1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14 struct kvm_pgtable_walk_data {
15 struct kvm_pgtable_walker *walker;
16
17 const u64 start;
18 u64 addr;
19 const u64 end;
20 };
21
kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx * ctx)22 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
23 {
24 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
25 }
26
kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx * ctx)27 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
28 {
29 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
30 }
31
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)32 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
33 {
34 u64 granule = kvm_granule_size(ctx->level);
35
36 if (!kvm_level_supports_block_mapping(ctx->level))
37 return false;
38
39 if (granule > (ctx->end - ctx->addr))
40 return false;
41
42 if (!IS_ALIGNED(phys, granule))
43 return false;
44
45 return IS_ALIGNED(ctx->addr, granule);
46 }
47
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,s8 level)48 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
49 {
50 u64 shift = kvm_granule_shift(level);
51 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
52
53 return (data->addr >> shift) & mask;
54 }
55
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)56 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
57 {
58 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
59 u64 mask = BIT(pgt->ia_bits) - 1;
60
61 return (addr & mask) >> shift;
62 }
63
kvm_pgd_pages(u32 ia_bits,s8 start_level)64 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
65 {
66 struct kvm_pgtable pgt = {
67 .ia_bits = ia_bits,
68 .start_level = start_level,
69 };
70
71 return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
72 }
73
kvm_pte_table(kvm_pte_t pte,s8 level)74 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
75 {
76 if (level == KVM_PGTABLE_LAST_LEVEL)
77 return false;
78
79 if (!kvm_pte_valid(pte))
80 return false;
81
82 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
83 }
84
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)85 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
86 {
87 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
88 }
89
kvm_clear_pte(kvm_pte_t * ptep)90 static void kvm_clear_pte(kvm_pte_t *ptep)
91 {
92 WRITE_ONCE(*ptep, 0);
93 }
94
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)95 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
96 {
97 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
98
99 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
100 pte |= KVM_PTE_VALID;
101 return pte;
102 }
103
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,s8 level)104 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
105 {
106 kvm_pte_t pte = kvm_phys_to_pte(pa);
107 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
108 KVM_PTE_TYPE_BLOCK;
109
110 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
111 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
112 pte |= KVM_PTE_VALID;
113
114 return pte;
115 }
116
kvm_init_invalid_leaf_owner(u8 owner_id)117 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
118 {
119 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
120 }
121
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)122 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
123 const struct kvm_pgtable_visit_ctx *ctx,
124 enum kvm_pgtable_walk_flags visit)
125 {
126 struct kvm_pgtable_walker *walker = data->walker;
127
128 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
129 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
130 return walker->cb(ctx, visit);
131 }
132
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)133 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
134 int r)
135 {
136 /*
137 * Visitor callbacks return EAGAIN when the conditions that led to a
138 * fault are no longer reflected in the page tables due to a race to
139 * update a PTE. In the context of a fault handler this is interpreted
140 * as a signal to retry guest execution.
141 *
142 * Ignore the return code altogether for walkers outside a fault handler
143 * (e.g. write protecting a range of memory) and chug along with the
144 * page table walk.
145 */
146 if (r == -EAGAIN)
147 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
148
149 return !r;
150 }
151
152 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
153 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
154
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,s8 level)155 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
156 struct kvm_pgtable_mm_ops *mm_ops,
157 kvm_pteref_t pteref, s8 level)
158 {
159 enum kvm_pgtable_walk_flags flags = data->walker->flags;
160 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
161 struct kvm_pgtable_visit_ctx ctx = {
162 .ptep = ptep,
163 .old = READ_ONCE(*ptep),
164 .arg = data->walker->arg,
165 .mm_ops = mm_ops,
166 .start = data->start,
167 .addr = data->addr,
168 .end = data->end,
169 .level = level,
170 .flags = flags,
171 };
172 int ret = 0;
173 bool reload = false;
174 kvm_pteref_t childp;
175 bool table = kvm_pte_table(ctx.old, level);
176
177 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
178 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
179 reload = true;
180 }
181
182 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
183 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
184 reload = true;
185 }
186
187 /*
188 * Reload the page table after invoking the walker callback for leaf
189 * entries or after pre-order traversal, to allow the walker to descend
190 * into a newly installed or replaced table.
191 */
192 if (reload) {
193 ctx.old = READ_ONCE(*ptep);
194 table = kvm_pte_table(ctx.old, level);
195 }
196
197 if (!kvm_pgtable_walk_continue(data->walker, ret))
198 goto out;
199
200 if (!table) {
201 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
202 data->addr += kvm_granule_size(level);
203 goto out;
204 }
205
206 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
207 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
208 if (!kvm_pgtable_walk_continue(data->walker, ret))
209 goto out;
210
211 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
212 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
213
214 out:
215 if (kvm_pgtable_walk_continue(data->walker, ret))
216 return 0;
217
218 return ret;
219 }
220
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,s8 level)221 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
222 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
223 {
224 u32 idx;
225 int ret = 0;
226
227 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
228 level > KVM_PGTABLE_LAST_LEVEL))
229 return -EINVAL;
230
231 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
232 kvm_pteref_t pteref = &pgtable[idx];
233
234 if (data->addr >= data->end)
235 break;
236
237 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
238 if (ret)
239 break;
240 }
241
242 return ret;
243 }
244
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)245 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
246 {
247 u32 idx;
248 int ret = 0;
249 u64 limit = BIT(pgt->ia_bits);
250
251 if (data->addr > limit || data->end > limit)
252 return -ERANGE;
253
254 if (!pgt->pgd)
255 return -EINVAL;
256
257 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
258 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
259
260 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
261 if (ret)
262 break;
263 }
264
265 return ret;
266 }
267
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)268 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
269 struct kvm_pgtable_walker *walker)
270 {
271 struct kvm_pgtable_walk_data walk_data = {
272 .start = ALIGN_DOWN(addr, PAGE_SIZE),
273 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
274 .end = PAGE_ALIGN(walk_data.addr + size),
275 .walker = walker,
276 };
277 int r;
278
279 r = kvm_pgtable_walk_begin(walker);
280 if (r)
281 return r;
282
283 r = _kvm_pgtable_walk(pgt, &walk_data);
284 kvm_pgtable_walk_end(walker);
285
286 return r;
287 }
288
289 struct leaf_walk_data {
290 kvm_pte_t pte;
291 s8 level;
292 };
293
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)294 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
295 enum kvm_pgtable_walk_flags visit)
296 {
297 struct leaf_walk_data *data = ctx->arg;
298
299 data->pte = ctx->old;
300 data->level = ctx->level;
301
302 return 0;
303 }
304
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,s8 * level)305 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
306 kvm_pte_t *ptep, s8 *level)
307 {
308 struct leaf_walk_data data;
309 struct kvm_pgtable_walker walker = {
310 .cb = leaf_walker,
311 .flags = KVM_PGTABLE_WALK_LEAF,
312 .arg = &data,
313 };
314 int ret;
315
316 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
317 PAGE_SIZE, &walker);
318 if (!ret) {
319 if (ptep)
320 *ptep = data.pte;
321 if (level)
322 *level = data.level;
323 }
324
325 return ret;
326 }
327
328 struct hyp_map_data {
329 const u64 phys;
330 kvm_pte_t attr;
331 };
332
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)333 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
334 {
335 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
336 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
337 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
338 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
339 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
340 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
341
342 if (!(prot & KVM_PGTABLE_PROT_R))
343 return -EINVAL;
344
345 if (prot & KVM_PGTABLE_PROT_X) {
346 if (prot & KVM_PGTABLE_PROT_W)
347 return -EINVAL;
348
349 if (device)
350 return -EINVAL;
351
352 if (system_supports_bti_kernel())
353 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
354 } else {
355 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
356 }
357
358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
359 if (!kvm_lpa2_is_enabled())
360 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
361 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
362 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
363 *ptep = attr;
364
365 return 0;
366 }
367
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)368 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
369 {
370 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
371 u32 ap;
372
373 if (!kvm_pte_valid(pte))
374 return prot;
375
376 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
377 prot |= KVM_PGTABLE_PROT_X;
378
379 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
380 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
381 prot |= KVM_PGTABLE_PROT_R;
382 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
383 prot |= KVM_PGTABLE_PROT_RW;
384
385 return prot;
386 }
387
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)388 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
389 struct hyp_map_data *data)
390 {
391 u64 phys = data->phys + (ctx->addr - ctx->start);
392 kvm_pte_t new;
393
394 if (!kvm_block_mapping_supported(ctx, phys))
395 return false;
396
397 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
398 if (ctx->old == new)
399 return true;
400 if (!kvm_pte_valid(ctx->old))
401 ctx->mm_ops->get_page(ctx->ptep);
402 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
403 return false;
404
405 smp_store_release(ctx->ptep, new);
406 return true;
407 }
408
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)409 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
410 enum kvm_pgtable_walk_flags visit)
411 {
412 kvm_pte_t *childp, new;
413 struct hyp_map_data *data = ctx->arg;
414 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
415
416 if (hyp_map_walker_try_leaf(ctx, data))
417 return 0;
418
419 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
420 return -EINVAL;
421
422 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
423 if (!childp)
424 return -ENOMEM;
425
426 new = kvm_init_table_pte(childp, mm_ops);
427 mm_ops->get_page(ctx->ptep);
428 smp_store_release(ctx->ptep, new);
429
430 return 0;
431 }
432
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)433 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
434 enum kvm_pgtable_prot prot)
435 {
436 int ret;
437 struct hyp_map_data map_data = {
438 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
439 };
440 struct kvm_pgtable_walker walker = {
441 .cb = hyp_map_walker,
442 .flags = KVM_PGTABLE_WALK_LEAF,
443 .arg = &map_data,
444 };
445
446 ret = hyp_set_prot_attr(prot, &map_data.attr);
447 if (ret)
448 return ret;
449
450 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
451 dsb(ishst);
452 isb();
453 return ret;
454 }
455
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)456 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
457 enum kvm_pgtable_walk_flags visit)
458 {
459 kvm_pte_t *childp = NULL;
460 u64 granule = kvm_granule_size(ctx->level);
461 u64 *unmapped = ctx->arg;
462 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
463
464 if (!kvm_pte_valid(ctx->old))
465 return -EINVAL;
466
467 if (kvm_pte_table(ctx->old, ctx->level)) {
468 childp = kvm_pte_follow(ctx->old, mm_ops);
469
470 if (mm_ops->page_count(childp) != 1)
471 return 0;
472
473 kvm_clear_pte(ctx->ptep);
474 dsb(ishst);
475 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
476 } else {
477 if (ctx->end - ctx->addr < granule)
478 return -EINVAL;
479
480 kvm_clear_pte(ctx->ptep);
481 dsb(ishst);
482 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
483 *unmapped += granule;
484 }
485
486 dsb(ish);
487 isb();
488 mm_ops->put_page(ctx->ptep);
489
490 if (childp)
491 mm_ops->put_page(childp);
492
493 return 0;
494 }
495
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)496 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
497 {
498 u64 unmapped = 0;
499 struct kvm_pgtable_walker walker = {
500 .cb = hyp_unmap_walker,
501 .arg = &unmapped,
502 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
503 };
504
505 if (!pgt->mm_ops->page_count)
506 return 0;
507
508 kvm_pgtable_walk(pgt, addr, size, &walker);
509 return unmapped;
510 }
511
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)512 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
513 struct kvm_pgtable_mm_ops *mm_ops)
514 {
515 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
516 ARM64_HW_PGTABLE_LEVELS(va_bits);
517
518 if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
519 start_level > KVM_PGTABLE_LAST_LEVEL)
520 return -EINVAL;
521
522 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
523 if (!pgt->pgd)
524 return -ENOMEM;
525
526 pgt->ia_bits = va_bits;
527 pgt->start_level = start_level;
528 pgt->mm_ops = mm_ops;
529 pgt->mmu = NULL;
530 pgt->force_pte_cb = NULL;
531
532 return 0;
533 }
534
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)535 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
536 enum kvm_pgtable_walk_flags visit)
537 {
538 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
539
540 if (!kvm_pte_valid(ctx->old))
541 return 0;
542
543 mm_ops->put_page(ctx->ptep);
544
545 if (kvm_pte_table(ctx->old, ctx->level))
546 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
547
548 return 0;
549 }
550
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)551 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
552 {
553 struct kvm_pgtable_walker walker = {
554 .cb = hyp_free_walker,
555 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
556 };
557
558 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
559 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
560 pgt->pgd = NULL;
561 }
562
563 struct stage2_map_data {
564 const u64 phys;
565 kvm_pte_t attr;
566 u8 owner_id;
567
568 kvm_pte_t *anchor;
569 kvm_pte_t *childp;
570
571 struct kvm_s2_mmu *mmu;
572 void *memcache;
573
574 /* Force mappings to page granularity */
575 bool force_pte;
576
577 /* Walk should update owner_id only */
578 bool annotation;
579 };
580
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)581 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
582 {
583 u64 vtcr = VTCR_EL2_FLAGS;
584 s8 lvls;
585
586 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
587 vtcr |= VTCR_EL2_T0SZ(phys_shift);
588 /*
589 * Use a minimum 2 level page table to prevent splitting
590 * host PMD huge pages at stage2.
591 */
592 lvls = stage2_pgtable_levels(phys_shift);
593 if (lvls < 2)
594 lvls = 2;
595
596 /*
597 * When LPA2 is enabled, the HW supports an extra level of translation
598 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
599 * to as an addition to SL0 to enable encoding this extra start level.
600 * However, since we always use concatenated pages for the first level
601 * lookup, we will never need this extra level and therefore do not need
602 * to touch SL2.
603 */
604 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
605
606 #ifdef CONFIG_ARM64_HW_AFDBM
607 /*
608 * Enable the Hardware Access Flag management, unconditionally
609 * on all CPUs. In systems that have asymmetric support for the feature
610 * this allows KVM to leverage hardware support on the subset of cores
611 * that implement the feature.
612 *
613 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
614 * hardware) on implementations that do not advertise support for the
615 * feature. As such, setting HA unconditionally is safe, unless you
616 * happen to be running on a design that has unadvertised support for
617 * HAFDBS. Here be dragons.
618 */
619 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
620 vtcr |= VTCR_EL2_HA;
621 #endif /* CONFIG_ARM64_HW_AFDBM */
622
623 if (kvm_lpa2_is_enabled())
624 vtcr |= VTCR_EL2_DS;
625
626 /* Set the vmid bits */
627 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
628 VTCR_EL2_VS_16BIT :
629 VTCR_EL2_VS_8BIT;
630
631 return vtcr;
632 }
633
stage2_has_fwb(struct kvm_pgtable * pgt)634 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
635 {
636 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
637 return false;
638
639 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
640 }
641
kvm_tlb_flush_vmid_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,size_t size)642 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
643 phys_addr_t addr, size_t size)
644 {
645 unsigned long pages, inval_pages;
646
647 if (!system_supports_tlb_range()) {
648 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
649 return;
650 }
651
652 pages = size >> PAGE_SHIFT;
653 while (pages > 0) {
654 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
655 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
656
657 addr += inval_pages << PAGE_SHIFT;
658 pages -= inval_pages;
659 }
660 }
661
662 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
663
stage2_set_xn_attr(enum kvm_pgtable_prot prot,kvm_pte_t * attr)664 static int stage2_set_xn_attr(enum kvm_pgtable_prot prot, kvm_pte_t *attr)
665 {
666 bool px, ux;
667 u8 xn;
668
669 px = prot & KVM_PGTABLE_PROT_PX;
670 ux = prot & KVM_PGTABLE_PROT_UX;
671
672 if (!cpus_have_final_cap(ARM64_HAS_XNX) && px != ux)
673 return -EINVAL;
674
675 if (px && ux)
676 xn = 0b00;
677 else if (!px && ux)
678 xn = 0b01;
679 else if (!px && !ux)
680 xn = 0b10;
681 else
682 xn = 0b11;
683
684 *attr &= ~KVM_PTE_LEAF_ATTR_HI_S2_XN;
685 *attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_HI_S2_XN, xn);
686 return 0;
687 }
688
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)689 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
690 kvm_pte_t *ptep)
691 {
692 kvm_pte_t attr;
693 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
694 int r;
695
696 switch (prot & (KVM_PGTABLE_PROT_DEVICE |
697 KVM_PGTABLE_PROT_NORMAL_NC)) {
698 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
699 return -EINVAL;
700 case KVM_PGTABLE_PROT_DEVICE:
701 if (prot & KVM_PGTABLE_PROT_X)
702 return -EINVAL;
703 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
704 break;
705 case KVM_PGTABLE_PROT_NORMAL_NC:
706 if (prot & KVM_PGTABLE_PROT_X)
707 return -EINVAL;
708 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
709 break;
710 default:
711 attr = KVM_S2_MEMATTR(pgt, NORMAL);
712 }
713
714 r = stage2_set_xn_attr(prot, &attr);
715 if (r)
716 return r;
717
718 if (prot & KVM_PGTABLE_PROT_R)
719 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
720
721 if (prot & KVM_PGTABLE_PROT_W)
722 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
723
724 if (!kvm_lpa2_is_enabled())
725 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
726
727 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
728 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
729 *ptep = attr;
730
731 return 0;
732 }
733
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)734 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
735 {
736 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
737
738 if (!kvm_pte_valid(pte))
739 return prot;
740
741 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
742 prot |= KVM_PGTABLE_PROT_R;
743 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
744 prot |= KVM_PGTABLE_PROT_W;
745
746 switch (FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte)) {
747 case 0b00:
748 prot |= KVM_PGTABLE_PROT_PX | KVM_PGTABLE_PROT_UX;
749 break;
750 case 0b01:
751 prot |= KVM_PGTABLE_PROT_UX;
752 break;
753 case 0b11:
754 prot |= KVM_PGTABLE_PROT_PX;
755 break;
756 default:
757 break;
758 }
759
760 return prot;
761 }
762
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)763 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
764 {
765 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
766 return true;
767
768 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
769 }
770
stage2_pte_is_counted(kvm_pte_t pte)771 static bool stage2_pte_is_counted(kvm_pte_t pte)
772 {
773 /*
774 * The refcount tracks valid entries as well as invalid entries if they
775 * encode ownership of a page to another entity than the page-table
776 * owner, whose id is 0.
777 */
778 return !!pte;
779 }
780
stage2_pte_is_locked(kvm_pte_t pte)781 static bool stage2_pte_is_locked(kvm_pte_t pte)
782 {
783 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
784 }
785
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)786 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
787 {
788 if (!kvm_pgtable_walk_shared(ctx)) {
789 WRITE_ONCE(*ctx->ptep, new);
790 return true;
791 }
792
793 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
794 }
795
796 /**
797 * stage2_try_break_pte() - Invalidates a pte according to the
798 * 'break-before-make' requirements of the
799 * architecture.
800 *
801 * @ctx: context of the visited pte.
802 * @mmu: stage-2 mmu
803 *
804 * Returns: true if the pte was successfully broken.
805 *
806 * If the removed pte was valid, performs the necessary serialization and TLB
807 * invalidation for the old value. For counted ptes, drops the reference count
808 * on the containing table page.
809 */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)810 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
811 struct kvm_s2_mmu *mmu)
812 {
813 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
814
815 if (stage2_pte_is_locked(ctx->old)) {
816 /*
817 * Should never occur if this walker has exclusive access to the
818 * page tables.
819 */
820 WARN_ON(!kvm_pgtable_walk_shared(ctx));
821 return false;
822 }
823
824 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
825 return false;
826
827 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
828 /*
829 * Perform the appropriate TLB invalidation based on the
830 * evicted pte value (if any).
831 */
832 if (kvm_pte_table(ctx->old, ctx->level)) {
833 u64 size = kvm_granule_size(ctx->level);
834 u64 addr = ALIGN_DOWN(ctx->addr, size);
835
836 kvm_tlb_flush_vmid_range(mmu, addr, size);
837 } else if (kvm_pte_valid(ctx->old)) {
838 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
839 ctx->addr, ctx->level);
840 }
841 }
842
843 if (stage2_pte_is_counted(ctx->old))
844 mm_ops->put_page(ctx->ptep);
845
846 return true;
847 }
848
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)849 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
850 {
851 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
852
853 WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
854
855 if (stage2_pte_is_counted(new))
856 mm_ops->get_page(ctx->ptep);
857
858 smp_store_release(ctx->ptep, new);
859 }
860
stage2_unmap_defer_tlb_flush(struct kvm_pgtable * pgt)861 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
862 {
863 /*
864 * If FEAT_TLBIRANGE is implemented, defer the individual
865 * TLB invalidations until the entire walk is finished, and
866 * then use the range-based TLBI instructions to do the
867 * invalidations. Condition deferred TLB invalidation on the
868 * system supporting FWB as the optimization is entirely
869 * pointless when the unmap walker needs to perform CMOs.
870 */
871 return system_supports_tlb_range() && stage2_has_fwb(pgt);
872 }
873
stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)874 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
875 struct kvm_s2_mmu *mmu,
876 struct kvm_pgtable_mm_ops *mm_ops)
877 {
878 struct kvm_pgtable *pgt = ctx->arg;
879
880 /*
881 * Clear the existing PTE, and perform break-before-make if it was
882 * valid. Depending on the system support, defer the TLB maintenance
883 * for the same until the entire unmap walk is completed.
884 */
885 if (kvm_pte_valid(ctx->old)) {
886 kvm_clear_pte(ctx->ptep);
887
888 if (kvm_pte_table(ctx->old, ctx->level)) {
889 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
890 TLBI_TTL_UNKNOWN);
891 } else if (!stage2_unmap_defer_tlb_flush(pgt)) {
892 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
893 ctx->level);
894 }
895 }
896
897 mm_ops->put_page(ctx->ptep);
898 }
899
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)900 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
901 {
902 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
903 return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
904 }
905
stage2_pte_executable(kvm_pte_t pte)906 static bool stage2_pte_executable(kvm_pte_t pte)
907 {
908 return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
909 }
910
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx * ctx,const struct stage2_map_data * data)911 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
912 const struct stage2_map_data *data)
913 {
914 u64 phys = data->phys;
915
916 /* Work out the correct PA based on how far the walk has gotten */
917 return phys + (ctx->addr - ctx->start);
918 }
919
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)920 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
921 struct stage2_map_data *data)
922 {
923 u64 phys = stage2_map_walker_phys_addr(ctx, data);
924
925 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
926 return false;
927
928 if (data->annotation)
929 return true;
930
931 return kvm_block_mapping_supported(ctx, phys);
932 }
933
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)934 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
935 struct stage2_map_data *data)
936 {
937 kvm_pte_t new;
938 u64 phys = stage2_map_walker_phys_addr(ctx, data);
939 u64 granule = kvm_granule_size(ctx->level);
940 struct kvm_pgtable *pgt = data->mmu->pgt;
941 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
942
943 if (!stage2_leaf_mapping_allowed(ctx, data))
944 return -E2BIG;
945
946 if (!data->annotation)
947 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
948 else
949 new = kvm_init_invalid_leaf_owner(data->owner_id);
950
951 /*
952 * Skip updating the PTE if we are trying to recreate the exact
953 * same mapping or only change the access permissions. Instead,
954 * the vCPU will exit one more time from guest if still needed
955 * and then go through the path of relaxing permissions.
956 */
957 if (!stage2_pte_needs_update(ctx->old, new))
958 return -EAGAIN;
959
960 /* If we're only changing software bits, then store them and go! */
961 if (!kvm_pgtable_walk_shared(ctx) &&
962 !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
963 bool old_is_counted = stage2_pte_is_counted(ctx->old);
964
965 if (old_is_counted != stage2_pte_is_counted(new)) {
966 if (old_is_counted)
967 mm_ops->put_page(ctx->ptep);
968 else
969 mm_ops->get_page(ctx->ptep);
970 }
971 WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
972 return 0;
973 }
974
975 if (!stage2_try_break_pte(ctx, data->mmu))
976 return -EAGAIN;
977
978 /* Perform CMOs before installation of the guest stage-2 PTE */
979 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
980 stage2_pte_cacheable(pgt, new))
981 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
982 granule);
983
984 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
985 stage2_pte_executable(new))
986 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
987
988 stage2_make_pte(ctx, new);
989
990 return 0;
991 }
992
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)993 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
994 struct stage2_map_data *data)
995 {
996 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
997 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
998 int ret;
999
1000 if (!stage2_leaf_mapping_allowed(ctx, data))
1001 return 0;
1002
1003 ret = stage2_map_walker_try_leaf(ctx, data);
1004 if (ret)
1005 return ret;
1006
1007 mm_ops->free_unlinked_table(childp, ctx->level);
1008 return 0;
1009 }
1010
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)1011 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
1012 struct stage2_map_data *data)
1013 {
1014 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1015 kvm_pte_t *childp, new;
1016 int ret;
1017
1018 ret = stage2_map_walker_try_leaf(ctx, data);
1019 if (ret != -E2BIG)
1020 return ret;
1021
1022 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1023 return -EINVAL;
1024
1025 if (!data->memcache)
1026 return -ENOMEM;
1027
1028 childp = mm_ops->zalloc_page(data->memcache);
1029 if (!childp)
1030 return -ENOMEM;
1031
1032 if (!stage2_try_break_pte(ctx, data->mmu)) {
1033 mm_ops->put_page(childp);
1034 return -EAGAIN;
1035 }
1036
1037 /*
1038 * If we've run into an existing block mapping then replace it with
1039 * a table. Accesses beyond 'end' that fall within the new table
1040 * will be mapped lazily.
1041 */
1042 new = kvm_init_table_pte(childp, mm_ops);
1043 stage2_make_pte(ctx, new);
1044
1045 return 0;
1046 }
1047
1048 /*
1049 * The TABLE_PRE callback runs for table entries on the way down, looking
1050 * for table entries which we could conceivably replace with a block entry
1051 * for this mapping. If it finds one it replaces the entry and calls
1052 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1053 *
1054 * Otherwise, the LEAF callback performs the mapping at the existing leaves
1055 * instead.
1056 */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1057 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1058 enum kvm_pgtable_walk_flags visit)
1059 {
1060 struct stage2_map_data *data = ctx->arg;
1061
1062 switch (visit) {
1063 case KVM_PGTABLE_WALK_TABLE_PRE:
1064 return stage2_map_walk_table_pre(ctx, data);
1065 case KVM_PGTABLE_WALK_LEAF:
1066 return stage2_map_walk_leaf(ctx, data);
1067 default:
1068 return -EINVAL;
1069 }
1070 }
1071
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)1072 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1073 u64 phys, enum kvm_pgtable_prot prot,
1074 void *mc, enum kvm_pgtable_walk_flags flags)
1075 {
1076 int ret;
1077 struct stage2_map_data map_data = {
1078 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
1079 .mmu = pgt->mmu,
1080 .memcache = mc,
1081 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1082 };
1083 struct kvm_pgtable_walker walker = {
1084 .cb = stage2_map_walker,
1085 .flags = flags |
1086 KVM_PGTABLE_WALK_TABLE_PRE |
1087 KVM_PGTABLE_WALK_LEAF,
1088 .arg = &map_data,
1089 };
1090
1091 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1092 return -EINVAL;
1093
1094 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1095 if (ret)
1096 return ret;
1097
1098 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1099 dsb(ishst);
1100 return ret;
1101 }
1102
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)1103 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1104 void *mc, u8 owner_id)
1105 {
1106 int ret;
1107 struct stage2_map_data map_data = {
1108 .mmu = pgt->mmu,
1109 .memcache = mc,
1110 .owner_id = owner_id,
1111 .force_pte = true,
1112 .annotation = true,
1113 };
1114 struct kvm_pgtable_walker walker = {
1115 .cb = stage2_map_walker,
1116 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
1117 KVM_PGTABLE_WALK_LEAF,
1118 .arg = &map_data,
1119 };
1120
1121 if (owner_id > KVM_MAX_OWNER_ID)
1122 return -EINVAL;
1123
1124 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1125 return ret;
1126 }
1127
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1128 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1129 enum kvm_pgtable_walk_flags visit)
1130 {
1131 struct kvm_pgtable *pgt = ctx->arg;
1132 struct kvm_s2_mmu *mmu = pgt->mmu;
1133 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1134 kvm_pte_t *childp = NULL;
1135 bool need_flush = false;
1136
1137 if (!kvm_pte_valid(ctx->old)) {
1138 if (stage2_pte_is_counted(ctx->old)) {
1139 kvm_clear_pte(ctx->ptep);
1140 mm_ops->put_page(ctx->ptep);
1141 }
1142 return 0;
1143 }
1144
1145 if (kvm_pte_table(ctx->old, ctx->level)) {
1146 childp = kvm_pte_follow(ctx->old, mm_ops);
1147
1148 if (mm_ops->page_count(childp) != 1)
1149 return 0;
1150 } else if (stage2_pte_cacheable(pgt, ctx->old)) {
1151 need_flush = !stage2_has_fwb(pgt);
1152 }
1153
1154 /*
1155 * This is similar to the map() path in that we unmap the entire
1156 * block entry and rely on the remaining portions being faulted
1157 * back lazily.
1158 */
1159 stage2_unmap_put_pte(ctx, mmu, mm_ops);
1160
1161 if (need_flush && mm_ops->dcache_clean_inval_poc)
1162 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1163 kvm_granule_size(ctx->level));
1164
1165 if (childp)
1166 mm_ops->put_page(childp);
1167
1168 return 0;
1169 }
1170
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1171 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1172 {
1173 int ret;
1174 struct kvm_pgtable_walker walker = {
1175 .cb = stage2_unmap_walker,
1176 .arg = pgt,
1177 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1178 };
1179
1180 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1181 if (stage2_unmap_defer_tlb_flush(pgt))
1182 /* Perform the deferred TLB invalidations */
1183 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1184
1185 return ret;
1186 }
1187
1188 struct stage2_attr_data {
1189 kvm_pte_t attr_set;
1190 kvm_pte_t attr_clr;
1191 kvm_pte_t pte;
1192 s8 level;
1193 };
1194
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1195 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1196 enum kvm_pgtable_walk_flags visit)
1197 {
1198 kvm_pte_t pte = ctx->old;
1199 struct stage2_attr_data *data = ctx->arg;
1200 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1201
1202 if (!kvm_pte_valid(ctx->old))
1203 return -EAGAIN;
1204
1205 data->level = ctx->level;
1206 data->pte = pte;
1207 pte &= ~data->attr_clr;
1208 pte |= data->attr_set;
1209
1210 /*
1211 * We may race with the CPU trying to set the access flag here,
1212 * but worst-case the access flag update gets lost and will be
1213 * set on the next access instead.
1214 */
1215 if (data->pte != pte) {
1216 /*
1217 * Invalidate instruction cache before updating the guest
1218 * stage-2 PTE if we are going to add executable permission.
1219 */
1220 if (mm_ops->icache_inval_pou &&
1221 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1222 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1223 kvm_granule_size(ctx->level));
1224
1225 if (!stage2_try_set_pte(ctx, pte))
1226 return -EAGAIN;
1227 }
1228
1229 return 0;
1230 }
1231
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,s8 * level,enum kvm_pgtable_walk_flags flags)1232 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1233 u64 size, kvm_pte_t attr_set,
1234 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1235 s8 *level, enum kvm_pgtable_walk_flags flags)
1236 {
1237 int ret;
1238 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1239 struct stage2_attr_data data = {
1240 .attr_set = attr_set & attr_mask,
1241 .attr_clr = attr_clr & attr_mask,
1242 };
1243 struct kvm_pgtable_walker walker = {
1244 .cb = stage2_attr_walker,
1245 .arg = &data,
1246 .flags = flags | KVM_PGTABLE_WALK_LEAF,
1247 };
1248
1249 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1250 if (ret)
1251 return ret;
1252
1253 if (orig_pte)
1254 *orig_pte = data.pte;
1255
1256 if (level)
1257 *level = data.level;
1258 return 0;
1259 }
1260
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1261 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1262 {
1263 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1264 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1265 NULL, NULL, 0);
1266 }
1267
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_walk_flags flags)1268 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
1269 enum kvm_pgtable_walk_flags flags)
1270 {
1271 int ret;
1272
1273 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1274 NULL, NULL, flags);
1275 if (!ret)
1276 dsb(ishst);
1277 }
1278
1279 struct stage2_age_data {
1280 bool mkold;
1281 bool young;
1282 };
1283
stage2_age_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1284 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1285 enum kvm_pgtable_walk_flags visit)
1286 {
1287 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1288 struct stage2_age_data *data = ctx->arg;
1289
1290 if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1291 return 0;
1292
1293 data->young = true;
1294
1295 /*
1296 * stage2_age_walker() is always called while holding the MMU lock for
1297 * write, so this will always succeed. Nonetheless, this deliberately
1298 * follows the race detection pattern of the other stage-2 walkers in
1299 * case the locking mechanics of the MMU notifiers is ever changed.
1300 */
1301 if (data->mkold && !stage2_try_set_pte(ctx, new))
1302 return -EAGAIN;
1303
1304 /*
1305 * "But where's the TLBI?!", you scream.
1306 * "Over in the core code", I sigh.
1307 *
1308 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1309 */
1310 return 0;
1311 }
1312
kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable * pgt,u64 addr,u64 size,bool mkold)1313 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1314 u64 size, bool mkold)
1315 {
1316 struct stage2_age_data data = {
1317 .mkold = mkold,
1318 };
1319 struct kvm_pgtable_walker walker = {
1320 .cb = stage2_age_walker,
1321 .arg = &data,
1322 .flags = KVM_PGTABLE_WALK_LEAF,
1323 };
1324
1325 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1326 return data.young;
1327 }
1328
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot,enum kvm_pgtable_walk_flags flags)1329 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1330 enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags)
1331 {
1332 kvm_pte_t xn = 0, set = 0, clr = 0;
1333 s8 level;
1334 int ret;
1335
1336 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1337 return -EINVAL;
1338
1339 if (prot & KVM_PGTABLE_PROT_R)
1340 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1341
1342 if (prot & KVM_PGTABLE_PROT_W)
1343 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1344
1345 ret = stage2_set_xn_attr(prot, &xn);
1346 if (ret)
1347 return ret;
1348
1349 set |= xn & KVM_PTE_LEAF_ATTR_HI_S2_XN;
1350 clr |= ~xn & KVM_PTE_LEAF_ATTR_HI_S2_XN;
1351
1352 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags);
1353 if (!ret || ret == -EAGAIN)
1354 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1355 return ret;
1356 }
1357
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1358 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1359 enum kvm_pgtable_walk_flags visit)
1360 {
1361 struct kvm_pgtable *pgt = ctx->arg;
1362 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1363
1364 if (!stage2_pte_cacheable(pgt, ctx->old))
1365 return 0;
1366
1367 if (mm_ops->dcache_clean_inval_poc)
1368 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1369 kvm_granule_size(ctx->level));
1370 return 0;
1371 }
1372
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1373 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1374 {
1375 struct kvm_pgtable_walker walker = {
1376 .cb = stage2_flush_walker,
1377 .flags = KVM_PGTABLE_WALK_LEAF,
1378 .arg = pgt,
1379 };
1380
1381 if (stage2_has_fwb(pgt))
1382 return 0;
1383
1384 return kvm_pgtable_walk(pgt, addr, size, &walker);
1385 }
1386
kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable * pgt,u64 phys,s8 level,enum kvm_pgtable_prot prot,void * mc,bool force_pte)1387 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1388 u64 phys, s8 level,
1389 enum kvm_pgtable_prot prot,
1390 void *mc, bool force_pte)
1391 {
1392 struct stage2_map_data map_data = {
1393 .phys = phys,
1394 .mmu = pgt->mmu,
1395 .memcache = mc,
1396 .force_pte = force_pte,
1397 };
1398 struct kvm_pgtable_walker walker = {
1399 .cb = stage2_map_walker,
1400 .flags = KVM_PGTABLE_WALK_LEAF |
1401 KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1402 KVM_PGTABLE_WALK_SKIP_CMO,
1403 .arg = &map_data,
1404 };
1405 /*
1406 * The input address (.addr) is irrelevant for walking an
1407 * unlinked table. Construct an ambiguous IA range to map
1408 * kvm_granule_size(level) worth of memory.
1409 */
1410 struct kvm_pgtable_walk_data data = {
1411 .walker = &walker,
1412 .addr = 0,
1413 .end = kvm_granule_size(level),
1414 };
1415 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1416 kvm_pte_t *pgtable;
1417 int ret;
1418
1419 if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1420 return ERR_PTR(-EINVAL);
1421
1422 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1423 if (ret)
1424 return ERR_PTR(ret);
1425
1426 pgtable = mm_ops->zalloc_page(mc);
1427 if (!pgtable)
1428 return ERR_PTR(-ENOMEM);
1429
1430 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1431 level + 1);
1432 if (ret) {
1433 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1434 return ERR_PTR(ret);
1435 }
1436
1437 return pgtable;
1438 }
1439
1440 /*
1441 * Get the number of page-tables needed to replace a block with a
1442 * fully populated tree up to the PTE entries. Note that @level is
1443 * interpreted as in "level @level entry".
1444 */
stage2_block_get_nr_page_tables(s8 level)1445 static int stage2_block_get_nr_page_tables(s8 level)
1446 {
1447 switch (level) {
1448 case 1:
1449 return PTRS_PER_PTE + 1;
1450 case 2:
1451 return 1;
1452 case 3:
1453 return 0;
1454 default:
1455 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1456 level > KVM_PGTABLE_LAST_LEVEL);
1457 return -EINVAL;
1458 };
1459 }
1460
stage2_split_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1461 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1462 enum kvm_pgtable_walk_flags visit)
1463 {
1464 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1465 struct kvm_mmu_memory_cache *mc = ctx->arg;
1466 struct kvm_s2_mmu *mmu;
1467 kvm_pte_t pte = ctx->old, new, *childp;
1468 enum kvm_pgtable_prot prot;
1469 s8 level = ctx->level;
1470 bool force_pte;
1471 int nr_pages;
1472 u64 phys;
1473
1474 /* No huge-pages exist at the last level */
1475 if (level == KVM_PGTABLE_LAST_LEVEL)
1476 return 0;
1477
1478 /* We only split valid block mappings */
1479 if (!kvm_pte_valid(pte))
1480 return 0;
1481
1482 nr_pages = stage2_block_get_nr_page_tables(level);
1483 if (nr_pages < 0)
1484 return nr_pages;
1485
1486 if (mc->nobjs >= nr_pages) {
1487 /* Build a tree mapped down to the PTE granularity. */
1488 force_pte = true;
1489 } else {
1490 /*
1491 * Don't force PTEs, so create_unlinked() below does
1492 * not populate the tree up to the PTE level. The
1493 * consequence is that the call will require a single
1494 * page of level 2 entries at level 1, or a single
1495 * page of PTEs at level 2. If we are at level 1, the
1496 * PTEs will be created recursively.
1497 */
1498 force_pte = false;
1499 nr_pages = 1;
1500 }
1501
1502 if (mc->nobjs < nr_pages)
1503 return -ENOMEM;
1504
1505 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1506 phys = kvm_pte_to_phys(pte);
1507 prot = kvm_pgtable_stage2_pte_prot(pte);
1508
1509 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1510 level, prot, mc, force_pte);
1511 if (IS_ERR(childp))
1512 return PTR_ERR(childp);
1513
1514 if (!stage2_try_break_pte(ctx, mmu)) {
1515 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1516 return -EAGAIN;
1517 }
1518
1519 /*
1520 * Note, the contents of the page table are guaranteed to be made
1521 * visible before the new PTE is assigned because stage2_make_pte()
1522 * writes the PTE using smp_store_release().
1523 */
1524 new = kvm_init_table_pte(childp, mm_ops);
1525 stage2_make_pte(ctx, new);
1526 return 0;
1527 }
1528
kvm_pgtable_stage2_split(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_mmu_memory_cache * mc)1529 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1530 struct kvm_mmu_memory_cache *mc)
1531 {
1532 struct kvm_pgtable_walker walker = {
1533 .cb = stage2_split_walker,
1534 .flags = KVM_PGTABLE_WALK_LEAF,
1535 .arg = mc,
1536 };
1537 int ret;
1538
1539 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1540 dsb(ishst);
1541 return ret;
1542 }
1543
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1544 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1545 struct kvm_pgtable_mm_ops *mm_ops,
1546 enum kvm_pgtable_stage2_flags flags,
1547 kvm_pgtable_force_pte_cb_t force_pte_cb)
1548 {
1549 size_t pgd_sz;
1550 u64 vtcr = mmu->vtcr;
1551 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1552 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1553 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1554
1555 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1556 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1557 if (!pgt->pgd)
1558 return -ENOMEM;
1559
1560 pgt->ia_bits = ia_bits;
1561 pgt->start_level = start_level;
1562 pgt->mm_ops = mm_ops;
1563 pgt->mmu = mmu;
1564 pgt->flags = flags;
1565 pgt->force_pte_cb = force_pte_cb;
1566
1567 /* Ensure zeroed PGD pages are visible to the hardware walker */
1568 dsb(ishst);
1569 return 0;
1570 }
1571
kvm_pgtable_stage2_pgd_size(u64 vtcr)1572 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1573 {
1574 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1575 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1576 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1577
1578 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1579 }
1580
stage2_free_leaf(const struct kvm_pgtable_visit_ctx * ctx)1581 static int stage2_free_leaf(const struct kvm_pgtable_visit_ctx *ctx)
1582 {
1583 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1584
1585 mm_ops->put_page(ctx->ptep);
1586 return 0;
1587 }
1588
stage2_free_table_post(const struct kvm_pgtable_visit_ctx * ctx)1589 static int stage2_free_table_post(const struct kvm_pgtable_visit_ctx *ctx)
1590 {
1591 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1592 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
1593
1594 if (mm_ops->page_count(childp) != 1)
1595 return 0;
1596
1597 /*
1598 * Drop references and clear the now stale PTE to avoid rewalking the
1599 * freed page table.
1600 */
1601 mm_ops->put_page(ctx->ptep);
1602 mm_ops->put_page(childp);
1603 kvm_clear_pte(ctx->ptep);
1604 return 0;
1605 }
1606
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1607 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1608 enum kvm_pgtable_walk_flags visit)
1609 {
1610 if (!stage2_pte_is_counted(ctx->old))
1611 return 0;
1612
1613 switch (visit) {
1614 case KVM_PGTABLE_WALK_LEAF:
1615 return stage2_free_leaf(ctx);
1616 case KVM_PGTABLE_WALK_TABLE_POST:
1617 return stage2_free_table_post(ctx);
1618 default:
1619 return -EINVAL;
1620 }
1621 }
1622
kvm_pgtable_stage2_destroy_range(struct kvm_pgtable * pgt,u64 addr,u64 size)1623 void kvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
1624 u64 addr, u64 size)
1625 {
1626 struct kvm_pgtable_walker walker = {
1627 .cb = stage2_free_walker,
1628 .flags = KVM_PGTABLE_WALK_LEAF |
1629 KVM_PGTABLE_WALK_TABLE_POST,
1630 };
1631
1632 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1633 }
1634
kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable * pgt)1635 void kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt)
1636 {
1637 size_t pgd_sz;
1638
1639 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1640
1641 /*
1642 * Since the pgtable is unlinked at this point, and not shared with
1643 * other walkers, safely deference pgd with kvm_dereference_pteref_raw()
1644 */
1645 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref_raw(pgt->pgd), pgd_sz);
1646 pgt->pgd = NULL;
1647 }
1648
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1649 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1650 {
1651 kvm_pgtable_stage2_destroy_range(pgt, 0, BIT(pgt->ia_bits));
1652 kvm_pgtable_stage2_destroy_pgd(pgt);
1653 }
1654
kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,s8 level)1655 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1656 {
1657 kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1658 struct kvm_pgtable_walker walker = {
1659 .cb = stage2_free_walker,
1660 .flags = KVM_PGTABLE_WALK_LEAF |
1661 KVM_PGTABLE_WALK_TABLE_POST,
1662 };
1663 struct kvm_pgtable_walk_data data = {
1664 .walker = &walker,
1665
1666 /*
1667 * At this point the IPA really doesn't matter, as the page
1668 * table being traversed has already been removed from the stage
1669 * 2. Set an appropriate range to cover the entire page table.
1670 */
1671 .addr = 0,
1672 .end = kvm_granule_size(level),
1673 };
1674
1675 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1676
1677 WARN_ON(mm_ops->page_count(pgtable) != 1);
1678 mm_ops->put_page(pgtable);
1679 }
1680