xref: /linux/arch/arm64/kvm/hyp/pgtable.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 struct kvm_pgtable_walk_data {
15 	struct kvm_pgtable_walker	*walker;
16 
17 	const u64			start;
18 	u64				addr;
19 	const u64			end;
20 };
21 
kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx * ctx)22 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
23 {
24 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
25 }
26 
kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx * ctx)27 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
28 {
29 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
30 }
31 
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)32 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
33 {
34 	u64 granule = kvm_granule_size(ctx->level);
35 
36 	if (!kvm_level_supports_block_mapping(ctx->level))
37 		return false;
38 
39 	if (granule > (ctx->end - ctx->addr))
40 		return false;
41 
42 	if (!IS_ALIGNED(phys, granule))
43 		return false;
44 
45 	return IS_ALIGNED(ctx->addr, granule);
46 }
47 
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,s8 level)48 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
49 {
50 	u64 shift = kvm_granule_shift(level);
51 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
52 
53 	return (data->addr >> shift) & mask;
54 }
55 
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)56 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
57 {
58 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
59 	u64 mask = BIT(pgt->ia_bits) - 1;
60 
61 	return (addr & mask) >> shift;
62 }
63 
kvm_pgd_pages(u32 ia_bits,s8 start_level)64 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
65 {
66 	struct kvm_pgtable pgt = {
67 		.ia_bits	= ia_bits,
68 		.start_level	= start_level,
69 	};
70 
71 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
72 }
73 
kvm_pte_table(kvm_pte_t pte,s8 level)74 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
75 {
76 	if (level == KVM_PGTABLE_LAST_LEVEL)
77 		return false;
78 
79 	if (!kvm_pte_valid(pte))
80 		return false;
81 
82 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
83 }
84 
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)85 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
86 {
87 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
88 }
89 
kvm_clear_pte(kvm_pte_t * ptep)90 static void kvm_clear_pte(kvm_pte_t *ptep)
91 {
92 	WRITE_ONCE(*ptep, 0);
93 }
94 
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)95 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
96 {
97 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
98 
99 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
100 	pte |= KVM_PTE_VALID;
101 	return pte;
102 }
103 
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,s8 level)104 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
105 {
106 	kvm_pte_t pte = kvm_phys_to_pte(pa);
107 	u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
108 						       KVM_PTE_TYPE_BLOCK;
109 
110 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
111 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
112 	pte |= KVM_PTE_VALID;
113 
114 	return pte;
115 }
116 
kvm_init_invalid_leaf_owner(u8 owner_id)117 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
118 {
119 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
120 }
121 
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)122 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
123 				  const struct kvm_pgtable_visit_ctx *ctx,
124 				  enum kvm_pgtable_walk_flags visit)
125 {
126 	struct kvm_pgtable_walker *walker = data->walker;
127 
128 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
129 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
130 	return walker->cb(ctx, visit);
131 }
132 
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)133 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
134 				      int r)
135 {
136 	/*
137 	 * Visitor callbacks return EAGAIN when the conditions that led to a
138 	 * fault are no longer reflected in the page tables due to a race to
139 	 * update a PTE. In the context of a fault handler this is interpreted
140 	 * as a signal to retry guest execution.
141 	 *
142 	 * Ignore the return code altogether for walkers outside a fault handler
143 	 * (e.g. write protecting a range of memory) and chug along with the
144 	 * page table walk.
145 	 */
146 	if (r == -EAGAIN)
147 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
148 
149 	return !r;
150 }
151 
152 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
153 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
154 
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,s8 level)155 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
156 				      struct kvm_pgtable_mm_ops *mm_ops,
157 				      kvm_pteref_t pteref, s8 level)
158 {
159 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
160 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
161 	struct kvm_pgtable_visit_ctx ctx = {
162 		.ptep	= ptep,
163 		.old	= READ_ONCE(*ptep),
164 		.arg	= data->walker->arg,
165 		.mm_ops	= mm_ops,
166 		.start	= data->start,
167 		.addr	= data->addr,
168 		.end	= data->end,
169 		.level	= level,
170 		.flags	= flags,
171 	};
172 	int ret = 0;
173 	bool reload = false;
174 	kvm_pteref_t childp;
175 	bool table = kvm_pte_table(ctx.old, level);
176 
177 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
178 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
179 		reload = true;
180 	}
181 
182 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
183 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
184 		reload = true;
185 	}
186 
187 	/*
188 	 * Reload the page table after invoking the walker callback for leaf
189 	 * entries or after pre-order traversal, to allow the walker to descend
190 	 * into a newly installed or replaced table.
191 	 */
192 	if (reload) {
193 		ctx.old = READ_ONCE(*ptep);
194 		table = kvm_pte_table(ctx.old, level);
195 	}
196 
197 	if (!kvm_pgtable_walk_continue(data->walker, ret))
198 		goto out;
199 
200 	if (!table) {
201 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
202 		data->addr += kvm_granule_size(level);
203 		goto out;
204 	}
205 
206 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
207 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
208 	if (!kvm_pgtable_walk_continue(data->walker, ret))
209 		goto out;
210 
211 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
212 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
213 
214 out:
215 	if (kvm_pgtable_walk_continue(data->walker, ret))
216 		return 0;
217 
218 	return ret;
219 }
220 
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,s8 level)221 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
222 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
223 {
224 	u32 idx;
225 	int ret = 0;
226 
227 	if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
228 			 level > KVM_PGTABLE_LAST_LEVEL))
229 		return -EINVAL;
230 
231 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
232 		kvm_pteref_t pteref = &pgtable[idx];
233 
234 		if (data->addr >= data->end)
235 			break;
236 
237 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
238 		if (ret)
239 			break;
240 	}
241 
242 	return ret;
243 }
244 
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)245 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
246 {
247 	u32 idx;
248 	int ret = 0;
249 	u64 limit = BIT(pgt->ia_bits);
250 
251 	if (data->addr > limit || data->end > limit)
252 		return -ERANGE;
253 
254 	if (!pgt->pgd)
255 		return -EINVAL;
256 
257 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
258 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
259 
260 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
261 		if (ret)
262 			break;
263 	}
264 
265 	return ret;
266 }
267 
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)268 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
269 		     struct kvm_pgtable_walker *walker)
270 {
271 	struct kvm_pgtable_walk_data walk_data = {
272 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
273 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
274 		.end	= PAGE_ALIGN(walk_data.addr + size),
275 		.walker	= walker,
276 	};
277 	int r;
278 
279 	r = kvm_pgtable_walk_begin(walker);
280 	if (r)
281 		return r;
282 
283 	r = _kvm_pgtable_walk(pgt, &walk_data);
284 	kvm_pgtable_walk_end(walker);
285 
286 	return r;
287 }
288 
289 struct leaf_walk_data {
290 	kvm_pte_t	pte;
291 	s8		level;
292 };
293 
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)294 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
295 		       enum kvm_pgtable_walk_flags visit)
296 {
297 	struct leaf_walk_data *data = ctx->arg;
298 
299 	data->pte   = ctx->old;
300 	data->level = ctx->level;
301 
302 	return 0;
303 }
304 
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,s8 * level)305 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
306 			 kvm_pte_t *ptep, s8 *level)
307 {
308 	struct leaf_walk_data data;
309 	struct kvm_pgtable_walker walker = {
310 		.cb	= leaf_walker,
311 		.flags	= KVM_PGTABLE_WALK_LEAF,
312 		.arg	= &data,
313 	};
314 	int ret;
315 
316 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
317 			       PAGE_SIZE, &walker);
318 	if (!ret) {
319 		if (ptep)
320 			*ptep  = data.pte;
321 		if (level)
322 			*level = data.level;
323 	}
324 
325 	return ret;
326 }
327 
328 struct hyp_map_data {
329 	const u64			phys;
330 	kvm_pte_t			attr;
331 };
332 
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)333 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
334 {
335 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
336 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
337 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
338 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
339 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
340 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
341 
342 	if (!(prot & KVM_PGTABLE_PROT_R))
343 		return -EINVAL;
344 
345 	if (prot & KVM_PGTABLE_PROT_X) {
346 		if (prot & KVM_PGTABLE_PROT_W)
347 			return -EINVAL;
348 
349 		if (device)
350 			return -EINVAL;
351 
352 		if (system_supports_bti_kernel())
353 			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
354 	} else {
355 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
356 	}
357 
358 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
359 	if (!kvm_lpa2_is_enabled())
360 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
361 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
362 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
363 	*ptep = attr;
364 
365 	return 0;
366 }
367 
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)368 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
369 {
370 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
371 	u32 ap;
372 
373 	if (!kvm_pte_valid(pte))
374 		return prot;
375 
376 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
377 		prot |= KVM_PGTABLE_PROT_X;
378 
379 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
380 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
381 		prot |= KVM_PGTABLE_PROT_R;
382 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
383 		prot |= KVM_PGTABLE_PROT_RW;
384 
385 	return prot;
386 }
387 
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)388 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
389 				    struct hyp_map_data *data)
390 {
391 	u64 phys = data->phys + (ctx->addr - ctx->start);
392 	kvm_pte_t new;
393 
394 	if (!kvm_block_mapping_supported(ctx, phys))
395 		return false;
396 
397 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
398 	if (ctx->old == new)
399 		return true;
400 	if (!kvm_pte_valid(ctx->old))
401 		ctx->mm_ops->get_page(ctx->ptep);
402 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
403 		return false;
404 
405 	smp_store_release(ctx->ptep, new);
406 	return true;
407 }
408 
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)409 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
410 			  enum kvm_pgtable_walk_flags visit)
411 {
412 	kvm_pte_t *childp, new;
413 	struct hyp_map_data *data = ctx->arg;
414 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
415 
416 	if (hyp_map_walker_try_leaf(ctx, data))
417 		return 0;
418 
419 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
420 		return -EINVAL;
421 
422 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
423 	if (!childp)
424 		return -ENOMEM;
425 
426 	new = kvm_init_table_pte(childp, mm_ops);
427 	mm_ops->get_page(ctx->ptep);
428 	smp_store_release(ctx->ptep, new);
429 
430 	return 0;
431 }
432 
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)433 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
434 			enum kvm_pgtable_prot prot)
435 {
436 	int ret;
437 	struct hyp_map_data map_data = {
438 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
439 	};
440 	struct kvm_pgtable_walker walker = {
441 		.cb	= hyp_map_walker,
442 		.flags	= KVM_PGTABLE_WALK_LEAF,
443 		.arg	= &map_data,
444 	};
445 
446 	ret = hyp_set_prot_attr(prot, &map_data.attr);
447 	if (ret)
448 		return ret;
449 
450 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
451 	dsb(ishst);
452 	isb();
453 	return ret;
454 }
455 
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)456 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
457 			    enum kvm_pgtable_walk_flags visit)
458 {
459 	kvm_pte_t *childp = NULL;
460 	u64 granule = kvm_granule_size(ctx->level);
461 	u64 *unmapped = ctx->arg;
462 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
463 
464 	if (!kvm_pte_valid(ctx->old))
465 		return -EINVAL;
466 
467 	if (kvm_pte_table(ctx->old, ctx->level)) {
468 		childp = kvm_pte_follow(ctx->old, mm_ops);
469 
470 		if (mm_ops->page_count(childp) != 1)
471 			return 0;
472 
473 		kvm_clear_pte(ctx->ptep);
474 		dsb(ishst);
475 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
476 	} else {
477 		if (ctx->end - ctx->addr < granule)
478 			return -EINVAL;
479 
480 		kvm_clear_pte(ctx->ptep);
481 		dsb(ishst);
482 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
483 		*unmapped += granule;
484 	}
485 
486 	dsb(ish);
487 	isb();
488 	mm_ops->put_page(ctx->ptep);
489 
490 	if (childp)
491 		mm_ops->put_page(childp);
492 
493 	return 0;
494 }
495 
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)496 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
497 {
498 	u64 unmapped = 0;
499 	struct kvm_pgtable_walker walker = {
500 		.cb	= hyp_unmap_walker,
501 		.arg	= &unmapped,
502 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
503 	};
504 
505 	if (!pgt->mm_ops->page_count)
506 		return 0;
507 
508 	kvm_pgtable_walk(pgt, addr, size, &walker);
509 	return unmapped;
510 }
511 
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)512 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
513 			 struct kvm_pgtable_mm_ops *mm_ops)
514 {
515 	s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
516 			 ARM64_HW_PGTABLE_LEVELS(va_bits);
517 
518 	if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
519 	    start_level > KVM_PGTABLE_LAST_LEVEL)
520 		return -EINVAL;
521 
522 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
523 	if (!pgt->pgd)
524 		return -ENOMEM;
525 
526 	pgt->ia_bits		= va_bits;
527 	pgt->start_level	= start_level;
528 	pgt->mm_ops		= mm_ops;
529 	pgt->mmu		= NULL;
530 	pgt->force_pte_cb	= NULL;
531 
532 	return 0;
533 }
534 
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)535 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
536 			   enum kvm_pgtable_walk_flags visit)
537 {
538 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
539 
540 	if (!kvm_pte_valid(ctx->old))
541 		return 0;
542 
543 	mm_ops->put_page(ctx->ptep);
544 
545 	if (kvm_pte_table(ctx->old, ctx->level))
546 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
547 
548 	return 0;
549 }
550 
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)551 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
552 {
553 	struct kvm_pgtable_walker walker = {
554 		.cb	= hyp_free_walker,
555 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
556 	};
557 
558 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
559 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
560 	pgt->pgd = NULL;
561 }
562 
563 struct stage2_map_data {
564 	const u64			phys;
565 	kvm_pte_t			attr;
566 	u8				owner_id;
567 
568 	kvm_pte_t			*anchor;
569 	kvm_pte_t			*childp;
570 
571 	struct kvm_s2_mmu		*mmu;
572 	void				*memcache;
573 
574 	/* Force mappings to page granularity */
575 	bool				force_pte;
576 
577 	/* Walk should update owner_id only */
578 	bool				annotation;
579 };
580 
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)581 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
582 {
583 	u64 vtcr = VTCR_EL2_FLAGS;
584 	s8 lvls;
585 
586 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
587 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
588 	/*
589 	 * Use a minimum 2 level page table to prevent splitting
590 	 * host PMD huge pages at stage2.
591 	 */
592 	lvls = stage2_pgtable_levels(phys_shift);
593 	if (lvls < 2)
594 		lvls = 2;
595 
596 	/*
597 	 * When LPA2 is enabled, the HW supports an extra level of translation
598 	 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
599 	 * to as an addition to SL0 to enable encoding this extra start level.
600 	 * However, since we always use concatenated pages for the first level
601 	 * lookup, we will never need this extra level and therefore do not need
602 	 * to touch SL2.
603 	 */
604 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
605 
606 #ifdef CONFIG_ARM64_HW_AFDBM
607 	/*
608 	 * Enable the Hardware Access Flag management, unconditionally
609 	 * on all CPUs. In systems that have asymmetric support for the feature
610 	 * this allows KVM to leverage hardware support on the subset of cores
611 	 * that implement the feature.
612 	 *
613 	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
614 	 * hardware) on implementations that do not advertise support for the
615 	 * feature. As such, setting HA unconditionally is safe, unless you
616 	 * happen to be running on a design that has unadvertised support for
617 	 * HAFDBS. Here be dragons.
618 	 */
619 	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
620 		vtcr |= VTCR_EL2_HA;
621 #endif /* CONFIG_ARM64_HW_AFDBM */
622 
623 	if (kvm_lpa2_is_enabled())
624 		vtcr |= VTCR_EL2_DS;
625 
626 	/* Set the vmid bits */
627 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
628 		VTCR_EL2_VS_16BIT :
629 		VTCR_EL2_VS_8BIT;
630 
631 	return vtcr;
632 }
633 
stage2_has_fwb(struct kvm_pgtable * pgt)634 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
635 {
636 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
637 		return false;
638 
639 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
640 }
641 
kvm_tlb_flush_vmid_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,size_t size)642 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
643 				phys_addr_t addr, size_t size)
644 {
645 	unsigned long pages, inval_pages;
646 
647 	if (!system_supports_tlb_range()) {
648 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
649 		return;
650 	}
651 
652 	pages = size >> PAGE_SHIFT;
653 	while (pages > 0) {
654 		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
655 		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
656 
657 		addr += inval_pages << PAGE_SHIFT;
658 		pages -= inval_pages;
659 	}
660 }
661 
662 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
663 
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)664 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
665 				kvm_pte_t *ptep)
666 {
667 	kvm_pte_t attr;
668 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
669 
670 	switch (prot & (KVM_PGTABLE_PROT_DEVICE |
671 			KVM_PGTABLE_PROT_NORMAL_NC)) {
672 	case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
673 		return -EINVAL;
674 	case KVM_PGTABLE_PROT_DEVICE:
675 		if (prot & KVM_PGTABLE_PROT_X)
676 			return -EINVAL;
677 		attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
678 		break;
679 	case KVM_PGTABLE_PROT_NORMAL_NC:
680 		if (prot & KVM_PGTABLE_PROT_X)
681 			return -EINVAL;
682 		attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
683 		break;
684 	default:
685 		attr = KVM_S2_MEMATTR(pgt, NORMAL);
686 	}
687 
688 	if (!(prot & KVM_PGTABLE_PROT_X))
689 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
690 
691 	if (prot & KVM_PGTABLE_PROT_R)
692 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
693 
694 	if (prot & KVM_PGTABLE_PROT_W)
695 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
696 
697 	if (!kvm_lpa2_is_enabled())
698 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
699 
700 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
701 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
702 	*ptep = attr;
703 
704 	return 0;
705 }
706 
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)707 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
708 {
709 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
710 
711 	if (!kvm_pte_valid(pte))
712 		return prot;
713 
714 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
715 		prot |= KVM_PGTABLE_PROT_R;
716 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
717 		prot |= KVM_PGTABLE_PROT_W;
718 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
719 		prot |= KVM_PGTABLE_PROT_X;
720 
721 	return prot;
722 }
723 
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)724 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
725 {
726 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
727 		return true;
728 
729 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
730 }
731 
stage2_pte_is_counted(kvm_pte_t pte)732 static bool stage2_pte_is_counted(kvm_pte_t pte)
733 {
734 	/*
735 	 * The refcount tracks valid entries as well as invalid entries if they
736 	 * encode ownership of a page to another entity than the page-table
737 	 * owner, whose id is 0.
738 	 */
739 	return !!pte;
740 }
741 
stage2_pte_is_locked(kvm_pte_t pte)742 static bool stage2_pte_is_locked(kvm_pte_t pte)
743 {
744 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
745 }
746 
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)747 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
748 {
749 	if (!kvm_pgtable_walk_shared(ctx)) {
750 		WRITE_ONCE(*ctx->ptep, new);
751 		return true;
752 	}
753 
754 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
755 }
756 
757 /**
758  * stage2_try_break_pte() - Invalidates a pte according to the
759  *			    'break-before-make' requirements of the
760  *			    architecture.
761  *
762  * @ctx: context of the visited pte.
763  * @mmu: stage-2 mmu
764  *
765  * Returns: true if the pte was successfully broken.
766  *
767  * If the removed pte was valid, performs the necessary serialization and TLB
768  * invalidation for the old value. For counted ptes, drops the reference count
769  * on the containing table page.
770  */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)771 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
772 				 struct kvm_s2_mmu *mmu)
773 {
774 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
775 
776 	if (stage2_pte_is_locked(ctx->old)) {
777 		/*
778 		 * Should never occur if this walker has exclusive access to the
779 		 * page tables.
780 		 */
781 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
782 		return false;
783 	}
784 
785 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
786 		return false;
787 
788 	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
789 		/*
790 		 * Perform the appropriate TLB invalidation based on the
791 		 * evicted pte value (if any).
792 		 */
793 		if (kvm_pte_table(ctx->old, ctx->level)) {
794 			u64 size = kvm_granule_size(ctx->level);
795 			u64 addr = ALIGN_DOWN(ctx->addr, size);
796 
797 			kvm_tlb_flush_vmid_range(mmu, addr, size);
798 		} else if (kvm_pte_valid(ctx->old)) {
799 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
800 				     ctx->addr, ctx->level);
801 		}
802 	}
803 
804 	if (stage2_pte_is_counted(ctx->old))
805 		mm_ops->put_page(ctx->ptep);
806 
807 	return true;
808 }
809 
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)810 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
811 {
812 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
813 
814 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
815 
816 	if (stage2_pte_is_counted(new))
817 		mm_ops->get_page(ctx->ptep);
818 
819 	smp_store_release(ctx->ptep, new);
820 }
821 
stage2_unmap_defer_tlb_flush(struct kvm_pgtable * pgt)822 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
823 {
824 	/*
825 	 * If FEAT_TLBIRANGE is implemented, defer the individual
826 	 * TLB invalidations until the entire walk is finished, and
827 	 * then use the range-based TLBI instructions to do the
828 	 * invalidations. Condition deferred TLB invalidation on the
829 	 * system supporting FWB as the optimization is entirely
830 	 * pointless when the unmap walker needs to perform CMOs.
831 	 */
832 	return system_supports_tlb_range() && stage2_has_fwb(pgt);
833 }
834 
stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)835 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
836 				struct kvm_s2_mmu *mmu,
837 				struct kvm_pgtable_mm_ops *mm_ops)
838 {
839 	struct kvm_pgtable *pgt = ctx->arg;
840 
841 	/*
842 	 * Clear the existing PTE, and perform break-before-make if it was
843 	 * valid. Depending on the system support, defer the TLB maintenance
844 	 * for the same until the entire unmap walk is completed.
845 	 */
846 	if (kvm_pte_valid(ctx->old)) {
847 		kvm_clear_pte(ctx->ptep);
848 
849 		if (kvm_pte_table(ctx->old, ctx->level)) {
850 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
851 				     TLBI_TTL_UNKNOWN);
852 		} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
853 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
854 				     ctx->level);
855 		}
856 	}
857 
858 	mm_ops->put_page(ctx->ptep);
859 }
860 
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)861 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
862 {
863 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
864 	return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
865 }
866 
stage2_pte_executable(kvm_pte_t pte)867 static bool stage2_pte_executable(kvm_pte_t pte)
868 {
869 	return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
870 }
871 
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx * ctx,const struct stage2_map_data * data)872 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
873 				       const struct stage2_map_data *data)
874 {
875 	u64 phys = data->phys;
876 
877 	/* Work out the correct PA based on how far the walk has gotten */
878 	return phys + (ctx->addr - ctx->start);
879 }
880 
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)881 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
882 					struct stage2_map_data *data)
883 {
884 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
885 
886 	if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
887 		return false;
888 
889 	if (data->annotation)
890 		return true;
891 
892 	return kvm_block_mapping_supported(ctx, phys);
893 }
894 
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)895 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
896 				      struct stage2_map_data *data)
897 {
898 	kvm_pte_t new;
899 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
900 	u64 granule = kvm_granule_size(ctx->level);
901 	struct kvm_pgtable *pgt = data->mmu->pgt;
902 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
903 
904 	if (!stage2_leaf_mapping_allowed(ctx, data))
905 		return -E2BIG;
906 
907 	if (!data->annotation)
908 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
909 	else
910 		new = kvm_init_invalid_leaf_owner(data->owner_id);
911 
912 	/*
913 	 * Skip updating the PTE if we are trying to recreate the exact
914 	 * same mapping or only change the access permissions. Instead,
915 	 * the vCPU will exit one more time from guest if still needed
916 	 * and then go through the path of relaxing permissions.
917 	 */
918 	if (!stage2_pte_needs_update(ctx->old, new))
919 		return -EAGAIN;
920 
921 	/* If we're only changing software bits, then store them and go! */
922 	if (!kvm_pgtable_walk_shared(ctx) &&
923 	    !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
924 		bool old_is_counted = stage2_pte_is_counted(ctx->old);
925 
926 		if (old_is_counted != stage2_pte_is_counted(new)) {
927 			if (old_is_counted)
928 				mm_ops->put_page(ctx->ptep);
929 			else
930 				mm_ops->get_page(ctx->ptep);
931 		}
932 		WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
933 		return 0;
934 	}
935 
936 	if (!stage2_try_break_pte(ctx, data->mmu))
937 		return -EAGAIN;
938 
939 	/* Perform CMOs before installation of the guest stage-2 PTE */
940 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
941 	    stage2_pte_cacheable(pgt, new))
942 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
943 					       granule);
944 
945 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
946 	    stage2_pte_executable(new))
947 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
948 
949 	stage2_make_pte(ctx, new);
950 
951 	return 0;
952 }
953 
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)954 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
955 				     struct stage2_map_data *data)
956 {
957 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
958 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
959 	int ret;
960 
961 	if (!stage2_leaf_mapping_allowed(ctx, data))
962 		return 0;
963 
964 	ret = stage2_map_walker_try_leaf(ctx, data);
965 	if (ret)
966 		return ret;
967 
968 	mm_ops->free_unlinked_table(childp, ctx->level);
969 	return 0;
970 }
971 
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)972 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
973 				struct stage2_map_data *data)
974 {
975 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
976 	kvm_pte_t *childp, new;
977 	int ret;
978 
979 	ret = stage2_map_walker_try_leaf(ctx, data);
980 	if (ret != -E2BIG)
981 		return ret;
982 
983 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
984 		return -EINVAL;
985 
986 	if (!data->memcache)
987 		return -ENOMEM;
988 
989 	childp = mm_ops->zalloc_page(data->memcache);
990 	if (!childp)
991 		return -ENOMEM;
992 
993 	if (!stage2_try_break_pte(ctx, data->mmu)) {
994 		mm_ops->put_page(childp);
995 		return -EAGAIN;
996 	}
997 
998 	/*
999 	 * If we've run into an existing block mapping then replace it with
1000 	 * a table. Accesses beyond 'end' that fall within the new table
1001 	 * will be mapped lazily.
1002 	 */
1003 	new = kvm_init_table_pte(childp, mm_ops);
1004 	stage2_make_pte(ctx, new);
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * The TABLE_PRE callback runs for table entries on the way down, looking
1011  * for table entries which we could conceivably replace with a block entry
1012  * for this mapping. If it finds one it replaces the entry and calls
1013  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1014  *
1015  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1016  * instead.
1017  */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1018 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1019 			     enum kvm_pgtable_walk_flags visit)
1020 {
1021 	struct stage2_map_data *data = ctx->arg;
1022 
1023 	switch (visit) {
1024 	case KVM_PGTABLE_WALK_TABLE_PRE:
1025 		return stage2_map_walk_table_pre(ctx, data);
1026 	case KVM_PGTABLE_WALK_LEAF:
1027 		return stage2_map_walk_leaf(ctx, data);
1028 	default:
1029 		return -EINVAL;
1030 	}
1031 }
1032 
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)1033 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1034 			   u64 phys, enum kvm_pgtable_prot prot,
1035 			   void *mc, enum kvm_pgtable_walk_flags flags)
1036 {
1037 	int ret;
1038 	struct stage2_map_data map_data = {
1039 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1040 		.mmu		= pgt->mmu,
1041 		.memcache	= mc,
1042 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1043 	};
1044 	struct kvm_pgtable_walker walker = {
1045 		.cb		= stage2_map_walker,
1046 		.flags		= flags |
1047 				  KVM_PGTABLE_WALK_TABLE_PRE |
1048 				  KVM_PGTABLE_WALK_LEAF,
1049 		.arg		= &map_data,
1050 	};
1051 
1052 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1053 		return -EINVAL;
1054 
1055 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1056 	if (ret)
1057 		return ret;
1058 
1059 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1060 	dsb(ishst);
1061 	return ret;
1062 }
1063 
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)1064 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1065 				 void *mc, u8 owner_id)
1066 {
1067 	int ret;
1068 	struct stage2_map_data map_data = {
1069 		.mmu		= pgt->mmu,
1070 		.memcache	= mc,
1071 		.owner_id	= owner_id,
1072 		.force_pte	= true,
1073 		.annotation	= true,
1074 	};
1075 	struct kvm_pgtable_walker walker = {
1076 		.cb		= stage2_map_walker,
1077 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1078 				  KVM_PGTABLE_WALK_LEAF,
1079 		.arg		= &map_data,
1080 	};
1081 
1082 	if (owner_id > KVM_MAX_OWNER_ID)
1083 		return -EINVAL;
1084 
1085 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1086 	return ret;
1087 }
1088 
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1089 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1090 			       enum kvm_pgtable_walk_flags visit)
1091 {
1092 	struct kvm_pgtable *pgt = ctx->arg;
1093 	struct kvm_s2_mmu *mmu = pgt->mmu;
1094 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1095 	kvm_pte_t *childp = NULL;
1096 	bool need_flush = false;
1097 
1098 	if (!kvm_pte_valid(ctx->old)) {
1099 		if (stage2_pte_is_counted(ctx->old)) {
1100 			kvm_clear_pte(ctx->ptep);
1101 			mm_ops->put_page(ctx->ptep);
1102 		}
1103 		return 0;
1104 	}
1105 
1106 	if (kvm_pte_table(ctx->old, ctx->level)) {
1107 		childp = kvm_pte_follow(ctx->old, mm_ops);
1108 
1109 		if (mm_ops->page_count(childp) != 1)
1110 			return 0;
1111 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1112 		need_flush = !stage2_has_fwb(pgt);
1113 	}
1114 
1115 	/*
1116 	 * This is similar to the map() path in that we unmap the entire
1117 	 * block entry and rely on the remaining portions being faulted
1118 	 * back lazily.
1119 	 */
1120 	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1121 
1122 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1123 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1124 					       kvm_granule_size(ctx->level));
1125 
1126 	if (childp)
1127 		mm_ops->put_page(childp);
1128 
1129 	return 0;
1130 }
1131 
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1132 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1133 {
1134 	int ret;
1135 	struct kvm_pgtable_walker walker = {
1136 		.cb	= stage2_unmap_walker,
1137 		.arg	= pgt,
1138 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1139 	};
1140 
1141 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1142 	if (stage2_unmap_defer_tlb_flush(pgt))
1143 		/* Perform the deferred TLB invalidations */
1144 		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1145 
1146 	return ret;
1147 }
1148 
1149 struct stage2_attr_data {
1150 	kvm_pte_t			attr_set;
1151 	kvm_pte_t			attr_clr;
1152 	kvm_pte_t			pte;
1153 	s8				level;
1154 };
1155 
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1156 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1157 			      enum kvm_pgtable_walk_flags visit)
1158 {
1159 	kvm_pte_t pte = ctx->old;
1160 	struct stage2_attr_data *data = ctx->arg;
1161 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1162 
1163 	if (!kvm_pte_valid(ctx->old))
1164 		return -EAGAIN;
1165 
1166 	data->level = ctx->level;
1167 	data->pte = pte;
1168 	pte &= ~data->attr_clr;
1169 	pte |= data->attr_set;
1170 
1171 	/*
1172 	 * We may race with the CPU trying to set the access flag here,
1173 	 * but worst-case the access flag update gets lost and will be
1174 	 * set on the next access instead.
1175 	 */
1176 	if (data->pte != pte) {
1177 		/*
1178 		 * Invalidate instruction cache before updating the guest
1179 		 * stage-2 PTE if we are going to add executable permission.
1180 		 */
1181 		if (mm_ops->icache_inval_pou &&
1182 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1183 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1184 						  kvm_granule_size(ctx->level));
1185 
1186 		if (!stage2_try_set_pte(ctx, pte))
1187 			return -EAGAIN;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,s8 * level,enum kvm_pgtable_walk_flags flags)1193 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1194 				    u64 size, kvm_pte_t attr_set,
1195 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1196 				    s8 *level, enum kvm_pgtable_walk_flags flags)
1197 {
1198 	int ret;
1199 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1200 	struct stage2_attr_data data = {
1201 		.attr_set	= attr_set & attr_mask,
1202 		.attr_clr	= attr_clr & attr_mask,
1203 	};
1204 	struct kvm_pgtable_walker walker = {
1205 		.cb		= stage2_attr_walker,
1206 		.arg		= &data,
1207 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1208 	};
1209 
1210 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1211 	if (ret)
1212 		return ret;
1213 
1214 	if (orig_pte)
1215 		*orig_pte = data.pte;
1216 
1217 	if (level)
1218 		*level = data.level;
1219 	return 0;
1220 }
1221 
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1222 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1223 {
1224 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1225 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1226 					NULL, NULL, 0);
1227 }
1228 
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_walk_flags flags)1229 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
1230 				enum kvm_pgtable_walk_flags flags)
1231 {
1232 	int ret;
1233 
1234 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1235 				       NULL, NULL, flags);
1236 	if (!ret)
1237 		dsb(ishst);
1238 }
1239 
1240 struct stage2_age_data {
1241 	bool	mkold;
1242 	bool	young;
1243 };
1244 
stage2_age_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1245 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1246 			     enum kvm_pgtable_walk_flags visit)
1247 {
1248 	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1249 	struct stage2_age_data *data = ctx->arg;
1250 
1251 	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1252 		return 0;
1253 
1254 	data->young = true;
1255 
1256 	/*
1257 	 * stage2_age_walker() is always called while holding the MMU lock for
1258 	 * write, so this will always succeed. Nonetheless, this deliberately
1259 	 * follows the race detection pattern of the other stage-2 walkers in
1260 	 * case the locking mechanics of the MMU notifiers is ever changed.
1261 	 */
1262 	if (data->mkold && !stage2_try_set_pte(ctx, new))
1263 		return -EAGAIN;
1264 
1265 	/*
1266 	 * "But where's the TLBI?!", you scream.
1267 	 * "Over in the core code", I sigh.
1268 	 *
1269 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1270 	 */
1271 	return 0;
1272 }
1273 
kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable * pgt,u64 addr,u64 size,bool mkold)1274 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1275 					 u64 size, bool mkold)
1276 {
1277 	struct stage2_age_data data = {
1278 		.mkold		= mkold,
1279 	};
1280 	struct kvm_pgtable_walker walker = {
1281 		.cb		= stage2_age_walker,
1282 		.arg		= &data,
1283 		.flags		= KVM_PGTABLE_WALK_LEAF,
1284 	};
1285 
1286 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1287 	return data.young;
1288 }
1289 
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot,enum kvm_pgtable_walk_flags flags)1290 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1291 				   enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags)
1292 {
1293 	int ret;
1294 	s8 level;
1295 	kvm_pte_t set = 0, clr = 0;
1296 
1297 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1298 		return -EINVAL;
1299 
1300 	if (prot & KVM_PGTABLE_PROT_R)
1301 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1302 
1303 	if (prot & KVM_PGTABLE_PROT_W)
1304 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1305 
1306 	if (prot & KVM_PGTABLE_PROT_X)
1307 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1308 
1309 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags);
1310 	if (!ret || ret == -EAGAIN)
1311 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1312 	return ret;
1313 }
1314 
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1315 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1316 			       enum kvm_pgtable_walk_flags visit)
1317 {
1318 	struct kvm_pgtable *pgt = ctx->arg;
1319 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1320 
1321 	if (!stage2_pte_cacheable(pgt, ctx->old))
1322 		return 0;
1323 
1324 	if (mm_ops->dcache_clean_inval_poc)
1325 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1326 					       kvm_granule_size(ctx->level));
1327 	return 0;
1328 }
1329 
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1330 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1331 {
1332 	struct kvm_pgtable_walker walker = {
1333 		.cb	= stage2_flush_walker,
1334 		.flags	= KVM_PGTABLE_WALK_LEAF,
1335 		.arg	= pgt,
1336 	};
1337 
1338 	if (stage2_has_fwb(pgt))
1339 		return 0;
1340 
1341 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1342 }
1343 
kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable * pgt,u64 phys,s8 level,enum kvm_pgtable_prot prot,void * mc,bool force_pte)1344 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1345 					      u64 phys, s8 level,
1346 					      enum kvm_pgtable_prot prot,
1347 					      void *mc, bool force_pte)
1348 {
1349 	struct stage2_map_data map_data = {
1350 		.phys		= phys,
1351 		.mmu		= pgt->mmu,
1352 		.memcache	= mc,
1353 		.force_pte	= force_pte,
1354 	};
1355 	struct kvm_pgtable_walker walker = {
1356 		.cb		= stage2_map_walker,
1357 		.flags		= KVM_PGTABLE_WALK_LEAF |
1358 				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1359 				  KVM_PGTABLE_WALK_SKIP_CMO,
1360 		.arg		= &map_data,
1361 	};
1362 	/*
1363 	 * The input address (.addr) is irrelevant for walking an
1364 	 * unlinked table. Construct an ambiguous IA range to map
1365 	 * kvm_granule_size(level) worth of memory.
1366 	 */
1367 	struct kvm_pgtable_walk_data data = {
1368 		.walker	= &walker,
1369 		.addr	= 0,
1370 		.end	= kvm_granule_size(level),
1371 	};
1372 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1373 	kvm_pte_t *pgtable;
1374 	int ret;
1375 
1376 	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1377 		return ERR_PTR(-EINVAL);
1378 
1379 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1380 	if (ret)
1381 		return ERR_PTR(ret);
1382 
1383 	pgtable = mm_ops->zalloc_page(mc);
1384 	if (!pgtable)
1385 		return ERR_PTR(-ENOMEM);
1386 
1387 	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1388 				 level + 1);
1389 	if (ret) {
1390 		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1391 		return ERR_PTR(ret);
1392 	}
1393 
1394 	return pgtable;
1395 }
1396 
1397 /*
1398  * Get the number of page-tables needed to replace a block with a
1399  * fully populated tree up to the PTE entries. Note that @level is
1400  * interpreted as in "level @level entry".
1401  */
stage2_block_get_nr_page_tables(s8 level)1402 static int stage2_block_get_nr_page_tables(s8 level)
1403 {
1404 	switch (level) {
1405 	case 1:
1406 		return PTRS_PER_PTE + 1;
1407 	case 2:
1408 		return 1;
1409 	case 3:
1410 		return 0;
1411 	default:
1412 		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1413 			     level > KVM_PGTABLE_LAST_LEVEL);
1414 		return -EINVAL;
1415 	};
1416 }
1417 
stage2_split_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1418 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1419 			       enum kvm_pgtable_walk_flags visit)
1420 {
1421 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1422 	struct kvm_mmu_memory_cache *mc = ctx->arg;
1423 	struct kvm_s2_mmu *mmu;
1424 	kvm_pte_t pte = ctx->old, new, *childp;
1425 	enum kvm_pgtable_prot prot;
1426 	s8 level = ctx->level;
1427 	bool force_pte;
1428 	int nr_pages;
1429 	u64 phys;
1430 
1431 	/* No huge-pages exist at the last level */
1432 	if (level == KVM_PGTABLE_LAST_LEVEL)
1433 		return 0;
1434 
1435 	/* We only split valid block mappings */
1436 	if (!kvm_pte_valid(pte))
1437 		return 0;
1438 
1439 	nr_pages = stage2_block_get_nr_page_tables(level);
1440 	if (nr_pages < 0)
1441 		return nr_pages;
1442 
1443 	if (mc->nobjs >= nr_pages) {
1444 		/* Build a tree mapped down to the PTE granularity. */
1445 		force_pte = true;
1446 	} else {
1447 		/*
1448 		 * Don't force PTEs, so create_unlinked() below does
1449 		 * not populate the tree up to the PTE level. The
1450 		 * consequence is that the call will require a single
1451 		 * page of level 2 entries at level 1, or a single
1452 		 * page of PTEs at level 2. If we are at level 1, the
1453 		 * PTEs will be created recursively.
1454 		 */
1455 		force_pte = false;
1456 		nr_pages = 1;
1457 	}
1458 
1459 	if (mc->nobjs < nr_pages)
1460 		return -ENOMEM;
1461 
1462 	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1463 	phys = kvm_pte_to_phys(pte);
1464 	prot = kvm_pgtable_stage2_pte_prot(pte);
1465 
1466 	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1467 						    level, prot, mc, force_pte);
1468 	if (IS_ERR(childp))
1469 		return PTR_ERR(childp);
1470 
1471 	if (!stage2_try_break_pte(ctx, mmu)) {
1472 		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1473 		return -EAGAIN;
1474 	}
1475 
1476 	/*
1477 	 * Note, the contents of the page table are guaranteed to be made
1478 	 * visible before the new PTE is assigned because stage2_make_pte()
1479 	 * writes the PTE using smp_store_release().
1480 	 */
1481 	new = kvm_init_table_pte(childp, mm_ops);
1482 	stage2_make_pte(ctx, new);
1483 	return 0;
1484 }
1485 
kvm_pgtable_stage2_split(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_mmu_memory_cache * mc)1486 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1487 			     struct kvm_mmu_memory_cache *mc)
1488 {
1489 	struct kvm_pgtable_walker walker = {
1490 		.cb	= stage2_split_walker,
1491 		.flags	= KVM_PGTABLE_WALK_LEAF,
1492 		.arg	= mc,
1493 	};
1494 	int ret;
1495 
1496 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1497 	dsb(ishst);
1498 	return ret;
1499 }
1500 
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1501 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1502 			      struct kvm_pgtable_mm_ops *mm_ops,
1503 			      enum kvm_pgtable_stage2_flags flags,
1504 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1505 {
1506 	size_t pgd_sz;
1507 	u64 vtcr = mmu->vtcr;
1508 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1509 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1510 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1511 
1512 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1513 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1514 	if (!pgt->pgd)
1515 		return -ENOMEM;
1516 
1517 	pgt->ia_bits		= ia_bits;
1518 	pgt->start_level	= start_level;
1519 	pgt->mm_ops		= mm_ops;
1520 	pgt->mmu		= mmu;
1521 	pgt->flags		= flags;
1522 	pgt->force_pte_cb	= force_pte_cb;
1523 
1524 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1525 	dsb(ishst);
1526 	return 0;
1527 }
1528 
kvm_pgtable_stage2_pgd_size(u64 vtcr)1529 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1530 {
1531 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1532 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1533 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1534 
1535 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1536 }
1537 
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1538 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1539 			      enum kvm_pgtable_walk_flags visit)
1540 {
1541 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1542 
1543 	if (!stage2_pte_is_counted(ctx->old))
1544 		return 0;
1545 
1546 	mm_ops->put_page(ctx->ptep);
1547 
1548 	if (kvm_pte_table(ctx->old, ctx->level))
1549 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1550 
1551 	return 0;
1552 }
1553 
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1554 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1555 {
1556 	size_t pgd_sz;
1557 	struct kvm_pgtable_walker walker = {
1558 		.cb	= stage2_free_walker,
1559 		.flags	= KVM_PGTABLE_WALK_LEAF |
1560 			  KVM_PGTABLE_WALK_TABLE_POST,
1561 	};
1562 
1563 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1564 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1565 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1566 	pgt->pgd = NULL;
1567 }
1568 
kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,s8 level)1569 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1570 {
1571 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1572 	struct kvm_pgtable_walker walker = {
1573 		.cb	= stage2_free_walker,
1574 		.flags	= KVM_PGTABLE_WALK_LEAF |
1575 			  KVM_PGTABLE_WALK_TABLE_POST,
1576 	};
1577 	struct kvm_pgtable_walk_data data = {
1578 		.walker	= &walker,
1579 
1580 		/*
1581 		 * At this point the IPA really doesn't matter, as the page
1582 		 * table being traversed has already been removed from the stage
1583 		 * 2. Set an appropriate range to cover the entire page table.
1584 		 */
1585 		.addr	= 0,
1586 		.end	= kvm_granule_size(level),
1587 	};
1588 
1589 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1590 
1591 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1592 	mm_ops->put_page(pgtable);
1593 }
1594