1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <unistd.h>
18 #include <linux/kernel.h>
19
20 #define KVM_UTIL_MIN_PFN 2
21
22 uint32_t guest_random_seed;
23 struct guest_random_state guest_rng;
24 static uint32_t last_guest_seed;
25
26 static int vcpu_mmap_sz(void);
27
open_path_or_exit(const char * path,int flags)28 int open_path_or_exit(const char *path, int flags)
29 {
30 int fd;
31
32 fd = open(path, flags);
33 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
34 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
35
36 return fd;
37 }
38
39 /*
40 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
41 *
42 * Input Args:
43 * flags - The flags to pass when opening KVM_DEV_PATH.
44 *
45 * Return:
46 * The opened file descriptor of /dev/kvm.
47 */
_open_kvm_dev_path_or_exit(int flags)48 static int _open_kvm_dev_path_or_exit(int flags)
49 {
50 return open_path_or_exit(KVM_DEV_PATH, flags);
51 }
52
open_kvm_dev_path_or_exit(void)53 int open_kvm_dev_path_or_exit(void)
54 {
55 return _open_kvm_dev_path_or_exit(O_RDONLY);
56 }
57
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)58 static ssize_t get_module_param(const char *module_name, const char *param,
59 void *buffer, size_t buffer_size)
60 {
61 const int path_size = 128;
62 char path[path_size];
63 ssize_t bytes_read;
64 int fd, r;
65
66 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
67 module_name, param);
68 TEST_ASSERT(r < path_size,
69 "Failed to construct sysfs path in %d bytes.", path_size);
70
71 fd = open_path_or_exit(path, O_RDONLY);
72
73 bytes_read = read(fd, buffer, buffer_size);
74 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
75 path, bytes_read, buffer_size);
76
77 r = close(fd);
78 TEST_ASSERT(!r, "close(%s) failed", path);
79 return bytes_read;
80 }
81
get_module_param_integer(const char * module_name,const char * param)82 static int get_module_param_integer(const char *module_name, const char *param)
83 {
84 /*
85 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
86 * NUL char, and 1 byte because the kernel sucks and inserts a newline
87 * at the end.
88 */
89 char value[16 + 1 + 1];
90 ssize_t r;
91
92 memset(value, '\0', sizeof(value));
93
94 r = get_module_param(module_name, param, value, sizeof(value));
95 TEST_ASSERT(value[r - 1] == '\n',
96 "Expected trailing newline, got char '%c'", value[r - 1]);
97
98 /*
99 * Squash the newline, otherwise atoi_paranoid() will complain about
100 * trailing non-NUL characters in the string.
101 */
102 value[r - 1] = '\0';
103 return atoi_paranoid(value);
104 }
105
get_module_param_bool(const char * module_name,const char * param)106 static bool get_module_param_bool(const char *module_name, const char *param)
107 {
108 char value;
109 ssize_t r;
110
111 r = get_module_param(module_name, param, &value, sizeof(value));
112 TEST_ASSERT_EQ(r, 1);
113
114 if (value == 'Y')
115 return true;
116 else if (value == 'N')
117 return false;
118
119 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
120 }
121
get_kvm_param_bool(const char * param)122 bool get_kvm_param_bool(const char *param)
123 {
124 return get_module_param_bool("kvm", param);
125 }
126
get_kvm_intel_param_bool(const char * param)127 bool get_kvm_intel_param_bool(const char *param)
128 {
129 return get_module_param_bool("kvm_intel", param);
130 }
131
get_kvm_amd_param_bool(const char * param)132 bool get_kvm_amd_param_bool(const char *param)
133 {
134 return get_module_param_bool("kvm_amd", param);
135 }
136
get_kvm_param_integer(const char * param)137 int get_kvm_param_integer(const char *param)
138 {
139 return get_module_param_integer("kvm", param);
140 }
141
get_kvm_intel_param_integer(const char * param)142 int get_kvm_intel_param_integer(const char *param)
143 {
144 return get_module_param_integer("kvm_intel", param);
145 }
146
get_kvm_amd_param_integer(const char * param)147 int get_kvm_amd_param_integer(const char *param)
148 {
149 return get_module_param_integer("kvm_amd", param);
150 }
151
152 /*
153 * Capability
154 *
155 * Input Args:
156 * cap - Capability
157 *
158 * Output Args: None
159 *
160 * Return:
161 * On success, the Value corresponding to the capability (KVM_CAP_*)
162 * specified by the value of cap. On failure a TEST_ASSERT failure
163 * is produced.
164 *
165 * Looks up and returns the value corresponding to the capability
166 * (KVM_CAP_*) given by cap.
167 */
kvm_check_cap(long cap)168 unsigned int kvm_check_cap(long cap)
169 {
170 int ret;
171 int kvm_fd;
172
173 kvm_fd = open_kvm_dev_path_or_exit();
174 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
175 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
176
177 close(kvm_fd);
178
179 return (unsigned int)ret;
180 }
181
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)182 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
183 {
184 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
185 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
186 else
187 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
188 vm->dirty_ring_size = ring_size;
189 }
190
vm_open(struct kvm_vm * vm)191 static void vm_open(struct kvm_vm *vm)
192 {
193 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
194
195 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
196
197 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
198 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
199 }
200
vm_guest_mode_string(uint32_t i)201 const char *vm_guest_mode_string(uint32_t i)
202 {
203 static const char * const strings[] = {
204 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
205 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages",
206 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
207 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
208 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
209 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
210 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
211 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
212 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
213 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
214 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
215 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
216 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
217 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
218 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
219 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
220 };
221 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
222 "Missing new mode strings?");
223
224 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
225
226 return strings[i];
227 }
228
229 const struct vm_guest_mode_params vm_guest_mode_params[] = {
230 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
231 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 },
232 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
233 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
234 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
235 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
236 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
237 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
238 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
239 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
240 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
241 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
242 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
243 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
244 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
245 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
246 };
247 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
248 "Missing new mode params?");
249
250 /*
251 * Initializes vm->vpages_valid to match the canonical VA space of the
252 * architecture.
253 *
254 * The default implementation is valid for architectures which split the
255 * range addressed by a single page table into a low and high region
256 * based on the MSB of the VA. On architectures with this behavior
257 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
258 */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)259 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
260 {
261 sparsebit_set_num(vm->vpages_valid,
262 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263 sparsebit_set_num(vm->vpages_valid,
264 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
265 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
266 }
267
____vm_create(struct vm_shape shape)268 struct kvm_vm *____vm_create(struct vm_shape shape)
269 {
270 struct kvm_vm *vm;
271
272 vm = calloc(1, sizeof(*vm));
273 TEST_ASSERT(vm != NULL, "Insufficient Memory");
274
275 INIT_LIST_HEAD(&vm->vcpus);
276 vm->regions.gpa_tree = RB_ROOT;
277 vm->regions.hva_tree = RB_ROOT;
278 hash_init(vm->regions.slot_hash);
279
280 vm->mode = shape.mode;
281 vm->type = shape.type;
282
283 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
284 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
285 vm->page_size = vm_guest_mode_params[vm->mode].page_size;
286 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
287
288 /* Setup mode specific traits. */
289 switch (vm->mode) {
290 case VM_MODE_P52V48_4K:
291 vm->pgtable_levels = 4;
292 break;
293 case VM_MODE_P52V48_64K:
294 vm->pgtable_levels = 3;
295 break;
296 case VM_MODE_P48V48_4K:
297 vm->pgtable_levels = 4;
298 break;
299 case VM_MODE_P48V48_64K:
300 vm->pgtable_levels = 3;
301 break;
302 case VM_MODE_P40V48_4K:
303 case VM_MODE_P36V48_4K:
304 vm->pgtable_levels = 4;
305 break;
306 case VM_MODE_P40V48_64K:
307 case VM_MODE_P36V48_64K:
308 vm->pgtable_levels = 3;
309 break;
310 case VM_MODE_P52V48_16K:
311 case VM_MODE_P48V48_16K:
312 case VM_MODE_P40V48_16K:
313 case VM_MODE_P36V48_16K:
314 vm->pgtable_levels = 4;
315 break;
316 case VM_MODE_P36V47_16K:
317 vm->pgtable_levels = 3;
318 break;
319 case VM_MODE_PXXV48_4K:
320 #ifdef __x86_64__
321 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
322 kvm_init_vm_address_properties(vm);
323 /*
324 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
325 * it doesn't take effect unless a CR4.LA57 is set, which it
326 * isn't for this mode (48-bit virtual address space).
327 */
328 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
329 "Linear address width (%d bits) not supported",
330 vm->va_bits);
331 pr_debug("Guest physical address width detected: %d\n",
332 vm->pa_bits);
333 vm->pgtable_levels = 4;
334 vm->va_bits = 48;
335 #else
336 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
337 #endif
338 break;
339 case VM_MODE_P47V64_4K:
340 vm->pgtable_levels = 5;
341 break;
342 case VM_MODE_P44V64_4K:
343 vm->pgtable_levels = 5;
344 break;
345 default:
346 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
347 }
348
349 #ifdef __aarch64__
350 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
351 if (vm->pa_bits != 40)
352 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
353 #endif
354
355 vm_open(vm);
356
357 /* Limit to VA-bit canonical virtual addresses. */
358 vm->vpages_valid = sparsebit_alloc();
359 vm_vaddr_populate_bitmap(vm);
360
361 /* Limit physical addresses to PA-bits. */
362 vm->max_gfn = vm_compute_max_gfn(vm);
363
364 /* Allocate and setup memory for guest. */
365 vm->vpages_mapped = sparsebit_alloc();
366
367 return vm;
368 }
369
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)370 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
371 uint32_t nr_runnable_vcpus,
372 uint64_t extra_mem_pages)
373 {
374 uint64_t page_size = vm_guest_mode_params[mode].page_size;
375 uint64_t nr_pages;
376
377 TEST_ASSERT(nr_runnable_vcpus,
378 "Use vm_create_barebones() for VMs that _never_ have vCPUs");
379
380 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
381 "nr_vcpus = %d too large for host, max-vcpus = %d",
382 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
383
384 /*
385 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
386 * test code and other per-VM assets that will be loaded into memslot0.
387 */
388 nr_pages = 512;
389
390 /* Account for the per-vCPU stacks on behalf of the test. */
391 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
392
393 /*
394 * Account for the number of pages needed for the page tables. The
395 * maximum page table size for a memory region will be when the
396 * smallest page size is used. Considering each page contains x page
397 * table descriptors, the total extra size for page tables (for extra
398 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
399 * than N/x*2.
400 */
401 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
402
403 /* Account for the number of pages needed by ucall. */
404 nr_pages += ucall_nr_pages_required(page_size);
405
406 return vm_adjust_num_guest_pages(mode, nr_pages);
407 }
408
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)409 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
410 uint64_t nr_extra_pages)
411 {
412 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
413 nr_extra_pages);
414 struct userspace_mem_region *slot0;
415 struct kvm_vm *vm;
416 int i;
417
418 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
419 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
420
421 vm = ____vm_create(shape);
422
423 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
424 for (i = 0; i < NR_MEM_REGIONS; i++)
425 vm->memslots[i] = 0;
426
427 kvm_vm_elf_load(vm, program_invocation_name);
428
429 /*
430 * TODO: Add proper defines to protect the library's memslots, and then
431 * carve out memslot1 for the ucall MMIO address. KVM treats writes to
432 * read-only memslots as MMIO, and creating a read-only memslot for the
433 * MMIO region would prevent silently clobbering the MMIO region.
434 */
435 slot0 = memslot2region(vm, 0);
436 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
437
438 if (guest_random_seed != last_guest_seed) {
439 pr_info("Random seed: 0x%x\n", guest_random_seed);
440 last_guest_seed = guest_random_seed;
441 }
442 guest_rng = new_guest_random_state(guest_random_seed);
443 sync_global_to_guest(vm, guest_rng);
444
445 kvm_arch_vm_post_create(vm);
446
447 return vm;
448 }
449
450 /*
451 * VM Create with customized parameters
452 *
453 * Input Args:
454 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
455 * nr_vcpus - VCPU count
456 * extra_mem_pages - Non-slot0 physical memory total size
457 * guest_code - Guest entry point
458 * vcpuids - VCPU IDs
459 *
460 * Output Args: None
461 *
462 * Return:
463 * Pointer to opaque structure that describes the created VM.
464 *
465 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
466 * extra_mem_pages is only used to calculate the maximum page table size,
467 * no real memory allocation for non-slot0 memory in this function.
468 */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])469 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
470 uint64_t extra_mem_pages,
471 void *guest_code, struct kvm_vcpu *vcpus[])
472 {
473 struct kvm_vm *vm;
474 int i;
475
476 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
477
478 vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
479
480 for (i = 0; i < nr_vcpus; ++i)
481 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
482
483 return vm;
484 }
485
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)486 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
487 struct kvm_vcpu **vcpu,
488 uint64_t extra_mem_pages,
489 void *guest_code)
490 {
491 struct kvm_vcpu *vcpus[1];
492 struct kvm_vm *vm;
493
494 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
495
496 *vcpu = vcpus[0];
497 return vm;
498 }
499
500 /*
501 * VM Restart
502 *
503 * Input Args:
504 * vm - VM that has been released before
505 *
506 * Output Args: None
507 *
508 * Reopens the file descriptors associated to the VM and reinstates the
509 * global state, such as the irqchip and the memory regions that are mapped
510 * into the guest.
511 */
kvm_vm_restart(struct kvm_vm * vmp)512 void kvm_vm_restart(struct kvm_vm *vmp)
513 {
514 int ctr;
515 struct userspace_mem_region *region;
516
517 vm_open(vmp);
518 if (vmp->has_irqchip)
519 vm_create_irqchip(vmp);
520
521 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
522 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
523
524 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
525 " rc: %i errno: %i\n"
526 " slot: %u flags: 0x%x\n"
527 " guest_phys_addr: 0x%llx size: 0x%llx",
528 ret, errno, region->region.slot,
529 region->region.flags,
530 region->region.guest_phys_addr,
531 region->region.memory_size);
532 }
533 }
534
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)535 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
536 uint32_t vcpu_id)
537 {
538 return __vm_vcpu_add(vm, vcpu_id);
539 }
540
vm_recreate_with_one_vcpu(struct kvm_vm * vm)541 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
542 {
543 kvm_vm_restart(vm);
544
545 return vm_vcpu_recreate(vm, 0);
546 }
547
kvm_pin_this_task_to_pcpu(uint32_t pcpu)548 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
549 {
550 cpu_set_t mask;
551 int r;
552
553 CPU_ZERO(&mask);
554 CPU_SET(pcpu, &mask);
555 r = sched_setaffinity(0, sizeof(mask), &mask);
556 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
557 }
558
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)559 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
560 {
561 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
562
563 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
564 "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
565 return pcpu;
566 }
567
kvm_print_vcpu_pinning_help(void)568 void kvm_print_vcpu_pinning_help(void)
569 {
570 const char *name = program_invocation_name;
571
572 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n"
573 " values (target pCPU), one for each vCPU, plus an optional\n"
574 " entry for the main application task (specified via entry\n"
575 " <nr_vcpus + 1>). If used, entries must be provided for all\n"
576 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
577 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
578 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
579 " %s -v 3 -c 22,23,24,50\n\n"
580 " To leave the application task unpinned, drop the final entry:\n\n"
581 " %s -v 3 -c 22,23,24\n\n"
582 " (default: no pinning)\n", name, name);
583 }
584
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)585 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
586 int nr_vcpus)
587 {
588 cpu_set_t allowed_mask;
589 char *cpu, *cpu_list;
590 char delim[2] = ",";
591 int i, r;
592
593 cpu_list = strdup(pcpus_string);
594 TEST_ASSERT(cpu_list, "strdup() allocation failed.");
595
596 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
597 TEST_ASSERT(!r, "sched_getaffinity() failed");
598
599 cpu = strtok(cpu_list, delim);
600
601 /* 1. Get all pcpus for vcpus. */
602 for (i = 0; i < nr_vcpus; i++) {
603 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
604 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
605 cpu = strtok(NULL, delim);
606 }
607
608 /* 2. Check if the main worker needs to be pinned. */
609 if (cpu) {
610 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
611 cpu = strtok(NULL, delim);
612 }
613
614 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
615 free(cpu_list);
616 }
617
618 /*
619 * Userspace Memory Region Find
620 *
621 * Input Args:
622 * vm - Virtual Machine
623 * start - Starting VM physical address
624 * end - Ending VM physical address, inclusive.
625 *
626 * Output Args: None
627 *
628 * Return:
629 * Pointer to overlapping region, NULL if no such region.
630 *
631 * Searches for a region with any physical memory that overlaps with
632 * any portion of the guest physical addresses from start to end
633 * inclusive. If multiple overlapping regions exist, a pointer to any
634 * of the regions is returned. Null is returned only when no overlapping
635 * region exists.
636 */
637 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)638 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
639 {
640 struct rb_node *node;
641
642 for (node = vm->regions.gpa_tree.rb_node; node; ) {
643 struct userspace_mem_region *region =
644 container_of(node, struct userspace_mem_region, gpa_node);
645 uint64_t existing_start = region->region.guest_phys_addr;
646 uint64_t existing_end = region->region.guest_phys_addr
647 + region->region.memory_size - 1;
648 if (start <= existing_end && end >= existing_start)
649 return region;
650
651 if (start < existing_start)
652 node = node->rb_left;
653 else
654 node = node->rb_right;
655 }
656
657 return NULL;
658 }
659
vcpu_arch_free(struct kvm_vcpu * vcpu)660 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
661 {
662
663 }
664
665 /*
666 * VM VCPU Remove
667 *
668 * Input Args:
669 * vcpu - VCPU to remove
670 *
671 * Output Args: None
672 *
673 * Return: None, TEST_ASSERT failures for all error conditions
674 *
675 * Removes a vCPU from a VM and frees its resources.
676 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)677 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
678 {
679 int ret;
680
681 if (vcpu->dirty_gfns) {
682 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
683 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
684 vcpu->dirty_gfns = NULL;
685 }
686
687 ret = munmap(vcpu->run, vcpu_mmap_sz());
688 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
689
690 ret = close(vcpu->fd);
691 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
692
693 list_del(&vcpu->list);
694
695 vcpu_arch_free(vcpu);
696 free(vcpu);
697 }
698
kvm_vm_release(struct kvm_vm * vmp)699 void kvm_vm_release(struct kvm_vm *vmp)
700 {
701 struct kvm_vcpu *vcpu, *tmp;
702 int ret;
703
704 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
705 vm_vcpu_rm(vmp, vcpu);
706
707 ret = close(vmp->fd);
708 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
709
710 ret = close(vmp->kvm_fd);
711 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
712 }
713
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)714 static void __vm_mem_region_delete(struct kvm_vm *vm,
715 struct userspace_mem_region *region)
716 {
717 int ret;
718
719 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
720 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
721 hash_del(®ion->slot_node);
722
723 region->region.memory_size = 0;
724 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
725
726 sparsebit_free(®ion->unused_phy_pages);
727 sparsebit_free(®ion->protected_phy_pages);
728 ret = munmap(region->mmap_start, region->mmap_size);
729 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
730 if (region->fd >= 0) {
731 /* There's an extra map when using shared memory. */
732 ret = munmap(region->mmap_alias, region->mmap_size);
733 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
734 close(region->fd);
735 }
736 if (region->region.guest_memfd >= 0)
737 close(region->region.guest_memfd);
738
739 free(region);
740 }
741
742 /*
743 * Destroys and frees the VM pointed to by vmp.
744 */
kvm_vm_free(struct kvm_vm * vmp)745 void kvm_vm_free(struct kvm_vm *vmp)
746 {
747 int ctr;
748 struct hlist_node *node;
749 struct userspace_mem_region *region;
750
751 if (vmp == NULL)
752 return;
753
754 /* Free cached stats metadata and close FD */
755 if (vmp->stats_fd) {
756 free(vmp->stats_desc);
757 close(vmp->stats_fd);
758 }
759
760 /* Free userspace_mem_regions. */
761 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
762 __vm_mem_region_delete(vmp, region);
763
764 /* Free sparsebit arrays. */
765 sparsebit_free(&vmp->vpages_valid);
766 sparsebit_free(&vmp->vpages_mapped);
767
768 kvm_vm_release(vmp);
769
770 /* Free the structure describing the VM. */
771 free(vmp);
772 }
773
kvm_memfd_alloc(size_t size,bool hugepages)774 int kvm_memfd_alloc(size_t size, bool hugepages)
775 {
776 int memfd_flags = MFD_CLOEXEC;
777 int fd, r;
778
779 if (hugepages)
780 memfd_flags |= MFD_HUGETLB;
781
782 fd = memfd_create("kvm_selftest", memfd_flags);
783 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
784
785 r = ftruncate(fd, size);
786 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
787
788 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
789 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
790
791 return fd;
792 }
793
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)794 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
795 struct userspace_mem_region *region)
796 {
797 struct rb_node **cur, *parent;
798
799 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
800 struct userspace_mem_region *cregion;
801
802 cregion = container_of(*cur, typeof(*cregion), gpa_node);
803 parent = *cur;
804 if (region->region.guest_phys_addr <
805 cregion->region.guest_phys_addr)
806 cur = &(*cur)->rb_left;
807 else {
808 TEST_ASSERT(region->region.guest_phys_addr !=
809 cregion->region.guest_phys_addr,
810 "Duplicate GPA in region tree");
811
812 cur = &(*cur)->rb_right;
813 }
814 }
815
816 rb_link_node(®ion->gpa_node, parent, cur);
817 rb_insert_color(®ion->gpa_node, gpa_tree);
818 }
819
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)820 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
821 struct userspace_mem_region *region)
822 {
823 struct rb_node **cur, *parent;
824
825 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
826 struct userspace_mem_region *cregion;
827
828 cregion = container_of(*cur, typeof(*cregion), hva_node);
829 parent = *cur;
830 if (region->host_mem < cregion->host_mem)
831 cur = &(*cur)->rb_left;
832 else {
833 TEST_ASSERT(region->host_mem !=
834 cregion->host_mem,
835 "Duplicate HVA in region tree");
836
837 cur = &(*cur)->rb_right;
838 }
839 }
840
841 rb_link_node(®ion->hva_node, parent, cur);
842 rb_insert_color(®ion->hva_node, hva_tree);
843 }
844
845
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)846 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
847 uint64_t gpa, uint64_t size, void *hva)
848 {
849 struct kvm_userspace_memory_region region = {
850 .slot = slot,
851 .flags = flags,
852 .guest_phys_addr = gpa,
853 .memory_size = size,
854 .userspace_addr = (uintptr_t)hva,
855 };
856
857 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
858 }
859
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)860 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
861 uint64_t gpa, uint64_t size, void *hva)
862 {
863 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
864
865 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
866 errno, strerror(errno));
867 }
868
869 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \
870 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \
871 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
872
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)873 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
874 uint64_t gpa, uint64_t size, void *hva,
875 uint32_t guest_memfd, uint64_t guest_memfd_offset)
876 {
877 struct kvm_userspace_memory_region2 region = {
878 .slot = slot,
879 .flags = flags,
880 .guest_phys_addr = gpa,
881 .memory_size = size,
882 .userspace_addr = (uintptr_t)hva,
883 .guest_memfd = guest_memfd,
884 .guest_memfd_offset = guest_memfd_offset,
885 };
886
887 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
888
889 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion);
890 }
891
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)892 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
893 uint64_t gpa, uint64_t size, void *hva,
894 uint32_t guest_memfd, uint64_t guest_memfd_offset)
895 {
896 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
897 guest_memfd, guest_memfd_offset);
898
899 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
900 errno, strerror(errno));
901 }
902
903
904 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)905 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
906 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
907 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
908 {
909 int ret;
910 struct userspace_mem_region *region;
911 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
912 size_t mem_size = npages * vm->page_size;
913 size_t alignment;
914
915 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
916
917 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
918 "Number of guest pages is not compatible with the host. "
919 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
920
921 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
922 "address not on a page boundary.\n"
923 " guest_paddr: 0x%lx vm->page_size: 0x%x",
924 guest_paddr, vm->page_size);
925 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
926 <= vm->max_gfn, "Physical range beyond maximum "
927 "supported physical address,\n"
928 " guest_paddr: 0x%lx npages: 0x%lx\n"
929 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
930 guest_paddr, npages, vm->max_gfn, vm->page_size);
931
932 /*
933 * Confirm a mem region with an overlapping address doesn't
934 * already exist.
935 */
936 region = (struct userspace_mem_region *) userspace_mem_region_find(
937 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
938 if (region != NULL)
939 TEST_FAIL("overlapping userspace_mem_region already "
940 "exists\n"
941 " requested guest_paddr: 0x%lx npages: 0x%lx "
942 "page_size: 0x%x\n"
943 " existing guest_paddr: 0x%lx size: 0x%lx",
944 guest_paddr, npages, vm->page_size,
945 (uint64_t) region->region.guest_phys_addr,
946 (uint64_t) region->region.memory_size);
947
948 /* Confirm no region with the requested slot already exists. */
949 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
950 slot) {
951 if (region->region.slot != slot)
952 continue;
953
954 TEST_FAIL("A mem region with the requested slot "
955 "already exists.\n"
956 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
957 " existing slot: %u paddr: 0x%lx size: 0x%lx",
958 slot, guest_paddr, npages,
959 region->region.slot,
960 (uint64_t) region->region.guest_phys_addr,
961 (uint64_t) region->region.memory_size);
962 }
963
964 /* Allocate and initialize new mem region structure. */
965 region = calloc(1, sizeof(*region));
966 TEST_ASSERT(region != NULL, "Insufficient Memory");
967 region->mmap_size = mem_size;
968
969 #ifdef __s390x__
970 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
971 alignment = 0x100000;
972 #else
973 alignment = 1;
974 #endif
975
976 /*
977 * When using THP mmap is not guaranteed to returned a hugepage aligned
978 * address so we have to pad the mmap. Padding is not needed for HugeTLB
979 * because mmap will always return an address aligned to the HugeTLB
980 * page size.
981 */
982 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
983 alignment = max(backing_src_pagesz, alignment);
984
985 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
986
987 /* Add enough memory to align up if necessary */
988 if (alignment > 1)
989 region->mmap_size += alignment;
990
991 region->fd = -1;
992 if (backing_src_is_shared(src_type))
993 region->fd = kvm_memfd_alloc(region->mmap_size,
994 src_type == VM_MEM_SRC_SHARED_HUGETLB);
995
996 region->mmap_start = mmap(NULL, region->mmap_size,
997 PROT_READ | PROT_WRITE,
998 vm_mem_backing_src_alias(src_type)->flag,
999 region->fd, 0);
1000 TEST_ASSERT(region->mmap_start != MAP_FAILED,
1001 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1002
1003 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1004 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1005 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1006 region->mmap_start, backing_src_pagesz);
1007
1008 /* Align host address */
1009 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1010
1011 /* As needed perform madvise */
1012 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1013 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1014 ret = madvise(region->host_mem, mem_size,
1015 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1016 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1017 region->host_mem, mem_size,
1018 vm_mem_backing_src_alias(src_type)->name);
1019 }
1020
1021 region->backing_src_type = src_type;
1022
1023 if (flags & KVM_MEM_GUEST_MEMFD) {
1024 if (guest_memfd < 0) {
1025 uint32_t guest_memfd_flags = 0;
1026 TEST_ASSERT(!guest_memfd_offset,
1027 "Offset must be zero when creating new guest_memfd");
1028 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1029 } else {
1030 /*
1031 * Install a unique fd for each memslot so that the fd
1032 * can be closed when the region is deleted without
1033 * needing to track if the fd is owned by the framework
1034 * or by the caller.
1035 */
1036 guest_memfd = dup(guest_memfd);
1037 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1038 }
1039
1040 region->region.guest_memfd = guest_memfd;
1041 region->region.guest_memfd_offset = guest_memfd_offset;
1042 } else {
1043 region->region.guest_memfd = -1;
1044 }
1045
1046 region->unused_phy_pages = sparsebit_alloc();
1047 if (vm_arch_has_protected_memory(vm))
1048 region->protected_phy_pages = sparsebit_alloc();
1049 sparsebit_set_num(region->unused_phy_pages,
1050 guest_paddr >> vm->page_shift, npages);
1051 region->region.slot = slot;
1052 region->region.flags = flags;
1053 region->region.guest_phys_addr = guest_paddr;
1054 region->region.memory_size = npages * vm->page_size;
1055 region->region.userspace_addr = (uintptr_t) region->host_mem;
1056 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1057 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1058 " rc: %i errno: %i\n"
1059 " slot: %u flags: 0x%x\n"
1060 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1061 ret, errno, slot, flags,
1062 guest_paddr, (uint64_t) region->region.memory_size,
1063 region->region.guest_memfd);
1064
1065 /* Add to quick lookup data structures */
1066 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1067 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1068 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1069
1070 /* If shared memory, create an alias. */
1071 if (region->fd >= 0) {
1072 region->mmap_alias = mmap(NULL, region->mmap_size,
1073 PROT_READ | PROT_WRITE,
1074 vm_mem_backing_src_alias(src_type)->flag,
1075 region->fd, 0);
1076 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1077 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1078
1079 /* Align host alias address */
1080 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1081 }
1082 }
1083
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1084 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1085 enum vm_mem_backing_src_type src_type,
1086 uint64_t guest_paddr, uint32_t slot,
1087 uint64_t npages, uint32_t flags)
1088 {
1089 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1090 }
1091
1092 /*
1093 * Memslot to region
1094 *
1095 * Input Args:
1096 * vm - Virtual Machine
1097 * memslot - KVM memory slot ID
1098 *
1099 * Output Args: None
1100 *
1101 * Return:
1102 * Pointer to memory region structure that describe memory region
1103 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1104 * on error (e.g. currently no memory region using memslot as a KVM
1105 * memory slot ID).
1106 */
1107 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1108 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1109 {
1110 struct userspace_mem_region *region;
1111
1112 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1113 memslot)
1114 if (region->region.slot == memslot)
1115 return region;
1116
1117 fprintf(stderr, "No mem region with the requested slot found,\n"
1118 " requested slot: %u\n", memslot);
1119 fputs("---- vm dump ----\n", stderr);
1120 vm_dump(stderr, vm, 2);
1121 TEST_FAIL("Mem region not found");
1122 return NULL;
1123 }
1124
1125 /*
1126 * VM Memory Region Flags Set
1127 *
1128 * Input Args:
1129 * vm - Virtual Machine
1130 * flags - Starting guest physical address
1131 *
1132 * Output Args: None
1133 *
1134 * Return: None
1135 *
1136 * Sets the flags of the memory region specified by the value of slot,
1137 * to the values given by flags.
1138 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1139 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1140 {
1141 int ret;
1142 struct userspace_mem_region *region;
1143
1144 region = memslot2region(vm, slot);
1145
1146 region->region.flags = flags;
1147
1148 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1149
1150 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1151 " rc: %i errno: %i slot: %u flags: 0x%x",
1152 ret, errno, slot, flags);
1153 }
1154
1155 /*
1156 * VM Memory Region Move
1157 *
1158 * Input Args:
1159 * vm - Virtual Machine
1160 * slot - Slot of the memory region to move
1161 * new_gpa - Starting guest physical address
1162 *
1163 * Output Args: None
1164 *
1165 * Return: None
1166 *
1167 * Change the gpa of a memory region.
1168 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1169 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1170 {
1171 struct userspace_mem_region *region;
1172 int ret;
1173
1174 region = memslot2region(vm, slot);
1175
1176 region->region.guest_phys_addr = new_gpa;
1177
1178 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1179
1180 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1181 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1182 ret, errno, slot, new_gpa);
1183 }
1184
1185 /*
1186 * VM Memory Region Delete
1187 *
1188 * Input Args:
1189 * vm - Virtual Machine
1190 * slot - Slot of the memory region to delete
1191 *
1192 * Output Args: None
1193 *
1194 * Return: None
1195 *
1196 * Delete a memory region.
1197 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1198 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1199 {
1200 __vm_mem_region_delete(vm, memslot2region(vm, slot));
1201 }
1202
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1203 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1204 bool punch_hole)
1205 {
1206 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1207 struct userspace_mem_region *region;
1208 uint64_t end = base + size;
1209 uint64_t gpa, len;
1210 off_t fd_offset;
1211 int ret;
1212
1213 for (gpa = base; gpa < end; gpa += len) {
1214 uint64_t offset;
1215
1216 region = userspace_mem_region_find(vm, gpa, gpa);
1217 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1218 "Private memory region not found for GPA 0x%lx", gpa);
1219
1220 offset = gpa - region->region.guest_phys_addr;
1221 fd_offset = region->region.guest_memfd_offset + offset;
1222 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1223
1224 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1225 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1226 punch_hole ? "punch hole" : "allocate", gpa, len,
1227 region->region.guest_memfd, mode, fd_offset);
1228 }
1229 }
1230
1231 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1232 static int vcpu_mmap_sz(void)
1233 {
1234 int dev_fd, ret;
1235
1236 dev_fd = open_kvm_dev_path_or_exit();
1237
1238 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1239 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1240 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1241
1242 close(dev_fd);
1243
1244 return ret;
1245 }
1246
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1247 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1248 {
1249 struct kvm_vcpu *vcpu;
1250
1251 list_for_each_entry(vcpu, &vm->vcpus, list) {
1252 if (vcpu->id == vcpu_id)
1253 return true;
1254 }
1255
1256 return false;
1257 }
1258
1259 /*
1260 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1261 * No additional vCPU setup is done. Returns the vCPU.
1262 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1263 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1264 {
1265 struct kvm_vcpu *vcpu;
1266
1267 /* Confirm a vcpu with the specified id doesn't already exist. */
1268 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1269
1270 /* Allocate and initialize new vcpu structure. */
1271 vcpu = calloc(1, sizeof(*vcpu));
1272 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1273
1274 vcpu->vm = vm;
1275 vcpu->id = vcpu_id;
1276 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1277 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1278
1279 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1280 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1281 vcpu_mmap_sz(), sizeof(*vcpu->run));
1282 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1283 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1284 TEST_ASSERT(vcpu->run != MAP_FAILED,
1285 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1286
1287 /* Add to linked-list of VCPUs. */
1288 list_add(&vcpu->list, &vm->vcpus);
1289
1290 return vcpu;
1291 }
1292
1293 /*
1294 * VM Virtual Address Unused Gap
1295 *
1296 * Input Args:
1297 * vm - Virtual Machine
1298 * sz - Size (bytes)
1299 * vaddr_min - Minimum Virtual Address
1300 *
1301 * Output Args: None
1302 *
1303 * Return:
1304 * Lowest virtual address at or below vaddr_min, with at least
1305 * sz unused bytes. TEST_ASSERT failure if no area of at least
1306 * size sz is available.
1307 *
1308 * Within the VM specified by vm, locates the lowest starting virtual
1309 * address >= vaddr_min, that has at least sz unallocated bytes. A
1310 * TEST_ASSERT failure occurs for invalid input or no area of at least
1311 * sz unallocated bytes >= vaddr_min is available.
1312 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1313 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1314 vm_vaddr_t vaddr_min)
1315 {
1316 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1317
1318 /* Determine lowest permitted virtual page index. */
1319 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1320 if ((pgidx_start * vm->page_size) < vaddr_min)
1321 goto no_va_found;
1322
1323 /* Loop over section with enough valid virtual page indexes. */
1324 if (!sparsebit_is_set_num(vm->vpages_valid,
1325 pgidx_start, pages))
1326 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1327 pgidx_start, pages);
1328 do {
1329 /*
1330 * Are there enough unused virtual pages available at
1331 * the currently proposed starting virtual page index.
1332 * If not, adjust proposed starting index to next
1333 * possible.
1334 */
1335 if (sparsebit_is_clear_num(vm->vpages_mapped,
1336 pgidx_start, pages))
1337 goto va_found;
1338 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1339 pgidx_start, pages);
1340 if (pgidx_start == 0)
1341 goto no_va_found;
1342
1343 /*
1344 * If needed, adjust proposed starting virtual address,
1345 * to next range of valid virtual addresses.
1346 */
1347 if (!sparsebit_is_set_num(vm->vpages_valid,
1348 pgidx_start, pages)) {
1349 pgidx_start = sparsebit_next_set_num(
1350 vm->vpages_valid, pgidx_start, pages);
1351 if (pgidx_start == 0)
1352 goto no_va_found;
1353 }
1354 } while (pgidx_start != 0);
1355
1356 no_va_found:
1357 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1358
1359 /* NOT REACHED */
1360 return -1;
1361
1362 va_found:
1363 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1364 pgidx_start, pages),
1365 "Unexpected, invalid virtual page index range,\n"
1366 " pgidx_start: 0x%lx\n"
1367 " pages: 0x%lx",
1368 pgidx_start, pages);
1369 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1370 pgidx_start, pages),
1371 "Unexpected, pages already mapped,\n"
1372 " pgidx_start: 0x%lx\n"
1373 " pages: 0x%lx",
1374 pgidx_start, pages);
1375
1376 return pgidx_start * vm->page_size;
1377 }
1378
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1379 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1380 vm_vaddr_t vaddr_min,
1381 enum kvm_mem_region_type type,
1382 bool protected)
1383 {
1384 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1385
1386 virt_pgd_alloc(vm);
1387 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1388 KVM_UTIL_MIN_PFN * vm->page_size,
1389 vm->memslots[type], protected);
1390
1391 /*
1392 * Find an unused range of virtual page addresses of at least
1393 * pages in length.
1394 */
1395 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1396
1397 /* Map the virtual pages. */
1398 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1399 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1400
1401 virt_pg_map(vm, vaddr, paddr);
1402
1403 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1404 }
1405
1406 return vaddr_start;
1407 }
1408
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1409 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1410 enum kvm_mem_region_type type)
1411 {
1412 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1413 vm_arch_has_protected_memory(vm));
1414 }
1415
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1416 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1417 vm_vaddr_t vaddr_min,
1418 enum kvm_mem_region_type type)
1419 {
1420 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1421 }
1422
1423 /*
1424 * VM Virtual Address Allocate
1425 *
1426 * Input Args:
1427 * vm - Virtual Machine
1428 * sz - Size in bytes
1429 * vaddr_min - Minimum starting virtual address
1430 *
1431 * Output Args: None
1432 *
1433 * Return:
1434 * Starting guest virtual address
1435 *
1436 * Allocates at least sz bytes within the virtual address space of the vm
1437 * given by vm. The allocated bytes are mapped to a virtual address >=
1438 * the address given by vaddr_min. Note that each allocation uses a
1439 * a unique set of pages, with the minimum real allocation being at least
1440 * a page. The allocated physical space comes from the TEST_DATA memory region.
1441 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1442 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1443 {
1444 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1445 }
1446
1447 /*
1448 * VM Virtual Address Allocate Pages
1449 *
1450 * Input Args:
1451 * vm - Virtual Machine
1452 *
1453 * Output Args: None
1454 *
1455 * Return:
1456 * Starting guest virtual address
1457 *
1458 * Allocates at least N system pages worth of bytes within the virtual address
1459 * space of the vm.
1460 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1461 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1462 {
1463 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1464 }
1465
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1466 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1467 {
1468 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1469 }
1470
1471 /*
1472 * VM Virtual Address Allocate Page
1473 *
1474 * Input Args:
1475 * vm - Virtual Machine
1476 *
1477 * Output Args: None
1478 *
1479 * Return:
1480 * Starting guest virtual address
1481 *
1482 * Allocates at least one system page worth of bytes within the virtual address
1483 * space of the vm.
1484 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1485 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1486 {
1487 return vm_vaddr_alloc_pages(vm, 1);
1488 }
1489
1490 /*
1491 * Map a range of VM virtual address to the VM's physical address
1492 *
1493 * Input Args:
1494 * vm - Virtual Machine
1495 * vaddr - Virtuall address to map
1496 * paddr - VM Physical Address
1497 * npages - The number of pages to map
1498 *
1499 * Output Args: None
1500 *
1501 * Return: None
1502 *
1503 * Within the VM given by @vm, creates a virtual translation for
1504 * @npages starting at @vaddr to the page range starting at @paddr.
1505 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1506 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1507 unsigned int npages)
1508 {
1509 size_t page_size = vm->page_size;
1510 size_t size = npages * page_size;
1511
1512 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1513 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1514
1515 while (npages--) {
1516 virt_pg_map(vm, vaddr, paddr);
1517 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1518
1519 vaddr += page_size;
1520 paddr += page_size;
1521 }
1522 }
1523
1524 /*
1525 * Address VM Physical to Host Virtual
1526 *
1527 * Input Args:
1528 * vm - Virtual Machine
1529 * gpa - VM physical address
1530 *
1531 * Output Args: None
1532 *
1533 * Return:
1534 * Equivalent host virtual address
1535 *
1536 * Locates the memory region containing the VM physical address given
1537 * by gpa, within the VM given by vm. When found, the host virtual
1538 * address providing the memory to the vm physical address is returned.
1539 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1540 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1541 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1542 {
1543 struct userspace_mem_region *region;
1544
1545 gpa = vm_untag_gpa(vm, gpa);
1546
1547 region = userspace_mem_region_find(vm, gpa, gpa);
1548 if (!region) {
1549 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1550 return NULL;
1551 }
1552
1553 return (void *)((uintptr_t)region->host_mem
1554 + (gpa - region->region.guest_phys_addr));
1555 }
1556
1557 /*
1558 * Address Host Virtual to VM Physical
1559 *
1560 * Input Args:
1561 * vm - Virtual Machine
1562 * hva - Host virtual address
1563 *
1564 * Output Args: None
1565 *
1566 * Return:
1567 * Equivalent VM physical address
1568 *
1569 * Locates the memory region containing the host virtual address given
1570 * by hva, within the VM given by vm. When found, the equivalent
1571 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1572 * region containing hva exists.
1573 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1574 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1575 {
1576 struct rb_node *node;
1577
1578 for (node = vm->regions.hva_tree.rb_node; node; ) {
1579 struct userspace_mem_region *region =
1580 container_of(node, struct userspace_mem_region, hva_node);
1581
1582 if (hva >= region->host_mem) {
1583 if (hva <= (region->host_mem
1584 + region->region.memory_size - 1))
1585 return (vm_paddr_t)((uintptr_t)
1586 region->region.guest_phys_addr
1587 + (hva - (uintptr_t)region->host_mem));
1588
1589 node = node->rb_right;
1590 } else
1591 node = node->rb_left;
1592 }
1593
1594 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1595 return -1;
1596 }
1597
1598 /*
1599 * Address VM physical to Host Virtual *alias*.
1600 *
1601 * Input Args:
1602 * vm - Virtual Machine
1603 * gpa - VM physical address
1604 *
1605 * Output Args: None
1606 *
1607 * Return:
1608 * Equivalent address within the host virtual *alias* area, or NULL
1609 * (without failing the test) if the guest memory is not shared (so
1610 * no alias exists).
1611 *
1612 * Create a writable, shared virtual=>physical alias for the specific GPA.
1613 * The primary use case is to allow the host selftest to manipulate guest
1614 * memory without mapping said memory in the guest's address space. And, for
1615 * userfaultfd-based demand paging, to do so without triggering userfaults.
1616 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1617 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1618 {
1619 struct userspace_mem_region *region;
1620 uintptr_t offset;
1621
1622 region = userspace_mem_region_find(vm, gpa, gpa);
1623 if (!region)
1624 return NULL;
1625
1626 if (!region->host_alias)
1627 return NULL;
1628
1629 offset = gpa - region->region.guest_phys_addr;
1630 return (void *) ((uintptr_t) region->host_alias + offset);
1631 }
1632
1633 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1634 void vm_create_irqchip(struct kvm_vm *vm)
1635 {
1636 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1637
1638 vm->has_irqchip = true;
1639 }
1640
_vcpu_run(struct kvm_vcpu * vcpu)1641 int _vcpu_run(struct kvm_vcpu *vcpu)
1642 {
1643 int rc;
1644
1645 do {
1646 rc = __vcpu_run(vcpu);
1647 } while (rc == -1 && errno == EINTR);
1648
1649 assert_on_unhandled_exception(vcpu);
1650
1651 return rc;
1652 }
1653
1654 /*
1655 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1656 * Assert if the KVM returns an error (other than -EINTR).
1657 */
vcpu_run(struct kvm_vcpu * vcpu)1658 void vcpu_run(struct kvm_vcpu *vcpu)
1659 {
1660 int ret = _vcpu_run(vcpu);
1661
1662 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1663 }
1664
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1665 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1666 {
1667 int ret;
1668
1669 vcpu->run->immediate_exit = 1;
1670 ret = __vcpu_run(vcpu);
1671 vcpu->run->immediate_exit = 0;
1672
1673 TEST_ASSERT(ret == -1 && errno == EINTR,
1674 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1675 ret, errno);
1676 }
1677
1678 /*
1679 * Get the list of guest registers which are supported for
1680 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1681 * it is the caller's responsibility to free the list.
1682 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1683 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1684 {
1685 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1686 int ret;
1687
1688 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1689 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1690
1691 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1692 reg_list->n = reg_list_n.n;
1693 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1694 return reg_list;
1695 }
1696
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1697 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1698 {
1699 uint32_t page_size = getpagesize();
1700 uint32_t size = vcpu->vm->dirty_ring_size;
1701
1702 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1703
1704 if (!vcpu->dirty_gfns) {
1705 void *addr;
1706
1707 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1708 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1709 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1710
1711 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1712 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1713 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1714
1715 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1716 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1717 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1718
1719 vcpu->dirty_gfns = addr;
1720 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1721 }
1722
1723 return vcpu->dirty_gfns;
1724 }
1725
1726 /*
1727 * Device Ioctl
1728 */
1729
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1730 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1731 {
1732 struct kvm_device_attr attribute = {
1733 .group = group,
1734 .attr = attr,
1735 .flags = 0,
1736 };
1737
1738 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1739 }
1740
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1741 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1742 {
1743 struct kvm_create_device create_dev = {
1744 .type = type,
1745 .flags = KVM_CREATE_DEVICE_TEST,
1746 };
1747
1748 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1749 }
1750
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1751 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1752 {
1753 struct kvm_create_device create_dev = {
1754 .type = type,
1755 .fd = -1,
1756 .flags = 0,
1757 };
1758 int err;
1759
1760 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1761 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1762 return err ? : create_dev.fd;
1763 }
1764
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1765 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1766 {
1767 struct kvm_device_attr kvmattr = {
1768 .group = group,
1769 .attr = attr,
1770 .flags = 0,
1771 .addr = (uintptr_t)val,
1772 };
1773
1774 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1775 }
1776
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1777 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1778 {
1779 struct kvm_device_attr kvmattr = {
1780 .group = group,
1781 .attr = attr,
1782 .flags = 0,
1783 .addr = (uintptr_t)val,
1784 };
1785
1786 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1787 }
1788
1789 /*
1790 * IRQ related functions.
1791 */
1792
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1793 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1794 {
1795 struct kvm_irq_level irq_level = {
1796 .irq = irq,
1797 .level = level,
1798 };
1799
1800 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1801 }
1802
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1803 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1804 {
1805 int ret = _kvm_irq_line(vm, irq, level);
1806
1807 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1808 }
1809
kvm_gsi_routing_create(void)1810 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1811 {
1812 struct kvm_irq_routing *routing;
1813 size_t size;
1814
1815 size = sizeof(struct kvm_irq_routing);
1816 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1817 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1818 routing = calloc(1, size);
1819 assert(routing);
1820
1821 return routing;
1822 }
1823
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1824 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1825 uint32_t gsi, uint32_t pin)
1826 {
1827 int i;
1828
1829 assert(routing);
1830 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1831
1832 i = routing->nr;
1833 routing->entries[i].gsi = gsi;
1834 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1835 routing->entries[i].flags = 0;
1836 routing->entries[i].u.irqchip.irqchip = 0;
1837 routing->entries[i].u.irqchip.pin = pin;
1838 routing->nr++;
1839 }
1840
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1841 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1842 {
1843 int ret;
1844
1845 assert(routing);
1846 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1847 free(routing);
1848
1849 return ret;
1850 }
1851
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1852 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1853 {
1854 int ret;
1855
1856 ret = _kvm_gsi_routing_write(vm, routing);
1857 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1858 }
1859
1860 /*
1861 * VM Dump
1862 *
1863 * Input Args:
1864 * vm - Virtual Machine
1865 * indent - Left margin indent amount
1866 *
1867 * Output Args:
1868 * stream - Output FILE stream
1869 *
1870 * Return: None
1871 *
1872 * Dumps the current state of the VM given by vm, to the FILE stream
1873 * given by stream.
1874 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1875 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1876 {
1877 int ctr;
1878 struct userspace_mem_region *region;
1879 struct kvm_vcpu *vcpu;
1880
1881 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1882 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1883 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1884 fprintf(stream, "%*sMem Regions:\n", indent, "");
1885 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1886 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1887 "host_virt: %p\n", indent + 2, "",
1888 (uint64_t) region->region.guest_phys_addr,
1889 (uint64_t) region->region.memory_size,
1890 region->host_mem);
1891 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1892 sparsebit_dump(stream, region->unused_phy_pages, 0);
1893 if (region->protected_phy_pages) {
1894 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1895 sparsebit_dump(stream, region->protected_phy_pages, 0);
1896 }
1897 }
1898 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1899 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1900 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1901 vm->pgd_created);
1902 if (vm->pgd_created) {
1903 fprintf(stream, "%*sVirtual Translation Tables:\n",
1904 indent + 2, "");
1905 virt_dump(stream, vm, indent + 4);
1906 }
1907 fprintf(stream, "%*sVCPUs:\n", indent, "");
1908
1909 list_for_each_entry(vcpu, &vm->vcpus, list)
1910 vcpu_dump(stream, vcpu, indent + 2);
1911 }
1912
1913 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1914
1915 /* Known KVM exit reasons */
1916 static struct exit_reason {
1917 unsigned int reason;
1918 const char *name;
1919 } exit_reasons_known[] = {
1920 KVM_EXIT_STRING(UNKNOWN),
1921 KVM_EXIT_STRING(EXCEPTION),
1922 KVM_EXIT_STRING(IO),
1923 KVM_EXIT_STRING(HYPERCALL),
1924 KVM_EXIT_STRING(DEBUG),
1925 KVM_EXIT_STRING(HLT),
1926 KVM_EXIT_STRING(MMIO),
1927 KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1928 KVM_EXIT_STRING(SHUTDOWN),
1929 KVM_EXIT_STRING(FAIL_ENTRY),
1930 KVM_EXIT_STRING(INTR),
1931 KVM_EXIT_STRING(SET_TPR),
1932 KVM_EXIT_STRING(TPR_ACCESS),
1933 KVM_EXIT_STRING(S390_SIEIC),
1934 KVM_EXIT_STRING(S390_RESET),
1935 KVM_EXIT_STRING(DCR),
1936 KVM_EXIT_STRING(NMI),
1937 KVM_EXIT_STRING(INTERNAL_ERROR),
1938 KVM_EXIT_STRING(OSI),
1939 KVM_EXIT_STRING(PAPR_HCALL),
1940 KVM_EXIT_STRING(S390_UCONTROL),
1941 KVM_EXIT_STRING(WATCHDOG),
1942 KVM_EXIT_STRING(S390_TSCH),
1943 KVM_EXIT_STRING(EPR),
1944 KVM_EXIT_STRING(SYSTEM_EVENT),
1945 KVM_EXIT_STRING(S390_STSI),
1946 KVM_EXIT_STRING(IOAPIC_EOI),
1947 KVM_EXIT_STRING(HYPERV),
1948 KVM_EXIT_STRING(ARM_NISV),
1949 KVM_EXIT_STRING(X86_RDMSR),
1950 KVM_EXIT_STRING(X86_WRMSR),
1951 KVM_EXIT_STRING(DIRTY_RING_FULL),
1952 KVM_EXIT_STRING(AP_RESET_HOLD),
1953 KVM_EXIT_STRING(X86_BUS_LOCK),
1954 KVM_EXIT_STRING(XEN),
1955 KVM_EXIT_STRING(RISCV_SBI),
1956 KVM_EXIT_STRING(RISCV_CSR),
1957 KVM_EXIT_STRING(NOTIFY),
1958 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1959 KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1960 #endif
1961 };
1962
1963 /*
1964 * Exit Reason String
1965 *
1966 * Input Args:
1967 * exit_reason - Exit reason
1968 *
1969 * Output Args: None
1970 *
1971 * Return:
1972 * Constant string pointer describing the exit reason.
1973 *
1974 * Locates and returns a constant string that describes the KVM exit
1975 * reason given by exit_reason. If no such string is found, a constant
1976 * string of "Unknown" is returned.
1977 */
exit_reason_str(unsigned int exit_reason)1978 const char *exit_reason_str(unsigned int exit_reason)
1979 {
1980 unsigned int n1;
1981
1982 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1983 if (exit_reason == exit_reasons_known[n1].reason)
1984 return exit_reasons_known[n1].name;
1985 }
1986
1987 return "Unknown";
1988 }
1989
1990 /*
1991 * Physical Contiguous Page Allocator
1992 *
1993 * Input Args:
1994 * vm - Virtual Machine
1995 * num - number of pages
1996 * paddr_min - Physical address minimum
1997 * memslot - Memory region to allocate page from
1998 * protected - True if the pages will be used as protected/private memory
1999 *
2000 * Output Args: None
2001 *
2002 * Return:
2003 * Starting physical address
2004 *
2005 * Within the VM specified by vm, locates a range of available physical
2006 * pages at or above paddr_min. If found, the pages are marked as in use
2007 * and their base address is returned. A TEST_ASSERT failure occurs if
2008 * not enough pages are available at or above paddr_min.
2009 */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2010 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2011 vm_paddr_t paddr_min, uint32_t memslot,
2012 bool protected)
2013 {
2014 struct userspace_mem_region *region;
2015 sparsebit_idx_t pg, base;
2016
2017 TEST_ASSERT(num > 0, "Must allocate at least one page");
2018
2019 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2020 "not divisible by page size.\n"
2021 " paddr_min: 0x%lx page_size: 0x%x",
2022 paddr_min, vm->page_size);
2023
2024 region = memslot2region(vm, memslot);
2025 TEST_ASSERT(!protected || region->protected_phy_pages,
2026 "Region doesn't support protected memory");
2027
2028 base = pg = paddr_min >> vm->page_shift;
2029 do {
2030 for (; pg < base + num; ++pg) {
2031 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2032 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2033 break;
2034 }
2035 }
2036 } while (pg && pg != base + num);
2037
2038 if (pg == 0) {
2039 fprintf(stderr, "No guest physical page available, "
2040 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2041 paddr_min, vm->page_size, memslot);
2042 fputs("---- vm dump ----\n", stderr);
2043 vm_dump(stderr, vm, 2);
2044 abort();
2045 }
2046
2047 for (pg = base; pg < base + num; ++pg) {
2048 sparsebit_clear(region->unused_phy_pages, pg);
2049 if (protected)
2050 sparsebit_set(region->protected_phy_pages, pg);
2051 }
2052
2053 return base * vm->page_size;
2054 }
2055
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2056 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2057 uint32_t memslot)
2058 {
2059 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2060 }
2061
vm_alloc_page_table(struct kvm_vm * vm)2062 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2063 {
2064 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2065 vm->memslots[MEM_REGION_PT]);
2066 }
2067
2068 /*
2069 * Address Guest Virtual to Host Virtual
2070 *
2071 * Input Args:
2072 * vm - Virtual Machine
2073 * gva - VM virtual address
2074 *
2075 * Output Args: None
2076 *
2077 * Return:
2078 * Equivalent host virtual address
2079 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2080 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2081 {
2082 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2083 }
2084
vm_compute_max_gfn(struct kvm_vm * vm)2085 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2086 {
2087 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2088 }
2089
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2090 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2091 unsigned int page_shift,
2092 unsigned int new_page_shift,
2093 bool ceil)
2094 {
2095 unsigned int n = 1 << (new_page_shift - page_shift);
2096
2097 if (page_shift >= new_page_shift)
2098 return num_pages * (1 << (page_shift - new_page_shift));
2099
2100 return num_pages / n + !!(ceil && num_pages % n);
2101 }
2102
getpageshift(void)2103 static inline int getpageshift(void)
2104 {
2105 return __builtin_ffs(getpagesize()) - 1;
2106 }
2107
2108 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2109 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2110 {
2111 return vm_calc_num_pages(num_guest_pages,
2112 vm_guest_mode_params[mode].page_shift,
2113 getpageshift(), true);
2114 }
2115
2116 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2117 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2118 {
2119 return vm_calc_num_pages(num_host_pages, getpageshift(),
2120 vm_guest_mode_params[mode].page_shift, false);
2121 }
2122
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2123 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2124 {
2125 unsigned int n;
2126 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2127 return vm_adjust_num_guest_pages(mode, n);
2128 }
2129
2130 /*
2131 * Read binary stats descriptors
2132 *
2133 * Input Args:
2134 * stats_fd - the file descriptor for the binary stats file from which to read
2135 * header - the binary stats metadata header corresponding to the given FD
2136 *
2137 * Output Args: None
2138 *
2139 * Return:
2140 * A pointer to a newly allocated series of stat descriptors.
2141 * Caller is responsible for freeing the returned kvm_stats_desc.
2142 *
2143 * Read the stats descriptors from the binary stats interface.
2144 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2145 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2146 struct kvm_stats_header *header)
2147 {
2148 struct kvm_stats_desc *stats_desc;
2149 ssize_t desc_size, total_size, ret;
2150
2151 desc_size = get_stats_descriptor_size(header);
2152 total_size = header->num_desc * desc_size;
2153
2154 stats_desc = calloc(header->num_desc, desc_size);
2155 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2156
2157 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2158 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2159
2160 return stats_desc;
2161 }
2162
2163 /*
2164 * Read stat data for a particular stat
2165 *
2166 * Input Args:
2167 * stats_fd - the file descriptor for the binary stats file from which to read
2168 * header - the binary stats metadata header corresponding to the given FD
2169 * desc - the binary stat metadata for the particular stat to be read
2170 * max_elements - the maximum number of 8-byte values to read into data
2171 *
2172 * Output Args:
2173 * data - the buffer into which stat data should be read
2174 *
2175 * Read the data values of a specified stat from the binary stats interface.
2176 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2177 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2178 struct kvm_stats_desc *desc, uint64_t *data,
2179 size_t max_elements)
2180 {
2181 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2182 size_t size = nr_elements * sizeof(*data);
2183 ssize_t ret;
2184
2185 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2186 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2187
2188 ret = pread(stats_fd, data, size,
2189 header->data_offset + desc->offset);
2190
2191 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2192 desc->name, errno, strerror(errno));
2193 TEST_ASSERT(ret == size,
2194 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2195 desc->name, size, ret);
2196 }
2197
2198 /*
2199 * Read the data of the named stat
2200 *
2201 * Input Args:
2202 * vm - the VM for which the stat should be read
2203 * stat_name - the name of the stat to read
2204 * max_elements - the maximum number of 8-byte values to read into data
2205 *
2206 * Output Args:
2207 * data - the buffer into which stat data should be read
2208 *
2209 * Read the data values of a specified stat from the binary stats interface.
2210 */
__vm_get_stat(struct kvm_vm * vm,const char * stat_name,uint64_t * data,size_t max_elements)2211 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2212 size_t max_elements)
2213 {
2214 struct kvm_stats_desc *desc;
2215 size_t size_desc;
2216 int i;
2217
2218 if (!vm->stats_fd) {
2219 vm->stats_fd = vm_get_stats_fd(vm);
2220 read_stats_header(vm->stats_fd, &vm->stats_header);
2221 vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2222 &vm->stats_header);
2223 }
2224
2225 size_desc = get_stats_descriptor_size(&vm->stats_header);
2226
2227 for (i = 0; i < vm->stats_header.num_desc; ++i) {
2228 desc = (void *)vm->stats_desc + (i * size_desc);
2229
2230 if (strcmp(desc->name, stat_name))
2231 continue;
2232
2233 read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2234 data, max_elements);
2235
2236 break;
2237 }
2238 }
2239
kvm_arch_vm_post_create(struct kvm_vm * vm)2240 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2241 {
2242 }
2243
kvm_selftest_arch_init(void)2244 __weak void kvm_selftest_arch_init(void)
2245 {
2246 }
2247
kvm_selftest_init(void)2248 void __attribute((constructor)) kvm_selftest_init(void)
2249 {
2250 /* Tell stdout not to buffer its content. */
2251 setbuf(stdout, NULL);
2252
2253 guest_random_seed = last_guest_seed = random();
2254 pr_info("Random seed: 0x%x\n", guest_random_seed);
2255
2256 kvm_selftest_arch_init();
2257 }
2258
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2259 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2260 {
2261 sparsebit_idx_t pg = 0;
2262 struct userspace_mem_region *region;
2263
2264 if (!vm_arch_has_protected_memory(vm))
2265 return false;
2266
2267 region = userspace_mem_region_find(vm, paddr, paddr);
2268 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2269
2270 pg = paddr >> vm->page_shift;
2271 return sparsebit_is_set(region->protected_phy_pages, pg);
2272 }
2273