xref: /linux/arch/arm64/kvm/arch_timer.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20 
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23 
24 #include "trace.h"
25 
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31 
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33 
34 static const u8 default_ppi[] = {
35 	[TIMER_PTIMER]  = 30,
36 	[TIMER_VTIMER]  = 27,
37 	[TIMER_HPTIMER] = 26,
38 	[TIMER_HVTIMER] = 28,
39 };
40 
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 				 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 				struct arch_timer_context *timer,
47 				enum kvm_arch_timer_regs treg,
48 				u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 			      struct arch_timer_context *timer,
51 			      enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53 
54 static struct irq_ops arch_timer_irq_ops = {
55 	.get_input_level = kvm_arch_timer_get_input_level,
56 };
57 
nr_timers(struct kvm_vcpu * vcpu)58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60 	if (!vcpu_has_nv(vcpu))
61 		return NR_KVM_EL0_TIMERS;
62 
63 	return NR_KVM_TIMERS;
64 }
65 
timer_get_ctl(struct arch_timer_context * ctxt)66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
67 {
68 	struct kvm_vcpu *vcpu = ctxt->vcpu;
69 
70 	switch(arch_timer_ctx_index(ctxt)) {
71 	case TIMER_VTIMER:
72 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73 	case TIMER_PTIMER:
74 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75 	case TIMER_HVTIMER:
76 		return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77 	case TIMER_HPTIMER:
78 		return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79 	default:
80 		WARN_ON(1);
81 		return 0;
82 	}
83 }
84 
timer_get_cval(struct arch_timer_context * ctxt)85 u64 timer_get_cval(struct arch_timer_context *ctxt)
86 {
87 	struct kvm_vcpu *vcpu = ctxt->vcpu;
88 
89 	switch(arch_timer_ctx_index(ctxt)) {
90 	case TIMER_VTIMER:
91 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92 	case TIMER_PTIMER:
93 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94 	case TIMER_HVTIMER:
95 		return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96 	case TIMER_HPTIMER:
97 		return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98 	default:
99 		WARN_ON(1);
100 		return 0;
101 	}
102 }
103 
timer_get_offset(struct arch_timer_context * ctxt)104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106 	u64 offset = 0;
107 
108 	if (!ctxt)
109 		return 0;
110 
111 	if (ctxt->offset.vm_offset)
112 		offset += *ctxt->offset.vm_offset;
113 	if (ctxt->offset.vcpu_offset)
114 		offset += *ctxt->offset.vcpu_offset;
115 
116 	return offset;
117 }
118 
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121 	struct kvm_vcpu *vcpu = ctxt->vcpu;
122 
123 	switch(arch_timer_ctx_index(ctxt)) {
124 	case TIMER_VTIMER:
125 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126 		break;
127 	case TIMER_PTIMER:
128 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129 		break;
130 	case TIMER_HVTIMER:
131 		__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132 		break;
133 	case TIMER_HPTIMER:
134 		__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135 		break;
136 	default:
137 		WARN_ON(1);
138 	}
139 }
140 
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143 	struct kvm_vcpu *vcpu = ctxt->vcpu;
144 
145 	switch(arch_timer_ctx_index(ctxt)) {
146 	case TIMER_VTIMER:
147 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148 		break;
149 	case TIMER_PTIMER:
150 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151 		break;
152 	case TIMER_HVTIMER:
153 		__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154 		break;
155 	case TIMER_HPTIMER:
156 		__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157 		break;
158 	default:
159 		WARN_ON(1);
160 	}
161 }
162 
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165 	if (!ctxt->offset.vm_offset) {
166 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167 		return;
168 	}
169 
170 	WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171 }
172 
kvm_phys_timer_read(void)173 u64 kvm_phys_timer_read(void)
174 {
175 	return timecounter->cc->read(timecounter->cc);
176 }
177 
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179 {
180 	if (vcpu_has_nv(vcpu)) {
181 		if (is_hyp_ctxt(vcpu)) {
182 			map->direct_vtimer = vcpu_hvtimer(vcpu);
183 			map->direct_ptimer = vcpu_hptimer(vcpu);
184 			map->emul_vtimer = vcpu_vtimer(vcpu);
185 			map->emul_ptimer = vcpu_ptimer(vcpu);
186 		} else {
187 			map->direct_vtimer = vcpu_vtimer(vcpu);
188 			map->direct_ptimer = vcpu_ptimer(vcpu);
189 			map->emul_vtimer = vcpu_hvtimer(vcpu);
190 			map->emul_ptimer = vcpu_hptimer(vcpu);
191 		}
192 	} else if (has_vhe()) {
193 		map->direct_vtimer = vcpu_vtimer(vcpu);
194 		map->direct_ptimer = vcpu_ptimer(vcpu);
195 		map->emul_vtimer = NULL;
196 		map->emul_ptimer = NULL;
197 	} else {
198 		map->direct_vtimer = vcpu_vtimer(vcpu);
199 		map->direct_ptimer = NULL;
200 		map->emul_vtimer = NULL;
201 		map->emul_ptimer = vcpu_ptimer(vcpu);
202 	}
203 
204 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205 }
206 
userspace_irqchip(struct kvm * kvm)207 static inline bool userspace_irqchip(struct kvm *kvm)
208 {
209 	return static_branch_unlikely(&userspace_irqchip_in_use) &&
210 		unlikely(!irqchip_in_kernel(kvm));
211 }
212 
soft_timer_start(struct hrtimer * hrt,u64 ns)213 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
214 {
215 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
216 		      HRTIMER_MODE_ABS_HARD);
217 }
218 
soft_timer_cancel(struct hrtimer * hrt)219 static void soft_timer_cancel(struct hrtimer *hrt)
220 {
221 	hrtimer_cancel(hrt);
222 }
223 
kvm_arch_timer_handler(int irq,void * dev_id)224 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
225 {
226 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
227 	struct arch_timer_context *ctx;
228 	struct timer_map map;
229 
230 	/*
231 	 * We may see a timer interrupt after vcpu_put() has been called which
232 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
233 	 * has been disabled in timer_save_state(), the hardware interrupt
234 	 * signal may not have been retired from the interrupt controller yet.
235 	 */
236 	if (!vcpu)
237 		return IRQ_HANDLED;
238 
239 	get_timer_map(vcpu, &map);
240 
241 	if (irq == host_vtimer_irq)
242 		ctx = map.direct_vtimer;
243 	else
244 		ctx = map.direct_ptimer;
245 
246 	if (kvm_timer_should_fire(ctx))
247 		kvm_timer_update_irq(vcpu, true, ctx);
248 
249 	if (userspace_irqchip(vcpu->kvm) &&
250 	    !static_branch_unlikely(&has_gic_active_state))
251 		disable_percpu_irq(host_vtimer_irq);
252 
253 	return IRQ_HANDLED;
254 }
255 
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)256 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
257 				     u64 val)
258 {
259 	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
260 
261 	if (now < val) {
262 		u64 ns;
263 
264 		ns = cyclecounter_cyc2ns(timecounter->cc,
265 					 val - now,
266 					 timecounter->mask,
267 					 &timer_ctx->ns_frac);
268 		return ns;
269 	}
270 
271 	return 0;
272 }
273 
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)274 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
275 {
276 	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
277 }
278 
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)279 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
280 {
281 	WARN_ON(timer_ctx && timer_ctx->loaded);
282 	return timer_ctx &&
283 		((timer_get_ctl(timer_ctx) &
284 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
285 }
286 
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)287 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
288 {
289 	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
290 		vcpu_get_flag(vcpu, IN_WFIT));
291 }
292 
wfit_delay_ns(struct kvm_vcpu * vcpu)293 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
294 {
295 	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296 	struct arch_timer_context *ctx;
297 
298 	ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
299 
300 	return kvm_counter_compute_delta(ctx, val);
301 }
302 
303 /*
304  * Returns the earliest expiration time in ns among guest timers.
305  * Note that it will return 0 if none of timers can fire.
306  */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)307 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
308 {
309 	u64 min_delta = ULLONG_MAX;
310 	int i;
311 
312 	for (i = 0; i < nr_timers(vcpu); i++) {
313 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
314 
315 		WARN(ctx->loaded, "timer %d loaded\n", i);
316 		if (kvm_timer_irq_can_fire(ctx))
317 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
318 	}
319 
320 	if (vcpu_has_wfit_active(vcpu))
321 		min_delta = min(min_delta, wfit_delay_ns(vcpu));
322 
323 	/* If none of timers can fire, then return 0 */
324 	if (min_delta == ULLONG_MAX)
325 		return 0;
326 
327 	return min_delta;
328 }
329 
kvm_bg_timer_expire(struct hrtimer * hrt)330 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
331 {
332 	struct arch_timer_cpu *timer;
333 	struct kvm_vcpu *vcpu;
334 	u64 ns;
335 
336 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
337 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
338 
339 	/*
340 	 * Check that the timer has really expired from the guest's
341 	 * PoV (NTP on the host may have forced it to expire
342 	 * early). If we should have slept longer, restart it.
343 	 */
344 	ns = kvm_timer_earliest_exp(vcpu);
345 	if (unlikely(ns)) {
346 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
347 		return HRTIMER_RESTART;
348 	}
349 
350 	kvm_vcpu_wake_up(vcpu);
351 	return HRTIMER_NORESTART;
352 }
353 
kvm_hrtimer_expire(struct hrtimer * hrt)354 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
355 {
356 	struct arch_timer_context *ctx;
357 	struct kvm_vcpu *vcpu;
358 	u64 ns;
359 
360 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
361 	vcpu = ctx->vcpu;
362 
363 	trace_kvm_timer_hrtimer_expire(ctx);
364 
365 	/*
366 	 * Check that the timer has really expired from the guest's
367 	 * PoV (NTP on the host may have forced it to expire
368 	 * early). If not ready, schedule for a later time.
369 	 */
370 	ns = kvm_timer_compute_delta(ctx);
371 	if (unlikely(ns)) {
372 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
373 		return HRTIMER_RESTART;
374 	}
375 
376 	kvm_timer_update_irq(vcpu, true, ctx);
377 	return HRTIMER_NORESTART;
378 }
379 
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)380 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
381 {
382 	enum kvm_arch_timers index;
383 	u64 cval, now;
384 
385 	if (!timer_ctx)
386 		return false;
387 
388 	index = arch_timer_ctx_index(timer_ctx);
389 
390 	if (timer_ctx->loaded) {
391 		u32 cnt_ctl = 0;
392 
393 		switch (index) {
394 		case TIMER_VTIMER:
395 		case TIMER_HVTIMER:
396 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
397 			break;
398 		case TIMER_PTIMER:
399 		case TIMER_HPTIMER:
400 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
401 			break;
402 		case NR_KVM_TIMERS:
403 			/* GCC is braindead */
404 			cnt_ctl = 0;
405 			break;
406 		}
407 
408 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
409 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
410 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
411 	}
412 
413 	if (!kvm_timer_irq_can_fire(timer_ctx))
414 		return false;
415 
416 	cval = timer_get_cval(timer_ctx);
417 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
418 
419 	return cval <= now;
420 }
421 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)422 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
423 {
424 	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
425 }
426 
427 /*
428  * Reflect the timer output level into the kvm_run structure
429  */
kvm_timer_update_run(struct kvm_vcpu * vcpu)430 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
431 {
432 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
433 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
434 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
435 
436 	/* Populate the device bitmap with the timer states */
437 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
438 				    KVM_ARM_DEV_EL1_PTIMER);
439 	if (kvm_timer_should_fire(vtimer))
440 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
441 	if (kvm_timer_should_fire(ptimer))
442 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
443 }
444 
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)445 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
446 				 struct arch_timer_context *timer_ctx)
447 {
448 	int ret;
449 
450 	timer_ctx->irq.level = new_level;
451 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
452 				   timer_ctx->irq.level);
453 
454 	if (!userspace_irqchip(vcpu->kvm)) {
455 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
456 					  timer_irq(timer_ctx),
457 					  timer_ctx->irq.level,
458 					  timer_ctx);
459 		WARN_ON(ret);
460 	}
461 }
462 
463 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)464 static void timer_emulate(struct arch_timer_context *ctx)
465 {
466 	bool should_fire = kvm_timer_should_fire(ctx);
467 
468 	trace_kvm_timer_emulate(ctx, should_fire);
469 
470 	if (should_fire != ctx->irq.level) {
471 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
472 		return;
473 	}
474 
475 	/*
476 	 * If the timer can fire now, we don't need to have a soft timer
477 	 * scheduled for the future.  If the timer cannot fire at all,
478 	 * then we also don't need a soft timer.
479 	 */
480 	if (should_fire || !kvm_timer_irq_can_fire(ctx))
481 		return;
482 
483 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
484 }
485 
set_cntvoff(u64 cntvoff)486 static void set_cntvoff(u64 cntvoff)
487 {
488 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
489 }
490 
set_cntpoff(u64 cntpoff)491 static void set_cntpoff(u64 cntpoff)
492 {
493 	if (has_cntpoff())
494 		write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
495 }
496 
timer_save_state(struct arch_timer_context * ctx)497 static void timer_save_state(struct arch_timer_context *ctx)
498 {
499 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
500 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
501 	unsigned long flags;
502 
503 	if (!timer->enabled)
504 		return;
505 
506 	local_irq_save(flags);
507 
508 	if (!ctx->loaded)
509 		goto out;
510 
511 	switch (index) {
512 		u64 cval;
513 
514 	case TIMER_VTIMER:
515 	case TIMER_HVTIMER:
516 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
517 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
518 
519 		/* Disable the timer */
520 		write_sysreg_el0(0, SYS_CNTV_CTL);
521 		isb();
522 
523 		/*
524 		 * The kernel may decide to run userspace after
525 		 * calling vcpu_put, so we reset cntvoff to 0 to
526 		 * ensure a consistent read between user accesses to
527 		 * the virtual counter and kernel access to the
528 		 * physical counter of non-VHE case.
529 		 *
530 		 * For VHE, the virtual counter uses a fixed virtual
531 		 * offset of zero, so no need to zero CNTVOFF_EL2
532 		 * register, but this is actually useful when switching
533 		 * between EL1/vEL2 with NV.
534 		 *
535 		 * Do it unconditionally, as this is either unavoidable
536 		 * or dirt cheap.
537 		 */
538 		set_cntvoff(0);
539 		break;
540 	case TIMER_PTIMER:
541 	case TIMER_HPTIMER:
542 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
543 		cval = read_sysreg_el0(SYS_CNTP_CVAL);
544 
545 		cval -= timer_get_offset(ctx);
546 
547 		timer_set_cval(ctx, cval);
548 
549 		/* Disable the timer */
550 		write_sysreg_el0(0, SYS_CNTP_CTL);
551 		isb();
552 
553 		set_cntpoff(0);
554 		break;
555 	case NR_KVM_TIMERS:
556 		BUG();
557 	}
558 
559 	trace_kvm_timer_save_state(ctx);
560 
561 	ctx->loaded = false;
562 out:
563 	local_irq_restore(flags);
564 }
565 
566 /*
567  * Schedule the background timer before calling kvm_vcpu_halt, so that this
568  * thread is removed from its waitqueue and made runnable when there's a timer
569  * interrupt to handle.
570  */
kvm_timer_blocking(struct kvm_vcpu * vcpu)571 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
572 {
573 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
574 	struct timer_map map;
575 
576 	get_timer_map(vcpu, &map);
577 
578 	/*
579 	 * If no timers are capable of raising interrupts (disabled or
580 	 * masked), then there's no more work for us to do.
581 	 */
582 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
583 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
584 	    !kvm_timer_irq_can_fire(map.emul_vtimer) &&
585 	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
586 	    !vcpu_has_wfit_active(vcpu))
587 		return;
588 
589 	/*
590 	 * At least one guest time will expire. Schedule a background timer.
591 	 * Set the earliest expiration time among the guest timers.
592 	 */
593 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
594 }
595 
kvm_timer_unblocking(struct kvm_vcpu * vcpu)596 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
597 {
598 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
599 
600 	soft_timer_cancel(&timer->bg_timer);
601 }
602 
timer_restore_state(struct arch_timer_context * ctx)603 static void timer_restore_state(struct arch_timer_context *ctx)
604 {
605 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
606 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
607 	unsigned long flags;
608 
609 	if (!timer->enabled)
610 		return;
611 
612 	local_irq_save(flags);
613 
614 	if (ctx->loaded)
615 		goto out;
616 
617 	switch (index) {
618 		u64 cval, offset;
619 
620 	case TIMER_VTIMER:
621 	case TIMER_HVTIMER:
622 		set_cntvoff(timer_get_offset(ctx));
623 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
624 		isb();
625 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
626 		break;
627 	case TIMER_PTIMER:
628 	case TIMER_HPTIMER:
629 		cval = timer_get_cval(ctx);
630 		offset = timer_get_offset(ctx);
631 		set_cntpoff(offset);
632 		cval += offset;
633 		write_sysreg_el0(cval, SYS_CNTP_CVAL);
634 		isb();
635 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
636 		break;
637 	case NR_KVM_TIMERS:
638 		BUG();
639 	}
640 
641 	trace_kvm_timer_restore_state(ctx);
642 
643 	ctx->loaded = true;
644 out:
645 	local_irq_restore(flags);
646 }
647 
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)648 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
649 {
650 	int r;
651 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
652 	WARN_ON(r);
653 }
654 
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)655 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
656 {
657 	struct kvm_vcpu *vcpu = ctx->vcpu;
658 	bool phys_active = false;
659 
660 	/*
661 	 * Update the timer output so that it is likely to match the
662 	 * state we're about to restore. If the timer expires between
663 	 * this point and the register restoration, we'll take the
664 	 * interrupt anyway.
665 	 */
666 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
667 
668 	if (irqchip_in_kernel(vcpu->kvm))
669 		phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
670 
671 	phys_active |= ctx->irq.level;
672 
673 	set_timer_irq_phys_active(ctx, phys_active);
674 }
675 
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)676 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
677 {
678 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
679 
680 	/*
681 	 * Update the timer output so that it is likely to match the
682 	 * state we're about to restore. If the timer expires between
683 	 * this point and the register restoration, we'll take the
684 	 * interrupt anyway.
685 	 */
686 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
687 
688 	/*
689 	 * When using a userspace irqchip with the architected timers and a
690 	 * host interrupt controller that doesn't support an active state, we
691 	 * must still prevent continuously exiting from the guest, and
692 	 * therefore mask the physical interrupt by disabling it on the host
693 	 * interrupt controller when the virtual level is high, such that the
694 	 * guest can make forward progress.  Once we detect the output level
695 	 * being de-asserted, we unmask the interrupt again so that we exit
696 	 * from the guest when the timer fires.
697 	 */
698 	if (vtimer->irq.level)
699 		disable_percpu_irq(host_vtimer_irq);
700 	else
701 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
702 }
703 
704 /* If _pred is true, set bit in _set, otherwise set it in _clr */
705 #define assign_clear_set_bit(_pred, _bit, _clr, _set)			\
706 	do {								\
707 		if (_pred)						\
708 			(_set) |= (_bit);				\
709 		else							\
710 			(_clr) |= (_bit);				\
711 	} while (0)
712 
kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu * vcpu,struct timer_map * map)713 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
714 					      struct timer_map *map)
715 {
716 	int hw, ret;
717 
718 	if (!irqchip_in_kernel(vcpu->kvm))
719 		return;
720 
721 	/*
722 	 * We only ever unmap the vtimer irq on a VHE system that runs nested
723 	 * virtualization, in which case we have both a valid emul_vtimer,
724 	 * emul_ptimer, direct_vtimer, and direct_ptimer.
725 	 *
726 	 * Since this is called from kvm_timer_vcpu_load(), a change between
727 	 * vEL2 and vEL1/0 will have just happened, and the timer_map will
728 	 * represent this, and therefore we switch the emul/direct mappings
729 	 * below.
730 	 */
731 	hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
732 	if (hw < 0) {
733 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
734 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
735 
736 		ret = kvm_vgic_map_phys_irq(vcpu,
737 					    map->direct_vtimer->host_timer_irq,
738 					    timer_irq(map->direct_vtimer),
739 					    &arch_timer_irq_ops);
740 		WARN_ON_ONCE(ret);
741 		ret = kvm_vgic_map_phys_irq(vcpu,
742 					    map->direct_ptimer->host_timer_irq,
743 					    timer_irq(map->direct_ptimer),
744 					    &arch_timer_irq_ops);
745 		WARN_ON_ONCE(ret);
746 
747 		/*
748 		 * The virtual offset behaviour is "interesting", as it
749 		 * always applies when HCR_EL2.E2H==0, but only when
750 		 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
751 		 * track E2H when putting the HV timer in "direct" mode.
752 		 */
753 		if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
754 			struct arch_timer_offset *offs = &map->direct_vtimer->offset;
755 
756 			if (vcpu_el2_e2h_is_set(vcpu))
757 				offs->vcpu_offset = NULL;
758 			else
759 				offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
760 		}
761 	}
762 }
763 
timer_set_traps(struct kvm_vcpu * vcpu,struct timer_map * map)764 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
765 {
766 	bool tpt, tpc;
767 	u64 clr, set;
768 
769 	/*
770 	 * No trapping gets configured here with nVHE. See
771 	 * __timer_enable_traps(), which is where the stuff happens.
772 	 */
773 	if (!has_vhe())
774 		return;
775 
776 	/*
777 	 * Our default policy is not to trap anything. As we progress
778 	 * within this function, reality kicks in and we start adding
779 	 * traps based on emulation requirements.
780 	 */
781 	tpt = tpc = false;
782 
783 	/*
784 	 * We have two possibility to deal with a physical offset:
785 	 *
786 	 * - Either we have CNTPOFF (yay!) or the offset is 0:
787 	 *   we let the guest freely access the HW
788 	 *
789 	 * - or neither of these condition apply:
790 	 *   we trap accesses to the HW, but still use it
791 	 *   after correcting the physical offset
792 	 */
793 	if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
794 		tpt = tpc = true;
795 
796 	/*
797 	 * Apply the enable bits that the guest hypervisor has requested for
798 	 * its own guest. We can only add traps that wouldn't have been set
799 	 * above.
800 	 */
801 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
802 		u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
803 
804 		/* Use the VHE format for mental sanity */
805 		if (!vcpu_el2_e2h_is_set(vcpu))
806 			val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
807 
808 		tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
809 		tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
810 	}
811 
812 	/*
813 	 * Now that we have collected our requirements, compute the
814 	 * trap and enable bits.
815 	 */
816 	set = 0;
817 	clr = 0;
818 
819 	assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
820 	assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
821 
822 	/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
823 	sysreg_clear_set(cnthctl_el2, clr, set);
824 }
825 
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)826 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
827 {
828 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
829 	struct timer_map map;
830 
831 	if (unlikely(!timer->enabled))
832 		return;
833 
834 	get_timer_map(vcpu, &map);
835 
836 	if (static_branch_likely(&has_gic_active_state)) {
837 		if (vcpu_has_nv(vcpu))
838 			kvm_timer_vcpu_load_nested_switch(vcpu, &map);
839 
840 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
841 		if (map.direct_ptimer)
842 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
843 	} else {
844 		kvm_timer_vcpu_load_nogic(vcpu);
845 	}
846 
847 	kvm_timer_unblocking(vcpu);
848 
849 	timer_restore_state(map.direct_vtimer);
850 	if (map.direct_ptimer)
851 		timer_restore_state(map.direct_ptimer);
852 	if (map.emul_vtimer)
853 		timer_emulate(map.emul_vtimer);
854 	if (map.emul_ptimer)
855 		timer_emulate(map.emul_ptimer);
856 
857 	timer_set_traps(vcpu, &map);
858 }
859 
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)860 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
861 {
862 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
863 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
864 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
865 	bool vlevel, plevel;
866 
867 	if (likely(irqchip_in_kernel(vcpu->kvm)))
868 		return false;
869 
870 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
871 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
872 
873 	return kvm_timer_should_fire(vtimer) != vlevel ||
874 	       kvm_timer_should_fire(ptimer) != plevel;
875 }
876 
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)877 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
878 {
879 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
880 	struct timer_map map;
881 
882 	if (unlikely(!timer->enabled))
883 		return;
884 
885 	get_timer_map(vcpu, &map);
886 
887 	timer_save_state(map.direct_vtimer);
888 	if (map.direct_ptimer)
889 		timer_save_state(map.direct_ptimer);
890 
891 	/*
892 	 * Cancel soft timer emulation, because the only case where we
893 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
894 	 * in that case we already factor in the deadline for the physical
895 	 * timer when scheduling the bg_timer.
896 	 *
897 	 * In any case, we re-schedule the hrtimer for the physical timer when
898 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
899 	 */
900 	if (map.emul_vtimer)
901 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
902 	if (map.emul_ptimer)
903 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
904 
905 	if (kvm_vcpu_is_blocking(vcpu))
906 		kvm_timer_blocking(vcpu);
907 }
908 
909 /*
910  * With a userspace irqchip we have to check if the guest de-asserted the
911  * timer and if so, unmask the timer irq signal on the host interrupt
912  * controller to ensure that we see future timer signals.
913  */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)914 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
915 {
916 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
917 
918 	if (!kvm_timer_should_fire(vtimer)) {
919 		kvm_timer_update_irq(vcpu, false, vtimer);
920 		if (static_branch_likely(&has_gic_active_state))
921 			set_timer_irq_phys_active(vtimer, false);
922 		else
923 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
924 	}
925 }
926 
kvm_timer_sync_user(struct kvm_vcpu * vcpu)927 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
928 {
929 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
930 
931 	if (unlikely(!timer->enabled))
932 		return;
933 
934 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
935 		unmask_vtimer_irq_user(vcpu);
936 }
937 
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)938 void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
939 {
940 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
941 	struct timer_map map;
942 
943 	get_timer_map(vcpu, &map);
944 
945 	/*
946 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
947 	 * and to 0 for ARMv7.  We provide an implementation that always
948 	 * resets the timer to be disabled and unmasked and is compliant with
949 	 * the ARMv7 architecture.
950 	 */
951 	for (int i = 0; i < nr_timers(vcpu); i++)
952 		timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
953 
954 	/*
955 	 * A vcpu running at EL2 is in charge of the offset applied to
956 	 * the virtual timer, so use the physical VM offset, and point
957 	 * the vcpu offset to CNTVOFF_EL2.
958 	 */
959 	if (vcpu_has_nv(vcpu)) {
960 		struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
961 
962 		offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
963 		offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
964 	}
965 
966 	if (timer->enabled) {
967 		for (int i = 0; i < nr_timers(vcpu); i++)
968 			kvm_timer_update_irq(vcpu, false,
969 					     vcpu_get_timer(vcpu, i));
970 
971 		if (irqchip_in_kernel(vcpu->kvm)) {
972 			kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
973 			if (map.direct_ptimer)
974 				kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
975 		}
976 	}
977 
978 	if (map.emul_vtimer)
979 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
980 	if (map.emul_ptimer)
981 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
982 }
983 
timer_context_init(struct kvm_vcpu * vcpu,int timerid)984 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
985 {
986 	struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
987 	struct kvm *kvm = vcpu->kvm;
988 
989 	ctxt->vcpu = vcpu;
990 
991 	if (timerid == TIMER_VTIMER)
992 		ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
993 	else
994 		ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
995 
996 	hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
997 	ctxt->hrtimer.function = kvm_hrtimer_expire;
998 
999 	switch (timerid) {
1000 	case TIMER_PTIMER:
1001 	case TIMER_HPTIMER:
1002 		ctxt->host_timer_irq = host_ptimer_irq;
1003 		break;
1004 	case TIMER_VTIMER:
1005 	case TIMER_HVTIMER:
1006 		ctxt->host_timer_irq = host_vtimer_irq;
1007 		break;
1008 	}
1009 }
1010 
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)1011 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1012 {
1013 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1014 
1015 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1016 		timer_context_init(vcpu, i);
1017 
1018 	/* Synchronize offsets across timers of a VM if not already provided */
1019 	if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1020 		timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1021 		timer_set_offset(vcpu_ptimer(vcpu), 0);
1022 	}
1023 
1024 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1025 	timer->bg_timer.function = kvm_bg_timer_expire;
1026 }
1027 
kvm_timer_init_vm(struct kvm * kvm)1028 void kvm_timer_init_vm(struct kvm *kvm)
1029 {
1030 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1031 		kvm->arch.timer_data.ppi[i] = default_ppi[i];
1032 }
1033 
kvm_timer_cpu_up(void)1034 void kvm_timer_cpu_up(void)
1035 {
1036 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1037 	if (host_ptimer_irq)
1038 		enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1039 }
1040 
kvm_timer_cpu_down(void)1041 void kvm_timer_cpu_down(void)
1042 {
1043 	disable_percpu_irq(host_vtimer_irq);
1044 	if (host_ptimer_irq)
1045 		disable_percpu_irq(host_ptimer_irq);
1046 }
1047 
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)1048 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1049 {
1050 	struct arch_timer_context *timer;
1051 
1052 	switch (regid) {
1053 	case KVM_REG_ARM_TIMER_CTL:
1054 		timer = vcpu_vtimer(vcpu);
1055 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1056 		break;
1057 	case KVM_REG_ARM_TIMER_CNT:
1058 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1059 			      &vcpu->kvm->arch.flags)) {
1060 			timer = vcpu_vtimer(vcpu);
1061 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1062 		}
1063 		break;
1064 	case KVM_REG_ARM_TIMER_CVAL:
1065 		timer = vcpu_vtimer(vcpu);
1066 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1067 		break;
1068 	case KVM_REG_ARM_PTIMER_CTL:
1069 		timer = vcpu_ptimer(vcpu);
1070 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1071 		break;
1072 	case KVM_REG_ARM_PTIMER_CNT:
1073 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1074 			      &vcpu->kvm->arch.flags)) {
1075 			timer = vcpu_ptimer(vcpu);
1076 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1077 		}
1078 		break;
1079 	case KVM_REG_ARM_PTIMER_CVAL:
1080 		timer = vcpu_ptimer(vcpu);
1081 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1082 		break;
1083 
1084 	default:
1085 		return -1;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
read_timer_ctl(struct arch_timer_context * timer)1091 static u64 read_timer_ctl(struct arch_timer_context *timer)
1092 {
1093 	/*
1094 	 * Set ISTATUS bit if it's expired.
1095 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1096 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1097 	 * regardless of ENABLE bit for our implementation convenience.
1098 	 */
1099 	u32 ctl = timer_get_ctl(timer);
1100 
1101 	if (!kvm_timer_compute_delta(timer))
1102 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
1103 
1104 	return ctl;
1105 }
1106 
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)1107 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1108 {
1109 	switch (regid) {
1110 	case KVM_REG_ARM_TIMER_CTL:
1111 		return kvm_arm_timer_read(vcpu,
1112 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
1113 	case KVM_REG_ARM_TIMER_CNT:
1114 		return kvm_arm_timer_read(vcpu,
1115 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
1116 	case KVM_REG_ARM_TIMER_CVAL:
1117 		return kvm_arm_timer_read(vcpu,
1118 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1119 	case KVM_REG_ARM_PTIMER_CTL:
1120 		return kvm_arm_timer_read(vcpu,
1121 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
1122 	case KVM_REG_ARM_PTIMER_CNT:
1123 		return kvm_arm_timer_read(vcpu,
1124 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
1125 	case KVM_REG_ARM_PTIMER_CVAL:
1126 		return kvm_arm_timer_read(vcpu,
1127 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1128 	}
1129 	return (u64)-1;
1130 }
1131 
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)1132 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1133 			      struct arch_timer_context *timer,
1134 			      enum kvm_arch_timer_regs treg)
1135 {
1136 	u64 val;
1137 
1138 	switch (treg) {
1139 	case TIMER_REG_TVAL:
1140 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1141 		val = lower_32_bits(val);
1142 		break;
1143 
1144 	case TIMER_REG_CTL:
1145 		val = read_timer_ctl(timer);
1146 		break;
1147 
1148 	case TIMER_REG_CVAL:
1149 		val = timer_get_cval(timer);
1150 		break;
1151 
1152 	case TIMER_REG_CNT:
1153 		val = kvm_phys_timer_read() - timer_get_offset(timer);
1154 		break;
1155 
1156 	case TIMER_REG_VOFF:
1157 		val = *timer->offset.vcpu_offset;
1158 		break;
1159 
1160 	default:
1161 		BUG();
1162 	}
1163 
1164 	return val;
1165 }
1166 
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)1167 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1168 			      enum kvm_arch_timers tmr,
1169 			      enum kvm_arch_timer_regs treg)
1170 {
1171 	struct arch_timer_context *timer;
1172 	struct timer_map map;
1173 	u64 val;
1174 
1175 	get_timer_map(vcpu, &map);
1176 	timer = vcpu_get_timer(vcpu, tmr);
1177 
1178 	if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1179 		return kvm_arm_timer_read(vcpu, timer, treg);
1180 
1181 	preempt_disable();
1182 	timer_save_state(timer);
1183 
1184 	val = kvm_arm_timer_read(vcpu, timer, treg);
1185 
1186 	timer_restore_state(timer);
1187 	preempt_enable();
1188 
1189 	return val;
1190 }
1191 
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)1192 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1193 				struct arch_timer_context *timer,
1194 				enum kvm_arch_timer_regs treg,
1195 				u64 val)
1196 {
1197 	switch (treg) {
1198 	case TIMER_REG_TVAL:
1199 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1200 		break;
1201 
1202 	case TIMER_REG_CTL:
1203 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1204 		break;
1205 
1206 	case TIMER_REG_CVAL:
1207 		timer_set_cval(timer, val);
1208 		break;
1209 
1210 	case TIMER_REG_VOFF:
1211 		*timer->offset.vcpu_offset = val;
1212 		break;
1213 
1214 	default:
1215 		BUG();
1216 	}
1217 }
1218 
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)1219 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1220 				enum kvm_arch_timers tmr,
1221 				enum kvm_arch_timer_regs treg,
1222 				u64 val)
1223 {
1224 	struct arch_timer_context *timer;
1225 	struct timer_map map;
1226 
1227 	get_timer_map(vcpu, &map);
1228 	timer = vcpu_get_timer(vcpu, tmr);
1229 	if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1230 		soft_timer_cancel(&timer->hrtimer);
1231 		kvm_arm_timer_write(vcpu, timer, treg, val);
1232 		timer_emulate(timer);
1233 	} else {
1234 		preempt_disable();
1235 		timer_save_state(timer);
1236 		kvm_arm_timer_write(vcpu, timer, treg, val);
1237 		timer_restore_state(timer);
1238 		preempt_enable();
1239 	}
1240 }
1241 
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1242 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1243 {
1244 	if (vcpu)
1245 		irqd_set_forwarded_to_vcpu(d);
1246 	else
1247 		irqd_clr_forwarded_to_vcpu(d);
1248 
1249 	return 0;
1250 }
1251 
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1252 static int timer_irq_set_irqchip_state(struct irq_data *d,
1253 				       enum irqchip_irq_state which, bool val)
1254 {
1255 	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1256 		return irq_chip_set_parent_state(d, which, val);
1257 
1258 	if (val)
1259 		irq_chip_mask_parent(d);
1260 	else
1261 		irq_chip_unmask_parent(d);
1262 
1263 	return 0;
1264 }
1265 
timer_irq_eoi(struct irq_data * d)1266 static void timer_irq_eoi(struct irq_data *d)
1267 {
1268 	if (!irqd_is_forwarded_to_vcpu(d))
1269 		irq_chip_eoi_parent(d);
1270 }
1271 
timer_irq_ack(struct irq_data * d)1272 static void timer_irq_ack(struct irq_data *d)
1273 {
1274 	d = d->parent_data;
1275 	if (d->chip->irq_ack)
1276 		d->chip->irq_ack(d);
1277 }
1278 
1279 static struct irq_chip timer_chip = {
1280 	.name			= "KVM",
1281 	.irq_ack		= timer_irq_ack,
1282 	.irq_mask		= irq_chip_mask_parent,
1283 	.irq_unmask		= irq_chip_unmask_parent,
1284 	.irq_eoi		= timer_irq_eoi,
1285 	.irq_set_type		= irq_chip_set_type_parent,
1286 	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1287 	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1288 };
1289 
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1290 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1291 				  unsigned int nr_irqs, void *arg)
1292 {
1293 	irq_hw_number_t hwirq = (uintptr_t)arg;
1294 
1295 	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1296 					     &timer_chip, NULL);
1297 }
1298 
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1299 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1300 				  unsigned int nr_irqs)
1301 {
1302 }
1303 
1304 static const struct irq_domain_ops timer_domain_ops = {
1305 	.alloc	= timer_irq_domain_alloc,
1306 	.free	= timer_irq_domain_free,
1307 };
1308 
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1309 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1310 {
1311 	*flags = irq_get_trigger_type(virq);
1312 	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1313 		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1314 			virq);
1315 		*flags = IRQF_TRIGGER_LOW;
1316 	}
1317 }
1318 
kvm_irq_init(struct arch_timer_kvm_info * info)1319 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1320 {
1321 	struct irq_domain *domain = NULL;
1322 
1323 	if (info->virtual_irq <= 0) {
1324 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1325 			info->virtual_irq);
1326 		return -ENODEV;
1327 	}
1328 
1329 	host_vtimer_irq = info->virtual_irq;
1330 	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1331 
1332 	if (kvm_vgic_global_state.no_hw_deactivation) {
1333 		struct fwnode_handle *fwnode;
1334 		struct irq_data *data;
1335 
1336 		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1337 		if (!fwnode)
1338 			return -ENOMEM;
1339 
1340 		/* Assume both vtimer and ptimer in the same parent */
1341 		data = irq_get_irq_data(host_vtimer_irq);
1342 		domain = irq_domain_create_hierarchy(data->domain, 0,
1343 						     NR_KVM_TIMERS, fwnode,
1344 						     &timer_domain_ops, NULL);
1345 		if (!domain) {
1346 			irq_domain_free_fwnode(fwnode);
1347 			return -ENOMEM;
1348 		}
1349 
1350 		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1351 		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1352 					    (void *)TIMER_VTIMER));
1353 	}
1354 
1355 	if (info->physical_irq > 0) {
1356 		host_ptimer_irq = info->physical_irq;
1357 		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1358 
1359 		if (domain)
1360 			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1361 						    (void *)TIMER_PTIMER));
1362 	}
1363 
1364 	return 0;
1365 }
1366 
kvm_timer_hyp_init(bool has_gic)1367 int __init kvm_timer_hyp_init(bool has_gic)
1368 {
1369 	struct arch_timer_kvm_info *info;
1370 	int err;
1371 
1372 	info = arch_timer_get_kvm_info();
1373 	timecounter = &info->timecounter;
1374 
1375 	if (!timecounter->cc) {
1376 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1377 		return -ENODEV;
1378 	}
1379 
1380 	err = kvm_irq_init(info);
1381 	if (err)
1382 		return err;
1383 
1384 	/* First, do the virtual EL1 timer irq */
1385 
1386 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1387 				 "kvm guest vtimer", kvm_get_running_vcpus());
1388 	if (err) {
1389 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1390 			host_vtimer_irq, err);
1391 		return err;
1392 	}
1393 
1394 	if (has_gic) {
1395 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1396 					    kvm_get_running_vcpus());
1397 		if (err) {
1398 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1399 			goto out_free_vtimer_irq;
1400 		}
1401 
1402 		static_branch_enable(&has_gic_active_state);
1403 	}
1404 
1405 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1406 
1407 	/* Now let's do the physical EL1 timer irq */
1408 
1409 	if (info->physical_irq > 0) {
1410 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1411 					 "kvm guest ptimer", kvm_get_running_vcpus());
1412 		if (err) {
1413 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1414 				host_ptimer_irq, err);
1415 			goto out_free_vtimer_irq;
1416 		}
1417 
1418 		if (has_gic) {
1419 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1420 						    kvm_get_running_vcpus());
1421 			if (err) {
1422 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1423 				goto out_free_ptimer_irq;
1424 			}
1425 		}
1426 
1427 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1428 	} else if (has_vhe()) {
1429 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1430 			info->physical_irq);
1431 		err = -ENODEV;
1432 		goto out_free_vtimer_irq;
1433 	}
1434 
1435 	return 0;
1436 
1437 out_free_ptimer_irq:
1438 	if (info->physical_irq > 0)
1439 		free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1440 out_free_vtimer_irq:
1441 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1442 	return err;
1443 }
1444 
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1445 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1446 {
1447 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1448 
1449 	soft_timer_cancel(&timer->bg_timer);
1450 }
1451 
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1452 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1453 {
1454 	u32 ppis = 0;
1455 	bool valid;
1456 
1457 	mutex_lock(&vcpu->kvm->arch.config_lock);
1458 
1459 	for (int i = 0; i < nr_timers(vcpu); i++) {
1460 		struct arch_timer_context *ctx;
1461 		int irq;
1462 
1463 		ctx = vcpu_get_timer(vcpu, i);
1464 		irq = timer_irq(ctx);
1465 		if (kvm_vgic_set_owner(vcpu, irq, ctx))
1466 			break;
1467 
1468 		/*
1469 		 * We know by construction that we only have PPIs, so
1470 		 * all values are less than 32.
1471 		 */
1472 		ppis |= BIT(irq);
1473 	}
1474 
1475 	valid = hweight32(ppis) == nr_timers(vcpu);
1476 
1477 	if (valid)
1478 		set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1479 
1480 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1481 
1482 	return valid;
1483 }
1484 
kvm_arch_timer_get_input_level(int vintid)1485 static bool kvm_arch_timer_get_input_level(int vintid)
1486 {
1487 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1488 
1489 	if (WARN(!vcpu, "No vcpu context!\n"))
1490 		return false;
1491 
1492 	for (int i = 0; i < nr_timers(vcpu); i++) {
1493 		struct arch_timer_context *ctx;
1494 
1495 		ctx = vcpu_get_timer(vcpu, i);
1496 		if (timer_irq(ctx) == vintid)
1497 			return kvm_timer_should_fire(ctx);
1498 	}
1499 
1500 	/* A timer IRQ has fired, but no matching timer was found? */
1501 	WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1502 
1503 	return false;
1504 }
1505 
kvm_timer_enable(struct kvm_vcpu * vcpu)1506 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1507 {
1508 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1509 	struct timer_map map;
1510 	int ret;
1511 
1512 	if (timer->enabled)
1513 		return 0;
1514 
1515 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1516 	if (!irqchip_in_kernel(vcpu->kvm))
1517 		goto no_vgic;
1518 
1519 	/*
1520 	 * At this stage, we have the guarantee that the vgic is both
1521 	 * available and initialized.
1522 	 */
1523 	if (!timer_irqs_are_valid(vcpu)) {
1524 		kvm_debug("incorrectly configured timer irqs\n");
1525 		return -EINVAL;
1526 	}
1527 
1528 	get_timer_map(vcpu, &map);
1529 
1530 	ret = kvm_vgic_map_phys_irq(vcpu,
1531 				    map.direct_vtimer->host_timer_irq,
1532 				    timer_irq(map.direct_vtimer),
1533 				    &arch_timer_irq_ops);
1534 	if (ret)
1535 		return ret;
1536 
1537 	if (map.direct_ptimer) {
1538 		ret = kvm_vgic_map_phys_irq(vcpu,
1539 					    map.direct_ptimer->host_timer_irq,
1540 					    timer_irq(map.direct_ptimer),
1541 					    &arch_timer_irq_ops);
1542 	}
1543 
1544 	if (ret)
1545 		return ret;
1546 
1547 no_vgic:
1548 	timer->enabled = 1;
1549 	return 0;
1550 }
1551 
1552 /* If we have CNTPOFF, permanently set ECV to enable it */
kvm_timer_init_vhe(void)1553 void kvm_timer_init_vhe(void)
1554 {
1555 	if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1556 		sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1557 }
1558 
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1559 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1560 {
1561 	int __user *uaddr = (int __user *)(long)attr->addr;
1562 	int irq, idx, ret = 0;
1563 
1564 	if (!irqchip_in_kernel(vcpu->kvm))
1565 		return -EINVAL;
1566 
1567 	if (get_user(irq, uaddr))
1568 		return -EFAULT;
1569 
1570 	if (!(irq_is_ppi(irq)))
1571 		return -EINVAL;
1572 
1573 	mutex_lock(&vcpu->kvm->arch.config_lock);
1574 
1575 	if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1576 		     &vcpu->kvm->arch.flags)) {
1577 		ret = -EBUSY;
1578 		goto out;
1579 	}
1580 
1581 	switch (attr->attr) {
1582 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1583 		idx = TIMER_VTIMER;
1584 		break;
1585 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1586 		idx = TIMER_PTIMER;
1587 		break;
1588 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1589 		idx = TIMER_HVTIMER;
1590 		break;
1591 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1592 		idx = TIMER_HPTIMER;
1593 		break;
1594 	default:
1595 		ret = -ENXIO;
1596 		goto out;
1597 	}
1598 
1599 	/*
1600 	 * We cannot validate the IRQ unicity before we run, so take it at
1601 	 * face value. The verdict will be given on first vcpu run, for each
1602 	 * vcpu. Yes this is late. Blame it on the stupid API.
1603 	 */
1604 	vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1605 
1606 out:
1607 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1608 	return ret;
1609 }
1610 
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1611 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1612 {
1613 	int __user *uaddr = (int __user *)(long)attr->addr;
1614 	struct arch_timer_context *timer;
1615 	int irq;
1616 
1617 	switch (attr->attr) {
1618 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1619 		timer = vcpu_vtimer(vcpu);
1620 		break;
1621 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1622 		timer = vcpu_ptimer(vcpu);
1623 		break;
1624 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1625 		timer = vcpu_hvtimer(vcpu);
1626 		break;
1627 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1628 		timer = vcpu_hptimer(vcpu);
1629 		break;
1630 	default:
1631 		return -ENXIO;
1632 	}
1633 
1634 	irq = timer_irq(timer);
1635 	return put_user(irq, uaddr);
1636 }
1637 
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1638 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1639 {
1640 	switch (attr->attr) {
1641 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1642 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1643 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1644 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1645 		return 0;
1646 	}
1647 
1648 	return -ENXIO;
1649 }
1650 
kvm_vm_ioctl_set_counter_offset(struct kvm * kvm,struct kvm_arm_counter_offset * offset)1651 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1652 				    struct kvm_arm_counter_offset *offset)
1653 {
1654 	int ret = 0;
1655 
1656 	if (offset->reserved)
1657 		return -EINVAL;
1658 
1659 	mutex_lock(&kvm->lock);
1660 
1661 	if (lock_all_vcpus(kvm)) {
1662 		set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1663 
1664 		/*
1665 		 * If userspace decides to set the offset using this
1666 		 * API rather than merely restoring the counter
1667 		 * values, the offset applies to both the virtual and
1668 		 * physical views.
1669 		 */
1670 		kvm->arch.timer_data.voffset = offset->counter_offset;
1671 		kvm->arch.timer_data.poffset = offset->counter_offset;
1672 
1673 		unlock_all_vcpus(kvm);
1674 	} else {
1675 		ret = -EBUSY;
1676 	}
1677 
1678 	mutex_unlock(&kvm->lock);
1679 
1680 	return ret;
1681 }
1682