xref: /linux/arch/arm64/kvm/hyp/pgtable.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 struct kvm_pgtable_walk_data {
15 	struct kvm_pgtable_walker	*walker;
16 
17 	const u64			start;
18 	u64				addr;
19 	const u64			end;
20 };
21 
kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx * ctx)22 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
23 {
24 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
25 }
26 
kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx * ctx)27 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
28 {
29 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
30 }
31 
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)32 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
33 {
34 	u64 granule = kvm_granule_size(ctx->level);
35 
36 	if (!kvm_level_supports_block_mapping(ctx->level))
37 		return false;
38 
39 	if (granule > (ctx->end - ctx->addr))
40 		return false;
41 
42 	if (!IS_ALIGNED(phys, granule))
43 		return false;
44 
45 	return IS_ALIGNED(ctx->addr, granule);
46 }
47 
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,s8 level)48 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
49 {
50 	u64 shift = kvm_granule_shift(level);
51 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
52 
53 	return (data->addr >> shift) & mask;
54 }
55 
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)56 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
57 {
58 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
59 	u64 mask = BIT(pgt->ia_bits) - 1;
60 
61 	return (addr & mask) >> shift;
62 }
63 
kvm_pgd_pages(u32 ia_bits,s8 start_level)64 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
65 {
66 	struct kvm_pgtable pgt = {
67 		.ia_bits	= ia_bits,
68 		.start_level	= start_level,
69 	};
70 
71 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
72 }
73 
kvm_pte_table(kvm_pte_t pte,s8 level)74 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
75 {
76 	if (level == KVM_PGTABLE_LAST_LEVEL)
77 		return false;
78 
79 	if (!kvm_pte_valid(pte))
80 		return false;
81 
82 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
83 }
84 
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)85 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
86 {
87 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
88 }
89 
kvm_clear_pte(kvm_pte_t * ptep)90 static void kvm_clear_pte(kvm_pte_t *ptep)
91 {
92 	WRITE_ONCE(*ptep, 0);
93 }
94 
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)95 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
96 {
97 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
98 
99 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
100 	pte |= KVM_PTE_VALID;
101 	return pte;
102 }
103 
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,s8 level)104 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
105 {
106 	kvm_pte_t pte = kvm_phys_to_pte(pa);
107 	u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
108 						       KVM_PTE_TYPE_BLOCK;
109 
110 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
111 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
112 	pte |= KVM_PTE_VALID;
113 
114 	return pte;
115 }
116 
kvm_init_invalid_leaf_owner(u8 owner_id)117 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
118 {
119 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
120 }
121 
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)122 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
123 				  const struct kvm_pgtable_visit_ctx *ctx,
124 				  enum kvm_pgtable_walk_flags visit)
125 {
126 	struct kvm_pgtable_walker *walker = data->walker;
127 
128 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
129 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
130 	return walker->cb(ctx, visit);
131 }
132 
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)133 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
134 				      int r)
135 {
136 	/*
137 	 * Visitor callbacks return EAGAIN when the conditions that led to a
138 	 * fault are no longer reflected in the page tables due to a race to
139 	 * update a PTE. In the context of a fault handler this is interpreted
140 	 * as a signal to retry guest execution.
141 	 *
142 	 * Ignore the return code altogether for walkers outside a fault handler
143 	 * (e.g. write protecting a range of memory) and chug along with the
144 	 * page table walk.
145 	 */
146 	if (r == -EAGAIN)
147 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
148 
149 	return !r;
150 }
151 
152 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
153 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
154 
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,s8 level)155 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
156 				      struct kvm_pgtable_mm_ops *mm_ops,
157 				      kvm_pteref_t pteref, s8 level)
158 {
159 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
160 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
161 	struct kvm_pgtable_visit_ctx ctx = {
162 		.ptep	= ptep,
163 		.old	= READ_ONCE(*ptep),
164 		.arg	= data->walker->arg,
165 		.mm_ops	= mm_ops,
166 		.start	= data->start,
167 		.addr	= data->addr,
168 		.end	= data->end,
169 		.level	= level,
170 		.flags	= flags,
171 	};
172 	int ret = 0;
173 	bool reload = false;
174 	kvm_pteref_t childp;
175 	bool table = kvm_pte_table(ctx.old, level);
176 
177 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
178 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
179 		reload = true;
180 	}
181 
182 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
183 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
184 		reload = true;
185 	}
186 
187 	/*
188 	 * Reload the page table after invoking the walker callback for leaf
189 	 * entries or after pre-order traversal, to allow the walker to descend
190 	 * into a newly installed or replaced table.
191 	 */
192 	if (reload) {
193 		ctx.old = READ_ONCE(*ptep);
194 		table = kvm_pte_table(ctx.old, level);
195 	}
196 
197 	if (!kvm_pgtable_walk_continue(data->walker, ret))
198 		goto out;
199 
200 	if (!table) {
201 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
202 		data->addr += kvm_granule_size(level);
203 		goto out;
204 	}
205 
206 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
207 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
208 	if (!kvm_pgtable_walk_continue(data->walker, ret))
209 		goto out;
210 
211 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
212 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
213 
214 out:
215 	if (kvm_pgtable_walk_continue(data->walker, ret))
216 		return 0;
217 
218 	return ret;
219 }
220 
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,s8 level)221 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
222 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
223 {
224 	u32 idx;
225 	int ret = 0;
226 
227 	if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
228 			 level > KVM_PGTABLE_LAST_LEVEL))
229 		return -EINVAL;
230 
231 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
232 		kvm_pteref_t pteref = &pgtable[idx];
233 
234 		if (data->addr >= data->end)
235 			break;
236 
237 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
238 		if (ret)
239 			break;
240 	}
241 
242 	return ret;
243 }
244 
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)245 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
246 {
247 	u32 idx;
248 	int ret = 0;
249 	u64 limit = BIT(pgt->ia_bits);
250 
251 	if (data->addr > limit || data->end > limit)
252 		return -ERANGE;
253 
254 	if (!pgt->pgd)
255 		return -EINVAL;
256 
257 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
258 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
259 
260 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
261 		if (ret)
262 			break;
263 	}
264 
265 	return ret;
266 }
267 
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)268 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
269 		     struct kvm_pgtable_walker *walker)
270 {
271 	struct kvm_pgtable_walk_data walk_data = {
272 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
273 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
274 		.end	= PAGE_ALIGN(walk_data.addr + size),
275 		.walker	= walker,
276 	};
277 	int r;
278 
279 	r = kvm_pgtable_walk_begin(walker);
280 	if (r)
281 		return r;
282 
283 	r = _kvm_pgtable_walk(pgt, &walk_data);
284 	kvm_pgtable_walk_end(walker);
285 
286 	return r;
287 }
288 
289 struct leaf_walk_data {
290 	kvm_pte_t	pte;
291 	s8		level;
292 };
293 
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)294 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
295 		       enum kvm_pgtable_walk_flags visit)
296 {
297 	struct leaf_walk_data *data = ctx->arg;
298 
299 	data->pte   = ctx->old;
300 	data->level = ctx->level;
301 
302 	return 0;
303 }
304 
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,s8 * level)305 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
306 			 kvm_pte_t *ptep, s8 *level)
307 {
308 	struct leaf_walk_data data;
309 	struct kvm_pgtable_walker walker = {
310 		.cb	= leaf_walker,
311 		.flags	= KVM_PGTABLE_WALK_LEAF,
312 		.arg	= &data,
313 	};
314 	int ret;
315 
316 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
317 			       PAGE_SIZE, &walker);
318 	if (!ret) {
319 		if (ptep)
320 			*ptep  = data.pte;
321 		if (level)
322 			*level = data.level;
323 	}
324 
325 	return ret;
326 }
327 
328 struct hyp_map_data {
329 	const u64			phys;
330 	kvm_pte_t			attr;
331 };
332 
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)333 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
334 {
335 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
336 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
337 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
338 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
339 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
340 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
341 
342 	if (!(prot & KVM_PGTABLE_PROT_R))
343 		return -EINVAL;
344 
345 	if (prot & KVM_PGTABLE_PROT_X) {
346 		if (prot & KVM_PGTABLE_PROT_W)
347 			return -EINVAL;
348 
349 		if (device)
350 			return -EINVAL;
351 
352 		if (system_supports_bti_kernel())
353 			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
354 	} else {
355 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
356 	}
357 
358 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
359 	if (!kvm_lpa2_is_enabled())
360 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
361 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
362 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
363 	*ptep = attr;
364 
365 	return 0;
366 }
367 
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)368 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
369 {
370 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
371 	u32 ap;
372 
373 	if (!kvm_pte_valid(pte))
374 		return prot;
375 
376 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
377 		prot |= KVM_PGTABLE_PROT_X;
378 
379 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
380 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
381 		prot |= KVM_PGTABLE_PROT_R;
382 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
383 		prot |= KVM_PGTABLE_PROT_RW;
384 
385 	return prot;
386 }
387 
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)388 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
389 				    struct hyp_map_data *data)
390 {
391 	u64 phys = data->phys + (ctx->addr - ctx->start);
392 	kvm_pte_t new;
393 
394 	if (!kvm_block_mapping_supported(ctx, phys))
395 		return false;
396 
397 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
398 	if (ctx->old == new)
399 		return true;
400 	if (!kvm_pte_valid(ctx->old))
401 		ctx->mm_ops->get_page(ctx->ptep);
402 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
403 		return false;
404 
405 	smp_store_release(ctx->ptep, new);
406 	return true;
407 }
408 
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)409 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
410 			  enum kvm_pgtable_walk_flags visit)
411 {
412 	kvm_pte_t *childp, new;
413 	struct hyp_map_data *data = ctx->arg;
414 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
415 
416 	if (hyp_map_walker_try_leaf(ctx, data))
417 		return 0;
418 
419 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
420 		return -EINVAL;
421 
422 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
423 	if (!childp)
424 		return -ENOMEM;
425 
426 	new = kvm_init_table_pte(childp, mm_ops);
427 	mm_ops->get_page(ctx->ptep);
428 	smp_store_release(ctx->ptep, new);
429 
430 	return 0;
431 }
432 
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)433 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
434 			enum kvm_pgtable_prot prot)
435 {
436 	int ret;
437 	struct hyp_map_data map_data = {
438 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
439 	};
440 	struct kvm_pgtable_walker walker = {
441 		.cb	= hyp_map_walker,
442 		.flags	= KVM_PGTABLE_WALK_LEAF,
443 		.arg	= &map_data,
444 	};
445 
446 	ret = hyp_set_prot_attr(prot, &map_data.attr);
447 	if (ret)
448 		return ret;
449 
450 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
451 	dsb(ishst);
452 	isb();
453 	return ret;
454 }
455 
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)456 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
457 			    enum kvm_pgtable_walk_flags visit)
458 {
459 	kvm_pte_t *childp = NULL;
460 	u64 granule = kvm_granule_size(ctx->level);
461 	u64 *unmapped = ctx->arg;
462 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
463 
464 	if (!kvm_pte_valid(ctx->old))
465 		return -EINVAL;
466 
467 	if (kvm_pte_table(ctx->old, ctx->level)) {
468 		childp = kvm_pte_follow(ctx->old, mm_ops);
469 
470 		if (mm_ops->page_count(childp) != 1)
471 			return 0;
472 
473 		kvm_clear_pte(ctx->ptep);
474 		dsb(ishst);
475 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
476 	} else {
477 		if (ctx->end - ctx->addr < granule)
478 			return -EINVAL;
479 
480 		kvm_clear_pte(ctx->ptep);
481 		dsb(ishst);
482 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
483 		*unmapped += granule;
484 	}
485 
486 	dsb(ish);
487 	isb();
488 	mm_ops->put_page(ctx->ptep);
489 
490 	if (childp)
491 		mm_ops->put_page(childp);
492 
493 	return 0;
494 }
495 
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)496 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
497 {
498 	u64 unmapped = 0;
499 	struct kvm_pgtable_walker walker = {
500 		.cb	= hyp_unmap_walker,
501 		.arg	= &unmapped,
502 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
503 	};
504 
505 	if (!pgt->mm_ops->page_count)
506 		return 0;
507 
508 	kvm_pgtable_walk(pgt, addr, size, &walker);
509 	return unmapped;
510 }
511 
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)512 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
513 			 struct kvm_pgtable_mm_ops *mm_ops)
514 {
515 	s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
516 			 ARM64_HW_PGTABLE_LEVELS(va_bits);
517 
518 	if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
519 	    start_level > KVM_PGTABLE_LAST_LEVEL)
520 		return -EINVAL;
521 
522 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
523 	if (!pgt->pgd)
524 		return -ENOMEM;
525 
526 	pgt->ia_bits		= va_bits;
527 	pgt->start_level	= start_level;
528 	pgt->mm_ops		= mm_ops;
529 	pgt->mmu		= NULL;
530 	pgt->force_pte_cb	= NULL;
531 
532 	return 0;
533 }
534 
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)535 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
536 			   enum kvm_pgtable_walk_flags visit)
537 {
538 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
539 
540 	if (!kvm_pte_valid(ctx->old))
541 		return 0;
542 
543 	mm_ops->put_page(ctx->ptep);
544 
545 	if (kvm_pte_table(ctx->old, ctx->level))
546 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
547 
548 	return 0;
549 }
550 
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)551 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
552 {
553 	struct kvm_pgtable_walker walker = {
554 		.cb	= hyp_free_walker,
555 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
556 	};
557 
558 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
559 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
560 	pgt->pgd = NULL;
561 }
562 
563 struct stage2_map_data {
564 	const u64			phys;
565 	kvm_pte_t			attr;
566 	u8				owner_id;
567 
568 	kvm_pte_t			*anchor;
569 	kvm_pte_t			*childp;
570 
571 	struct kvm_s2_mmu		*mmu;
572 	void				*memcache;
573 
574 	/* Force mappings to page granularity */
575 	bool				force_pte;
576 
577 	/* Walk should update owner_id only */
578 	bool				annotation;
579 };
580 
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)581 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
582 {
583 	u64 vtcr = VTCR_EL2_FLAGS;
584 	s8 lvls;
585 
586 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
587 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
588 	/*
589 	 * Use a minimum 2 level page table to prevent splitting
590 	 * host PMD huge pages at stage2.
591 	 */
592 	lvls = stage2_pgtable_levels(phys_shift);
593 	if (lvls < 2)
594 		lvls = 2;
595 
596 	/*
597 	 * When LPA2 is enabled, the HW supports an extra level of translation
598 	 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
599 	 * to as an addition to SL0 to enable encoding this extra start level.
600 	 * However, since we always use concatenated pages for the first level
601 	 * lookup, we will never need this extra level and therefore do not need
602 	 * to touch SL2.
603 	 */
604 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
605 
606 #ifdef CONFIG_ARM64_HW_AFDBM
607 	/*
608 	 * Enable the Hardware Access Flag management, unconditionally
609 	 * on all CPUs. In systems that have asymmetric support for the feature
610 	 * this allows KVM to leverage hardware support on the subset of cores
611 	 * that implement the feature.
612 	 *
613 	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
614 	 * hardware) on implementations that do not advertise support for the
615 	 * feature. As such, setting HA unconditionally is safe, unless you
616 	 * happen to be running on a design that has unadvertised support for
617 	 * HAFDBS. Here be dragons.
618 	 */
619 	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
620 		vtcr |= VTCR_EL2_HA;
621 #endif /* CONFIG_ARM64_HW_AFDBM */
622 
623 	if (kvm_lpa2_is_enabled())
624 		vtcr |= VTCR_EL2_DS;
625 
626 	/* Set the vmid bits */
627 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
628 		VTCR_EL2_VS_16BIT :
629 		VTCR_EL2_VS_8BIT;
630 
631 	return vtcr;
632 }
633 
stage2_has_fwb(struct kvm_pgtable * pgt)634 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
635 {
636 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
637 		return false;
638 
639 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
640 }
641 
kvm_tlb_flush_vmid_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,size_t size)642 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
643 				phys_addr_t addr, size_t size)
644 {
645 	unsigned long pages, inval_pages;
646 
647 	if (!system_supports_tlb_range()) {
648 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
649 		return;
650 	}
651 
652 	pages = size >> PAGE_SHIFT;
653 	while (pages > 0) {
654 		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
655 		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
656 
657 		addr += inval_pages << PAGE_SHIFT;
658 		pages -= inval_pages;
659 	}
660 }
661 
662 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
663 
stage2_set_xn_attr(enum kvm_pgtable_prot prot,kvm_pte_t * attr)664 static int stage2_set_xn_attr(enum kvm_pgtable_prot prot, kvm_pte_t *attr)
665 {
666 	bool px, ux;
667 	u8 xn;
668 
669 	px = prot & KVM_PGTABLE_PROT_PX;
670 	ux = prot & KVM_PGTABLE_PROT_UX;
671 
672 	if (!cpus_have_final_cap(ARM64_HAS_XNX) && px != ux)
673 		return -EINVAL;
674 
675 	if (px && ux)
676 		xn = 0b00;
677 	else if (!px && ux)
678 		xn = 0b01;
679 	else if (!px && !ux)
680 		xn = 0b10;
681 	else
682 		xn = 0b11;
683 
684 	*attr &= ~KVM_PTE_LEAF_ATTR_HI_S2_XN;
685 	*attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_HI_S2_XN, xn);
686 	return 0;
687 }
688 
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)689 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
690 				kvm_pte_t *ptep)
691 {
692 	kvm_pte_t attr;
693 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
694 	int r;
695 
696 	switch (prot & (KVM_PGTABLE_PROT_DEVICE |
697 			KVM_PGTABLE_PROT_NORMAL_NC)) {
698 	case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
699 		return -EINVAL;
700 	case KVM_PGTABLE_PROT_DEVICE:
701 		if (prot & KVM_PGTABLE_PROT_X)
702 			return -EINVAL;
703 		attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
704 		break;
705 	case KVM_PGTABLE_PROT_NORMAL_NC:
706 		if (prot & KVM_PGTABLE_PROT_X)
707 			return -EINVAL;
708 		attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
709 		break;
710 	default:
711 		attr = KVM_S2_MEMATTR(pgt, NORMAL);
712 	}
713 
714 	r = stage2_set_xn_attr(prot, &attr);
715 	if (r)
716 		return r;
717 
718 	if (prot & KVM_PGTABLE_PROT_R)
719 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
720 
721 	if (prot & KVM_PGTABLE_PROT_W)
722 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
723 
724 	if (!kvm_lpa2_is_enabled())
725 		attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
726 
727 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
728 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
729 	*ptep = attr;
730 
731 	return 0;
732 }
733 
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)734 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
735 {
736 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
737 
738 	if (!kvm_pte_valid(pte))
739 		return prot;
740 
741 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
742 		prot |= KVM_PGTABLE_PROT_R;
743 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
744 		prot |= KVM_PGTABLE_PROT_W;
745 
746 	switch (FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte)) {
747 	case 0b00:
748 		prot |= KVM_PGTABLE_PROT_PX | KVM_PGTABLE_PROT_UX;
749 		break;
750 	case 0b01:
751 		prot |= KVM_PGTABLE_PROT_UX;
752 		break;
753 	case 0b11:
754 		prot |= KVM_PGTABLE_PROT_PX;
755 		break;
756 	default:
757 		break;
758 	}
759 
760 	return prot;
761 }
762 
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)763 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
764 {
765 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
766 		return true;
767 
768 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
769 }
770 
stage2_pte_is_counted(kvm_pte_t pte)771 static bool stage2_pte_is_counted(kvm_pte_t pte)
772 {
773 	/*
774 	 * The refcount tracks valid entries as well as invalid entries if they
775 	 * encode ownership of a page to another entity than the page-table
776 	 * owner, whose id is 0.
777 	 */
778 	return !!pte;
779 }
780 
stage2_pte_is_locked(kvm_pte_t pte)781 static bool stage2_pte_is_locked(kvm_pte_t pte)
782 {
783 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
784 }
785 
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)786 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
787 {
788 	if (!kvm_pgtable_walk_shared(ctx)) {
789 		WRITE_ONCE(*ctx->ptep, new);
790 		return true;
791 	}
792 
793 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
794 }
795 
796 /**
797  * stage2_try_break_pte() - Invalidates a pte according to the
798  *			    'break-before-make' requirements of the
799  *			    architecture.
800  *
801  * @ctx: context of the visited pte.
802  * @mmu: stage-2 mmu
803  *
804  * Returns: true if the pte was successfully broken.
805  *
806  * If the removed pte was valid, performs the necessary serialization and TLB
807  * invalidation for the old value. For counted ptes, drops the reference count
808  * on the containing table page.
809  */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)810 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
811 				 struct kvm_s2_mmu *mmu)
812 {
813 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
814 
815 	if (stage2_pte_is_locked(ctx->old)) {
816 		/*
817 		 * Should never occur if this walker has exclusive access to the
818 		 * page tables.
819 		 */
820 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
821 		return false;
822 	}
823 
824 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
825 		return false;
826 
827 	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
828 		/*
829 		 * Perform the appropriate TLB invalidation based on the
830 		 * evicted pte value (if any).
831 		 */
832 		if (kvm_pte_table(ctx->old, ctx->level)) {
833 			u64 size = kvm_granule_size(ctx->level);
834 			u64 addr = ALIGN_DOWN(ctx->addr, size);
835 
836 			kvm_tlb_flush_vmid_range(mmu, addr, size);
837 		} else if (kvm_pte_valid(ctx->old)) {
838 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
839 				     ctx->addr, ctx->level);
840 		}
841 	}
842 
843 	if (stage2_pte_is_counted(ctx->old))
844 		mm_ops->put_page(ctx->ptep);
845 
846 	return true;
847 }
848 
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)849 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
850 {
851 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
852 
853 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
854 
855 	if (stage2_pte_is_counted(new))
856 		mm_ops->get_page(ctx->ptep);
857 
858 	smp_store_release(ctx->ptep, new);
859 }
860 
stage2_unmap_defer_tlb_flush(struct kvm_pgtable * pgt)861 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
862 {
863 	/*
864 	 * If FEAT_TLBIRANGE is implemented, defer the individual
865 	 * TLB invalidations until the entire walk is finished, and
866 	 * then use the range-based TLBI instructions to do the
867 	 * invalidations. Condition deferred TLB invalidation on the
868 	 * system supporting FWB as the optimization is entirely
869 	 * pointless when the unmap walker needs to perform CMOs.
870 	 */
871 	return system_supports_tlb_range() && stage2_has_fwb(pgt);
872 }
873 
stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)874 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
875 				struct kvm_s2_mmu *mmu,
876 				struct kvm_pgtable_mm_ops *mm_ops)
877 {
878 	struct kvm_pgtable *pgt = ctx->arg;
879 
880 	/*
881 	 * Clear the existing PTE, and perform break-before-make if it was
882 	 * valid. Depending on the system support, defer the TLB maintenance
883 	 * for the same until the entire unmap walk is completed.
884 	 */
885 	if (kvm_pte_valid(ctx->old)) {
886 		kvm_clear_pte(ctx->ptep);
887 
888 		if (kvm_pte_table(ctx->old, ctx->level)) {
889 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
890 				     TLBI_TTL_UNKNOWN);
891 		} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
892 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
893 				     ctx->level);
894 		}
895 	}
896 
897 	mm_ops->put_page(ctx->ptep);
898 }
899 
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)900 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
901 {
902 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
903 	return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
904 }
905 
stage2_pte_executable(kvm_pte_t pte)906 static bool stage2_pte_executable(kvm_pte_t pte)
907 {
908 	return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
909 }
910 
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx * ctx,const struct stage2_map_data * data)911 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
912 				       const struct stage2_map_data *data)
913 {
914 	u64 phys = data->phys;
915 
916 	/* Work out the correct PA based on how far the walk has gotten */
917 	return phys + (ctx->addr - ctx->start);
918 }
919 
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)920 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
921 					struct stage2_map_data *data)
922 {
923 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
924 
925 	if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
926 		return false;
927 
928 	if (data->annotation)
929 		return true;
930 
931 	return kvm_block_mapping_supported(ctx, phys);
932 }
933 
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)934 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
935 				      struct stage2_map_data *data)
936 {
937 	kvm_pte_t new;
938 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
939 	u64 granule = kvm_granule_size(ctx->level);
940 	struct kvm_pgtable *pgt = data->mmu->pgt;
941 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
942 
943 	if (!stage2_leaf_mapping_allowed(ctx, data))
944 		return -E2BIG;
945 
946 	if (!data->annotation)
947 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
948 	else
949 		new = kvm_init_invalid_leaf_owner(data->owner_id);
950 
951 	/*
952 	 * Skip updating the PTE if we are trying to recreate the exact
953 	 * same mapping or only change the access permissions. Instead,
954 	 * the vCPU will exit one more time from guest if still needed
955 	 * and then go through the path of relaxing permissions.
956 	 */
957 	if (!stage2_pte_needs_update(ctx->old, new))
958 		return -EAGAIN;
959 
960 	/* If we're only changing software bits, then store them and go! */
961 	if (!kvm_pgtable_walk_shared(ctx) &&
962 	    !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
963 		bool old_is_counted = stage2_pte_is_counted(ctx->old);
964 
965 		if (old_is_counted != stage2_pte_is_counted(new)) {
966 			if (old_is_counted)
967 				mm_ops->put_page(ctx->ptep);
968 			else
969 				mm_ops->get_page(ctx->ptep);
970 		}
971 		WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
972 		return 0;
973 	}
974 
975 	if (!stage2_try_break_pte(ctx, data->mmu))
976 		return -EAGAIN;
977 
978 	/* Perform CMOs before installation of the guest stage-2 PTE */
979 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
980 	    stage2_pte_cacheable(pgt, new))
981 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
982 					       granule);
983 
984 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
985 	    stage2_pte_executable(new))
986 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
987 
988 	stage2_make_pte(ctx, new);
989 
990 	return 0;
991 }
992 
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)993 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
994 				     struct stage2_map_data *data)
995 {
996 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
997 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
998 	int ret;
999 
1000 	if (!stage2_leaf_mapping_allowed(ctx, data))
1001 		return 0;
1002 
1003 	ret = stage2_map_walker_try_leaf(ctx, data);
1004 	if (ret)
1005 		return ret;
1006 
1007 	mm_ops->free_unlinked_table(childp, ctx->level);
1008 	return 0;
1009 }
1010 
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)1011 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
1012 				struct stage2_map_data *data)
1013 {
1014 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1015 	kvm_pte_t *childp, new;
1016 	int ret;
1017 
1018 	ret = stage2_map_walker_try_leaf(ctx, data);
1019 	if (ret != -E2BIG)
1020 		return ret;
1021 
1022 	if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1023 		return -EINVAL;
1024 
1025 	if (!data->memcache)
1026 		return -ENOMEM;
1027 
1028 	childp = mm_ops->zalloc_page(data->memcache);
1029 	if (!childp)
1030 		return -ENOMEM;
1031 
1032 	if (!stage2_try_break_pte(ctx, data->mmu)) {
1033 		mm_ops->put_page(childp);
1034 		return -EAGAIN;
1035 	}
1036 
1037 	/*
1038 	 * If we've run into an existing block mapping then replace it with
1039 	 * a table. Accesses beyond 'end' that fall within the new table
1040 	 * will be mapped lazily.
1041 	 */
1042 	new = kvm_init_table_pte(childp, mm_ops);
1043 	stage2_make_pte(ctx, new);
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * The TABLE_PRE callback runs for table entries on the way down, looking
1050  * for table entries which we could conceivably replace with a block entry
1051  * for this mapping. If it finds one it replaces the entry and calls
1052  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1053  *
1054  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1055  * instead.
1056  */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1057 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1058 			     enum kvm_pgtable_walk_flags visit)
1059 {
1060 	struct stage2_map_data *data = ctx->arg;
1061 
1062 	switch (visit) {
1063 	case KVM_PGTABLE_WALK_TABLE_PRE:
1064 		return stage2_map_walk_table_pre(ctx, data);
1065 	case KVM_PGTABLE_WALK_LEAF:
1066 		return stage2_map_walk_leaf(ctx, data);
1067 	default:
1068 		return -EINVAL;
1069 	}
1070 }
1071 
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)1072 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1073 			   u64 phys, enum kvm_pgtable_prot prot,
1074 			   void *mc, enum kvm_pgtable_walk_flags flags)
1075 {
1076 	int ret;
1077 	struct stage2_map_data map_data = {
1078 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1079 		.mmu		= pgt->mmu,
1080 		.memcache	= mc,
1081 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1082 	};
1083 	struct kvm_pgtable_walker walker = {
1084 		.cb		= stage2_map_walker,
1085 		.flags		= flags |
1086 				  KVM_PGTABLE_WALK_TABLE_PRE |
1087 				  KVM_PGTABLE_WALK_LEAF,
1088 		.arg		= &map_data,
1089 	};
1090 
1091 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1092 		return -EINVAL;
1093 
1094 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1095 	if (ret)
1096 		return ret;
1097 
1098 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1099 	dsb(ishst);
1100 	return ret;
1101 }
1102 
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)1103 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1104 				 void *mc, u8 owner_id)
1105 {
1106 	int ret;
1107 	struct stage2_map_data map_data = {
1108 		.mmu		= pgt->mmu,
1109 		.memcache	= mc,
1110 		.owner_id	= owner_id,
1111 		.force_pte	= true,
1112 		.annotation	= true,
1113 	};
1114 	struct kvm_pgtable_walker walker = {
1115 		.cb		= stage2_map_walker,
1116 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1117 				  KVM_PGTABLE_WALK_LEAF,
1118 		.arg		= &map_data,
1119 	};
1120 
1121 	if (owner_id > KVM_MAX_OWNER_ID)
1122 		return -EINVAL;
1123 
1124 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1125 	return ret;
1126 }
1127 
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1128 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1129 			       enum kvm_pgtable_walk_flags visit)
1130 {
1131 	struct kvm_pgtable *pgt = ctx->arg;
1132 	struct kvm_s2_mmu *mmu = pgt->mmu;
1133 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1134 	kvm_pte_t *childp = NULL;
1135 	bool need_flush = false;
1136 
1137 	if (!kvm_pte_valid(ctx->old)) {
1138 		if (stage2_pte_is_counted(ctx->old)) {
1139 			kvm_clear_pte(ctx->ptep);
1140 			mm_ops->put_page(ctx->ptep);
1141 		}
1142 		return 0;
1143 	}
1144 
1145 	if (kvm_pte_table(ctx->old, ctx->level)) {
1146 		childp = kvm_pte_follow(ctx->old, mm_ops);
1147 
1148 		if (mm_ops->page_count(childp) != 1)
1149 			return 0;
1150 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1151 		need_flush = !stage2_has_fwb(pgt);
1152 	}
1153 
1154 	/*
1155 	 * This is similar to the map() path in that we unmap the entire
1156 	 * block entry and rely on the remaining portions being faulted
1157 	 * back lazily.
1158 	 */
1159 	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1160 
1161 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1162 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1163 					       kvm_granule_size(ctx->level));
1164 
1165 	if (childp)
1166 		mm_ops->put_page(childp);
1167 
1168 	return 0;
1169 }
1170 
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1171 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1172 {
1173 	int ret;
1174 	struct kvm_pgtable_walker walker = {
1175 		.cb	= stage2_unmap_walker,
1176 		.arg	= pgt,
1177 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1178 	};
1179 
1180 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1181 	if (stage2_unmap_defer_tlb_flush(pgt))
1182 		/* Perform the deferred TLB invalidations */
1183 		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1184 
1185 	return ret;
1186 }
1187 
1188 struct stage2_attr_data {
1189 	kvm_pte_t			attr_set;
1190 	kvm_pte_t			attr_clr;
1191 	kvm_pte_t			pte;
1192 	s8				level;
1193 };
1194 
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1195 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1196 			      enum kvm_pgtable_walk_flags visit)
1197 {
1198 	kvm_pte_t pte = ctx->old;
1199 	struct stage2_attr_data *data = ctx->arg;
1200 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1201 
1202 	if (!kvm_pte_valid(ctx->old))
1203 		return -EAGAIN;
1204 
1205 	data->level = ctx->level;
1206 	data->pte = pte;
1207 	pte &= ~data->attr_clr;
1208 	pte |= data->attr_set;
1209 
1210 	/*
1211 	 * We may race with the CPU trying to set the access flag here,
1212 	 * but worst-case the access flag update gets lost and will be
1213 	 * set on the next access instead.
1214 	 */
1215 	if (data->pte != pte) {
1216 		/*
1217 		 * Invalidate instruction cache before updating the guest
1218 		 * stage-2 PTE if we are going to add executable permission.
1219 		 */
1220 		if (mm_ops->icache_inval_pou &&
1221 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1222 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1223 						  kvm_granule_size(ctx->level));
1224 
1225 		if (!stage2_try_set_pte(ctx, pte))
1226 			return -EAGAIN;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,s8 * level,enum kvm_pgtable_walk_flags flags)1232 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1233 				    u64 size, kvm_pte_t attr_set,
1234 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1235 				    s8 *level, enum kvm_pgtable_walk_flags flags)
1236 {
1237 	int ret;
1238 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1239 	struct stage2_attr_data data = {
1240 		.attr_set	= attr_set & attr_mask,
1241 		.attr_clr	= attr_clr & attr_mask,
1242 	};
1243 	struct kvm_pgtable_walker walker = {
1244 		.cb		= stage2_attr_walker,
1245 		.arg		= &data,
1246 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1247 	};
1248 
1249 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1250 	if (ret)
1251 		return ret;
1252 
1253 	if (orig_pte)
1254 		*orig_pte = data.pte;
1255 
1256 	if (level)
1257 		*level = data.level;
1258 	return 0;
1259 }
1260 
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1261 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1262 {
1263 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1264 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1265 					NULL, NULL, 0);
1266 }
1267 
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_walk_flags flags)1268 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
1269 				enum kvm_pgtable_walk_flags flags)
1270 {
1271 	int ret;
1272 
1273 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1274 				       NULL, NULL, flags);
1275 	if (!ret)
1276 		dsb(ishst);
1277 }
1278 
1279 struct stage2_age_data {
1280 	bool	mkold;
1281 	bool	young;
1282 };
1283 
stage2_age_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1284 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1285 			     enum kvm_pgtable_walk_flags visit)
1286 {
1287 	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1288 	struct stage2_age_data *data = ctx->arg;
1289 
1290 	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1291 		return 0;
1292 
1293 	data->young = true;
1294 
1295 	/*
1296 	 * stage2_age_walker() is always called while holding the MMU lock for
1297 	 * write, so this will always succeed. Nonetheless, this deliberately
1298 	 * follows the race detection pattern of the other stage-2 walkers in
1299 	 * case the locking mechanics of the MMU notifiers is ever changed.
1300 	 */
1301 	if (data->mkold && !stage2_try_set_pte(ctx, new))
1302 		return -EAGAIN;
1303 
1304 	/*
1305 	 * "But where's the TLBI?!", you scream.
1306 	 * "Over in the core code", I sigh.
1307 	 *
1308 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1309 	 */
1310 	return 0;
1311 }
1312 
kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable * pgt,u64 addr,u64 size,bool mkold)1313 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1314 					 u64 size, bool mkold)
1315 {
1316 	struct stage2_age_data data = {
1317 		.mkold		= mkold,
1318 	};
1319 	struct kvm_pgtable_walker walker = {
1320 		.cb		= stage2_age_walker,
1321 		.arg		= &data,
1322 		.flags		= KVM_PGTABLE_WALK_LEAF,
1323 	};
1324 
1325 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1326 	return data.young;
1327 }
1328 
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot,enum kvm_pgtable_walk_flags flags)1329 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1330 				   enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags)
1331 {
1332 	kvm_pte_t xn = 0, set = 0, clr = 0;
1333 	s8 level;
1334 	int ret;
1335 
1336 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1337 		return -EINVAL;
1338 
1339 	if (prot & KVM_PGTABLE_PROT_R)
1340 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1341 
1342 	if (prot & KVM_PGTABLE_PROT_W)
1343 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1344 
1345 	ret = stage2_set_xn_attr(prot, &xn);
1346 	if (ret)
1347 		return ret;
1348 
1349 	set |= xn & KVM_PTE_LEAF_ATTR_HI_S2_XN;
1350 	clr |= ~xn & KVM_PTE_LEAF_ATTR_HI_S2_XN;
1351 
1352 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags);
1353 	if (!ret || ret == -EAGAIN)
1354 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1355 	return ret;
1356 }
1357 
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1358 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1359 			       enum kvm_pgtable_walk_flags visit)
1360 {
1361 	struct kvm_pgtable *pgt = ctx->arg;
1362 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1363 
1364 	if (!stage2_pte_cacheable(pgt, ctx->old))
1365 		return 0;
1366 
1367 	if (mm_ops->dcache_clean_inval_poc)
1368 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1369 					       kvm_granule_size(ctx->level));
1370 	return 0;
1371 }
1372 
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1373 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1374 {
1375 	struct kvm_pgtable_walker walker = {
1376 		.cb	= stage2_flush_walker,
1377 		.flags	= KVM_PGTABLE_WALK_LEAF,
1378 		.arg	= pgt,
1379 	};
1380 
1381 	if (stage2_has_fwb(pgt))
1382 		return 0;
1383 
1384 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1385 }
1386 
kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable * pgt,u64 phys,s8 level,enum kvm_pgtable_prot prot,void * mc,bool force_pte)1387 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1388 					      u64 phys, s8 level,
1389 					      enum kvm_pgtable_prot prot,
1390 					      void *mc, bool force_pte)
1391 {
1392 	struct stage2_map_data map_data = {
1393 		.phys		= phys,
1394 		.mmu		= pgt->mmu,
1395 		.memcache	= mc,
1396 		.force_pte	= force_pte,
1397 	};
1398 	struct kvm_pgtable_walker walker = {
1399 		.cb		= stage2_map_walker,
1400 		.flags		= KVM_PGTABLE_WALK_LEAF |
1401 				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1402 				  KVM_PGTABLE_WALK_SKIP_CMO,
1403 		.arg		= &map_data,
1404 	};
1405 	/*
1406 	 * The input address (.addr) is irrelevant for walking an
1407 	 * unlinked table. Construct an ambiguous IA range to map
1408 	 * kvm_granule_size(level) worth of memory.
1409 	 */
1410 	struct kvm_pgtable_walk_data data = {
1411 		.walker	= &walker,
1412 		.addr	= 0,
1413 		.end	= kvm_granule_size(level),
1414 	};
1415 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1416 	kvm_pte_t *pgtable;
1417 	int ret;
1418 
1419 	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1420 		return ERR_PTR(-EINVAL);
1421 
1422 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1423 	if (ret)
1424 		return ERR_PTR(ret);
1425 
1426 	pgtable = mm_ops->zalloc_page(mc);
1427 	if (!pgtable)
1428 		return ERR_PTR(-ENOMEM);
1429 
1430 	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1431 				 level + 1);
1432 	if (ret) {
1433 		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1434 		return ERR_PTR(ret);
1435 	}
1436 
1437 	return pgtable;
1438 }
1439 
1440 /*
1441  * Get the number of page-tables needed to replace a block with a
1442  * fully populated tree up to the PTE entries. Note that @level is
1443  * interpreted as in "level @level entry".
1444  */
stage2_block_get_nr_page_tables(s8 level)1445 static int stage2_block_get_nr_page_tables(s8 level)
1446 {
1447 	switch (level) {
1448 	case 1:
1449 		return PTRS_PER_PTE + 1;
1450 	case 2:
1451 		return 1;
1452 	case 3:
1453 		return 0;
1454 	default:
1455 		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1456 			     level > KVM_PGTABLE_LAST_LEVEL);
1457 		return -EINVAL;
1458 	};
1459 }
1460 
stage2_split_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1461 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1462 			       enum kvm_pgtable_walk_flags visit)
1463 {
1464 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1465 	struct kvm_mmu_memory_cache *mc = ctx->arg;
1466 	struct kvm_s2_mmu *mmu;
1467 	kvm_pte_t pte = ctx->old, new, *childp;
1468 	enum kvm_pgtable_prot prot;
1469 	s8 level = ctx->level;
1470 	bool force_pte;
1471 	int nr_pages;
1472 	u64 phys;
1473 
1474 	/* No huge-pages exist at the last level */
1475 	if (level == KVM_PGTABLE_LAST_LEVEL)
1476 		return 0;
1477 
1478 	/* We only split valid block mappings */
1479 	if (!kvm_pte_valid(pte))
1480 		return 0;
1481 
1482 	nr_pages = stage2_block_get_nr_page_tables(level);
1483 	if (nr_pages < 0)
1484 		return nr_pages;
1485 
1486 	if (mc->nobjs >= nr_pages) {
1487 		/* Build a tree mapped down to the PTE granularity. */
1488 		force_pte = true;
1489 	} else {
1490 		/*
1491 		 * Don't force PTEs, so create_unlinked() below does
1492 		 * not populate the tree up to the PTE level. The
1493 		 * consequence is that the call will require a single
1494 		 * page of level 2 entries at level 1, or a single
1495 		 * page of PTEs at level 2. If we are at level 1, the
1496 		 * PTEs will be created recursively.
1497 		 */
1498 		force_pte = false;
1499 		nr_pages = 1;
1500 	}
1501 
1502 	if (mc->nobjs < nr_pages)
1503 		return -ENOMEM;
1504 
1505 	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1506 	phys = kvm_pte_to_phys(pte);
1507 	prot = kvm_pgtable_stage2_pte_prot(pte);
1508 
1509 	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1510 						    level, prot, mc, force_pte);
1511 	if (IS_ERR(childp))
1512 		return PTR_ERR(childp);
1513 
1514 	if (!stage2_try_break_pte(ctx, mmu)) {
1515 		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1516 		return -EAGAIN;
1517 	}
1518 
1519 	/*
1520 	 * Note, the contents of the page table are guaranteed to be made
1521 	 * visible before the new PTE is assigned because stage2_make_pte()
1522 	 * writes the PTE using smp_store_release().
1523 	 */
1524 	new = kvm_init_table_pte(childp, mm_ops);
1525 	stage2_make_pte(ctx, new);
1526 	return 0;
1527 }
1528 
kvm_pgtable_stage2_split(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_mmu_memory_cache * mc)1529 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1530 			     struct kvm_mmu_memory_cache *mc)
1531 {
1532 	struct kvm_pgtable_walker walker = {
1533 		.cb	= stage2_split_walker,
1534 		.flags	= KVM_PGTABLE_WALK_LEAF,
1535 		.arg	= mc,
1536 	};
1537 	int ret;
1538 
1539 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1540 	dsb(ishst);
1541 	return ret;
1542 }
1543 
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1544 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1545 			      struct kvm_pgtable_mm_ops *mm_ops,
1546 			      enum kvm_pgtable_stage2_flags flags,
1547 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1548 {
1549 	size_t pgd_sz;
1550 	u64 vtcr = mmu->vtcr;
1551 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1552 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1553 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1554 
1555 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1556 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1557 	if (!pgt->pgd)
1558 		return -ENOMEM;
1559 
1560 	pgt->ia_bits		= ia_bits;
1561 	pgt->start_level	= start_level;
1562 	pgt->mm_ops		= mm_ops;
1563 	pgt->mmu		= mmu;
1564 	pgt->flags		= flags;
1565 	pgt->force_pte_cb	= force_pte_cb;
1566 
1567 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1568 	dsb(ishst);
1569 	return 0;
1570 }
1571 
kvm_pgtable_stage2_pgd_size(u64 vtcr)1572 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1573 {
1574 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1575 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1576 	s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1577 
1578 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1579 }
1580 
stage2_free_leaf(const struct kvm_pgtable_visit_ctx * ctx)1581 static int stage2_free_leaf(const struct kvm_pgtable_visit_ctx *ctx)
1582 {
1583 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1584 
1585 	mm_ops->put_page(ctx->ptep);
1586 	return 0;
1587 }
1588 
stage2_free_table_post(const struct kvm_pgtable_visit_ctx * ctx)1589 static int stage2_free_table_post(const struct kvm_pgtable_visit_ctx *ctx)
1590 {
1591 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1592 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
1593 
1594 	if (mm_ops->page_count(childp) != 1)
1595 		return 0;
1596 
1597 	/*
1598 	 * Drop references and clear the now stale PTE to avoid rewalking the
1599 	 * freed page table.
1600 	 */
1601 	mm_ops->put_page(ctx->ptep);
1602 	mm_ops->put_page(childp);
1603 	kvm_clear_pte(ctx->ptep);
1604 	return 0;
1605 }
1606 
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1607 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1608 			      enum kvm_pgtable_walk_flags visit)
1609 {
1610 	if (!stage2_pte_is_counted(ctx->old))
1611 		return 0;
1612 
1613 	switch (visit) {
1614 	case KVM_PGTABLE_WALK_LEAF:
1615 		return stage2_free_leaf(ctx);
1616 	case KVM_PGTABLE_WALK_TABLE_POST:
1617 		return stage2_free_table_post(ctx);
1618 	default:
1619 		return -EINVAL;
1620 	}
1621 }
1622 
kvm_pgtable_stage2_destroy_range(struct kvm_pgtable * pgt,u64 addr,u64 size)1623 void kvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
1624 				       u64 addr, u64 size)
1625 {
1626 	struct kvm_pgtable_walker walker = {
1627 		.cb	= stage2_free_walker,
1628 		.flags	= KVM_PGTABLE_WALK_LEAF |
1629 			  KVM_PGTABLE_WALK_TABLE_POST,
1630 	};
1631 
1632 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1633 }
1634 
kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable * pgt)1635 void kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt)
1636 {
1637 	size_t pgd_sz;
1638 
1639 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1640 
1641 	/*
1642 	 * Since the pgtable is unlinked at this point, and not shared with
1643 	 * other walkers, safely deference pgd with kvm_dereference_pteref_raw()
1644 	 */
1645 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref_raw(pgt->pgd), pgd_sz);
1646 	pgt->pgd = NULL;
1647 }
1648 
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1649 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1650 {
1651 	kvm_pgtable_stage2_destroy_range(pgt, 0, BIT(pgt->ia_bits));
1652 	kvm_pgtable_stage2_destroy_pgd(pgt);
1653 }
1654 
kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,s8 level)1655 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1656 {
1657 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1658 	struct kvm_pgtable_walker walker = {
1659 		.cb	= stage2_free_walker,
1660 		.flags	= KVM_PGTABLE_WALK_LEAF |
1661 			  KVM_PGTABLE_WALK_TABLE_POST,
1662 	};
1663 	struct kvm_pgtable_walk_data data = {
1664 		.walker	= &walker,
1665 
1666 		/*
1667 		 * At this point the IPA really doesn't matter, as the page
1668 		 * table being traversed has already been removed from the stage
1669 		 * 2. Set an appropriate range to cover the entire page table.
1670 		 */
1671 		.addr	= 0,
1672 		.end	= kvm_granule_size(level),
1673 	};
1674 
1675 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1676 
1677 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1678 	mm_ops->put_page(pgtable);
1679 }
1680