1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 /* Unadultered PMU capabilities of the host, i.e. of hardware. */
30 static struct x86_pmu_capability __read_mostly kvm_host_pmu;
31
32 /* KVM's PMU capabilities, i.e. the intersection of KVM and hardware support. */
33 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
34 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_cap);
35
36 struct kvm_pmu_emulated_event_selectors {
37 u64 INSTRUCTIONS_RETIRED;
38 u64 BRANCH_INSTRUCTIONS_RETIRED;
39 };
40 static struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel;
41
42 /* Precise Distribution of Instructions Retired (PDIR) */
43 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
44 X86_MATCH_VFM(INTEL_ICELAKE_D, NULL),
45 X86_MATCH_VFM(INTEL_ICELAKE_X, NULL),
46 /* Instruction-Accurate PDIR (PDIR++) */
47 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
48 {}
49 };
50
51 /* Precise Distribution (PDist) */
52 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
53 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
54 {}
55 };
56
57 /* NOTE:
58 * - Each perf counter is defined as "struct kvm_pmc";
59 * - There are two types of perf counters: general purpose (gp) and fixed.
60 * gp counters are stored in gp_counters[] and fixed counters are stored
61 * in fixed_counters[] respectively. Both of them are part of "struct
62 * kvm_pmu";
63 * - pmu.c understands the difference between gp counters and fixed counters.
64 * However AMD doesn't support fixed-counters;
65 * - There are three types of index to access perf counters (PMC):
66 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
67 * has MSR_K7_PERFCTRn and, for families 15H and later,
68 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
69 * aliased to MSR_K7_PERFCTRn.
70 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
71 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
72 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
73 * that it also supports fixed counters. idx can be used to as index to
74 * gp and fixed counters.
75 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
76 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
77 * all perf counters (both gp and fixed). The mapping relationship
78 * between pmc and perf counters is as the following:
79 * * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters
80 * [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed
81 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
82 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
83 */
84
85 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
86
87 #define KVM_X86_PMU_OP(func) \
88 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
89 *(((struct kvm_pmu_ops *)0)->func));
90 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
91 #include <asm/kvm-x86-pmu-ops.h>
92
kvm_pmu_ops_update(const struct kvm_pmu_ops * pmu_ops)93 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
94 {
95 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
96
97 #define __KVM_X86_PMU_OP(func) \
98 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
99 #define KVM_X86_PMU_OP(func) \
100 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
101 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
102 #include <asm/kvm-x86-pmu-ops.h>
103 #undef __KVM_X86_PMU_OP
104 }
105
kvm_init_pmu_capability(const struct kvm_pmu_ops * pmu_ops)106 void kvm_init_pmu_capability(const struct kvm_pmu_ops *pmu_ops)
107 {
108 bool is_intel = boot_cpu_data.x86_vendor == X86_VENDOR_INTEL;
109 int min_nr_gp_ctrs = pmu_ops->MIN_NR_GP_COUNTERS;
110
111 perf_get_x86_pmu_capability(&kvm_host_pmu);
112
113 /*
114 * Hybrid PMUs don't play nice with virtualization without careful
115 * configuration by userspace, and KVM's APIs for reporting supported
116 * vPMU features do not account for hybrid PMUs. Disable vPMU support
117 * for hybrid PMUs until KVM gains a way to let userspace opt-in.
118 */
119 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
120 enable_pmu = false;
121
122 if (enable_pmu) {
123 /*
124 * WARN if perf did NOT disable hardware PMU if the number of
125 * architecturally required GP counters aren't present, i.e. if
126 * there are a non-zero number of counters, but fewer than what
127 * is architecturally required.
128 */
129 if (!kvm_host_pmu.num_counters_gp ||
130 WARN_ON_ONCE(kvm_host_pmu.num_counters_gp < min_nr_gp_ctrs))
131 enable_pmu = false;
132 else if (is_intel && !kvm_host_pmu.version)
133 enable_pmu = false;
134 }
135
136 if (!enable_pmu) {
137 memset(&kvm_pmu_cap, 0, sizeof(kvm_pmu_cap));
138 return;
139 }
140
141 memcpy(&kvm_pmu_cap, &kvm_host_pmu, sizeof(kvm_host_pmu));
142 kvm_pmu_cap.version = min(kvm_pmu_cap.version, 2);
143 kvm_pmu_cap.num_counters_gp = min(kvm_pmu_cap.num_counters_gp,
144 pmu_ops->MAX_NR_GP_COUNTERS);
145 kvm_pmu_cap.num_counters_fixed = min(kvm_pmu_cap.num_counters_fixed,
146 KVM_MAX_NR_FIXED_COUNTERS);
147
148 kvm_pmu_eventsel.INSTRUCTIONS_RETIRED =
149 perf_get_hw_event_config(PERF_COUNT_HW_INSTRUCTIONS);
150 kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED =
151 perf_get_hw_event_config(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
152 }
153
__kvm_perf_overflow(struct kvm_pmc * pmc,bool in_pmi)154 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
155 {
156 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
157 bool skip_pmi = false;
158
159 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
160 if (!in_pmi) {
161 /*
162 * TODO: KVM is currently _choosing_ to not generate records
163 * for emulated instructions, avoiding BUFFER_OVF PMI when
164 * there are no records. Strictly speaking, it should be done
165 * as well in the right context to improve sampling accuracy.
166 */
167 skip_pmi = true;
168 } else {
169 /* Indicate PEBS overflow PMI to guest. */
170 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
171 (unsigned long *)&pmu->global_status);
172 }
173 } else {
174 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
175 }
176
177 if (pmc->intr && !skip_pmi)
178 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
179 }
180
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)181 static void kvm_perf_overflow(struct perf_event *perf_event,
182 struct perf_sample_data *data,
183 struct pt_regs *regs)
184 {
185 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
186
187 /*
188 * Ignore asynchronous overflow events for counters that are scheduled
189 * to be reprogrammed, e.g. if a PMI for the previous event races with
190 * KVM's handling of a related guest WRMSR.
191 */
192 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
193 return;
194
195 __kvm_perf_overflow(pmc, true);
196
197 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
198 }
199
pmc_get_pebs_precise_level(struct kvm_pmc * pmc)200 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
201 {
202 /*
203 * For some model specific pebs counters with special capabilities
204 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
205 * level to the maximum value (currently 3, backwards compatible)
206 * so that the perf subsystem would assign specific hardware counter
207 * with that capability for vPMC.
208 */
209 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
210 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
211 return 3;
212
213 /*
214 * The non-zero precision level of guest event makes the ordinary
215 * guest event becomes a guest PEBS event and triggers the host
216 * PEBS PMI handler to determine whether the PEBS overflow PMI
217 * comes from the host counters or the guest.
218 */
219 return 1;
220 }
221
get_sample_period(struct kvm_pmc * pmc,u64 counter_value)222 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
223 {
224 u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
225
226 if (!sample_period)
227 sample_period = pmc_bitmask(pmc) + 1;
228 return sample_period;
229 }
230
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,u64 config,bool exclude_user,bool exclude_kernel,bool intr)231 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
232 bool exclude_user, bool exclude_kernel,
233 bool intr)
234 {
235 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
236 struct perf_event *event;
237 struct perf_event_attr attr = {
238 .type = type,
239 .size = sizeof(attr),
240 .pinned = true,
241 .exclude_idle = true,
242 .exclude_host = 1,
243 .exclude_user = exclude_user,
244 .exclude_kernel = exclude_kernel,
245 .config = config,
246 };
247 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
248
249 attr.sample_period = get_sample_period(pmc, pmc->counter);
250
251 if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
252 (boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) {
253 /*
254 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
255 * period. Just clear the sample period so at least
256 * allocating the counter doesn't fail.
257 */
258 attr.sample_period = 0;
259 }
260 if (pebs) {
261 /*
262 * For most PEBS hardware events, the difference in the software
263 * precision levels of guest and host PEBS events will not affect
264 * the accuracy of the PEBS profiling result, because the "event IP"
265 * in the PEBS record is calibrated on the guest side.
266 */
267 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
268 }
269
270 event = perf_event_create_kernel_counter(&attr, -1, current,
271 kvm_perf_overflow, pmc);
272 if (IS_ERR(event)) {
273 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
274 PTR_ERR(event), pmc->idx);
275 return PTR_ERR(event);
276 }
277
278 pmc->perf_event = event;
279 pmc_to_pmu(pmc)->event_count++;
280 pmc->is_paused = false;
281 pmc->intr = intr || pebs;
282 return 0;
283 }
284
pmc_pause_counter(struct kvm_pmc * pmc)285 static bool pmc_pause_counter(struct kvm_pmc *pmc)
286 {
287 u64 counter = pmc->counter;
288 u64 prev_counter;
289
290 /* update counter, reset event value to avoid redundant accumulation */
291 if (pmc->perf_event && !pmc->is_paused)
292 counter += perf_event_pause(pmc->perf_event, true);
293
294 /*
295 * Snapshot the previous counter *after* accumulating state from perf.
296 * If overflow already happened, hardware (via perf) is responsible for
297 * generating a PMI. KVM just needs to detect overflow on emulated
298 * counter events that haven't yet been processed.
299 */
300 prev_counter = counter & pmc_bitmask(pmc);
301
302 counter += pmc->emulated_counter;
303 pmc->counter = counter & pmc_bitmask(pmc);
304
305 pmc->emulated_counter = 0;
306 pmc->is_paused = true;
307
308 return pmc->counter < prev_counter;
309 }
310
pmc_resume_counter(struct kvm_pmc * pmc)311 static bool pmc_resume_counter(struct kvm_pmc *pmc)
312 {
313 if (!pmc->perf_event)
314 return false;
315
316 /* recalibrate sample period and check if it's accepted by perf core */
317 if (is_sampling_event(pmc->perf_event) &&
318 perf_event_period(pmc->perf_event,
319 get_sample_period(pmc, pmc->counter)))
320 return false;
321
322 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
323 (!!pmc->perf_event->attr.precise_ip))
324 return false;
325
326 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
327 perf_event_enable(pmc->perf_event);
328 pmc->is_paused = false;
329
330 return true;
331 }
332
pmc_release_perf_event(struct kvm_pmc * pmc)333 static void pmc_release_perf_event(struct kvm_pmc *pmc)
334 {
335 if (pmc->perf_event) {
336 perf_event_release_kernel(pmc->perf_event);
337 pmc->perf_event = NULL;
338 pmc->current_config = 0;
339 pmc_to_pmu(pmc)->event_count--;
340 }
341 }
342
pmc_stop_counter(struct kvm_pmc * pmc)343 static void pmc_stop_counter(struct kvm_pmc *pmc)
344 {
345 if (pmc->perf_event) {
346 pmc->counter = pmc_read_counter(pmc);
347 pmc_release_perf_event(pmc);
348 }
349 }
350
pmc_update_sample_period(struct kvm_pmc * pmc)351 static void pmc_update_sample_period(struct kvm_pmc *pmc)
352 {
353 if (!pmc->perf_event || pmc->is_paused ||
354 !is_sampling_event(pmc->perf_event))
355 return;
356
357 perf_event_period(pmc->perf_event,
358 get_sample_period(pmc, pmc->counter));
359 }
360
pmc_write_counter(struct kvm_pmc * pmc,u64 val)361 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
362 {
363 /*
364 * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
365 * read-modify-write. Adjust the counter value so that its value is
366 * relative to the current count, as reading the current count from
367 * perf is faster than pausing and repgrogramming the event in order to
368 * reset it to '0'. Note, this very sneakily offsets the accumulated
369 * emulated count too, by using pmc_read_counter()!
370 */
371 pmc->emulated_counter = 0;
372 pmc->counter += val - pmc_read_counter(pmc);
373 pmc->counter &= pmc_bitmask(pmc);
374 pmc_update_sample_period(pmc);
375 }
376 EXPORT_SYMBOL_FOR_KVM_INTERNAL(pmc_write_counter);
377
filter_cmp(const void * pa,const void * pb,u64 mask)378 static int filter_cmp(const void *pa, const void *pb, u64 mask)
379 {
380 u64 a = *(u64 *)pa & mask;
381 u64 b = *(u64 *)pb & mask;
382
383 return (a > b) - (a < b);
384 }
385
386
filter_sort_cmp(const void * pa,const void * pb)387 static int filter_sort_cmp(const void *pa, const void *pb)
388 {
389 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
390 KVM_PMU_MASKED_ENTRY_EXCLUDE));
391 }
392
393 /*
394 * For the event filter, searching is done on the 'includes' list and
395 * 'excludes' list separately rather than on the 'events' list (which
396 * has both). As a result the exclude bit can be ignored.
397 */
filter_event_cmp(const void * pa,const void * pb)398 static int filter_event_cmp(const void *pa, const void *pb)
399 {
400 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
401 }
402
find_filter_index(u64 * events,u64 nevents,u64 key)403 static int find_filter_index(u64 *events, u64 nevents, u64 key)
404 {
405 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
406 filter_event_cmp);
407
408 if (!fe)
409 return -1;
410
411 return fe - events;
412 }
413
is_filter_entry_match(u64 filter_event,u64 umask)414 static bool is_filter_entry_match(u64 filter_event, u64 umask)
415 {
416 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
417 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
418
419 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
420 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
421 ARCH_PERFMON_EVENTSEL_UMASK);
422
423 return (umask & mask) == match;
424 }
425
filter_contains_match(u64 * events,u64 nevents,u64 eventsel)426 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
427 {
428 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
429 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
430 int i, index;
431
432 index = find_filter_index(events, nevents, event_select);
433 if (index < 0)
434 return false;
435
436 /*
437 * Entries are sorted by the event select. Walk the list in both
438 * directions to process all entries with the targeted event select.
439 */
440 for (i = index; i < nevents; i++) {
441 if (filter_event_cmp(&events[i], &event_select))
442 break;
443
444 if (is_filter_entry_match(events[i], umask))
445 return true;
446 }
447
448 for (i = index - 1; i >= 0; i--) {
449 if (filter_event_cmp(&events[i], &event_select))
450 break;
451
452 if (is_filter_entry_match(events[i], umask))
453 return true;
454 }
455
456 return false;
457 }
458
is_gp_event_allowed(struct kvm_x86_pmu_event_filter * f,u64 eventsel)459 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
460 u64 eventsel)
461 {
462 if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
463 !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
464 return f->action == KVM_PMU_EVENT_ALLOW;
465
466 return f->action == KVM_PMU_EVENT_DENY;
467 }
468
is_fixed_event_allowed(struct kvm_x86_pmu_event_filter * filter,int idx)469 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
470 int idx)
471 {
472 int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX;
473
474 if (filter->action == KVM_PMU_EVENT_DENY &&
475 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
476 return false;
477 if (filter->action == KVM_PMU_EVENT_ALLOW &&
478 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
479 return false;
480
481 return true;
482 }
483
pmc_is_event_allowed(struct kvm_pmc * pmc)484 static bool pmc_is_event_allowed(struct kvm_pmc *pmc)
485 {
486 struct kvm_x86_pmu_event_filter *filter;
487 struct kvm *kvm = pmc->vcpu->kvm;
488
489 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
490 if (!filter)
491 return true;
492
493 if (pmc_is_gp(pmc))
494 return is_gp_event_allowed(filter, pmc->eventsel);
495
496 return is_fixed_event_allowed(filter, pmc->idx);
497 }
498
reprogram_counter(struct kvm_pmc * pmc)499 static int reprogram_counter(struct kvm_pmc *pmc)
500 {
501 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
502 u64 eventsel = pmc->eventsel;
503 u64 new_config = eventsel;
504 bool emulate_overflow;
505 u8 fixed_ctr_ctrl;
506
507 emulate_overflow = pmc_pause_counter(pmc);
508
509 if (!pmc_is_globally_enabled(pmc) || !pmc_is_locally_enabled(pmc) ||
510 !pmc_is_event_allowed(pmc))
511 return 0;
512
513 if (emulate_overflow)
514 __kvm_perf_overflow(pmc, false);
515
516 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
517 printk_once("kvm pmu: pin control bit is ignored\n");
518
519 if (pmc_is_fixed(pmc)) {
520 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
521 pmc->idx - KVM_FIXED_PMC_BASE_IDX);
522 if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL)
523 eventsel |= ARCH_PERFMON_EVENTSEL_OS;
524 if (fixed_ctr_ctrl & INTEL_FIXED_0_USER)
525 eventsel |= ARCH_PERFMON_EVENTSEL_USR;
526 if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI)
527 eventsel |= ARCH_PERFMON_EVENTSEL_INT;
528 new_config = (u64)fixed_ctr_ctrl;
529 }
530
531 if (pmc->current_config == new_config && pmc_resume_counter(pmc))
532 return 0;
533
534 pmc_release_perf_event(pmc);
535
536 pmc->current_config = new_config;
537
538 return pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
539 (eventsel & pmu->raw_event_mask),
540 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
541 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
542 eventsel & ARCH_PERFMON_EVENTSEL_INT);
543 }
544
pmc_is_event_match(struct kvm_pmc * pmc,u64 eventsel)545 static bool pmc_is_event_match(struct kvm_pmc *pmc, u64 eventsel)
546 {
547 /*
548 * Ignore checks for edge detect (all events currently emulated by KVM
549 * are always rising edges), pin control (unsupported by modern CPUs),
550 * and counter mask and its invert flag (KVM doesn't emulate multiple
551 * events in a single clock cycle).
552 *
553 * Note, the uppermost nibble of AMD's mask overlaps Intel's IN_TX (bit
554 * 32) and IN_TXCP (bit 33), as well as two reserved bits (bits 35:34).
555 * Checking the "in HLE/RTM transaction" flags is correct as the vCPU
556 * can't be in a transaction if KVM is emulating an instruction.
557 *
558 * Checking the reserved bits might be wrong if they are defined in the
559 * future, but so could ignoring them, so do the simple thing for now.
560 */
561 return !((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB);
562 }
563
kvm_pmu_recalc_pmc_emulation(struct kvm_pmu * pmu,struct kvm_pmc * pmc)564 void kvm_pmu_recalc_pmc_emulation(struct kvm_pmu *pmu, struct kvm_pmc *pmc)
565 {
566 bitmap_clear(pmu->pmc_counting_instructions, pmc->idx, 1);
567 bitmap_clear(pmu->pmc_counting_branches, pmc->idx, 1);
568
569 /*
570 * Do NOT consult the PMU event filters, as the filters must be checked
571 * at the time of emulation to ensure KVM uses fresh information, e.g.
572 * omitting a PMC from a bitmap could result in a missed event if the
573 * filter is changed to allow counting the event.
574 */
575 if (!pmc_is_locally_enabled(pmc))
576 return;
577
578 if (pmc_is_event_match(pmc, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED))
579 bitmap_set(pmu->pmc_counting_instructions, pmc->idx, 1);
580
581 if (pmc_is_event_match(pmc, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED))
582 bitmap_set(pmu->pmc_counting_branches, pmc->idx, 1);
583 }
584 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_recalc_pmc_emulation);
585
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)586 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
587 {
588 DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
589 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
590 struct kvm_pmc *pmc;
591 int bit;
592
593 bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX);
594
595 /*
596 * The reprogramming bitmap can be written asynchronously by something
597 * other than the task that holds vcpu->mutex, take care to clear only
598 * the bits that will actually processed.
599 */
600 BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t));
601 atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi);
602
603 kvm_for_each_pmc(pmu, pmc, bit, bitmap) {
604 /*
605 * If reprogramming fails, e.g. due to contention, re-set the
606 * regprogram bit set, i.e. opportunistically try again on the
607 * next PMU refresh. Don't make a new request as doing so can
608 * stall the guest if reprogramming repeatedly fails.
609 */
610 if (reprogram_counter(pmc))
611 set_bit(pmc->idx, pmu->reprogram_pmi);
612 }
613
614 /*
615 * Release unused perf_events if the corresponding guest MSRs weren't
616 * accessed during the last vCPU time slice (need_cleanup is set when
617 * the vCPU is scheduled back in).
618 */
619 if (unlikely(pmu->need_cleanup))
620 kvm_pmu_cleanup(vcpu);
621
622 kvm_for_each_pmc(pmu, pmc, bit, bitmap)
623 kvm_pmu_recalc_pmc_emulation(pmu, pmc);
624 }
625
kvm_pmu_check_rdpmc_early(struct kvm_vcpu * vcpu,unsigned int idx)626 int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx)
627 {
628 /*
629 * On Intel, VMX interception has priority over RDPMC exceptions that
630 * aren't already handled by the emulator, i.e. there are no additional
631 * check needed for Intel PMUs.
632 *
633 * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts,
634 * i.e. an invalid PMC results in a #GP, not #VMEXIT.
635 */
636 if (!kvm_pmu_ops.check_rdpmc_early)
637 return 0;
638
639 return kvm_pmu_call(check_rdpmc_early)(vcpu, idx);
640 }
641
is_vmware_backdoor_pmc(u32 pmc_idx)642 bool is_vmware_backdoor_pmc(u32 pmc_idx)
643 {
644 switch (pmc_idx) {
645 case VMWARE_BACKDOOR_PMC_HOST_TSC:
646 case VMWARE_BACKDOOR_PMC_REAL_TIME:
647 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
648 return true;
649 }
650 return false;
651 }
652
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)653 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
654 {
655 u64 ctr_val;
656
657 switch (idx) {
658 case VMWARE_BACKDOOR_PMC_HOST_TSC:
659 ctr_val = rdtsc();
660 break;
661 case VMWARE_BACKDOOR_PMC_REAL_TIME:
662 ctr_val = ktime_get_boottime_ns();
663 break;
664 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
665 ctr_val = ktime_get_boottime_ns() +
666 vcpu->kvm->arch.kvmclock_offset;
667 break;
668 default:
669 return 1;
670 }
671
672 *data = ctr_val;
673 return 0;
674 }
675
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)676 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
677 {
678 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
679 struct kvm_pmc *pmc;
680 u64 mask = ~0ull;
681
682 if (!pmu->version)
683 return 1;
684
685 if (is_vmware_backdoor_pmc(idx))
686 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
687
688 pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
689 if (!pmc)
690 return 1;
691
692 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
693 (kvm_x86_call(get_cpl)(vcpu) != 0) &&
694 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
695 return 1;
696
697 *data = pmc_read_counter(pmc) & mask;
698 return 0;
699 }
700
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)701 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
702 {
703 if (lapic_in_kernel(vcpu)) {
704 kvm_pmu_call(deliver_pmi)(vcpu);
705 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
706 }
707 }
708
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)709 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
710 {
711 switch (msr) {
712 case MSR_CORE_PERF_GLOBAL_STATUS:
713 case MSR_CORE_PERF_GLOBAL_CTRL:
714 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
715 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
716 default:
717 break;
718 }
719 return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) ||
720 kvm_pmu_call(is_valid_msr)(vcpu, msr);
721 }
722
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)723 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
724 {
725 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
726 struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr);
727
728 if (pmc)
729 __set_bit(pmc->idx, pmu->pmc_in_use);
730 }
731
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)732 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
733 {
734 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
735 u32 msr = msr_info->index;
736
737 switch (msr) {
738 case MSR_CORE_PERF_GLOBAL_STATUS:
739 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
740 msr_info->data = pmu->global_status;
741 break;
742 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
743 case MSR_CORE_PERF_GLOBAL_CTRL:
744 msr_info->data = pmu->global_ctrl;
745 break;
746 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
747 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
748 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
749 msr_info->data = 0;
750 break;
751 default:
752 return kvm_pmu_call(get_msr)(vcpu, msr_info);
753 }
754
755 return 0;
756 }
757
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)758 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
759 {
760 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
761 u32 msr = msr_info->index;
762 u64 data = msr_info->data;
763 u64 diff;
764
765 /*
766 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
767 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
768 */
769 switch (msr) {
770 case MSR_CORE_PERF_GLOBAL_STATUS:
771 if (!msr_info->host_initiated)
772 return 1; /* RO MSR */
773 fallthrough;
774 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
775 /* Per PPR, Read-only MSR. Writes are ignored. */
776 if (!msr_info->host_initiated)
777 break;
778
779 if (data & pmu->global_status_rsvd)
780 return 1;
781
782 pmu->global_status = data;
783 break;
784 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
785 data &= ~pmu->global_ctrl_rsvd;
786 fallthrough;
787 case MSR_CORE_PERF_GLOBAL_CTRL:
788 if (!kvm_valid_perf_global_ctrl(pmu, data))
789 return 1;
790
791 if (pmu->global_ctrl != data) {
792 diff = pmu->global_ctrl ^ data;
793 pmu->global_ctrl = data;
794 reprogram_counters(pmu, diff);
795 }
796 break;
797 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
798 /*
799 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
800 * GLOBAL_STATUS, and so the set of reserved bits is the same.
801 */
802 if (data & pmu->global_status_rsvd)
803 return 1;
804 fallthrough;
805 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
806 if (!msr_info->host_initiated)
807 pmu->global_status &= ~data;
808 break;
809 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
810 if (!msr_info->host_initiated)
811 pmu->global_status |= data & ~pmu->global_status_rsvd;
812 break;
813 default:
814 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
815 return kvm_pmu_call(set_msr)(vcpu, msr_info);
816 }
817
818 return 0;
819 }
820
kvm_pmu_reset(struct kvm_vcpu * vcpu)821 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
822 {
823 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
824 struct kvm_pmc *pmc;
825 int i;
826
827 pmu->need_cleanup = false;
828
829 bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
830
831 kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) {
832 pmc_stop_counter(pmc);
833 pmc->counter = 0;
834 pmc->emulated_counter = 0;
835
836 if (pmc_is_gp(pmc))
837 pmc->eventsel = 0;
838 }
839
840 pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
841
842 kvm_pmu_call(reset)(vcpu);
843 }
844
845
846 /*
847 * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
848 * and/or PERF_CAPABILITIES.
849 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)850 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
851 {
852 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
853
854 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
855 return;
856
857 /*
858 * Stop/release all existing counters/events before realizing the new
859 * vPMU model.
860 */
861 kvm_pmu_reset(vcpu);
862
863 pmu->version = 0;
864 pmu->nr_arch_gp_counters = 0;
865 pmu->nr_arch_fixed_counters = 0;
866 pmu->counter_bitmask[KVM_PMC_GP] = 0;
867 pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
868 pmu->reserved_bits = 0xffffffff00200000ull;
869 pmu->raw_event_mask = X86_RAW_EVENT_MASK;
870 pmu->global_ctrl_rsvd = ~0ull;
871 pmu->global_status_rsvd = ~0ull;
872 pmu->fixed_ctr_ctrl_rsvd = ~0ull;
873 pmu->pebs_enable_rsvd = ~0ull;
874 pmu->pebs_data_cfg_rsvd = ~0ull;
875 bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
876
877 if (!vcpu->kvm->arch.enable_pmu)
878 return;
879
880 kvm_pmu_call(refresh)(vcpu);
881
882 /*
883 * At RESET, both Intel and AMD CPUs set all enable bits for general
884 * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that
885 * was written for v1 PMUs don't unknowingly leave GP counters disabled
886 * in the global controls). Emulate that behavior when refreshing the
887 * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL.
888 */
889 if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters)
890 pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0);
891
892 bitmap_set(pmu->all_valid_pmc_idx, 0, pmu->nr_arch_gp_counters);
893 bitmap_set(pmu->all_valid_pmc_idx, KVM_FIXED_PMC_BASE_IDX,
894 pmu->nr_arch_fixed_counters);
895 }
896
kvm_pmu_init(struct kvm_vcpu * vcpu)897 void kvm_pmu_init(struct kvm_vcpu *vcpu)
898 {
899 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
900
901 memset(pmu, 0, sizeof(*pmu));
902 kvm_pmu_call(init)(vcpu);
903 }
904
905 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)906 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
907 {
908 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
909 struct kvm_pmc *pmc = NULL;
910 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
911 int i;
912
913 pmu->need_cleanup = false;
914
915 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
916 pmu->pmc_in_use, X86_PMC_IDX_MAX);
917
918 kvm_for_each_pmc(pmu, pmc, i, bitmask) {
919 if (pmc->perf_event && !pmc_is_locally_enabled(pmc))
920 pmc_stop_counter(pmc);
921 }
922
923 kvm_pmu_call(cleanup)(vcpu);
924
925 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
926 }
927
kvm_pmu_destroy(struct kvm_vcpu * vcpu)928 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
929 {
930 kvm_pmu_reset(vcpu);
931 }
932
kvm_pmu_incr_counter(struct kvm_pmc * pmc)933 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
934 {
935 pmc->emulated_counter++;
936 kvm_pmu_request_counter_reprogram(pmc);
937 }
938
cpl_is_matched(struct kvm_pmc * pmc)939 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
940 {
941 bool select_os, select_user;
942 u64 config;
943
944 if (pmc_is_gp(pmc)) {
945 config = pmc->eventsel;
946 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
947 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
948 } else {
949 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
950 pmc->idx - KVM_FIXED_PMC_BASE_IDX);
951 select_os = config & INTEL_FIXED_0_KERNEL;
952 select_user = config & INTEL_FIXED_0_USER;
953 }
954
955 /*
956 * Skip the CPL lookup, which isn't free on Intel, if the result will
957 * be the same regardless of the CPL.
958 */
959 if (select_os == select_user)
960 return select_os;
961
962 return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os :
963 select_user;
964 }
965
kvm_pmu_trigger_event(struct kvm_vcpu * vcpu,const unsigned long * event_pmcs)966 static void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu,
967 const unsigned long *event_pmcs)
968 {
969 DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
970 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
971 struct kvm_pmc *pmc;
972 int i, idx;
973
974 BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX);
975
976 if (bitmap_empty(event_pmcs, X86_PMC_IDX_MAX))
977 return;
978
979 if (!kvm_pmu_has_perf_global_ctrl(pmu))
980 bitmap_copy(bitmap, event_pmcs, X86_PMC_IDX_MAX);
981 else if (!bitmap_and(bitmap, event_pmcs,
982 (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX))
983 return;
984
985 idx = srcu_read_lock(&vcpu->kvm->srcu);
986 kvm_for_each_pmc(pmu, pmc, i, bitmap) {
987 if (!pmc_is_event_allowed(pmc) || !cpl_is_matched(pmc))
988 continue;
989
990 kvm_pmu_incr_counter(pmc);
991 }
992 srcu_read_unlock(&vcpu->kvm->srcu, idx);
993 }
994
kvm_pmu_instruction_retired(struct kvm_vcpu * vcpu)995 void kvm_pmu_instruction_retired(struct kvm_vcpu *vcpu)
996 {
997 kvm_pmu_trigger_event(vcpu, vcpu_to_pmu(vcpu)->pmc_counting_instructions);
998 }
999 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_instruction_retired);
1000
kvm_pmu_branch_retired(struct kvm_vcpu * vcpu)1001 void kvm_pmu_branch_retired(struct kvm_vcpu *vcpu)
1002 {
1003 kvm_pmu_trigger_event(vcpu, vcpu_to_pmu(vcpu)->pmc_counting_branches);
1004 }
1005 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_branch_retired);
1006
is_masked_filter_valid(const struct kvm_x86_pmu_event_filter * filter)1007 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
1008 {
1009 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
1010 KVM_PMU_MASKED_ENTRY_UMASK_MASK |
1011 KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
1012 KVM_PMU_MASKED_ENTRY_EXCLUDE;
1013 int i;
1014
1015 for (i = 0; i < filter->nevents; i++) {
1016 if (filter->events[i] & ~mask)
1017 return false;
1018 }
1019
1020 return true;
1021 }
1022
convert_to_masked_filter(struct kvm_x86_pmu_event_filter * filter)1023 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
1024 {
1025 int i, j;
1026
1027 for (i = 0, j = 0; i < filter->nevents; i++) {
1028 /*
1029 * Skip events that are impossible to match against a guest
1030 * event. When filtering, only the event select + unit mask
1031 * of the guest event is used. To maintain backwards
1032 * compatibility, impossible filters can't be rejected :-(
1033 */
1034 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
1035 ARCH_PERFMON_EVENTSEL_UMASK))
1036 continue;
1037 /*
1038 * Convert userspace events to a common in-kernel event so
1039 * only one code path is needed to support both events. For
1040 * the in-kernel events use masked events because they are
1041 * flexible enough to handle both cases. To convert to masked
1042 * events all that's needed is to add an "all ones" umask_mask,
1043 * (unmasked filter events don't support EXCLUDE).
1044 */
1045 filter->events[j++] = filter->events[i] |
1046 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
1047 }
1048
1049 filter->nevents = j;
1050 }
1051
prepare_filter_lists(struct kvm_x86_pmu_event_filter * filter)1052 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
1053 {
1054 int i;
1055
1056 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
1057 convert_to_masked_filter(filter);
1058 else if (!is_masked_filter_valid(filter))
1059 return -EINVAL;
1060
1061 /*
1062 * Sort entries by event select and includes vs. excludes so that all
1063 * entries for a given event select can be processed efficiently during
1064 * filtering. The EXCLUDE flag uses a more significant bit than the
1065 * event select, and so the sorted list is also effectively split into
1066 * includes and excludes sub-lists.
1067 */
1068 sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
1069 filter_sort_cmp, NULL);
1070
1071 i = filter->nevents;
1072 /* Find the first EXCLUDE event (only supported for masked events). */
1073 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
1074 for (i = 0; i < filter->nevents; i++) {
1075 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
1076 break;
1077 }
1078 }
1079
1080 filter->nr_includes = i;
1081 filter->nr_excludes = filter->nevents - filter->nr_includes;
1082 filter->includes = filter->events;
1083 filter->excludes = filter->events + filter->nr_includes;
1084
1085 return 0;
1086 }
1087
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)1088 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
1089 {
1090 struct kvm_pmu_event_filter __user *user_filter = argp;
1091 struct kvm_x86_pmu_event_filter *filter;
1092 struct kvm_pmu_event_filter tmp;
1093 struct kvm_vcpu *vcpu;
1094 unsigned long i;
1095 size_t size;
1096 int r;
1097
1098 if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
1099 return -EFAULT;
1100
1101 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
1102 tmp.action != KVM_PMU_EVENT_DENY)
1103 return -EINVAL;
1104
1105 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
1106 return -EINVAL;
1107
1108 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
1109 return -E2BIG;
1110
1111 size = struct_size(filter, events, tmp.nevents);
1112 filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
1113 if (!filter)
1114 return -ENOMEM;
1115
1116 filter->action = tmp.action;
1117 filter->nevents = tmp.nevents;
1118 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
1119 filter->flags = tmp.flags;
1120
1121 r = -EFAULT;
1122 if (copy_from_user(filter->events, user_filter->events,
1123 sizeof(filter->events[0]) * filter->nevents))
1124 goto cleanup;
1125
1126 r = prepare_filter_lists(filter);
1127 if (r)
1128 goto cleanup;
1129
1130 mutex_lock(&kvm->lock);
1131 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
1132 mutex_is_locked(&kvm->lock));
1133 mutex_unlock(&kvm->lock);
1134 synchronize_srcu_expedited(&kvm->srcu);
1135
1136 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
1137 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
1138
1139 kvm_for_each_vcpu(i, vcpu, kvm)
1140 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
1141
1142 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
1143
1144 r = 0;
1145 cleanup:
1146 kfree(filter);
1147 return r;
1148 }
1149