
3609 /*
3610 * A TLB flush on behalf of the guest is equivalent to
3611 * INVPCID(all), toggling CR4.PGE, etc., which requires
3612 * a forced sync of the shadow page tables. Ensure all the
3613 * roots are synced and the guest TLB in hardware is clean.
3614 */
3615 kvm_mmu_sync_roots(vcpu);
3616 kvm_mmu_sync_prev_roots(vcpu);
3617 }
3618
3619 kvm_x86_call(flush_tlb_guest)(vcpu);
3620
3621 /*
3622 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3623 * grained flushing.
3624 */
3625 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3626 }
3627
3628
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3629 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3630 {
3631 ++vcpu->stat.tlb_flush;
3632 kvm_x86_call(flush_tlb_current)(vcpu);
3633 }
3634
3635 /*
3636 * Service "local" TLB flush requests, which are specific to the current MMU
3637 * context. In addition to the generic event handling in vcpu_enter_guest(),
3638 * TLB flushes that are targeted at an MMU context also need to be serviced
3639 * prior before nested VM-Enter/VM-Exit.
3640 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3641 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3642 {
3643 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3644 kvm_vcpu_flush_tlb_current(vcpu);
3645
3646 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3647 kvm_vcpu_flush_tlb_guest(vcpu);
3648 }
3649 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3650
record_steal_time(struct kvm_vcpu * vcpu)3651 static void record_steal_time(struct kvm_vcpu *vcpu)
3652 {
3653 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3654 struct kvm_steal_time __user *st;
3655 struct kvm_memslots *slots;
3656 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3657 u64 steal;
3658 u32 version;
3659
3660 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3661 kvm_xen_runstate_set_running(vcpu);
3662 return;
3663 }
3664
3665 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3666 return;
3667
3668 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3669 return;
3670
3671 slots = kvm_memslots(vcpu->kvm);
3672
3673 if (unlikely(slots->generation != ghc->generation ||
3674 gpa != ghc->gpa ||
3675 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3676 /* We rely on the fact that it fits in a single page. */
3677 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3678
3679 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3680 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3681 return;
3682 }
3683
3684 st = (struct kvm_steal_time __user *)ghc->hva;
3685 /*
3686 * Doing a TLB flush here, on the guest's behalf, can avoid
3687 * expensive IPIs.
3688 */
3689 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3690 u8 st_preempted = 0;
3691 int err = -EFAULT;
3692
3693 if (!user_access_begin(st, sizeof(*st)))
3694 return;
3695
3696 asm volatile("1: xchgb %0, %2\n"
3697 "xor %1, %1\n"
3698 "2:\n"
3699 _ASM_EXTABLE_UA(1b, 2b)
3700 : "+q" (st_preempted),
3701 "+&r" (err),
3702 "+m" (st->preempted));
3703 if (err)
3704 goto out;
3705
3706 user_access_end();
3707
3708 vcpu->arch.st.preempted = 0;
3709
3710 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3711 st_preempted & KVM_VCPU_FLUSH_TLB);
3712 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3713 kvm_vcpu_flush_tlb_guest(vcpu);
3714
3715 if (!user_access_begin(st, sizeof(*st)))
3716 goto dirty;
3717 } else {
3718 if (!user_access_begin(st, sizeof(*st)))
3719 return;
3720
3721 unsafe_put_user(0, &st->preempted, out);
3722 vcpu->arch.st.preempted = 0;
3723 }
3724
3725 unsafe_get_user(version, &st->version, out);
3726 if (version & 1)
3727 version += 1; /* first time write, random junk */
3728
3729 version += 1;
3730 unsafe_put_user(version, &st->version, out);
3731
3732 smp_wmb();
3733
3734 unsafe_get_user(steal, &st->steal, out);
3735 steal += current->sched_info.run_delay -
3736 vcpu->arch.st.last_steal;
3737 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3738 unsafe_put_user(steal, &st->steal, out);
3739
3740 version += 1;
3741 unsafe_put_user(version, &st->version, out);
3742
3743 out:
3744 user_access_end();
3745 dirty:
3746 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3747 }
3748
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3749 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3750 {
3751 u32 msr = msr_info->index;
3752 u64 data = msr_info->data;
3753
3754 /*
3755 * Do not allow host-initiated writes to trigger the Xen hypercall
3756 * page setup; it could incur locking paths which are not expected
3757 * if userspace sets the MSR in an unusual location.
3758 */
3759 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3760 !msr_info->host_initiated)
3761 return kvm_xen_write_hypercall_page(vcpu, data);
3762
3763 switch (msr) {
3764 case MSR_AMD64_NB_CFG:
3765 case MSR_IA32_UCODE_WRITE:
3766 case MSR_VM_HSAVE_PA:
3767 case MSR_AMD64_PATCH_LOADER:
3768 case MSR_AMD64_BU_CFG2:
3769 case MSR_AMD64_DC_CFG:
3770 case MSR_AMD64_TW_CFG:
3771 case MSR_F15H_EX_CFG:
3772 break;
3773
3774 case MSR_IA32_UCODE_REV:
3775 if (msr_info->host_initiated)
3776 vcpu->arch.microcode_version = data;
3777 break;
3778 case MSR_IA32_ARCH_CAPABILITIES:
3779 if (!msr_info->host_initiated ||
3780 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3781 return KVM_MSR_RET_UNSUPPORTED;
3782 vcpu->arch.arch_capabilities = data;
3783 break;
3784 case MSR_IA32_PERF_CAPABILITIES:
3785 if (!msr_info->host_initiated ||
3786 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3787 return KVM_MSR_RET_UNSUPPORTED;
3788
3789 if (data & ~kvm_caps.supported_perf_cap)
3790 return 1;
3791
3792 /*
3793 * Note, this is not just a performance optimization! KVM
3794 * disallows changing feature MSRs after the vCPU has run; PMU
3795 * refresh will bug the VM if called after the vCPU has run.
3796 */
3797 if (vcpu->arch.perf_capabilities == data)
3798 break;
3799
3800 vcpu->arch.perf_capabilities = data;
3801 kvm_pmu_refresh(vcpu);
3802 break;
3803 case MSR_IA32_PRED_CMD: {
3804 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3805
3806 if (!msr_info->host_initiated) {
3807 if ((!guest_has_pred_cmd_msr(vcpu)))
3808 return 1;
3809
3810 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3811 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3812 reserved_bits |= PRED_CMD_IBPB;
3813
3814 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3815 reserved_bits |= PRED_CMD_SBPB;
3816 }
3817
3818 if (!boot_cpu_has(X86_FEATURE_IBPB))
3819 reserved_bits |= PRED_CMD_IBPB;
3820
3821 if (!boot_cpu_has(X86_FEATURE_SBPB))
3822 reserved_bits |= PRED_CMD_SBPB;
3823
3824 if (data & reserved_bits)
3825 return 1;
3826
3827 if (!data)
3828 break;
3829
3830 wrmsrl(MSR_IA32_PRED_CMD, data);
3831 break;
3832 }
3833 case MSR_IA32_FLUSH_CMD:
3834 if (!msr_info->host_initiated &&
3835 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3836 return 1;
3837
3838 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3839 return 1;
3840 if (!data)
3841 break;
3842
3843 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3844 break;
3845 case MSR_EFER:
3846 return set_efer(vcpu, msr_info);
3847 case MSR_K7_HWCR:
3848 data &= ~(u64)0x40; /* ignore flush filter disable */
3849 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3850 data &= ~(u64)0x8; /* ignore TLB cache disable */
3851
3852 /*
3853 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3854 * through at least v6.6 whine if TscFreqSel is clear,
3855 * depending on F/M/S.
3856 */
3857 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3858 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3859 return 1;
3860 }
3861 vcpu->arch.msr_hwcr = data;
3862 break;
3863 case MSR_FAM10H_MMIO_CONF_BASE:
3864 if (data != 0) {
3865 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3866 return 1;
3867 }
3868 break;
3869 case MSR_IA32_CR_PAT:
3870 if (!kvm_pat_valid(data))
3871 return 1;
3872
3873 vcpu->arch.pat = data;
3874 break;
3875 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3876 case MSR_MTRRdefType:
3877 return kvm_mtrr_set_msr(vcpu, msr, data);
3878 case MSR_IA32_APICBASE:
3879 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3880 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3881 return kvm_x2apic_msr_write(vcpu, msr, data);
3882 case MSR_IA32_TSC_DEADLINE:
3883 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3884 break;
3885 case MSR_IA32_TSC_ADJUST:
3886 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3887 if (!msr_info->host_initiated) {
3888 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3889 adjust_tsc_offset_guest(vcpu, adj);
3890 /* Before back to guest, tsc_timestamp must be adjusted
3891 * as well, otherwise guest's percpu pvclock time could jump.
3892 */
3893 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3894 }
3895 vcpu->arch.ia32_tsc_adjust_msr = data;
3896 }
3897 break;
3898 case MSR_IA32_MISC_ENABLE: {
3899 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3900
3901 if (!msr_info->host_initiated) {
3902 /* RO bits */
3903 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3904 return 1;
3905
3906 /* R bits, i.e. writes are ignored, but don't fault. */
3907 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3908 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3909 }
3910
3911 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3912 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3913 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3914 return 1;
3915 vcpu->arch.ia32_misc_enable_msr = data;
3916 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3917 } else {
3918 vcpu->arch.ia32_misc_enable_msr = data;
3919 }
3920 break;
3921 }
3922 case MSR_IA32_SMBASE:
3923 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3924 return 1;
3925 vcpu->arch.smbase = data;
3926 break;
3927 case MSR_IA32_POWER_CTL:
3928 vcpu->arch.msr_ia32_power_ctl = data;
3929 break;
3930 case MSR_IA32_TSC:
3931 if (msr_info->host_initiated) {
3932 kvm_synchronize_tsc(vcpu, &data);
3933 } else if (!vcpu->arch.guest_tsc_protected) {
3934 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3935 adjust_tsc_offset_guest(vcpu, adj);
3936 vcpu->arch.ia32_tsc_adjust_msr += adj;
3937 }
3938 break;
3939 case MSR_IA32_XSS:
3940 if (!msr_info->host_initiated &&
3941 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3942 return 1;
3943 /*
3944 * KVM supports exposing PT to the guest, but does not support
3945 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3946 * XSAVES/XRSTORS to save/restore PT MSRs.
3947 */
3948 if (data & ~kvm_caps.supported_xss)
3949 return 1;
3950 vcpu->arch.ia32_xss = data;
3951 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3952 break;
3953 case MSR_SMI_COUNT:
3954 if (!msr_info->host_initiated)
3955 return 1;
3956 vcpu->arch.smi_count = data;
3957 break;
3958 case MSR_KVM_WALL_CLOCK_NEW:
3959 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3960 return 1;
3961
3962 vcpu->kvm->arch.wall_clock = data;
3963 kvm_write_wall_clock(vcpu->kvm, data, 0);
3964 break;
3965 case MSR_KVM_WALL_CLOCK:
3966 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3967 return 1;
3968
3969 vcpu->kvm->arch.wall_clock = data;
3970 kvm_write_wall_clock(vcpu->kvm, data, 0);
3971 break;
3972 case MSR_KVM_SYSTEM_TIME_NEW:
3973 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3974 return 1;
3975
3976 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3977 break;
3978 case MSR_KVM_SYSTEM_TIME:
3979 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3980 return 1;
3981
3982 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3983 break;
3984 case MSR_KVM_ASYNC_PF_EN:
3985 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3986 return 1;
3987
3988 if (kvm_pv_enable_async_pf(vcpu, data))
3989 return 1;
3990 break;
3991 case MSR_KVM_ASYNC_PF_INT:
3992 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3993 return 1;
3994
3995 if (kvm_pv_enable_async_pf_int(vcpu, data))
3996 return 1;
3997 break;
3998 case MSR_KVM_ASYNC_PF_ACK:
3999 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4000 return 1;
4001 if (data & 0x1) {
4002 vcpu->arch.apf.pageready_pending = false;
4003 kvm_check_async_pf_completion(vcpu);
4004 }
4005 break;
4006 case MSR_KVM_STEAL_TIME:
4007 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4008 return 1;
4009
4010 if (unlikely(!sched_info_on()))
4011 return 1;
4012
4013 if (data & KVM_STEAL_RESERVED_MASK)
4014 return 1;
4015
4016 vcpu->arch.st.msr_val = data;
4017
4018 if (!(data & KVM_MSR_ENABLED))
4019 break;
4020
4021 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4022
4023 break;
4024 case MSR_KVM_PV_EOI_EN:
4025 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4026 return 1;
4027
4028 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4029 return 1;
4030 break;
4031
4032 case MSR_KVM_POLL_CONTROL:
4033 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4034 return 1;
4035
4036 /* only enable bit supported */
4037 if (data & (-1ULL << 1))
4038 return 1;
4039
4040 vcpu->arch.msr_kvm_poll_control = data;
4041 break;
4042
4043 case MSR_IA32_MCG_CTL:
4044 case MSR_IA32_MCG_STATUS:
4045 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4046 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4047 return set_msr_mce(vcpu, msr_info);
4048
4049 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4050 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4051 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4052 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4053 if (kvm_pmu_is_valid_msr(vcpu, msr))
4054 return kvm_pmu_set_msr(vcpu, msr_info);
4055
4056 if (data)
4057 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4058 break;
4059 case MSR_K7_CLK_CTL:
4060 /*
4061 * Ignore all writes to this no longer documented MSR.
4062 * Writes are only relevant for old K7 processors,
4063 * all pre-dating SVM, but a recommended workaround from
4064 * AMD for these chips. It is possible to specify the
4065 * affected processor models on the command line, hence
4066 * the need to ignore the workaround.
4067 */
4068 break;
4069 #ifdef CONFIG_KVM_HYPERV
4070 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4071 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4072 case HV_X64_MSR_SYNDBG_OPTIONS:
4073 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4074 case HV_X64_MSR_CRASH_CTL:
4075 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4076 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4077 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4078 case HV_X64_MSR_TSC_EMULATION_STATUS:
4079 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4080 return kvm_hv_set_msr_common(vcpu, msr, data,
4081 msr_info->host_initiated);
4082 #endif
4083 case MSR_IA32_BBL_CR_CTL3:
4084 /* Drop writes to this legacy MSR -- see rdmsr
4085 * counterpart for further detail.
4086 */
4087 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4088 break;
4089 case MSR_AMD64_OSVW_ID_LENGTH:
4090 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4091 return 1;
4092 vcpu->arch.osvw.length = data;
4093 break;
4094 case MSR_AMD64_OSVW_STATUS:
4095 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4096 return 1;
4097 vcpu->arch.osvw.status = data;
4098 break;
4099 case MSR_PLATFORM_INFO:
4100 if (!msr_info->host_initiated)
4101 return 1;
4102 vcpu->arch.msr_platform_info = data;
4103 break;
4104 case MSR_MISC_FEATURES_ENABLES:
4105 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4106 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4107 !supports_cpuid_fault(vcpu)))
4108 return 1;
4109 vcpu->arch.msr_misc_features_enables = data;
4110 break;
4111 #ifdef CONFIG_X86_64
4112 case MSR_IA32_XFD:
4113 if (!msr_info->host_initiated &&
4114 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4115 return 1;
4116
4117 if (data & ~kvm_guest_supported_xfd(vcpu))
4118 return 1;
4119
4120 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4121 break;
4122 case MSR_IA32_XFD_ERR:
4123 if (!msr_info->host_initiated &&
4124 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4125 return 1;
4126
4127 if (data & ~kvm_guest_supported_xfd(vcpu))
4128 return 1;
4129
4130 vcpu->arch.guest_fpu.xfd_err = data;
4131 break;
4132 #endif
4133 default:
4134 if (kvm_pmu_is_valid_msr(vcpu, msr))
4135 return kvm_pmu_set_msr(vcpu, msr_info);
4136
4137 return KVM_MSR_RET_UNSUPPORTED;
4138 }
4139 return 0;
4140 }
4141 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4142
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4143 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4144 {
4145 u64 data;
4146 u64 mcg_cap = vcpu->arch.mcg_cap;
4147 unsigned bank_num = mcg_cap & 0xff;
4148 u32 offset, last_msr;
4149
4150 switch (msr) {
4151 case MSR_IA32_P5_MC_ADDR:
4152 case MSR_IA32_P5_MC_TYPE:
4153 data = 0;
4154 break;
4155 case MSR_IA32_MCG_CAP:
4156 data = vcpu->arch.mcg_cap;
4157 break;
4158 case MSR_IA32_MCG_CTL:
4159 if (!(mcg_cap & MCG_CTL_P) && !host)
4160 return 1;
4161 data = vcpu->arch.mcg_ctl;
4162 break;
4163 case MSR_IA32_MCG_STATUS:
4164 data = vcpu->arch.mcg_status;
4165 break;
4166 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4167 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4168 if (msr > last_msr)
4169 return 1;
4170
4171 if (!(mcg_cap & MCG_CMCI_P) && !host)
4172 return 1;
4173 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4174 last_msr + 1 - MSR_IA32_MC0_CTL2);
4175 data = vcpu->arch.mci_ctl2_banks[offset];
4176 break;
4177 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4178 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4179 if (msr > last_msr)
4180 return 1;
4181
4182 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4183 last_msr + 1 - MSR_IA32_MC0_CTL);
4184 data = vcpu->arch.mce_banks[offset];
4185 break;
4186 default:
4187 return 1;
4188 }
4189 *pdata = data;
4190 return 0;
4191 }
4192
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4193 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4194 {
4195 switch (msr_info->index) {
4196 case MSR_IA32_PLATFORM_ID:
4197 case MSR_IA32_EBL_CR_POWERON:
4198 case MSR_IA32_LASTBRANCHFROMIP:
4199 case MSR_IA32_LASTBRANCHTOIP:
4200 case MSR_IA32_LASTINTFROMIP:
4201 case MSR_IA32_LASTINTTOIP:
4202 case MSR_AMD64_SYSCFG:
4203 case MSR_K8_TSEG_ADDR:
4204 case MSR_K8_TSEG_MASK:
4205 case MSR_VM_HSAVE_PA:
4206 case MSR_K8_INT_PENDING_MSG:
4207 case MSR_AMD64_NB_CFG:
4208 case MSR_FAM10H_MMIO_CONF_BASE:
4209 case MSR_AMD64_BU_CFG2:
4210 case MSR_IA32_PERF_CTL:
4211 case MSR_AMD64_DC_CFG:
4212 case MSR_AMD64_TW_CFG:
4213 case MSR_F15H_EX_CFG:
4214 /*
4215 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4216 * limit) MSRs. Just return 0, as we do not want to expose the host
4217 * data here. Do not conditionalize this on CPUID, as KVM does not do
4218 * so for existing CPU-specific MSRs.
4219 */
4220 case MSR_RAPL_POWER_UNIT:
4221 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4222 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4223 case MSR_PKG_ENERGY_STATUS: /* Total package */
4224 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4225 msr_info->data = 0;
4226 break;
4227 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4228 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4229 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4230 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4231 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4232 return kvm_pmu_get_msr(vcpu, msr_info);
4233 msr_info->data = 0;
4234 break;
4235 case MSR_IA32_UCODE_REV:
4236 msr_info->data = vcpu->arch.microcode_version;
4237 break;
4238 case MSR_IA32_ARCH_CAPABILITIES:
4239 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4240 return KVM_MSR_RET_UNSUPPORTED;
4241 msr_info->data = vcpu->arch.arch_capabilities;
4242 break;
4243 case MSR_IA32_PERF_CAPABILITIES:
4244 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4245 return KVM_MSR_RET_UNSUPPORTED;
4246 msr_info->data = vcpu->arch.perf_capabilities;
4247 break;
4248 case MSR_IA32_POWER_CTL:
4249 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4250 break;
4251 case MSR_IA32_TSC: {
4252 /*
4253 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4254 * even when not intercepted. AMD manual doesn't explicitly
4255 * state this but appears to behave the same.
4256 *
4257 * On userspace reads and writes, however, we unconditionally
4258 * return L1's TSC value to ensure backwards-compatible
4259 * behavior for migration.
4260 */
4261 u64 offset, ratio;
4262
4263 if (msr_info->host_initiated) {
4264 offset = vcpu->arch.l1_tsc_offset;
4265 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4266 } else {
4267 offset = vcpu->arch.tsc_offset;
4268 ratio = vcpu->arch.tsc_scaling_ratio;
4269 }
4270
4271 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4272 break;
4273 }
4274 case MSR_IA32_CR_PAT:
4275 msr_info->data = vcpu->arch.pat;
4276 break;
4277 case MSR_MTRRcap:
4278 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4279 case MSR_MTRRdefType:
4280 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4281 case 0xcd: /* fsb frequency */
4282 msr_info->data = 3;
4283 break;
4284 /*
4285 * MSR_EBC_FREQUENCY_ID
4286 * Conservative value valid for even the basic CPU models.
4287 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4288 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4289 * and 266MHz for model 3, or 4. Set Core Clock
4290 * Frequency to System Bus Frequency Ratio to 1 (bits
4291 * 31:24) even though these are only valid for CPU
4292 * models > 2, however guests may end up dividing or
4293 * multiplying by zero otherwise.
4294 */
4295 case MSR_EBC_FREQUENCY_ID:
4296 msr_info->data = 1 << 24;
4297 break;
4298 case MSR_IA32_APICBASE:
4299 msr_info->data = vcpu->arch.apic_base;
4300 break;
4301 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4302 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4303 case MSR_IA32_TSC_DEADLINE:
4304 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4305 break;
4306 case MSR_IA32_TSC_ADJUST:
4307 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4308 break;
4309 case MSR_IA32_MISC_ENABLE:
4310 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4311 break;
4312 case MSR_IA32_SMBASE:
4313 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4314 return 1;
4315 msr_info->data = vcpu->arch.smbase;
4316 break;
4317 case MSR_SMI_COUNT:
4318 msr_info->data = vcpu->arch.smi_count;
4319 break;
4320 case MSR_IA32_PERF_STATUS:
4321 /* TSC increment by tick */
4322 msr_info->data = 1000ULL;
4323 /* CPU multiplier */
4324 msr_info->data |= (((uint64_t)4ULL) << 40);
4325 break;
4326 case MSR_EFER:
4327 msr_info->data = vcpu->arch.efer;
4328 break;
4329 case MSR_KVM_WALL_CLOCK:
4330 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4331 return 1;
4332
4333 msr_info->data = vcpu->kvm->arch.wall_clock;
4334 break;
4335 case MSR_KVM_WALL_CLOCK_NEW:
4336 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4337 return 1;
4338
4339 msr_info->data = vcpu->kvm->arch.wall_clock;
4340 break;
4341 case MSR_KVM_SYSTEM_TIME:
4342 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4343 return 1;
4344
4345 msr_info->data = vcpu->arch.time;
4346 break;
4347 case MSR_KVM_SYSTEM_TIME_NEW:
4348 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4349 return 1;
4350
4351 msr_info->data = vcpu->arch.time;
4352 break;
4353 case MSR_KVM_ASYNC_PF_EN:
4354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4355 return 1;
4356
4357 msr_info->data = vcpu->arch.apf.msr_en_val;
4358 break;
4359 case MSR_KVM_ASYNC_PF_INT:
4360 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4361 return 1;
4362
4363 msr_info->data = vcpu->arch.apf.msr_int_val;
4364 break;
4365 case MSR_KVM_ASYNC_PF_ACK:
4366 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4367 return 1;
4368
4369 msr_info->data = 0;
4370 break;
4371 case MSR_KVM_STEAL_TIME:
4372 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4373 return 1;
4374
4375 msr_info->data = vcpu->arch.st.msr_val;
4376 break;
4377 case MSR_KVM_PV_EOI_EN:
4378 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4379 return 1;
4380
4381 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4382 break;
4383 case MSR_KVM_POLL_CONTROL:
4384 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4385 return 1;
4386
4387 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4388 break;
4389 case MSR_IA32_P5_MC_ADDR:
4390 case MSR_IA32_P5_MC_TYPE:
4391 case MSR_IA32_MCG_CAP:
4392 case MSR_IA32_MCG_CTL:
4393 case MSR_IA32_MCG_STATUS:
4394 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4395 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4396 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4397 msr_info->host_initiated);
4398 case MSR_IA32_XSS:
4399 if (!msr_info->host_initiated &&
4400 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4401 return 1;
4402 msr_info->data = vcpu->arch.ia32_xss;
4403 break;
4404 case MSR_K7_CLK_CTL:
4405 /*
4406 * Provide expected ramp-up count for K7. All other
4407 * are set to zero, indicating minimum divisors for
4408 * every field.
4409 *
4410 * This prevents guest kernels on AMD host with CPU
4411 * type 6, model 8 and higher from exploding due to
4412 * the rdmsr failing.
4413 */
4414 msr_info->data = 0x20000000;
4415 break;
4416 #ifdef CONFIG_KVM_HYPERV
4417 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4418 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4419 case HV_X64_MSR_SYNDBG_OPTIONS:
4420 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4421 case HV_X64_MSR_CRASH_CTL:
4422 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4423 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4424 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4425 case HV_X64_MSR_TSC_EMULATION_STATUS:
4426 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4427 return kvm_hv_get_msr_common(vcpu,
4428 msr_info->index, &msr_info->data,
4429 msr_info->host_initiated);
4430 #endif
4431 case MSR_IA32_BBL_CR_CTL3:
4432 /* This legacy MSR exists but isn't fully documented in current
4433 * silicon. It is however accessed by winxp in very narrow
4434 * scenarios where it sets bit #19, itself documented as
4435 * a "reserved" bit. Best effort attempt to source coherent
4436 * read data here should the balance of the register be
4437 * interpreted by the guest:
4438 *
4439 * L2 cache control register 3: 64GB range, 256KB size,
4440 * enabled, latency 0x1, configured
4441 */
4442 msr_info->data = 0xbe702111;
4443 break;
4444 case MSR_AMD64_OSVW_ID_LENGTH:
4445 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4446 return 1;
4447 msr_info->data = vcpu->arch.osvw.length;
4448 break;
4449 case MSR_AMD64_OSVW_STATUS:
4450 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4451 return 1;
4452 msr_info->data = vcpu->arch.osvw.status;
4453 break;
4454 case MSR_PLATFORM_INFO:
4455 if (!msr_info->host_initiated &&
4456 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4457 return 1;
4458 msr_info->data = vcpu->arch.msr_platform_info;
4459 break;
4460 case MSR_MISC_FEATURES_ENABLES:
4461 msr_info->data = vcpu->arch.msr_misc_features_enables;
4462 break;
4463 case MSR_K7_HWCR:
4464 msr_info->data = vcpu->arch.msr_hwcr;
4465 break;
4466 #ifdef CONFIG_X86_64
4467 case MSR_IA32_XFD:
4468 if (!msr_info->host_initiated &&
4469 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4470 return 1;
4471
4472 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4473 break;
4474 case MSR_IA32_XFD_ERR:
4475 if (!msr_info->host_initiated &&
4476 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4477 return 1;
4478
4479 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4480 break;
4481 #endif
4482 default:
4483 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4484 return kvm_pmu_get_msr(vcpu, msr_info);
4485
4486 return KVM_MSR_RET_UNSUPPORTED;
4487 }
4488 return 0;
4489 }
4490 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4491
4492 /*
4493 * Read or write a bunch of msrs. All parameters are kernel addresses.
4494 *
4495 * @return number of msrs set successfully.
4496 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4497 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4498 struct kvm_msr_entry *entries,
4499 int (*do_msr)(struct kvm_vcpu *vcpu,
4500 unsigned index, u64 *data))
4501 {
4502 int i;
4503
4504 for (i = 0; i < msrs->nmsrs; ++i)
4505 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4506 break;
4507
4508 return i;
4509 }
4510
4511 /*
4512 * Read or write a bunch of msrs. Parameters are user addresses.
4513 *
4514 * @return number of msrs set successfully.
4515 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4516 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4517 int (*do_msr)(struct kvm_vcpu *vcpu,
4518 unsigned index, u64 *data),
4519 int writeback)
4520 {
4521 struct kvm_msrs msrs;
4522 struct kvm_msr_entry *entries;
4523 unsigned size;
4524 int r;
4525
4526 r = -EFAULT;
4527 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4528 goto out;
4529
4530 r = -E2BIG;
4531 if (msrs.nmsrs >= MAX_IO_MSRS)
4532 goto out;
4533
4534 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4535 entries = memdup_user(user_msrs->entries, size);
4536 if (IS_ERR(entries)) {
4537 r = PTR_ERR(entries);
4538 goto out;
4539 }
4540
4541 r = __msr_io(vcpu, &msrs, entries, do_msr);
4542
4543 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4544 r = -EFAULT;
4545
4546 kfree(entries);
4547 out:
4548 return r;
4549 }
4550
kvm_can_mwait_in_guest(void)4551 static inline bool kvm_can_mwait_in_guest(void)
4552 {
4553 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4554 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4555 boot_cpu_has(X86_FEATURE_ARAT);
4556 }
4557
kvm_get_allowed_disable_exits(void)4558 static u64 kvm_get_allowed_disable_exits(void)
4559 {
4560 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4561
4562 if (!mitigate_smt_rsb) {
4563 r |= KVM_X86_DISABLE_EXITS_HLT |
4564 KVM_X86_DISABLE_EXITS_CSTATE;
4565
4566 if (kvm_can_mwait_in_guest())
4567 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4568 }
4569 return r;
4570 }
4571
4572 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4573 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4574 struct kvm_cpuid2 __user *cpuid_arg)
4575 {
4576 struct kvm_cpuid2 cpuid;
4577 int r;
4578
4579 r = -EFAULT;
4580 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4581 return r;
4582
4583 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4584 if (r)
4585 return r;
4586
4587 r = -EFAULT;
4588 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4589 return r;
4590
4591 return 0;
4592 }
4593 #endif
4594
kvm_is_vm_type_supported(unsigned long type)4595 static bool kvm_is_vm_type_supported(unsigned long type)
4596 {
4597 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4598 }
4599
kvm_sync_valid_fields(struct kvm * kvm)4600 static inline u32 kvm_sync_valid_fields(struct kvm *kvm)
4601 {
4602 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4603 }
4604
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4605 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4606 {
4607 int r = 0;
4608
4609 switch (ext) {
4610 case KVM_CAP_IRQCHIP:
4611 case KVM_CAP_HLT:
4612 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4613 case KVM_CAP_SET_TSS_ADDR:
4614 case KVM_CAP_EXT_CPUID:
4615 case KVM_CAP_EXT_EMUL_CPUID:
4616 case KVM_CAP_CLOCKSOURCE:
4617 case KVM_CAP_PIT:
4618 case KVM_CAP_NOP_IO_DELAY:
4619 case KVM_CAP_MP_STATE:
4620 case KVM_CAP_SYNC_MMU:
4621 case KVM_CAP_USER_NMI:
4622 case KVM_CAP_REINJECT_CONTROL:
4623 case KVM_CAP_IRQ_INJECT_STATUS:
4624 case KVM_CAP_IOEVENTFD:
4625 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4626 case KVM_CAP_PIT2:
4627 case KVM_CAP_PIT_STATE2:
4628 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4629 case KVM_CAP_VCPU_EVENTS:
4630 #ifdef CONFIG_KVM_HYPERV
4631 case KVM_CAP_HYPERV:
4632 case KVM_CAP_HYPERV_VAPIC:
4633 case KVM_CAP_HYPERV_SPIN:
4634 case KVM_CAP_HYPERV_TIME:
4635 case KVM_CAP_HYPERV_SYNIC:
4636 case KVM_CAP_HYPERV_SYNIC2:
4637 case KVM_CAP_HYPERV_VP_INDEX:
4638 case KVM_CAP_HYPERV_EVENTFD:
4639 case KVM_CAP_HYPERV_TLBFLUSH:
4640 case KVM_CAP_HYPERV_SEND_IPI:
4641 case KVM_CAP_HYPERV_CPUID:
4642 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4643 case KVM_CAP_SYS_HYPERV_CPUID:
4644 #endif
4645 case KVM_CAP_PCI_SEGMENT:
4646 case KVM_CAP_DEBUGREGS:
4647 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4648 case KVM_CAP_XSAVE:
4649 case KVM_CAP_ASYNC_PF:
4650 case KVM_CAP_ASYNC_PF_INT:
4651 case KVM_CAP_GET_TSC_KHZ:
4652 case KVM_CAP_KVMCLOCK_CTRL:
4653 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4654 case KVM_CAP_TSC_DEADLINE_TIMER:
4655 case KVM_CAP_DISABLE_QUIRKS:
4656 case KVM_CAP_SET_BOOT_CPU_ID:
4657 case KVM_CAP_SPLIT_IRQCHIP:
4658 case KVM_CAP_IMMEDIATE_EXIT:
4659 case KVM_CAP_PMU_EVENT_FILTER:
4660 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4661 case KVM_CAP_GET_MSR_FEATURES:
4662 case KVM_CAP_MSR_PLATFORM_INFO:
4663 case KVM_CAP_EXCEPTION_PAYLOAD:
4664 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4665 case KVM_CAP_SET_GUEST_DEBUG:
4666 case KVM_CAP_LAST_CPU:
4667 case KVM_CAP_X86_USER_SPACE_MSR:
4668 case KVM_CAP_X86_MSR_FILTER:
4669 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4670 #ifdef CONFIG_X86_SGX_KVM
4671 case KVM_CAP_SGX_ATTRIBUTE:
4672 #endif
4673 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4674 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4675 case KVM_CAP_SREGS2:
4676 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4677 case KVM_CAP_VCPU_ATTRIBUTES:
4678 case KVM_CAP_SYS_ATTRIBUTES:
4679 case KVM_CAP_VAPIC:
4680 case KVM_CAP_ENABLE_CAP:
4681 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4682 case KVM_CAP_IRQFD_RESAMPLE:
4683 case KVM_CAP_MEMORY_FAULT_INFO:
4684 case KVM_CAP_X86_GUEST_MODE:
4685 r = 1;
4686 break;
4687 case KVM_CAP_PRE_FAULT_MEMORY:
4688 r = tdp_enabled;
4689 break;
4690 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4691 r = APIC_BUS_CYCLE_NS_DEFAULT;
4692 break;
4693 case KVM_CAP_EXIT_HYPERCALL:
4694 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4695 break;
4696 case KVM_CAP_SET_GUEST_DEBUG2:
4697 return KVM_GUESTDBG_VALID_MASK;
4698 #ifdef CONFIG_KVM_XEN
4699 case KVM_CAP_XEN_HVM:
4700 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4701 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4702 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4703 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4704 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4705 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4706 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4707 if (sched_info_on())
4708 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4709 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4710 break;
4711 #endif
4712 case KVM_CAP_SYNC_REGS:
4713 r = kvm_sync_valid_fields(kvm);
4714 break;
4715 case KVM_CAP_ADJUST_CLOCK:
4716 r = KVM_CLOCK_VALID_FLAGS;
4717 break;
4718 case KVM_CAP_X86_DISABLE_EXITS:
4719 r = kvm_get_allowed_disable_exits();
4720 break;
4721 case KVM_CAP_X86_SMM:
4722 if (!IS_ENABLED(CONFIG_KVM_SMM))
4723 break;
4724
4725 /* SMBASE is usually relocated above 1M on modern chipsets,
4726 * and SMM handlers might indeed rely on 4G segment limits,
4727 * so do not report SMM to be available if real mode is
4728 * emulated via vm86 mode. Still, do not go to great lengths
4729 * to avoid userspace's usage of the feature, because it is a
4730 * fringe case that is not enabled except via specific settings
4731 * of the module parameters.
4732 */
4733 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4734 break;
4735 case KVM_CAP_NR_VCPUS:
4736 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4737 break;
4738 case KVM_CAP_MAX_VCPUS:
4739 r = KVM_MAX_VCPUS;
4740 break;
4741 case KVM_CAP_MAX_VCPU_ID:
4742 r = KVM_MAX_VCPU_IDS;
4743 break;
4744 case KVM_CAP_PV_MMU: /* obsolete */
4745 r = 0;
4746 break;
4747 case KVM_CAP_MCE:
4748 r = KVM_MAX_MCE_BANKS;
4749 break;
4750 case KVM_CAP_XCRS:
4751 r = boot_cpu_has(X86_FEATURE_XSAVE);
4752 break;
4753 case KVM_CAP_TSC_CONTROL:
4754 case KVM_CAP_VM_TSC_CONTROL:
4755 r = kvm_caps.has_tsc_control;
4756 break;
4757 case KVM_CAP_X2APIC_API:
4758 r = KVM_X2APIC_API_VALID_FLAGS;
4759 break;
4760 case KVM_CAP_NESTED_STATE:
4761 r = kvm_x86_ops.nested_ops->get_state ?
4762 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4763 break;
4764 #ifdef CONFIG_KVM_HYPERV
4765 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4766 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4767 break;
4768 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4769 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4770 break;
4771 #endif
4772 case KVM_CAP_SMALLER_MAXPHYADDR:
4773 r = (int) allow_smaller_maxphyaddr;
4774 break;
4775 case KVM_CAP_STEAL_TIME:
4776 r = sched_info_on();
4777 break;
4778 case KVM_CAP_X86_BUS_LOCK_EXIT:
4779 if (kvm_caps.has_bus_lock_exit)
4780 r = KVM_BUS_LOCK_DETECTION_OFF |
4781 KVM_BUS_LOCK_DETECTION_EXIT;
4782 else
4783 r = 0;
4784 break;
4785 case KVM_CAP_XSAVE2: {
4786 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4787 if (r < sizeof(struct kvm_xsave))
4788 r = sizeof(struct kvm_xsave);
4789 break;
4790 }
4791 case KVM_CAP_PMU_CAPABILITY:
4792 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4793 break;
4794 case KVM_CAP_DISABLE_QUIRKS2:
4795 r = KVM_X86_VALID_QUIRKS;
4796 break;
4797 case KVM_CAP_X86_NOTIFY_VMEXIT:
4798 r = kvm_caps.has_notify_vmexit;
4799 break;
4800 case KVM_CAP_VM_TYPES:
4801 r = kvm_caps.supported_vm_types;
4802 break;
4803 case KVM_CAP_READONLY_MEM:
4804 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4805 break;
4806 default:
4807 break;
4808 }
4809 return r;
4810 }
4811
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4812 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4813 {
4814 if (attr->group) {
4815 if (kvm_x86_ops.dev_get_attr)
4816 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4817 return -ENXIO;
4818 }
4819
4820 switch (attr->attr) {
4821 case KVM_X86_XCOMP_GUEST_SUPP:
4822 *val = kvm_caps.supported_xcr0;
4823 return 0;
4824 default:
4825 return -ENXIO;
4826 }
4827 }
4828
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4829 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4830 {
4831 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4832 int r;
4833 u64 val;
4834
4835 r = __kvm_x86_dev_get_attr(attr, &val);
4836 if (r < 0)
4837 return r;
4838
4839 if (put_user(val, uaddr))
4840 return -EFAULT;
4841
4842 return 0;
4843 }
4844
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4845 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4846 {
4847 u64 val;
4848
4849 return __kvm_x86_dev_get_attr(attr, &val);
4850 }
4851
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4852 long kvm_arch_dev_ioctl(struct file *filp,
4853 unsigned int ioctl, unsigned long arg)
4854 {
4855 void __user *argp = (void __user *)arg;
4856 long r;
4857
4858 switch (ioctl) {
4859 case KVM_GET_MSR_INDEX_LIST: {
4860 struct kvm_msr_list __user *user_msr_list = argp;
4861 struct kvm_msr_list msr_list;
4862 unsigned n;
4863
4864 r = -EFAULT;
4865 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4866 goto out;
4867 n = msr_list.nmsrs;
4868 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4869 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4870 goto out;
4871 r = -E2BIG;
4872 if (n < msr_list.nmsrs)
4873 goto out;
4874 r = -EFAULT;
4875 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4876 num_msrs_to_save * sizeof(u32)))
4877 goto out;
4878 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4879 &emulated_msrs,
4880 num_emulated_msrs * sizeof(u32)))
4881 goto out;
4882 r = 0;
4883 break;
4884 }
4885 case KVM_GET_SUPPORTED_CPUID:
4886 case KVM_GET_EMULATED_CPUID: {
4887 struct kvm_cpuid2 __user *cpuid_arg = argp;
4888 struct kvm_cpuid2 cpuid;
4889
4890 r = -EFAULT;
4891 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4892 goto out;
4893
4894 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4895 ioctl);
4896 if (r)
4897 goto out;
4898
4899 r = -EFAULT;
4900 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4901 goto out;
4902 r = 0;
4903 break;
4904 }
4905 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4906 r = -EFAULT;
4907 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4908 sizeof(kvm_caps.supported_mce_cap)))
4909 goto out;
4910 r = 0;
4911 break;
4912 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4913 struct kvm_msr_list __user *user_msr_list = argp;
4914 struct kvm_msr_list msr_list;
4915 unsigned int n;
4916
4917 r = -EFAULT;
4918 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4919 goto out;
4920 n = msr_list.nmsrs;
4921 msr_list.nmsrs = num_msr_based_features;
4922 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4923 goto out;
4924 r = -E2BIG;
4925 if (n < msr_list.nmsrs)
4926 goto out;
4927 r = -EFAULT;
4928 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4929 num_msr_based_features * sizeof(u32)))
4930 goto out;
4931 r = 0;
4932 break;
4933 }
4934 case KVM_GET_MSRS:
4935 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4936 break;
4937 #ifdef CONFIG_KVM_HYPERV
4938 case KVM_GET_SUPPORTED_HV_CPUID:
4939 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4940 break;
4941 #endif
4942 case KVM_GET_DEVICE_ATTR: {
4943 struct kvm_device_attr attr;
4944 r = -EFAULT;
4945 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4946 break;
4947 r = kvm_x86_dev_get_attr(&attr);
4948 break;
4949 }
4950 case KVM_HAS_DEVICE_ATTR: {
4951 struct kvm_device_attr attr;
4952 r = -EFAULT;
4953 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4954 break;
4955 r = kvm_x86_dev_has_attr(&attr);
4956 break;
4957 }
4958 default:
4959 r = -EINVAL;
4960 break;
4961 }
4962 out:
4963 return r;
4964 }
4965
wbinvd_ipi(void * garbage)4966 static void wbinvd_ipi(void *garbage)
4967 {
4968 wbinvd();
4969 }
4970
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4971 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4972 {
4973 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4974 }
4975
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4976 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4977 {
4978 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4979
4980 vcpu->arch.l1tf_flush_l1d = true;
4981
4982 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4983 pmu->need_cleanup = true;
4984 kvm_make_request(KVM_REQ_PMU, vcpu);
4985 }
4986
4987 /* Address WBINVD may be executed by guest */
4988 if (need_emulate_wbinvd(vcpu)) {
4989 if (kvm_x86_call(has_wbinvd_exit)())
4990 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4991 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4992 smp_call_function_single(vcpu->cpu,
4993 wbinvd_ipi, NULL, 1);
4994 }
4995
4996 kvm_x86_call(vcpu_load)(vcpu, cpu);
4997
4998 /* Save host pkru register if supported */
4999 vcpu->arch.host_pkru = read_pkru();
5000
5001 /* Apply any externally detected TSC adjustments (due to suspend) */
5002 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5003 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5004 vcpu->arch.tsc_offset_adjustment = 0;
5005 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5006 }
5007
5008 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5009 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5010 rdtsc() - vcpu->arch.last_host_tsc;
5011 if (tsc_delta < 0)
5012 mark_tsc_unstable("KVM discovered backwards TSC");
5013
5014 if (kvm_check_tsc_unstable()) {
5015 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5016 vcpu->arch.last_guest_tsc);
5017 kvm_vcpu_write_tsc_offset(vcpu, offset);
5018 if (!vcpu->arch.guest_tsc_protected)
5019 vcpu->arch.tsc_catchup = 1;
5020 }
5021
5022 if (kvm_lapic_hv_timer_in_use(vcpu))
5023 kvm_lapic_restart_hv_timer(vcpu);
5024
5025 /*
5026 * On a host with synchronized TSC, there is no need to update
5027 * kvmclock on vcpu->cpu migration
5028 */
5029 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5030 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5031 if (vcpu->cpu != cpu)
5032 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5033 vcpu->cpu = cpu;
5034 }
5035
5036 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5037 }
5038
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5039 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5040 {
5041 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5042 struct kvm_steal_time __user *st;
5043 struct kvm_memslots *slots;
5044 static const u8 preempted = KVM_VCPU_PREEMPTED;
5045 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5046
5047 /*
5048 * The vCPU can be marked preempted if and only if the VM-Exit was on
5049 * an instruction boundary and will not trigger guest emulation of any
5050 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5051 * when this is true, for example allowing the vCPU to be marked
5052 * preempted if and only if the VM-Exit was due to a host interrupt.
5053 */
5054 if (!vcpu->arch.at_instruction_boundary) {
5055 vcpu->stat.preemption_other++;
5056 return;
5057 }
5058
5059 vcpu->stat.preemption_reported++;
5060 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5061 return;
5062
5063 if (vcpu->arch.st.preempted)
5064 return;
5065
5066 /* This happens on process exit */
5067 if (unlikely(current->mm != vcpu->kvm->mm))
5068 return;
5069
5070 slots = kvm_memslots(vcpu->kvm);
5071
5072 if (unlikely(slots->generation != ghc->generation ||
5073 gpa != ghc->gpa ||
5074 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5075 return;
5076
5077 st = (struct kvm_steal_time __user *)ghc->hva;
5078 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5079
5080 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5081 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5082
5083 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5084 }
5085
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5086 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5087 {
5088 int idx;
5089
5090 if (vcpu->preempted) {
5091 /*
5092 * Assume protected guests are in-kernel. Inefficient yielding
5093 * due to false positives is preferable to never yielding due
5094 * to false negatives.
5095 */
5096 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5097 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5098
5099 /*
5100 * Take the srcu lock as memslots will be accessed to check the gfn
5101 * cache generation against the memslots generation.
5102 */
5103 idx = srcu_read_lock(&vcpu->kvm->srcu);
5104 if (kvm_xen_msr_enabled(vcpu->kvm))
5105 kvm_xen_runstate_set_preempted(vcpu);
5106 else
5107 kvm_steal_time_set_preempted(vcpu);
5108 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5109 }
5110
5111 kvm_x86_call(vcpu_put)(vcpu);
5112 vcpu->arch.last_host_tsc = rdtsc();
5113 }
5114
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5115 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5116 struct kvm_lapic_state *s)
5117 {
5118 kvm_x86_call(sync_pir_to_irr)(vcpu);
5119
5120 return kvm_apic_get_state(vcpu, s);
5121 }
5122
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5123 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5124 struct kvm_lapic_state *s)
5125 {
5126 int r;
5127
5128 r = kvm_apic_set_state(vcpu, s);
5129 if (r)
5130 return r;
5131 update_cr8_intercept(vcpu);
5132
5133 return 0;
5134 }
5135
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5136 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5137 {
5138 /*
5139 * We can accept userspace's request for interrupt injection
5140 * as long as we have a place to store the interrupt number.
5141 * The actual injection will happen when the CPU is able to
5142 * deliver the interrupt.
5143 */
5144 if (kvm_cpu_has_extint(vcpu))
5145 return false;
5146
5147 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5148 return (!lapic_in_kernel(vcpu) ||
5149 kvm_apic_accept_pic_intr(vcpu));
5150 }
5151
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5152 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5153 {
5154 /*
5155 * Do not cause an interrupt window exit if an exception
5156 * is pending or an event needs reinjection; userspace
5157 * might want to inject the interrupt manually using KVM_SET_REGS
5158 * or KVM_SET_SREGS. For that to work, we must be at an
5159 * instruction boundary and with no events half-injected.
5160 */
5161 return (kvm_arch_interrupt_allowed(vcpu) &&
5162 kvm_cpu_accept_dm_intr(vcpu) &&
5163 !kvm_event_needs_reinjection(vcpu) &&
5164 !kvm_is_exception_pending(vcpu));
5165 }
5166
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5167 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5168 struct kvm_interrupt *irq)
5169 {
5170 if (irq->irq >= KVM_NR_INTERRUPTS)
5171 return -EINVAL;
5172
5173 if (!irqchip_in_kernel(vcpu->kvm)) {
5174 kvm_queue_interrupt(vcpu, irq->irq, false);
5175 kvm_make_request(KVM_REQ_EVENT, vcpu);
5176 return 0;
5177 }
5178
5179 /*
5180 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5181 * fail for in-kernel 8259.
5182 */
5183 if (pic_in_kernel(vcpu->kvm))
5184 return -ENXIO;
5185
5186 if (vcpu->arch.pending_external_vector != -1)
5187 return -EEXIST;
5188
5189 vcpu->arch.pending_external_vector = irq->irq;
5190 kvm_make_request(KVM_REQ_EVENT, vcpu);
5191 return 0;
5192 }
5193
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5194 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5195 {
5196 kvm_inject_nmi(vcpu);
5197
5198 return 0;
5199 }
5200
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5201 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5202 struct kvm_tpr_access_ctl *tac)
5203 {
5204 if (tac->flags)
5205 return -EINVAL;
5206 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5207 return 0;
5208 }
5209
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5210 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5211 u64 mcg_cap)
5212 {
5213 int r;
5214 unsigned bank_num = mcg_cap & 0xff, bank;
5215
5216 r = -EINVAL;
5217 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5218 goto out;
5219 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5220 goto out;
5221 r = 0;
5222 vcpu->arch.mcg_cap = mcg_cap;
5223 /* Init IA32_MCG_CTL to all 1s */
5224 if (mcg_cap & MCG_CTL_P)
5225 vcpu->arch.mcg_ctl = ~(u64)0;
5226 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5227 for (bank = 0; bank < bank_num; bank++) {
5228 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5229 if (mcg_cap & MCG_CMCI_P)
5230 vcpu->arch.mci_ctl2_banks[bank] = 0;
5231 }
5232
5233 kvm_apic_after_set_mcg_cap(vcpu);
5234
5235 kvm_x86_call(setup_mce)(vcpu);
5236 out:
5237 return r;
5238 }
5239
5240 /*
5241 * Validate this is an UCNA (uncorrectable no action) error by checking the
5242 * MCG_STATUS and MCi_STATUS registers:
5243 * - none of the bits for Machine Check Exceptions are set
5244 * - both the VAL (valid) and UC (uncorrectable) bits are set
5245 * MCI_STATUS_PCC - Processor Context Corrupted
5246 * MCI_STATUS_S - Signaled as a Machine Check Exception
5247 * MCI_STATUS_AR - Software recoverable Action Required
5248 */
is_ucna(struct kvm_x86_mce * mce)5249 static bool is_ucna(struct kvm_x86_mce *mce)
5250 {
5251 return !mce->mcg_status &&
5252 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5253 (mce->status & MCI_STATUS_VAL) &&
5254 (mce->status & MCI_STATUS_UC);
5255 }
5256
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5257 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5258 {
5259 u64 mcg_cap = vcpu->arch.mcg_cap;
5260
5261 banks[1] = mce->status;
5262 banks[2] = mce->addr;
5263 banks[3] = mce->misc;
5264 vcpu->arch.mcg_status = mce->mcg_status;
5265
5266 if (!(mcg_cap & MCG_CMCI_P) ||
5267 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5268 return 0;
5269
5270 if (lapic_in_kernel(vcpu))
5271 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5272
5273 return 0;
5274 }
5275
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5276 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5277 struct kvm_x86_mce *mce)
5278 {
5279 u64 mcg_cap = vcpu->arch.mcg_cap;
5280 unsigned bank_num = mcg_cap & 0xff;
5281 u64 *banks = vcpu->arch.mce_banks;
5282
5283 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5284 return -EINVAL;
5285
5286 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5287
5288 if (is_ucna(mce))
5289 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5290
5291 /*
5292 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5293 * reporting is disabled
5294 */
5295 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5296 vcpu->arch.mcg_ctl != ~(u64)0)
5297 return 0;
5298 /*
5299 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5300 * reporting is disabled for the bank
5301 */
5302 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5303 return 0;
5304 if (mce->status & MCI_STATUS_UC) {
5305 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5306 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5308 return 0;
5309 }
5310 if (banks[1] & MCI_STATUS_VAL)
5311 mce->status |= MCI_STATUS_OVER;
5312 banks[2] = mce->addr;
5313 banks[3] = mce->misc;
5314 vcpu->arch.mcg_status = mce->mcg_status;
5315 banks[1] = mce->status;
5316 kvm_queue_exception(vcpu, MC_VECTOR);
5317 } else if (!(banks[1] & MCI_STATUS_VAL)
5318 || !(banks[1] & MCI_STATUS_UC)) {
5319 if (banks[1] & MCI_STATUS_VAL)
5320 mce->status |= MCI_STATUS_OVER;
5321 banks[2] = mce->addr;
5322 banks[3] = mce->misc;
5323 banks[1] = mce->status;
5324 } else
5325 banks[1] |= MCI_STATUS_OVER;
5326 return 0;
5327 }
5328
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5329 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5330 struct kvm_vcpu_events *events)
5331 {
5332 struct kvm_queued_exception *ex;
5333
5334 process_nmi(vcpu);
5335
5336 #ifdef CONFIG_KVM_SMM
5337 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5338 process_smi(vcpu);
5339 #endif
5340
5341 /*
5342 * KVM's ABI only allows for one exception to be migrated. Luckily,
5343 * the only time there can be two queued exceptions is if there's a
5344 * non-exiting _injected_ exception, and a pending exiting exception.
5345 * In that case, ignore the VM-Exiting exception as it's an extension
5346 * of the injected exception.
5347 */
5348 if (vcpu->arch.exception_vmexit.pending &&
5349 !vcpu->arch.exception.pending &&
5350 !vcpu->arch.exception.injected)
5351 ex = &vcpu->arch.exception_vmexit;
5352 else
5353 ex = &vcpu->arch.exception;
5354
5355 /*
5356 * In guest mode, payload delivery should be deferred if the exception
5357 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5358 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5359 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5360 * propagate the payload and so it cannot be safely deferred. Deliver
5361 * the payload if the capability hasn't been requested.
5362 */
5363 if (!vcpu->kvm->arch.exception_payload_enabled &&
5364 ex->pending && ex->has_payload)
5365 kvm_deliver_exception_payload(vcpu, ex);
5366
5367 memset(events, 0, sizeof(*events));
5368
5369 /*
5370 * The API doesn't provide the instruction length for software
5371 * exceptions, so don't report them. As long as the guest RIP
5372 * isn't advanced, we should expect to encounter the exception
5373 * again.
5374 */
5375 if (!kvm_exception_is_soft(ex->vector)) {
5376 events->exception.injected = ex->injected;
5377 events->exception.pending = ex->pending;
5378 /*
5379 * For ABI compatibility, deliberately conflate
5380 * pending and injected exceptions when
5381 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5382 */
5383 if (!vcpu->kvm->arch.exception_payload_enabled)
5384 events->exception.injected |= ex->pending;
5385 }
5386 events->exception.nr = ex->vector;
5387 events->exception.has_error_code = ex->has_error_code;
5388 events->exception.error_code = ex->error_code;
5389 events->exception_has_payload = ex->has_payload;
5390 events->exception_payload = ex->payload;
5391
5392 events->interrupt.injected =
5393 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5394 events->interrupt.nr = vcpu->arch.interrupt.nr;
5395 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5396
5397 events->nmi.injected = vcpu->arch.nmi_injected;
5398 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5399 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5400
5401 /* events->sipi_vector is never valid when reporting to user space */
5402
5403 #ifdef CONFIG_KVM_SMM
5404 events->smi.smm = is_smm(vcpu);
5405 events->smi.pending = vcpu->arch.smi_pending;
5406 events->smi.smm_inside_nmi =
5407 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5408 #endif
5409 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5410
5411 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5412 | KVM_VCPUEVENT_VALID_SHADOW
5413 | KVM_VCPUEVENT_VALID_SMM);
5414 if (vcpu->kvm->arch.exception_payload_enabled)
5415 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5416 if (vcpu->kvm->arch.triple_fault_event) {
5417 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5418 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5419 }
5420 }
5421
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5422 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5423 struct kvm_vcpu_events *events)
5424 {
5425 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5426 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5427 | KVM_VCPUEVENT_VALID_SHADOW
5428 | KVM_VCPUEVENT_VALID_SMM
5429 | KVM_VCPUEVENT_VALID_PAYLOAD
5430 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5431 return -EINVAL;
5432
5433 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5434 if (!vcpu->kvm->arch.exception_payload_enabled)
5435 return -EINVAL;
5436 if (events->exception.pending)
5437 events->exception.injected = 0;
5438 else
5439 events->exception_has_payload = 0;
5440 } else {
5441 events->exception.pending = 0;
5442 events->exception_has_payload = 0;
5443 }
5444
5445 if ((events->exception.injected || events->exception.pending) &&
5446 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5447 return -EINVAL;
5448
5449 /* INITs are latched while in SMM */
5450 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5451 (events->smi.smm || events->smi.pending) &&
5452 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5453 return -EINVAL;
5454
5455 process_nmi(vcpu);
5456
5457 /*
5458 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5459 * morph the exception to a VM-Exit if appropriate. Do this only for
5460 * pending exceptions, already-injected exceptions are not subject to
5461 * intercpetion. Note, userspace that conflates pending and injected
5462 * is hosed, and will incorrectly convert an injected exception into a
5463 * pending exception, which in turn may cause a spurious VM-Exit.
5464 */
5465 vcpu->arch.exception_from_userspace = events->exception.pending;
5466
5467 vcpu->arch.exception_vmexit.pending = false;
5468
5469 vcpu->arch.exception.injected = events->exception.injected;
5470 vcpu->arch.exception.pending = events->exception.pending;
5471 vcpu->arch.exception.vector = events->exception.nr;
5472 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5473 vcpu->arch.exception.error_code = events->exception.error_code;
5474 vcpu->arch.exception.has_payload = events->exception_has_payload;
5475 vcpu->arch.exception.payload = events->exception_payload;
5476
5477 vcpu->arch.interrupt.injected = events->interrupt.injected;
5478 vcpu->arch.interrupt.nr = events->interrupt.nr;
5479 vcpu->arch.interrupt.soft = events->interrupt.soft;
5480 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5481 kvm_x86_call(set_interrupt_shadow)(vcpu,
5482 events->interrupt.shadow);
5483
5484 vcpu->arch.nmi_injected = events->nmi.injected;
5485 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5486 vcpu->arch.nmi_pending = 0;
5487 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5488 if (events->nmi.pending)
5489 kvm_make_request(KVM_REQ_NMI, vcpu);
5490 }
5491 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5492
5493 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5494 lapic_in_kernel(vcpu))
5495 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5496
5497 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5498 #ifdef CONFIG_KVM_SMM
5499 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5500 kvm_leave_nested(vcpu);
5501 kvm_smm_changed(vcpu, events->smi.smm);
5502 }
5503
5504 vcpu->arch.smi_pending = events->smi.pending;
5505
5506 if (events->smi.smm) {
5507 if (events->smi.smm_inside_nmi)
5508 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5509 else
5510 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5511 }
5512
5513 #else
5514 if (events->smi.smm || events->smi.pending ||
5515 events->smi.smm_inside_nmi)
5516 return -EINVAL;
5517 #endif
5518
5519 if (lapic_in_kernel(vcpu)) {
5520 if (events->smi.latched_init)
5521 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5522 else
5523 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5524 }
5525 }
5526
5527 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5528 if (!vcpu->kvm->arch.triple_fault_event)
5529 return -EINVAL;
5530 if (events->triple_fault.pending)
5531 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5532 else
5533 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5534 }
5535
5536 kvm_make_request(KVM_REQ_EVENT, vcpu);
5537
5538 return 0;
5539 }
5540
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5541 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5542 struct kvm_debugregs *dbgregs)
5543 {
5544 unsigned int i;
5545
5546 if (vcpu->kvm->arch.has_protected_state &&
5547 vcpu->arch.guest_state_protected)
5548 return -EINVAL;
5549
5550 memset(dbgregs, 0, sizeof(*dbgregs));
5551
5552 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5553 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5554 dbgregs->db[i] = vcpu->arch.db[i];
5555
5556 dbgregs->dr6 = vcpu->arch.dr6;
5557 dbgregs->dr7 = vcpu->arch.dr7;
5558 return 0;
5559 }
5560
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5561 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5562 struct kvm_debugregs *dbgregs)
5563 {
5564 unsigned int i;
5565
5566 if (vcpu->kvm->arch.has_protected_state &&
5567 vcpu->arch.guest_state_protected)
5568 return -EINVAL;
5569
5570 if (dbgregs->flags)
5571 return -EINVAL;
5572
5573 if (!kvm_dr6_valid(dbgregs->dr6))
5574 return -EINVAL;
5575 if (!kvm_dr7_valid(dbgregs->dr7))
5576 return -EINVAL;
5577
5578 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5579 vcpu->arch.db[i] = dbgregs->db[i];
5580
5581 kvm_update_dr0123(vcpu);
5582 vcpu->arch.dr6 = dbgregs->dr6;
5583 vcpu->arch.dr7 = dbgregs->dr7;
5584 kvm_update_dr7(vcpu);
5585
5586 return 0;
5587 }
5588
5589
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5590 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5591 u8 *state, unsigned int size)
5592 {
5593 /*
5594 * Only copy state for features that are enabled for the guest. The
5595 * state itself isn't problematic, but setting bits in the header for
5596 * features that are supported in *this* host but not exposed to the
5597 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5598 * compatible host without the features that are NOT exposed to the
5599 * guest.
5600 *
5601 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5602 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5603 * supported by the host.
5604 */
5605 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5606 XFEATURE_MASK_FPSSE;
5607
5608 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5609 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5610
5611 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5612 supported_xcr0, vcpu->arch.pkru);
5613 return 0;
5614 }
5615
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5616 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5617 struct kvm_xsave *guest_xsave)
5618 {
5619 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5620 sizeof(guest_xsave->region));
5621 }
5622
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5623 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5624 struct kvm_xsave *guest_xsave)
5625 {
5626 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5627 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5628
5629 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5630 guest_xsave->region,
5631 kvm_caps.supported_xcr0,
5632 &vcpu->arch.pkru);
5633 }
5634
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5635 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5636 struct kvm_xcrs *guest_xcrs)
5637 {
5638 if (vcpu->kvm->arch.has_protected_state &&
5639 vcpu->arch.guest_state_protected)
5640 return -EINVAL;
5641
5642 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5643 guest_xcrs->nr_xcrs = 0;
5644 return 0;
5645 }
5646
5647 guest_xcrs->nr_xcrs = 1;
5648 guest_xcrs->flags = 0;
5649 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5650 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5651 return 0;
5652 }
5653
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5654 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5655 struct kvm_xcrs *guest_xcrs)
5656 {
5657 int i, r = 0;
5658
5659 if (vcpu->kvm->arch.has_protected_state &&
5660 vcpu->arch.guest_state_protected)
5661 return -EINVAL;
5662
5663 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5664 return -EINVAL;
5665
5666 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5667 return -EINVAL;
5668
5669 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5670 /* Only support XCR0 currently */
5671 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5672 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5673 guest_xcrs->xcrs[i].value);
5674 break;
5675 }
5676 if (r)
5677 r = -EINVAL;
5678 return r;
5679 }
5680
5681 /*
5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683 * stopped by the hypervisor. This function will be called from the host only.
5684 * EINVAL is returned when the host attempts to set the flag for a guest that
5685 * does not support pv clocks.
5686 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5687 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5688 {
5689 if (!vcpu->arch.pv_time.active)
5690 return -EINVAL;
5691 vcpu->arch.pvclock_set_guest_stopped_request = true;
5692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5693 return 0;
5694 }
5695
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5696 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5697 struct kvm_device_attr *attr)
5698 {
5699 int r;
5700
5701 switch (attr->attr) {
5702 case KVM_VCPU_TSC_OFFSET:
5703 r = 0;
5704 break;
5705 default:
5706 r = -ENXIO;
5707 }
5708
5709 return r;
5710 }
5711
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5712 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5713 struct kvm_device_attr *attr)
5714 {
5715 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5716 int r;
5717
5718 switch (attr->attr) {
5719 case KVM_VCPU_TSC_OFFSET:
5720 r = -EFAULT;
5721 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5722 break;
5723 r = 0;
5724 break;
5725 default:
5726 r = -ENXIO;
5727 }
5728
5729 return r;
5730 }
5731
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5732 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5733 struct kvm_device_attr *attr)
5734 {
5735 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5736 struct kvm *kvm = vcpu->kvm;
5737 int r;
5738
5739 switch (attr->attr) {
5740 case KVM_VCPU_TSC_OFFSET: {
5741 u64 offset, tsc, ns;
5742 unsigned long flags;
5743 bool matched;
5744
5745 r = -EFAULT;
5746 if (get_user(offset, uaddr))
5747 break;
5748
5749 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5750
5751 matched = (vcpu->arch.virtual_tsc_khz &&
5752 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5753 kvm->arch.last_tsc_offset == offset);
5754
5755 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5756 ns = get_kvmclock_base_ns();
5757
5758 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5759 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5760
5761 r = 0;
5762 break;
5763 }
5764 default:
5765 r = -ENXIO;
5766 }
5767
5768 return r;
5769 }
5770
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5771 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5772 unsigned int ioctl,
5773 void __user *argp)
5774 {
5775 struct kvm_device_attr attr;
5776 int r;
5777
5778 if (copy_from_user(&attr, argp, sizeof(attr)))
5779 return -EFAULT;
5780
5781 if (attr.group != KVM_VCPU_TSC_CTRL)
5782 return -ENXIO;
5783
5784 switch (ioctl) {
5785 case KVM_HAS_DEVICE_ATTR:
5786 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5787 break;
5788 case KVM_GET_DEVICE_ATTR:
5789 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5790 break;
5791 case KVM_SET_DEVICE_ATTR:
5792 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5793 break;
5794 }
5795
5796 return r;
5797 }
5798
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5799 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5800 struct kvm_enable_cap *cap)
5801 {
5802 if (cap->flags)
5803 return -EINVAL;
5804
5805 switch (cap->cap) {
5806 #ifdef CONFIG_KVM_HYPERV
5807 case KVM_CAP_HYPERV_SYNIC2:
5808 if (cap->args[0])
5809 return -EINVAL;
5810 fallthrough;
5811
5812 case KVM_CAP_HYPERV_SYNIC:
5813 if (!irqchip_in_kernel(vcpu->kvm))
5814 return -EINVAL;
5815 return kvm_hv_activate_synic(vcpu, cap->cap ==
5816 KVM_CAP_HYPERV_SYNIC2);
5817 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5818 {
5819 int r;
5820 uint16_t vmcs_version;
5821 void __user *user_ptr;
5822
5823 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5824 return -ENOTTY;
5825 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5826 if (!r) {
5827 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5828 if (copy_to_user(user_ptr, &vmcs_version,
5829 sizeof(vmcs_version)))
5830 r = -EFAULT;
5831 }
5832 return r;
5833 }
5834 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5835 if (!kvm_x86_ops.enable_l2_tlb_flush)
5836 return -ENOTTY;
5837
5838 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5839
5840 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5841 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5842 #endif
5843
5844 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5845 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5846 return 0;
5847 default:
5848 return -EINVAL;
5849 }
5850 }
5851
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5852 long kvm_arch_vcpu_ioctl(struct file *filp,
5853 unsigned int ioctl, unsigned long arg)
5854 {
5855 struct kvm_vcpu *vcpu = filp->private_data;
5856 void __user *argp = (void __user *)arg;
5857 int r;
5858 union {
5859 struct kvm_sregs2 *sregs2;
5860 struct kvm_lapic_state *lapic;
5861 struct kvm_xsave *xsave;
5862 struct kvm_xcrs *xcrs;
5863 void *buffer;
5864 } u;
5865
5866 vcpu_load(vcpu);
5867
5868 u.buffer = NULL;
5869 switch (ioctl) {
5870 case KVM_GET_LAPIC: {
5871 r = -EINVAL;
5872 if (!lapic_in_kernel(vcpu))
5873 goto out;
5874 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5875
5876 r = -ENOMEM;
5877 if (!u.lapic)
5878 goto out;
5879 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5880 if (r)
5881 goto out;
5882 r = -EFAULT;
5883 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5884 goto out;
5885 r = 0;
5886 break;
5887 }
5888 case KVM_SET_LAPIC: {
5889 r = -EINVAL;
5890 if (!lapic_in_kernel(vcpu))
5891 goto out;
5892 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5893 if (IS_ERR(u.lapic)) {
5894 r = PTR_ERR(u.lapic);
5895 goto out_nofree;
5896 }
5897
5898 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5899 break;
5900 }
5901 case KVM_INTERRUPT: {
5902 struct kvm_interrupt irq;
5903
5904 r = -EFAULT;
5905 if (copy_from_user(&irq, argp, sizeof(irq)))
5906 goto out;
5907 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5908 break;
5909 }
5910 case KVM_NMI: {
5911 r = kvm_vcpu_ioctl_nmi(vcpu);
5912 break;
5913 }
5914 case KVM_SMI: {
5915 r = kvm_inject_smi(vcpu);
5916 break;
5917 }
5918 case KVM_SET_CPUID: {
5919 struct kvm_cpuid __user *cpuid_arg = argp;
5920 struct kvm_cpuid cpuid;
5921
5922 r = -EFAULT;
5923 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5924 goto out;
5925 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5926 break;
5927 }
5928 case KVM_SET_CPUID2: {
5929 struct kvm_cpuid2 __user *cpuid_arg = argp;
5930 struct kvm_cpuid2 cpuid;
5931
5932 r = -EFAULT;
5933 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5934 goto out;
5935 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5936 cpuid_arg->entries);
5937 break;
5938 }
5939 case KVM_GET_CPUID2: {
5940 struct kvm_cpuid2 __user *cpuid_arg = argp;
5941 struct kvm_cpuid2 cpuid;
5942
5943 r = -EFAULT;
5944 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5945 goto out;
5946 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5947 cpuid_arg->entries);
5948 if (r)
5949 goto out;
5950 r = -EFAULT;
5951 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5952 goto out;
5953 r = 0;
5954 break;
5955 }
5956 case KVM_GET_MSRS: {
5957 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5958 r = msr_io(vcpu, argp, do_get_msr, 1);
5959 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5960 break;
5961 }
5962 case KVM_SET_MSRS: {
5963 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5964 r = msr_io(vcpu, argp, do_set_msr, 0);
5965 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5966 break;
5967 }
5968 case KVM_TPR_ACCESS_REPORTING: {
5969 struct kvm_tpr_access_ctl tac;
5970
5971 r = -EFAULT;
5972 if (copy_from_user(&tac, argp, sizeof(tac)))
5973 goto out;
5974 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5975 if (r)
5976 goto out;
5977 r = -EFAULT;
5978 if (copy_to_user(argp, &tac, sizeof(tac)))
5979 goto out;
5980 r = 0;
5981 break;
5982 };
5983 case KVM_SET_VAPIC_ADDR: {
5984 struct kvm_vapic_addr va;
5985 int idx;
5986
5987 r = -EINVAL;
5988 if (!lapic_in_kernel(vcpu))
5989 goto out;
5990 r = -EFAULT;
5991 if (copy_from_user(&va, argp, sizeof(va)))
5992 goto out;
5993 idx = srcu_read_lock(&vcpu->kvm->srcu);
5994 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5995 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5996 break;
5997 }
5998 case KVM_X86_SETUP_MCE: {
5999 u64 mcg_cap;
6000
6001 r = -EFAULT;
6002 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6003 goto out;
6004 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6005 break;
6006 }
6007 case KVM_X86_SET_MCE: {
6008 struct kvm_x86_mce mce;
6009
6010 r = -EFAULT;
6011 if (copy_from_user(&mce, argp, sizeof(mce)))
6012 goto out;
6013 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6014 break;
6015 }
6016 case KVM_GET_VCPU_EVENTS: {
6017 struct kvm_vcpu_events events;
6018
6019 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6020
6021 r = -EFAULT;
6022 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6023 break;
6024 r = 0;
6025 break;
6026 }
6027 case KVM_SET_VCPU_EVENTS: {
6028 struct kvm_vcpu_events events;
6029
6030 r = -EFAULT;
6031 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6032 break;
6033
6034 kvm_vcpu_srcu_read_lock(vcpu);
6035 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6036 kvm_vcpu_srcu_read_unlock(vcpu);
6037 break;
6038 }
6039 case KVM_GET_DEBUGREGS: {
6040 struct kvm_debugregs dbgregs;
6041
6042 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6043 if (r < 0)
6044 break;
6045
6046 r = -EFAULT;
6047 if (copy_to_user(argp, &dbgregs,
6048 sizeof(struct kvm_debugregs)))
6049 break;
6050 r = 0;
6051 break;
6052 }
6053 case KVM_SET_DEBUGREGS: {
6054 struct kvm_debugregs dbgregs;
6055
6056 r = -EFAULT;
6057 if (copy_from_user(&dbgregs, argp,
6058 sizeof(struct kvm_debugregs)))
6059 break;
6060
6061 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6062 break;
6063 }
6064 case KVM_GET_XSAVE: {
6065 r = -EINVAL;
6066 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6067 break;
6068
6069 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6070 r = -ENOMEM;
6071 if (!u.xsave)
6072 break;
6073
6074 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6075 if (r < 0)
6076 break;
6077
6078 r = -EFAULT;
6079 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6080 break;
6081 r = 0;
6082 break;
6083 }
6084 case KVM_SET_XSAVE: {
6085 int size = vcpu->arch.guest_fpu.uabi_size;
6086
6087 u.xsave = memdup_user(argp, size);
6088 if (IS_ERR(u.xsave)) {
6089 r = PTR_ERR(u.xsave);
6090 goto out_nofree;
6091 }
6092
6093 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6094 break;
6095 }
6096
6097 case KVM_GET_XSAVE2: {
6098 int size = vcpu->arch.guest_fpu.uabi_size;
6099
6100 u.xsave = kzalloc(size, GFP_KERNEL);
6101 r = -ENOMEM;
6102 if (!u.xsave)
6103 break;
6104
6105 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6106 if (r < 0)
6107 break;
6108
6109 r = -EFAULT;
6110 if (copy_to_user(argp, u.xsave, size))
6111 break;
6112
6113 r = 0;
6114 break;
6115 }
6116
6117 case KVM_GET_XCRS: {
6118 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6119 r = -ENOMEM;
6120 if (!u.xcrs)
6121 break;
6122
6123 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6124 if (r < 0)
6125 break;
6126
6127 r = -EFAULT;
6128 if (copy_to_user(argp, u.xcrs,
6129 sizeof(struct kvm_xcrs)))
6130 break;
6131 r = 0;
6132 break;
6133 }
6134 case KVM_SET_XCRS: {
6135 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6136 if (IS_ERR(u.xcrs)) {
6137 r = PTR_ERR(u.xcrs);
6138 goto out_nofree;
6139 }
6140
6141 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6142 break;
6143 }
6144 case KVM_SET_TSC_KHZ: {
6145 u32 user_tsc_khz;
6146
6147 r = -EINVAL;
6148 user_tsc_khz = (u32)arg;
6149
6150 if (kvm_caps.has_tsc_control &&
6151 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6152 goto out;
6153
6154 if (user_tsc_khz == 0)
6155 user_tsc_khz = tsc_khz;
6156
6157 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6158 r = 0;
6159
6160 goto out;
6161 }
6162 case KVM_GET_TSC_KHZ: {
6163 r = vcpu->arch.virtual_tsc_khz;
6164 goto out;
6165 }
6166 case KVM_KVMCLOCK_CTRL: {
6167 r = kvm_set_guest_paused(vcpu);
6168 goto out;
6169 }
6170 case KVM_ENABLE_CAP: {
6171 struct kvm_enable_cap cap;
6172
6173 r = -EFAULT;
6174 if (copy_from_user(&cap, argp, sizeof(cap)))
6175 goto out;
6176 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6177 break;
6178 }
6179 case KVM_GET_NESTED_STATE: {
6180 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6181 u32 user_data_size;
6182
6183 r = -EINVAL;
6184 if (!kvm_x86_ops.nested_ops->get_state)
6185 break;
6186
6187 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6188 r = -EFAULT;
6189 if (get_user(user_data_size, &user_kvm_nested_state->size))
6190 break;
6191
6192 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6193 user_data_size);
6194 if (r < 0)
6195 break;
6196
6197 if (r > user_data_size) {
6198 if (put_user(r, &user_kvm_nested_state->size))
6199 r = -EFAULT;
6200 else
6201 r = -E2BIG;
6202 break;
6203 }
6204
6205 r = 0;
6206 break;
6207 }
6208 case KVM_SET_NESTED_STATE: {
6209 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6210 struct kvm_nested_state kvm_state;
6211 int idx;
6212
6213 r = -EINVAL;
6214 if (!kvm_x86_ops.nested_ops->set_state)
6215 break;
6216
6217 r = -EFAULT;
6218 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6219 break;
6220
6221 r = -EINVAL;
6222 if (kvm_state.size < sizeof(kvm_state))
6223 break;
6224
6225 if (kvm_state.flags &
6226 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6227 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6228 | KVM_STATE_NESTED_GIF_SET))
6229 break;
6230
6231 /* nested_run_pending implies guest_mode. */
6232 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6233 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6234 break;
6235
6236 idx = srcu_read_lock(&vcpu->kvm->srcu);
6237 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6238 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6239 break;
6240 }
6241 #ifdef CONFIG_KVM_HYPERV
6242 case KVM_GET_SUPPORTED_HV_CPUID:
6243 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6244 break;
6245 #endif
6246 #ifdef CONFIG_KVM_XEN
6247 case KVM_XEN_VCPU_GET_ATTR: {
6248 struct kvm_xen_vcpu_attr xva;
6249
6250 r = -EFAULT;
6251 if (copy_from_user(&xva, argp, sizeof(xva)))
6252 goto out;
6253 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6254 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6255 r = -EFAULT;
6256 break;
6257 }
6258 case KVM_XEN_VCPU_SET_ATTR: {
6259 struct kvm_xen_vcpu_attr xva;
6260
6261 r = -EFAULT;
6262 if (copy_from_user(&xva, argp, sizeof(xva)))
6263 goto out;
6264 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6265 break;
6266 }
6267 #endif
6268 case KVM_GET_SREGS2: {
6269 r = -EINVAL;
6270 if (vcpu->kvm->arch.has_protected_state &&
6271 vcpu->arch.guest_state_protected)
6272 goto out;
6273
6274 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6275 r = -ENOMEM;
6276 if (!u.sregs2)
6277 goto out;
6278 __get_sregs2(vcpu, u.sregs2);
6279 r = -EFAULT;
6280 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6281 goto out;
6282 r = 0;
6283 break;
6284 }
6285 case KVM_SET_SREGS2: {
6286 r = -EINVAL;
6287 if (vcpu->kvm->arch.has_protected_state &&
6288 vcpu->arch.guest_state_protected)
6289 goto out;
6290
6291 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6292 if (IS_ERR(u.sregs2)) {
6293 r = PTR_ERR(u.sregs2);
6294 u.sregs2 = NULL;
6295 goto out;
6296 }
6297 r = __set_sregs2(vcpu, u.sregs2);
6298 break;
6299 }
6300 case KVM_HAS_DEVICE_ATTR:
6301 case KVM_GET_DEVICE_ATTR:
6302 case KVM_SET_DEVICE_ATTR:
6303 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6304 break;
6305 default:
6306 r = -EINVAL;
6307 }
6308 out:
6309 kfree(u.buffer);
6310 out_nofree:
6311 vcpu_put(vcpu);
6312 return r;
6313 }
6314
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6315 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6316 {
6317 return VM_FAULT_SIGBUS;
6318 }
6319
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6320 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6321 {
6322 int ret;
6323
6324 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6325 return -EINVAL;
6326 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6327 return ret;
6328 }
6329
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6330 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6331 u64 ident_addr)
6332 {
6333 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6334 }
6335
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6336 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6337 unsigned long kvm_nr_mmu_pages)
6338 {
6339 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6340 return -EINVAL;
6341
6342 mutex_lock(&kvm->slots_lock);
6343
6344 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6345 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6346
6347 mutex_unlock(&kvm->slots_lock);
6348 return 0;
6349 }
6350
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6351 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6352 {
6353 struct kvm_pic *pic = kvm->arch.vpic;
6354 int r;
6355
6356 r = 0;
6357 switch (chip->chip_id) {
6358 case KVM_IRQCHIP_PIC_MASTER:
6359 memcpy(&chip->chip.pic, &pic->pics[0],
6360 sizeof(struct kvm_pic_state));
6361 break;
6362 case KVM_IRQCHIP_PIC_SLAVE:
6363 memcpy(&chip->chip.pic, &pic->pics[1],
6364 sizeof(struct kvm_pic_state));
6365 break;
6366 case KVM_IRQCHIP_IOAPIC:
6367 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6368 break;
6369 default:
6370 r = -EINVAL;
6371 break;
6372 }
6373 return r;
6374 }
6375
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6376 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6377 {
6378 struct kvm_pic *pic = kvm->arch.vpic;
6379 int r;
6380
6381 r = 0;
6382 switch (chip->chip_id) {
6383 case KVM_IRQCHIP_PIC_MASTER:
6384 spin_lock(&pic->lock);
6385 memcpy(&pic->pics[0], &chip->chip.pic,
6386 sizeof(struct kvm_pic_state));
6387 spin_unlock(&pic->lock);
6388 break;
6389 case KVM_IRQCHIP_PIC_SLAVE:
6390 spin_lock(&pic->lock);
6391 memcpy(&pic->pics[1], &chip->chip.pic,
6392 sizeof(struct kvm_pic_state));
6393 spin_unlock(&pic->lock);
6394 break;
6395 case KVM_IRQCHIP_IOAPIC:
6396 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6397 break;
6398 default:
6399 r = -EINVAL;
6400 break;
6401 }
6402 kvm_pic_update_irq(pic);
6403 return r;
6404 }
6405
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6406 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6407 {
6408 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6409
6410 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6411
6412 mutex_lock(&kps->lock);
6413 memcpy(ps, &kps->channels, sizeof(*ps));
6414 mutex_unlock(&kps->lock);
6415 return 0;
6416 }
6417
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6418 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6419 {
6420 int i;
6421 struct kvm_pit *pit = kvm->arch.vpit;
6422
6423 mutex_lock(&pit->pit_state.lock);
6424 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6425 for (i = 0; i < 3; i++)
6426 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6427 mutex_unlock(&pit->pit_state.lock);
6428 return 0;
6429 }
6430
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6431 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6432 {
6433 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6434 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6435 sizeof(ps->channels));
6436 ps->flags = kvm->arch.vpit->pit_state.flags;
6437 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6438 memset(&ps->reserved, 0, sizeof(ps->reserved));
6439 return 0;
6440 }
6441
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6442 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6443 {
6444 int start = 0;
6445 int i;
6446 u32 prev_legacy, cur_legacy;
6447 struct kvm_pit *pit = kvm->arch.vpit;
6448
6449 mutex_lock(&pit->pit_state.lock);
6450 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6451 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6452 if (!prev_legacy && cur_legacy)
6453 start = 1;
6454 memcpy(&pit->pit_state.channels, &ps->channels,
6455 sizeof(pit->pit_state.channels));
6456 pit->pit_state.flags = ps->flags;
6457 for (i = 0; i < 3; i++)
6458 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6459 start && i == 0);
6460 mutex_unlock(&pit->pit_state.lock);
6461 return 0;
6462 }
6463
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6464 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6465 struct kvm_reinject_control *control)
6466 {
6467 struct kvm_pit *pit = kvm->arch.vpit;
6468
6469 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6470 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6471 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6472 */
6473 mutex_lock(&pit->pit_state.lock);
6474 kvm_pit_set_reinject(pit, control->pit_reinject);
6475 mutex_unlock(&pit->pit_state.lock);
6476
6477 return 0;
6478 }
6479
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6480 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6481 {
6482
6483 /*
6484 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6485 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6486 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6487 * VM-Exit.
6488 */
6489 struct kvm_vcpu *vcpu;
6490 unsigned long i;
6491
6492 if (!kvm_x86_ops.cpu_dirty_log_size)
6493 return;
6494
6495 kvm_for_each_vcpu(i, vcpu, kvm)
6496 kvm_vcpu_kick(vcpu);
6497 }
6498
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6499 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6500 bool line_status)
6501 {
6502 if (!irqchip_in_kernel(kvm))
6503 return -ENXIO;
6504
6505 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6506 irq_event->irq, irq_event->level,
6507 line_status);
6508 return 0;
6509 }
6510
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6511 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6512 struct kvm_enable_cap *cap)
6513 {
6514 int r;
6515
6516 if (cap->flags)
6517 return -EINVAL;
6518
6519 switch (cap->cap) {
6520 case KVM_CAP_DISABLE_QUIRKS2:
6521 r = -EINVAL;
6522 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6523 break;
6524 fallthrough;
6525 case KVM_CAP_DISABLE_QUIRKS:
6526 kvm->arch.disabled_quirks = cap->args[0];
6527 r = 0;
6528 break;
6529 case KVM_CAP_SPLIT_IRQCHIP: {
6530 mutex_lock(&kvm->lock);
6531 r = -EINVAL;
6532 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6533 goto split_irqchip_unlock;
6534 r = -EEXIST;
6535 if (irqchip_in_kernel(kvm))
6536 goto split_irqchip_unlock;
6537 if (kvm->created_vcpus)
6538 goto split_irqchip_unlock;
6539 /* Pairs with irqchip_in_kernel. */
6540 smp_wmb();
6541 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6542 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6543 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6544 r = 0;
6545 split_irqchip_unlock:
6546 mutex_unlock(&kvm->lock);
6547 break;
6548 }
6549 case KVM_CAP_X2APIC_API:
6550 r = -EINVAL;
6551 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6552 break;
6553
6554 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6555 kvm->arch.x2apic_format = true;
6556 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6557 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6558
6559 r = 0;
6560 break;
6561 case KVM_CAP_X86_DISABLE_EXITS:
6562 r = -EINVAL;
6563 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6564 break;
6565
6566 mutex_lock(&kvm->lock);
6567 if (kvm->created_vcpus)
6568 goto disable_exits_unlock;
6569
6570 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6571 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6572
6573 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6574 cpu_smt_possible() &&
6575 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6576 pr_warn_once(SMT_RSB_MSG);
6577
6578 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6579 kvm->arch.pause_in_guest = true;
6580 if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6581 kvm->arch.mwait_in_guest = true;
6582 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6583 kvm->arch.hlt_in_guest = true;
6584 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6585 kvm->arch.cstate_in_guest = true;
6586 r = 0;
6587 disable_exits_unlock:
6588 mutex_unlock(&kvm->lock);
6589 break;
6590 case KVM_CAP_MSR_PLATFORM_INFO:
6591 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6592 r = 0;
6593 break;
6594 case KVM_CAP_EXCEPTION_PAYLOAD:
6595 kvm->arch.exception_payload_enabled = cap->args[0];
6596 r = 0;
6597 break;
6598 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6599 kvm->arch.triple_fault_event = cap->args[0];
6600 r = 0;
6601 break;
6602 case KVM_CAP_X86_USER_SPACE_MSR:
6603 r = -EINVAL;
6604 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6605 break;
6606 kvm->arch.user_space_msr_mask = cap->args[0];
6607 r = 0;
6608 break;
6609 case KVM_CAP_X86_BUS_LOCK_EXIT:
6610 r = -EINVAL;
6611 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6612 break;
6613
6614 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6615 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6616 break;
6617
6618 if (kvm_caps.has_bus_lock_exit &&
6619 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6620 kvm->arch.bus_lock_detection_enabled = true;
6621 r = 0;
6622 break;
6623 #ifdef CONFIG_X86_SGX_KVM
6624 case KVM_CAP_SGX_ATTRIBUTE: {
6625 unsigned long allowed_attributes = 0;
6626
6627 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6628 if (r)
6629 break;
6630
6631 /* KVM only supports the PROVISIONKEY privileged attribute. */
6632 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6633 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6634 kvm->arch.sgx_provisioning_allowed = true;
6635 else
6636 r = -EINVAL;
6637 break;
6638 }
6639 #endif
6640 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6641 r = -EINVAL;
6642 if (!kvm_x86_ops.vm_copy_enc_context_from)
6643 break;
6644
6645 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6646 break;
6647 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6648 r = -EINVAL;
6649 if (!kvm_x86_ops.vm_move_enc_context_from)
6650 break;
6651
6652 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6653 break;
6654 case KVM_CAP_EXIT_HYPERCALL:
6655 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6656 r = -EINVAL;
6657 break;
6658 }
6659 kvm->arch.hypercall_exit_enabled = cap->args[0];
6660 r = 0;
6661 break;
6662 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6663 r = -EINVAL;
6664 if (cap->args[0] & ~1)
6665 break;
6666 kvm->arch.exit_on_emulation_error = cap->args[0];
6667 r = 0;
6668 break;
6669 case KVM_CAP_PMU_CAPABILITY:
6670 r = -EINVAL;
6671 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6672 break;
6673
6674 mutex_lock(&kvm->lock);
6675 if (!kvm->created_vcpus) {
6676 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6677 r = 0;
6678 }
6679 mutex_unlock(&kvm->lock);
6680 break;
6681 case KVM_CAP_MAX_VCPU_ID:
6682 r = -EINVAL;
6683 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6684 break;
6685
6686 mutex_lock(&kvm->lock);
6687 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6688 ;
6689 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6690 r = 0;
6691 } else if (!kvm->arch.max_vcpu_ids) {
6692 kvm->arch.max_vcpu_ids = cap->args[0];
6693 r = 0;
6694 }
6695 mutex_unlock(&kvm->lock);
6696 break;
6697 case KVM_CAP_X86_NOTIFY_VMEXIT:
6698 r = -EINVAL;
6699 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6700 break;
6701 if (!kvm_caps.has_notify_vmexit)
6702 break;
6703 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6704 break;
6705 mutex_lock(&kvm->lock);
6706 if (!kvm->created_vcpus) {
6707 kvm->arch.notify_window = cap->args[0] >> 32;
6708 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6709 r = 0;
6710 }
6711 mutex_unlock(&kvm->lock);
6712 break;
6713 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6714 r = -EINVAL;
6715
6716 /*
6717 * Since the risk of disabling NX hugepages is a guest crashing
6718 * the system, ensure the userspace process has permission to
6719 * reboot the system.
6720 *
6721 * Note that unlike the reboot() syscall, the process must have
6722 * this capability in the root namespace because exposing
6723 * /dev/kvm into a container does not limit the scope of the
6724 * iTLB multihit bug to that container. In other words,
6725 * this must use capable(), not ns_capable().
6726 */
6727 if (!capable(CAP_SYS_BOOT)) {
6728 r = -EPERM;
6729 break;
6730 }
6731
6732 if (cap->args[0])
6733 break;
6734
6735 mutex_lock(&kvm->lock);
6736 if (!kvm->created_vcpus) {
6737 kvm->arch.disable_nx_huge_pages = true;
6738 r = 0;
6739 }
6740 mutex_unlock(&kvm->lock);
6741 break;
6742 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6743 u64 bus_cycle_ns = cap->args[0];
6744 u64 unused;
6745
6746 /*
6747 * Guard against overflow in tmict_to_ns(). 128 is the highest
6748 * divide value that can be programmed in APIC_TDCR.
6749 */
6750 r = -EINVAL;
6751 if (!bus_cycle_ns ||
6752 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6753 break;
6754
6755 r = 0;
6756 mutex_lock(&kvm->lock);
6757 if (!irqchip_in_kernel(kvm))
6758 r = -ENXIO;
6759 else if (kvm->created_vcpus)
6760 r = -EINVAL;
6761 else
6762 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6763 mutex_unlock(&kvm->lock);
6764 break;
6765 }
6766 default:
6767 r = -EINVAL;
6768 break;
6769 }
6770 return r;
6771 }
6772
kvm_alloc_msr_filter(bool default_allow)6773 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6774 {
6775 struct kvm_x86_msr_filter *msr_filter;
6776
6777 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6778 if (!msr_filter)
6779 return NULL;
6780
6781 msr_filter->default_allow = default_allow;
6782 return msr_filter;
6783 }
6784
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6785 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6786 {
6787 u32 i;
6788
6789 if (!msr_filter)
6790 return;
6791
6792 for (i = 0; i < msr_filter->count; i++)
6793 kfree(msr_filter->ranges[i].bitmap);
6794
6795 kfree(msr_filter);
6796 }
6797
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6798 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6799 struct kvm_msr_filter_range *user_range)
6800 {
6801 unsigned long *bitmap;
6802 size_t bitmap_size;
6803
6804 if (!user_range->nmsrs)
6805 return 0;
6806
6807 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6808 return -EINVAL;
6809
6810 if (!user_range->flags)
6811 return -EINVAL;
6812
6813 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6814 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6815 return -EINVAL;
6816
6817 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6818 if (IS_ERR(bitmap))
6819 return PTR_ERR(bitmap);
6820
6821 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6822 .flags = user_range->flags,
6823 .base = user_range->base,
6824 .nmsrs = user_range->nmsrs,
6825 .bitmap = bitmap,
6826 };
6827
6828 msr_filter->count++;
6829 return 0;
6830 }
6831
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6832 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6833 struct kvm_msr_filter *filter)
6834 {
6835 struct kvm_x86_msr_filter *new_filter, *old_filter;
6836 bool default_allow;
6837 bool empty = true;
6838 int r;
6839 u32 i;
6840
6841 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6842 return -EINVAL;
6843
6844 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6845 empty &= !filter->ranges[i].nmsrs;
6846
6847 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6848 if (empty && !default_allow)
6849 return -EINVAL;
6850
6851 new_filter = kvm_alloc_msr_filter(default_allow);
6852 if (!new_filter)
6853 return -ENOMEM;
6854
6855 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6856 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6857 if (r) {
6858 kvm_free_msr_filter(new_filter);
6859 return r;
6860 }
6861 }
6862
6863 mutex_lock(&kvm->lock);
6864 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6865 mutex_is_locked(&kvm->lock));
6866 mutex_unlock(&kvm->lock);
6867 synchronize_srcu(&kvm->srcu);
6868
6869 kvm_free_msr_filter(old_filter);
6870
6871 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6872
6873 return 0;
6874 }
6875
6876 #ifdef CONFIG_KVM_COMPAT
6877 /* for KVM_X86_SET_MSR_FILTER */
6878 struct kvm_msr_filter_range_compat {
6879 __u32 flags;
6880 __u32 nmsrs;
6881 __u32 base;
6882 __u32 bitmap;
6883 };
6884
6885 struct kvm_msr_filter_compat {
6886 __u32 flags;
6887 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6888 };
6889
6890 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6891
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6892 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6893 unsigned long arg)
6894 {
6895 void __user *argp = (void __user *)arg;
6896 struct kvm *kvm = filp->private_data;
6897 long r = -ENOTTY;
6898
6899 switch (ioctl) {
6900 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6901 struct kvm_msr_filter __user *user_msr_filter = argp;
6902 struct kvm_msr_filter_compat filter_compat;
6903 struct kvm_msr_filter filter;
6904 int i;
6905
6906 if (copy_from_user(&filter_compat, user_msr_filter,
6907 sizeof(filter_compat)))
6908 return -EFAULT;
6909
6910 filter.flags = filter_compat.flags;
6911 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6912 struct kvm_msr_filter_range_compat *cr;
6913
6914 cr = &filter_compat.ranges[i];
6915 filter.ranges[i] = (struct kvm_msr_filter_range) {
6916 .flags = cr->flags,
6917 .nmsrs = cr->nmsrs,
6918 .base = cr->base,
6919 .bitmap = (__u8 *)(ulong)cr->bitmap,
6920 };
6921 }
6922
6923 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6924 break;
6925 }
6926 }
6927
6928 return r;
6929 }
6930 #endif
6931
6932 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6933 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6934 {
6935 struct kvm_vcpu *vcpu;
6936 unsigned long i;
6937
6938 /*
6939 * Ignore the return, marking the guest paused only "fails" if the vCPU
6940 * isn't using kvmclock; continuing on is correct and desirable.
6941 */
6942 kvm_for_each_vcpu(i, vcpu, kvm)
6943 (void)kvm_set_guest_paused(vcpu);
6944
6945 return NOTIFY_DONE;
6946 }
6947
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6948 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6949 {
6950 switch (state) {
6951 case PM_HIBERNATION_PREPARE:
6952 case PM_SUSPEND_PREPARE:
6953 return kvm_arch_suspend_notifier(kvm);
6954 }
6955
6956 return NOTIFY_DONE;
6957 }
6958 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6959
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6960 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6961 {
6962 struct kvm_clock_data data = { 0 };
6963
6964 get_kvmclock(kvm, &data);
6965 if (copy_to_user(argp, &data, sizeof(data)))
6966 return -EFAULT;
6967
6968 return 0;
6969 }
6970
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6971 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6972 {
6973 struct kvm_arch *ka = &kvm->arch;
6974 struct kvm_clock_data data;
6975 u64 now_raw_ns;
6976
6977 if (copy_from_user(&data, argp, sizeof(data)))
6978 return -EFAULT;
6979
6980 /*
6981 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6982 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6983 */
6984 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6985 return -EINVAL;
6986
6987 kvm_hv_request_tsc_page_update(kvm);
6988 kvm_start_pvclock_update(kvm);
6989 pvclock_update_vm_gtod_copy(kvm);
6990
6991 /*
6992 * This pairs with kvm_guest_time_update(): when masterclock is
6993 * in use, we use master_kernel_ns + kvmclock_offset to set
6994 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6995 * is slightly ahead) here we risk going negative on unsigned
6996 * 'system_time' when 'data.clock' is very small.
6997 */
6998 if (data.flags & KVM_CLOCK_REALTIME) {
6999 u64 now_real_ns = ktime_get_real_ns();
7000
7001 /*
7002 * Avoid stepping the kvmclock backwards.
7003 */
7004 if (now_real_ns > data.realtime)
7005 data.clock += now_real_ns - data.realtime;
7006 }
7007
7008 if (ka->use_master_clock)
7009 now_raw_ns = ka->master_kernel_ns;
7010 else
7011 now_raw_ns = get_kvmclock_base_ns();
7012 ka->kvmclock_offset = data.clock - now_raw_ns;
7013 kvm_end_pvclock_update(kvm);
7014 return 0;
7015 }
7016
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7017 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7018 {
7019 struct kvm *kvm = filp->private_data;
7020 void __user *argp = (void __user *)arg;
7021 int r = -ENOTTY;
7022 /*
7023 * This union makes it completely explicit to gcc-3.x
7024 * that these two variables' stack usage should be
7025 * combined, not added together.
7026 */
7027 union {
7028 struct kvm_pit_state ps;
7029 struct kvm_pit_state2 ps2;
7030 struct kvm_pit_config pit_config;
7031 } u;
7032
7033 switch (ioctl) {
7034 case KVM_SET_TSS_ADDR:
7035 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7036 break;
7037 case KVM_SET_IDENTITY_MAP_ADDR: {
7038 u64 ident_addr;
7039
7040 mutex_lock(&kvm->lock);
7041 r = -EINVAL;
7042 if (kvm->created_vcpus)
7043 goto set_identity_unlock;
7044 r = -EFAULT;
7045 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7046 goto set_identity_unlock;
7047 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7048 set_identity_unlock:
7049 mutex_unlock(&kvm->lock);
7050 break;
7051 }
7052 case KVM_SET_NR_MMU_PAGES:
7053 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7054 break;
7055 case KVM_CREATE_IRQCHIP: {
7056 mutex_lock(&kvm->lock);
7057
7058 r = -EEXIST;
7059 if (irqchip_in_kernel(kvm))
7060 goto create_irqchip_unlock;
7061
7062 r = -EINVAL;
7063 if (kvm->created_vcpus)
7064 goto create_irqchip_unlock;
7065
7066 r = kvm_pic_init(kvm);
7067 if (r)
7068 goto create_irqchip_unlock;
7069
7070 r = kvm_ioapic_init(kvm);
7071 if (r) {
7072 kvm_pic_destroy(kvm);
7073 goto create_irqchip_unlock;
7074 }
7075
7076 r = kvm_setup_default_irq_routing(kvm);
7077 if (r) {
7078 kvm_ioapic_destroy(kvm);
7079 kvm_pic_destroy(kvm);
7080 goto create_irqchip_unlock;
7081 }
7082 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7083 smp_wmb();
7084 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7085 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7086 create_irqchip_unlock:
7087 mutex_unlock(&kvm->lock);
7088 break;
7089 }
7090 case KVM_CREATE_PIT:
7091 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7092 goto create_pit;
7093 case KVM_CREATE_PIT2:
7094 r = -EFAULT;
7095 if (copy_from_user(&u.pit_config, argp,
7096 sizeof(struct kvm_pit_config)))
7097 goto out;
7098 create_pit:
7099 mutex_lock(&kvm->lock);
7100 r = -EEXIST;
7101 if (kvm->arch.vpit)
7102 goto create_pit_unlock;
7103 r = -ENOENT;
7104 if (!pic_in_kernel(kvm))
7105 goto create_pit_unlock;
7106 r = -ENOMEM;
7107 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7108 if (kvm->arch.vpit)
7109 r = 0;
7110 create_pit_unlock:
7111 mutex_unlock(&kvm->lock);
7112 break;
7113 case KVM_GET_IRQCHIP: {
7114 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7115 struct kvm_irqchip *chip;
7116
7117 chip = memdup_user(argp, sizeof(*chip));
7118 if (IS_ERR(chip)) {
7119 r = PTR_ERR(chip);
7120 goto out;
7121 }
7122
7123 r = -ENXIO;
7124 if (!irqchip_kernel(kvm))
7125 goto get_irqchip_out;
7126 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7127 if (r)
7128 goto get_irqchip_out;
7129 r = -EFAULT;
7130 if (copy_to_user(argp, chip, sizeof(*chip)))
7131 goto get_irqchip_out;
7132 r = 0;
7133 get_irqchip_out:
7134 kfree(chip);
7135 break;
7136 }
7137 case KVM_SET_IRQCHIP: {
7138 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7139 struct kvm_irqchip *chip;
7140
7141 chip = memdup_user(argp, sizeof(*chip));
7142 if (IS_ERR(chip)) {
7143 r = PTR_ERR(chip);
7144 goto out;
7145 }
7146
7147 r = -ENXIO;
7148 if (!irqchip_kernel(kvm))
7149 goto set_irqchip_out;
7150 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7151 set_irqchip_out:
7152 kfree(chip);
7153 break;
7154 }
7155 case KVM_GET_PIT: {
7156 r = -EFAULT;
7157 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7158 goto out;
7159 r = -ENXIO;
7160 if (!kvm->arch.vpit)
7161 goto out;
7162 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7163 if (r)
7164 goto out;
7165 r = -EFAULT;
7166 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7167 goto out;
7168 r = 0;
7169 break;
7170 }
7171 case KVM_SET_PIT: {
7172 r = -EFAULT;
7173 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7174 goto out;
7175 mutex_lock(&kvm->lock);
7176 r = -ENXIO;
7177 if (!kvm->arch.vpit)
7178 goto set_pit_out;
7179 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7180 set_pit_out:
7181 mutex_unlock(&kvm->lock);
7182 break;
7183 }
7184 case KVM_GET_PIT2: {
7185 r = -ENXIO;
7186 if (!kvm->arch.vpit)
7187 goto out;
7188 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7189 if (r)
7190 goto out;
7191 r = -EFAULT;
7192 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7193 goto out;
7194 r = 0;
7195 break;
7196 }
7197 case KVM_SET_PIT2: {
7198 r = -EFAULT;
7199 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7200 goto out;
7201 mutex_lock(&kvm->lock);
7202 r = -ENXIO;
7203 if (!kvm->arch.vpit)
7204 goto set_pit2_out;
7205 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7206 set_pit2_out:
7207 mutex_unlock(&kvm->lock);
7208 break;
7209 }
7210 case KVM_REINJECT_CONTROL: {
7211 struct kvm_reinject_control control;
7212 r = -EFAULT;
7213 if (copy_from_user(&control, argp, sizeof(control)))
7214 goto out;
7215 r = -ENXIO;
7216 if (!kvm->arch.vpit)
7217 goto out;
7218 r = kvm_vm_ioctl_reinject(kvm, &control);
7219 break;
7220 }
7221 case KVM_SET_BOOT_CPU_ID:
7222 r = 0;
7223 mutex_lock(&kvm->lock);
7224 if (kvm->created_vcpus)
7225 r = -EBUSY;
7226 else if (arg > KVM_MAX_VCPU_IDS ||
7227 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7228 r = -EINVAL;
7229 else
7230 kvm->arch.bsp_vcpu_id = arg;
7231 mutex_unlock(&kvm->lock);
7232 break;
7233 #ifdef CONFIG_KVM_XEN
7234 case KVM_XEN_HVM_CONFIG: {
7235 struct kvm_xen_hvm_config xhc;
7236 r = -EFAULT;
7237 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7238 goto out;
7239 r = kvm_xen_hvm_config(kvm, &xhc);
7240 break;
7241 }
7242 case KVM_XEN_HVM_GET_ATTR: {
7243 struct kvm_xen_hvm_attr xha;
7244
7245 r = -EFAULT;
7246 if (copy_from_user(&xha, argp, sizeof(xha)))
7247 goto out;
7248 r = kvm_xen_hvm_get_attr(kvm, &xha);
7249 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7250 r = -EFAULT;
7251 break;
7252 }
7253 case KVM_XEN_HVM_SET_ATTR: {
7254 struct kvm_xen_hvm_attr xha;
7255
7256 r = -EFAULT;
7257 if (copy_from_user(&xha, argp, sizeof(xha)))
7258 goto out;
7259 r = kvm_xen_hvm_set_attr(kvm, &xha);
7260 break;
7261 }
7262 case KVM_XEN_HVM_EVTCHN_SEND: {
7263 struct kvm_irq_routing_xen_evtchn uxe;
7264
7265 r = -EFAULT;
7266 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7267 goto out;
7268 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7269 break;
7270 }
7271 #endif
7272 case KVM_SET_CLOCK:
7273 r = kvm_vm_ioctl_set_clock(kvm, argp);
7274 break;
7275 case KVM_GET_CLOCK:
7276 r = kvm_vm_ioctl_get_clock(kvm, argp);
7277 break;
7278 case KVM_SET_TSC_KHZ: {
7279 u32 user_tsc_khz;
7280
7281 r = -EINVAL;
7282 user_tsc_khz = (u32)arg;
7283
7284 if (kvm_caps.has_tsc_control &&
7285 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7286 goto out;
7287
7288 if (user_tsc_khz == 0)
7289 user_tsc_khz = tsc_khz;
7290
7291 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7292 r = 0;
7293
7294 goto out;
7295 }
7296 case KVM_GET_TSC_KHZ: {
7297 r = READ_ONCE(kvm->arch.default_tsc_khz);
7298 goto out;
7299 }
7300 case KVM_MEMORY_ENCRYPT_OP: {
7301 r = -ENOTTY;
7302 if (!kvm_x86_ops.mem_enc_ioctl)
7303 goto out;
7304
7305 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7306 break;
7307 }
7308 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7309 struct kvm_enc_region region;
7310
7311 r = -EFAULT;
7312 if (copy_from_user(®ion, argp, sizeof(region)))
7313 goto out;
7314
7315 r = -ENOTTY;
7316 if (!kvm_x86_ops.mem_enc_register_region)
7317 goto out;
7318
7319 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7320 break;
7321 }
7322 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7323 struct kvm_enc_region region;
7324
7325 r = -EFAULT;
7326 if (copy_from_user(®ion, argp, sizeof(region)))
7327 goto out;
7328
7329 r = -ENOTTY;
7330 if (!kvm_x86_ops.mem_enc_unregister_region)
7331 goto out;
7332
7333 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7334 break;
7335 }
7336 #ifdef CONFIG_KVM_HYPERV
7337 case KVM_HYPERV_EVENTFD: {
7338 struct kvm_hyperv_eventfd hvevfd;
7339
7340 r = -EFAULT;
7341 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7342 goto out;
7343 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7344 break;
7345 }
7346 #endif
7347 case KVM_SET_PMU_EVENT_FILTER:
7348 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7349 break;
7350 case KVM_X86_SET_MSR_FILTER: {
7351 struct kvm_msr_filter __user *user_msr_filter = argp;
7352 struct kvm_msr_filter filter;
7353
7354 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7355 return -EFAULT;
7356
7357 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7358 break;
7359 }
7360 default:
7361 r = -ENOTTY;
7362 }
7363 out:
7364 return r;
7365 }
7366
kvm_probe_feature_msr(u32 msr_index)7367 static void kvm_probe_feature_msr(u32 msr_index)
7368 {
7369 u64 data;
7370
7371 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7372 return;
7373
7374 msr_based_features[num_msr_based_features++] = msr_index;
7375 }
7376
kvm_probe_msr_to_save(u32 msr_index)7377 static void kvm_probe_msr_to_save(u32 msr_index)
7378 {
7379 u32 dummy[2];
7380
7381 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7382 return;
7383
7384 /*
7385 * Even MSRs that are valid in the host may not be exposed to guests in
7386 * some cases.
7387 */
7388 switch (msr_index) {
7389 case MSR_IA32_BNDCFGS:
7390 if (!kvm_mpx_supported())
7391 return;
7392 break;
7393 case MSR_TSC_AUX:
7394 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7395 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7396 return;
7397 break;
7398 case MSR_IA32_UMWAIT_CONTROL:
7399 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7400 return;
7401 break;
7402 case MSR_IA32_RTIT_CTL:
7403 case MSR_IA32_RTIT_STATUS:
7404 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7405 return;
7406 break;
7407 case MSR_IA32_RTIT_CR3_MATCH:
7408 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7409 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7410 return;
7411 break;
7412 case MSR_IA32_RTIT_OUTPUT_BASE:
7413 case MSR_IA32_RTIT_OUTPUT_MASK:
7414 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7415 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7416 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7417 return;
7418 break;
7419 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7420 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7421 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7422 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7423 return;
7424 break;
7425 case MSR_ARCH_PERFMON_PERFCTR0 ...
7426 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7427 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7428 kvm_pmu_cap.num_counters_gp)
7429 return;
7430 break;
7431 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7432 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7433 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7434 kvm_pmu_cap.num_counters_gp)
7435 return;
7436 break;
7437 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7438 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7439 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7440 kvm_pmu_cap.num_counters_fixed)
7441 return;
7442 break;
7443 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7444 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7445 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7446 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7447 return;
7448 break;
7449 case MSR_IA32_XFD:
7450 case MSR_IA32_XFD_ERR:
7451 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7452 return;
7453 break;
7454 case MSR_IA32_TSX_CTRL:
7455 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7456 return;
7457 break;
7458 default:
7459 break;
7460 }
7461
7462 msrs_to_save[num_msrs_to_save++] = msr_index;
7463 }
7464
kvm_init_msr_lists(void)7465 static void kvm_init_msr_lists(void)
7466 {
7467 unsigned i;
7468
7469 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7470 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7471
7472 num_msrs_to_save = 0;
7473 num_emulated_msrs = 0;
7474 num_msr_based_features = 0;
7475
7476 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7477 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7478
7479 if (enable_pmu) {
7480 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7481 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7482 }
7483
7484 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7485 if (!kvm_x86_call(has_emulated_msr)(NULL,
7486 emulated_msrs_all[i]))
7487 continue;
7488
7489 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7490 }
7491
7492 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7493 kvm_probe_feature_msr(i);
7494
7495 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7496 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7497 }
7498
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7499 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7500 const void *v)
7501 {
7502 int handled = 0;
7503 int n;
7504
7505 do {
7506 n = min(len, 8);
7507 if (!(lapic_in_kernel(vcpu) &&
7508 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7509 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7510 break;
7511 handled += n;
7512 addr += n;
7513 len -= n;
7514 v += n;
7515 } while (len);
7516
7517 return handled;
7518 }
7519
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7520 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7521 {
7522 int handled = 0;
7523 int n;
7524
7525 do {
7526 n = min(len, 8);
7527 if (!(lapic_in_kernel(vcpu) &&
7528 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7529 addr, n, v))
7530 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7531 break;
7532 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7533 handled += n;
7534 addr += n;
7535 len -= n;
7536 v += n;
7537 } while (len);
7538
7539 return handled;
7540 }
7541
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7542 void kvm_set_segment(struct kvm_vcpu *vcpu,
7543 struct kvm_segment *var, int seg)
7544 {
7545 kvm_x86_call(set_segment)(vcpu, var, seg);
7546 }
7547
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7548 void kvm_get_segment(struct kvm_vcpu *vcpu,
7549 struct kvm_segment *var, int seg)
7550 {
7551 kvm_x86_call(get_segment)(vcpu, var, seg);
7552 }
7553
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7554 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7555 struct x86_exception *exception)
7556 {
7557 struct kvm_mmu *mmu = vcpu->arch.mmu;
7558 gpa_t t_gpa;
7559
7560 BUG_ON(!mmu_is_nested(vcpu));
7561
7562 /* NPT walks are always user-walks */
7563 access |= PFERR_USER_MASK;
7564 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7565
7566 return t_gpa;
7567 }
7568
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7569 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7570 struct x86_exception *exception)
7571 {
7572 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7573
7574 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7575 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7576 }
7577 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7578
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7579 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7580 struct x86_exception *exception)
7581 {
7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7583
7584 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7585 access |= PFERR_WRITE_MASK;
7586 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7587 }
7588 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7589
7590 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7591 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7592 struct x86_exception *exception)
7593 {
7594 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7595
7596 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7597 }
7598
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7599 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7600 struct kvm_vcpu *vcpu, u64 access,
7601 struct x86_exception *exception)
7602 {
7603 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7604 void *data = val;
7605 int r = X86EMUL_CONTINUE;
7606
7607 while (bytes) {
7608 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7609 unsigned offset = addr & (PAGE_SIZE-1);
7610 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7611 int ret;
7612
7613 if (gpa == INVALID_GPA)
7614 return X86EMUL_PROPAGATE_FAULT;
7615 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7616 offset, toread);
7617 if (ret < 0) {
7618 r = X86EMUL_IO_NEEDED;
7619 goto out;
7620 }
7621
7622 bytes -= toread;
7623 data += toread;
7624 addr += toread;
7625 }
7626 out:
7627 return r;
7628 }
7629
7630 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7631 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7632 gva_t addr, void *val, unsigned int bytes,
7633 struct x86_exception *exception)
7634 {
7635 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7636 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7637 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7638 unsigned offset;
7639 int ret;
7640
7641 /* Inline kvm_read_guest_virt_helper for speed. */
7642 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7643 exception);
7644 if (unlikely(gpa == INVALID_GPA))
7645 return X86EMUL_PROPAGATE_FAULT;
7646
7647 offset = addr & (PAGE_SIZE-1);
7648 if (WARN_ON(offset + bytes > PAGE_SIZE))
7649 bytes = (unsigned)PAGE_SIZE - offset;
7650 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7651 offset, bytes);
7652 if (unlikely(ret < 0))
7653 return X86EMUL_IO_NEEDED;
7654
7655 return X86EMUL_CONTINUE;
7656 }
7657
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7658 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7659 gva_t addr, void *val, unsigned int bytes,
7660 struct x86_exception *exception)
7661 {
7662 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7663
7664 /*
7665 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7666 * is returned, but our callers are not ready for that and they blindly
7667 * call kvm_inject_page_fault. Ensure that they at least do not leak
7668 * uninitialized kernel stack memory into cr2 and error code.
7669 */
7670 memset(exception, 0, sizeof(*exception));
7671 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7672 exception);
7673 }
7674 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7675
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7676 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7677 gva_t addr, void *val, unsigned int bytes,
7678 struct x86_exception *exception, bool system)
7679 {
7680 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7681 u64 access = 0;
7682
7683 if (system)
7684 access |= PFERR_IMPLICIT_ACCESS;
7685 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7686 access |= PFERR_USER_MASK;
7687
7688 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7689 }
7690
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7691 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7692 struct kvm_vcpu *vcpu, u64 access,
7693 struct x86_exception *exception)
7694 {
7695 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7696 void *data = val;
7697 int r = X86EMUL_CONTINUE;
7698
7699 while (bytes) {
7700 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7701 unsigned offset = addr & (PAGE_SIZE-1);
7702 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7703 int ret;
7704
7705 if (gpa == INVALID_GPA)
7706 return X86EMUL_PROPAGATE_FAULT;
7707 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7708 if (ret < 0) {
7709 r = X86EMUL_IO_NEEDED;
7710 goto out;
7711 }
7712
7713 bytes -= towrite;
7714 data += towrite;
7715 addr += towrite;
7716 }
7717 out:
7718 return r;
7719 }
7720
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7721 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7722 unsigned int bytes, struct x86_exception *exception,
7723 bool system)
7724 {
7725 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7726 u64 access = PFERR_WRITE_MASK;
7727
7728 if (system)
7729 access |= PFERR_IMPLICIT_ACCESS;
7730 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7731 access |= PFERR_USER_MASK;
7732
7733 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7734 access, exception);
7735 }
7736
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7737 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7738 unsigned int bytes, struct x86_exception *exception)
7739 {
7740 /* kvm_write_guest_virt_system can pull in tons of pages. */
7741 vcpu->arch.l1tf_flush_l1d = true;
7742
7743 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7744 PFERR_WRITE_MASK, exception);
7745 }
7746 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7747
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7748 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7749 void *insn, int insn_len)
7750 {
7751 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7752 insn, insn_len);
7753 }
7754
handle_ud(struct kvm_vcpu * vcpu)7755 int handle_ud(struct kvm_vcpu *vcpu)
7756 {
7757 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7758 int fep_flags = READ_ONCE(force_emulation_prefix);
7759 int emul_type = EMULTYPE_TRAP_UD;
7760 char sig[5]; /* ud2; .ascii "kvm" */
7761 struct x86_exception e;
7762 int r;
7763
7764 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7765 if (r != X86EMUL_CONTINUE)
7766 return 1;
7767
7768 if (fep_flags &&
7769 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7770 sig, sizeof(sig), &e) == 0 &&
7771 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7772 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7773 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7774 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7775 emul_type = EMULTYPE_TRAP_UD_FORCED;
7776 }
7777
7778 return kvm_emulate_instruction(vcpu, emul_type);
7779 }
7780 EXPORT_SYMBOL_GPL(handle_ud);
7781
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7782 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7783 gpa_t gpa, bool write)
7784 {
7785 /* For APIC access vmexit */
7786 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7787 return 1;
7788
7789 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7790 trace_vcpu_match_mmio(gva, gpa, write, true);
7791 return 1;
7792 }
7793
7794 return 0;
7795 }
7796
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7797 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7798 gpa_t *gpa, struct x86_exception *exception,
7799 bool write)
7800 {
7801 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7802 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7803 | (write ? PFERR_WRITE_MASK : 0);
7804
7805 /*
7806 * currently PKRU is only applied to ept enabled guest so
7807 * there is no pkey in EPT page table for L1 guest or EPT
7808 * shadow page table for L2 guest.
7809 */
7810 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7811 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7812 vcpu->arch.mmio_access, 0, access))) {
7813 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7814 (gva & (PAGE_SIZE - 1));
7815 trace_vcpu_match_mmio(gva, *gpa, write, false);
7816 return 1;
7817 }
7818
7819 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7820
7821 if (*gpa == INVALID_GPA)
7822 return -1;
7823
7824 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7825 }
7826
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7827 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7828 const void *val, int bytes)
7829 {
7830 int ret;
7831
7832 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7833 if (ret < 0)
7834 return 0;
7835 kvm_page_track_write(vcpu, gpa, val, bytes);
7836 return 1;
7837 }
7838
7839 struct read_write_emulator_ops {
7840 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7841 int bytes);
7842 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7843 void *val, int bytes);
7844 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7845 int bytes, void *val);
7846 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7847 void *val, int bytes);
7848 bool write;
7849 };
7850
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7851 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7852 {
7853 if (vcpu->mmio_read_completed) {
7854 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7855 vcpu->mmio_fragments[0].gpa, val);
7856 vcpu->mmio_read_completed = 0;
7857 return 1;
7858 }
7859
7860 return 0;
7861 }
7862
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7863 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7864 void *val, int bytes)
7865 {
7866 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7867 }
7868
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7869 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7870 void *val, int bytes)
7871 {
7872 return emulator_write_phys(vcpu, gpa, val, bytes);
7873 }
7874
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7875 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7876 {
7877 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7878 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7879 }
7880
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7881 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7882 void *val, int bytes)
7883 {
7884 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7885 return X86EMUL_IO_NEEDED;
7886 }
7887
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7888 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7889 void *val, int bytes)
7890 {
7891 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7892
7893 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7894 return X86EMUL_CONTINUE;
7895 }
7896
7897 static const struct read_write_emulator_ops read_emultor = {
7898 .read_write_prepare = read_prepare,
7899 .read_write_emulate = read_emulate,
7900 .read_write_mmio = vcpu_mmio_read,
7901 .read_write_exit_mmio = read_exit_mmio,
7902 };
7903
7904 static const struct read_write_emulator_ops write_emultor = {
7905 .read_write_emulate = write_emulate,
7906 .read_write_mmio = write_mmio,
7907 .read_write_exit_mmio = write_exit_mmio,
7908 .write = true,
7909 };
7910
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7911 static int emulator_read_write_onepage(unsigned long addr, void *val,
7912 unsigned int bytes,
7913 struct x86_exception *exception,
7914 struct kvm_vcpu *vcpu,
7915 const struct read_write_emulator_ops *ops)
7916 {
7917 gpa_t gpa;
7918 int handled, ret;
7919 bool write = ops->write;
7920 struct kvm_mmio_fragment *frag;
7921 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7922
7923 /*
7924 * If the exit was due to a NPF we may already have a GPA.
7925 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7926 * Note, this cannot be used on string operations since string
7927 * operation using rep will only have the initial GPA from the NPF
7928 * occurred.
7929 */
7930 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7931 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7932 gpa = ctxt->gpa_val;
7933 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7934 } else {
7935 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7936 if (ret < 0)
7937 return X86EMUL_PROPAGATE_FAULT;
7938 }
7939
7940 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7941 return X86EMUL_CONTINUE;
7942
7943 /*
7944 * Is this MMIO handled locally?
7945 */
7946 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7947 if (handled == bytes)
7948 return X86EMUL_CONTINUE;
7949
7950 gpa += handled;
7951 bytes -= handled;
7952 val += handled;
7953
7954 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7955 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7956 frag->gpa = gpa;
7957 frag->data = val;
7958 frag->len = bytes;
7959 return X86EMUL_CONTINUE;
7960 }
7961
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7962 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7963 unsigned long addr,
7964 void *val, unsigned int bytes,
7965 struct x86_exception *exception,
7966 const struct read_write_emulator_ops *ops)
7967 {
7968 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7969 gpa_t gpa;
7970 int rc;
7971
7972 if (ops->read_write_prepare &&
7973 ops->read_write_prepare(vcpu, val, bytes))
7974 return X86EMUL_CONTINUE;
7975
7976 vcpu->mmio_nr_fragments = 0;
7977
7978 /* Crossing a page boundary? */
7979 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7980 int now;
7981
7982 now = -addr & ~PAGE_MASK;
7983 rc = emulator_read_write_onepage(addr, val, now, exception,
7984 vcpu, ops);
7985
7986 if (rc != X86EMUL_CONTINUE)
7987 return rc;
7988 addr += now;
7989 if (ctxt->mode != X86EMUL_MODE_PROT64)
7990 addr = (u32)addr;
7991 val += now;
7992 bytes -= now;
7993 }
7994
7995 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7996 vcpu, ops);
7997 if (rc != X86EMUL_CONTINUE)
7998 return rc;
7999
8000 if (!vcpu->mmio_nr_fragments)
8001 return rc;
8002
8003 gpa = vcpu->mmio_fragments[0].gpa;
8004
8005 vcpu->mmio_needed = 1;
8006 vcpu->mmio_cur_fragment = 0;
8007
8008 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8009 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8010 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8011 vcpu->run->mmio.phys_addr = gpa;
8012
8013 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8014 }
8015
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8016 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8017 unsigned long addr,
8018 void *val,
8019 unsigned int bytes,
8020 struct x86_exception *exception)
8021 {
8022 return emulator_read_write(ctxt, addr, val, bytes,
8023 exception, &read_emultor);
8024 }
8025
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8026 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8027 unsigned long addr,
8028 const void *val,
8029 unsigned int bytes,
8030 struct x86_exception *exception)
8031 {
8032 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8033 exception, &write_emultor);
8034 }
8035
8036 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8037 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8038
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8039 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8040 unsigned long addr,
8041 const void *old,
8042 const void *new,
8043 unsigned int bytes,
8044 struct x86_exception *exception)
8045 {
8046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8047 u64 page_line_mask;
8048 unsigned long hva;
8049 gpa_t gpa;
8050 int r;
8051
8052 /* guests cmpxchg8b have to be emulated atomically */
8053 if (bytes > 8 || (bytes & (bytes - 1)))
8054 goto emul_write;
8055
8056 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8057
8058 if (gpa == INVALID_GPA ||
8059 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8060 goto emul_write;
8061
8062 /*
8063 * Emulate the atomic as a straight write to avoid #AC if SLD is
8064 * enabled in the host and the access splits a cache line.
8065 */
8066 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8067 page_line_mask = ~(cache_line_size() - 1);
8068 else
8069 page_line_mask = PAGE_MASK;
8070
8071 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8072 goto emul_write;
8073
8074 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8075 if (kvm_is_error_hva(hva))
8076 goto emul_write;
8077
8078 hva += offset_in_page(gpa);
8079
8080 switch (bytes) {
8081 case 1:
8082 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8083 break;
8084 case 2:
8085 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8086 break;
8087 case 4:
8088 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8089 break;
8090 case 8:
8091 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8092 break;
8093 default:
8094 BUG();
8095 }
8096
8097 if (r < 0)
8098 return X86EMUL_UNHANDLEABLE;
8099
8100 /*
8101 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8102 * successful, as the old value is written back on failure. Note, for
8103 * live migration, this is unnecessarily conservative as CMPXCHG writes
8104 * back the original value and the access is atomic, but KVM's ABI is
8105 * that all writes are dirty logged, regardless of the value written.
8106 */
8107 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8108
8109 if (r)
8110 return X86EMUL_CMPXCHG_FAILED;
8111
8112 kvm_page_track_write(vcpu, gpa, new, bytes);
8113
8114 return X86EMUL_CONTINUE;
8115
8116 emul_write:
8117 pr_warn_once("emulating exchange as write\n");
8118
8119 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8120 }
8121
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8122 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8123 unsigned short port, void *data,
8124 unsigned int count, bool in)
8125 {
8126 unsigned i;
8127 int r;
8128
8129 WARN_ON_ONCE(vcpu->arch.pio.count);
8130 for (i = 0; i < count; i++) {
8131 if (in)
8132 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8133 else
8134 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8135
8136 if (r) {
8137 if (i == 0)
8138 goto userspace_io;
8139
8140 /*
8141 * Userspace must have unregistered the device while PIO
8142 * was running. Drop writes / read as 0.
8143 */
8144 if (in)
8145 memset(data, 0, size * (count - i));
8146 break;
8147 }
8148
8149 data += size;
8150 }
8151 return 1;
8152
8153 userspace_io:
8154 vcpu->arch.pio.port = port;
8155 vcpu->arch.pio.in = in;
8156 vcpu->arch.pio.count = count;
8157 vcpu->arch.pio.size = size;
8158
8159 if (in)
8160 memset(vcpu->arch.pio_data, 0, size * count);
8161 else
8162 memcpy(vcpu->arch.pio_data, data, size * count);
8163
8164 vcpu->run->exit_reason = KVM_EXIT_IO;
8165 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8166 vcpu->run->io.size = size;
8167 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8168 vcpu->run->io.count = count;
8169 vcpu->run->io.port = port;
8170 return 0;
8171 }
8172
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8173 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8174 unsigned short port, void *val, unsigned int count)
8175 {
8176 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8177 if (r)
8178 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8179
8180 return r;
8181 }
8182
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8183 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8184 {
8185 int size = vcpu->arch.pio.size;
8186 unsigned int count = vcpu->arch.pio.count;
8187 memcpy(val, vcpu->arch.pio_data, size * count);
8188 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8189 vcpu->arch.pio.count = 0;
8190 }
8191
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8192 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8193 int size, unsigned short port, void *val,
8194 unsigned int count)
8195 {
8196 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8197 if (vcpu->arch.pio.count) {
8198 /*
8199 * Complete a previous iteration that required userspace I/O.
8200 * Note, @count isn't guaranteed to match pio.count as userspace
8201 * can modify ECX before rerunning the vCPU. Ignore any such
8202 * shenanigans as KVM doesn't support modifying the rep count,
8203 * and the emulator ensures @count doesn't overflow the buffer.
8204 */
8205 complete_emulator_pio_in(vcpu, val);
8206 return 1;
8207 }
8208
8209 return emulator_pio_in(vcpu, size, port, val, count);
8210 }
8211
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8212 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8213 unsigned short port, const void *val,
8214 unsigned int count)
8215 {
8216 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8217 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8218 }
8219
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8220 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8221 int size, unsigned short port,
8222 const void *val, unsigned int count)
8223 {
8224 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8225 }
8226
get_segment_base(struct kvm_vcpu * vcpu,int seg)8227 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8228 {
8229 return kvm_x86_call(get_segment_base)(vcpu, seg);
8230 }
8231
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8232 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8233 {
8234 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8235 }
8236
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8237 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8238 {
8239 if (!need_emulate_wbinvd(vcpu))
8240 return X86EMUL_CONTINUE;
8241
8242 if (kvm_x86_call(has_wbinvd_exit)()) {
8243 int cpu = get_cpu();
8244
8245 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8246 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8247 wbinvd_ipi, NULL, 1);
8248 put_cpu();
8249 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8250 } else
8251 wbinvd();
8252 return X86EMUL_CONTINUE;
8253 }
8254
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8255 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8256 {
8257 kvm_emulate_wbinvd_noskip(vcpu);
8258 return kvm_skip_emulated_instruction(vcpu);
8259 }
8260 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8261
8262
8263
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8264 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8265 {
8266 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8267 }
8268
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8269 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8270 {
8271 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8272 }
8273
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8274 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8275 unsigned long value)
8276 {
8277
8278 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8279 }
8280
mk_cr_64(u64 curr_cr,u32 new_val)8281 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8282 {
8283 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8284 }
8285
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8286 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8287 {
8288 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8289 unsigned long value;
8290
8291 switch (cr) {
8292 case 0:
8293 value = kvm_read_cr0(vcpu);
8294 break;
8295 case 2:
8296 value = vcpu->arch.cr2;
8297 break;
8298 case 3:
8299 value = kvm_read_cr3(vcpu);
8300 break;
8301 case 4:
8302 value = kvm_read_cr4(vcpu);
8303 break;
8304 case 8:
8305 value = kvm_get_cr8(vcpu);
8306 break;
8307 default:
8308 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8309 return 0;
8310 }
8311
8312 return value;
8313 }
8314
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8315 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8316 {
8317 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8318 int res = 0;
8319
8320 switch (cr) {
8321 case 0:
8322 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8323 break;
8324 case 2:
8325 vcpu->arch.cr2 = val;
8326 break;
8327 case 3:
8328 res = kvm_set_cr3(vcpu, val);
8329 break;
8330 case 4:
8331 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8332 break;
8333 case 8:
8334 res = kvm_set_cr8(vcpu, val);
8335 break;
8336 default:
8337 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8338 res = -1;
8339 }
8340
8341 return res;
8342 }
8343
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8344 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8345 {
8346 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8347 }
8348
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8349 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8350 {
8351 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8352 }
8353
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8354 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8355 {
8356 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8357 }
8358
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8359 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8360 {
8361 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8362 }
8363
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8364 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8365 {
8366 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8367 }
8368
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8369 static unsigned long emulator_get_cached_segment_base(
8370 struct x86_emulate_ctxt *ctxt, int seg)
8371 {
8372 return get_segment_base(emul_to_vcpu(ctxt), seg);
8373 }
8374
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8375 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8376 struct desc_struct *desc, u32 *base3,
8377 int seg)
8378 {
8379 struct kvm_segment var;
8380
8381 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8382 *selector = var.selector;
8383
8384 if (var.unusable) {
8385 memset(desc, 0, sizeof(*desc));
8386 if (base3)
8387 *base3 = 0;
8388 return false;
8389 }
8390
8391 if (var.g)
8392 var.limit >>= 12;
8393 set_desc_limit(desc, var.limit);
8394 set_desc_base(desc, (unsigned long)var.base);
8395 #ifdef CONFIG_X86_64
8396 if (base3)
8397 *base3 = var.base >> 32;
8398 #endif
8399 desc->type = var.type;
8400 desc->s = var.s;
8401 desc->dpl = var.dpl;
8402 desc->p = var.present;
8403 desc->avl = var.avl;
8404 desc->l = var.l;
8405 desc->d = var.db;
8406 desc->g = var.g;
8407
8408 return true;
8409 }
8410
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8411 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8412 struct desc_struct *desc, u32 base3,
8413 int seg)
8414 {
8415 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8416 struct kvm_segment var;
8417
8418 var.selector = selector;
8419 var.base = get_desc_base(desc);
8420 #ifdef CONFIG_X86_64
8421 var.base |= ((u64)base3) << 32;
8422 #endif
8423 var.limit = get_desc_limit(desc);
8424 if (desc->g)
8425 var.limit = (var.limit << 12) | 0xfff;
8426 var.type = desc->type;
8427 var.dpl = desc->dpl;
8428 var.db = desc->d;
8429 var.s = desc->s;
8430 var.l = desc->l;
8431 var.g = desc->g;
8432 var.avl = desc->avl;
8433 var.present = desc->p;
8434 var.unusable = !var.present;
8435 var.padding = 0;
8436
8437 kvm_set_segment(vcpu, &var, seg);
8438 return;
8439 }
8440
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8441 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8442 u32 msr_index, u64 *pdata)
8443 {
8444 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8445 int r;
8446
8447 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8448 if (r < 0)
8449 return X86EMUL_UNHANDLEABLE;
8450
8451 if (r) {
8452 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8453 complete_emulated_rdmsr, r))
8454 return X86EMUL_IO_NEEDED;
8455
8456 trace_kvm_msr_read_ex(msr_index);
8457 return X86EMUL_PROPAGATE_FAULT;
8458 }
8459
8460 trace_kvm_msr_read(msr_index, *pdata);
8461 return X86EMUL_CONTINUE;
8462 }
8463
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8464 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8465 u32 msr_index, u64 data)
8466 {
8467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8468 int r;
8469
8470 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8471 if (r < 0)
8472 return X86EMUL_UNHANDLEABLE;
8473
8474 if (r) {
8475 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8476 complete_emulated_msr_access, r))
8477 return X86EMUL_IO_NEEDED;
8478
8479 trace_kvm_msr_write_ex(msr_index, data);
8480 return X86EMUL_PROPAGATE_FAULT;
8481 }
8482
8483 trace_kvm_msr_write(msr_index, data);
8484 return X86EMUL_CONTINUE;
8485 }
8486
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8487 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8488 u32 msr_index, u64 *pdata)
8489 {
8490 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8491 }
8492
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8493 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8494 {
8495 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8496 }
8497
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8498 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8499 u32 pmc, u64 *pdata)
8500 {
8501 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8502 }
8503
emulator_halt(struct x86_emulate_ctxt * ctxt)8504 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8505 {
8506 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8507 }
8508
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8509 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8510 struct x86_instruction_info *info,
8511 enum x86_intercept_stage stage)
8512 {
8513 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8514 &ctxt->exception);
8515 }
8516
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8517 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8518 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8519 bool exact_only)
8520 {
8521 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8522 }
8523
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8524 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8525 {
8526 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8527 }
8528
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8529 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8530 {
8531 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8532 }
8533
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8534 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8535 {
8536 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8537 }
8538
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8539 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8540 {
8541 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8542 }
8543
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8544 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8545 {
8546 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8547 }
8548
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8549 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8550 {
8551 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8552 }
8553
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8554 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8555 {
8556 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8557 }
8558
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8559 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8560 {
8561 return is_smm(emul_to_vcpu(ctxt));
8562 }
8563
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8564 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8565 {
8566 return is_guest_mode(emul_to_vcpu(ctxt));
8567 }
8568
8569 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8570 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8571 {
8572 WARN_ON_ONCE(1);
8573 return X86EMUL_UNHANDLEABLE;
8574 }
8575 #endif
8576
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8577 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8578 {
8579 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8580 }
8581
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8582 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8583 {
8584 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8585 }
8586
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8587 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8588 {
8589 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8590
8591 if (!kvm->vm_bugged)
8592 kvm_vm_bugged(kvm);
8593 }
8594
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8595 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8596 gva_t addr, unsigned int flags)
8597 {
8598 if (!kvm_x86_ops.get_untagged_addr)
8599 return addr;
8600
8601 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8602 addr, flags);
8603 }
8604
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8605 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8606 gva_t addr, unsigned int flags)
8607 {
8608 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8609 }
8610
8611 static const struct x86_emulate_ops emulate_ops = {
8612 .vm_bugged = emulator_vm_bugged,
8613 .read_gpr = emulator_read_gpr,
8614 .write_gpr = emulator_write_gpr,
8615 .read_std = emulator_read_std,
8616 .write_std = emulator_write_std,
8617 .fetch = kvm_fetch_guest_virt,
8618 .read_emulated = emulator_read_emulated,
8619 .write_emulated = emulator_write_emulated,
8620 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8621 .invlpg = emulator_invlpg,
8622 .pio_in_emulated = emulator_pio_in_emulated,
8623 .pio_out_emulated = emulator_pio_out_emulated,
8624 .get_segment = emulator_get_segment,
8625 .set_segment = emulator_set_segment,
8626 .get_cached_segment_base = emulator_get_cached_segment_base,
8627 .get_gdt = emulator_get_gdt,
8628 .get_idt = emulator_get_idt,
8629 .set_gdt = emulator_set_gdt,
8630 .set_idt = emulator_set_idt,
8631 .get_cr = emulator_get_cr,
8632 .set_cr = emulator_set_cr,
8633 .cpl = emulator_get_cpl,
8634 .get_dr = emulator_get_dr,
8635 .set_dr = emulator_set_dr,
8636 .set_msr_with_filter = emulator_set_msr_with_filter,
8637 .get_msr_with_filter = emulator_get_msr_with_filter,
8638 .get_msr = emulator_get_msr,
8639 .check_rdpmc_early = emulator_check_rdpmc_early,
8640 .read_pmc = emulator_read_pmc,
8641 .halt = emulator_halt,
8642 .wbinvd = emulator_wbinvd,
8643 .fix_hypercall = emulator_fix_hypercall,
8644 .intercept = emulator_intercept,
8645 .get_cpuid = emulator_get_cpuid,
8646 .guest_has_movbe = emulator_guest_has_movbe,
8647 .guest_has_fxsr = emulator_guest_has_fxsr,
8648 .guest_has_rdpid = emulator_guest_has_rdpid,
8649 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8650 .set_nmi_mask = emulator_set_nmi_mask,
8651 .is_smm = emulator_is_smm,
8652 .is_guest_mode = emulator_is_guest_mode,
8653 .leave_smm = emulator_leave_smm,
8654 .triple_fault = emulator_triple_fault,
8655 .set_xcr = emulator_set_xcr,
8656 .get_untagged_addr = emulator_get_untagged_addr,
8657 .is_canonical_addr = emulator_is_canonical_addr,
8658 };
8659
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8660 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8661 {
8662 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8663 /*
8664 * an sti; sti; sequence only disable interrupts for the first
8665 * instruction. So, if the last instruction, be it emulated or
8666 * not, left the system with the INT_STI flag enabled, it
8667 * means that the last instruction is an sti. We should not
8668 * leave the flag on in this case. The same goes for mov ss
8669 */
8670 if (int_shadow & mask)
8671 mask = 0;
8672 if (unlikely(int_shadow || mask)) {
8673 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8674 if (!mask)
8675 kvm_make_request(KVM_REQ_EVENT, vcpu);
8676 }
8677 }
8678
inject_emulated_exception(struct kvm_vcpu * vcpu)8679 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8680 {
8681 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8682
8683 if (ctxt->exception.vector == PF_VECTOR)
8684 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8685 else if (ctxt->exception.error_code_valid)
8686 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8687 ctxt->exception.error_code);
8688 else
8689 kvm_queue_exception(vcpu, ctxt->exception.vector);
8690 }
8691
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8692 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8693 {
8694 struct x86_emulate_ctxt *ctxt;
8695
8696 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8697 if (!ctxt) {
8698 pr_err("failed to allocate vcpu's emulator\n");
8699 return NULL;
8700 }
8701
8702 ctxt->vcpu = vcpu;
8703 ctxt->ops = &emulate_ops;
8704 vcpu->arch.emulate_ctxt = ctxt;
8705
8706 return ctxt;
8707 }
8708
init_emulate_ctxt(struct kvm_vcpu * vcpu)8709 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8710 {
8711 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8712 int cs_db, cs_l;
8713
8714 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8715
8716 ctxt->gpa_available = false;
8717 ctxt->eflags = kvm_get_rflags(vcpu);
8718 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8719
8720 ctxt->eip = kvm_rip_read(vcpu);
8721 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8722 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8723 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8724 cs_db ? X86EMUL_MODE_PROT32 :
8725 X86EMUL_MODE_PROT16;
8726 ctxt->interruptibility = 0;
8727 ctxt->have_exception = false;
8728 ctxt->exception.vector = -1;
8729 ctxt->perm_ok = false;
8730
8731 init_decode_cache(ctxt);
8732 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8733 }
8734
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8735 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8736 {
8737 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8738 int ret;
8739
8740 init_emulate_ctxt(vcpu);
8741
8742 ctxt->op_bytes = 2;
8743 ctxt->ad_bytes = 2;
8744 ctxt->_eip = ctxt->eip + inc_eip;
8745 ret = emulate_int_real(ctxt, irq);
8746
8747 if (ret != X86EMUL_CONTINUE) {
8748 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8749 } else {
8750 ctxt->eip = ctxt->_eip;
8751 kvm_rip_write(vcpu, ctxt->eip);
8752 kvm_set_rflags(vcpu, ctxt->eflags);
8753 }
8754 }
8755 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8756
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8757 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8758 u8 ndata, u8 *insn_bytes, u8 insn_size)
8759 {
8760 struct kvm_run *run = vcpu->run;
8761 u64 info[5];
8762 u8 info_start;
8763
8764 /*
8765 * Zero the whole array used to retrieve the exit info, as casting to
8766 * u32 for select entries will leave some chunks uninitialized.
8767 */
8768 memset(&info, 0, sizeof(info));
8769
8770 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8771 (u32 *)&info[3], (u32 *)&info[4]);
8772
8773 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8774 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8775
8776 /*
8777 * There's currently space for 13 entries, but 5 are used for the exit
8778 * reason and info. Restrict to 4 to reduce the maintenance burden
8779 * when expanding kvm_run.emulation_failure in the future.
8780 */
8781 if (WARN_ON_ONCE(ndata > 4))
8782 ndata = 4;
8783
8784 /* Always include the flags as a 'data' entry. */
8785 info_start = 1;
8786 run->emulation_failure.flags = 0;
8787
8788 if (insn_size) {
8789 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8790 sizeof(run->emulation_failure.insn_bytes) != 16));
8791 info_start += 2;
8792 run->emulation_failure.flags |=
8793 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8794 run->emulation_failure.insn_size = insn_size;
8795 memset(run->emulation_failure.insn_bytes, 0x90,
8796 sizeof(run->emulation_failure.insn_bytes));
8797 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8798 }
8799
8800 memcpy(&run->internal.data[info_start], info, sizeof(info));
8801 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8802 ndata * sizeof(data[0]));
8803
8804 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8805 }
8806
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8807 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8808 {
8809 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8810
8811 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8812 ctxt->fetch.end - ctxt->fetch.data);
8813 }
8814
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8815 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8816 u8 ndata)
8817 {
8818 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8819 }
8820 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8821
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8822 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8823 {
8824 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8825 }
8826 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8827
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8828 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8829 {
8830 u32 reason, intr_info, error_code;
8831 struct kvm_run *run = vcpu->run;
8832 u64 info1, info2;
8833 int ndata = 0;
8834
8835 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8836 &intr_info, &error_code);
8837
8838 run->internal.data[ndata++] = info2;
8839 run->internal.data[ndata++] = reason;
8840 run->internal.data[ndata++] = info1;
8841 run->internal.data[ndata++] = gpa;
8842 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8843
8844 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8845 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8846 run->internal.ndata = ndata;
8847 }
8848 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8849
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8850 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8851 {
8852 struct kvm *kvm = vcpu->kvm;
8853
8854 ++vcpu->stat.insn_emulation_fail;
8855 trace_kvm_emulate_insn_failed(vcpu);
8856
8857 if (emulation_type & EMULTYPE_VMWARE_GP) {
8858 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8859 return 1;
8860 }
8861
8862 if (kvm->arch.exit_on_emulation_error ||
8863 (emulation_type & EMULTYPE_SKIP)) {
8864 prepare_emulation_ctxt_failure_exit(vcpu);
8865 return 0;
8866 }
8867
8868 kvm_queue_exception(vcpu, UD_VECTOR);
8869
8870 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8871 prepare_emulation_ctxt_failure_exit(vcpu);
8872 return 0;
8873 }
8874
8875 return 1;
8876 }
8877
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8878 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8879 gpa_t cr2_or_gpa,
8880 int emulation_type)
8881 {
8882 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8883 return false;
8884
8885 /*
8886 * If the failed instruction faulted on an access to page tables that
8887 * are used to translate any part of the instruction, KVM can't resolve
8888 * the issue by unprotecting the gfn, as zapping the shadow page will
8889 * result in the instruction taking a !PRESENT page fault and thus put
8890 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8891 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8892 * then zap the SPTE to unprotect the gfn, and then do it all over
8893 * again. Report the error to userspace.
8894 */
8895 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8896 return false;
8897
8898 /*
8899 * If emulation may have been triggered by a write to a shadowed page
8900 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8901 * guest to let the CPU re-execute the instruction in the hope that the
8902 * CPU can cleanly execute the instruction that KVM failed to emulate.
8903 */
8904 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8905
8906 /*
8907 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8908 * all SPTEs were already zapped by a different task. The alternative
8909 * is to report the error to userspace and likely terminate the guest,
8910 * and the last_retry_{eip,addr} checks will prevent retrying the page
8911 * fault indefinitely, i.e. there's nothing to lose by retrying.
8912 */
8913 return true;
8914 }
8915
8916 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8917 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8918
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8919 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8920 unsigned long *db)
8921 {
8922 u32 dr6 = 0;
8923 int i;
8924 u32 enable, rwlen;
8925
8926 enable = dr7;
8927 rwlen = dr7 >> 16;
8928 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8929 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8930 dr6 |= (1 << i);
8931 return dr6;
8932 }
8933
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8934 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8935 {
8936 struct kvm_run *kvm_run = vcpu->run;
8937
8938 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8939 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8940 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8941 kvm_run->debug.arch.exception = DB_VECTOR;
8942 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8943 return 0;
8944 }
8945 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8946 return 1;
8947 }
8948
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8949 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8950 {
8951 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8952 int r;
8953
8954 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8955 if (unlikely(!r))
8956 return 0;
8957
8958 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8959
8960 /*
8961 * rflags is the old, "raw" value of the flags. The new value has
8962 * not been saved yet.
8963 *
8964 * This is correct even for TF set by the guest, because "the
8965 * processor will not generate this exception after the instruction
8966 * that sets the TF flag".
8967 */
8968 if (unlikely(rflags & X86_EFLAGS_TF))
8969 r = kvm_vcpu_do_singlestep(vcpu);
8970 return r;
8971 }
8972 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8973
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8974 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8975 {
8976 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8977 return true;
8978
8979 /*
8980 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8981 * active, but AMD compatible CPUs do not.
8982 */
8983 if (!guest_cpuid_is_intel_compatible(vcpu))
8984 return false;
8985
8986 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8987 }
8988
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8989 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8990 int emulation_type, int *r)
8991 {
8992 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8993
8994 /*
8995 * Do not check for code breakpoints if hardware has already done the
8996 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8997 * the instruction has passed all exception checks, and all intercepted
8998 * exceptions that trigger emulation have lower priority than code
8999 * breakpoints, i.e. the fact that the intercepted exception occurred
9000 * means any code breakpoints have already been serviced.
9001 *
9002 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9003 * hardware has checked the RIP of the magic prefix, but not the RIP of
9004 * the instruction being emulated. The intent of forced emulation is
9005 * to behave as if KVM intercepted the instruction without an exception
9006 * and without a prefix.
9007 */
9008 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9009 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9010 return false;
9011
9012 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9013 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9014 struct kvm_run *kvm_run = vcpu->run;
9015 unsigned long eip = kvm_get_linear_rip(vcpu);
9016 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9017 vcpu->arch.guest_debug_dr7,
9018 vcpu->arch.eff_db);
9019
9020 if (dr6 != 0) {
9021 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9022 kvm_run->debug.arch.pc = eip;
9023 kvm_run->debug.arch.exception = DB_VECTOR;
9024 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9025 *r = 0;
9026 return true;
9027 }
9028 }
9029
9030 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9031 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9032 unsigned long eip = kvm_get_linear_rip(vcpu);
9033 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9034 vcpu->arch.dr7,
9035 vcpu->arch.db);
9036
9037 if (dr6 != 0) {
9038 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9039 *r = 1;
9040 return true;
9041 }
9042 }
9043
9044 return false;
9045 }
9046
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9047 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9048 {
9049 switch (ctxt->opcode_len) {
9050 case 1:
9051 switch (ctxt->b) {
9052 case 0xe4: /* IN */
9053 case 0xe5:
9054 case 0xec:
9055 case 0xed:
9056 case 0xe6: /* OUT */
9057 case 0xe7:
9058 case 0xee:
9059 case 0xef:
9060 case 0x6c: /* INS */
9061 case 0x6d:
9062 case 0x6e: /* OUTS */
9063 case 0x6f:
9064 return true;
9065 }
9066 break;
9067 case 2:
9068 switch (ctxt->b) {
9069 case 0x33: /* RDPMC */
9070 return true;
9071 }
9072 break;
9073 }
9074
9075 return false;
9076 }
9077
9078 /*
9079 * Decode an instruction for emulation. The caller is responsible for handling
9080 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9081 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9082 * code breakpoints have higher priority and thus have already been done by
9083 * hardware.
9084 *
9085 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9086 * response to a machine check.
9087 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9088 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9089 void *insn, int insn_len)
9090 {
9091 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9092 int r;
9093
9094 init_emulate_ctxt(vcpu);
9095
9096 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9097
9098 trace_kvm_emulate_insn_start(vcpu);
9099 ++vcpu->stat.insn_emulation;
9100
9101 return r;
9102 }
9103 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9104
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9105 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9106 int emulation_type, void *insn, int insn_len)
9107 {
9108 int r;
9109 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9110 bool writeback = true;
9111
9112 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9113 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9114 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9115 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9116
9117 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9118 if (r != X86EMUL_CONTINUE) {
9119 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9120 return 1;
9121
9122 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9123 emulation_type))
9124 return 1;
9125
9126 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9127 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9128 return 0;
9129 }
9130
9131 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9132 return handle_emulation_failure(vcpu, emulation_type);
9133 }
9134
9135 vcpu->arch.l1tf_flush_l1d = true;
9136
9137 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9138 kvm_clear_exception_queue(vcpu);
9139
9140 /*
9141 * Return immediately if RIP hits a code breakpoint, such #DBs
9142 * are fault-like and are higher priority than any faults on
9143 * the code fetch itself.
9144 */
9145 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9146 return r;
9147
9148 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9149 insn, insn_len);
9150 if (r != EMULATION_OK) {
9151 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9152 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9153 kvm_queue_exception(vcpu, UD_VECTOR);
9154 return 1;
9155 }
9156 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9157 emulation_type))
9158 return 1;
9159
9160 if (ctxt->have_exception &&
9161 !(emulation_type & EMULTYPE_SKIP)) {
9162 /*
9163 * #UD should result in just EMULATION_FAILED, and trap-like
9164 * exception should not be encountered during decode.
9165 */
9166 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9167 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9168 inject_emulated_exception(vcpu);
9169 return 1;
9170 }
9171 return handle_emulation_failure(vcpu, emulation_type);
9172 }
9173 }
9174
9175 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9176 !is_vmware_backdoor_opcode(ctxt)) {
9177 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9178 return 1;
9179 }
9180
9181 /*
9182 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9183 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9184 * The caller is responsible for updating interruptibility state and
9185 * injecting single-step #DBs.
9186 */
9187 if (emulation_type & EMULTYPE_SKIP) {
9188 if (ctxt->mode != X86EMUL_MODE_PROT64)
9189 ctxt->eip = (u32)ctxt->_eip;
9190 else
9191 ctxt->eip = ctxt->_eip;
9192
9193 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9194 r = 1;
9195 goto writeback;
9196 }
9197
9198 kvm_rip_write(vcpu, ctxt->eip);
9199 if (ctxt->eflags & X86_EFLAGS_RF)
9200 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9201 return 1;
9202 }
9203
9204 /*
9205 * If emulation was caused by a write-protection #PF on a non-page_table
9206 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9207 * and retry the instruction, as the vCPU is likely no longer using the
9208 * gfn as a page table.
9209 */
9210 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9211 !x86_page_table_writing_insn(ctxt) &&
9212 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9213 return 1;
9214
9215 /* this is needed for vmware backdoor interface to work since it
9216 changes registers values during IO operation */
9217 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9218 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9219 emulator_invalidate_register_cache(ctxt);
9220 }
9221
9222 restart:
9223 if (emulation_type & EMULTYPE_PF) {
9224 /* Save the faulting GPA (cr2) in the address field */
9225 ctxt->exception.address = cr2_or_gpa;
9226
9227 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9228 if (vcpu->arch.mmu->root_role.direct) {
9229 ctxt->gpa_available = true;
9230 ctxt->gpa_val = cr2_or_gpa;
9231 }
9232 } else {
9233 /* Sanitize the address out of an abundance of paranoia. */
9234 ctxt->exception.address = 0;
9235 }
9236
9237 r = x86_emulate_insn(ctxt);
9238
9239 if (r == EMULATION_INTERCEPTED)
9240 return 1;
9241
9242 if (r == EMULATION_FAILED) {
9243 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9244 emulation_type))
9245 return 1;
9246
9247 return handle_emulation_failure(vcpu, emulation_type);
9248 }
9249
9250 if (ctxt->have_exception) {
9251 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9252 vcpu->mmio_needed = false;
9253 r = 1;
9254 inject_emulated_exception(vcpu);
9255 } else if (vcpu->arch.pio.count) {
9256 if (!vcpu->arch.pio.in) {
9257 /* FIXME: return into emulator if single-stepping. */
9258 vcpu->arch.pio.count = 0;
9259 } else {
9260 writeback = false;
9261 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9262 }
9263 r = 0;
9264 } else if (vcpu->mmio_needed) {
9265 ++vcpu->stat.mmio_exits;
9266
9267 if (!vcpu->mmio_is_write)
9268 writeback = false;
9269 r = 0;
9270 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9271 } else if (vcpu->arch.complete_userspace_io) {
9272 writeback = false;
9273 r = 0;
9274 } else if (r == EMULATION_RESTART)
9275 goto restart;
9276 else
9277 r = 1;
9278
9279 writeback:
9280 if (writeback) {
9281 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9282 toggle_interruptibility(vcpu, ctxt->interruptibility);
9283 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9284
9285 /*
9286 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9287 * only supports code breakpoints and general detect #DB, both
9288 * of which are fault-like.
9289 */
9290 if (!ctxt->have_exception ||
9291 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9292 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9293 if (ctxt->is_branch)
9294 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9295 kvm_rip_write(vcpu, ctxt->eip);
9296 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9297 r = kvm_vcpu_do_singlestep(vcpu);
9298 kvm_x86_call(update_emulated_instruction)(vcpu);
9299 __kvm_set_rflags(vcpu, ctxt->eflags);
9300 }
9301
9302 /*
9303 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9304 * do nothing, and it will be requested again as soon as
9305 * the shadow expires. But we still need to check here,
9306 * because POPF has no interrupt shadow.
9307 */
9308 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9309 kvm_make_request(KVM_REQ_EVENT, vcpu);
9310 } else
9311 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9312
9313 return r;
9314 }
9315
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9316 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9317 {
9318 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9319 }
9320 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9321
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9322 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9323 void *insn, int insn_len)
9324 {
9325 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9326 }
9327 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9328
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9329 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9330 {
9331 vcpu->arch.pio.count = 0;
9332 return 1;
9333 }
9334
complete_fast_pio_out(struct kvm_vcpu * vcpu)9335 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9336 {
9337 vcpu->arch.pio.count = 0;
9338
9339 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9340 return 1;
9341
9342 return kvm_skip_emulated_instruction(vcpu);
9343 }
9344
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9345 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9346 unsigned short port)
9347 {
9348 unsigned long val = kvm_rax_read(vcpu);
9349 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9350
9351 if (ret)
9352 return ret;
9353
9354 /*
9355 * Workaround userspace that relies on old KVM behavior of %rip being
9356 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9357 */
9358 if (port == 0x7e &&
9359 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9360 vcpu->arch.complete_userspace_io =
9361 complete_fast_pio_out_port_0x7e;
9362 kvm_skip_emulated_instruction(vcpu);
9363 } else {
9364 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9365 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9366 }
9367 return 0;
9368 }
9369
complete_fast_pio_in(struct kvm_vcpu * vcpu)9370 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9371 {
9372 unsigned long val;
9373
9374 /* We should only ever be called with arch.pio.count equal to 1 */
9375 BUG_ON(vcpu->arch.pio.count != 1);
9376
9377 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9378 vcpu->arch.pio.count = 0;
9379 return 1;
9380 }
9381
9382 /* For size less than 4 we merge, else we zero extend */
9383 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9384
9385 complete_emulator_pio_in(vcpu, &val);
9386 kvm_rax_write(vcpu, val);
9387
9388 return kvm_skip_emulated_instruction(vcpu);
9389 }
9390
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9391 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9392 unsigned short port)
9393 {
9394 unsigned long val;
9395 int ret;
9396
9397 /* For size less than 4 we merge, else we zero extend */
9398 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9399
9400 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9401 if (ret) {
9402 kvm_rax_write(vcpu, val);
9403 return ret;
9404 }
9405
9406 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9407 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9408
9409 return 0;
9410 }
9411
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9412 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9413 {
9414 int ret;
9415
9416 if (in)
9417 ret = kvm_fast_pio_in(vcpu, size, port);
9418 else
9419 ret = kvm_fast_pio_out(vcpu, size, port);
9420 return ret && kvm_skip_emulated_instruction(vcpu);
9421 }
9422 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9423
kvmclock_cpu_down_prep(unsigned int cpu)9424 static int kvmclock_cpu_down_prep(unsigned int cpu)
9425 {
9426 __this_cpu_write(cpu_tsc_khz, 0);
9427 return 0;
9428 }
9429
tsc_khz_changed(void * data)9430 static void tsc_khz_changed(void *data)
9431 {
9432 struct cpufreq_freqs *freq = data;
9433 unsigned long khz;
9434
9435 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9436
9437 if (data)
9438 khz = freq->new;
9439 else
9440 khz = cpufreq_quick_get(raw_smp_processor_id());
9441 if (!khz)
9442 khz = tsc_khz;
9443 __this_cpu_write(cpu_tsc_khz, khz);
9444 }
9445
9446 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9447 static void kvm_hyperv_tsc_notifier(void)
9448 {
9449 struct kvm *kvm;
9450 int cpu;
9451
9452 mutex_lock(&kvm_lock);
9453 list_for_each_entry(kvm, &vm_list, vm_list)
9454 kvm_make_mclock_inprogress_request(kvm);
9455
9456 /* no guest entries from this point */
9457 hyperv_stop_tsc_emulation();
9458
9459 /* TSC frequency always matches when on Hyper-V */
9460 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9461 for_each_present_cpu(cpu)
9462 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9463 }
9464 kvm_caps.max_guest_tsc_khz = tsc_khz;
9465
9466 list_for_each_entry(kvm, &vm_list, vm_list) {
9467 __kvm_start_pvclock_update(kvm);
9468 pvclock_update_vm_gtod_copy(kvm);
9469 kvm_end_pvclock_update(kvm);
9470 }
9471
9472 mutex_unlock(&kvm_lock);
9473 }
9474 #endif
9475
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9476 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9477 {
9478 struct kvm *kvm;
9479 struct kvm_vcpu *vcpu;
9480 int send_ipi = 0;
9481 unsigned long i;
9482
9483 /*
9484 * We allow guests to temporarily run on slowing clocks,
9485 * provided we notify them after, or to run on accelerating
9486 * clocks, provided we notify them before. Thus time never
9487 * goes backwards.
9488 *
9489 * However, we have a problem. We can't atomically update
9490 * the frequency of a given CPU from this function; it is
9491 * merely a notifier, which can be called from any CPU.
9492 * Changing the TSC frequency at arbitrary points in time
9493 * requires a recomputation of local variables related to
9494 * the TSC for each VCPU. We must flag these local variables
9495 * to be updated and be sure the update takes place with the
9496 * new frequency before any guests proceed.
9497 *
9498 * Unfortunately, the combination of hotplug CPU and frequency
9499 * change creates an intractable locking scenario; the order
9500 * of when these callouts happen is undefined with respect to
9501 * CPU hotplug, and they can race with each other. As such,
9502 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9503 * undefined; you can actually have a CPU frequency change take
9504 * place in between the computation of X and the setting of the
9505 * variable. To protect against this problem, all updates of
9506 * the per_cpu tsc_khz variable are done in an interrupt
9507 * protected IPI, and all callers wishing to update the value
9508 * must wait for a synchronous IPI to complete (which is trivial
9509 * if the caller is on the CPU already). This establishes the
9510 * necessary total order on variable updates.
9511 *
9512 * Note that because a guest time update may take place
9513 * anytime after the setting of the VCPU's request bit, the
9514 * correct TSC value must be set before the request. However,
9515 * to ensure the update actually makes it to any guest which
9516 * starts running in hardware virtualization between the set
9517 * and the acquisition of the spinlock, we must also ping the
9518 * CPU after setting the request bit.
9519 *
9520 */
9521
9522 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9523
9524 mutex_lock(&kvm_lock);
9525 list_for_each_entry(kvm, &vm_list, vm_list) {
9526 kvm_for_each_vcpu(i, vcpu, kvm) {
9527 if (vcpu->cpu != cpu)
9528 continue;
9529 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9530 if (vcpu->cpu != raw_smp_processor_id())
9531 send_ipi = 1;
9532 }
9533 }
9534 mutex_unlock(&kvm_lock);
9535
9536 if (freq->old < freq->new && send_ipi) {
9537 /*
9538 * We upscale the frequency. Must make the guest
9539 * doesn't see old kvmclock values while running with
9540 * the new frequency, otherwise we risk the guest sees
9541 * time go backwards.
9542 *
9543 * In case we update the frequency for another cpu
9544 * (which might be in guest context) send an interrupt
9545 * to kick the cpu out of guest context. Next time
9546 * guest context is entered kvmclock will be updated,
9547 * so the guest will not see stale values.
9548 */
9549 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9550 }
9551 }
9552
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9553 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9554 void *data)
9555 {
9556 struct cpufreq_freqs *freq = data;
9557 int cpu;
9558
9559 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9560 return 0;
9561 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9562 return 0;
9563
9564 for_each_cpu(cpu, freq->policy->cpus)
9565 __kvmclock_cpufreq_notifier(freq, cpu);
9566
9567 return 0;
9568 }
9569
9570 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9571 .notifier_call = kvmclock_cpufreq_notifier
9572 };
9573
kvmclock_cpu_online(unsigned int cpu)9574 static int kvmclock_cpu_online(unsigned int cpu)
9575 {
9576 tsc_khz_changed(NULL);
9577 return 0;
9578 }
9579
kvm_timer_init(void)9580 static void kvm_timer_init(void)
9581 {
9582 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9583 max_tsc_khz = tsc_khz;
9584
9585 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9586 struct cpufreq_policy *policy;
9587 int cpu;
9588
9589 cpu = get_cpu();
9590 policy = cpufreq_cpu_get(cpu);
9591 if (policy) {
9592 if (policy->cpuinfo.max_freq)
9593 max_tsc_khz = policy->cpuinfo.max_freq;
9594 cpufreq_cpu_put(policy);
9595 }
9596 put_cpu();
9597 }
9598 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9599 CPUFREQ_TRANSITION_NOTIFIER);
9600
9601 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9602 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9603 }
9604 }
9605
9606 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9607 static void pvclock_gtod_update_fn(struct work_struct *work)
9608 {
9609 struct kvm *kvm;
9610 struct kvm_vcpu *vcpu;
9611 unsigned long i;
9612
9613 mutex_lock(&kvm_lock);
9614 list_for_each_entry(kvm, &vm_list, vm_list)
9615 kvm_for_each_vcpu(i, vcpu, kvm)
9616 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9617 atomic_set(&kvm_guest_has_master_clock, 0);
9618 mutex_unlock(&kvm_lock);
9619 }
9620
9621 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9622
9623 /*
9624 * Indirection to move queue_work() out of the tk_core.seq write held
9625 * region to prevent possible deadlocks against time accessors which
9626 * are invoked with work related locks held.
9627 */
pvclock_irq_work_fn(struct irq_work * w)9628 static void pvclock_irq_work_fn(struct irq_work *w)
9629 {
9630 queue_work(system_long_wq, &pvclock_gtod_work);
9631 }
9632
9633 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9634
9635 /*
9636 * Notification about pvclock gtod data update.
9637 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9638 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9639 void *priv)
9640 {
9641 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9642 struct timekeeper *tk = priv;
9643
9644 update_pvclock_gtod(tk);
9645
9646 /*
9647 * Disable master clock if host does not trust, or does not use,
9648 * TSC based clocksource. Delegate queue_work() to irq_work as
9649 * this is invoked with tk_core.seq write held.
9650 */
9651 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9652 atomic_read(&kvm_guest_has_master_clock) != 0)
9653 irq_work_queue(&pvclock_irq_work);
9654 return 0;
9655 }
9656
9657 static struct notifier_block pvclock_gtod_notifier = {
9658 .notifier_call = pvclock_gtod_notify,
9659 };
9660 #endif
9661
kvm_ops_update(struct kvm_x86_init_ops * ops)9662 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9663 {
9664 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9665
9666 #define __KVM_X86_OP(func) \
9667 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9668 #define KVM_X86_OP(func) \
9669 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9670 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9671 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9672 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9673 (void *)__static_call_return0);
9674 #include <asm/kvm-x86-ops.h>
9675 #undef __KVM_X86_OP
9676
9677 kvm_pmu_ops_update(ops->pmu_ops);
9678 }
9679
kvm_x86_check_processor_compatibility(void)9680 static int kvm_x86_check_processor_compatibility(void)
9681 {
9682 int cpu = smp_processor_id();
9683 struct cpuinfo_x86 *c = &cpu_data(cpu);
9684
9685 /*
9686 * Compatibility checks are done when loading KVM and when enabling
9687 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9688 * compatible, i.e. KVM should never perform a compatibility check on
9689 * an offline CPU.
9690 */
9691 WARN_ON(!cpu_online(cpu));
9692
9693 if (__cr4_reserved_bits(cpu_has, c) !=
9694 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9695 return -EIO;
9696
9697 return kvm_x86_call(check_processor_compatibility)();
9698 }
9699
kvm_x86_check_cpu_compat(void * ret)9700 static void kvm_x86_check_cpu_compat(void *ret)
9701 {
9702 *(int *)ret = kvm_x86_check_processor_compatibility();
9703 }
9704
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9705 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9706 {
9707 u64 host_pat;
9708 int r, cpu;
9709
9710 guard(mutex)(&vendor_module_lock);
9711
9712 if (kvm_x86_ops.enable_virtualization_cpu) {
9713 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9714 return -EEXIST;
9715 }
9716
9717 /*
9718 * KVM explicitly assumes that the guest has an FPU and
9719 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9720 * vCPU's FPU state as a fxregs_state struct.
9721 */
9722 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9723 pr_err("inadequate fpu\n");
9724 return -EOPNOTSUPP;
9725 }
9726
9727 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9728 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9729 return -EOPNOTSUPP;
9730 }
9731
9732 /*
9733 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9734 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9735 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9736 * with an exception. PAT[0] is set to WB on RESET and also by the
9737 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9738 */
9739 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9740 (host_pat & GENMASK(2, 0)) != 6) {
9741 pr_err("host PAT[0] is not WB\n");
9742 return -EIO;
9743 }
9744
9745 memset(&kvm_caps, 0, sizeof(kvm_caps));
9746
9747 x86_emulator_cache = kvm_alloc_emulator_cache();
9748 if (!x86_emulator_cache) {
9749 pr_err("failed to allocate cache for x86 emulator\n");
9750 return -ENOMEM;
9751 }
9752
9753 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9754 if (!user_return_msrs) {
9755 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9756 r = -ENOMEM;
9757 goto out_free_x86_emulator_cache;
9758 }
9759 kvm_nr_uret_msrs = 0;
9760
9761 r = kvm_mmu_vendor_module_init();
9762 if (r)
9763 goto out_free_percpu;
9764
9765 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9766 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9767
9768 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9769 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9770 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9771 }
9772
9773 rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9774
9775 if (boot_cpu_has(X86_FEATURE_XSAVES))
9776 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9777
9778 kvm_init_pmu_capability(ops->pmu_ops);
9779
9780 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9781 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9782
9783 r = ops->hardware_setup();
9784 if (r != 0)
9785 goto out_mmu_exit;
9786
9787 kvm_ops_update(ops);
9788
9789 for_each_online_cpu(cpu) {
9790 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9791 if (r < 0)
9792 goto out_unwind_ops;
9793 }
9794
9795 /*
9796 * Point of no return! DO NOT add error paths below this point unless
9797 * absolutely necessary, as most operations from this point forward
9798 * require unwinding.
9799 */
9800 kvm_timer_init();
9801
9802 if (pi_inject_timer == -1)
9803 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9804 #ifdef CONFIG_X86_64
9805 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9806
9807 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9808 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9809 #endif
9810
9811 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9812
9813 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9814 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9815
9816 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9817 kvm_caps.supported_xss = 0;
9818
9819 if (kvm_caps.has_tsc_control) {
9820 /*
9821 * Make sure the user can only configure tsc_khz values that
9822 * fit into a signed integer.
9823 * A min value is not calculated because it will always
9824 * be 1 on all machines.
9825 */
9826 u64 max = min(0x7fffffffULL,
9827 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9828 kvm_caps.max_guest_tsc_khz = max;
9829 }
9830 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9831 kvm_init_msr_lists();
9832 return 0;
9833
9834 out_unwind_ops:
9835 kvm_x86_ops.enable_virtualization_cpu = NULL;
9836 kvm_x86_call(hardware_unsetup)();
9837 out_mmu_exit:
9838 kvm_mmu_vendor_module_exit();
9839 out_free_percpu:
9840 free_percpu(user_return_msrs);
9841 out_free_x86_emulator_cache:
9842 kmem_cache_destroy(x86_emulator_cache);
9843 return r;
9844 }
9845 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9846
kvm_x86_vendor_exit(void)9847 void kvm_x86_vendor_exit(void)
9848 {
9849 kvm_unregister_perf_callbacks();
9850
9851 #ifdef CONFIG_X86_64
9852 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9853 clear_hv_tscchange_cb();
9854 #endif
9855 kvm_lapic_exit();
9856
9857 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9858 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9859 CPUFREQ_TRANSITION_NOTIFIER);
9860 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9861 }
9862 #ifdef CONFIG_X86_64
9863 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9864 irq_work_sync(&pvclock_irq_work);
9865 cancel_work_sync(&pvclock_gtod_work);
9866 #endif
9867 kvm_x86_call(hardware_unsetup)();
9868 kvm_mmu_vendor_module_exit();
9869 free_percpu(user_return_msrs);
9870 kmem_cache_destroy(x86_emulator_cache);
9871 #ifdef CONFIG_KVM_XEN
9872 static_key_deferred_flush(&kvm_xen_enabled);
9873 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9874 #endif
9875 mutex_lock(&vendor_module_lock);
9876 kvm_x86_ops.enable_virtualization_cpu = NULL;
9877 mutex_unlock(&vendor_module_lock);
9878 }
9879 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9880
9881 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9882 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9883 unsigned long clock_type)
9884 {
9885 struct kvm_clock_pairing clock_pairing;
9886 struct timespec64 ts;
9887 u64 cycle;
9888 int ret;
9889
9890 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9891 return -KVM_EOPNOTSUPP;
9892
9893 /*
9894 * When tsc is in permanent catchup mode guests won't be able to use
9895 * pvclock_read_retry loop to get consistent view of pvclock
9896 */
9897 if (vcpu->arch.tsc_always_catchup)
9898 return -KVM_EOPNOTSUPP;
9899
9900 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9901 return -KVM_EOPNOTSUPP;
9902
9903 clock_pairing.sec = ts.tv_sec;
9904 clock_pairing.nsec = ts.tv_nsec;
9905 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9906 clock_pairing.flags = 0;
9907 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9908
9909 ret = 0;
9910 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9911 sizeof(struct kvm_clock_pairing)))
9912 ret = -KVM_EFAULT;
9913
9914 return ret;
9915 }
9916 #endif
9917
9918 /*
9919 * kvm_pv_kick_cpu_op: Kick a vcpu.
9920 *
9921 * @apicid - apicid of vcpu to be kicked.
9922 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9923 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9924 {
9925 /*
9926 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9927 * common code, e.g. for tracing. Defer initialization to the compiler.
9928 */
9929 struct kvm_lapic_irq lapic_irq = {
9930 .delivery_mode = APIC_DM_REMRD,
9931 .dest_mode = APIC_DEST_PHYSICAL,
9932 .shorthand = APIC_DEST_NOSHORT,
9933 .dest_id = apicid,
9934 };
9935
9936 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9937 }
9938
kvm_apicv_activated(struct kvm * kvm)9939 bool kvm_apicv_activated(struct kvm *kvm)
9940 {
9941 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9942 }
9943 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9944
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9945 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9946 {
9947 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9948 ulong vcpu_reasons =
9949 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9950
9951 return (vm_reasons | vcpu_reasons) == 0;
9952 }
9953 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9954
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9955 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9956 enum kvm_apicv_inhibit reason, bool set)
9957 {
9958 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9959
9960 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9961
9962 if (set)
9963 __set_bit(reason, inhibits);
9964 else
9965 __clear_bit(reason, inhibits);
9966
9967 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9968 }
9969
kvm_apicv_init(struct kvm * kvm)9970 static void kvm_apicv_init(struct kvm *kvm)
9971 {
9972 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9973 APICV_INHIBIT_REASON_DISABLED;
9974
9975 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9976
9977 init_rwsem(&kvm->arch.apicv_update_lock);
9978 }
9979
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9980 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9981 {
9982 struct kvm_vcpu *target = NULL;
9983 struct kvm_apic_map *map;
9984
9985 vcpu->stat.directed_yield_attempted++;
9986
9987 if (single_task_running())
9988 goto no_yield;
9989
9990 rcu_read_lock();
9991 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9992
9993 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9994 target = map->phys_map[dest_id]->vcpu;
9995
9996 rcu_read_unlock();
9997
9998 if (!target || !READ_ONCE(target->ready))
9999 goto no_yield;
10000
10001 /* Ignore requests to yield to self */
10002 if (vcpu == target)
10003 goto no_yield;
10004
10005 if (kvm_vcpu_yield_to(target) <= 0)
10006 goto no_yield;
10007
10008 vcpu->stat.directed_yield_successful++;
10009
10010 no_yield:
10011 return;
10012 }
10013
complete_hypercall_exit(struct kvm_vcpu * vcpu)10014 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10015 {
10016 u64 ret = vcpu->run->hypercall.ret;
10017
10018 if (!is_64_bit_hypercall(vcpu))
10019 ret = (u32)ret;
10020 kvm_rax_write(vcpu, ret);
10021 return kvm_skip_emulated_instruction(vcpu);
10022 }
10023
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10024 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10025 unsigned long a0, unsigned long a1,
10026 unsigned long a2, unsigned long a3,
10027 int op_64_bit, int cpl,
10028 int (*complete_hypercall)(struct kvm_vcpu *))
10029 {
10030 unsigned long ret;
10031
10032 ++vcpu->stat.hypercalls;
10033
10034 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10035
10036 if (!op_64_bit) {
10037 nr &= 0xFFFFFFFF;
10038 a0 &= 0xFFFFFFFF;
10039 a1 &= 0xFFFFFFFF;
10040 a2 &= 0xFFFFFFFF;
10041 a3 &= 0xFFFFFFFF;
10042 }
10043
10044 if (cpl) {
10045 ret = -KVM_EPERM;
10046 goto out;
10047 }
10048
10049 ret = -KVM_ENOSYS;
10050
10051 switch (nr) {
10052 case KVM_HC_VAPIC_POLL_IRQ:
10053 ret = 0;
10054 break;
10055 case KVM_HC_KICK_CPU:
10056 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10057 break;
10058
10059 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10060 kvm_sched_yield(vcpu, a1);
10061 ret = 0;
10062 break;
10063 #ifdef CONFIG_X86_64
10064 case KVM_HC_CLOCK_PAIRING:
10065 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10066 break;
10067 #endif
10068 case KVM_HC_SEND_IPI:
10069 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10070 break;
10071
10072 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10073 break;
10074 case KVM_HC_SCHED_YIELD:
10075 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10076 break;
10077
10078 kvm_sched_yield(vcpu, a0);
10079 ret = 0;
10080 break;
10081 case KVM_HC_MAP_GPA_RANGE: {
10082 u64 gpa = a0, npages = a1, attrs = a2;
10083
10084 ret = -KVM_ENOSYS;
10085 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10086 break;
10087
10088 if (!PAGE_ALIGNED(gpa) || !npages ||
10089 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10090 ret = -KVM_EINVAL;
10091 break;
10092 }
10093
10094 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10095 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10096 /*
10097 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10098 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10099 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10100 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10101 */
10102 vcpu->run->hypercall.ret = 0;
10103 vcpu->run->hypercall.args[0] = gpa;
10104 vcpu->run->hypercall.args[1] = npages;
10105 vcpu->run->hypercall.args[2] = attrs;
10106 vcpu->run->hypercall.flags = 0;
10107 if (op_64_bit)
10108 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10109
10110 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10111 vcpu->arch.complete_userspace_io = complete_hypercall;
10112 return 0;
10113 }
10114 default:
10115 ret = -KVM_ENOSYS;
10116 break;
10117 }
10118
10119 out:
10120 vcpu->run->hypercall.ret = ret;
10121 return 1;
10122 }
10123 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10124
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10125 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10126 {
10127 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10128 return kvm_xen_hypercall(vcpu);
10129
10130 if (kvm_hv_hypercall_enabled(vcpu))
10131 return kvm_hv_hypercall(vcpu);
10132
10133 return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi,
10134 is_64_bit_hypercall(vcpu),
10135 kvm_x86_call(get_cpl)(vcpu),
10136 complete_hypercall_exit);
10137 }
10138 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10139
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10140 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10141 {
10142 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10143 char instruction[3];
10144 unsigned long rip = kvm_rip_read(vcpu);
10145
10146 /*
10147 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10148 * the pieces.
10149 */
10150 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10151 ctxt->exception.error_code_valid = false;
10152 ctxt->exception.vector = UD_VECTOR;
10153 ctxt->have_exception = true;
10154 return X86EMUL_PROPAGATE_FAULT;
10155 }
10156
10157 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10158
10159 return emulator_write_emulated(ctxt, rip, instruction, 3,
10160 &ctxt->exception);
10161 }
10162
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10163 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10164 {
10165 return vcpu->run->request_interrupt_window &&
10166 likely(!pic_in_kernel(vcpu->kvm));
10167 }
10168
10169 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10170 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10171 {
10172 struct kvm_run *kvm_run = vcpu->run;
10173
10174 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10175 kvm_run->cr8 = kvm_get_cr8(vcpu);
10176 kvm_run->apic_base = vcpu->arch.apic_base;
10177
10178 kvm_run->ready_for_interrupt_injection =
10179 pic_in_kernel(vcpu->kvm) ||
10180 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10181
10182 if (is_smm(vcpu))
10183 kvm_run->flags |= KVM_RUN_X86_SMM;
10184 if (is_guest_mode(vcpu))
10185 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10186 }
10187
update_cr8_intercept(struct kvm_vcpu * vcpu)10188 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10189 {
10190 int max_irr, tpr;
10191
10192 if (!kvm_x86_ops.update_cr8_intercept)
10193 return;
10194
10195 if (!lapic_in_kernel(vcpu))
10196 return;
10197
10198 if (vcpu->arch.apic->apicv_active)
10199 return;
10200
10201 if (!vcpu->arch.apic->vapic_addr)
10202 max_irr = kvm_lapic_find_highest_irr(vcpu);
10203 else
10204 max_irr = -1;
10205
10206 if (max_irr != -1)
10207 max_irr >>= 4;
10208
10209 tpr = kvm_lapic_get_cr8(vcpu);
10210
10211 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10212 }
10213
10214
kvm_check_nested_events(struct kvm_vcpu * vcpu)10215 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10216 {
10217 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10218 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10219 return 1;
10220 }
10221
10222 return kvm_x86_ops.nested_ops->check_events(vcpu);
10223 }
10224
kvm_inject_exception(struct kvm_vcpu * vcpu)10225 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10226 {
10227 /*
10228 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10229 * exceptions don't report error codes. The presence of an error code
10230 * is carried with the exception and only stripped when the exception
10231 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10232 * report an error code despite the CPU being in Real Mode.
10233 */
10234 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10235
10236 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10237 vcpu->arch.exception.has_error_code,
10238 vcpu->arch.exception.error_code,
10239 vcpu->arch.exception.injected);
10240
10241 kvm_x86_call(inject_exception)(vcpu);
10242 }
10243
10244 /*
10245 * Check for any event (interrupt or exception) that is ready to be injected,
10246 * and if there is at least one event, inject the event with the highest
10247 * priority. This handles both "pending" events, i.e. events that have never
10248 * been injected into the guest, and "injected" events, i.e. events that were
10249 * injected as part of a previous VM-Enter, but weren't successfully delivered
10250 * and need to be re-injected.
10251 *
10252 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10253 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10254 * be able to inject exceptions in the "middle" of an instruction, and so must
10255 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10256 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10257 * boundaries is necessary and correct.
10258 *
10259 * For simplicity, KVM uses a single path to inject all events (except events
10260 * that are injected directly from L1 to L2) and doesn't explicitly track
10261 * instruction boundaries for asynchronous events. However, because VM-Exits
10262 * that can occur during instruction execution typically result in KVM skipping
10263 * the instruction or injecting an exception, e.g. instruction and exception
10264 * intercepts, and because pending exceptions have higher priority than pending
10265 * interrupts, KVM still honors instruction boundaries in most scenarios.
10266 *
10267 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10268 * the instruction or inject an exception, then KVM can incorrecty inject a new
10269 * asynchronous event if the event became pending after the CPU fetched the
10270 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10271 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10272 * injected on the restarted instruction instead of being deferred until the
10273 * instruction completes.
10274 *
10275 * In practice, this virtualization hole is unlikely to be observed by the
10276 * guest, and even less likely to cause functional problems. To detect the
10277 * hole, the guest would have to trigger an event on a side effect of an early
10278 * phase of instruction execution, e.g. on the instruction fetch from memory.
10279 * And for it to be a functional problem, the guest would need to depend on the
10280 * ordering between that side effect, the instruction completing, _and_ the
10281 * delivery of the asynchronous event.
10282 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10283 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10284 bool *req_immediate_exit)
10285 {
10286 bool can_inject;
10287 int r;
10288
10289 /*
10290 * Process nested events first, as nested VM-Exit supersedes event
10291 * re-injection. If there's an event queued for re-injection, it will
10292 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10293 */
10294 if (is_guest_mode(vcpu))
10295 r = kvm_check_nested_events(vcpu);
10296 else
10297 r = 0;
10298
10299 /*
10300 * Re-inject exceptions and events *especially* if immediate entry+exit
10301 * to/from L2 is needed, as any event that has already been injected
10302 * into L2 needs to complete its lifecycle before injecting a new event.
10303 *
10304 * Don't re-inject an NMI or interrupt if there is a pending exception.
10305 * This collision arises if an exception occurred while vectoring the
10306 * injected event, KVM intercepted said exception, and KVM ultimately
10307 * determined the fault belongs to the guest and queues the exception
10308 * for injection back into the guest.
10309 *
10310 * "Injected" interrupts can also collide with pending exceptions if
10311 * userspace ignores the "ready for injection" flag and blindly queues
10312 * an interrupt. In that case, prioritizing the exception is correct,
10313 * as the exception "occurred" before the exit to userspace. Trap-like
10314 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10315 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10316 * priority, they're only generated (pended) during instruction
10317 * execution, and interrupts are recognized at instruction boundaries.
10318 * Thus a pending fault-like exception means the fault occurred on the
10319 * *previous* instruction and must be serviced prior to recognizing any
10320 * new events in order to fully complete the previous instruction.
10321 */
10322 if (vcpu->arch.exception.injected)
10323 kvm_inject_exception(vcpu);
10324 else if (kvm_is_exception_pending(vcpu))
10325 ; /* see above */
10326 else if (vcpu->arch.nmi_injected)
10327 kvm_x86_call(inject_nmi)(vcpu);
10328 else if (vcpu->arch.interrupt.injected)
10329 kvm_x86_call(inject_irq)(vcpu, true);
10330
10331 /*
10332 * Exceptions that morph to VM-Exits are handled above, and pending
10333 * exceptions on top of injected exceptions that do not VM-Exit should
10334 * either morph to #DF or, sadly, override the injected exception.
10335 */
10336 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10337 vcpu->arch.exception.pending);
10338
10339 /*
10340 * Bail if immediate entry+exit to/from the guest is needed to complete
10341 * nested VM-Enter or event re-injection so that a different pending
10342 * event can be serviced (or if KVM needs to exit to userspace).
10343 *
10344 * Otherwise, continue processing events even if VM-Exit occurred. The
10345 * VM-Exit will have cleared exceptions that were meant for L2, but
10346 * there may now be events that can be injected into L1.
10347 */
10348 if (r < 0)
10349 goto out;
10350
10351 /*
10352 * A pending exception VM-Exit should either result in nested VM-Exit
10353 * or force an immediate re-entry and exit to/from L2, and exception
10354 * VM-Exits cannot be injected (flag should _never_ be set).
10355 */
10356 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10357 vcpu->arch.exception_vmexit.pending);
10358
10359 /*
10360 * New events, other than exceptions, cannot be injected if KVM needs
10361 * to re-inject a previous event. See above comments on re-injecting
10362 * for why pending exceptions get priority.
10363 */
10364 can_inject = !kvm_event_needs_reinjection(vcpu);
10365
10366 if (vcpu->arch.exception.pending) {
10367 /*
10368 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10369 * value pushed on the stack. Trap-like exception and all #DBs
10370 * leave RF as-is (KVM follows Intel's behavior in this regard;
10371 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10372 *
10373 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10374 * describe the behavior of General Detect #DBs, which are
10375 * fault-like. They do _not_ set RF, a la code breakpoints.
10376 */
10377 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10378 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10379 X86_EFLAGS_RF);
10380
10381 if (vcpu->arch.exception.vector == DB_VECTOR) {
10382 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10383 if (vcpu->arch.dr7 & DR7_GD) {
10384 vcpu->arch.dr7 &= ~DR7_GD;
10385 kvm_update_dr7(vcpu);
10386 }
10387 }
10388
10389 kvm_inject_exception(vcpu);
10390
10391 vcpu->arch.exception.pending = false;
10392 vcpu->arch.exception.injected = true;
10393
10394 can_inject = false;
10395 }
10396
10397 /* Don't inject interrupts if the user asked to avoid doing so */
10398 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10399 return 0;
10400
10401 /*
10402 * Finally, inject interrupt events. If an event cannot be injected
10403 * due to architectural conditions (e.g. IF=0) a window-open exit
10404 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10405 * and can architecturally be injected, but we cannot do it right now:
10406 * an interrupt could have arrived just now and we have to inject it
10407 * as a vmexit, or there could already an event in the queue, which is
10408 * indicated by can_inject. In that case we request an immediate exit
10409 * in order to make progress and get back here for another iteration.
10410 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10411 */
10412 #ifdef CONFIG_KVM_SMM
10413 if (vcpu->arch.smi_pending) {
10414 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10415 -EBUSY;
10416 if (r < 0)
10417 goto out;
10418 if (r) {
10419 vcpu->arch.smi_pending = false;
10420 ++vcpu->arch.smi_count;
10421 enter_smm(vcpu);
10422 can_inject = false;
10423 } else
10424 kvm_x86_call(enable_smi_window)(vcpu);
10425 }
10426 #endif
10427
10428 if (vcpu->arch.nmi_pending) {
10429 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10430 -EBUSY;
10431 if (r < 0)
10432 goto out;
10433 if (r) {
10434 --vcpu->arch.nmi_pending;
10435 vcpu->arch.nmi_injected = true;
10436 kvm_x86_call(inject_nmi)(vcpu);
10437 can_inject = false;
10438 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10439 }
10440 if (vcpu->arch.nmi_pending)
10441 kvm_x86_call(enable_nmi_window)(vcpu);
10442 }
10443
10444 if (kvm_cpu_has_injectable_intr(vcpu)) {
10445 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10446 -EBUSY;
10447 if (r < 0)
10448 goto out;
10449 if (r) {
10450 int irq = kvm_cpu_get_interrupt(vcpu);
10451
10452 if (!WARN_ON_ONCE(irq == -1)) {
10453 kvm_queue_interrupt(vcpu, irq, false);
10454 kvm_x86_call(inject_irq)(vcpu, false);
10455 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10456 }
10457 }
10458 if (kvm_cpu_has_injectable_intr(vcpu))
10459 kvm_x86_call(enable_irq_window)(vcpu);
10460 }
10461
10462 if (is_guest_mode(vcpu) &&
10463 kvm_x86_ops.nested_ops->has_events &&
10464 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10465 *req_immediate_exit = true;
10466
10467 /*
10468 * KVM must never queue a new exception while injecting an event; KVM
10469 * is done emulating and should only propagate the to-be-injected event
10470 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10471 * infinite loop as KVM will bail from VM-Enter to inject the pending
10472 * exception and start the cycle all over.
10473 *
10474 * Exempt triple faults as they have special handling and won't put the
10475 * vCPU into an infinite loop. Triple fault can be queued when running
10476 * VMX without unrestricted guest, as that requires KVM to emulate Real
10477 * Mode events (see kvm_inject_realmode_interrupt()).
10478 */
10479 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10480 vcpu->arch.exception_vmexit.pending);
10481 return 0;
10482
10483 out:
10484 if (r == -EBUSY) {
10485 *req_immediate_exit = true;
10486 r = 0;
10487 }
10488 return r;
10489 }
10490
process_nmi(struct kvm_vcpu * vcpu)10491 static void process_nmi(struct kvm_vcpu *vcpu)
10492 {
10493 unsigned int limit;
10494
10495 /*
10496 * x86 is limited to one NMI pending, but because KVM can't react to
10497 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10498 * scheduled out, KVM needs to play nice with two queued NMIs showing
10499 * up at the same time. To handle this scenario, allow two NMIs to be
10500 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10501 * waiting for a previous NMI injection to complete (which effectively
10502 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10503 * will request an NMI window to handle the second NMI.
10504 */
10505 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10506 limit = 1;
10507 else
10508 limit = 2;
10509
10510 /*
10511 * Adjust the limit to account for pending virtual NMIs, which aren't
10512 * tracked in vcpu->arch.nmi_pending.
10513 */
10514 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10515 limit--;
10516
10517 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10518 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10519
10520 if (vcpu->arch.nmi_pending &&
10521 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10522 vcpu->arch.nmi_pending--;
10523
10524 if (vcpu->arch.nmi_pending)
10525 kvm_make_request(KVM_REQ_EVENT, vcpu);
10526 }
10527
10528 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10529 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10530 {
10531 return vcpu->arch.nmi_pending +
10532 kvm_x86_call(is_vnmi_pending)(vcpu);
10533 }
10534
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10535 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10536 unsigned long *vcpu_bitmap)
10537 {
10538 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10539 }
10540
kvm_make_scan_ioapic_request(struct kvm * kvm)10541 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10542 {
10543 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10544 }
10545
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10546 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10547 {
10548 struct kvm_lapic *apic = vcpu->arch.apic;
10549 bool activate;
10550
10551 if (!lapic_in_kernel(vcpu))
10552 return;
10553
10554 down_read(&vcpu->kvm->arch.apicv_update_lock);
10555 preempt_disable();
10556
10557 /* Do not activate APICV when APIC is disabled */
10558 activate = kvm_vcpu_apicv_activated(vcpu) &&
10559 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10560
10561 if (apic->apicv_active == activate)
10562 goto out;
10563
10564 apic->apicv_active = activate;
10565 kvm_apic_update_apicv(vcpu);
10566 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10567
10568 /*
10569 * When APICv gets disabled, we may still have injected interrupts
10570 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10571 * still active when the interrupt got accepted. Make sure
10572 * kvm_check_and_inject_events() is called to check for that.
10573 */
10574 if (!apic->apicv_active)
10575 kvm_make_request(KVM_REQ_EVENT, vcpu);
10576
10577 out:
10578 preempt_enable();
10579 up_read(&vcpu->kvm->arch.apicv_update_lock);
10580 }
10581 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10582
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10583 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10584 {
10585 if (!lapic_in_kernel(vcpu))
10586 return;
10587
10588 /*
10589 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10590 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10591 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10592 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10593 * this case so that KVM can use the AVIC doorbell to inject interrupts
10594 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10595 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10596 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10597 * access page is sticky.
10598 */
10599 if (apic_x2apic_mode(vcpu->arch.apic) &&
10600 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10601 kvm_inhibit_apic_access_page(vcpu);
10602
10603 __kvm_vcpu_update_apicv(vcpu);
10604 }
10605
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10606 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10607 enum kvm_apicv_inhibit reason, bool set)
10608 {
10609 unsigned long old, new;
10610
10611 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10612
10613 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10614 return;
10615
10616 old = new = kvm->arch.apicv_inhibit_reasons;
10617
10618 set_or_clear_apicv_inhibit(&new, reason, set);
10619
10620 if (!!old != !!new) {
10621 /*
10622 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10623 * false positives in the sanity check WARN in vcpu_enter_guest().
10624 * This task will wait for all vCPUs to ack the kick IRQ before
10625 * updating apicv_inhibit_reasons, and all other vCPUs will
10626 * block on acquiring apicv_update_lock so that vCPUs can't
10627 * redo vcpu_enter_guest() without seeing the new inhibit state.
10628 *
10629 * Note, holding apicv_update_lock and taking it in the read
10630 * side (handling the request) also prevents other vCPUs from
10631 * servicing the request with a stale apicv_inhibit_reasons.
10632 */
10633 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10634 kvm->arch.apicv_inhibit_reasons = new;
10635 if (new) {
10636 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10637 int idx = srcu_read_lock(&kvm->srcu);
10638
10639 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10640 srcu_read_unlock(&kvm->srcu, idx);
10641 }
10642 } else {
10643 kvm->arch.apicv_inhibit_reasons = new;
10644 }
10645 }
10646
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10647 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10648 enum kvm_apicv_inhibit reason, bool set)
10649 {
10650 if (!enable_apicv)
10651 return;
10652
10653 down_write(&kvm->arch.apicv_update_lock);
10654 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10655 up_write(&kvm->arch.apicv_update_lock);
10656 }
10657 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10658
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10659 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10660 {
10661 if (!kvm_apic_present(vcpu))
10662 return;
10663
10664 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10665
10666 kvm_x86_call(sync_pir_to_irr)(vcpu);
10667
10668 if (irqchip_split(vcpu->kvm))
10669 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10670 else if (ioapic_in_kernel(vcpu->kvm))
10671 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10672
10673 if (is_guest_mode(vcpu))
10674 vcpu->arch.load_eoi_exitmap_pending = true;
10675 else
10676 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10677 }
10678
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10679 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10680 {
10681 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10682 return;
10683
10684 #ifdef CONFIG_KVM_HYPERV
10685 if (to_hv_vcpu(vcpu)) {
10686 u64 eoi_exit_bitmap[4];
10687
10688 bitmap_or((ulong *)eoi_exit_bitmap,
10689 vcpu->arch.ioapic_handled_vectors,
10690 to_hv_synic(vcpu)->vec_bitmap, 256);
10691 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10692 return;
10693 }
10694 #endif
10695 kvm_x86_call(load_eoi_exitmap)(
10696 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10697 }
10698
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10699 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10700 {
10701 kvm_x86_call(guest_memory_reclaimed)(kvm);
10702 }
10703
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10704 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10705 {
10706 if (!lapic_in_kernel(vcpu))
10707 return;
10708
10709 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10710 }
10711
10712 /*
10713 * Called within kvm->srcu read side.
10714 * Returns 1 to let vcpu_run() continue the guest execution loop without
10715 * exiting to the userspace. Otherwise, the value will be returned to the
10716 * userspace.
10717 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10718 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10719 {
10720 int r;
10721 bool req_int_win =
10722 dm_request_for_irq_injection(vcpu) &&
10723 kvm_cpu_accept_dm_intr(vcpu);
10724 fastpath_t exit_fastpath;
10725
10726 bool req_immediate_exit = false;
10727
10728 if (kvm_request_pending(vcpu)) {
10729 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10730 r = -EIO;
10731 goto out;
10732 }
10733
10734 if (kvm_dirty_ring_check_request(vcpu)) {
10735 r = 0;
10736 goto out;
10737 }
10738
10739 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10740 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10741 r = 0;
10742 goto out;
10743 }
10744 }
10745 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10746 kvm_mmu_free_obsolete_roots(vcpu);
10747 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10748 __kvm_migrate_timers(vcpu);
10749 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10750 kvm_update_masterclock(vcpu->kvm);
10751 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10752 kvm_gen_kvmclock_update(vcpu);
10753 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10754 r = kvm_guest_time_update(vcpu);
10755 if (unlikely(r))
10756 goto out;
10757 }
10758 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10759 kvm_mmu_sync_roots(vcpu);
10760 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10761 kvm_mmu_load_pgd(vcpu);
10762
10763 /*
10764 * Note, the order matters here, as flushing "all" TLB entries
10765 * also flushes the "current" TLB entries, i.e. servicing the
10766 * flush "all" will clear any request to flush "current".
10767 */
10768 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10769 kvm_vcpu_flush_tlb_all(vcpu);
10770
10771 kvm_service_local_tlb_flush_requests(vcpu);
10772
10773 /*
10774 * Fall back to a "full" guest flush if Hyper-V's precise
10775 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10776 * the flushes are considered "remote" and not "local" because
10777 * the requests can be initiated from other vCPUs.
10778 */
10779 #ifdef CONFIG_KVM_HYPERV
10780 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10781 kvm_hv_vcpu_flush_tlb(vcpu))
10782 kvm_vcpu_flush_tlb_guest(vcpu);
10783 #endif
10784
10785 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10786 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10787 r = 0;
10788 goto out;
10789 }
10790 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10791 if (is_guest_mode(vcpu))
10792 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10793
10794 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10795 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10796 vcpu->mmio_needed = 0;
10797 r = 0;
10798 goto out;
10799 }
10800 }
10801 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10802 /* Page is swapped out. Do synthetic halt */
10803 vcpu->arch.apf.halted = true;
10804 r = 1;
10805 goto out;
10806 }
10807 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10808 record_steal_time(vcpu);
10809 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10810 kvm_pmu_handle_event(vcpu);
10811 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10812 kvm_pmu_deliver_pmi(vcpu);
10813 #ifdef CONFIG_KVM_SMM
10814 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10815 process_smi(vcpu);
10816 #endif
10817 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10818 process_nmi(vcpu);
10819 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10820 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10821 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10822 vcpu->arch.ioapic_handled_vectors)) {
10823 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10824 vcpu->run->eoi.vector =
10825 vcpu->arch.pending_ioapic_eoi;
10826 r = 0;
10827 goto out;
10828 }
10829 }
10830 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10831 vcpu_scan_ioapic(vcpu);
10832 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10833 vcpu_load_eoi_exitmap(vcpu);
10834 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10835 kvm_vcpu_reload_apic_access_page(vcpu);
10836 #ifdef CONFIG_KVM_HYPERV
10837 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10838 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10839 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10840 vcpu->run->system_event.ndata = 0;
10841 r = 0;
10842 goto out;
10843 }
10844 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10845 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10846 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10847 vcpu->run->system_event.ndata = 0;
10848 r = 0;
10849 goto out;
10850 }
10851 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10852 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10853
10854 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10855 vcpu->run->hyperv = hv_vcpu->exit;
10856 r = 0;
10857 goto out;
10858 }
10859
10860 /*
10861 * KVM_REQ_HV_STIMER has to be processed after
10862 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10863 * depend on the guest clock being up-to-date
10864 */
10865 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10866 kvm_hv_process_stimers(vcpu);
10867 #endif
10868 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10869 kvm_vcpu_update_apicv(vcpu);
10870 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10871 kvm_check_async_pf_completion(vcpu);
10872 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10873 kvm_x86_call(msr_filter_changed)(vcpu);
10874
10875 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10876 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10877
10878 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10879 kvm_vcpu_reset(vcpu, true);
10880 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10881 r = 1;
10882 goto out;
10883 }
10884 }
10885 }
10886
10887 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10888 kvm_xen_has_interrupt(vcpu)) {
10889 ++vcpu->stat.req_event;
10890 r = kvm_apic_accept_events(vcpu);
10891 if (r < 0) {
10892 r = 0;
10893 goto out;
10894 }
10895 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10896 r = 1;
10897 goto out;
10898 }
10899
10900 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10901 if (r < 0) {
10902 r = 0;
10903 goto out;
10904 }
10905 if (req_int_win)
10906 kvm_x86_call(enable_irq_window)(vcpu);
10907
10908 if (kvm_lapic_enabled(vcpu)) {
10909 update_cr8_intercept(vcpu);
10910 kvm_lapic_sync_to_vapic(vcpu);
10911 }
10912 }
10913
10914 r = kvm_mmu_reload(vcpu);
10915 if (unlikely(r)) {
10916 goto cancel_injection;
10917 }
10918
10919 preempt_disable();
10920
10921 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10922
10923 /*
10924 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10925 * IPI are then delayed after guest entry, which ensures that they
10926 * result in virtual interrupt delivery.
10927 */
10928 local_irq_disable();
10929
10930 /* Store vcpu->apicv_active before vcpu->mode. */
10931 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10932
10933 kvm_vcpu_srcu_read_unlock(vcpu);
10934
10935 /*
10936 * 1) We should set ->mode before checking ->requests. Please see
10937 * the comment in kvm_vcpu_exiting_guest_mode().
10938 *
10939 * 2) For APICv, we should set ->mode before checking PID.ON. This
10940 * pairs with the memory barrier implicit in pi_test_and_set_on
10941 * (see vmx_deliver_posted_interrupt).
10942 *
10943 * 3) This also orders the write to mode from any reads to the page
10944 * tables done while the VCPU is running. Please see the comment
10945 * in kvm_flush_remote_tlbs.
10946 */
10947 smp_mb__after_srcu_read_unlock();
10948
10949 /*
10950 * Process pending posted interrupts to handle the case where the
10951 * notification IRQ arrived in the host, or was never sent (because the
10952 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10953 * status, KVM doesn't update assigned devices when APICv is inhibited,
10954 * i.e. they can post interrupts even if APICv is temporarily disabled.
10955 */
10956 if (kvm_lapic_enabled(vcpu))
10957 kvm_x86_call(sync_pir_to_irr)(vcpu);
10958
10959 if (kvm_vcpu_exit_request(vcpu)) {
10960 vcpu->mode = OUTSIDE_GUEST_MODE;
10961 smp_wmb();
10962 local_irq_enable();
10963 preempt_enable();
10964 kvm_vcpu_srcu_read_lock(vcpu);
10965 r = 1;
10966 goto cancel_injection;
10967 }
10968
10969 if (req_immediate_exit)
10970 kvm_make_request(KVM_REQ_EVENT, vcpu);
10971
10972 fpregs_assert_state_consistent();
10973 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10974 switch_fpu_return();
10975
10976 if (vcpu->arch.guest_fpu.xfd_err)
10977 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10978
10979 if (unlikely(vcpu->arch.switch_db_regs)) {
10980 set_debugreg(0, 7);
10981 set_debugreg(vcpu->arch.eff_db[0], 0);
10982 set_debugreg(vcpu->arch.eff_db[1], 1);
10983 set_debugreg(vcpu->arch.eff_db[2], 2);
10984 set_debugreg(vcpu->arch.eff_db[3], 3);
10985 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10986 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10987 kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
10988 } else if (unlikely(hw_breakpoint_active())) {
10989 set_debugreg(0, 7);
10990 }
10991
10992 vcpu->arch.host_debugctl = get_debugctlmsr();
10993
10994 guest_timing_enter_irqoff();
10995
10996 for (;;) {
10997 /*
10998 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10999 * update must kick and wait for all vCPUs before toggling the
11000 * per-VM state, and responding vCPUs must wait for the update
11001 * to complete before servicing KVM_REQ_APICV_UPDATE.
11002 */
11003 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11004 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11005
11006 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
11007 req_immediate_exit);
11008 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11009 break;
11010
11011 if (kvm_lapic_enabled(vcpu))
11012 kvm_x86_call(sync_pir_to_irr)(vcpu);
11013
11014 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11015 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11016 break;
11017 }
11018
11019 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11020 ++vcpu->stat.exits;
11021 }
11022
11023 /*
11024 * Do this here before restoring debug registers on the host. And
11025 * since we do this before handling the vmexit, a DR access vmexit
11026 * can (a) read the correct value of the debug registers, (b) set
11027 * KVM_DEBUGREG_WONT_EXIT again.
11028 */
11029 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11030 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11031 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11032 kvm_update_dr0123(vcpu);
11033 kvm_update_dr7(vcpu);
11034 }
11035
11036 /*
11037 * If the guest has used debug registers, at least dr7
11038 * will be disabled while returning to the host.
11039 * If we don't have active breakpoints in the host, we don't
11040 * care about the messed up debug address registers. But if
11041 * we have some of them active, restore the old state.
11042 */
11043 if (hw_breakpoint_active())
11044 hw_breakpoint_restore();
11045
11046 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11047 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11048
11049 vcpu->mode = OUTSIDE_GUEST_MODE;
11050 smp_wmb();
11051
11052 /*
11053 * Sync xfd before calling handle_exit_irqoff() which may
11054 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11055 * in #NM irqoff handler).
11056 */
11057 if (vcpu->arch.xfd_no_write_intercept)
11058 fpu_sync_guest_vmexit_xfd_state();
11059
11060 kvm_x86_call(handle_exit_irqoff)(vcpu);
11061
11062 if (vcpu->arch.guest_fpu.xfd_err)
11063 wrmsrl(MSR_IA32_XFD_ERR, 0);
11064
11065 /*
11066 * Consume any pending interrupts, including the possible source of
11067 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11068 * An instruction is required after local_irq_enable() to fully unblock
11069 * interrupts on processors that implement an interrupt shadow, the
11070 * stat.exits increment will do nicely.
11071 */
11072 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11073 local_irq_enable();
11074 ++vcpu->stat.exits;
11075 local_irq_disable();
11076 kvm_after_interrupt(vcpu);
11077
11078 /*
11079 * Wait until after servicing IRQs to account guest time so that any
11080 * ticks that occurred while running the guest are properly accounted
11081 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11082 * of accounting via context tracking, but the loss of accuracy is
11083 * acceptable for all known use cases.
11084 */
11085 guest_timing_exit_irqoff();
11086
11087 local_irq_enable();
11088 preempt_enable();
11089
11090 kvm_vcpu_srcu_read_lock(vcpu);
11091
11092 /*
11093 * Call this to ensure WC buffers in guest are evicted after each VM
11094 * Exit, so that the evicted WC writes can be snooped across all cpus
11095 */
11096 smp_mb__after_srcu_read_lock();
11097
11098 /*
11099 * Profile KVM exit RIPs:
11100 */
11101 if (unlikely(prof_on == KVM_PROFILING)) {
11102 unsigned long rip = kvm_rip_read(vcpu);
11103 profile_hit(KVM_PROFILING, (void *)rip);
11104 }
11105
11106 if (unlikely(vcpu->arch.tsc_always_catchup))
11107 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11108
11109 if (vcpu->arch.apic_attention)
11110 kvm_lapic_sync_from_vapic(vcpu);
11111
11112 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11113 return 0;
11114
11115 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11116 return r;
11117
11118 cancel_injection:
11119 if (req_immediate_exit)
11120 kvm_make_request(KVM_REQ_EVENT, vcpu);
11121 kvm_x86_call(cancel_injection)(vcpu);
11122 if (unlikely(vcpu->arch.apic_attention))
11123 kvm_lapic_sync_from_vapic(vcpu);
11124 out:
11125 return r;
11126 }
11127
kvm_vcpu_running(struct kvm_vcpu * vcpu)11128 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11129 {
11130 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11131 !vcpu->arch.apf.halted);
11132 }
11133
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11134 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11135 {
11136 if (!list_empty_careful(&vcpu->async_pf.done))
11137 return true;
11138
11139 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11140 kvm_apic_init_sipi_allowed(vcpu))
11141 return true;
11142
11143 if (vcpu->arch.pv.pv_unhalted)
11144 return true;
11145
11146 if (kvm_is_exception_pending(vcpu))
11147 return true;
11148
11149 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11150 (vcpu->arch.nmi_pending &&
11151 kvm_x86_call(nmi_allowed)(vcpu, false)))
11152 return true;
11153
11154 #ifdef CONFIG_KVM_SMM
11155 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11156 (vcpu->arch.smi_pending &&
11157 kvm_x86_call(smi_allowed)(vcpu, false)))
11158 return true;
11159 #endif
11160
11161 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11162 return true;
11163
11164 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11165 return true;
11166
11167 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11168 return true;
11169
11170 if (kvm_hv_has_stimer_pending(vcpu))
11171 return true;
11172
11173 if (is_guest_mode(vcpu) &&
11174 kvm_x86_ops.nested_ops->has_events &&
11175 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11176 return true;
11177
11178 if (kvm_xen_has_pending_events(vcpu))
11179 return true;
11180
11181 return false;
11182 }
11183
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11184 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11185 {
11186 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11187 }
11188
11189 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11190 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11191 {
11192 bool hv_timer;
11193
11194 if (!kvm_arch_vcpu_runnable(vcpu)) {
11195 /*
11196 * Switch to the software timer before halt-polling/blocking as
11197 * the guest's timer may be a break event for the vCPU, and the
11198 * hypervisor timer runs only when the CPU is in guest mode.
11199 * Switch before halt-polling so that KVM recognizes an expired
11200 * timer before blocking.
11201 */
11202 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11203 if (hv_timer)
11204 kvm_lapic_switch_to_sw_timer(vcpu);
11205
11206 kvm_vcpu_srcu_read_unlock(vcpu);
11207 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11208 kvm_vcpu_halt(vcpu);
11209 else
11210 kvm_vcpu_block(vcpu);
11211 kvm_vcpu_srcu_read_lock(vcpu);
11212
11213 if (hv_timer)
11214 kvm_lapic_switch_to_hv_timer(vcpu);
11215
11216 /*
11217 * If the vCPU is not runnable, a signal or another host event
11218 * of some kind is pending; service it without changing the
11219 * vCPU's activity state.
11220 */
11221 if (!kvm_arch_vcpu_runnable(vcpu))
11222 return 1;
11223 }
11224
11225 /*
11226 * Evaluate nested events before exiting the halted state. This allows
11227 * the halt state to be recorded properly in the VMCS12's activity
11228 * state field (AMD does not have a similar field and a VM-Exit always
11229 * causes a spurious wakeup from HLT).
11230 */
11231 if (is_guest_mode(vcpu)) {
11232 int r = kvm_check_nested_events(vcpu);
11233
11234 WARN_ON_ONCE(r == -EBUSY);
11235 if (r < 0)
11236 return 0;
11237 }
11238
11239 if (kvm_apic_accept_events(vcpu) < 0)
11240 return 0;
11241 switch(vcpu->arch.mp_state) {
11242 case KVM_MP_STATE_HALTED:
11243 case KVM_MP_STATE_AP_RESET_HOLD:
11244 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11245 fallthrough;
11246 case KVM_MP_STATE_RUNNABLE:
11247 vcpu->arch.apf.halted = false;
11248 break;
11249 case KVM_MP_STATE_INIT_RECEIVED:
11250 break;
11251 default:
11252 WARN_ON_ONCE(1);
11253 break;
11254 }
11255 return 1;
11256 }
11257
11258 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11259 static int vcpu_run(struct kvm_vcpu *vcpu)
11260 {
11261 int r;
11262
11263 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11264
11265 for (;;) {
11266 /*
11267 * If another guest vCPU requests a PV TLB flush in the middle
11268 * of instruction emulation, the rest of the emulation could
11269 * use a stale page translation. Assume that any code after
11270 * this point can start executing an instruction.
11271 */
11272 vcpu->arch.at_instruction_boundary = false;
11273 if (kvm_vcpu_running(vcpu)) {
11274 r = vcpu_enter_guest(vcpu);
11275 } else {
11276 r = vcpu_block(vcpu);
11277 }
11278
11279 if (r <= 0)
11280 break;
11281
11282 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11283 if (kvm_xen_has_pending_events(vcpu))
11284 kvm_xen_inject_pending_events(vcpu);
11285
11286 if (kvm_cpu_has_pending_timer(vcpu))
11287 kvm_inject_pending_timer_irqs(vcpu);
11288
11289 if (dm_request_for_irq_injection(vcpu) &&
11290 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11291 r = 0;
11292 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11293 ++vcpu->stat.request_irq_exits;
11294 break;
11295 }
11296
11297 if (__xfer_to_guest_mode_work_pending()) {
11298 kvm_vcpu_srcu_read_unlock(vcpu);
11299 r = xfer_to_guest_mode_handle_work(vcpu);
11300 kvm_vcpu_srcu_read_lock(vcpu);
11301 if (r)
11302 return r;
11303 }
11304 }
11305
11306 return r;
11307 }
11308
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11309 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11310 {
11311 /*
11312 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11313 * local APIC is in-kernel, the run loop will detect the non-runnable
11314 * state and halt the vCPU. Exit to userspace if the local APIC is
11315 * managed by userspace, in which case userspace is responsible for
11316 * handling wake events.
11317 */
11318 ++vcpu->stat.halt_exits;
11319 if (lapic_in_kernel(vcpu)) {
11320 if (kvm_vcpu_has_events(vcpu))
11321 state = KVM_MP_STATE_RUNNABLE;
11322 kvm_set_mp_state(vcpu, state);
11323 return 1;
11324 } else {
11325 vcpu->run->exit_reason = reason;
11326 return 0;
11327 }
11328 }
11329
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11330 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11331 {
11332 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11333 }
11334 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11335
kvm_emulate_halt(struct kvm_vcpu * vcpu)11336 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11337 {
11338 int ret = kvm_skip_emulated_instruction(vcpu);
11339 /*
11340 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11341 * KVM_EXIT_DEBUG here.
11342 */
11343 return kvm_emulate_halt_noskip(vcpu) && ret;
11344 }
11345 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11346
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11347 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11348 {
11349 int ret;
11350
11351 kvm_vcpu_srcu_read_lock(vcpu);
11352 ret = kvm_emulate_halt(vcpu);
11353 kvm_vcpu_srcu_read_unlock(vcpu);
11354
11355 if (!ret)
11356 return EXIT_FASTPATH_EXIT_USERSPACE;
11357
11358 if (kvm_vcpu_running(vcpu))
11359 return EXIT_FASTPATH_REENTER_GUEST;
11360
11361 return EXIT_FASTPATH_EXIT_HANDLED;
11362 }
11363 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11364
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11365 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11366 {
11367 int ret = kvm_skip_emulated_instruction(vcpu);
11368
11369 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11370 KVM_EXIT_AP_RESET_HOLD) && ret;
11371 }
11372 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11373
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11374 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11375 {
11376 return kvm_vcpu_apicv_active(vcpu) &&
11377 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11378 }
11379
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11380 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11381 {
11382 return vcpu->arch.preempted_in_kernel;
11383 }
11384
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11385 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11386 {
11387 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11388 return true;
11389
11390 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11391 #ifdef CONFIG_KVM_SMM
11392 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11393 #endif
11394 kvm_test_request(KVM_REQ_EVENT, vcpu))
11395 return true;
11396
11397 return kvm_arch_dy_has_pending_interrupt(vcpu);
11398 }
11399
complete_emulated_io(struct kvm_vcpu * vcpu)11400 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11401 {
11402 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11403 }
11404
complete_emulated_pio(struct kvm_vcpu * vcpu)11405 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11406 {
11407 BUG_ON(!vcpu->arch.pio.count);
11408
11409 return complete_emulated_io(vcpu);
11410 }
11411
11412 /*
11413 * Implements the following, as a state machine:
11414 *
11415 * read:
11416 * for each fragment
11417 * for each mmio piece in the fragment
11418 * write gpa, len
11419 * exit
11420 * copy data
11421 * execute insn
11422 *
11423 * write:
11424 * for each fragment
11425 * for each mmio piece in the fragment
11426 * write gpa, len
11427 * copy data
11428 * exit
11429 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11430 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11431 {
11432 struct kvm_run *run = vcpu->run;
11433 struct kvm_mmio_fragment *frag;
11434 unsigned len;
11435
11436 BUG_ON(!vcpu->mmio_needed);
11437
11438 /* Complete previous fragment */
11439 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11440 len = min(8u, frag->len);
11441 if (!vcpu->mmio_is_write)
11442 memcpy(frag->data, run->mmio.data, len);
11443
11444 if (frag->len <= 8) {
11445 /* Switch to the next fragment. */
11446 frag++;
11447 vcpu->mmio_cur_fragment++;
11448 } else {
11449 /* Go forward to the next mmio piece. */
11450 frag->data += len;
11451 frag->gpa += len;
11452 frag->len -= len;
11453 }
11454
11455 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11456 vcpu->mmio_needed = 0;
11457
11458 /* FIXME: return into emulator if single-stepping. */
11459 if (vcpu->mmio_is_write)
11460 return 1;
11461 vcpu->mmio_read_completed = 1;
11462 return complete_emulated_io(vcpu);
11463 }
11464
11465 run->exit_reason = KVM_EXIT_MMIO;
11466 run->mmio.phys_addr = frag->gpa;
11467 if (vcpu->mmio_is_write)
11468 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11469 run->mmio.len = min(8u, frag->len);
11470 run->mmio.is_write = vcpu->mmio_is_write;
11471 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11472 return 0;
11473 }
11474
11475 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11476 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11477 {
11478 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11479 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11480 trace_kvm_fpu(1);
11481 }
11482
11483 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11484 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11485 {
11486 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11487 ++vcpu->stat.fpu_reload;
11488 trace_kvm_fpu(0);
11489 }
11490
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11491 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11492 {
11493 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11494 struct kvm_run *kvm_run = vcpu->run;
11495 u32 sync_valid_fields;
11496 int r;
11497
11498 r = kvm_mmu_post_init_vm(vcpu->kvm);
11499 if (r)
11500 return r;
11501
11502 vcpu_load(vcpu);
11503 kvm_sigset_activate(vcpu);
11504 kvm_run->flags = 0;
11505 kvm_load_guest_fpu(vcpu);
11506
11507 kvm_vcpu_srcu_read_lock(vcpu);
11508 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11509 if (!vcpu->wants_to_run) {
11510 r = -EINTR;
11511 goto out;
11512 }
11513
11514 /*
11515 * Don't bother switching APIC timer emulation from the
11516 * hypervisor timer to the software timer, the only way for the
11517 * APIC timer to be active is if userspace stuffed vCPU state,
11518 * i.e. put the vCPU into a nonsensical state. Only an INIT
11519 * will transition the vCPU out of UNINITIALIZED (without more
11520 * state stuffing from userspace), which will reset the local
11521 * APIC and thus cancel the timer or drop the IRQ (if the timer
11522 * already expired).
11523 */
11524 kvm_vcpu_srcu_read_unlock(vcpu);
11525 kvm_vcpu_block(vcpu);
11526 kvm_vcpu_srcu_read_lock(vcpu);
11527
11528 if (kvm_apic_accept_events(vcpu) < 0) {
11529 r = 0;
11530 goto out;
11531 }
11532 r = -EAGAIN;
11533 if (signal_pending(current)) {
11534 r = -EINTR;
11535 kvm_run->exit_reason = KVM_EXIT_INTR;
11536 ++vcpu->stat.signal_exits;
11537 }
11538 goto out;
11539 }
11540
11541 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11542 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11543 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11544 r = -EINVAL;
11545 goto out;
11546 }
11547
11548 if (kvm_run->kvm_dirty_regs) {
11549 r = sync_regs(vcpu);
11550 if (r != 0)
11551 goto out;
11552 }
11553
11554 /* re-sync apic's tpr */
11555 if (!lapic_in_kernel(vcpu)) {
11556 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11557 r = -EINVAL;
11558 goto out;
11559 }
11560 }
11561
11562 /*
11563 * If userspace set a pending exception and L2 is active, convert it to
11564 * a pending VM-Exit if L1 wants to intercept the exception.
11565 */
11566 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11567 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11568 ex->error_code)) {
11569 kvm_queue_exception_vmexit(vcpu, ex->vector,
11570 ex->has_error_code, ex->error_code,
11571 ex->has_payload, ex->payload);
11572 ex->injected = false;
11573 ex->pending = false;
11574 }
11575 vcpu->arch.exception_from_userspace = false;
11576
11577 if (unlikely(vcpu->arch.complete_userspace_io)) {
11578 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11579 vcpu->arch.complete_userspace_io = NULL;
11580 r = cui(vcpu);
11581 if (r <= 0)
11582 goto out;
11583 } else {
11584 WARN_ON_ONCE(vcpu->arch.pio.count);
11585 WARN_ON_ONCE(vcpu->mmio_needed);
11586 }
11587
11588 if (!vcpu->wants_to_run) {
11589 r = -EINTR;
11590 goto out;
11591 }
11592
11593 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11594 if (r <= 0)
11595 goto out;
11596
11597 r = vcpu_run(vcpu);
11598
11599 out:
11600 kvm_put_guest_fpu(vcpu);
11601 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11602 store_regs(vcpu);
11603 post_kvm_run_save(vcpu);
11604 kvm_vcpu_srcu_read_unlock(vcpu);
11605
11606 kvm_sigset_deactivate(vcpu);
11607 vcpu_put(vcpu);
11608 return r;
11609 }
11610
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11611 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11612 {
11613 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11614 /*
11615 * We are here if userspace calls get_regs() in the middle of
11616 * instruction emulation. Registers state needs to be copied
11617 * back from emulation context to vcpu. Userspace shouldn't do
11618 * that usually, but some bad designed PV devices (vmware
11619 * backdoor interface) need this to work
11620 */
11621 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11622 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11623 }
11624 regs->rax = kvm_rax_read(vcpu);
11625 regs->rbx = kvm_rbx_read(vcpu);
11626 regs->rcx = kvm_rcx_read(vcpu);
11627 regs->rdx = kvm_rdx_read(vcpu);
11628 regs->rsi = kvm_rsi_read(vcpu);
11629 regs->rdi = kvm_rdi_read(vcpu);
11630 regs->rsp = kvm_rsp_read(vcpu);
11631 regs->rbp = kvm_rbp_read(vcpu);
11632 #ifdef CONFIG_X86_64
11633 regs->r8 = kvm_r8_read(vcpu);
11634 regs->r9 = kvm_r9_read(vcpu);
11635 regs->r10 = kvm_r10_read(vcpu);
11636 regs->r11 = kvm_r11_read(vcpu);
11637 regs->r12 = kvm_r12_read(vcpu);
11638 regs->r13 = kvm_r13_read(vcpu);
11639 regs->r14 = kvm_r14_read(vcpu);
11640 regs->r15 = kvm_r15_read(vcpu);
11641 #endif
11642
11643 regs->rip = kvm_rip_read(vcpu);
11644 regs->rflags = kvm_get_rflags(vcpu);
11645 }
11646
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11647 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11648 {
11649 if (vcpu->kvm->arch.has_protected_state &&
11650 vcpu->arch.guest_state_protected)
11651 return -EINVAL;
11652
11653 vcpu_load(vcpu);
11654 __get_regs(vcpu, regs);
11655 vcpu_put(vcpu);
11656 return 0;
11657 }
11658
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11659 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11660 {
11661 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11662 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11663
11664 kvm_rax_write(vcpu, regs->rax);
11665 kvm_rbx_write(vcpu, regs->rbx);
11666 kvm_rcx_write(vcpu, regs->rcx);
11667 kvm_rdx_write(vcpu, regs->rdx);
11668 kvm_rsi_write(vcpu, regs->rsi);
11669 kvm_rdi_write(vcpu, regs->rdi);
11670 kvm_rsp_write(vcpu, regs->rsp);
11671 kvm_rbp_write(vcpu, regs->rbp);
11672 #ifdef CONFIG_X86_64
11673 kvm_r8_write(vcpu, regs->r8);
11674 kvm_r9_write(vcpu, regs->r9);
11675 kvm_r10_write(vcpu, regs->r10);
11676 kvm_r11_write(vcpu, regs->r11);
11677 kvm_r12_write(vcpu, regs->r12);
11678 kvm_r13_write(vcpu, regs->r13);
11679 kvm_r14_write(vcpu, regs->r14);
11680 kvm_r15_write(vcpu, regs->r15);
11681 #endif
11682
11683 kvm_rip_write(vcpu, regs->rip);
11684 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11685
11686 vcpu->arch.exception.pending = false;
11687 vcpu->arch.exception_vmexit.pending = false;
11688
11689 kvm_make_request(KVM_REQ_EVENT, vcpu);
11690 }
11691
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11692 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11693 {
11694 if (vcpu->kvm->arch.has_protected_state &&
11695 vcpu->arch.guest_state_protected)
11696 return -EINVAL;
11697
11698 vcpu_load(vcpu);
11699 __set_regs(vcpu, regs);
11700 vcpu_put(vcpu);
11701 return 0;
11702 }
11703
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11704 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11705 {
11706 struct desc_ptr dt;
11707
11708 if (vcpu->arch.guest_state_protected)
11709 goto skip_protected_regs;
11710
11711 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11712 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11713 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11714 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11715 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11716 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11717
11718 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11719 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11720
11721 kvm_x86_call(get_idt)(vcpu, &dt);
11722 sregs->idt.limit = dt.size;
11723 sregs->idt.base = dt.address;
11724 kvm_x86_call(get_gdt)(vcpu, &dt);
11725 sregs->gdt.limit = dt.size;
11726 sregs->gdt.base = dt.address;
11727
11728 sregs->cr2 = vcpu->arch.cr2;
11729 sregs->cr3 = kvm_read_cr3(vcpu);
11730
11731 skip_protected_regs:
11732 sregs->cr0 = kvm_read_cr0(vcpu);
11733 sregs->cr4 = kvm_read_cr4(vcpu);
11734 sregs->cr8 = kvm_get_cr8(vcpu);
11735 sregs->efer = vcpu->arch.efer;
11736 sregs->apic_base = vcpu->arch.apic_base;
11737 }
11738
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11739 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11740 {
11741 __get_sregs_common(vcpu, sregs);
11742
11743 if (vcpu->arch.guest_state_protected)
11744 return;
11745
11746 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11747 set_bit(vcpu->arch.interrupt.nr,
11748 (unsigned long *)sregs->interrupt_bitmap);
11749 }
11750
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11751 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11752 {
11753 int i;
11754
11755 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11756
11757 if (vcpu->arch.guest_state_protected)
11758 return;
11759
11760 if (is_pae_paging(vcpu)) {
11761 for (i = 0 ; i < 4 ; i++)
11762 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11763 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11764 }
11765 }
11766
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11767 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11768 struct kvm_sregs *sregs)
11769 {
11770 if (vcpu->kvm->arch.has_protected_state &&
11771 vcpu->arch.guest_state_protected)
11772 return -EINVAL;
11773
11774 vcpu_load(vcpu);
11775 __get_sregs(vcpu, sregs);
11776 vcpu_put(vcpu);
11777 return 0;
11778 }
11779
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11780 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11781 struct kvm_mp_state *mp_state)
11782 {
11783 int r;
11784
11785 vcpu_load(vcpu);
11786 if (kvm_mpx_supported())
11787 kvm_load_guest_fpu(vcpu);
11788
11789 r = kvm_apic_accept_events(vcpu);
11790 if (r < 0)
11791 goto out;
11792 r = 0;
11793
11794 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11795 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11796 vcpu->arch.pv.pv_unhalted)
11797 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11798 else
11799 mp_state->mp_state = vcpu->arch.mp_state;
11800
11801 out:
11802 if (kvm_mpx_supported())
11803 kvm_put_guest_fpu(vcpu);
11804 vcpu_put(vcpu);
11805 return r;
11806 }
11807
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11808 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11809 struct kvm_mp_state *mp_state)
11810 {
11811 int ret = -EINVAL;
11812
11813 vcpu_load(vcpu);
11814
11815 switch (mp_state->mp_state) {
11816 case KVM_MP_STATE_UNINITIALIZED:
11817 case KVM_MP_STATE_HALTED:
11818 case KVM_MP_STATE_AP_RESET_HOLD:
11819 case KVM_MP_STATE_INIT_RECEIVED:
11820 case KVM_MP_STATE_SIPI_RECEIVED:
11821 if (!lapic_in_kernel(vcpu))
11822 goto out;
11823 break;
11824
11825 case KVM_MP_STATE_RUNNABLE:
11826 break;
11827
11828 default:
11829 goto out;
11830 }
11831
11832 /*
11833 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11834 * forcing the guest into INIT/SIPI if those events are supposed to be
11835 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11836 * if an SMI is pending as well.
11837 */
11838 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11839 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11840 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11841 goto out;
11842
11843 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11844 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
11845 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11846 } else
11847 kvm_set_mp_state(vcpu, mp_state->mp_state);
11848 kvm_make_request(KVM_REQ_EVENT, vcpu);
11849
11850 ret = 0;
11851 out:
11852 vcpu_put(vcpu);
11853 return ret;
11854 }
11855
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11856 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11857 int reason, bool has_error_code, u32 error_code)
11858 {
11859 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11860 int ret;
11861
11862 init_emulate_ctxt(vcpu);
11863
11864 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11865 has_error_code, error_code);
11866
11867 /*
11868 * Report an error userspace if MMIO is needed, as KVM doesn't support
11869 * MMIO during a task switch (or any other complex operation).
11870 */
11871 if (ret || vcpu->mmio_needed) {
11872 vcpu->mmio_needed = false;
11873 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11874 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11875 vcpu->run->internal.ndata = 0;
11876 return 0;
11877 }
11878
11879 kvm_rip_write(vcpu, ctxt->eip);
11880 kvm_set_rflags(vcpu, ctxt->eflags);
11881 return 1;
11882 }
11883 EXPORT_SYMBOL_GPL(kvm_task_switch);
11884
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11885 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11886 {
11887 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11888 /*
11889 * When EFER.LME and CR0.PG are set, the processor is in
11890 * 64-bit mode (though maybe in a 32-bit code segment).
11891 * CR4.PAE and EFER.LMA must be set.
11892 */
11893 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11894 return false;
11895 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11896 return false;
11897 } else {
11898 /*
11899 * Not in 64-bit mode: EFER.LMA is clear and the code
11900 * segment cannot be 64-bit.
11901 */
11902 if (sregs->efer & EFER_LMA || sregs->cs.l)
11903 return false;
11904 }
11905
11906 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11907 kvm_is_valid_cr0(vcpu, sregs->cr0);
11908 }
11909
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11910 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11911 int *mmu_reset_needed, bool update_pdptrs)
11912 {
11913 int idx;
11914 struct desc_ptr dt;
11915
11916 if (!kvm_is_valid_sregs(vcpu, sregs))
11917 return -EINVAL;
11918
11919 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11920 return -EINVAL;
11921
11922 if (vcpu->arch.guest_state_protected)
11923 return 0;
11924
11925 dt.size = sregs->idt.limit;
11926 dt.address = sregs->idt.base;
11927 kvm_x86_call(set_idt)(vcpu, &dt);
11928 dt.size = sregs->gdt.limit;
11929 dt.address = sregs->gdt.base;
11930 kvm_x86_call(set_gdt)(vcpu, &dt);
11931
11932 vcpu->arch.cr2 = sregs->cr2;
11933 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11934 vcpu->arch.cr3 = sregs->cr3;
11935 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11936 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11937
11938 kvm_set_cr8(vcpu, sregs->cr8);
11939
11940 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11941 kvm_x86_call(set_efer)(vcpu, sregs->efer);
11942
11943 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11944 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11945
11946 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11947 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11948
11949 if (update_pdptrs) {
11950 idx = srcu_read_lock(&vcpu->kvm->srcu);
11951 if (is_pae_paging(vcpu)) {
11952 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11953 *mmu_reset_needed = 1;
11954 }
11955 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11956 }
11957
11958 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11959 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11960 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11961 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11962 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11963 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11964
11965 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11966 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11967
11968 update_cr8_intercept(vcpu);
11969
11970 /* Older userspace won't unhalt the vcpu on reset. */
11971 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11972 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11973 !is_protmode(vcpu))
11974 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11975
11976 return 0;
11977 }
11978
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11979 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11980 {
11981 int pending_vec, max_bits;
11982 int mmu_reset_needed = 0;
11983 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11984
11985 if (ret)
11986 return ret;
11987
11988 if (mmu_reset_needed) {
11989 kvm_mmu_reset_context(vcpu);
11990 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11991 }
11992
11993 max_bits = KVM_NR_INTERRUPTS;
11994 pending_vec = find_first_bit(
11995 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11996
11997 if (pending_vec < max_bits) {
11998 kvm_queue_interrupt(vcpu, pending_vec, false);
11999 pr_debug("Set back pending irq %d\n", pending_vec);
12000 kvm_make_request(KVM_REQ_EVENT, vcpu);
12001 }
12002 return 0;
12003 }
12004
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12005 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12006 {
12007 int mmu_reset_needed = 0;
12008 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12009 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12010 !(sregs2->efer & EFER_LMA);
12011 int i, ret;
12012
12013 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12014 return -EINVAL;
12015
12016 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12017 return -EINVAL;
12018
12019 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12020 &mmu_reset_needed, !valid_pdptrs);
12021 if (ret)
12022 return ret;
12023
12024 if (valid_pdptrs) {
12025 for (i = 0; i < 4 ; i++)
12026 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12027
12028 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12029 mmu_reset_needed = 1;
12030 vcpu->arch.pdptrs_from_userspace = true;
12031 }
12032 if (mmu_reset_needed) {
12033 kvm_mmu_reset_context(vcpu);
12034 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12035 }
12036 return 0;
12037 }
12038
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12039 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12040 struct kvm_sregs *sregs)
12041 {
12042 int ret;
12043
12044 if (vcpu->kvm->arch.has_protected_state &&
12045 vcpu->arch.guest_state_protected)
12046 return -EINVAL;
12047
12048 vcpu_load(vcpu);
12049 ret = __set_sregs(vcpu, sregs);
12050 vcpu_put(vcpu);
12051 return ret;
12052 }
12053
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12054 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12055 {
12056 bool set = false;
12057 struct kvm_vcpu *vcpu;
12058 unsigned long i;
12059
12060 if (!enable_apicv)
12061 return;
12062
12063 down_write(&kvm->arch.apicv_update_lock);
12064
12065 kvm_for_each_vcpu(i, vcpu, kvm) {
12066 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12067 set = true;
12068 break;
12069 }
12070 }
12071 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12072 up_write(&kvm->arch.apicv_update_lock);
12073 }
12074
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12075 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12076 struct kvm_guest_debug *dbg)
12077 {
12078 unsigned long rflags;
12079 int i, r;
12080
12081 if (vcpu->arch.guest_state_protected)
12082 return -EINVAL;
12083
12084 vcpu_load(vcpu);
12085
12086 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12087 r = -EBUSY;
12088 if (kvm_is_exception_pending(vcpu))
12089 goto out;
12090 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12091 kvm_queue_exception(vcpu, DB_VECTOR);
12092 else
12093 kvm_queue_exception(vcpu, BP_VECTOR);
12094 }
12095
12096 /*
12097 * Read rflags as long as potentially injected trace flags are still
12098 * filtered out.
12099 */
12100 rflags = kvm_get_rflags(vcpu);
12101
12102 vcpu->guest_debug = dbg->control;
12103 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12104 vcpu->guest_debug = 0;
12105
12106 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12107 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12108 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12109 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12110 } else {
12111 for (i = 0; i < KVM_NR_DB_REGS; i++)
12112 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12113 }
12114 kvm_update_dr7(vcpu);
12115
12116 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12117 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12118
12119 /*
12120 * Trigger an rflags update that will inject or remove the trace
12121 * flags.
12122 */
12123 kvm_set_rflags(vcpu, rflags);
12124
12125 kvm_x86_call(update_exception_bitmap)(vcpu);
12126
12127 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12128
12129 r = 0;
12130
12131 out:
12132 vcpu_put(vcpu);
12133 return r;
12134 }
12135
12136 /*
12137 * Translate a guest virtual address to a guest physical address.
12138 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12139 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12140 struct kvm_translation *tr)
12141 {
12142 unsigned long vaddr = tr->linear_address;
12143 gpa_t gpa;
12144 int idx;
12145
12146 vcpu_load(vcpu);
12147
12148 idx = srcu_read_lock(&vcpu->kvm->srcu);
12149 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12150 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12151 tr->physical_address = gpa;
12152 tr->valid = gpa != INVALID_GPA;
12153 tr->writeable = 1;
12154 tr->usermode = 0;
12155
12156 vcpu_put(vcpu);
12157 return 0;
12158 }
12159
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12160 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12161 {
12162 struct fxregs_state *fxsave;
12163
12164 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12165 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12166
12167 vcpu_load(vcpu);
12168
12169 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12170 memcpy(fpu->fpr, fxsave->st_space, 128);
12171 fpu->fcw = fxsave->cwd;
12172 fpu->fsw = fxsave->swd;
12173 fpu->ftwx = fxsave->twd;
12174 fpu->last_opcode = fxsave->fop;
12175 fpu->last_ip = fxsave->rip;
12176 fpu->last_dp = fxsave->rdp;
12177 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12178
12179 vcpu_put(vcpu);
12180 return 0;
12181 }
12182
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12183 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12184 {
12185 struct fxregs_state *fxsave;
12186
12187 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12188 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12189
12190 vcpu_load(vcpu);
12191
12192 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12193
12194 memcpy(fxsave->st_space, fpu->fpr, 128);
12195 fxsave->cwd = fpu->fcw;
12196 fxsave->swd = fpu->fsw;
12197 fxsave->twd = fpu->ftwx;
12198 fxsave->fop = fpu->last_opcode;
12199 fxsave->rip = fpu->last_ip;
12200 fxsave->rdp = fpu->last_dp;
12201 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12202
12203 vcpu_put(vcpu);
12204 return 0;
12205 }
12206
store_regs(struct kvm_vcpu * vcpu)12207 static void store_regs(struct kvm_vcpu *vcpu)
12208 {
12209 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12210
12211 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12212 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12213
12214 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12215 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12216
12217 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12218 kvm_vcpu_ioctl_x86_get_vcpu_events(
12219 vcpu, &vcpu->run->s.regs.events);
12220 }
12221
sync_regs(struct kvm_vcpu * vcpu)12222 static int sync_regs(struct kvm_vcpu *vcpu)
12223 {
12224 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12225 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12226 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12227 }
12228
12229 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12230 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12231
12232 if (__set_sregs(vcpu, &sregs))
12233 return -EINVAL;
12234
12235 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12236 }
12237
12238 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12239 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12240
12241 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12242 return -EINVAL;
12243
12244 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12245 }
12246
12247 return 0;
12248 }
12249
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12250 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12251 {
12252 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12253 pr_warn_once("SMP vm created on host with unstable TSC; "
12254 "guest TSC will not be reliable\n");
12255
12256 if (!kvm->arch.max_vcpu_ids)
12257 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12258
12259 if (id >= kvm->arch.max_vcpu_ids)
12260 return -EINVAL;
12261
12262 return kvm_x86_call(vcpu_precreate)(kvm);
12263 }
12264
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12265 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12266 {
12267 struct page *page;
12268 int r;
12269
12270 vcpu->arch.last_vmentry_cpu = -1;
12271 vcpu->arch.regs_avail = ~0;
12272 vcpu->arch.regs_dirty = ~0;
12273
12274 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12275
12276 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12277 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12278 else
12279 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12280
12281 r = kvm_mmu_create(vcpu);
12282 if (r < 0)
12283 return r;
12284
12285 r = kvm_create_lapic(vcpu);
12286 if (r < 0)
12287 goto fail_mmu_destroy;
12288
12289 r = -ENOMEM;
12290
12291 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12292 if (!page)
12293 goto fail_free_lapic;
12294 vcpu->arch.pio_data = page_address(page);
12295
12296 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12297 GFP_KERNEL_ACCOUNT);
12298 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12299 GFP_KERNEL_ACCOUNT);
12300 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12301 goto fail_free_mce_banks;
12302 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12303
12304 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12305 GFP_KERNEL_ACCOUNT))
12306 goto fail_free_mce_banks;
12307
12308 if (!alloc_emulate_ctxt(vcpu))
12309 goto free_wbinvd_dirty_mask;
12310
12311 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12312 pr_err("failed to allocate vcpu's fpu\n");
12313 goto free_emulate_ctxt;
12314 }
12315
12316 kvm_async_pf_hash_reset(vcpu);
12317
12318 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12319 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12320 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12321 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12322 }
12323 kvm_pmu_init(vcpu);
12324
12325 vcpu->arch.pending_external_vector = -1;
12326 vcpu->arch.preempted_in_kernel = false;
12327
12328 #if IS_ENABLED(CONFIG_HYPERV)
12329 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12330 #endif
12331
12332 r = kvm_x86_call(vcpu_create)(vcpu);
12333 if (r)
12334 goto free_guest_fpu;
12335
12336 kvm_xen_init_vcpu(vcpu);
12337 vcpu_load(vcpu);
12338 kvm_vcpu_after_set_cpuid(vcpu);
12339 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12340 kvm_vcpu_reset(vcpu, false);
12341 kvm_init_mmu(vcpu);
12342 vcpu_put(vcpu);
12343 return 0;
12344
12345 free_guest_fpu:
12346 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12347 free_emulate_ctxt:
12348 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12349 free_wbinvd_dirty_mask:
12350 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12351 fail_free_mce_banks:
12352 kfree(vcpu->arch.mce_banks);
12353 kfree(vcpu->arch.mci_ctl2_banks);
12354 free_page((unsigned long)vcpu->arch.pio_data);
12355 fail_free_lapic:
12356 kvm_free_lapic(vcpu);
12357 fail_mmu_destroy:
12358 kvm_mmu_destroy(vcpu);
12359 return r;
12360 }
12361
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12362 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12363 {
12364 struct kvm *kvm = vcpu->kvm;
12365
12366 if (mutex_lock_killable(&vcpu->mutex))
12367 return;
12368 vcpu_load(vcpu);
12369 kvm_synchronize_tsc(vcpu, NULL);
12370 vcpu_put(vcpu);
12371
12372 /* poll control enabled by default */
12373 vcpu->arch.msr_kvm_poll_control = 1;
12374
12375 mutex_unlock(&vcpu->mutex);
12376
12377 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12378 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12379 KVMCLOCK_SYNC_PERIOD);
12380 }
12381
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12382 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12383 {
12384 int idx;
12385
12386 kvm_clear_async_pf_completion_queue(vcpu);
12387 kvm_mmu_unload(vcpu);
12388
12389 kvmclock_reset(vcpu);
12390
12391 kvm_x86_call(vcpu_free)(vcpu);
12392
12393 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12394 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12395 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12396
12397 kvm_xen_destroy_vcpu(vcpu);
12398 kvm_hv_vcpu_uninit(vcpu);
12399 kvm_pmu_destroy(vcpu);
12400 kfree(vcpu->arch.mce_banks);
12401 kfree(vcpu->arch.mci_ctl2_banks);
12402 kvm_free_lapic(vcpu);
12403 idx = srcu_read_lock(&vcpu->kvm->srcu);
12404 kvm_mmu_destroy(vcpu);
12405 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12406 free_page((unsigned long)vcpu->arch.pio_data);
12407 kvfree(vcpu->arch.cpuid_entries);
12408 }
12409
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12410 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12411 {
12412 struct kvm_cpuid_entry2 *cpuid_0x1;
12413 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12414 unsigned long new_cr0;
12415
12416 /*
12417 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12418 * to handle side effects. RESET emulation hits those flows and relies
12419 * on emulated/virtualized registers, including those that are loaded
12420 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12421 * to detect improper or missing initialization.
12422 */
12423 WARN_ON_ONCE(!init_event &&
12424 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12425
12426 /*
12427 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12428 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12429 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12430 * bits), i.e. virtualization is disabled.
12431 */
12432 if (is_guest_mode(vcpu))
12433 kvm_leave_nested(vcpu);
12434
12435 kvm_lapic_reset(vcpu, init_event);
12436
12437 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12438 vcpu->arch.hflags = 0;
12439
12440 vcpu->arch.smi_pending = 0;
12441 vcpu->arch.smi_count = 0;
12442 atomic_set(&vcpu->arch.nmi_queued, 0);
12443 vcpu->arch.nmi_pending = 0;
12444 vcpu->arch.nmi_injected = false;
12445 kvm_clear_interrupt_queue(vcpu);
12446 kvm_clear_exception_queue(vcpu);
12447
12448 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12449 kvm_update_dr0123(vcpu);
12450 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12451 vcpu->arch.dr7 = DR7_FIXED_1;
12452 kvm_update_dr7(vcpu);
12453
12454 vcpu->arch.cr2 = 0;
12455
12456 kvm_make_request(KVM_REQ_EVENT, vcpu);
12457 vcpu->arch.apf.msr_en_val = 0;
12458 vcpu->arch.apf.msr_int_val = 0;
12459 vcpu->arch.st.msr_val = 0;
12460
12461 kvmclock_reset(vcpu);
12462
12463 kvm_clear_async_pf_completion_queue(vcpu);
12464 kvm_async_pf_hash_reset(vcpu);
12465 vcpu->arch.apf.halted = false;
12466
12467 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12468 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12469
12470 /*
12471 * All paths that lead to INIT are required to load the guest's
12472 * FPU state (because most paths are buried in KVM_RUN).
12473 */
12474 if (init_event)
12475 kvm_put_guest_fpu(vcpu);
12476
12477 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12478 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12479
12480 if (init_event)
12481 kvm_load_guest_fpu(vcpu);
12482 }
12483
12484 if (!init_event) {
12485 vcpu->arch.smbase = 0x30000;
12486
12487 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12488
12489 vcpu->arch.msr_misc_features_enables = 0;
12490 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12491 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12492
12493 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12494 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12495 }
12496
12497 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12498 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12499 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12500
12501 /*
12502 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12503 * if no CPUID match is found. Note, it's impossible to get a match at
12504 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12505 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12506 * on RESET. But, go through the motions in case that's ever remedied.
12507 */
12508 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12509 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12510
12511 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12512
12513 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12514 kvm_rip_write(vcpu, 0xfff0);
12515
12516 vcpu->arch.cr3 = 0;
12517 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12518
12519 /*
12520 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12521 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12522 * (or qualify) that with a footnote stating that CD/NW are preserved.
12523 */
12524 new_cr0 = X86_CR0_ET;
12525 if (init_event)
12526 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12527 else
12528 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12529
12530 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12531 kvm_x86_call(set_cr4)(vcpu, 0);
12532 kvm_x86_call(set_efer)(vcpu, 0);
12533 kvm_x86_call(update_exception_bitmap)(vcpu);
12534
12535 /*
12536 * On the standard CR0/CR4/EFER modification paths, there are several
12537 * complex conditions determining whether the MMU has to be reset and/or
12538 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12539 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12540 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12541 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12542 */
12543 if (old_cr0 & X86_CR0_PG) {
12544 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12545 kvm_mmu_reset_context(vcpu);
12546 }
12547
12548 /*
12549 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12550 * APM states the TLBs are untouched by INIT, but it also states that
12551 * the TLBs are flushed on "External initialization of the processor."
12552 * Flush the guest TLB regardless of vendor, there is no meaningful
12553 * benefit in relying on the guest to flush the TLB immediately after
12554 * INIT. A spurious TLB flush is benign and likely negligible from a
12555 * performance perspective.
12556 */
12557 if (init_event)
12558 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12559 }
12560 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12561
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12562 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12563 {
12564 struct kvm_segment cs;
12565
12566 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12567 cs.selector = vector << 8;
12568 cs.base = vector << 12;
12569 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12570 kvm_rip_write(vcpu, 0);
12571 }
12572 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12573
kvm_arch_enable_virtualization(void)12574 void kvm_arch_enable_virtualization(void)
12575 {
12576 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12577 }
12578
kvm_arch_disable_virtualization(void)12579 void kvm_arch_disable_virtualization(void)
12580 {
12581 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12582 }
12583
kvm_arch_enable_virtualization_cpu(void)12584 int kvm_arch_enable_virtualization_cpu(void)
12585 {
12586 struct kvm *kvm;
12587 struct kvm_vcpu *vcpu;
12588 unsigned long i;
12589 int ret;
12590 u64 local_tsc;
12591 u64 max_tsc = 0;
12592 bool stable, backwards_tsc = false;
12593
12594 kvm_user_return_msr_cpu_online();
12595
12596 ret = kvm_x86_check_processor_compatibility();
12597 if (ret)
12598 return ret;
12599
12600 ret = kvm_x86_call(enable_virtualization_cpu)();
12601 if (ret != 0)
12602 return ret;
12603
12604 local_tsc = rdtsc();
12605 stable = !kvm_check_tsc_unstable();
12606 list_for_each_entry(kvm, &vm_list, vm_list) {
12607 kvm_for_each_vcpu(i, vcpu, kvm) {
12608 if (!stable && vcpu->cpu == smp_processor_id())
12609 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12610 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12611 backwards_tsc = true;
12612 if (vcpu->arch.last_host_tsc > max_tsc)
12613 max_tsc = vcpu->arch.last_host_tsc;
12614 }
12615 }
12616 }
12617
12618 /*
12619 * Sometimes, even reliable TSCs go backwards. This happens on
12620 * platforms that reset TSC during suspend or hibernate actions, but
12621 * maintain synchronization. We must compensate. Fortunately, we can
12622 * detect that condition here, which happens early in CPU bringup,
12623 * before any KVM threads can be running. Unfortunately, we can't
12624 * bring the TSCs fully up to date with real time, as we aren't yet far
12625 * enough into CPU bringup that we know how much real time has actually
12626 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12627 * variables that haven't been updated yet.
12628 *
12629 * So we simply find the maximum observed TSC above, then record the
12630 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12631 * the adjustment will be applied. Note that we accumulate
12632 * adjustments, in case multiple suspend cycles happen before some VCPU
12633 * gets a chance to run again. In the event that no KVM threads get a
12634 * chance to run, we will miss the entire elapsed period, as we'll have
12635 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12636 * loose cycle time. This isn't too big a deal, since the loss will be
12637 * uniform across all VCPUs (not to mention the scenario is extremely
12638 * unlikely). It is possible that a second hibernate recovery happens
12639 * much faster than a first, causing the observed TSC here to be
12640 * smaller; this would require additional padding adjustment, which is
12641 * why we set last_host_tsc to the local tsc observed here.
12642 *
12643 * N.B. - this code below runs only on platforms with reliable TSC,
12644 * as that is the only way backwards_tsc is set above. Also note
12645 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12646 * have the same delta_cyc adjustment applied if backwards_tsc
12647 * is detected. Note further, this adjustment is only done once,
12648 * as we reset last_host_tsc on all VCPUs to stop this from being
12649 * called multiple times (one for each physical CPU bringup).
12650 *
12651 * Platforms with unreliable TSCs don't have to deal with this, they
12652 * will be compensated by the logic in vcpu_load, which sets the TSC to
12653 * catchup mode. This will catchup all VCPUs to real time, but cannot
12654 * guarantee that they stay in perfect synchronization.
12655 */
12656 if (backwards_tsc) {
12657 u64 delta_cyc = max_tsc - local_tsc;
12658 list_for_each_entry(kvm, &vm_list, vm_list) {
12659 kvm->arch.backwards_tsc_observed = true;
12660 kvm_for_each_vcpu(i, vcpu, kvm) {
12661 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12662 vcpu->arch.last_host_tsc = local_tsc;
12663 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12664 }
12665
12666 /*
12667 * We have to disable TSC offset matching.. if you were
12668 * booting a VM while issuing an S4 host suspend....
12669 * you may have some problem. Solving this issue is
12670 * left as an exercise to the reader.
12671 */
12672 kvm->arch.last_tsc_nsec = 0;
12673 kvm->arch.last_tsc_write = 0;
12674 }
12675
12676 }
12677 return 0;
12678 }
12679
kvm_arch_disable_virtualization_cpu(void)12680 void kvm_arch_disable_virtualization_cpu(void)
12681 {
12682 kvm_x86_call(disable_virtualization_cpu)();
12683 drop_user_return_notifiers();
12684 }
12685
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12686 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12687 {
12688 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12689 }
12690
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12691 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12692 {
12693 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12694 }
12695
kvm_arch_free_vm(struct kvm * kvm)12696 void kvm_arch_free_vm(struct kvm *kvm)
12697 {
12698 #if IS_ENABLED(CONFIG_HYPERV)
12699 kfree(kvm->arch.hv_pa_pg);
12700 #endif
12701 __kvm_arch_free_vm(kvm);
12702 }
12703
12704
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12705 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12706 {
12707 int ret;
12708 unsigned long flags;
12709
12710 if (!kvm_is_vm_type_supported(type))
12711 return -EINVAL;
12712
12713 kvm->arch.vm_type = type;
12714 kvm->arch.has_private_mem =
12715 (type == KVM_X86_SW_PROTECTED_VM);
12716 /* Decided by the vendor code for other VM types. */
12717 kvm->arch.pre_fault_allowed =
12718 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12719
12720 ret = kvm_page_track_init(kvm);
12721 if (ret)
12722 goto out;
12723
12724 kvm_mmu_init_vm(kvm);
12725
12726 ret = kvm_x86_call(vm_init)(kvm);
12727 if (ret)
12728 goto out_uninit_mmu;
12729
12730 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12731 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12732
12733 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12734 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12735 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12736 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12737 &kvm->arch.irq_sources_bitmap);
12738
12739 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12740 mutex_init(&kvm->arch.apic_map_lock);
12741 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12742 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12743
12744 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12745 pvclock_update_vm_gtod_copy(kvm);
12746 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12747
12748 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12749 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12750 kvm->arch.guest_can_read_msr_platform_info = true;
12751 kvm->arch.enable_pmu = enable_pmu;
12752
12753 #if IS_ENABLED(CONFIG_HYPERV)
12754 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12755 kvm->arch.hv_root_tdp = INVALID_PAGE;
12756 #endif
12757
12758 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12759 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12760
12761 kvm_apicv_init(kvm);
12762 kvm_hv_init_vm(kvm);
12763 kvm_xen_init_vm(kvm);
12764
12765 if (ignore_msrs && !report_ignored_msrs) {
12766 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12767 "a supported configuration. Lying to the guest about the existence of MSRs\n"
12768 "may cause the guest operating system to hang or produce errors. If a guest\n"
12769 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12770 }
12771
12772 once_init(&kvm->arch.nx_once);
12773 return 0;
12774
12775 out_uninit_mmu:
12776 kvm_mmu_uninit_vm(kvm);
12777 kvm_page_track_cleanup(kvm);
12778 out:
12779 return ret;
12780 }
12781
12782 /**
12783 * __x86_set_memory_region: Setup KVM internal memory slot
12784 *
12785 * @kvm: the kvm pointer to the VM.
12786 * @id: the slot ID to setup.
12787 * @gpa: the GPA to install the slot (unused when @size == 0).
12788 * @size: the size of the slot. Set to zero to uninstall a slot.
12789 *
12790 * This function helps to setup a KVM internal memory slot. Specify
12791 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12792 * slot. The return code can be one of the following:
12793 *
12794 * HVA: on success (uninstall will return a bogus HVA)
12795 * -errno: on error
12796 *
12797 * The caller should always use IS_ERR() to check the return value
12798 * before use. Note, the KVM internal memory slots are guaranteed to
12799 * remain valid and unchanged until the VM is destroyed, i.e., the
12800 * GPA->HVA translation will not change. However, the HVA is a user
12801 * address, i.e. its accessibility is not guaranteed, and must be
12802 * accessed via __copy_{to,from}_user().
12803 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12804 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12805 u32 size)
12806 {
12807 int i, r;
12808 unsigned long hva, old_npages;
12809 struct kvm_memslots *slots = kvm_memslots(kvm);
12810 struct kvm_memory_slot *slot;
12811
12812 lockdep_assert_held(&kvm->slots_lock);
12813
12814 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12815 return ERR_PTR_USR(-EINVAL);
12816
12817 slot = id_to_memslot(slots, id);
12818 if (size) {
12819 if (slot && slot->npages)
12820 return ERR_PTR_USR(-EEXIST);
12821
12822 /*
12823 * MAP_SHARED to prevent internal slot pages from being moved
12824 * by fork()/COW.
12825 */
12826 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12827 MAP_SHARED | MAP_ANONYMOUS, 0);
12828 if (IS_ERR_VALUE(hva))
12829 return (void __user *)hva;
12830 } else {
12831 if (!slot || !slot->npages)
12832 return NULL;
12833
12834 old_npages = slot->npages;
12835 hva = slot->userspace_addr;
12836 }
12837
12838 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12839 struct kvm_userspace_memory_region2 m;
12840
12841 m.slot = id | (i << 16);
12842 m.flags = 0;
12843 m.guest_phys_addr = gpa;
12844 m.userspace_addr = hva;
12845 m.memory_size = size;
12846 r = kvm_set_internal_memslot(kvm, &m);
12847 if (r < 0)
12848 return ERR_PTR_USR(r);
12849 }
12850
12851 if (!size)
12852 vm_munmap(hva, old_npages * PAGE_SIZE);
12853
12854 return (void __user *)hva;
12855 }
12856 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12857
kvm_arch_pre_destroy_vm(struct kvm * kvm)12858 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12859 {
12860 /*
12861 * Stop all background workers and kthreads before destroying vCPUs, as
12862 * iterating over vCPUs in a different task while vCPUs are being freed
12863 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to
12864 * be stopped before IRQ routing is freed.
12865 */
12866 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12867 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12868
12869 kvm_free_pit(kvm);
12870
12871 kvm_mmu_pre_destroy_vm(kvm);
12872 }
12873
kvm_arch_destroy_vm(struct kvm * kvm)12874 void kvm_arch_destroy_vm(struct kvm *kvm)
12875 {
12876 if (current->mm == kvm->mm) {
12877 /*
12878 * Free memory regions allocated on behalf of userspace,
12879 * unless the memory map has changed due to process exit
12880 * or fd copying.
12881 */
12882 mutex_lock(&kvm->slots_lock);
12883 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12884 0, 0);
12885 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12886 0, 0);
12887 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12888 mutex_unlock(&kvm->slots_lock);
12889 }
12890 kvm_destroy_vcpus(kvm);
12891 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12892 kvm_pic_destroy(kvm);
12893 kvm_ioapic_destroy(kvm);
12894 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12895 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12896 kvm_mmu_uninit_vm(kvm);
12897 kvm_page_track_cleanup(kvm);
12898 kvm_xen_destroy_vm(kvm);
12899 kvm_hv_destroy_vm(kvm);
12900 kvm_x86_call(vm_destroy)(kvm);
12901 }
12902
memslot_rmap_free(struct kvm_memory_slot * slot)12903 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12904 {
12905 int i;
12906
12907 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12908 vfree(slot->arch.rmap[i]);
12909 slot->arch.rmap[i] = NULL;
12910 }
12911 }
12912
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12913 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12914 {
12915 int i;
12916
12917 memslot_rmap_free(slot);
12918
12919 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12920 vfree(slot->arch.lpage_info[i - 1]);
12921 slot->arch.lpage_info[i - 1] = NULL;
12922 }
12923
12924 kvm_page_track_free_memslot(slot);
12925 }
12926
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12927 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12928 {
12929 const int sz = sizeof(*slot->arch.rmap[0]);
12930 int i;
12931
12932 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12933 int level = i + 1;
12934 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12935
12936 if (slot->arch.rmap[i])
12937 continue;
12938
12939 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12940 if (!slot->arch.rmap[i]) {
12941 memslot_rmap_free(slot);
12942 return -ENOMEM;
12943 }
12944 }
12945
12946 return 0;
12947 }
12948
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12949 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12950 struct kvm_memory_slot *slot)
12951 {
12952 unsigned long npages = slot->npages;
12953 int i, r;
12954
12955 /*
12956 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12957 * old arrays will be freed by kvm_set_memory_region() if installing
12958 * the new memslot is successful.
12959 */
12960 memset(&slot->arch, 0, sizeof(slot->arch));
12961
12962 if (kvm_memslots_have_rmaps(kvm)) {
12963 r = memslot_rmap_alloc(slot, npages);
12964 if (r)
12965 return r;
12966 }
12967
12968 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12969 struct kvm_lpage_info *linfo;
12970 unsigned long ugfn;
12971 int lpages;
12972 int level = i + 1;
12973
12974 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12975
12976 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12977 if (!linfo)
12978 goto out_free;
12979
12980 slot->arch.lpage_info[i - 1] = linfo;
12981
12982 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12983 linfo[0].disallow_lpage = 1;
12984 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12985 linfo[lpages - 1].disallow_lpage = 1;
12986 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12987 /*
12988 * If the gfn and userspace address are not aligned wrt each
12989 * other, disable large page support for this slot.
12990 */
12991 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12992 unsigned long j;
12993
12994 for (j = 0; j < lpages; ++j)
12995 linfo[j].disallow_lpage = 1;
12996 }
12997 }
12998
12999 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13000 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13001 #endif
13002
13003 if (kvm_page_track_create_memslot(kvm, slot, npages))
13004 goto out_free;
13005
13006 return 0;
13007
13008 out_free:
13009 memslot_rmap_free(slot);
13010
13011 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13012 vfree(slot->arch.lpage_info[i - 1]);
13013 slot->arch.lpage_info[i - 1] = NULL;
13014 }
13015 return -ENOMEM;
13016 }
13017
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13018 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13019 {
13020 struct kvm_vcpu *vcpu;
13021 unsigned long i;
13022
13023 /*
13024 * memslots->generation has been incremented.
13025 * mmio generation may have reached its maximum value.
13026 */
13027 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13028
13029 /* Force re-initialization of steal_time cache */
13030 kvm_for_each_vcpu(i, vcpu, kvm)
13031 kvm_vcpu_kick(vcpu);
13032 }
13033
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13034 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13035 const struct kvm_memory_slot *old,
13036 struct kvm_memory_slot *new,
13037 enum kvm_mr_change change)
13038 {
13039 /*
13040 * KVM doesn't support moving memslots when there are external page
13041 * trackers attached to the VM, i.e. if KVMGT is in use.
13042 */
13043 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13044 return -EINVAL;
13045
13046 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13047 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13048 return -EINVAL;
13049
13050 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13051 return -EINVAL;
13052
13053 return kvm_alloc_memslot_metadata(kvm, new);
13054 }
13055
13056 if (change == KVM_MR_FLAGS_ONLY)
13057 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13058 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13059 return -EIO;
13060
13061 return 0;
13062 }
13063
13064
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13065 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13066 {
13067 int nr_slots;
13068
13069 if (!kvm_x86_ops.cpu_dirty_log_size)
13070 return;
13071
13072 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13073 if ((enable && nr_slots == 1) || !nr_slots)
13074 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13075 }
13076
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13077 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13078 struct kvm_memory_slot *old,
13079 const struct kvm_memory_slot *new,
13080 enum kvm_mr_change change)
13081 {
13082 u32 old_flags = old ? old->flags : 0;
13083 u32 new_flags = new ? new->flags : 0;
13084 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13085
13086 /*
13087 * Update CPU dirty logging if dirty logging is being toggled. This
13088 * applies to all operations.
13089 */
13090 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13091 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13092
13093 /*
13094 * Nothing more to do for RO slots (which can't be dirtied and can't be
13095 * made writable) or CREATE/MOVE/DELETE of a slot.
13096 *
13097 * For a memslot with dirty logging disabled:
13098 * CREATE: No dirty mappings will already exist.
13099 * MOVE/DELETE: The old mappings will already have been cleaned up by
13100 * kvm_arch_flush_shadow_memslot()
13101 *
13102 * For a memslot with dirty logging enabled:
13103 * CREATE: No shadow pages exist, thus nothing to write-protect
13104 * and no dirty bits to clear.
13105 * MOVE/DELETE: The old mappings will already have been cleaned up by
13106 * kvm_arch_flush_shadow_memslot().
13107 */
13108 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13109 return;
13110
13111 /*
13112 * READONLY and non-flags changes were filtered out above, and the only
13113 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13114 * logging isn't being toggled on or off.
13115 */
13116 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13117 return;
13118
13119 if (!log_dirty_pages) {
13120 /*
13121 * Recover huge page mappings in the slot now that dirty logging
13122 * is disabled, i.e. now that KVM does not have to track guest
13123 * writes at 4KiB granularity.
13124 *
13125 * Dirty logging might be disabled by userspace if an ongoing VM
13126 * live migration is cancelled and the VM must continue running
13127 * on the source.
13128 */
13129 kvm_mmu_recover_huge_pages(kvm, new);
13130 } else {
13131 /*
13132 * Initially-all-set does not require write protecting any page,
13133 * because they're all assumed to be dirty.
13134 */
13135 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13136 return;
13137
13138 if (READ_ONCE(eager_page_split))
13139 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13140
13141 if (kvm_x86_ops.cpu_dirty_log_size) {
13142 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13143 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13144 } else {
13145 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13146 }
13147
13148 /*
13149 * Unconditionally flush the TLBs after enabling dirty logging.
13150 * A flush is almost always going to be necessary (see below),
13151 * and unconditionally flushing allows the helpers to omit
13152 * the subtly complex checks when removing write access.
13153 *
13154 * Do the flush outside of mmu_lock to reduce the amount of
13155 * time mmu_lock is held. Flushing after dropping mmu_lock is
13156 * safe as KVM only needs to guarantee the slot is fully
13157 * write-protected before returning to userspace, i.e. before
13158 * userspace can consume the dirty status.
13159 *
13160 * Flushing outside of mmu_lock requires KVM to be careful when
13161 * making decisions based on writable status of an SPTE, e.g. a
13162 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13163 *
13164 * Specifically, KVM also write-protects guest page tables to
13165 * monitor changes when using shadow paging, and must guarantee
13166 * no CPUs can write to those page before mmu_lock is dropped.
13167 * Because CPUs may have stale TLB entries at this point, a
13168 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13169 *
13170 * KVM also allows making SPTES writable outside of mmu_lock,
13171 * e.g. to allow dirty logging without taking mmu_lock.
13172 *
13173 * To handle these scenarios, KVM uses a separate software-only
13174 * bit (MMU-writable) to track if a SPTE is !writable due to
13175 * a guest page table being write-protected (KVM clears the
13176 * MMU-writable flag when write-protecting for shadow paging).
13177 *
13178 * The use of MMU-writable is also the primary motivation for
13179 * the unconditional flush. Because KVM must guarantee that a
13180 * CPU doesn't contain stale, writable TLB entries for a
13181 * !MMU-writable SPTE, KVM must flush if it encounters any
13182 * MMU-writable SPTE regardless of whether the actual hardware
13183 * writable bit was set. I.e. KVM is almost guaranteed to need
13184 * to flush, while unconditionally flushing allows the "remove
13185 * write access" helpers to ignore MMU-writable entirely.
13186 *
13187 * See is_writable_pte() for more details (the case involving
13188 * access-tracked SPTEs is particularly relevant).
13189 */
13190 kvm_flush_remote_tlbs_memslot(kvm, new);
13191 }
13192 }
13193
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13194 void kvm_arch_commit_memory_region(struct kvm *kvm,
13195 struct kvm_memory_slot *old,
13196 const struct kvm_memory_slot *new,
13197 enum kvm_mr_change change)
13198 {
13199 if (change == KVM_MR_DELETE)
13200 kvm_page_track_delete_slot(kvm, old);
13201
13202 if (!kvm->arch.n_requested_mmu_pages &&
13203 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13204 unsigned long nr_mmu_pages;
13205
13206 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13207 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13208 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13209 }
13210
13211 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13212
13213 /* Free the arrays associated with the old memslot. */
13214 if (change == KVM_MR_MOVE)
13215 kvm_arch_free_memslot(kvm, old);
13216 }
13217
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13218 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13219 {
13220 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13221
13222 if (vcpu->arch.guest_state_protected)
13223 return true;
13224
13225 return kvm_x86_call(get_cpl)(vcpu) == 0;
13226 }
13227
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13228 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13229 {
13230 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13231
13232 if (vcpu->arch.guest_state_protected)
13233 return 0;
13234
13235 return kvm_rip_read(vcpu);
13236 }
13237
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13238 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13239 {
13240 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13241 }
13242
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13243 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13244 {
13245 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13246 }
13247
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13248 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13249 {
13250 /* Can't read the RIP when guest state is protected, just return 0 */
13251 if (vcpu->arch.guest_state_protected)
13252 return 0;
13253
13254 if (is_64_bit_mode(vcpu))
13255 return kvm_rip_read(vcpu);
13256 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13257 kvm_rip_read(vcpu));
13258 }
13259 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13260
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13261 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13262 {
13263 return kvm_get_linear_rip(vcpu) == linear_rip;
13264 }
13265 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13266
kvm_get_rflags(struct kvm_vcpu * vcpu)13267 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13268 {
13269 unsigned long rflags;
13270
13271 rflags = kvm_x86_call(get_rflags)(vcpu);
13272 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13273 rflags &= ~X86_EFLAGS_TF;
13274 return rflags;
13275 }
13276 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13277
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13278 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13279 {
13280 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13281 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13282 rflags |= X86_EFLAGS_TF;
13283 kvm_x86_call(set_rflags)(vcpu, rflags);
13284 }
13285
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13286 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13287 {
13288 __kvm_set_rflags(vcpu, rflags);
13289 kvm_make_request(KVM_REQ_EVENT, vcpu);
13290 }
13291 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13292
kvm_async_pf_hash_fn(gfn_t gfn)13293 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13294 {
13295 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13296
13297 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13298 }
13299
kvm_async_pf_next_probe(u32 key)13300 static inline u32 kvm_async_pf_next_probe(u32 key)
13301 {
13302 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13303 }
13304
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13305 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13306 {
13307 u32 key = kvm_async_pf_hash_fn(gfn);
13308
13309 while (vcpu->arch.apf.gfns[key] != ~0)
13310 key = kvm_async_pf_next_probe(key);
13311
13312 vcpu->arch.apf.gfns[key] = gfn;
13313 }
13314
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13315 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13316 {
13317 int i;
13318 u32 key = kvm_async_pf_hash_fn(gfn);
13319
13320 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13321 (vcpu->arch.apf.gfns[key] != gfn &&
13322 vcpu->arch.apf.gfns[key] != ~0); i++)
13323 key = kvm_async_pf_next_probe(key);
13324
13325 return key;
13326 }
13327
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13328 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13329 {
13330 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13331 }
13332
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13333 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13334 {
13335 u32 i, j, k;
13336
13337 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13338
13339 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13340 return;
13341
13342 while (true) {
13343 vcpu->arch.apf.gfns[i] = ~0;
13344 do {
13345 j = kvm_async_pf_next_probe(j);
13346 if (vcpu->arch.apf.gfns[j] == ~0)
13347 return;
13348 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13349 /*
13350 * k lies cyclically in ]i,j]
13351 * | i.k.j |
13352 * |....j i.k.| or |.k..j i...|
13353 */
13354 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13355 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13356 i = j;
13357 }
13358 }
13359
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13360 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13361 {
13362 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13363
13364 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13365 sizeof(reason));
13366 }
13367
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13368 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13369 {
13370 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13371
13372 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13373 &token, offset, sizeof(token));
13374 }
13375
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13376 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13377 {
13378 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13379 u32 val;
13380
13381 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13382 &val, offset, sizeof(val)))
13383 return false;
13384
13385 return !val;
13386 }
13387
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13388 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13389 {
13390
13391 if (!kvm_pv_async_pf_enabled(vcpu))
13392 return false;
13393
13394 if (!vcpu->arch.apf.send_always &&
13395 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13396 return false;
13397
13398 if (is_guest_mode(vcpu)) {
13399 /*
13400 * L1 needs to opt into the special #PF vmexits that are
13401 * used to deliver async page faults.
13402 */
13403 return vcpu->arch.apf.delivery_as_pf_vmexit;
13404 } else {
13405 /*
13406 * Play it safe in case the guest temporarily disables paging.
13407 * The real mode IDT in particular is unlikely to have a #PF
13408 * exception setup.
13409 */
13410 return is_paging(vcpu);
13411 }
13412 }
13413
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13414 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13415 {
13416 if (unlikely(!lapic_in_kernel(vcpu) ||
13417 kvm_event_needs_reinjection(vcpu) ||
13418 kvm_is_exception_pending(vcpu)))
13419 return false;
13420
13421 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13422 return false;
13423
13424 /*
13425 * If interrupts are off we cannot even use an artificial
13426 * halt state.
13427 */
13428 return kvm_arch_interrupt_allowed(vcpu);
13429 }
13430
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13431 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13432 struct kvm_async_pf *work)
13433 {
13434 struct x86_exception fault;
13435
13436 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13437 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13438
13439 if (kvm_can_deliver_async_pf(vcpu) &&
13440 !apf_put_user_notpresent(vcpu)) {
13441 fault.vector = PF_VECTOR;
13442 fault.error_code_valid = true;
13443 fault.error_code = 0;
13444 fault.nested_page_fault = false;
13445 fault.address = work->arch.token;
13446 fault.async_page_fault = true;
13447 kvm_inject_page_fault(vcpu, &fault);
13448 return true;
13449 } else {
13450 /*
13451 * It is not possible to deliver a paravirtualized asynchronous
13452 * page fault, but putting the guest in an artificial halt state
13453 * can be beneficial nevertheless: if an interrupt arrives, we
13454 * can deliver it timely and perhaps the guest will schedule
13455 * another process. When the instruction that triggered a page
13456 * fault is retried, hopefully the page will be ready in the host.
13457 */
13458 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13459 return false;
13460 }
13461 }
13462
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13463 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13464 struct kvm_async_pf *work)
13465 {
13466 struct kvm_lapic_irq irq = {
13467 .delivery_mode = APIC_DM_FIXED,
13468 .vector = vcpu->arch.apf.vec
13469 };
13470
13471 if (work->wakeup_all)
13472 work->arch.token = ~0; /* broadcast wakeup */
13473 else
13474 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13475 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13476
13477 if ((work->wakeup_all || work->notpresent_injected) &&
13478 kvm_pv_async_pf_enabled(vcpu) &&
13479 !apf_put_user_ready(vcpu, work->arch.token)) {
13480 vcpu->arch.apf.pageready_pending = true;
13481 kvm_apic_set_irq(vcpu, &irq, NULL);
13482 }
13483
13484 vcpu->arch.apf.halted = false;
13485 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13486 }
13487
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13488 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13489 {
13490 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13491 if (!vcpu->arch.apf.pageready_pending)
13492 kvm_vcpu_kick(vcpu);
13493 }
13494
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13495 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13496 {
13497 if (!kvm_pv_async_pf_enabled(vcpu))
13498 return true;
13499 else
13500 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13501 }
13502
kvm_arch_start_assignment(struct kvm * kvm)13503 void kvm_arch_start_assignment(struct kvm *kvm)
13504 {
13505 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13506 kvm_x86_call(pi_start_assignment)(kvm);
13507 }
13508 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13509
kvm_arch_end_assignment(struct kvm * kvm)13510 void kvm_arch_end_assignment(struct kvm *kvm)
13511 {
13512 atomic_dec(&kvm->arch.assigned_device_count);
13513 }
13514 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13515
kvm_arch_has_assigned_device(struct kvm * kvm)13516 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13517 {
13518 return raw_atomic_read(&kvm->arch.assigned_device_count);
13519 }
13520 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13521
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13522 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13523 {
13524 /*
13525 * Non-coherent DMA assignment and de-assignment may affect whether or
13526 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13527 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13528 * (or last) non-coherent device is (un)registered to so that new SPTEs
13529 * with the correct "ignore guest PAT" setting are created.
13530 */
13531 if (kvm_mmu_may_ignore_guest_pat())
13532 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13533 }
13534
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13535 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13536 {
13537 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13538 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13539 }
13540 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13541
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13542 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13543 {
13544 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13545 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13546 }
13547 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13548
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13549 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13550 {
13551 return atomic_read(&kvm->arch.noncoherent_dma_count);
13552 }
13553 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13554
kvm_arch_has_irq_bypass(void)13555 bool kvm_arch_has_irq_bypass(void)
13556 {
13557 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13558 }
13559
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13560 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13561 struct irq_bypass_producer *prod)
13562 {
13563 struct kvm_kernel_irqfd *irqfd =
13564 container_of(cons, struct kvm_kernel_irqfd, consumer);
13565 int ret;
13566
13567 irqfd->producer = prod;
13568 kvm_arch_start_assignment(irqfd->kvm);
13569 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13570 prod->irq, irqfd->gsi, 1);
13571 if (ret)
13572 kvm_arch_end_assignment(irqfd->kvm);
13573
13574 return ret;
13575 }
13576
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13577 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13578 struct irq_bypass_producer *prod)
13579 {
13580 int ret;
13581 struct kvm_kernel_irqfd *irqfd =
13582 container_of(cons, struct kvm_kernel_irqfd, consumer);
13583
13584 WARN_ON(irqfd->producer != prod);
13585 irqfd->producer = NULL;
13586
13587 /*
13588 * When producer of consumer is unregistered, we change back to
13589 * remapped mode, so we can re-use the current implementation
13590 * when the irq is masked/disabled or the consumer side (KVM
13591 * int this case doesn't want to receive the interrupts.
13592 */
13593 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13594 prod->irq, irqfd->gsi, 0);
13595 if (ret)
13596 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13597 " fails: %d\n", irqfd->consumer.token, ret);
13598
13599 kvm_arch_end_assignment(irqfd->kvm);
13600 }
13601
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13602 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13603 uint32_t guest_irq, bool set)
13604 {
13605 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13606 }
13607
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13608 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13609 struct kvm_kernel_irq_routing_entry *new)
13610 {
13611 if (new->type != KVM_IRQ_ROUTING_MSI)
13612 return true;
13613
13614 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13615 }
13616
kvm_vector_hashing_enabled(void)13617 bool kvm_vector_hashing_enabled(void)
13618 {
13619 return vector_hashing;
13620 }
13621
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13622 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13623 {
13624 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13625 }
13626 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13627
13628 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13629 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13630 {
13631 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13632 }
13633 #endif
13634
13635 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13636 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13637 {
13638 kvm_x86_call(gmem_invalidate)(start, end);
13639 }
13640 #endif
13641
kvm_spec_ctrl_test_value(u64 value)13642 int kvm_spec_ctrl_test_value(u64 value)
13643 {
13644 /*
13645 * test that setting IA32_SPEC_CTRL to given value
13646 * is allowed by the host processor
13647 */
13648
13649 u64 saved_value;
13650 unsigned long flags;
13651 int ret = 0;
13652
13653 local_irq_save(flags);
13654
13655 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13656 ret = 1;
13657 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13658 ret = 1;
13659 else
13660 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13661
13662 local_irq_restore(flags);
13663
13664 return ret;
13665 }
13666 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13667
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13668 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13669 {
13670 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13671 struct x86_exception fault;
13672 u64 access = error_code &
13673 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13674
13675 if (!(error_code & PFERR_PRESENT_MASK) ||
13676 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13677 /*
13678 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13679 * tables probably do not match the TLB. Just proceed
13680 * with the error code that the processor gave.
13681 */
13682 fault.vector = PF_VECTOR;
13683 fault.error_code_valid = true;
13684 fault.error_code = error_code;
13685 fault.nested_page_fault = false;
13686 fault.address = gva;
13687 fault.async_page_fault = false;
13688 }
13689 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13690 }
13691 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13692
13693 /*
13694 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13695 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13696 * indicates whether exit to userspace is needed.
13697 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13698 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13699 struct x86_exception *e)
13700 {
13701 if (r == X86EMUL_PROPAGATE_FAULT) {
13702 if (KVM_BUG_ON(!e, vcpu->kvm))
13703 return -EIO;
13704
13705 kvm_inject_emulated_page_fault(vcpu, e);
13706 return 1;
13707 }
13708
13709 /*
13710 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13711 * while handling a VMX instruction KVM could've handled the request
13712 * correctly by exiting to userspace and performing I/O but there
13713 * doesn't seem to be a real use-case behind such requests, just return
13714 * KVM_EXIT_INTERNAL_ERROR for now.
13715 */
13716 kvm_prepare_emulation_failure_exit(vcpu);
13717
13718 return 0;
13719 }
13720 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13721
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13722 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13723 {
13724 bool pcid_enabled;
13725 struct x86_exception e;
13726 struct {
13727 u64 pcid;
13728 u64 gla;
13729 } operand;
13730 int r;
13731
13732 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13733 if (r != X86EMUL_CONTINUE)
13734 return kvm_handle_memory_failure(vcpu, r, &e);
13735
13736 if (operand.pcid >> 12 != 0) {
13737 kvm_inject_gp(vcpu, 0);
13738 return 1;
13739 }
13740
13741 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13742
13743 switch (type) {
13744 case INVPCID_TYPE_INDIV_ADDR:
13745 /*
13746 * LAM doesn't apply to addresses that are inputs to TLB
13747 * invalidation.
13748 */
13749 if ((!pcid_enabled && (operand.pcid != 0)) ||
13750 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13751 kvm_inject_gp(vcpu, 0);
13752 return 1;
13753 }
13754 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13755 return kvm_skip_emulated_instruction(vcpu);
13756
13757 case INVPCID_TYPE_SINGLE_CTXT:
13758 if (!pcid_enabled && (operand.pcid != 0)) {
13759 kvm_inject_gp(vcpu, 0);
13760 return 1;
13761 }
13762
13763 kvm_invalidate_pcid(vcpu, operand.pcid);
13764 return kvm_skip_emulated_instruction(vcpu);
13765
13766 case INVPCID_TYPE_ALL_NON_GLOBAL:
13767 /*
13768 * Currently, KVM doesn't mark global entries in the shadow
13769 * page tables, so a non-global flush just degenerates to a
13770 * global flush. If needed, we could optimize this later by
13771 * keeping track of global entries in shadow page tables.
13772 */
13773
13774 fallthrough;
13775 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13776 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13777 return kvm_skip_emulated_instruction(vcpu);
13778
13779 default:
13780 kvm_inject_gp(vcpu, 0);
13781 return 1;
13782 }
13783 }
13784 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13785
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13786 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13787 {
13788 struct kvm_run *run = vcpu->run;
13789 struct kvm_mmio_fragment *frag;
13790 unsigned int len;
13791
13792 BUG_ON(!vcpu->mmio_needed);
13793
13794 /* Complete previous fragment */
13795 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13796 len = min(8u, frag->len);
13797 if (!vcpu->mmio_is_write)
13798 memcpy(frag->data, run->mmio.data, len);
13799
13800 if (frag->len <= 8) {
13801 /* Switch to the next fragment. */
13802 frag++;
13803 vcpu->mmio_cur_fragment++;
13804 } else {
13805 /* Go forward to the next mmio piece. */
13806 frag->data += len;
13807 frag->gpa += len;
13808 frag->len -= len;
13809 }
13810
13811 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13812 vcpu->mmio_needed = 0;
13813
13814 // VMG change, at this point, we're always done
13815 // RIP has already been advanced
13816 return 1;
13817 }
13818
13819 // More MMIO is needed
13820 run->mmio.phys_addr = frag->gpa;
13821 run->mmio.len = min(8u, frag->len);
13822 run->mmio.is_write = vcpu->mmio_is_write;
13823 if (run->mmio.is_write)
13824 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13825 run->exit_reason = KVM_EXIT_MMIO;
13826
13827 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13828
13829 return 0;
13830 }
13831
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13832 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13833 void *data)
13834 {
13835 int handled;
13836 struct kvm_mmio_fragment *frag;
13837
13838 if (!data)
13839 return -EINVAL;
13840
13841 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13842 if (handled == bytes)
13843 return 1;
13844
13845 bytes -= handled;
13846 gpa += handled;
13847 data += handled;
13848
13849 /*TODO: Check if need to increment number of frags */
13850 frag = vcpu->mmio_fragments;
13851 vcpu->mmio_nr_fragments = 1;
13852 frag->len = bytes;
13853 frag->gpa = gpa;
13854 frag->data = data;
13855
13856 vcpu->mmio_needed = 1;
13857 vcpu->mmio_cur_fragment = 0;
13858
13859 vcpu->run->mmio.phys_addr = gpa;
13860 vcpu->run->mmio.len = min(8u, frag->len);
13861 vcpu->run->mmio.is_write = 1;
13862 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13863 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13864
13865 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13866
13867 return 0;
13868 }
13869 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13870
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13871 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13872 void *data)
13873 {
13874 int handled;
13875 struct kvm_mmio_fragment *frag;
13876
13877 if (!data)
13878 return -EINVAL;
13879
13880 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13881 if (handled == bytes)
13882 return 1;
13883
13884 bytes -= handled;
13885 gpa += handled;
13886 data += handled;
13887
13888 /*TODO: Check if need to increment number of frags */
13889 frag = vcpu->mmio_fragments;
13890 vcpu->mmio_nr_fragments = 1;
13891 frag->len = bytes;
13892 frag->gpa = gpa;
13893 frag->data = data;
13894
13895 vcpu->mmio_needed = 1;
13896 vcpu->mmio_cur_fragment = 0;
13897
13898 vcpu->run->mmio.phys_addr = gpa;
13899 vcpu->run->mmio.len = min(8u, frag->len);
13900 vcpu->run->mmio.is_write = 0;
13901 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13902
13903 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13904
13905 return 0;
13906 }
13907 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13908
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13909 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13910 {
13911 vcpu->arch.sev_pio_count -= count;
13912 vcpu->arch.sev_pio_data += count * size;
13913 }
13914
13915 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13916 unsigned int port);
13917
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13918 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13919 {
13920 int size = vcpu->arch.pio.size;
13921 int port = vcpu->arch.pio.port;
13922
13923 vcpu->arch.pio.count = 0;
13924 if (vcpu->arch.sev_pio_count)
13925 return kvm_sev_es_outs(vcpu, size, port);
13926 return 1;
13927 }
13928
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13929 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13930 unsigned int port)
13931 {
13932 for (;;) {
13933 unsigned int count =
13934 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13935 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13936
13937 /* memcpy done already by emulator_pio_out. */
13938 advance_sev_es_emulated_pio(vcpu, count, size);
13939 if (!ret)
13940 break;
13941
13942 /* Emulation done by the kernel. */
13943 if (!vcpu->arch.sev_pio_count)
13944 return 1;
13945 }
13946
13947 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13948 return 0;
13949 }
13950
13951 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13952 unsigned int port);
13953
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13954 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13955 {
13956 unsigned count = vcpu->arch.pio.count;
13957 int size = vcpu->arch.pio.size;
13958 int port = vcpu->arch.pio.port;
13959
13960 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13961 advance_sev_es_emulated_pio(vcpu, count, size);
13962 if (vcpu->arch.sev_pio_count)
13963 return kvm_sev_es_ins(vcpu, size, port);
13964 return 1;
13965 }
13966
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13967 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13968 unsigned int port)
13969 {
13970 for (;;) {
13971 unsigned int count =
13972 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13973 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13974 break;
13975
13976 /* Emulation done by the kernel. */
13977 advance_sev_es_emulated_pio(vcpu, count, size);
13978 if (!vcpu->arch.sev_pio_count)
13979 return 1;
13980 }
13981
13982 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13983 return 0;
13984 }
13985
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13986 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13987 unsigned int port, void *data, unsigned int count,
13988 int in)
13989 {
13990 vcpu->arch.sev_pio_data = data;
13991 vcpu->arch.sev_pio_count = count;
13992 return in ? kvm_sev_es_ins(vcpu, size, port)
13993 : kvm_sev_es_outs(vcpu, size, port);
13994 }
13995 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13996
13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14010 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14011 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14027
kvm_x86_init(void)14028 static int __init kvm_x86_init(void)
14029 {
14030 kvm_init_xstate_sizes();
14031
14032 kvm_mmu_x86_module_init();
14033 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14034 return 0;
14035 }
14036 module_init(kvm_x86_init);
14037
kvm_x86_exit(void)14038 static void __exit kvm_x86_exit(void)
14039 {
14040 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14041 }
14042 module_exit(kvm_x86_exit);
14043