xref: /linux/arch/x86/kvm/pmu.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25 
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28 
29 /* Unadultered PMU capabilities of the host, i.e. of hardware. */
30 static struct x86_pmu_capability __read_mostly kvm_host_pmu;
31 
32 /* KVM's PMU capabilities, i.e. the intersection of KVM and hardware support. */
33 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
34 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_cap);
35 
36 struct kvm_pmu_emulated_event_selectors {
37 	u64 INSTRUCTIONS_RETIRED;
38 	u64 BRANCH_INSTRUCTIONS_RETIRED;
39 };
40 static struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel;
41 
42 /* Precise Distribution of Instructions Retired (PDIR) */
43 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
44 	X86_MATCH_VFM(INTEL_ICELAKE_D, NULL),
45 	X86_MATCH_VFM(INTEL_ICELAKE_X, NULL),
46 	/* Instruction-Accurate PDIR (PDIR++) */
47 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
48 	{}
49 };
50 
51 /* Precise Distribution (PDist) */
52 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
53 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
54 	{}
55 };
56 
57 /* NOTE:
58  * - Each perf counter is defined as "struct kvm_pmc";
59  * - There are two types of perf counters: general purpose (gp) and fixed.
60  *   gp counters are stored in gp_counters[] and fixed counters are stored
61  *   in fixed_counters[] respectively. Both of them are part of "struct
62  *   kvm_pmu";
63  * - pmu.c understands the difference between gp counters and fixed counters.
64  *   However AMD doesn't support fixed-counters;
65  * - There are three types of index to access perf counters (PMC):
66  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
67  *        has MSR_K7_PERFCTRn and, for families 15H and later,
68  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
69  *        aliased to MSR_K7_PERFCTRn.
70  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
71  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
72  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
73  *        that it also supports fixed counters. idx can be used to as index to
74  *        gp and fixed counters.
75  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
76  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
77  *        all perf counters (both gp and fixed). The mapping relationship
78  *        between pmc and perf counters is as the following:
79  *        * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters
80  *                 [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed
81  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
82  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
83  */
84 
85 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
86 
87 #define KVM_X86_PMU_OP(func)					     \
88 	DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,			     \
89 				*(((struct kvm_pmu_ops *)0)->func));
90 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
91 #include <asm/kvm-x86-pmu-ops.h>
92 
kvm_pmu_ops_update(const struct kvm_pmu_ops * pmu_ops)93 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
94 {
95 	memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
96 
97 #define __KVM_X86_PMU_OP(func) \
98 	static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
99 #define KVM_X86_PMU_OP(func) \
100 	WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
101 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
102 #include <asm/kvm-x86-pmu-ops.h>
103 #undef __KVM_X86_PMU_OP
104 }
105 
kvm_init_pmu_capability(const struct kvm_pmu_ops * pmu_ops)106 void kvm_init_pmu_capability(const struct kvm_pmu_ops *pmu_ops)
107 {
108 	bool is_intel = boot_cpu_data.x86_vendor == X86_VENDOR_INTEL;
109 	int min_nr_gp_ctrs = pmu_ops->MIN_NR_GP_COUNTERS;
110 
111 	perf_get_x86_pmu_capability(&kvm_host_pmu);
112 
113 	/*
114 	 * Hybrid PMUs don't play nice with virtualization without careful
115 	 * configuration by userspace, and KVM's APIs for reporting supported
116 	 * vPMU features do not account for hybrid PMUs.  Disable vPMU support
117 	 * for hybrid PMUs until KVM gains a way to let userspace opt-in.
118 	 */
119 	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
120 		enable_pmu = false;
121 
122 	if (enable_pmu) {
123 		/*
124 		 * WARN if perf did NOT disable hardware PMU if the number of
125 		 * architecturally required GP counters aren't present, i.e. if
126 		 * there are a non-zero number of counters, but fewer than what
127 		 * is architecturally required.
128 		 */
129 		if (!kvm_host_pmu.num_counters_gp ||
130 		    WARN_ON_ONCE(kvm_host_pmu.num_counters_gp < min_nr_gp_ctrs))
131 			enable_pmu = false;
132 		else if (is_intel && !kvm_host_pmu.version)
133 			enable_pmu = false;
134 	}
135 
136 	if (!enable_pmu) {
137 		memset(&kvm_pmu_cap, 0, sizeof(kvm_pmu_cap));
138 		return;
139 	}
140 
141 	memcpy(&kvm_pmu_cap, &kvm_host_pmu, sizeof(kvm_host_pmu));
142 	kvm_pmu_cap.version = min(kvm_pmu_cap.version, 2);
143 	kvm_pmu_cap.num_counters_gp = min(kvm_pmu_cap.num_counters_gp,
144 					  pmu_ops->MAX_NR_GP_COUNTERS);
145 	kvm_pmu_cap.num_counters_fixed = min(kvm_pmu_cap.num_counters_fixed,
146 					     KVM_MAX_NR_FIXED_COUNTERS);
147 
148 	kvm_pmu_eventsel.INSTRUCTIONS_RETIRED =
149 		perf_get_hw_event_config(PERF_COUNT_HW_INSTRUCTIONS);
150 	kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED =
151 		perf_get_hw_event_config(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
152 }
153 
__kvm_perf_overflow(struct kvm_pmc * pmc,bool in_pmi)154 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
155 {
156 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
157 	bool skip_pmi = false;
158 
159 	if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
160 		if (!in_pmi) {
161 			/*
162 			 * TODO: KVM is currently _choosing_ to not generate records
163 			 * for emulated instructions, avoiding BUFFER_OVF PMI when
164 			 * there are no records. Strictly speaking, it should be done
165 			 * as well in the right context to improve sampling accuracy.
166 			 */
167 			skip_pmi = true;
168 		} else {
169 			/* Indicate PEBS overflow PMI to guest. */
170 			skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
171 						      (unsigned long *)&pmu->global_status);
172 		}
173 	} else {
174 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
175 	}
176 
177 	if (pmc->intr && !skip_pmi)
178 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
179 }
180 
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)181 static void kvm_perf_overflow(struct perf_event *perf_event,
182 			      struct perf_sample_data *data,
183 			      struct pt_regs *regs)
184 {
185 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
186 
187 	/*
188 	 * Ignore asynchronous overflow events for counters that are scheduled
189 	 * to be reprogrammed, e.g. if a PMI for the previous event races with
190 	 * KVM's handling of a related guest WRMSR.
191 	 */
192 	if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
193 		return;
194 
195 	__kvm_perf_overflow(pmc, true);
196 
197 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
198 }
199 
pmc_get_pebs_precise_level(struct kvm_pmc * pmc)200 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
201 {
202 	/*
203 	 * For some model specific pebs counters with special capabilities
204 	 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
205 	 * level to the maximum value (currently 3, backwards compatible)
206 	 * so that the perf subsystem would assign specific hardware counter
207 	 * with that capability for vPMC.
208 	 */
209 	if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
210 	    (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
211 		return 3;
212 
213 	/*
214 	 * The non-zero precision level of guest event makes the ordinary
215 	 * guest event becomes a guest PEBS event and triggers the host
216 	 * PEBS PMI handler to determine whether the PEBS overflow PMI
217 	 * comes from the host counters or the guest.
218 	 */
219 	return 1;
220 }
221 
get_sample_period(struct kvm_pmc * pmc,u64 counter_value)222 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
223 {
224 	u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
225 
226 	if (!sample_period)
227 		sample_period = pmc_bitmask(pmc) + 1;
228 	return sample_period;
229 }
230 
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,u64 config,bool exclude_user,bool exclude_kernel,bool intr)231 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
232 				 bool exclude_user, bool exclude_kernel,
233 				 bool intr)
234 {
235 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
236 	struct perf_event *event;
237 	struct perf_event_attr attr = {
238 		.type = type,
239 		.size = sizeof(attr),
240 		.pinned = true,
241 		.exclude_idle = true,
242 		.exclude_host = 1,
243 		.exclude_user = exclude_user,
244 		.exclude_kernel = exclude_kernel,
245 		.config = config,
246 	};
247 	bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
248 
249 	attr.sample_period = get_sample_period(pmc, pmc->counter);
250 
251 	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
252 	    (boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) {
253 		/*
254 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
255 		 * period. Just clear the sample period so at least
256 		 * allocating the counter doesn't fail.
257 		 */
258 		attr.sample_period = 0;
259 	}
260 	if (pebs) {
261 		/*
262 		 * For most PEBS hardware events, the difference in the software
263 		 * precision levels of guest and host PEBS events will not affect
264 		 * the accuracy of the PEBS profiling result, because the "event IP"
265 		 * in the PEBS record is calibrated on the guest side.
266 		 */
267 		attr.precise_ip = pmc_get_pebs_precise_level(pmc);
268 	}
269 
270 	event = perf_event_create_kernel_counter(&attr, -1, current,
271 						 kvm_perf_overflow, pmc);
272 	if (IS_ERR(event)) {
273 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
274 			    PTR_ERR(event), pmc->idx);
275 		return PTR_ERR(event);
276 	}
277 
278 	pmc->perf_event = event;
279 	pmc_to_pmu(pmc)->event_count++;
280 	pmc->is_paused = false;
281 	pmc->intr = intr || pebs;
282 	return 0;
283 }
284 
pmc_pause_counter(struct kvm_pmc * pmc)285 static bool pmc_pause_counter(struct kvm_pmc *pmc)
286 {
287 	u64 counter = pmc->counter;
288 	u64 prev_counter;
289 
290 	/* update counter, reset event value to avoid redundant accumulation */
291 	if (pmc->perf_event && !pmc->is_paused)
292 		counter += perf_event_pause(pmc->perf_event, true);
293 
294 	/*
295 	 * Snapshot the previous counter *after* accumulating state from perf.
296 	 * If overflow already happened, hardware (via perf) is responsible for
297 	 * generating a PMI.  KVM just needs to detect overflow on emulated
298 	 * counter events that haven't yet been processed.
299 	 */
300 	prev_counter = counter & pmc_bitmask(pmc);
301 
302 	counter += pmc->emulated_counter;
303 	pmc->counter = counter & pmc_bitmask(pmc);
304 
305 	pmc->emulated_counter = 0;
306 	pmc->is_paused = true;
307 
308 	return pmc->counter < prev_counter;
309 }
310 
pmc_resume_counter(struct kvm_pmc * pmc)311 static bool pmc_resume_counter(struct kvm_pmc *pmc)
312 {
313 	if (!pmc->perf_event)
314 		return false;
315 
316 	/* recalibrate sample period and check if it's accepted by perf core */
317 	if (is_sampling_event(pmc->perf_event) &&
318 	    perf_event_period(pmc->perf_event,
319 			      get_sample_period(pmc, pmc->counter)))
320 		return false;
321 
322 	if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
323 	    (!!pmc->perf_event->attr.precise_ip))
324 		return false;
325 
326 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
327 	perf_event_enable(pmc->perf_event);
328 	pmc->is_paused = false;
329 
330 	return true;
331 }
332 
pmc_release_perf_event(struct kvm_pmc * pmc)333 static void pmc_release_perf_event(struct kvm_pmc *pmc)
334 {
335 	if (pmc->perf_event) {
336 		perf_event_release_kernel(pmc->perf_event);
337 		pmc->perf_event = NULL;
338 		pmc->current_config = 0;
339 		pmc_to_pmu(pmc)->event_count--;
340 	}
341 }
342 
pmc_stop_counter(struct kvm_pmc * pmc)343 static void pmc_stop_counter(struct kvm_pmc *pmc)
344 {
345 	if (pmc->perf_event) {
346 		pmc->counter = pmc_read_counter(pmc);
347 		pmc_release_perf_event(pmc);
348 	}
349 }
350 
pmc_update_sample_period(struct kvm_pmc * pmc)351 static void pmc_update_sample_period(struct kvm_pmc *pmc)
352 {
353 	if (!pmc->perf_event || pmc->is_paused ||
354 	    !is_sampling_event(pmc->perf_event))
355 		return;
356 
357 	perf_event_period(pmc->perf_event,
358 			  get_sample_period(pmc, pmc->counter));
359 }
360 
pmc_write_counter(struct kvm_pmc * pmc,u64 val)361 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
362 {
363 	/*
364 	 * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
365 	 * read-modify-write.  Adjust the counter value so that its value is
366 	 * relative to the current count, as reading the current count from
367 	 * perf is faster than pausing and repgrogramming the event in order to
368 	 * reset it to '0'.  Note, this very sneakily offsets the accumulated
369 	 * emulated count too, by using pmc_read_counter()!
370 	 */
371 	pmc->emulated_counter = 0;
372 	pmc->counter += val - pmc_read_counter(pmc);
373 	pmc->counter &= pmc_bitmask(pmc);
374 	pmc_update_sample_period(pmc);
375 }
376 EXPORT_SYMBOL_FOR_KVM_INTERNAL(pmc_write_counter);
377 
filter_cmp(const void * pa,const void * pb,u64 mask)378 static int filter_cmp(const void *pa, const void *pb, u64 mask)
379 {
380 	u64 a = *(u64 *)pa & mask;
381 	u64 b = *(u64 *)pb & mask;
382 
383 	return (a > b) - (a < b);
384 }
385 
386 
filter_sort_cmp(const void * pa,const void * pb)387 static int filter_sort_cmp(const void *pa, const void *pb)
388 {
389 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
390 				   KVM_PMU_MASKED_ENTRY_EXCLUDE));
391 }
392 
393 /*
394  * For the event filter, searching is done on the 'includes' list and
395  * 'excludes' list separately rather than on the 'events' list (which
396  * has both).  As a result the exclude bit can be ignored.
397  */
filter_event_cmp(const void * pa,const void * pb)398 static int filter_event_cmp(const void *pa, const void *pb)
399 {
400 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
401 }
402 
find_filter_index(u64 * events,u64 nevents,u64 key)403 static int find_filter_index(u64 *events, u64 nevents, u64 key)
404 {
405 	u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
406 			  filter_event_cmp);
407 
408 	if (!fe)
409 		return -1;
410 
411 	return fe - events;
412 }
413 
is_filter_entry_match(u64 filter_event,u64 umask)414 static bool is_filter_entry_match(u64 filter_event, u64 umask)
415 {
416 	u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
417 	u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
418 
419 	BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
420 		     (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
421 		     ARCH_PERFMON_EVENTSEL_UMASK);
422 
423 	return (umask & mask) == match;
424 }
425 
filter_contains_match(u64 * events,u64 nevents,u64 eventsel)426 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
427 {
428 	u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
429 	u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
430 	int i, index;
431 
432 	index = find_filter_index(events, nevents, event_select);
433 	if (index < 0)
434 		return false;
435 
436 	/*
437 	 * Entries are sorted by the event select.  Walk the list in both
438 	 * directions to process all entries with the targeted event select.
439 	 */
440 	for (i = index; i < nevents; i++) {
441 		if (filter_event_cmp(&events[i], &event_select))
442 			break;
443 
444 		if (is_filter_entry_match(events[i], umask))
445 			return true;
446 	}
447 
448 	for (i = index - 1; i >= 0; i--) {
449 		if (filter_event_cmp(&events[i], &event_select))
450 			break;
451 
452 		if (is_filter_entry_match(events[i], umask))
453 			return true;
454 	}
455 
456 	return false;
457 }
458 
is_gp_event_allowed(struct kvm_x86_pmu_event_filter * f,u64 eventsel)459 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
460 				u64 eventsel)
461 {
462 	if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
463 	    !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
464 		return f->action == KVM_PMU_EVENT_ALLOW;
465 
466 	return f->action == KVM_PMU_EVENT_DENY;
467 }
468 
is_fixed_event_allowed(struct kvm_x86_pmu_event_filter * filter,int idx)469 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
470 				   int idx)
471 {
472 	int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX;
473 
474 	if (filter->action == KVM_PMU_EVENT_DENY &&
475 	    test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
476 		return false;
477 	if (filter->action == KVM_PMU_EVENT_ALLOW &&
478 	    !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
479 		return false;
480 
481 	return true;
482 }
483 
pmc_is_event_allowed(struct kvm_pmc * pmc)484 static bool pmc_is_event_allowed(struct kvm_pmc *pmc)
485 {
486 	struct kvm_x86_pmu_event_filter *filter;
487 	struct kvm *kvm = pmc->vcpu->kvm;
488 
489 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
490 	if (!filter)
491 		return true;
492 
493 	if (pmc_is_gp(pmc))
494 		return is_gp_event_allowed(filter, pmc->eventsel);
495 
496 	return is_fixed_event_allowed(filter, pmc->idx);
497 }
498 
reprogram_counter(struct kvm_pmc * pmc)499 static int reprogram_counter(struct kvm_pmc *pmc)
500 {
501 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
502 	u64 eventsel = pmc->eventsel;
503 	u64 new_config = eventsel;
504 	bool emulate_overflow;
505 	u8 fixed_ctr_ctrl;
506 
507 	emulate_overflow = pmc_pause_counter(pmc);
508 
509 	if (!pmc_is_globally_enabled(pmc) || !pmc_is_locally_enabled(pmc) ||
510 	    !pmc_is_event_allowed(pmc))
511 		return 0;
512 
513 	if (emulate_overflow)
514 		__kvm_perf_overflow(pmc, false);
515 
516 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
517 		printk_once("kvm pmu: pin control bit is ignored\n");
518 
519 	if (pmc_is_fixed(pmc)) {
520 		fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
521 						  pmc->idx - KVM_FIXED_PMC_BASE_IDX);
522 		if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL)
523 			eventsel |= ARCH_PERFMON_EVENTSEL_OS;
524 		if (fixed_ctr_ctrl & INTEL_FIXED_0_USER)
525 			eventsel |= ARCH_PERFMON_EVENTSEL_USR;
526 		if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI)
527 			eventsel |= ARCH_PERFMON_EVENTSEL_INT;
528 		new_config = (u64)fixed_ctr_ctrl;
529 	}
530 
531 	if (pmc->current_config == new_config && pmc_resume_counter(pmc))
532 		return 0;
533 
534 	pmc_release_perf_event(pmc);
535 
536 	pmc->current_config = new_config;
537 
538 	return pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
539 				     (eventsel & pmu->raw_event_mask),
540 				     !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
541 				     !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
542 				     eventsel & ARCH_PERFMON_EVENTSEL_INT);
543 }
544 
pmc_is_event_match(struct kvm_pmc * pmc,u64 eventsel)545 static bool pmc_is_event_match(struct kvm_pmc *pmc, u64 eventsel)
546 {
547 	/*
548 	 * Ignore checks for edge detect (all events currently emulated by KVM
549 	 * are always rising edges), pin control (unsupported by modern CPUs),
550 	 * and counter mask and its invert flag (KVM doesn't emulate multiple
551 	 * events in a single clock cycle).
552 	 *
553 	 * Note, the uppermost nibble of AMD's mask overlaps Intel's IN_TX (bit
554 	 * 32) and IN_TXCP (bit 33), as well as two reserved bits (bits 35:34).
555 	 * Checking the "in HLE/RTM transaction" flags is correct as the vCPU
556 	 * can't be in a transaction if KVM is emulating an instruction.
557 	 *
558 	 * Checking the reserved bits might be wrong if they are defined in the
559 	 * future, but so could ignoring them, so do the simple thing for now.
560 	 */
561 	return !((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB);
562 }
563 
kvm_pmu_recalc_pmc_emulation(struct kvm_pmu * pmu,struct kvm_pmc * pmc)564 void kvm_pmu_recalc_pmc_emulation(struct kvm_pmu *pmu, struct kvm_pmc *pmc)
565 {
566 	bitmap_clear(pmu->pmc_counting_instructions, pmc->idx, 1);
567 	bitmap_clear(pmu->pmc_counting_branches, pmc->idx, 1);
568 
569 	/*
570 	 * Do NOT consult the PMU event filters, as the filters must be checked
571 	 * at the time of emulation to ensure KVM uses fresh information, e.g.
572 	 * omitting a PMC from a bitmap could result in a missed event if the
573 	 * filter is changed to allow counting the event.
574 	 */
575 	if (!pmc_is_locally_enabled(pmc))
576 		return;
577 
578 	if (pmc_is_event_match(pmc, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED))
579 		bitmap_set(pmu->pmc_counting_instructions, pmc->idx, 1);
580 
581 	if (pmc_is_event_match(pmc, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED))
582 		bitmap_set(pmu->pmc_counting_branches, pmc->idx, 1);
583 }
584 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_recalc_pmc_emulation);
585 
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)586 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
587 {
588 	DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
589 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
590 	struct kvm_pmc *pmc;
591 	int bit;
592 
593 	bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX);
594 
595 	/*
596 	 * The reprogramming bitmap can be written asynchronously by something
597 	 * other than the task that holds vcpu->mutex, take care to clear only
598 	 * the bits that will actually processed.
599 	 */
600 	BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t));
601 	atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi);
602 
603 	kvm_for_each_pmc(pmu, pmc, bit, bitmap) {
604 		/*
605 		 * If reprogramming fails, e.g. due to contention, re-set the
606 		 * regprogram bit set, i.e. opportunistically try again on the
607 		 * next PMU refresh.  Don't make a new request as doing so can
608 		 * stall the guest if reprogramming repeatedly fails.
609 		 */
610 		if (reprogram_counter(pmc))
611 			set_bit(pmc->idx, pmu->reprogram_pmi);
612 	}
613 
614 	/*
615 	 * Release unused perf_events if the corresponding guest MSRs weren't
616 	 * accessed during the last vCPU time slice (need_cleanup is set when
617 	 * the vCPU is scheduled back in).
618 	 */
619 	if (unlikely(pmu->need_cleanup))
620 		kvm_pmu_cleanup(vcpu);
621 
622 	kvm_for_each_pmc(pmu, pmc, bit, bitmap)
623 		kvm_pmu_recalc_pmc_emulation(pmu, pmc);
624 }
625 
kvm_pmu_check_rdpmc_early(struct kvm_vcpu * vcpu,unsigned int idx)626 int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx)
627 {
628 	/*
629 	 * On Intel, VMX interception has priority over RDPMC exceptions that
630 	 * aren't already handled by the emulator, i.e. there are no additional
631 	 * check needed for Intel PMUs.
632 	 *
633 	 * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts,
634 	 * i.e. an invalid PMC results in a #GP, not #VMEXIT.
635 	 */
636 	if (!kvm_pmu_ops.check_rdpmc_early)
637 		return 0;
638 
639 	return kvm_pmu_call(check_rdpmc_early)(vcpu, idx);
640 }
641 
is_vmware_backdoor_pmc(u32 pmc_idx)642 bool is_vmware_backdoor_pmc(u32 pmc_idx)
643 {
644 	switch (pmc_idx) {
645 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
646 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
647 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
648 		return true;
649 	}
650 	return false;
651 }
652 
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)653 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
654 {
655 	u64 ctr_val;
656 
657 	switch (idx) {
658 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
659 		ctr_val = rdtsc();
660 		break;
661 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
662 		ctr_val = ktime_get_boottime_ns();
663 		break;
664 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
665 		ctr_val = ktime_get_boottime_ns() +
666 			vcpu->kvm->arch.kvmclock_offset;
667 		break;
668 	default:
669 		return 1;
670 	}
671 
672 	*data = ctr_val;
673 	return 0;
674 }
675 
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)676 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
677 {
678 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
679 	struct kvm_pmc *pmc;
680 	u64 mask = ~0ull;
681 
682 	if (!pmu->version)
683 		return 1;
684 
685 	if (is_vmware_backdoor_pmc(idx))
686 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
687 
688 	pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
689 	if (!pmc)
690 		return 1;
691 
692 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
693 	    (kvm_x86_call(get_cpl)(vcpu) != 0) &&
694 	    kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
695 		return 1;
696 
697 	*data = pmc_read_counter(pmc) & mask;
698 	return 0;
699 }
700 
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)701 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
702 {
703 	if (lapic_in_kernel(vcpu)) {
704 		kvm_pmu_call(deliver_pmi)(vcpu);
705 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
706 	}
707 }
708 
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)709 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
710 {
711 	switch (msr) {
712 	case MSR_CORE_PERF_GLOBAL_STATUS:
713 	case MSR_CORE_PERF_GLOBAL_CTRL:
714 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
715 		return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
716 	default:
717 		break;
718 	}
719 	return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) ||
720 	       kvm_pmu_call(is_valid_msr)(vcpu, msr);
721 }
722 
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)723 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
724 {
725 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
726 	struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr);
727 
728 	if (pmc)
729 		__set_bit(pmc->idx, pmu->pmc_in_use);
730 }
731 
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)732 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
733 {
734 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
735 	u32 msr = msr_info->index;
736 
737 	switch (msr) {
738 	case MSR_CORE_PERF_GLOBAL_STATUS:
739 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
740 		msr_info->data = pmu->global_status;
741 		break;
742 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
743 	case MSR_CORE_PERF_GLOBAL_CTRL:
744 		msr_info->data = pmu->global_ctrl;
745 		break;
746 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
747 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
748 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
749 		msr_info->data = 0;
750 		break;
751 	default:
752 		return kvm_pmu_call(get_msr)(vcpu, msr_info);
753 	}
754 
755 	return 0;
756 }
757 
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)758 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
759 {
760 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
761 	u32 msr = msr_info->index;
762 	u64 data = msr_info->data;
763 	u64 diff;
764 
765 	/*
766 	 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
767 	 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
768 	 */
769 	switch (msr) {
770 	case MSR_CORE_PERF_GLOBAL_STATUS:
771 		if (!msr_info->host_initiated)
772 			return 1; /* RO MSR */
773 		fallthrough;
774 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
775 		/* Per PPR, Read-only MSR. Writes are ignored. */
776 		if (!msr_info->host_initiated)
777 			break;
778 
779 		if (data & pmu->global_status_rsvd)
780 			return 1;
781 
782 		pmu->global_status = data;
783 		break;
784 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
785 		data &= ~pmu->global_ctrl_rsvd;
786 		fallthrough;
787 	case MSR_CORE_PERF_GLOBAL_CTRL:
788 		if (!kvm_valid_perf_global_ctrl(pmu, data))
789 			return 1;
790 
791 		if (pmu->global_ctrl != data) {
792 			diff = pmu->global_ctrl ^ data;
793 			pmu->global_ctrl = data;
794 			reprogram_counters(pmu, diff);
795 		}
796 		break;
797 	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
798 		/*
799 		 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
800 		 * GLOBAL_STATUS, and so the set of reserved bits is the same.
801 		 */
802 		if (data & pmu->global_status_rsvd)
803 			return 1;
804 		fallthrough;
805 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
806 		if (!msr_info->host_initiated)
807 			pmu->global_status &= ~data;
808 		break;
809 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
810 		if (!msr_info->host_initiated)
811 			pmu->global_status |= data & ~pmu->global_status_rsvd;
812 		break;
813 	default:
814 		kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
815 		return kvm_pmu_call(set_msr)(vcpu, msr_info);
816 	}
817 
818 	return 0;
819 }
820 
kvm_pmu_reset(struct kvm_vcpu * vcpu)821 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
822 {
823 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
824 	struct kvm_pmc *pmc;
825 	int i;
826 
827 	pmu->need_cleanup = false;
828 
829 	bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
830 
831 	kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) {
832 		pmc_stop_counter(pmc);
833 		pmc->counter = 0;
834 		pmc->emulated_counter = 0;
835 
836 		if (pmc_is_gp(pmc))
837 			pmc->eventsel = 0;
838 	}
839 
840 	pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
841 
842 	kvm_pmu_call(reset)(vcpu);
843 }
844 
845 
846 /*
847  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
848  * and/or PERF_CAPABILITIES.
849  */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)850 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
851 {
852 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
853 
854 	if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
855 		return;
856 
857 	/*
858 	 * Stop/release all existing counters/events before realizing the new
859 	 * vPMU model.
860 	 */
861 	kvm_pmu_reset(vcpu);
862 
863 	pmu->version = 0;
864 	pmu->nr_arch_gp_counters = 0;
865 	pmu->nr_arch_fixed_counters = 0;
866 	pmu->counter_bitmask[KVM_PMC_GP] = 0;
867 	pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
868 	pmu->reserved_bits = 0xffffffff00200000ull;
869 	pmu->raw_event_mask = X86_RAW_EVENT_MASK;
870 	pmu->global_ctrl_rsvd = ~0ull;
871 	pmu->global_status_rsvd = ~0ull;
872 	pmu->fixed_ctr_ctrl_rsvd = ~0ull;
873 	pmu->pebs_enable_rsvd = ~0ull;
874 	pmu->pebs_data_cfg_rsvd = ~0ull;
875 	bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
876 
877 	if (!vcpu->kvm->arch.enable_pmu)
878 		return;
879 
880 	kvm_pmu_call(refresh)(vcpu);
881 
882 	/*
883 	 * At RESET, both Intel and AMD CPUs set all enable bits for general
884 	 * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that
885 	 * was written for v1 PMUs don't unknowingly leave GP counters disabled
886 	 * in the global controls).  Emulate that behavior when refreshing the
887 	 * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL.
888 	 */
889 	if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters)
890 		pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0);
891 
892 	bitmap_set(pmu->all_valid_pmc_idx, 0, pmu->nr_arch_gp_counters);
893 	bitmap_set(pmu->all_valid_pmc_idx, KVM_FIXED_PMC_BASE_IDX,
894 		   pmu->nr_arch_fixed_counters);
895 }
896 
kvm_pmu_init(struct kvm_vcpu * vcpu)897 void kvm_pmu_init(struct kvm_vcpu *vcpu)
898 {
899 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
900 
901 	memset(pmu, 0, sizeof(*pmu));
902 	kvm_pmu_call(init)(vcpu);
903 }
904 
905 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)906 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
907 {
908 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
909 	struct kvm_pmc *pmc = NULL;
910 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
911 	int i;
912 
913 	pmu->need_cleanup = false;
914 
915 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
916 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
917 
918 	kvm_for_each_pmc(pmu, pmc, i, bitmask) {
919 		if (pmc->perf_event && !pmc_is_locally_enabled(pmc))
920 			pmc_stop_counter(pmc);
921 	}
922 
923 	kvm_pmu_call(cleanup)(vcpu);
924 
925 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
926 }
927 
kvm_pmu_destroy(struct kvm_vcpu * vcpu)928 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
929 {
930 	kvm_pmu_reset(vcpu);
931 }
932 
kvm_pmu_incr_counter(struct kvm_pmc * pmc)933 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
934 {
935 	pmc->emulated_counter++;
936 	kvm_pmu_request_counter_reprogram(pmc);
937 }
938 
cpl_is_matched(struct kvm_pmc * pmc)939 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
940 {
941 	bool select_os, select_user;
942 	u64 config;
943 
944 	if (pmc_is_gp(pmc)) {
945 		config = pmc->eventsel;
946 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
947 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
948 	} else {
949 		config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
950 					  pmc->idx - KVM_FIXED_PMC_BASE_IDX);
951 		select_os = config & INTEL_FIXED_0_KERNEL;
952 		select_user = config & INTEL_FIXED_0_USER;
953 	}
954 
955 	/*
956 	 * Skip the CPL lookup, which isn't free on Intel, if the result will
957 	 * be the same regardless of the CPL.
958 	 */
959 	if (select_os == select_user)
960 		return select_os;
961 
962 	return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os :
963 							 select_user;
964 }
965 
kvm_pmu_trigger_event(struct kvm_vcpu * vcpu,const unsigned long * event_pmcs)966 static void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu,
967 				  const unsigned long *event_pmcs)
968 {
969 	DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
970 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
971 	struct kvm_pmc *pmc;
972 	int i, idx;
973 
974 	BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX);
975 
976 	if (bitmap_empty(event_pmcs, X86_PMC_IDX_MAX))
977 		return;
978 
979 	if (!kvm_pmu_has_perf_global_ctrl(pmu))
980 		bitmap_copy(bitmap, event_pmcs, X86_PMC_IDX_MAX);
981 	else if (!bitmap_and(bitmap, event_pmcs,
982 			     (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX))
983 		return;
984 
985 	idx = srcu_read_lock(&vcpu->kvm->srcu);
986 	kvm_for_each_pmc(pmu, pmc, i, bitmap) {
987 		if (!pmc_is_event_allowed(pmc) || !cpl_is_matched(pmc))
988 			continue;
989 
990 		kvm_pmu_incr_counter(pmc);
991 	}
992 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
993 }
994 
kvm_pmu_instruction_retired(struct kvm_vcpu * vcpu)995 void kvm_pmu_instruction_retired(struct kvm_vcpu *vcpu)
996 {
997 	kvm_pmu_trigger_event(vcpu, vcpu_to_pmu(vcpu)->pmc_counting_instructions);
998 }
999 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_instruction_retired);
1000 
kvm_pmu_branch_retired(struct kvm_vcpu * vcpu)1001 void kvm_pmu_branch_retired(struct kvm_vcpu *vcpu)
1002 {
1003 	kvm_pmu_trigger_event(vcpu, vcpu_to_pmu(vcpu)->pmc_counting_branches);
1004 }
1005 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_branch_retired);
1006 
is_masked_filter_valid(const struct kvm_x86_pmu_event_filter * filter)1007 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
1008 {
1009 	u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
1010 		   KVM_PMU_MASKED_ENTRY_UMASK_MASK |
1011 		   KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
1012 		   KVM_PMU_MASKED_ENTRY_EXCLUDE;
1013 	int i;
1014 
1015 	for (i = 0; i < filter->nevents; i++) {
1016 		if (filter->events[i] & ~mask)
1017 			return false;
1018 	}
1019 
1020 	return true;
1021 }
1022 
convert_to_masked_filter(struct kvm_x86_pmu_event_filter * filter)1023 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
1024 {
1025 	int i, j;
1026 
1027 	for (i = 0, j = 0; i < filter->nevents; i++) {
1028 		/*
1029 		 * Skip events that are impossible to match against a guest
1030 		 * event.  When filtering, only the event select + unit mask
1031 		 * of the guest event is used.  To maintain backwards
1032 		 * compatibility, impossible filters can't be rejected :-(
1033 		 */
1034 		if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
1035 					  ARCH_PERFMON_EVENTSEL_UMASK))
1036 			continue;
1037 		/*
1038 		 * Convert userspace events to a common in-kernel event so
1039 		 * only one code path is needed to support both events.  For
1040 		 * the in-kernel events use masked events because they are
1041 		 * flexible enough to handle both cases.  To convert to masked
1042 		 * events all that's needed is to add an "all ones" umask_mask,
1043 		 * (unmasked filter events don't support EXCLUDE).
1044 		 */
1045 		filter->events[j++] = filter->events[i] |
1046 				      (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
1047 	}
1048 
1049 	filter->nevents = j;
1050 }
1051 
prepare_filter_lists(struct kvm_x86_pmu_event_filter * filter)1052 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
1053 {
1054 	int i;
1055 
1056 	if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
1057 		convert_to_masked_filter(filter);
1058 	else if (!is_masked_filter_valid(filter))
1059 		return -EINVAL;
1060 
1061 	/*
1062 	 * Sort entries by event select and includes vs. excludes so that all
1063 	 * entries for a given event select can be processed efficiently during
1064 	 * filtering.  The EXCLUDE flag uses a more significant bit than the
1065 	 * event select, and so the sorted list is also effectively split into
1066 	 * includes and excludes sub-lists.
1067 	 */
1068 	sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
1069 	     filter_sort_cmp, NULL);
1070 
1071 	i = filter->nevents;
1072 	/* Find the first EXCLUDE event (only supported for masked events). */
1073 	if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
1074 		for (i = 0; i < filter->nevents; i++) {
1075 			if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
1076 				break;
1077 		}
1078 	}
1079 
1080 	filter->nr_includes = i;
1081 	filter->nr_excludes = filter->nevents - filter->nr_includes;
1082 	filter->includes = filter->events;
1083 	filter->excludes = filter->events + filter->nr_includes;
1084 
1085 	return 0;
1086 }
1087 
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)1088 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
1089 {
1090 	struct kvm_pmu_event_filter __user *user_filter = argp;
1091 	struct kvm_x86_pmu_event_filter *filter;
1092 	struct kvm_pmu_event_filter tmp;
1093 	struct kvm_vcpu *vcpu;
1094 	unsigned long i;
1095 	size_t size;
1096 	int r;
1097 
1098 	if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
1099 		return -EFAULT;
1100 
1101 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
1102 	    tmp.action != KVM_PMU_EVENT_DENY)
1103 		return -EINVAL;
1104 
1105 	if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
1106 		return -EINVAL;
1107 
1108 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
1109 		return -E2BIG;
1110 
1111 	size = struct_size(filter, events, tmp.nevents);
1112 	filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
1113 	if (!filter)
1114 		return -ENOMEM;
1115 
1116 	filter->action = tmp.action;
1117 	filter->nevents = tmp.nevents;
1118 	filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
1119 	filter->flags = tmp.flags;
1120 
1121 	r = -EFAULT;
1122 	if (copy_from_user(filter->events, user_filter->events,
1123 			   sizeof(filter->events[0]) * filter->nevents))
1124 		goto cleanup;
1125 
1126 	r = prepare_filter_lists(filter);
1127 	if (r)
1128 		goto cleanup;
1129 
1130 	mutex_lock(&kvm->lock);
1131 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
1132 				     mutex_is_locked(&kvm->lock));
1133 	mutex_unlock(&kvm->lock);
1134 	synchronize_srcu_expedited(&kvm->srcu);
1135 
1136 	BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
1137 		     sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
1138 
1139 	kvm_for_each_vcpu(i, vcpu, kvm)
1140 		atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
1141 
1142 	kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
1143 
1144 	r = 0;
1145 cleanup:
1146 	kfree(filter);
1147 	return r;
1148 }
1149