xref: /linux/arch/x86/kvm/mmu/mmu.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31 
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 #include <linux/wordpart.h>
51 
52 #include <asm/page.h>
53 #include <asm/memtype.h>
54 #include <asm/cmpxchg.h>
55 #include <asm/io.h>
56 #include <asm/set_memory.h>
57 #include <asm/spec-ctrl.h>
58 #include <asm/vmx.h>
59 
60 #include "trace.h"
61 
62 static bool nx_hugepage_mitigation_hard_disabled;
63 
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72 
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76 
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 	.set = set_nx_huge_pages,
79 	.get = get_nx_huge_pages,
80 };
81 
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 	.set = set_nx_huge_pages_recovery_param,
84 	.get = param_get_uint,
85 };
86 
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 		&nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 		&nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95 
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98 
99 /*
100  * When setting this variable to true it enables Two-Dimensional-Paging
101  * where the hardware walks 2 page tables:
102  * 1. the guest-virtual to guest-physical
103  * 2. while doing 1. it walks guest-physical to host-physical
104  * If the hardware supports that we don't need to do shadow paging.
105  */
106 bool tdp_enabled = false;
107 
108 static bool __ro_after_init tdp_mmu_allowed;
109 
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 EXPORT_SYMBOL_FOR_KVM_INTERNAL(tdp_mmu_enabled);
114 #endif
115 
116 static int max_huge_page_level __read_mostly;
117 static int tdp_root_level __read_mostly;
118 static int max_tdp_level __read_mostly;
119 
120 #define PTE_PREFETCH_NUM		8
121 
122 #include <trace/events/kvm.h>
123 
124 /* make pte_list_desc fit well in cache lines */
125 #define PTE_LIST_EXT 14
126 
127 /*
128  * struct pte_list_desc is the core data structure used to implement a custom
129  * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
130  * given GFN when used in the context of rmaps.  Using a custom list allows KVM
131  * to optimize for the common case where many GFNs will have at most a handful
132  * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
133  * memory footprint, which in turn improves runtime performance by exploiting
134  * cache locality.
135  *
136  * A list is comprised of one or more pte_list_desc objects (descriptors).
137  * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
138  * is full and a new SPTEs needs to be added, a new descriptor is allocated and
139  * becomes the head of the list.  This means that by definitions, all tail
140  * descriptors are full.
141  *
142  * Note, the meta data fields are deliberately placed at the start of the
143  * structure to optimize the cacheline layout; accessing the descriptor will
144  * touch only a single cacheline so long as @spte_count<=6 (or if only the
145  * descriptors metadata is accessed).
146  */
147 struct pte_list_desc {
148 	struct pte_list_desc *more;
149 	/* The number of PTEs stored in _this_ descriptor. */
150 	u32 spte_count;
151 	/* The number of PTEs stored in all tails of this descriptor. */
152 	u32 tail_count;
153 	u64 *sptes[PTE_LIST_EXT];
154 };
155 
156 struct kvm_shadow_walk_iterator {
157 	u64 addr;
158 	hpa_t shadow_addr;
159 	u64 *sptep;
160 	int level;
161 	unsigned index;
162 };
163 
164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
165 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
166 					 (_root), (_addr));                \
167 	     shadow_walk_okay(&(_walker));			           \
168 	     shadow_walk_next(&(_walker)))
169 
170 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
171 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
172 	     shadow_walk_okay(&(_walker));			\
173 	     shadow_walk_next(&(_walker)))
174 
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
176 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
177 	     shadow_walk_okay(&(_walker)) &&				\
178 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
179 	     __shadow_walk_next(&(_walker), spte))
180 
181 static struct kmem_cache *pte_list_desc_cache;
182 struct kmem_cache *mmu_page_header_cache;
183 
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185 
186 struct kvm_mmu_role_regs {
187 	const unsigned long cr0;
188 	const unsigned long cr4;
189 	const u64 efer;
190 };
191 
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194 
195 /*
196  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
197  * reading from the role_regs.  Once the root_role is constructed, it becomes
198  * the single source of truth for the MMU's state.
199  */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
201 static inline bool __maybe_unused					\
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
203 {									\
204 	return !!(regs->reg & flag);					\
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216 
217 /*
218  * The MMU itself (with a valid role) is the single source of truth for the
219  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
220  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221  * and the vCPU may be incorrect/irrelevant.
222  */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
225 {								\
226 	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
236 
is_cr0_pg(struct kvm_mmu * mmu)237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239         return mmu->cpu_role.base.level > 0;
240 }
241 
is_cr4_pae(struct kvm_mmu * mmu)242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244         return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246 
vcpu_to_role_regs(struct kvm_vcpu * vcpu)247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249 	struct kvm_mmu_role_regs regs = {
250 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 		.efer = vcpu->arch.efer,
253 	};
254 
255 	return regs;
256 }
257 
get_guest_cr3(struct kvm_vcpu * vcpu)258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260 	return kvm_read_cr3(vcpu);
261 }
262 
kvm_mmu_get_guest_pgd(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264 						  struct kvm_mmu *mmu)
265 {
266 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267 		return kvm_read_cr3(vcpu);
268 
269 	return mmu->get_guest_pgd(vcpu);
270 }
271 
kvm_available_flush_remote_tlbs_range(void)272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274 #if IS_ENABLED(CONFIG_HYPERV)
275 	return kvm_x86_ops.flush_remote_tlbs_range;
276 #else
277 	return false;
278 #endif
279 }
280 
281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
282 
283 /* Flush the range of guest memory mapped by the given SPTE. */
kvm_flush_remote_tlbs_sptep(struct kvm * kvm,u64 * sptep)284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
285 {
286 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
287 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
288 
289 	kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
290 }
291 
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293 			   unsigned int access)
294 {
295 	u64 spte = make_mmio_spte(vcpu, gfn, access);
296 
297 	trace_mark_mmio_spte(sptep, gfn, spte);
298 	mmu_spte_set(sptep, spte);
299 }
300 
get_mmio_spte_gfn(u64 spte)301 static gfn_t get_mmio_spte_gfn(u64 spte)
302 {
303 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
304 
305 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
306 	       & shadow_nonpresent_or_rsvd_mask;
307 
308 	return gpa >> PAGE_SHIFT;
309 }
310 
get_mmio_spte_access(u64 spte)311 static unsigned get_mmio_spte_access(u64 spte)
312 {
313 	return spte & shadow_mmio_access_mask;
314 }
315 
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
317 {
318 	u64 kvm_gen, spte_gen, gen;
319 
320 	gen = kvm_vcpu_memslots(vcpu)->generation;
321 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
322 		return false;
323 
324 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
325 	spte_gen = get_mmio_spte_generation(spte);
326 
327 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
328 	return likely(kvm_gen == spte_gen);
329 }
330 
is_cpuid_PSE36(void)331 static int is_cpuid_PSE36(void)
332 {
333 	return 1;
334 }
335 
336 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339 	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
340 	WRITE_ONCE(*sptep, spte);
341 }
342 
__update_clear_spte_fast(u64 * sptep,u64 spte)343 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
344 {
345 	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
346 	WRITE_ONCE(*sptep, spte);
347 }
348 
__update_clear_spte_slow(u64 * sptep,u64 spte)349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
350 {
351 	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
352 	return xchg(sptep, spte);
353 }
354 
__get_spte_lockless(u64 * sptep)355 static u64 __get_spte_lockless(u64 *sptep)
356 {
357 	return READ_ONCE(*sptep);
358 }
359 #else
360 union split_spte {
361 	struct {
362 		u32 spte_low;
363 		u32 spte_high;
364 	};
365 	u64 spte;
366 };
367 
count_spte_clear(u64 * sptep,u64 spte)368 static void count_spte_clear(u64 *sptep, u64 spte)
369 {
370 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
371 
372 	if (is_shadow_present_pte(spte))
373 		return;
374 
375 	/* Ensure the spte is completely set before we increase the count */
376 	smp_wmb();
377 	sp->clear_spte_count++;
378 }
379 
__set_spte(u64 * sptep,u64 spte)380 static void __set_spte(u64 *sptep, u64 spte)
381 {
382 	union split_spte *ssptep, sspte;
383 
384 	ssptep = (union split_spte *)sptep;
385 	sspte = (union split_spte)spte;
386 
387 	ssptep->spte_high = sspte.spte_high;
388 
389 	/*
390 	 * If we map the spte from nonpresent to present, We should store
391 	 * the high bits firstly, then set present bit, so cpu can not
392 	 * fetch this spte while we are setting the spte.
393 	 */
394 	smp_wmb();
395 
396 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 }
398 
__update_clear_spte_fast(u64 * sptep,u64 spte)399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401 	union split_spte *ssptep, sspte;
402 
403 	ssptep = (union split_spte *)sptep;
404 	sspte = (union split_spte)spte;
405 
406 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407 
408 	/*
409 	 * If we map the spte from present to nonpresent, we should clear
410 	 * present bit firstly to avoid vcpu fetch the old high bits.
411 	 */
412 	smp_wmb();
413 
414 	ssptep->spte_high = sspte.spte_high;
415 	count_spte_clear(sptep, spte);
416 }
417 
__update_clear_spte_slow(u64 * sptep,u64 spte)418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419 {
420 	union split_spte *ssptep, sspte, orig;
421 
422 	ssptep = (union split_spte *)sptep;
423 	sspte = (union split_spte)spte;
424 
425 	/* xchg acts as a barrier before the setting of the high bits */
426 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 	orig.spte_high = ssptep->spte_high;
428 	ssptep->spte_high = sspte.spte_high;
429 	count_spte_clear(sptep, spte);
430 
431 	return orig.spte;
432 }
433 
434 /*
435  * The idea using the light way get the spte on x86_32 guest is from
436  * gup_get_pte (mm/gup.c).
437  *
438  * An spte tlb flush may be pending, because they are coalesced and
439  * we are running out of the MMU lock.  Therefore
440  * we need to protect against in-progress updates of the spte.
441  *
442  * Reading the spte while an update is in progress may get the old value
443  * for the high part of the spte.  The race is fine for a present->non-present
444  * change (because the high part of the spte is ignored for non-present spte),
445  * but for a present->present change we must reread the spte.
446  *
447  * All such changes are done in two steps (present->non-present and
448  * non-present->present), hence it is enough to count the number of
449  * present->non-present updates: if it changed while reading the spte,
450  * we might have hit the race.  This is done using clear_spte_count.
451  */
__get_spte_lockless(u64 * sptep)452 static u64 __get_spte_lockless(u64 *sptep)
453 {
454 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
455 	union split_spte spte, *orig = (union split_spte *)sptep;
456 	int count;
457 
458 retry:
459 	count = sp->clear_spte_count;
460 	smp_rmb();
461 
462 	spte.spte_low = orig->spte_low;
463 	smp_rmb();
464 
465 	spte.spte_high = orig->spte_high;
466 	smp_rmb();
467 
468 	if (unlikely(spte.spte_low != orig->spte_low ||
469 	      count != sp->clear_spte_count))
470 		goto retry;
471 
472 	return spte.spte;
473 }
474 #endif
475 
476 /* Rules for using mmu_spte_set:
477  * Set the sptep from nonpresent to present.
478  * Note: the sptep being assigned *must* be either not present
479  * or in a state where the hardware will not attempt to update
480  * the spte.
481  */
mmu_spte_set(u64 * sptep,u64 new_spte)482 static void mmu_spte_set(u64 *sptep, u64 new_spte)
483 {
484 	WARN_ON_ONCE(is_shadow_present_pte(*sptep));
485 	__set_spte(sptep, new_spte);
486 }
487 
488 /* Rules for using mmu_spte_update:
489  * Update the state bits, it means the mapped pfn is not changed.
490  *
491  * Returns true if the TLB needs to be flushed
492  */
mmu_spte_update(u64 * sptep,u64 new_spte)493 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494 {
495 	u64 old_spte = *sptep;
496 
497 	WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
498 	check_spte_writable_invariants(new_spte);
499 
500 	if (!is_shadow_present_pte(old_spte)) {
501 		mmu_spte_set(sptep, new_spte);
502 		return false;
503 	}
504 
505 	if (!spte_needs_atomic_update(old_spte))
506 		__update_clear_spte_fast(sptep, new_spte);
507 	else
508 		old_spte = __update_clear_spte_slow(sptep, new_spte);
509 
510 	WARN_ON_ONCE(!is_shadow_present_pte(old_spte) ||
511 		     spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
512 
513 	return leaf_spte_change_needs_tlb_flush(old_spte, new_spte);
514 }
515 
516 /*
517  * Rules for using mmu_spte_clear_track_bits:
518  * It sets the sptep from present to nonpresent, and track the
519  * state bits, it is used to clear the last level sptep.
520  * Returns the old PTE.
521  */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)522 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
523 {
524 	u64 old_spte = *sptep;
525 	int level = sptep_to_sp(sptep)->role.level;
526 
527 	if (!is_shadow_present_pte(old_spte) ||
528 	    !spte_needs_atomic_update(old_spte))
529 		__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
530 	else
531 		old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
532 
533 	if (!is_shadow_present_pte(old_spte))
534 		return old_spte;
535 
536 	kvm_update_page_stats(kvm, level, -1);
537 	return old_spte;
538 }
539 
540 /*
541  * Rules for using mmu_spte_clear_no_track:
542  * Directly clear spte without caring the state bits of sptep,
543  * it is used to set the upper level spte.
544  */
mmu_spte_clear_no_track(u64 * sptep)545 static void mmu_spte_clear_no_track(u64 *sptep)
546 {
547 	__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
548 }
549 
mmu_spte_get_lockless(u64 * sptep)550 static u64 mmu_spte_get_lockless(u64 *sptep)
551 {
552 	return __get_spte_lockless(sptep);
553 }
554 
is_tdp_mmu_active(struct kvm_vcpu * vcpu)555 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
556 {
557 	return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
558 }
559 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)560 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
561 {
562 	if (is_tdp_mmu_active(vcpu)) {
563 		kvm_tdp_mmu_walk_lockless_begin();
564 	} else {
565 		/*
566 		 * Prevent page table teardown by making any free-er wait during
567 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
568 		 */
569 		local_irq_disable();
570 
571 		/*
572 		 * Make sure a following spte read is not reordered ahead of the write
573 		 * to vcpu->mode.
574 		 */
575 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
576 	}
577 }
578 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)579 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
580 {
581 	if (is_tdp_mmu_active(vcpu)) {
582 		kvm_tdp_mmu_walk_lockless_end();
583 	} else {
584 		/*
585 		 * Make sure the write to vcpu->mode is not reordered in front of
586 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
587 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
588 		 */
589 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
590 		local_irq_enable();
591 	}
592 }
593 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)594 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
595 {
596 	int r;
597 
598 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
599 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
600 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
601 	if (r)
602 		return r;
603 	if (kvm_has_mirrored_tdp(vcpu->kvm)) {
604 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache,
605 					       PT64_ROOT_MAX_LEVEL);
606 		if (r)
607 			return r;
608 	}
609 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
610 				       PT64_ROOT_MAX_LEVEL);
611 	if (r)
612 		return r;
613 	if (maybe_indirect) {
614 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
615 					       PT64_ROOT_MAX_LEVEL);
616 		if (r)
617 			return r;
618 	}
619 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
620 					  PT64_ROOT_MAX_LEVEL);
621 }
622 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)623 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
624 {
625 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
626 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
627 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
628 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache);
629 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
630 }
631 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)632 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
633 {
634 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
635 }
636 
637 static bool sp_has_gptes(struct kvm_mmu_page *sp);
638 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)639 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
640 {
641 	if (sp->role.passthrough)
642 		return sp->gfn;
643 
644 	if (sp->shadowed_translation)
645 		return sp->shadowed_translation[index] >> PAGE_SHIFT;
646 
647 	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
648 }
649 
650 /*
651  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
652  * that the SPTE itself may have a more constrained access permissions that
653  * what the guest enforces. For example, a guest may create an executable
654  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
655  */
kvm_mmu_page_get_access(struct kvm_mmu_page * sp,int index)656 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
657 {
658 	if (sp->shadowed_translation)
659 		return sp->shadowed_translation[index] & ACC_ALL;
660 
661 	/*
662 	 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
663 	 * KVM is not shadowing any guest page tables, so the "guest access
664 	 * permissions" are just ACC_ALL.
665 	 *
666 	 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
667 	 * is shadowing a guest huge page with small pages, the guest access
668 	 * permissions being shadowed are the access permissions of the huge
669 	 * page.
670 	 *
671 	 * In both cases, sp->role.access contains the correct access bits.
672 	 */
673 	return sp->role.access;
674 }
675 
kvm_mmu_page_set_translation(struct kvm_mmu_page * sp,int index,gfn_t gfn,unsigned int access)676 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
677 					 gfn_t gfn, unsigned int access)
678 {
679 	if (sp->shadowed_translation) {
680 		sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
681 		return;
682 	}
683 
684 	WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
685 	          "access mismatch under %s page %llx (expected %u, got %u)\n",
686 	          sp->role.passthrough ? "passthrough" : "direct",
687 	          sp->gfn, kvm_mmu_page_get_access(sp, index), access);
688 
689 	WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
690 	          "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
691 	          sp->role.passthrough ? "passthrough" : "direct",
692 	          sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
693 }
694 
kvm_mmu_page_set_access(struct kvm_mmu_page * sp,int index,unsigned int access)695 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
696 				    unsigned int access)
697 {
698 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
699 
700 	kvm_mmu_page_set_translation(sp, index, gfn, access);
701 }
702 
703 /*
704  * Return the pointer to the large page information for a given gfn,
705  * handling slots that are not large page aligned.
706  */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)707 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
708 		const struct kvm_memory_slot *slot, int level)
709 {
710 	unsigned long idx;
711 
712 	idx = gfn_to_index(gfn, slot->base_gfn, level);
713 	return &slot->arch.lpage_info[level - 2][idx];
714 }
715 
716 /*
717  * The most significant bit in disallow_lpage tracks whether or not memory
718  * attributes are mixed, i.e. not identical for all gfns at the current level.
719  * The lower order bits are used to refcount other cases where a hugepage is
720  * disallowed, e.g. if KVM has shadow a page table at the gfn.
721  */
722 #define KVM_LPAGE_MIXED_FLAG	BIT(31)
723 
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)724 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
725 					    gfn_t gfn, int count)
726 {
727 	struct kvm_lpage_info *linfo;
728 	int old, i;
729 
730 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
731 		linfo = lpage_info_slot(gfn, slot, i);
732 
733 		old = linfo->disallow_lpage;
734 		linfo->disallow_lpage += count;
735 		WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
736 	}
737 }
738 
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)739 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
740 {
741 	update_gfn_disallow_lpage_count(slot, gfn, 1);
742 }
743 
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)744 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
745 {
746 	update_gfn_disallow_lpage_count(slot, gfn, -1);
747 }
748 
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
750 {
751 	struct kvm_memslots *slots;
752 	struct kvm_memory_slot *slot;
753 	gfn_t gfn;
754 
755 	kvm->arch.indirect_shadow_pages++;
756 	/*
757 	 * Ensure indirect_shadow_pages is elevated prior to re-reading guest
758 	 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
759 	 * emulated writes are visible before re-reading guest PTEs, or that
760 	 * an emulated write will see the elevated count and acquire mmu_lock
761 	 * to update SPTEs.  Pairs with the smp_mb() in kvm_mmu_track_write().
762 	 */
763 	smp_mb();
764 
765 	gfn = sp->gfn;
766 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
767 	slot = __gfn_to_memslot(slots, gfn);
768 
769 	/* the non-leaf shadow pages are keeping readonly. */
770 	if (sp->role.level > PG_LEVEL_4K)
771 		return __kvm_write_track_add_gfn(kvm, slot, gfn);
772 
773 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
774 
775 	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
776 		kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
777 }
778 
track_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp,enum kvm_mmu_type mmu_type)779 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
780 				 enum kvm_mmu_type mmu_type)
781 {
782 	/*
783 	 * If it's possible to replace the shadow page with an NX huge page,
784 	 * i.e. if the shadow page is the only thing currently preventing KVM
785 	 * from using a huge page, add the shadow page to the list of "to be
786 	 * zapped for NX recovery" pages.  Note, the shadow page can already be
787 	 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
788 	 * links a shadow page at multiple points.
789 	 */
790 	if (!list_empty(&sp->possible_nx_huge_page_link))
791 		return;
792 
793 	++kvm->stat.nx_lpage_splits;
794 	++kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages;
795 	list_add_tail(&sp->possible_nx_huge_page_link,
796 		      &kvm->arch.possible_nx_huge_pages[mmu_type].pages);
797 }
798 
account_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp,bool nx_huge_page_possible)799 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
800 				 bool nx_huge_page_possible)
801 {
802 	sp->nx_huge_page_disallowed = true;
803 
804 	if (nx_huge_page_possible)
805 		track_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU);
806 }
807 
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)808 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
809 {
810 	struct kvm_memslots *slots;
811 	struct kvm_memory_slot *slot;
812 	gfn_t gfn;
813 
814 	kvm->arch.indirect_shadow_pages--;
815 	gfn = sp->gfn;
816 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
817 	slot = __gfn_to_memslot(slots, gfn);
818 	if (sp->role.level > PG_LEVEL_4K)
819 		return __kvm_write_track_remove_gfn(kvm, slot, gfn);
820 
821 	kvm_mmu_gfn_allow_lpage(slot, gfn);
822 }
823 
untrack_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp,enum kvm_mmu_type mmu_type)824 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
825 				   enum kvm_mmu_type mmu_type)
826 {
827 	if (list_empty(&sp->possible_nx_huge_page_link))
828 		return;
829 
830 	--kvm->stat.nx_lpage_splits;
831 	--kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages;
832 	list_del_init(&sp->possible_nx_huge_page_link);
833 }
834 
unaccount_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)835 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
836 {
837 	sp->nx_huge_page_disallowed = false;
838 
839 	untrack_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU);
840 }
841 
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)842 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
843 							   gfn_t gfn,
844 							   bool no_dirty_log)
845 {
846 	struct kvm_memory_slot *slot;
847 
848 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
849 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
850 		return NULL;
851 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
852 		return NULL;
853 
854 	return slot;
855 }
856 
857 /*
858  * About rmap_head encoding:
859  *
860  * If the bit zero of rmap_head->val is clear, then it points to the only spte
861  * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct
862  * pte_list_desc containing more mappings.
863  */
864 #define KVM_RMAP_MANY	BIT(0)
865 
866 /*
867  * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always
868  * operates with mmu_lock held for write), but rmaps can be walked without
869  * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain
870  * being zapped/dropped _while the rmap is locked_.
871  *
872  * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be
873  * done while holding mmu_lock for write.  This allows a task walking rmaps
874  * without holding mmu_lock to concurrently walk the same entries as a task
875  * that is holding mmu_lock but _not_ the rmap lock.  Neither task will modify
876  * the rmaps, thus the walks are stable.
877  *
878  * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED,
879  * only the rmap chains themselves are protected.  E.g. holding an rmap's lock
880  * ensures all "struct pte_list_desc" fields are stable.
881  */
882 #define KVM_RMAP_LOCKED	BIT(1)
883 
__kvm_rmap_lock(struct kvm_rmap_head * rmap_head)884 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head)
885 {
886 	unsigned long old_val, new_val;
887 
888 	lockdep_assert_preemption_disabled();
889 
890 	/*
891 	 * Elide the lock if the rmap is empty, as lockless walkers (read-only
892 	 * mode) don't need to (and can't) walk an empty rmap, nor can they add
893 	 * entries to the rmap.  I.e. the only paths that process empty rmaps
894 	 * do so while holding mmu_lock for write, and are mutually exclusive.
895 	 */
896 	old_val = atomic_long_read(&rmap_head->val);
897 	if (!old_val)
898 		return 0;
899 
900 	do {
901 		/*
902 		 * If the rmap is locked, wait for it to be unlocked before
903 		 * trying acquire the lock, e.g. to avoid bouncing the cache
904 		 * line.
905 		 */
906 		while (old_val & KVM_RMAP_LOCKED) {
907 			cpu_relax();
908 			old_val = atomic_long_read(&rmap_head->val);
909 		}
910 
911 		/*
912 		 * Recheck for an empty rmap, it may have been purged by the
913 		 * task that held the lock.
914 		 */
915 		if (!old_val)
916 			return 0;
917 
918 		new_val = old_val | KVM_RMAP_LOCKED;
919 	/*
920 	 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap
921 	 * from being reordered outside of the critical section created by
922 	 * __kvm_rmap_lock().
923 	 *
924 	 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock().
925 	 *
926 	 * For the !old_val case, no ordering is needed, as there is no rmap
927 	 * to walk.
928 	 */
929 	} while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val));
930 
931 	/*
932 	 * Return the old value, i.e. _without_ the LOCKED bit set.  It's
933 	 * impossible for the return value to be 0 (see above), i.e. the read-
934 	 * only unlock flow can't get a false positive and fail to unlock.
935 	 */
936 	return old_val;
937 }
938 
kvm_rmap_lock(struct kvm * kvm,struct kvm_rmap_head * rmap_head)939 static unsigned long kvm_rmap_lock(struct kvm *kvm,
940 				   struct kvm_rmap_head *rmap_head)
941 {
942 	lockdep_assert_held_write(&kvm->mmu_lock);
943 
944 	return __kvm_rmap_lock(rmap_head);
945 }
946 
__kvm_rmap_unlock(struct kvm_rmap_head * rmap_head,unsigned long val)947 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head,
948 			      unsigned long val)
949 {
950 	KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED);
951 	/*
952 	 * Ensure that all accesses to the rmap have completed before unlocking
953 	 * the rmap.
954 	 *
955 	 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock().
956 	 */
957 	atomic_long_set_release(&rmap_head->val, val);
958 }
959 
kvm_rmap_unlock(struct kvm * kvm,struct kvm_rmap_head * rmap_head,unsigned long new_val)960 static void kvm_rmap_unlock(struct kvm *kvm,
961 			    struct kvm_rmap_head *rmap_head,
962 			    unsigned long new_val)
963 {
964 	lockdep_assert_held_write(&kvm->mmu_lock);
965 
966 	__kvm_rmap_unlock(rmap_head, new_val);
967 }
968 
kvm_rmap_get(struct kvm_rmap_head * rmap_head)969 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head)
970 {
971 	return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED;
972 }
973 
974 /*
975  * If mmu_lock isn't held, rmaps can only be locked in read-only mode.  The
976  * actual locking is the same, but the caller is disallowed from modifying the
977  * rmap, and so the unlock flow is a nop if the rmap is/was empty.
978  */
kvm_rmap_lock_readonly(struct kvm_rmap_head * rmap_head)979 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head)
980 {
981 	unsigned long rmap_val;
982 
983 	preempt_disable();
984 	rmap_val = __kvm_rmap_lock(rmap_head);
985 
986 	if (!rmap_val)
987 		preempt_enable();
988 
989 	return rmap_val;
990 }
991 
kvm_rmap_unlock_readonly(struct kvm_rmap_head * rmap_head,unsigned long old_val)992 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head,
993 				     unsigned long old_val)
994 {
995 	if (!old_val)
996 		return;
997 
998 	KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head));
999 
1000 	__kvm_rmap_unlock(rmap_head, old_val);
1001 	preempt_enable();
1002 }
1003 
1004 /*
1005  * Returns the number of pointers in the rmap chain, not counting the new one.
1006  */
pte_list_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * spte,struct kvm_rmap_head * rmap_head)1007 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1008 			u64 *spte, struct kvm_rmap_head *rmap_head)
1009 {
1010 	unsigned long old_val, new_val;
1011 	struct pte_list_desc *desc;
1012 	int count = 0;
1013 
1014 	old_val = kvm_rmap_lock(kvm, rmap_head);
1015 
1016 	if (!old_val) {
1017 		new_val = (unsigned long)spte;
1018 	} else if (!(old_val & KVM_RMAP_MANY)) {
1019 		desc = kvm_mmu_memory_cache_alloc(cache);
1020 		desc->sptes[0] = (u64 *)old_val;
1021 		desc->sptes[1] = spte;
1022 		desc->spte_count = 2;
1023 		desc->tail_count = 0;
1024 		new_val = (unsigned long)desc | KVM_RMAP_MANY;
1025 		++count;
1026 	} else {
1027 		desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1028 		count = desc->tail_count + desc->spte_count;
1029 
1030 		/*
1031 		 * If the previous head is full, allocate a new head descriptor
1032 		 * as tail descriptors are always kept full.
1033 		 */
1034 		if (desc->spte_count == PTE_LIST_EXT) {
1035 			desc = kvm_mmu_memory_cache_alloc(cache);
1036 			desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1037 			desc->spte_count = 0;
1038 			desc->tail_count = count;
1039 			new_val = (unsigned long)desc | KVM_RMAP_MANY;
1040 		} else {
1041 			new_val = old_val;
1042 		}
1043 		desc->sptes[desc->spte_count++] = spte;
1044 	}
1045 
1046 	kvm_rmap_unlock(kvm, rmap_head, new_val);
1047 
1048 	return count;
1049 }
1050 
pte_list_desc_remove_entry(struct kvm * kvm,unsigned long * rmap_val,struct pte_list_desc * desc,int i)1051 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val,
1052 				       struct pte_list_desc *desc, int i)
1053 {
1054 	struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY);
1055 	int j = head_desc->spte_count - 1;
1056 
1057 	/*
1058 	 * The head descriptor should never be empty.  A new head is added only
1059 	 * when adding an entry and the previous head is full, and heads are
1060 	 * removed (this flow) when they become empty.
1061 	 */
1062 	KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
1063 
1064 	/*
1065 	 * Replace the to-be-freed SPTE with the last valid entry from the head
1066 	 * descriptor to ensure that tail descriptors are full at all times.
1067 	 * Note, this also means that tail_count is stable for each descriptor.
1068 	 */
1069 	desc->sptes[i] = head_desc->sptes[j];
1070 	head_desc->sptes[j] = NULL;
1071 	head_desc->spte_count--;
1072 	if (head_desc->spte_count)
1073 		return;
1074 
1075 	/*
1076 	 * The head descriptor is empty.  If there are no tail descriptors,
1077 	 * nullify the rmap head to mark the list as empty, else point the rmap
1078 	 * head at the next descriptor, i.e. the new head.
1079 	 */
1080 	if (!head_desc->more)
1081 		*rmap_val = 0;
1082 	else
1083 		*rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
1084 	mmu_free_pte_list_desc(head_desc);
1085 }
1086 
pte_list_remove(struct kvm * kvm,u64 * spte,struct kvm_rmap_head * rmap_head)1087 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1088 			    struct kvm_rmap_head *rmap_head)
1089 {
1090 	struct pte_list_desc *desc;
1091 	unsigned long rmap_val;
1092 	int i;
1093 
1094 	rmap_val = kvm_rmap_lock(kvm, rmap_head);
1095 	if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm))
1096 		goto out;
1097 
1098 	if (!(rmap_val & KVM_RMAP_MANY)) {
1099 		if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm))
1100 			goto out;
1101 
1102 		rmap_val = 0;
1103 	} else {
1104 		desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1105 		while (desc) {
1106 			for (i = 0; i < desc->spte_count; ++i) {
1107 				if (desc->sptes[i] == spte) {
1108 					pte_list_desc_remove_entry(kvm, &rmap_val,
1109 								   desc, i);
1110 					goto out;
1111 				}
1112 			}
1113 			desc = desc->more;
1114 		}
1115 
1116 		KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1117 	}
1118 
1119 out:
1120 	kvm_rmap_unlock(kvm, rmap_head, rmap_val);
1121 }
1122 
kvm_zap_one_rmap_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)1123 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1124 				  struct kvm_rmap_head *rmap_head, u64 *sptep)
1125 {
1126 	mmu_spte_clear_track_bits(kvm, sptep);
1127 	pte_list_remove(kvm, sptep, rmap_head);
1128 }
1129 
1130 /* Return true if at least one SPTE was zapped, false otherwise */
kvm_zap_all_rmap_sptes(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1131 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1132 				   struct kvm_rmap_head *rmap_head)
1133 {
1134 	struct pte_list_desc *desc, *next;
1135 	unsigned long rmap_val;
1136 	int i;
1137 
1138 	rmap_val = kvm_rmap_lock(kvm, rmap_head);
1139 	if (!rmap_val)
1140 		return false;
1141 
1142 	if (!(rmap_val & KVM_RMAP_MANY)) {
1143 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val);
1144 		goto out;
1145 	}
1146 
1147 	desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1148 
1149 	for (; desc; desc = next) {
1150 		for (i = 0; i < desc->spte_count; i++)
1151 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1152 		next = desc->more;
1153 		mmu_free_pte_list_desc(desc);
1154 	}
1155 out:
1156 	/* rmap_head is meaningless now, remember to reset it */
1157 	kvm_rmap_unlock(kvm, rmap_head, 0);
1158 	return true;
1159 }
1160 
pte_list_count(struct kvm_rmap_head * rmap_head)1161 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1162 {
1163 	unsigned long rmap_val = kvm_rmap_get(rmap_head);
1164 	struct pte_list_desc *desc;
1165 
1166 	if (!rmap_val)
1167 		return 0;
1168 	else if (!(rmap_val & KVM_RMAP_MANY))
1169 		return 1;
1170 
1171 	desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1172 	return desc->tail_count + desc->spte_count;
1173 }
1174 
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1175 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1176 					 const struct kvm_memory_slot *slot)
1177 {
1178 	unsigned long idx;
1179 
1180 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1181 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1182 }
1183 
rmap_remove(struct kvm * kvm,u64 * spte)1184 static void rmap_remove(struct kvm *kvm, u64 *spte)
1185 {
1186 	struct kvm_memslots *slots;
1187 	struct kvm_memory_slot *slot;
1188 	struct kvm_mmu_page *sp;
1189 	gfn_t gfn;
1190 	struct kvm_rmap_head *rmap_head;
1191 
1192 	sp = sptep_to_sp(spte);
1193 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1194 
1195 	/*
1196 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1197 	 * so we have to determine which memslots to use based on context
1198 	 * information in sp->role.
1199 	 */
1200 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1201 
1202 	slot = __gfn_to_memslot(slots, gfn);
1203 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1204 
1205 	pte_list_remove(kvm, spte, rmap_head);
1206 }
1207 
1208 /*
1209  * Used by the following functions to iterate through the sptes linked by a
1210  * rmap.  All fields are private and not assumed to be used outside.
1211  */
1212 struct rmap_iterator {
1213 	/* private fields */
1214 	struct rmap_head *head;
1215 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1216 	int pos;			/* index of the sptep */
1217 };
1218 
1219 /*
1220  * Iteration must be started by this function.  This should also be used after
1221  * removing/dropping sptes from the rmap link because in such cases the
1222  * information in the iterator may not be valid.
1223  *
1224  * Returns sptep if found, NULL otherwise.
1225  */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1226 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1227 			   struct rmap_iterator *iter)
1228 {
1229 	unsigned long rmap_val = kvm_rmap_get(rmap_head);
1230 
1231 	if (!rmap_val)
1232 		return NULL;
1233 
1234 	if (!(rmap_val & KVM_RMAP_MANY)) {
1235 		iter->desc = NULL;
1236 		return (u64 *)rmap_val;
1237 	}
1238 
1239 	iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1240 	iter->pos = 0;
1241 	return iter->desc->sptes[iter->pos];
1242 }
1243 
1244 /*
1245  * Must be used with a valid iterator: e.g. after rmap_get_first().
1246  *
1247  * Returns sptep if found, NULL otherwise.
1248  */
rmap_get_next(struct rmap_iterator * iter)1249 static u64 *rmap_get_next(struct rmap_iterator *iter)
1250 {
1251 	if (iter->desc) {
1252 		if (iter->pos < PTE_LIST_EXT - 1) {
1253 			++iter->pos;
1254 			if (iter->desc->sptes[iter->pos])
1255 				return iter->desc->sptes[iter->pos];
1256 		}
1257 
1258 		iter->desc = iter->desc->more;
1259 
1260 		if (iter->desc) {
1261 			iter->pos = 0;
1262 			/* desc->sptes[0] cannot be NULL */
1263 			return iter->desc->sptes[iter->pos];
1264 		}
1265 	}
1266 
1267 	return NULL;
1268 }
1269 
1270 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_)	\
1271 	for (_sptep_ = rmap_get_first(_rmap_head_, _iter_);	\
1272 	     _sptep_; _sptep_ = rmap_get_next(_iter_))
1273 
1274 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_)			\
1275 	__for_each_rmap_spte(_rmap_head_, _iter_, _sptep_)			\
1276 		if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_))))	\
1277 
1278 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_)	\
1279 	__for_each_rmap_spte(_rmap_head_, _iter_, _sptep_)			\
1280 		if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep)))
1281 
drop_spte(struct kvm * kvm,u64 * sptep)1282 static void drop_spte(struct kvm *kvm, u64 *sptep)
1283 {
1284 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1285 
1286 	if (is_shadow_present_pte(old_spte))
1287 		rmap_remove(kvm, sptep);
1288 }
1289 
drop_large_spte(struct kvm * kvm,u64 * sptep,bool flush)1290 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1291 {
1292 	struct kvm_mmu_page *sp;
1293 
1294 	sp = sptep_to_sp(sptep);
1295 	WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1296 
1297 	drop_spte(kvm, sptep);
1298 
1299 	if (flush)
1300 		kvm_flush_remote_tlbs_sptep(kvm, sptep);
1301 }
1302 
1303 /*
1304  * Write-protect on the specified @sptep, @pt_protect indicates whether
1305  * spte write-protection is caused by protecting shadow page table.
1306  *
1307  * Note: write protection is difference between dirty logging and spte
1308  * protection:
1309  * - for dirty logging, the spte can be set to writable at anytime if
1310  *   its dirty bitmap is properly set.
1311  * - for spte protection, the spte can be writable only after unsync-ing
1312  *   shadow page.
1313  *
1314  * Return true if tlb need be flushed.
1315  */
spte_write_protect(u64 * sptep,bool pt_protect)1316 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1317 {
1318 	u64 spte = *sptep;
1319 
1320 	if (!is_writable_pte(spte) &&
1321 	    !(pt_protect && is_mmu_writable_spte(spte)))
1322 		return false;
1323 
1324 	if (pt_protect)
1325 		spte &= ~shadow_mmu_writable_mask;
1326 	spte = spte & ~PT_WRITABLE_MASK;
1327 
1328 	return mmu_spte_update(sptep, spte);
1329 }
1330 
rmap_write_protect(struct kvm_rmap_head * rmap_head,bool pt_protect)1331 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1332 			       bool pt_protect)
1333 {
1334 	u64 *sptep;
1335 	struct rmap_iterator iter;
1336 	bool flush = false;
1337 
1338 	for_each_rmap_spte(rmap_head, &iter, sptep)
1339 		flush |= spte_write_protect(sptep, pt_protect);
1340 
1341 	return flush;
1342 }
1343 
spte_clear_dirty(u64 * sptep)1344 static bool spte_clear_dirty(u64 *sptep)
1345 {
1346 	u64 spte = *sptep;
1347 
1348 	KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1349 	spte &= ~shadow_dirty_mask;
1350 	return mmu_spte_update(sptep, spte);
1351 }
1352 
1353 /*
1354  * Gets the GFN ready for another round of dirty logging by clearing the
1355  *	- D bit on ad-enabled SPTEs, and
1356  *	- W bit on ad-disabled SPTEs.
1357  * Returns true iff any D or W bits were cleared.
1358  */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1359 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1360 			       const struct kvm_memory_slot *slot)
1361 {
1362 	u64 *sptep;
1363 	struct rmap_iterator iter;
1364 	bool flush = false;
1365 
1366 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1367 		if (spte_ad_need_write_protect(*sptep))
1368 			flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
1369 						    (unsigned long *)sptep);
1370 		else
1371 			flush |= spte_clear_dirty(sptep);
1372 	}
1373 
1374 	return flush;
1375 }
1376 
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1377 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1378 				     struct kvm_memory_slot *slot,
1379 				     gfn_t gfn_offset, unsigned long mask)
1380 {
1381 	struct kvm_rmap_head *rmap_head;
1382 
1383 	if (tdp_mmu_enabled)
1384 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1385 				slot->base_gfn + gfn_offset, mask, true);
1386 
1387 	if (!kvm_memslots_have_rmaps(kvm))
1388 		return;
1389 
1390 	while (mask) {
1391 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1392 					PG_LEVEL_4K, slot);
1393 		rmap_write_protect(rmap_head, false);
1394 
1395 		/* clear the first set bit */
1396 		mask &= mask - 1;
1397 	}
1398 }
1399 
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1400 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1401 					 struct kvm_memory_slot *slot,
1402 					 gfn_t gfn_offset, unsigned long mask)
1403 {
1404 	struct kvm_rmap_head *rmap_head;
1405 
1406 	if (tdp_mmu_enabled)
1407 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1408 				slot->base_gfn + gfn_offset, mask, false);
1409 
1410 	if (!kvm_memslots_have_rmaps(kvm))
1411 		return;
1412 
1413 	while (mask) {
1414 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1415 					PG_LEVEL_4K, slot);
1416 		__rmap_clear_dirty(kvm, rmap_head, slot);
1417 
1418 		/* clear the first set bit */
1419 		mask &= mask - 1;
1420 	}
1421 }
1422 
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1423 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1424 				struct kvm_memory_slot *slot,
1425 				gfn_t gfn_offset, unsigned long mask)
1426 {
1427 	/*
1428 	 * If the slot was assumed to be "initially all dirty", write-protect
1429 	 * huge pages to ensure they are split to 4KiB on the first write (KVM
1430 	 * dirty logs at 4KiB granularity). If eager page splitting is enabled,
1431 	 * immediately try to split huge pages, e.g. so that vCPUs don't get
1432 	 * saddled with the cost of splitting.
1433 	 *
1434 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1435 	 * of memslot has no such restriction, so the range can cross two large
1436 	 * pages.
1437 	 */
1438 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1439 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1440 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1441 
1442 		if (READ_ONCE(eager_page_split))
1443 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1444 
1445 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1446 
1447 		/* Cross two large pages? */
1448 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1449 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1450 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1451 						       PG_LEVEL_2M);
1452 	}
1453 
1454 	/*
1455 	 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
1456 	 * mask.  If PML is enabled and the GFN doesn't need to be write-
1457 	 * protected for other reasons, e.g. shadow paging, clear the Dirty bit.
1458 	 * Otherwise clear the Writable bit.
1459 	 *
1460 	 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
1461 	 * enabled but it chooses between clearing the Dirty bit and Writeable
1462 	 * bit based on the context.
1463 	 */
1464 	if (kvm->arch.cpu_dirty_log_size)
1465 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1466 	else
1467 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1468 }
1469 
kvm_cpu_dirty_log_size(struct kvm * kvm)1470 int kvm_cpu_dirty_log_size(struct kvm *kvm)
1471 {
1472 	return kvm->arch.cpu_dirty_log_size;
1473 }
1474 
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1475 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1476 				    struct kvm_memory_slot *slot, u64 gfn,
1477 				    int min_level)
1478 {
1479 	struct kvm_rmap_head *rmap_head;
1480 	int i;
1481 	bool write_protected = false;
1482 
1483 	if (kvm_memslots_have_rmaps(kvm)) {
1484 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1485 			rmap_head = gfn_to_rmap(gfn, i, slot);
1486 			write_protected |= rmap_write_protect(rmap_head, true);
1487 		}
1488 	}
1489 
1490 	if (tdp_mmu_enabled)
1491 		write_protected |=
1492 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1493 
1494 	return write_protected;
1495 }
1496 
kvm_vcpu_write_protect_gfn(struct kvm_vcpu * vcpu,u64 gfn)1497 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1498 {
1499 	struct kvm_memory_slot *slot;
1500 
1501 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1502 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1503 }
1504 
kvm_zap_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1505 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1506 			 const struct kvm_memory_slot *slot)
1507 {
1508 	return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1509 }
1510 
1511 struct slot_rmap_walk_iterator {
1512 	/* input fields. */
1513 	const struct kvm_memory_slot *slot;
1514 	gfn_t start_gfn;
1515 	gfn_t end_gfn;
1516 	int start_level;
1517 	int end_level;
1518 
1519 	/* output fields. */
1520 	gfn_t gfn;
1521 	struct kvm_rmap_head *rmap;
1522 	int level;
1523 
1524 	/* private field. */
1525 	struct kvm_rmap_head *end_rmap;
1526 };
1527 
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1528 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1529 				 int level)
1530 {
1531 	iterator->level = level;
1532 	iterator->gfn = iterator->start_gfn;
1533 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1534 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1535 }
1536 
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1537 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1538 				const struct kvm_memory_slot *slot,
1539 				int start_level, int end_level,
1540 				gfn_t start_gfn, gfn_t end_gfn)
1541 {
1542 	iterator->slot = slot;
1543 	iterator->start_level = start_level;
1544 	iterator->end_level = end_level;
1545 	iterator->start_gfn = start_gfn;
1546 	iterator->end_gfn = end_gfn;
1547 
1548 	rmap_walk_init_level(iterator, iterator->start_level);
1549 }
1550 
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1551 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1552 {
1553 	return !!iterator->rmap;
1554 }
1555 
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1556 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1557 {
1558 	while (++iterator->rmap <= iterator->end_rmap) {
1559 		iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
1560 
1561 		if (atomic_long_read(&iterator->rmap->val))
1562 			return;
1563 	}
1564 
1565 	if (++iterator->level > iterator->end_level) {
1566 		iterator->rmap = NULL;
1567 		return;
1568 	}
1569 
1570 	rmap_walk_init_level(iterator, iterator->level);
1571 }
1572 
1573 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1574 	   _start_gfn, _end_gfn, _iter_)				\
1575 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1576 				 _end_level_, _start_gfn, _end_gfn);	\
1577 	     slot_rmap_walk_okay(_iter_);				\
1578 	     slot_rmap_walk_next(_iter_))
1579 
1580 /* The return value indicates if tlb flush on all vcpus is needed. */
1581 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
1582 				    struct kvm_rmap_head *rmap_head,
1583 				    const struct kvm_memory_slot *slot);
1584 
__walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool can_yield,bool flush_on_yield,bool flush)1585 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
1586 					      const struct kvm_memory_slot *slot,
1587 					      slot_rmaps_handler fn,
1588 					      int start_level, int end_level,
1589 					      gfn_t start_gfn, gfn_t end_gfn,
1590 					      bool can_yield, bool flush_on_yield,
1591 					      bool flush)
1592 {
1593 	struct slot_rmap_walk_iterator iterator;
1594 
1595 	lockdep_assert_held_write(&kvm->mmu_lock);
1596 
1597 	for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
1598 			end_gfn, &iterator) {
1599 		if (iterator.rmap)
1600 			flush |= fn(kvm, iterator.rmap, slot);
1601 
1602 		if (!can_yield)
1603 			continue;
1604 
1605 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1606 			if (flush && flush_on_yield) {
1607 				kvm_flush_remote_tlbs_range(kvm, start_gfn,
1608 							    iterator.gfn - start_gfn + 1);
1609 				flush = false;
1610 			}
1611 			cond_resched_rwlock_write(&kvm->mmu_lock);
1612 		}
1613 	}
1614 
1615 	return flush;
1616 }
1617 
walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,bool flush_on_yield)1618 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
1619 					    const struct kvm_memory_slot *slot,
1620 					    slot_rmaps_handler fn,
1621 					    int start_level, int end_level,
1622 					    bool flush_on_yield)
1623 {
1624 	return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
1625 				 slot->base_gfn, slot->base_gfn + slot->npages - 1,
1626 				 true, flush_on_yield, false);
1627 }
1628 
walk_slot_rmaps_4k(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,bool flush_on_yield)1629 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
1630 					       const struct kvm_memory_slot *slot,
1631 					       slot_rmaps_handler fn,
1632 					       bool flush_on_yield)
1633 {
1634 	return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
1635 }
1636 
__kvm_rmap_zap_gfn_range(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,bool can_yield,bool flush)1637 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
1638 				     const struct kvm_memory_slot *slot,
1639 				     gfn_t start, gfn_t end, bool can_yield,
1640 				     bool flush)
1641 {
1642 	return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
1643 				 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1644 				 start, end - 1, can_yield, true, flush);
1645 }
1646 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1647 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1648 {
1649 	bool flush = false;
1650 
1651 	/*
1652 	 * To prevent races with vCPUs faulting in a gfn using stale data,
1653 	 * zapping a gfn range must be protected by mmu_invalidate_in_progress
1654 	 * (and mmu_invalidate_seq).  The only exception is memslot deletion;
1655 	 * in that case, SRCU synchronization ensures that SPTEs are zapped
1656 	 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the
1657 	 * invalid slot.
1658 	 */
1659 	lockdep_assert_once(kvm->mmu_invalidate_in_progress ||
1660 			    lockdep_is_held(&kvm->slots_lock));
1661 
1662 	if (kvm_memslots_have_rmaps(kvm))
1663 		flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
1664 						 range->start, range->end,
1665 						 range->may_block, flush);
1666 
1667 	if (tdp_mmu_enabled)
1668 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1669 
1670 	if (kvm_x86_ops.set_apic_access_page_addr &&
1671 	    range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1672 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1673 
1674 	return flush;
1675 }
1676 
1677 #define RMAP_RECYCLE_THRESHOLD 1000
1678 
__rmap_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1679 static void __rmap_add(struct kvm *kvm,
1680 		       struct kvm_mmu_memory_cache *cache,
1681 		       const struct kvm_memory_slot *slot,
1682 		       u64 *spte, gfn_t gfn, unsigned int access)
1683 {
1684 	struct kvm_mmu_page *sp;
1685 	struct kvm_rmap_head *rmap_head;
1686 	int rmap_count;
1687 
1688 	sp = sptep_to_sp(spte);
1689 	kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1690 	kvm_update_page_stats(kvm, sp->role.level, 1);
1691 
1692 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1693 	rmap_count = pte_list_add(kvm, cache, spte, rmap_head);
1694 
1695 	if (rmap_count > kvm->stat.max_mmu_rmap_size)
1696 		kvm->stat.max_mmu_rmap_size = rmap_count;
1697 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1698 		kvm_zap_all_rmap_sptes(kvm, rmap_head);
1699 		kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1700 	}
1701 }
1702 
rmap_add(struct kvm_vcpu * vcpu,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1703 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1704 		     u64 *spte, gfn_t gfn, unsigned int access)
1705 {
1706 	struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1707 
1708 	__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1709 }
1710 
kvm_rmap_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool test_only)1711 static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
1712 				   struct kvm_gfn_range *range,
1713 				   bool test_only)
1714 {
1715 	struct kvm_rmap_head *rmap_head;
1716 	struct rmap_iterator iter;
1717 	unsigned long rmap_val;
1718 	bool young = false;
1719 	u64 *sptep;
1720 	gfn_t gfn;
1721 	int level;
1722 	u64 spte;
1723 
1724 	for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
1725 		for (gfn = range->start; gfn < range->end;
1726 		     gfn += KVM_PAGES_PER_HPAGE(level)) {
1727 			rmap_head = gfn_to_rmap(gfn, level, range->slot);
1728 			rmap_val = kvm_rmap_lock_readonly(rmap_head);
1729 
1730 			for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) {
1731 				if (!is_accessed_spte(spte))
1732 					continue;
1733 
1734 				if (test_only) {
1735 					kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1736 					return true;
1737 				}
1738 
1739 				if (spte_ad_enabled(spte))
1740 					clear_bit((ffs(shadow_accessed_mask) - 1),
1741 						  (unsigned long *)sptep);
1742 				else
1743 					/*
1744 					 * If the following cmpxchg fails, the
1745 					 * spte is being concurrently modified
1746 					 * and should most likely stay young.
1747 					 */
1748 					cmpxchg64(sptep, spte,
1749 					      mark_spte_for_access_track(spte));
1750 				young = true;
1751 			}
1752 
1753 			kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1754 		}
1755 	}
1756 	return young;
1757 }
1758 
kvm_may_have_shadow_mmu_sptes(struct kvm * kvm)1759 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm)
1760 {
1761 	return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages);
1762 }
1763 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1764 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1765 {
1766 	bool young = false;
1767 
1768 	if (tdp_mmu_enabled)
1769 		young = kvm_tdp_mmu_age_gfn_range(kvm, range);
1770 
1771 	if (kvm_may_have_shadow_mmu_sptes(kvm))
1772 		young |= kvm_rmap_age_gfn_range(kvm, range, false);
1773 
1774 	return young;
1775 }
1776 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1777 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1778 {
1779 	bool young = false;
1780 
1781 	if (tdp_mmu_enabled)
1782 		young = kvm_tdp_mmu_test_age_gfn(kvm, range);
1783 
1784 	if (young)
1785 		return young;
1786 
1787 	if (kvm_may_have_shadow_mmu_sptes(kvm))
1788 		young |= kvm_rmap_age_gfn_range(kvm, range, true);
1789 
1790 	return young;
1791 }
1792 
kvm_mmu_check_sptes_at_free(struct kvm_mmu_page * sp)1793 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1794 {
1795 #ifdef CONFIG_KVM_PROVE_MMU
1796 	int i;
1797 
1798 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1799 		if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1800 			pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1801 					   sp->spt[i], &sp->spt[i],
1802 					   kvm_mmu_page_get_gfn(sp, i));
1803 	}
1804 #endif
1805 }
1806 
kvm_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1807 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1808 {
1809 	kvm->arch.n_used_mmu_pages++;
1810 	kvm_account_pgtable_pages((void *)sp->spt, +1);
1811 }
1812 
kvm_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1813 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1814 {
1815 	kvm->arch.n_used_mmu_pages--;
1816 	kvm_account_pgtable_pages((void *)sp->spt, -1);
1817 }
1818 
kvm_mmu_free_shadow_page(struct kvm_mmu_page * sp)1819 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1820 {
1821 	kvm_mmu_check_sptes_at_free(sp);
1822 
1823 	hlist_del(&sp->hash_link);
1824 	list_del(&sp->link);
1825 	free_page((unsigned long)sp->spt);
1826 	free_page((unsigned long)sp->shadowed_translation);
1827 	kmem_cache_free(mmu_page_header_cache, sp);
1828 }
1829 
kvm_page_table_hashfn(gfn_t gfn)1830 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1831 {
1832 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1833 }
1834 
mmu_page_add_parent_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,struct kvm_mmu_page * sp,u64 * parent_pte)1835 static void mmu_page_add_parent_pte(struct kvm *kvm,
1836 				    struct kvm_mmu_memory_cache *cache,
1837 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1838 {
1839 	if (!parent_pte)
1840 		return;
1841 
1842 	pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes);
1843 }
1844 
mmu_page_remove_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1845 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1846 				       u64 *parent_pte)
1847 {
1848 	pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1849 }
1850 
drop_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1851 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1852 			    u64 *parent_pte)
1853 {
1854 	mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1855 	mmu_spte_clear_no_track(parent_pte);
1856 }
1857 
1858 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1859 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1860 {
1861 	u64 *sptep;
1862 	struct rmap_iterator iter;
1863 
1864 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1865 		mark_unsync(sptep);
1866 	}
1867 }
1868 
mark_unsync(u64 * spte)1869 static void mark_unsync(u64 *spte)
1870 {
1871 	struct kvm_mmu_page *sp;
1872 
1873 	sp = sptep_to_sp(spte);
1874 	if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1875 		return;
1876 	if (sp->unsync_children++)
1877 		return;
1878 	kvm_mmu_mark_parents_unsync(sp);
1879 }
1880 
1881 #define KVM_PAGE_ARRAY_NR 16
1882 
1883 struct kvm_mmu_pages {
1884 	struct mmu_page_and_offset {
1885 		struct kvm_mmu_page *sp;
1886 		unsigned int idx;
1887 	} page[KVM_PAGE_ARRAY_NR];
1888 	unsigned int nr;
1889 };
1890 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1891 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1892 			 int idx)
1893 {
1894 	int i;
1895 
1896 	if (sp->unsync)
1897 		for (i=0; i < pvec->nr; i++)
1898 			if (pvec->page[i].sp == sp)
1899 				return 0;
1900 
1901 	pvec->page[pvec->nr].sp = sp;
1902 	pvec->page[pvec->nr].idx = idx;
1903 	pvec->nr++;
1904 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1905 }
1906 
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1907 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1908 {
1909 	--sp->unsync_children;
1910 	WARN_ON_ONCE((int)sp->unsync_children < 0);
1911 	__clear_bit(idx, sp->unsync_child_bitmap);
1912 }
1913 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1914 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1915 			   struct kvm_mmu_pages *pvec)
1916 {
1917 	int i, ret, nr_unsync_leaf = 0;
1918 
1919 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1920 		struct kvm_mmu_page *child;
1921 		u64 ent = sp->spt[i];
1922 
1923 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1924 			clear_unsync_child_bit(sp, i);
1925 			continue;
1926 		}
1927 
1928 		child = spte_to_child_sp(ent);
1929 
1930 		if (child->unsync_children) {
1931 			if (mmu_pages_add(pvec, child, i))
1932 				return -ENOSPC;
1933 
1934 			ret = __mmu_unsync_walk(child, pvec);
1935 			if (!ret) {
1936 				clear_unsync_child_bit(sp, i);
1937 				continue;
1938 			} else if (ret > 0) {
1939 				nr_unsync_leaf += ret;
1940 			} else
1941 				return ret;
1942 		} else if (child->unsync) {
1943 			nr_unsync_leaf++;
1944 			if (mmu_pages_add(pvec, child, i))
1945 				return -ENOSPC;
1946 		} else
1947 			clear_unsync_child_bit(sp, i);
1948 	}
1949 
1950 	return nr_unsync_leaf;
1951 }
1952 
1953 #define INVALID_INDEX (-1)
1954 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1955 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1956 			   struct kvm_mmu_pages *pvec)
1957 {
1958 	pvec->nr = 0;
1959 	if (!sp->unsync_children)
1960 		return 0;
1961 
1962 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1963 	return __mmu_unsync_walk(sp, pvec);
1964 }
1965 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1966 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1967 {
1968 	WARN_ON_ONCE(!sp->unsync);
1969 	trace_kvm_mmu_sync_page(sp);
1970 	sp->unsync = 0;
1971 	--kvm->stat.mmu_unsync;
1972 }
1973 
1974 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1975 				     struct list_head *invalid_list);
1976 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1977 				    struct list_head *invalid_list);
1978 
sp_has_gptes(struct kvm_mmu_page * sp)1979 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1980 {
1981 	if (sp->role.direct)
1982 		return false;
1983 
1984 	if (sp->role.passthrough)
1985 		return false;
1986 
1987 	return true;
1988 }
1989 
1990 static __ro_after_init HLIST_HEAD(empty_page_hash);
1991 
kvm_get_mmu_page_hash(struct kvm * kvm,gfn_t gfn)1992 static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn)
1993 {
1994 	/*
1995 	 * Ensure the load of the hash table pointer itself is ordered before
1996 	 * loads to walk the table.  The pointer is set at runtime outside of
1997 	 * mmu_lock when the TDP MMU is enabled, i.e. when the hash table of
1998 	 * shadow pages becomes necessary only when KVM needs to shadow L1's
1999 	 * TDP for an L2 guest.  Pairs with the smp_store_release() in
2000 	 * kvm_mmu_alloc_page_hash().
2001 	 */
2002 	struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash);
2003 
2004 	lockdep_assert_held(&kvm->mmu_lock);
2005 
2006 	if (!page_hash)
2007 		return &empty_page_hash;
2008 
2009 	return &page_hash[kvm_page_table_hashfn(gfn)];
2010 }
2011 
2012 #define for_each_valid_sp(_kvm, _sp, _list)				\
2013 	hlist_for_each_entry(_sp, _list, hash_link)			\
2014 		if (is_obsolete_sp((_kvm), (_sp))) {			\
2015 		} else
2016 
2017 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
2018 	for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn))	\
2019 		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
2020 
kvm_sync_page_check(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2021 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2022 {
2023 	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
2024 
2025 	/*
2026 	 * Ignore various flags when verifying that it's safe to sync a shadow
2027 	 * page using the current MMU context.
2028 	 *
2029 	 *  - level: not part of the overall MMU role and will never match as the MMU's
2030 	 *           level tracks the root level
2031 	 *  - access: updated based on the new guest PTE
2032 	 *  - quadrant: not part of the overall MMU role (similar to level)
2033 	 */
2034 	const union kvm_mmu_page_role sync_role_ign = {
2035 		.level = 0xf,
2036 		.access = 0x7,
2037 		.quadrant = 0x3,
2038 		.passthrough = 0x1,
2039 	};
2040 
2041 	/*
2042 	 * Direct pages can never be unsync, and KVM should never attempt to
2043 	 * sync a shadow page for a different MMU context, e.g. if the role
2044 	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
2045 	 * reserved bits checks will be wrong, etc...
2046 	 */
2047 	if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
2048 			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
2049 		return false;
2050 
2051 	return true;
2052 }
2053 
kvm_sync_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,int i)2054 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
2055 {
2056 	/* sp->spt[i] has initial value of shadow page table allocation */
2057 	if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
2058 		return 0;
2059 
2060 	return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
2061 }
2062 
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2063 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2064 {
2065 	int flush = 0;
2066 	int i;
2067 
2068 	if (!kvm_sync_page_check(vcpu, sp))
2069 		return -1;
2070 
2071 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
2072 		int ret = kvm_sync_spte(vcpu, sp, i);
2073 
2074 		if (ret < -1)
2075 			return -1;
2076 		flush |= ret;
2077 	}
2078 
2079 	/*
2080 	 * Note, any flush is purely for KVM's correctness, e.g. when dropping
2081 	 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
2082 	 * unmap or dirty logging event doesn't fail to flush.  The guest is
2083 	 * responsible for flushing the TLB to ensure any changes in protection
2084 	 * bits are recognized, i.e. until the guest flushes or page faults on
2085 	 * a relevant address, KVM is architecturally allowed to let vCPUs use
2086 	 * cached translations with the old protection bits.
2087 	 */
2088 	return flush;
2089 }
2090 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2091 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2092 			 struct list_head *invalid_list)
2093 {
2094 	int ret = __kvm_sync_page(vcpu, sp);
2095 
2096 	if (ret < 0)
2097 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2098 	return ret;
2099 }
2100 
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)2101 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2102 					struct list_head *invalid_list,
2103 					bool remote_flush)
2104 {
2105 	if (!remote_flush && list_empty(invalid_list))
2106 		return false;
2107 
2108 	if (!list_empty(invalid_list))
2109 		kvm_mmu_commit_zap_page(kvm, invalid_list);
2110 	else
2111 		kvm_flush_remote_tlbs(kvm);
2112 	return true;
2113 }
2114 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2115 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2116 {
2117 	if (sp->role.invalid)
2118 		return true;
2119 
2120 	/* TDP MMU pages do not use the MMU generation. */
2121 	return !is_tdp_mmu_page(sp) &&
2122 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2123 }
2124 
2125 struct mmu_page_path {
2126 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2127 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2128 };
2129 
2130 #define for_each_sp(pvec, sp, parents, i)			\
2131 		for (i = mmu_pages_first(&pvec, &parents);	\
2132 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2133 			i = mmu_pages_next(&pvec, &parents, i))
2134 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)2135 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2136 			  struct mmu_page_path *parents,
2137 			  int i)
2138 {
2139 	int n;
2140 
2141 	for (n = i+1; n < pvec->nr; n++) {
2142 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2143 		unsigned idx = pvec->page[n].idx;
2144 		int level = sp->role.level;
2145 
2146 		parents->idx[level-1] = idx;
2147 		if (level == PG_LEVEL_4K)
2148 			break;
2149 
2150 		parents->parent[level-2] = sp;
2151 	}
2152 
2153 	return n;
2154 }
2155 
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)2156 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2157 			   struct mmu_page_path *parents)
2158 {
2159 	struct kvm_mmu_page *sp;
2160 	int level;
2161 
2162 	if (pvec->nr == 0)
2163 		return 0;
2164 
2165 	WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2166 
2167 	sp = pvec->page[0].sp;
2168 	level = sp->role.level;
2169 	WARN_ON_ONCE(level == PG_LEVEL_4K);
2170 
2171 	parents->parent[level-2] = sp;
2172 
2173 	/* Also set up a sentinel.  Further entries in pvec are all
2174 	 * children of sp, so this element is never overwritten.
2175 	 */
2176 	parents->parent[level-1] = NULL;
2177 	return mmu_pages_next(pvec, parents, 0);
2178 }
2179 
mmu_pages_clear_parents(struct mmu_page_path * parents)2180 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2181 {
2182 	struct kvm_mmu_page *sp;
2183 	unsigned int level = 0;
2184 
2185 	do {
2186 		unsigned int idx = parents->idx[level];
2187 		sp = parents->parent[level];
2188 		if (!sp)
2189 			return;
2190 
2191 		WARN_ON_ONCE(idx == INVALID_INDEX);
2192 		clear_unsync_child_bit(sp, idx);
2193 		level++;
2194 	} while (!sp->unsync_children);
2195 }
2196 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)2197 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2198 			     struct kvm_mmu_page *parent, bool can_yield)
2199 {
2200 	int i;
2201 	struct kvm_mmu_page *sp;
2202 	struct mmu_page_path parents;
2203 	struct kvm_mmu_pages pages;
2204 	LIST_HEAD(invalid_list);
2205 	bool flush = false;
2206 
2207 	while (mmu_unsync_walk(parent, &pages)) {
2208 		bool protected = false;
2209 
2210 		for_each_sp(pages, sp, parents, i)
2211 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2212 
2213 		if (protected) {
2214 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2215 			flush = false;
2216 		}
2217 
2218 		for_each_sp(pages, sp, parents, i) {
2219 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2220 			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2221 			mmu_pages_clear_parents(&parents);
2222 		}
2223 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2224 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2225 			if (!can_yield) {
2226 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2227 				return -EINTR;
2228 			}
2229 
2230 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2231 			flush = false;
2232 		}
2233 	}
2234 
2235 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2236 	return 0;
2237 }
2238 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2239 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2240 {
2241 	atomic_set(&sp->write_flooding_count,  0);
2242 }
2243 
clear_sp_write_flooding_count(u64 * spte)2244 static void clear_sp_write_flooding_count(u64 *spte)
2245 {
2246 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2247 }
2248 
2249 /*
2250  * The vCPU is required when finding indirect shadow pages; the shadow
2251  * page may already exist and syncing it needs the vCPU pointer in
2252  * order to read guest page tables.  Direct shadow pages are never
2253  * unsync, thus @vcpu can be NULL if @role.direct is true.
2254  */
kvm_mmu_find_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2255 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2256 						     struct kvm_vcpu *vcpu,
2257 						     gfn_t gfn,
2258 						     struct hlist_head *sp_list,
2259 						     union kvm_mmu_page_role role)
2260 {
2261 	struct kvm_mmu_page *sp;
2262 	int ret;
2263 	int collisions = 0;
2264 	LIST_HEAD(invalid_list);
2265 
2266 	for_each_valid_sp(kvm, sp, sp_list) {
2267 		if (sp->gfn != gfn) {
2268 			collisions++;
2269 			continue;
2270 		}
2271 
2272 		if (sp->role.word != role.word) {
2273 			/*
2274 			 * If the guest is creating an upper-level page, zap
2275 			 * unsync pages for the same gfn.  While it's possible
2276 			 * the guest is using recursive page tables, in all
2277 			 * likelihood the guest has stopped using the unsync
2278 			 * page and is installing a completely unrelated page.
2279 			 * Unsync pages must not be left as is, because the new
2280 			 * upper-level page will be write-protected.
2281 			 */
2282 			if (role.level > PG_LEVEL_4K && sp->unsync)
2283 				kvm_mmu_prepare_zap_page(kvm, sp,
2284 							 &invalid_list);
2285 			continue;
2286 		}
2287 
2288 		/* unsync and write-flooding only apply to indirect SPs. */
2289 		if (sp->role.direct)
2290 			goto out;
2291 
2292 		if (sp->unsync) {
2293 			if (KVM_BUG_ON(!vcpu, kvm))
2294 				break;
2295 
2296 			/*
2297 			 * The page is good, but is stale.  kvm_sync_page does
2298 			 * get the latest guest state, but (unlike mmu_unsync_children)
2299 			 * it doesn't write-protect the page or mark it synchronized!
2300 			 * This way the validity of the mapping is ensured, but the
2301 			 * overhead of write protection is not incurred until the
2302 			 * guest invalidates the TLB mapping.  This allows multiple
2303 			 * SPs for a single gfn to be unsync.
2304 			 *
2305 			 * If the sync fails, the page is zapped.  If so, break
2306 			 * in order to rebuild it.
2307 			 */
2308 			ret = kvm_sync_page(vcpu, sp, &invalid_list);
2309 			if (ret < 0)
2310 				break;
2311 
2312 			WARN_ON_ONCE(!list_empty(&invalid_list));
2313 			if (ret > 0)
2314 				kvm_flush_remote_tlbs(kvm);
2315 		}
2316 
2317 		__clear_sp_write_flooding_count(sp);
2318 
2319 		goto out;
2320 	}
2321 
2322 	sp = NULL;
2323 	++kvm->stat.mmu_cache_miss;
2324 
2325 out:
2326 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2327 
2328 	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2329 		kvm->stat.max_mmu_page_hash_collisions = collisions;
2330 	return sp;
2331 }
2332 
2333 /* Caches used when allocating a new shadow page. */
2334 struct shadow_page_caches {
2335 	struct kvm_mmu_memory_cache *page_header_cache;
2336 	struct kvm_mmu_memory_cache *shadow_page_cache;
2337 	struct kvm_mmu_memory_cache *shadowed_info_cache;
2338 };
2339 
kvm_mmu_alloc_shadow_page(struct kvm * kvm,struct shadow_page_caches * caches,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2340 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2341 						      struct shadow_page_caches *caches,
2342 						      gfn_t gfn,
2343 						      struct hlist_head *sp_list,
2344 						      union kvm_mmu_page_role role)
2345 {
2346 	struct kvm_mmu_page *sp;
2347 
2348 	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2349 	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2350 	if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL)
2351 		sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2352 
2353 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2354 
2355 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2356 
2357 	/*
2358 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2359 	 * depends on valid pages being added to the head of the list.  See
2360 	 * comments in kvm_zap_obsolete_pages().
2361 	 */
2362 	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2363 	list_add(&sp->link, &kvm->arch.active_mmu_pages);
2364 	kvm_account_mmu_page(kvm, sp);
2365 
2366 	sp->gfn = gfn;
2367 	sp->role = role;
2368 	hlist_add_head(&sp->hash_link, sp_list);
2369 	if (sp_has_gptes(sp))
2370 		account_shadowed(kvm, sp);
2371 
2372 	return sp;
2373 }
2374 
2375 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
__kvm_mmu_get_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,struct shadow_page_caches * caches,gfn_t gfn,union kvm_mmu_page_role role)2376 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2377 						      struct kvm_vcpu *vcpu,
2378 						      struct shadow_page_caches *caches,
2379 						      gfn_t gfn,
2380 						      union kvm_mmu_page_role role)
2381 {
2382 	struct hlist_head *sp_list;
2383 	struct kvm_mmu_page *sp;
2384 	bool created = false;
2385 
2386 	/*
2387 	 * No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as
2388 	 * mmu_page_hash must be set prior to creating the first shadow root,
2389 	 * i.e. reaching this point is fully serialized by slots_arch_lock.
2390 	 */
2391 	BUG_ON(!kvm->arch.mmu_page_hash);
2392 	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2393 
2394 	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2395 	if (!sp) {
2396 		created = true;
2397 		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2398 	}
2399 
2400 	trace_kvm_mmu_get_page(sp, created);
2401 	return sp;
2402 }
2403 
kvm_mmu_get_shadow_page(struct kvm_vcpu * vcpu,gfn_t gfn,union kvm_mmu_page_role role)2404 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2405 						    gfn_t gfn,
2406 						    union kvm_mmu_page_role role)
2407 {
2408 	struct shadow_page_caches caches = {
2409 		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2410 		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2411 		.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2412 	};
2413 
2414 	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2415 }
2416 
kvm_mmu_child_role(u64 * sptep,bool direct,unsigned int access)2417 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2418 						  unsigned int access)
2419 {
2420 	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2421 	union kvm_mmu_page_role role;
2422 
2423 	role = parent_sp->role;
2424 	role.level--;
2425 	role.access = access;
2426 	role.direct = direct;
2427 	role.passthrough = 0;
2428 
2429 	/*
2430 	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2431 	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2432 	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2433 	 * shadow each guest page table with multiple shadow page tables, which
2434 	 * requires extra bookkeeping in the role.
2435 	 *
2436 	 * Specifically, to shadow the guest's page directory (which covers a
2437 	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2438 	 * 1GiB of the address space. @role.quadrant encodes which quarter of
2439 	 * the address space each maps.
2440 	 *
2441 	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2442 	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2443 	 * @role.quadrant encodes which half of the region they map.
2444 	 *
2445 	 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2446 	 * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2447 	 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2448 	 * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2449 	 * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2450 	 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2451 	 * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2452 	 * covers bit 21 (see above), thus the quadrant is calculated from the
2453 	 * _least_ significant bit of the PDE index.
2454 	 */
2455 	if (role.has_4_byte_gpte) {
2456 		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2457 		role.quadrant = spte_index(sptep) & 1;
2458 	}
2459 
2460 	return role;
2461 }
2462 
kvm_mmu_get_child_sp(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,bool direct,unsigned int access)2463 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2464 						 u64 *sptep, gfn_t gfn,
2465 						 bool direct, unsigned int access)
2466 {
2467 	union kvm_mmu_page_role role;
2468 
2469 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2470 		return ERR_PTR(-EEXIST);
2471 
2472 	role = kvm_mmu_child_role(sptep, direct, access);
2473 	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2474 }
2475 
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2476 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2477 					struct kvm_vcpu *vcpu, hpa_t root,
2478 					u64 addr)
2479 {
2480 	iterator->addr = addr;
2481 	iterator->shadow_addr = root;
2482 	iterator->level = vcpu->arch.mmu->root_role.level;
2483 
2484 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2485 	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2486 	    !vcpu->arch.mmu->root_role.direct)
2487 		iterator->level = PT32E_ROOT_LEVEL;
2488 
2489 	if (iterator->level == PT32E_ROOT_LEVEL) {
2490 		/*
2491 		 * prev_root is currently only used for 64-bit hosts. So only
2492 		 * the active root_hpa is valid here.
2493 		 */
2494 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2495 
2496 		iterator->shadow_addr
2497 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2498 		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2499 		--iterator->level;
2500 		if (!iterator->shadow_addr)
2501 			iterator->level = 0;
2502 	}
2503 }
2504 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2505 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2506 			     struct kvm_vcpu *vcpu, u64 addr)
2507 {
2508 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2509 				    addr);
2510 }
2511 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2512 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2513 {
2514 	if (iterator->level < PG_LEVEL_4K)
2515 		return false;
2516 
2517 	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2518 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2519 	return true;
2520 }
2521 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2522 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2523 			       u64 spte)
2524 {
2525 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2526 		iterator->level = 0;
2527 		return;
2528 	}
2529 
2530 	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2531 	--iterator->level;
2532 }
2533 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2534 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2535 {
2536 	__shadow_walk_next(iterator, *iterator->sptep);
2537 }
2538 
__link_shadow_page(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * sptep,struct kvm_mmu_page * sp,bool flush)2539 static void __link_shadow_page(struct kvm *kvm,
2540 			       struct kvm_mmu_memory_cache *cache, u64 *sptep,
2541 			       struct kvm_mmu_page *sp, bool flush)
2542 {
2543 	u64 spte;
2544 
2545 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2546 
2547 	/*
2548 	 * If an SPTE is present already, it must be a leaf and therefore
2549 	 * a large one.  Drop it, and flush the TLB if needed, before
2550 	 * installing sp.
2551 	 */
2552 	if (is_shadow_present_pte(*sptep))
2553 		drop_large_spte(kvm, sptep, flush);
2554 
2555 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2556 
2557 	mmu_spte_set(sptep, spte);
2558 
2559 	mmu_page_add_parent_pte(kvm, cache, sp, sptep);
2560 
2561 	/*
2562 	 * The non-direct sub-pagetable must be updated before linking.  For
2563 	 * L1 sp, the pagetable is updated via kvm_sync_page() in
2564 	 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2565 	 * so sp->unsync can be true or false.  For higher level non-direct
2566 	 * sp, the pagetable is updated/synced via mmu_sync_children() in
2567 	 * FNAME(fetch)(), so sp->unsync_children can only be false.
2568 	 * WARN_ON_ONCE() if anything happens unexpectedly.
2569 	 */
2570 	if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2571 		mark_unsync(sptep);
2572 }
2573 
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2574 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2575 			     struct kvm_mmu_page *sp)
2576 {
2577 	__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2578 }
2579 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2580 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2581 				   unsigned direct_access)
2582 {
2583 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2584 		struct kvm_mmu_page *child;
2585 
2586 		/*
2587 		 * For the direct sp, if the guest pte's dirty bit
2588 		 * changed form clean to dirty, it will corrupt the
2589 		 * sp's access: allow writable in the read-only sp,
2590 		 * so we should update the spte at this point to get
2591 		 * a new sp with the correct access.
2592 		 */
2593 		child = spte_to_child_sp(*sptep);
2594 		if (child->role.access == direct_access)
2595 			return;
2596 
2597 		drop_parent_pte(vcpu->kvm, child, sptep);
2598 		kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2599 	}
2600 }
2601 
2602 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2603 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2604 			    u64 *spte, struct list_head *invalid_list)
2605 {
2606 	u64 pte;
2607 	struct kvm_mmu_page *child;
2608 
2609 	pte = *spte;
2610 	if (is_shadow_present_pte(pte)) {
2611 		if (is_last_spte(pte, sp->role.level)) {
2612 			drop_spte(kvm, spte);
2613 		} else {
2614 			child = spte_to_child_sp(pte);
2615 			drop_parent_pte(kvm, child, spte);
2616 
2617 			/*
2618 			 * Recursively zap nested TDP SPs, parentless SPs are
2619 			 * unlikely to be used again in the near future.  This
2620 			 * avoids retaining a large number of stale nested SPs.
2621 			 */
2622 			if (tdp_enabled && invalid_list &&
2623 			    child->role.guest_mode &&
2624 			    !atomic_long_read(&child->parent_ptes.val))
2625 				return kvm_mmu_prepare_zap_page(kvm, child,
2626 								invalid_list);
2627 		}
2628 	} else if (is_mmio_spte(kvm, pte)) {
2629 		mmu_spte_clear_no_track(spte);
2630 	}
2631 	return 0;
2632 }
2633 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2634 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2635 					struct kvm_mmu_page *sp,
2636 					struct list_head *invalid_list)
2637 {
2638 	int zapped = 0;
2639 	unsigned i;
2640 
2641 	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2642 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2643 
2644 	return zapped;
2645 }
2646 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2647 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2648 {
2649 	u64 *sptep;
2650 	struct rmap_iterator iter;
2651 
2652 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2653 		drop_parent_pte(kvm, sp, sptep);
2654 }
2655 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2656 static int mmu_zap_unsync_children(struct kvm *kvm,
2657 				   struct kvm_mmu_page *parent,
2658 				   struct list_head *invalid_list)
2659 {
2660 	int i, zapped = 0;
2661 	struct mmu_page_path parents;
2662 	struct kvm_mmu_pages pages;
2663 
2664 	if (parent->role.level == PG_LEVEL_4K)
2665 		return 0;
2666 
2667 	while (mmu_unsync_walk(parent, &pages)) {
2668 		struct kvm_mmu_page *sp;
2669 
2670 		for_each_sp(pages, sp, parents, i) {
2671 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2672 			mmu_pages_clear_parents(&parents);
2673 			zapped++;
2674 		}
2675 	}
2676 
2677 	return zapped;
2678 }
2679 
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2680 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2681 				       struct kvm_mmu_page *sp,
2682 				       struct list_head *invalid_list,
2683 				       int *nr_zapped)
2684 {
2685 	bool list_unstable, zapped_root = false;
2686 
2687 	lockdep_assert_held_write(&kvm->mmu_lock);
2688 	trace_kvm_mmu_prepare_zap_page(sp);
2689 	++kvm->stat.mmu_shadow_zapped;
2690 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2691 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2692 	kvm_mmu_unlink_parents(kvm, sp);
2693 
2694 	/* Zapping children means active_mmu_pages has become unstable. */
2695 	list_unstable = *nr_zapped;
2696 
2697 	if (!sp->role.invalid && sp_has_gptes(sp))
2698 		unaccount_shadowed(kvm, sp);
2699 
2700 	if (sp->unsync)
2701 		kvm_unlink_unsync_page(kvm, sp);
2702 	if (!sp->root_count) {
2703 		/* Count self */
2704 		(*nr_zapped)++;
2705 
2706 		/*
2707 		 * Already invalid pages (previously active roots) are not on
2708 		 * the active page list.  See list_del() in the "else" case of
2709 		 * !sp->root_count.
2710 		 */
2711 		if (sp->role.invalid)
2712 			list_add(&sp->link, invalid_list);
2713 		else
2714 			list_move(&sp->link, invalid_list);
2715 		kvm_unaccount_mmu_page(kvm, sp);
2716 	} else {
2717 		/*
2718 		 * Remove the active root from the active page list, the root
2719 		 * will be explicitly freed when the root_count hits zero.
2720 		 */
2721 		list_del(&sp->link);
2722 
2723 		/*
2724 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2725 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2726 		 * treats invalid shadow pages as being obsolete.
2727 		 */
2728 		zapped_root = !is_obsolete_sp(kvm, sp);
2729 	}
2730 
2731 	if (sp->nx_huge_page_disallowed)
2732 		unaccount_nx_huge_page(kvm, sp);
2733 
2734 	sp->role.invalid = 1;
2735 
2736 	/*
2737 	 * Make the request to free obsolete roots after marking the root
2738 	 * invalid, otherwise other vCPUs may not see it as invalid.
2739 	 */
2740 	if (zapped_root)
2741 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2742 	return list_unstable;
2743 }
2744 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2745 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2746 				     struct list_head *invalid_list)
2747 {
2748 	int nr_zapped;
2749 
2750 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2751 	return nr_zapped;
2752 }
2753 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2754 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2755 				    struct list_head *invalid_list)
2756 {
2757 	struct kvm_mmu_page *sp, *nsp;
2758 
2759 	if (list_empty(invalid_list))
2760 		return;
2761 
2762 	/*
2763 	 * We need to make sure everyone sees our modifications to
2764 	 * the page tables and see changes to vcpu->mode here. The barrier
2765 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2766 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2767 	 *
2768 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2769 	 * guest mode and/or lockless shadow page table walks.
2770 	 */
2771 	kvm_flush_remote_tlbs(kvm);
2772 
2773 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2774 		WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2775 		kvm_mmu_free_shadow_page(sp);
2776 	}
2777 }
2778 
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2779 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2780 						  unsigned long nr_to_zap)
2781 {
2782 	unsigned long total_zapped = 0;
2783 	struct kvm_mmu_page *sp, *tmp;
2784 	LIST_HEAD(invalid_list);
2785 	bool unstable;
2786 	int nr_zapped;
2787 
2788 	if (list_empty(&kvm->arch.active_mmu_pages))
2789 		return 0;
2790 
2791 restart:
2792 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2793 		/*
2794 		 * Don't zap active root pages, the page itself can't be freed
2795 		 * and zapping it will just force vCPUs to realloc and reload.
2796 		 */
2797 		if (sp->root_count)
2798 			continue;
2799 
2800 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2801 						      &nr_zapped);
2802 		total_zapped += nr_zapped;
2803 		if (total_zapped >= nr_to_zap)
2804 			break;
2805 
2806 		if (unstable)
2807 			goto restart;
2808 	}
2809 
2810 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2811 
2812 	kvm->stat.mmu_recycled += total_zapped;
2813 	return total_zapped;
2814 }
2815 
kvm_mmu_available_pages(struct kvm * kvm)2816 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2817 {
2818 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2819 		return kvm->arch.n_max_mmu_pages -
2820 			kvm->arch.n_used_mmu_pages;
2821 
2822 	return 0;
2823 }
2824 
make_mmu_pages_available(struct kvm_vcpu * vcpu)2825 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2826 {
2827 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2828 
2829 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2830 		return 0;
2831 
2832 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2833 
2834 	/*
2835 	 * Note, this check is intentionally soft, it only guarantees that one
2836 	 * page is available, while the caller may end up allocating as many as
2837 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2838 	 * exceeding the (arbitrary by default) limit will not harm the host,
2839 	 * being too aggressive may unnecessarily kill the guest, and getting an
2840 	 * exact count is far more trouble than it's worth, especially in the
2841 	 * page fault paths.
2842 	 */
2843 	if (!kvm_mmu_available_pages(vcpu->kvm))
2844 		return -ENOSPC;
2845 	return 0;
2846 }
2847 
2848 /*
2849  * Changing the number of mmu pages allocated to the vm
2850  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2851  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2852 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2853 {
2854 	write_lock(&kvm->mmu_lock);
2855 
2856 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2857 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2858 						  goal_nr_mmu_pages);
2859 
2860 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2861 	}
2862 
2863 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2864 
2865 	write_unlock(&kvm->mmu_lock);
2866 }
2867 
__kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool always_retry)2868 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2869 				       bool always_retry)
2870 {
2871 	struct kvm *kvm = vcpu->kvm;
2872 	LIST_HEAD(invalid_list);
2873 	struct kvm_mmu_page *sp;
2874 	gpa_t gpa = cr2_or_gpa;
2875 	bool r = false;
2876 
2877 	/*
2878 	 * Bail early if there aren't any write-protected shadow pages to avoid
2879 	 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
2880 	 * by a third party.  Reading indirect_shadow_pages without holding
2881 	 * mmu_lock is safe, as this is purely an optimization, i.e. a false
2882 	 * positive is benign, and a false negative will simply result in KVM
2883 	 * skipping the unprotect+retry path, which is also an optimization.
2884 	 */
2885 	if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
2886 		goto out;
2887 
2888 	if (!vcpu->arch.mmu->root_role.direct) {
2889 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
2890 		if (gpa == INVALID_GPA)
2891 			goto out;
2892 	}
2893 
2894 	write_lock(&kvm->mmu_lock);
2895 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
2896 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2897 
2898 	/*
2899 	 * Snapshot the result before zapping, as zapping will remove all list
2900 	 * entries, i.e. checking the list later would yield a false negative.
2901 	 */
2902 	r = !list_empty(&invalid_list);
2903 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2904 	write_unlock(&kvm->mmu_lock);
2905 
2906 out:
2907 	if (r || always_retry) {
2908 		vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
2909 		vcpu->arch.last_retry_addr = cr2_or_gpa;
2910 	}
2911 	return r;
2912 }
2913 
kvm_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2914 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2915 {
2916 	trace_kvm_mmu_unsync_page(sp);
2917 	++kvm->stat.mmu_unsync;
2918 	sp->unsync = 1;
2919 
2920 	kvm_mmu_mark_parents_unsync(sp);
2921 }
2922 
2923 /*
2924  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2925  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2926  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2927  * be write-protected.
2928  */
mmu_try_to_unsync_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,bool synchronizing,bool prefetch)2929 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2930 			    gfn_t gfn, bool synchronizing, bool prefetch)
2931 {
2932 	struct kvm_mmu_page *sp;
2933 	bool locked = false;
2934 
2935 	/*
2936 	 * Force write-protection if the page is being tracked.  Note, the page
2937 	 * track machinery is used to write-protect upper-level shadow pages,
2938 	 * i.e. this guards the role.level == 4K assertion below!
2939 	 */
2940 	if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2941 		return -EPERM;
2942 
2943 	/*
2944 	 * The page is not write-tracked, mark existing shadow pages unsync
2945 	 * unless KVM is synchronizing an unsync SP.  In that case, KVM must
2946 	 * complete emulation of the guest TLB flush before allowing shadow
2947 	 * pages to become unsync (writable by the guest).
2948 	 */
2949 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2950 		if (synchronizing)
2951 			return -EPERM;
2952 
2953 		if (sp->unsync)
2954 			continue;
2955 
2956 		if (prefetch)
2957 			return -EEXIST;
2958 
2959 		/*
2960 		 * TDP MMU page faults require an additional spinlock as they
2961 		 * run with mmu_lock held for read, not write, and the unsync
2962 		 * logic is not thread safe.  Take the spinklock regardless of
2963 		 * the MMU type to avoid extra conditionals/parameters, there's
2964 		 * no meaningful penalty if mmu_lock is held for write.
2965 		 */
2966 		if (!locked) {
2967 			locked = true;
2968 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2969 
2970 			/*
2971 			 * Recheck after taking the spinlock, a different vCPU
2972 			 * may have since marked the page unsync.  A false
2973 			 * negative on the unprotected check above is not
2974 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2975 			 * for write, i.e. unsync cannot transition from 1->0
2976 			 * while this CPU holds mmu_lock for read (or write).
2977 			 */
2978 			if (READ_ONCE(sp->unsync))
2979 				continue;
2980 		}
2981 
2982 		WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2983 		kvm_unsync_page(kvm, sp);
2984 	}
2985 	if (locked)
2986 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2987 
2988 	/*
2989 	 * We need to ensure that the marking of unsync pages is visible
2990 	 * before the SPTE is updated to allow writes because
2991 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2992 	 * the MMU lock and so can race with this. If the SPTE was updated
2993 	 * before the page had been marked as unsync-ed, something like the
2994 	 * following could happen:
2995 	 *
2996 	 * CPU 1                    CPU 2
2997 	 * ---------------------------------------------------------------------
2998 	 * 1.2 Host updates SPTE
2999 	 *     to be writable
3000 	 *                      2.1 Guest writes a GPTE for GVA X.
3001 	 *                          (GPTE being in the guest page table shadowed
3002 	 *                           by the SP from CPU 1.)
3003 	 *                          This reads SPTE during the page table walk.
3004 	 *                          Since SPTE.W is read as 1, there is no
3005 	 *                          fault.
3006 	 *
3007 	 *                      2.2 Guest issues TLB flush.
3008 	 *                          That causes a VM Exit.
3009 	 *
3010 	 *                      2.3 Walking of unsync pages sees sp->unsync is
3011 	 *                          false and skips the page.
3012 	 *
3013 	 *                      2.4 Guest accesses GVA X.
3014 	 *                          Since the mapping in the SP was not updated,
3015 	 *                          so the old mapping for GVA X incorrectly
3016 	 *                          gets used.
3017 	 * 1.1 Host marks SP
3018 	 *     as unsync
3019 	 *     (sp->unsync = true)
3020 	 *
3021 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
3022 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
3023 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
3024 	 */
3025 	smp_wmb();
3026 
3027 	return 0;
3028 }
3029 
mmu_set_spte(struct kvm_vcpu * vcpu,struct kvm_memory_slot * slot,u64 * sptep,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,struct kvm_page_fault * fault)3030 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
3031 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
3032 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
3033 {
3034 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
3035 	int level = sp->role.level;
3036 	int was_rmapped = 0;
3037 	int ret = RET_PF_FIXED;
3038 	bool flush = false;
3039 	bool wrprot;
3040 	u64 spte;
3041 
3042 	/* Prefetching always gets a writable pfn.  */
3043 	bool host_writable = !fault || fault->map_writable;
3044 	bool prefetch = !fault || fault->prefetch;
3045 	bool write_fault = fault && fault->write;
3046 
3047 	if (unlikely(is_noslot_pfn(pfn))) {
3048 		vcpu->stat.pf_mmio_spte_created++;
3049 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
3050 		return RET_PF_EMULATE;
3051 	}
3052 
3053 	if (is_shadow_present_pte(*sptep)) {
3054 		if (prefetch && is_last_spte(*sptep, level) &&
3055 		    pfn == spte_to_pfn(*sptep))
3056 			return RET_PF_SPURIOUS;
3057 
3058 		/*
3059 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3060 		 * the parent of the now unreachable PTE.
3061 		 */
3062 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3063 			struct kvm_mmu_page *child;
3064 			u64 pte = *sptep;
3065 
3066 			child = spte_to_child_sp(pte);
3067 			drop_parent_pte(vcpu->kvm, child, sptep);
3068 			flush = true;
3069 		} else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) {
3070 			drop_spte(vcpu->kvm, sptep);
3071 			flush = true;
3072 		} else
3073 			was_rmapped = 1;
3074 	}
3075 
3076 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
3077 			   false, host_writable, &spte);
3078 
3079 	if (*sptep == spte) {
3080 		ret = RET_PF_SPURIOUS;
3081 	} else {
3082 		flush |= mmu_spte_update(sptep, spte);
3083 		trace_kvm_mmu_set_spte(level, gfn, sptep);
3084 	}
3085 
3086 	if (wrprot && write_fault)
3087 		ret = RET_PF_WRITE_PROTECTED;
3088 
3089 	if (flush)
3090 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
3091 
3092 	if (!was_rmapped) {
3093 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
3094 		rmap_add(vcpu, slot, sptep, gfn, pte_access);
3095 	} else {
3096 		/* Already rmapped but the pte_access bits may have changed. */
3097 		kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
3098 	}
3099 
3100 	return ret;
3101 }
3102 
kvm_mmu_prefetch_sptes(struct kvm_vcpu * vcpu,gfn_t gfn,u64 * sptep,int nr_pages,unsigned int access)3103 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep,
3104 				   int nr_pages, unsigned int access)
3105 {
3106 	struct page *pages[PTE_PREFETCH_NUM];
3107 	struct kvm_memory_slot *slot;
3108 	int i;
3109 
3110 	if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM))
3111 		return false;
3112 
3113 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3114 	if (!slot)
3115 		return false;
3116 
3117 	nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages);
3118 	if (nr_pages <= 0)
3119 		return false;
3120 
3121 	for (i = 0; i < nr_pages; i++, gfn++, sptep++) {
3122 		mmu_set_spte(vcpu, slot, sptep, access, gfn,
3123 			     page_to_pfn(pages[i]), NULL);
3124 
3125 		/*
3126 		 * KVM always prefetches writable pages from the primary MMU,
3127 		 * and KVM can make its SPTE writable in the fast page handler,
3128 		 * without notifying the primary MMU.  Mark pages/folios dirty
3129 		 * now to ensure file data is written back if it ends up being
3130 		 * written by the guest.  Because KVM's prefetching GUPs
3131 		 * writable PTEs, the probability of unnecessary writeback is
3132 		 * extremely low.
3133 		 */
3134 		kvm_release_page_dirty(pages[i]);
3135 	}
3136 
3137 	return true;
3138 }
3139 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)3140 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3141 				     struct kvm_mmu_page *sp,
3142 				     u64 *start, u64 *end)
3143 {
3144 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
3145 	unsigned int access = sp->role.access;
3146 
3147 	return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access);
3148 }
3149 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)3150 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3151 				  struct kvm_mmu_page *sp, u64 *sptep)
3152 {
3153 	u64 *spte, *start = NULL;
3154 	int i;
3155 
3156 	WARN_ON_ONCE(!sp->role.direct);
3157 
3158 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3159 	spte = sp->spt + i;
3160 
3161 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3162 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3163 			if (!start)
3164 				continue;
3165 			if (!direct_pte_prefetch_many(vcpu, sp, start, spte))
3166 				return;
3167 
3168 			start = NULL;
3169 		} else if (!start)
3170 			start = spte;
3171 	}
3172 	if (start)
3173 		direct_pte_prefetch_many(vcpu, sp, start, spte);
3174 }
3175 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)3176 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3177 {
3178 	struct kvm_mmu_page *sp;
3179 
3180 	sp = sptep_to_sp(sptep);
3181 
3182 	/*
3183 	 * Without accessed bits, there's no way to distinguish between
3184 	 * actually accessed translations and prefetched, so disable pte
3185 	 * prefetch if accessed bits aren't available.
3186 	 */
3187 	if (sp_ad_disabled(sp))
3188 		return;
3189 
3190 	if (sp->role.level > PG_LEVEL_4K)
3191 		return;
3192 
3193 	/*
3194 	 * If addresses are being invalidated, skip prefetching to avoid
3195 	 * accidentally prefetching those addresses.
3196 	 */
3197 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3198 		return;
3199 
3200 	__direct_pte_prefetch(vcpu, sp, sptep);
3201 }
3202 
3203 /*
3204  * Lookup the mapping level for @gfn in the current mm.
3205  *
3206  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
3207  * consumer to be tied into KVM's handlers for MMU notifier events!
3208  *
3209  * There are several ways to safely use this helper:
3210  *
3211  * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3212  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3213  *   lookup, but it does need to be held while checking the MMU notifier.
3214  *
3215  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3216  *   event for the hva.  This can be done by explicit checking the MMU notifier
3217  *   or by ensuring that KVM already has a valid mapping that covers the hva.
3218  *
3219  * - Do not use the result to install new mappings, e.g. use the host mapping
3220  *   level only to decide whether or not to zap an entry.  In this case, it's
3221  *   not required to hold mmu_lock (though it's highly likely the caller will
3222  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3223  *
3224  * Note!  The lookup can still race with modifications to host page tables, but
3225  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3226  * race with the primary MMU occurs.
3227  */
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,const struct kvm_memory_slot * slot)3228 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3229 				  const struct kvm_memory_slot *slot)
3230 {
3231 	int level = PG_LEVEL_4K;
3232 	unsigned long hva;
3233 	unsigned long flags;
3234 	pgd_t pgd;
3235 	p4d_t p4d;
3236 	pud_t pud;
3237 	pmd_t pmd;
3238 
3239 	/*
3240 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3241 	 * is not solely for performance, it's also necessary to avoid the
3242 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
3243 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3244 	 * page fault steps have already verified the guest isn't writing a
3245 	 * read-only memslot.
3246 	 */
3247 	hva = __gfn_to_hva_memslot(slot, gfn);
3248 
3249 	/*
3250 	 * Disable IRQs to prevent concurrent tear down of host page tables,
3251 	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3252 	 * the original page table.
3253 	 */
3254 	local_irq_save(flags);
3255 
3256 	/*
3257 	 * Read each entry once.  As above, a non-leaf entry can be promoted to
3258 	 * a huge page _during_ this walk.  Re-reading the entry could send the
3259 	 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3260 	 * value) and then p*d_offset() walks into the target huge page instead
3261 	 * of the old page table (sees the new value).
3262 	 */
3263 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3264 	if (pgd_none(pgd))
3265 		goto out;
3266 
3267 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3268 	if (p4d_none(p4d) || !p4d_present(p4d))
3269 		goto out;
3270 
3271 	pud = READ_ONCE(*pud_offset(&p4d, hva));
3272 	if (pud_none(pud) || !pud_present(pud))
3273 		goto out;
3274 
3275 	if (pud_leaf(pud)) {
3276 		level = PG_LEVEL_1G;
3277 		goto out;
3278 	}
3279 
3280 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
3281 	if (pmd_none(pmd) || !pmd_present(pmd))
3282 		goto out;
3283 
3284 	if (pmd_leaf(pmd))
3285 		level = PG_LEVEL_2M;
3286 
3287 out:
3288 	local_irq_restore(flags);
3289 	return level;
3290 }
3291 
kvm_max_level_for_order(int order)3292 static u8 kvm_max_level_for_order(int order)
3293 {
3294 	BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
3295 
3296 	KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
3297 			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
3298 			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
3299 
3300 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
3301 		return PG_LEVEL_1G;
3302 
3303 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
3304 		return PG_LEVEL_2M;
3305 
3306 	return PG_LEVEL_4K;
3307 }
3308 
kvm_gmem_max_mapping_level(struct kvm * kvm,struct kvm_page_fault * fault,const struct kvm_memory_slot * slot,gfn_t gfn,bool is_private)3309 static u8 kvm_gmem_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault,
3310 				     const struct kvm_memory_slot *slot, gfn_t gfn,
3311 				     bool is_private)
3312 {
3313 	u8 max_level, coco_level;
3314 	kvm_pfn_t pfn;
3315 
3316 	/* For faults, use the gmem information that was resolved earlier. */
3317 	if (fault) {
3318 		pfn = fault->pfn;
3319 		max_level = fault->max_level;
3320 	} else {
3321 		/* TODO: Call into guest_memfd once hugepages are supported. */
3322 		WARN_ONCE(1, "Get pfn+order from guest_memfd");
3323 		pfn = KVM_PFN_ERR_FAULT;
3324 		max_level = PG_LEVEL_4K;
3325 	}
3326 
3327 	if (max_level == PG_LEVEL_4K)
3328 		return max_level;
3329 
3330 	/*
3331 	 * CoCo may influence the max mapping level, e.g. due to RMP or S-EPT
3332 	 * restrictions.  A return of '0' means "no additional restrictions", to
3333 	 * allow for using an optional "ret0" static call.
3334 	 */
3335 	coco_level = kvm_x86_call(gmem_max_mapping_level)(kvm, pfn, is_private);
3336 	if (coco_level)
3337 		max_level = min(max_level, coco_level);
3338 
3339 	return max_level;
3340 }
3341 
kvm_mmu_max_mapping_level(struct kvm * kvm,struct kvm_page_fault * fault,const struct kvm_memory_slot * slot,gfn_t gfn)3342 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault,
3343 			      const struct kvm_memory_slot *slot, gfn_t gfn)
3344 {
3345 	struct kvm_lpage_info *linfo;
3346 	int host_level, max_level;
3347 	bool is_private;
3348 
3349 	lockdep_assert_held(&kvm->mmu_lock);
3350 
3351 	if (fault) {
3352 		max_level = fault->max_level;
3353 		is_private = fault->is_private;
3354 	} else {
3355 		max_level = PG_LEVEL_NUM;
3356 		is_private = kvm_mem_is_private(kvm, gfn);
3357 	}
3358 
3359 	max_level = min(max_level, max_huge_page_level);
3360 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3361 		linfo = lpage_info_slot(gfn, slot, max_level);
3362 		if (!linfo->disallow_lpage)
3363 			break;
3364 	}
3365 
3366 	if (max_level == PG_LEVEL_4K)
3367 		return PG_LEVEL_4K;
3368 
3369 	if (is_private || kvm_memslot_is_gmem_only(slot))
3370 		host_level = kvm_gmem_max_mapping_level(kvm, fault, slot, gfn,
3371 							is_private);
3372 	else
3373 		host_level = host_pfn_mapping_level(kvm, gfn, slot);
3374 	return min(host_level, max_level);
3375 }
3376 
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3377 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3378 {
3379 	struct kvm_memory_slot *slot = fault->slot;
3380 	kvm_pfn_t mask;
3381 
3382 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3383 
3384 	if (unlikely(fault->max_level == PG_LEVEL_4K))
3385 		return;
3386 
3387 	if (is_error_noslot_pfn(fault->pfn))
3388 		return;
3389 
3390 	if (kvm_slot_dirty_track_enabled(slot))
3391 		return;
3392 
3393 	/*
3394 	 * Enforce the iTLB multihit workaround after capturing the requested
3395 	 * level, which will be used to do precise, accurate accounting.
3396 	 */
3397 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, fault,
3398 						     fault->slot, fault->gfn);
3399 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3400 		return;
3401 
3402 	/*
3403 	 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3404 	 * the pmd can't be split from under us.
3405 	 */
3406 	fault->goal_level = fault->req_level;
3407 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3408 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3409 	fault->pfn &= ~mask;
3410 }
3411 
disallowed_hugepage_adjust(struct kvm_page_fault * fault,u64 spte,int cur_level)3412 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3413 {
3414 	if (cur_level > PG_LEVEL_4K &&
3415 	    cur_level == fault->goal_level &&
3416 	    is_shadow_present_pte(spte) &&
3417 	    !is_large_pte(spte) &&
3418 	    spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3419 		/*
3420 		 * A small SPTE exists for this pfn, but FNAME(fetch),
3421 		 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3422 		 * large PTE instead: just force them to go down another level,
3423 		 * patching back for them into pfn the next 9 bits of the
3424 		 * address.
3425 		 */
3426 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3427 				KVM_PAGES_PER_HPAGE(cur_level - 1);
3428 		fault->pfn |= fault->gfn & page_mask;
3429 		fault->goal_level--;
3430 	}
3431 }
3432 
direct_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3433 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3434 {
3435 	struct kvm_shadow_walk_iterator it;
3436 	struct kvm_mmu_page *sp;
3437 	int ret;
3438 	gfn_t base_gfn = fault->gfn;
3439 
3440 	kvm_mmu_hugepage_adjust(vcpu, fault);
3441 
3442 	trace_kvm_mmu_spte_requested(fault);
3443 	for_each_shadow_entry(vcpu, fault->addr, it) {
3444 		/*
3445 		 * We cannot overwrite existing page tables with an NX
3446 		 * large page, as the leaf could be executable.
3447 		 */
3448 		if (fault->nx_huge_page_workaround_enabled)
3449 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3450 
3451 		base_gfn = gfn_round_for_level(fault->gfn, it.level);
3452 		if (it.level == fault->goal_level)
3453 			break;
3454 
3455 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3456 		if (sp == ERR_PTR(-EEXIST))
3457 			continue;
3458 
3459 		link_shadow_page(vcpu, it.sptep, sp);
3460 		if (fault->huge_page_disallowed)
3461 			account_nx_huge_page(vcpu->kvm, sp,
3462 					     fault->req_level >= it.level);
3463 	}
3464 
3465 	if (WARN_ON_ONCE(it.level != fault->goal_level))
3466 		return -EFAULT;
3467 
3468 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3469 			   base_gfn, fault->pfn, fault);
3470 	if (ret == RET_PF_SPURIOUS)
3471 		return ret;
3472 
3473 	direct_pte_prefetch(vcpu, it.sptep);
3474 	return ret;
3475 }
3476 
kvm_send_hwpoison_signal(struct kvm_memory_slot * slot,gfn_t gfn)3477 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3478 {
3479 	unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3480 
3481 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3482 }
3483 
kvm_handle_error_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3484 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3485 {
3486 	if (is_sigpending_pfn(fault->pfn)) {
3487 		kvm_handle_signal_exit(vcpu);
3488 		return -EINTR;
3489 	}
3490 
3491 	/*
3492 	 * Do not cache the mmio info caused by writing the readonly gfn
3493 	 * into the spte otherwise read access on readonly gfn also can
3494 	 * caused mmio page fault and treat it as mmio access.
3495 	 */
3496 	if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3497 		return RET_PF_EMULATE;
3498 
3499 	if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3500 		kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3501 		return RET_PF_RETRY;
3502 	}
3503 
3504 	return -EFAULT;
3505 }
3506 
kvm_handle_noslot_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)3507 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3508 				   struct kvm_page_fault *fault,
3509 				   unsigned int access)
3510 {
3511 	gva_t gva = fault->is_tdp ? 0 : fault->addr;
3512 
3513 	if (fault->is_private) {
3514 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
3515 		return -EFAULT;
3516 	}
3517 
3518 	vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3519 			     access & shadow_mmio_access_mask);
3520 
3521 	fault->slot = NULL;
3522 	fault->pfn = KVM_PFN_NOSLOT;
3523 	fault->map_writable = false;
3524 
3525 	/*
3526 	 * If MMIO caching is disabled, emulate immediately without
3527 	 * touching the shadow page tables as attempting to install an
3528 	 * MMIO SPTE will just be an expensive nop.
3529 	 */
3530 	if (unlikely(!enable_mmio_caching))
3531 		return RET_PF_EMULATE;
3532 
3533 	/*
3534 	 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3535 	 * any guest that generates such gfns is running nested and is being
3536 	 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3537 	 * only if L1's MAXPHYADDR is inaccurate with respect to the
3538 	 * hardware's).
3539 	 */
3540 	if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3541 		return RET_PF_EMULATE;
3542 
3543 	return RET_PF_CONTINUE;
3544 }
3545 
page_fault_can_be_fast(struct kvm * kvm,struct kvm_page_fault * fault)3546 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault)
3547 {
3548 	/*
3549 	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3550 	 * reach the common page fault handler if the SPTE has an invalid MMIO
3551 	 * generation number.  Refreshing the MMIO generation needs to go down
3552 	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3553 	 */
3554 	if (fault->rsvd)
3555 		return false;
3556 
3557 	/*
3558 	 * For hardware-protected VMs, certain conditions like attempting to
3559 	 * perform a write to a page which is not in the state that the guest
3560 	 * expects it to be in can result in a nested/extended #PF. In this
3561 	 * case, the below code might misconstrue this situation as being the
3562 	 * result of a write-protected access, and treat it as a spurious case
3563 	 * rather than taking any action to satisfy the real source of the #PF
3564 	 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the
3565 	 * guest spinning on a #PF indefinitely, so don't attempt the fast path
3566 	 * in this case.
3567 	 *
3568 	 * Note that the kvm_mem_is_private() check might race with an
3569 	 * attribute update, but this will either result in the guest spinning
3570 	 * on RET_PF_SPURIOUS until the update completes, or an actual spurious
3571 	 * case might go down the slow path. Either case will resolve itself.
3572 	 */
3573 	if (kvm->arch.has_private_mem &&
3574 	    fault->is_private != kvm_mem_is_private(kvm, fault->gfn))
3575 		return false;
3576 
3577 	/*
3578 	 * #PF can be fast if:
3579 	 *
3580 	 * 1. The shadow page table entry is not present and A/D bits are
3581 	 *    disabled _by KVM_, which could mean that the fault is potentially
3582 	 *    caused by access tracking (if enabled).  If A/D bits are enabled
3583 	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3584 	 *    bits for L2 and employ access tracking, but the fast page fault
3585 	 *    mechanism only supports direct MMUs.
3586 	 * 2. The shadow page table entry is present, the access is a write,
3587 	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3588 	 *    the fault was caused by a write-protection violation.  If the
3589 	 *    SPTE is MMU-writable (determined later), the fault can be fixed
3590 	 *    by setting the Writable bit, which can be done out of mmu_lock.
3591 	 */
3592 	if (!fault->present)
3593 		return !kvm_ad_enabled;
3594 
3595 	/*
3596 	 * Note, instruction fetches and writes are mutually exclusive, ignore
3597 	 * the "exec" flag.
3598 	 */
3599 	return fault->write;
3600 }
3601 
3602 /*
3603  * Returns true if the SPTE was fixed successfully. Otherwise,
3604  * someone else modified the SPTE from its original value.
3605  */
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,u64 * sptep,u64 old_spte,u64 new_spte)3606 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3607 				    struct kvm_page_fault *fault,
3608 				    u64 *sptep, u64 old_spte, u64 new_spte)
3609 {
3610 	/*
3611 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3612 	 * order to eliminate unnecessary PML logging. See comments in
3613 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3614 	 * enabled, so we do not do this. This might result in the same GPA
3615 	 * to be logged in PML buffer again when the write really happens, and
3616 	 * eventually to be called by mark_page_dirty twice. But it's also no
3617 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3618 	 * so non-PML cases won't be impacted.
3619 	 *
3620 	 * Compare with make_spte() where instead shadow_dirty_mask is set.
3621 	 */
3622 	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3623 		return false;
3624 
3625 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3626 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3627 
3628 	return true;
3629 }
3630 
3631 /*
3632  * Returns the last level spte pointer of the shadow page walk for the given
3633  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3634  * walk could be performed, returns NULL and *spte does not contain valid data.
3635  *
3636  * Contract:
3637  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3638  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3639  */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3640 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3641 {
3642 	struct kvm_shadow_walk_iterator iterator;
3643 	u64 old_spte;
3644 	u64 *sptep = NULL;
3645 
3646 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3647 		sptep = iterator.sptep;
3648 		*spte = old_spte;
3649 	}
3650 
3651 	return sptep;
3652 }
3653 
3654 /*
3655  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3656  */
fast_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3657 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3658 {
3659 	struct kvm_mmu_page *sp;
3660 	int ret = RET_PF_INVALID;
3661 	u64 spte;
3662 	u64 *sptep;
3663 	uint retry_count = 0;
3664 
3665 	if (!page_fault_can_be_fast(vcpu->kvm, fault))
3666 		return ret;
3667 
3668 	walk_shadow_page_lockless_begin(vcpu);
3669 
3670 	do {
3671 		u64 new_spte;
3672 
3673 		if (tdp_mmu_enabled)
3674 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte);
3675 		else
3676 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3677 
3678 		/*
3679 		 * It's entirely possible for the mapping to have been zapped
3680 		 * by a different task, but the root page should always be
3681 		 * available as the vCPU holds a reference to its root(s).
3682 		 */
3683 		if (WARN_ON_ONCE(!sptep))
3684 			spte = FROZEN_SPTE;
3685 
3686 		if (!is_shadow_present_pte(spte))
3687 			break;
3688 
3689 		sp = sptep_to_sp(sptep);
3690 		if (!is_last_spte(spte, sp->role.level))
3691 			break;
3692 
3693 		/*
3694 		 * Check whether the memory access that caused the fault would
3695 		 * still cause it if it were to be performed right now. If not,
3696 		 * then this is a spurious fault caused by TLB lazily flushed,
3697 		 * or some other CPU has already fixed the PTE after the
3698 		 * current CPU took the fault.
3699 		 *
3700 		 * Need not check the access of upper level table entries since
3701 		 * they are always ACC_ALL.
3702 		 */
3703 		if (is_access_allowed(fault, spte)) {
3704 			ret = RET_PF_SPURIOUS;
3705 			break;
3706 		}
3707 
3708 		new_spte = spte;
3709 
3710 		/*
3711 		 * KVM only supports fixing page faults outside of MMU lock for
3712 		 * direct MMUs, nested MMUs are always indirect, and KVM always
3713 		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3714 		 * enabled, the SPTE can't be an access-tracked SPTE.
3715 		 */
3716 		if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte))
3717 			new_spte = restore_acc_track_spte(new_spte) |
3718 				   shadow_accessed_mask;
3719 
3720 		/*
3721 		 * To keep things simple, only SPTEs that are MMU-writable can
3722 		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3723 		 * that were write-protected for dirty-logging or access
3724 		 * tracking are handled here.  Don't bother checking if the
3725 		 * SPTE is writable to prioritize running with A/D bits enabled.
3726 		 * The is_access_allowed() check above handles the common case
3727 		 * of the fault being spurious, and the SPTE is known to be
3728 		 * shadow-present, i.e. except for access tracking restoration
3729 		 * making the new SPTE writable, the check is wasteful.
3730 		 */
3731 		if (fault->write && is_mmu_writable_spte(spte)) {
3732 			new_spte |= PT_WRITABLE_MASK;
3733 
3734 			/*
3735 			 * Do not fix write-permission on the large spte when
3736 			 * dirty logging is enabled. Since we only dirty the
3737 			 * first page into the dirty-bitmap in
3738 			 * fast_pf_fix_direct_spte(), other pages are missed
3739 			 * if its slot has dirty logging enabled.
3740 			 *
3741 			 * Instead, we let the slow page fault path create a
3742 			 * normal spte to fix the access.
3743 			 */
3744 			if (sp->role.level > PG_LEVEL_4K &&
3745 			    kvm_slot_dirty_track_enabled(fault->slot))
3746 				break;
3747 		}
3748 
3749 		/* Verify that the fault can be handled in the fast path */
3750 		if (new_spte == spte ||
3751 		    !is_access_allowed(fault, new_spte))
3752 			break;
3753 
3754 		/*
3755 		 * Currently, fast page fault only works for direct mapping
3756 		 * since the gfn is not stable for indirect shadow page. See
3757 		 * Documentation/virt/kvm/locking.rst to get more detail.
3758 		 */
3759 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3760 			ret = RET_PF_FIXED;
3761 			break;
3762 		}
3763 
3764 		if (++retry_count > 4) {
3765 			pr_warn_once("Fast #PF retrying more than 4 times.\n");
3766 			break;
3767 		}
3768 
3769 	} while (true);
3770 
3771 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3772 	walk_shadow_page_lockless_end(vcpu);
3773 
3774 	if (ret != RET_PF_INVALID)
3775 		vcpu->stat.pf_fast++;
3776 
3777 	return ret;
3778 }
3779 
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3780 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3781 			       struct list_head *invalid_list)
3782 {
3783 	struct kvm_mmu_page *sp;
3784 
3785 	if (!VALID_PAGE(*root_hpa))
3786 		return;
3787 
3788 	sp = root_to_sp(*root_hpa);
3789 	if (WARN_ON_ONCE(!sp))
3790 		return;
3791 
3792 	if (is_tdp_mmu_page(sp)) {
3793 		lockdep_assert_held_read(&kvm->mmu_lock);
3794 		kvm_tdp_mmu_put_root(kvm, sp);
3795 	} else {
3796 		lockdep_assert_held_write(&kvm->mmu_lock);
3797 		if (!--sp->root_count && sp->role.invalid)
3798 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3799 	}
3800 
3801 	*root_hpa = INVALID_PAGE;
3802 }
3803 
3804 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm * kvm,struct kvm_mmu * mmu,ulong roots_to_free)3805 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3806 			ulong roots_to_free)
3807 {
3808 	bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3809 	int i;
3810 	LIST_HEAD(invalid_list);
3811 	bool free_active_root;
3812 
3813 	WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3814 
3815 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3816 
3817 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3818 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3819 		&& VALID_PAGE(mmu->root.hpa);
3820 
3821 	if (!free_active_root) {
3822 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3823 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3824 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3825 				break;
3826 
3827 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3828 			return;
3829 	}
3830 
3831 	if (is_tdp_mmu)
3832 		read_lock(&kvm->mmu_lock);
3833 	else
3834 		write_lock(&kvm->mmu_lock);
3835 
3836 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3837 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3838 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3839 					   &invalid_list);
3840 
3841 	if (free_active_root) {
3842 		if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3843 			/* Nothing to cleanup for dummy roots. */
3844 		} else if (root_to_sp(mmu->root.hpa)) {
3845 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3846 		} else if (mmu->pae_root) {
3847 			for (i = 0; i < 4; ++i) {
3848 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3849 					continue;
3850 
3851 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3852 						   &invalid_list);
3853 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3854 			}
3855 		}
3856 		mmu->root.hpa = INVALID_PAGE;
3857 		mmu->root.pgd = 0;
3858 	}
3859 
3860 	if (is_tdp_mmu) {
3861 		read_unlock(&kvm->mmu_lock);
3862 		WARN_ON_ONCE(!list_empty(&invalid_list));
3863 	} else {
3864 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
3865 		write_unlock(&kvm->mmu_lock);
3866 	}
3867 }
3868 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_roots);
3869 
kvm_mmu_free_guest_mode_roots(struct kvm * kvm,struct kvm_mmu * mmu)3870 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3871 {
3872 	unsigned long roots_to_free = 0;
3873 	struct kvm_mmu_page *sp;
3874 	hpa_t root_hpa;
3875 	int i;
3876 
3877 	/*
3878 	 * This should not be called while L2 is active, L2 can't invalidate
3879 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3880 	 */
3881 	WARN_ON_ONCE(mmu->root_role.guest_mode);
3882 
3883 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3884 		root_hpa = mmu->prev_roots[i].hpa;
3885 		if (!VALID_PAGE(root_hpa))
3886 			continue;
3887 
3888 		sp = root_to_sp(root_hpa);
3889 		if (!sp || sp->role.guest_mode)
3890 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3891 	}
3892 
3893 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3894 }
3895 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_guest_mode_roots);
3896 
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,int quadrant,u8 level)3897 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3898 			    u8 level)
3899 {
3900 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3901 	struct kvm_mmu_page *sp;
3902 
3903 	role.level = level;
3904 	role.quadrant = quadrant;
3905 
3906 	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3907 	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3908 
3909 	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3910 	++sp->root_count;
3911 
3912 	return __pa(sp->spt);
3913 }
3914 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3915 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3916 {
3917 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3918 	u8 shadow_root_level = mmu->root_role.level;
3919 	hpa_t root;
3920 	unsigned i;
3921 	int r;
3922 
3923 	if (tdp_mmu_enabled) {
3924 		if (kvm_has_mirrored_tdp(vcpu->kvm) &&
3925 		    !VALID_PAGE(mmu->mirror_root_hpa))
3926 			kvm_tdp_mmu_alloc_root(vcpu, true);
3927 		kvm_tdp_mmu_alloc_root(vcpu, false);
3928 		return 0;
3929 	}
3930 
3931 	write_lock(&vcpu->kvm->mmu_lock);
3932 	r = make_mmu_pages_available(vcpu);
3933 	if (r < 0)
3934 		goto out_unlock;
3935 
3936 	if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3937 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3938 		mmu->root.hpa = root;
3939 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3940 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3941 			r = -EIO;
3942 			goto out_unlock;
3943 		}
3944 
3945 		for (i = 0; i < 4; ++i) {
3946 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3947 
3948 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3949 					      PT32_ROOT_LEVEL);
3950 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3951 					   shadow_me_value;
3952 		}
3953 		mmu->root.hpa = __pa(mmu->pae_root);
3954 	} else {
3955 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3956 		r = -EIO;
3957 		goto out_unlock;
3958 	}
3959 
3960 	/* root.pgd is ignored for direct MMUs. */
3961 	mmu->root.pgd = 0;
3962 out_unlock:
3963 	write_unlock(&vcpu->kvm->mmu_lock);
3964 	return r;
3965 }
3966 
kvm_mmu_alloc_page_hash(struct kvm * kvm)3967 static int kvm_mmu_alloc_page_hash(struct kvm *kvm)
3968 {
3969 	struct hlist_head *h;
3970 
3971 	if (kvm->arch.mmu_page_hash)
3972 		return 0;
3973 
3974 	h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT);
3975 	if (!h)
3976 		return -ENOMEM;
3977 
3978 	/*
3979 	 * Ensure the hash table pointer is set only after all stores to zero
3980 	 * the memory are retired.  Pairs with the smp_load_acquire() in
3981 	 * kvm_get_mmu_page_hash().  Note, mmu_lock must be held for write to
3982 	 * add (or remove) shadow pages, and so readers are guaranteed to see
3983 	 * an empty list for their current mmu_lock critical section.
3984 	 */
3985 	smp_store_release(&kvm->arch.mmu_page_hash, h);
3986 	return 0;
3987 }
3988 
mmu_first_shadow_root_alloc(struct kvm * kvm)3989 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3990 {
3991 	struct kvm_memslots *slots;
3992 	struct kvm_memory_slot *slot;
3993 	int r = 0, i, bkt;
3994 
3995 	/*
3996 	 * Check if this is the first shadow root being allocated before
3997 	 * taking the lock.
3998 	 */
3999 	if (kvm_shadow_root_allocated(kvm))
4000 		return 0;
4001 
4002 	mutex_lock(&kvm->slots_arch_lock);
4003 
4004 	/* Recheck, under the lock, whether this is the first shadow root. */
4005 	if (kvm_shadow_root_allocated(kvm))
4006 		goto out_unlock;
4007 
4008 	r = kvm_mmu_alloc_page_hash(kvm);
4009 	if (r)
4010 		goto out_unlock;
4011 
4012 	/*
4013 	 * Check if memslot metadata actually needs to be allocated, e.g. all
4014 	 * metadata will be allocated upfront if TDP is disabled.
4015 	 */
4016 	if (kvm_memslots_have_rmaps(kvm) &&
4017 	    kvm_page_track_write_tracking_enabled(kvm))
4018 		goto out_success;
4019 
4020 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4021 		slots = __kvm_memslots(kvm, i);
4022 		kvm_for_each_memslot(slot, bkt, slots) {
4023 			/*
4024 			 * Both of these functions are no-ops if the target is
4025 			 * already allocated, so unconditionally calling both
4026 			 * is safe.  Intentionally do NOT free allocations on
4027 			 * failure to avoid having to track which allocations
4028 			 * were made now versus when the memslot was created.
4029 			 * The metadata is guaranteed to be freed when the slot
4030 			 * is freed, and will be kept/used if userspace retries
4031 			 * KVM_RUN instead of killing the VM.
4032 			 */
4033 			r = memslot_rmap_alloc(slot, slot->npages);
4034 			if (r)
4035 				goto out_unlock;
4036 			r = kvm_page_track_write_tracking_alloc(slot);
4037 			if (r)
4038 				goto out_unlock;
4039 		}
4040 	}
4041 
4042 	/*
4043 	 * Ensure that shadow_root_allocated becomes true strictly after
4044 	 * all the related pointers are set.
4045 	 */
4046 out_success:
4047 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
4048 
4049 out_unlock:
4050 	mutex_unlock(&kvm->slots_arch_lock);
4051 	return r;
4052 }
4053 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)4054 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
4055 {
4056 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4057 	u64 pdptrs[4], pm_mask;
4058 	gfn_t root_gfn, root_pgd;
4059 	int quadrant, i, r;
4060 	hpa_t root;
4061 
4062 	root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
4063 	root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
4064 
4065 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
4066 		mmu->root.hpa = kvm_mmu_get_dummy_root();
4067 		return 0;
4068 	}
4069 
4070 	/*
4071 	 * On SVM, reading PDPTRs might access guest memory, which might fault
4072 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
4073 	 */
4074 	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
4075 		for (i = 0; i < 4; ++i) {
4076 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
4077 			if (!(pdptrs[i] & PT_PRESENT_MASK))
4078 				continue;
4079 
4080 			if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
4081 				pdptrs[i] = 0;
4082 		}
4083 	}
4084 
4085 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
4086 	if (r)
4087 		return r;
4088 
4089 	write_lock(&vcpu->kvm->mmu_lock);
4090 	r = make_mmu_pages_available(vcpu);
4091 	if (r < 0)
4092 		goto out_unlock;
4093 
4094 	/*
4095 	 * Do we shadow a long mode page table? If so we need to
4096 	 * write-protect the guests page table root.
4097 	 */
4098 	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4099 		root = mmu_alloc_root(vcpu, root_gfn, 0,
4100 				      mmu->root_role.level);
4101 		mmu->root.hpa = root;
4102 		goto set_root_pgd;
4103 	}
4104 
4105 	if (WARN_ON_ONCE(!mmu->pae_root)) {
4106 		r = -EIO;
4107 		goto out_unlock;
4108 	}
4109 
4110 	/*
4111 	 * We shadow a 32 bit page table. This may be a legacy 2-level
4112 	 * or a PAE 3-level page table. In either case we need to be aware that
4113 	 * the shadow page table may be a PAE or a long mode page table.
4114 	 */
4115 	pm_mask = PT_PRESENT_MASK | shadow_me_value;
4116 	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
4117 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
4118 
4119 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
4120 			r = -EIO;
4121 			goto out_unlock;
4122 		}
4123 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
4124 
4125 		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
4126 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
4127 				r = -EIO;
4128 				goto out_unlock;
4129 			}
4130 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
4131 		}
4132 	}
4133 
4134 	for (i = 0; i < 4; ++i) {
4135 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
4136 
4137 		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
4138 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
4139 				mmu->pae_root[i] = INVALID_PAE_ROOT;
4140 				continue;
4141 			}
4142 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
4143 		}
4144 
4145 		/*
4146 		 * If shadowing 32-bit non-PAE page tables, each PAE page
4147 		 * directory maps one quarter of the guest's non-PAE page
4148 		 * directory. Othwerise each PAE page direct shadows one guest
4149 		 * PAE page directory so that quadrant should be 0.
4150 		 */
4151 		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
4152 
4153 		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
4154 		mmu->pae_root[i] = root | pm_mask;
4155 	}
4156 
4157 	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
4158 		mmu->root.hpa = __pa(mmu->pml5_root);
4159 	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
4160 		mmu->root.hpa = __pa(mmu->pml4_root);
4161 	else
4162 		mmu->root.hpa = __pa(mmu->pae_root);
4163 
4164 set_root_pgd:
4165 	mmu->root.pgd = root_pgd;
4166 out_unlock:
4167 	write_unlock(&vcpu->kvm->mmu_lock);
4168 
4169 	return r;
4170 }
4171 
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)4172 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
4173 {
4174 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4175 	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
4176 	u64 *pml5_root = NULL;
4177 	u64 *pml4_root = NULL;
4178 	u64 *pae_root;
4179 
4180 	/*
4181 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
4182 	 * tables are allocated and initialized at root creation as there is no
4183 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
4184 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
4185 	 */
4186 	if (mmu->root_role.direct ||
4187 	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
4188 	    mmu->root_role.level < PT64_ROOT_4LEVEL)
4189 		return 0;
4190 
4191 	/*
4192 	 * NPT, the only paging mode that uses this horror, uses a fixed number
4193 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
4194 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
4195 	 * is allocated if the other roots are valid and pml5 is needed, as any
4196 	 * prior MMU would also have required pml5.
4197 	 */
4198 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
4199 		return 0;
4200 
4201 	/*
4202 	 * The special roots should always be allocated in concert.  Yell and
4203 	 * bail if KVM ends up in a state where only one of the roots is valid.
4204 	 */
4205 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
4206 			 (need_pml5 && mmu->pml5_root)))
4207 		return -EIO;
4208 
4209 	/*
4210 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
4211 	 * doesn't need to be decrypted.
4212 	 */
4213 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4214 	if (!pae_root)
4215 		return -ENOMEM;
4216 
4217 #ifdef CONFIG_X86_64
4218 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4219 	if (!pml4_root)
4220 		goto err_pml4;
4221 
4222 	if (need_pml5) {
4223 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4224 		if (!pml5_root)
4225 			goto err_pml5;
4226 	}
4227 #endif
4228 
4229 	mmu->pae_root = pae_root;
4230 	mmu->pml4_root = pml4_root;
4231 	mmu->pml5_root = pml5_root;
4232 
4233 	return 0;
4234 
4235 #ifdef CONFIG_X86_64
4236 err_pml5:
4237 	free_page((unsigned long)pml4_root);
4238 err_pml4:
4239 	free_page((unsigned long)pae_root);
4240 	return -ENOMEM;
4241 #endif
4242 }
4243 
is_unsync_root(hpa_t root)4244 static bool is_unsync_root(hpa_t root)
4245 {
4246 	struct kvm_mmu_page *sp;
4247 
4248 	if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
4249 		return false;
4250 
4251 	/*
4252 	 * The read barrier orders the CPU's read of SPTE.W during the page table
4253 	 * walk before the reads of sp->unsync/sp->unsync_children here.
4254 	 *
4255 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
4256 	 * any guest page table changes are not guaranteed to be visible anyway
4257 	 * until this VCPU issues a TLB flush strictly after those changes are
4258 	 * made.  We only need to ensure that the other CPU sets these flags
4259 	 * before any actual changes to the page tables are made.  The comments
4260 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
4261 	 * requirement isn't satisfied.
4262 	 */
4263 	smp_rmb();
4264 	sp = root_to_sp(root);
4265 
4266 	/*
4267 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4268 	 * PDPTEs for a given PAE root need to be synchronized individually.
4269 	 */
4270 	if (WARN_ON_ONCE(!sp))
4271 		return false;
4272 
4273 	if (sp->unsync || sp->unsync_children)
4274 		return true;
4275 
4276 	return false;
4277 }
4278 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)4279 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4280 {
4281 	int i;
4282 	struct kvm_mmu_page *sp;
4283 
4284 	if (vcpu->arch.mmu->root_role.direct)
4285 		return;
4286 
4287 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4288 		return;
4289 
4290 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4291 
4292 	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4293 		hpa_t root = vcpu->arch.mmu->root.hpa;
4294 
4295 		if (!is_unsync_root(root))
4296 			return;
4297 
4298 		sp = root_to_sp(root);
4299 
4300 		write_lock(&vcpu->kvm->mmu_lock);
4301 		mmu_sync_children(vcpu, sp, true);
4302 		write_unlock(&vcpu->kvm->mmu_lock);
4303 		return;
4304 	}
4305 
4306 	write_lock(&vcpu->kvm->mmu_lock);
4307 
4308 	for (i = 0; i < 4; ++i) {
4309 		hpa_t root = vcpu->arch.mmu->pae_root[i];
4310 
4311 		if (IS_VALID_PAE_ROOT(root)) {
4312 			sp = spte_to_child_sp(root);
4313 			mmu_sync_children(vcpu, sp, true);
4314 		}
4315 	}
4316 
4317 	write_unlock(&vcpu->kvm->mmu_lock);
4318 }
4319 
kvm_mmu_sync_prev_roots(struct kvm_vcpu * vcpu)4320 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4321 {
4322 	unsigned long roots_to_free = 0;
4323 	int i;
4324 
4325 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4326 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4327 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4328 
4329 	/* sync prev_roots by simply freeing them */
4330 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4331 }
4332 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t vaddr,u64 access,struct x86_exception * exception)4333 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4334 				  gpa_t vaddr, u64 access,
4335 				  struct x86_exception *exception)
4336 {
4337 	if (exception)
4338 		exception->error_code = 0;
4339 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4340 }
4341 
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)4342 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4343 {
4344 	/*
4345 	 * A nested guest cannot use the MMIO cache if it is using nested
4346 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4347 	 */
4348 	if (mmu_is_nested(vcpu))
4349 		return false;
4350 
4351 	if (direct)
4352 		return vcpu_match_mmio_gpa(vcpu, addr);
4353 
4354 	return vcpu_match_mmio_gva(vcpu, addr);
4355 }
4356 
4357 /*
4358  * Return the level of the lowest level SPTE added to sptes.
4359  * That SPTE may be non-present.
4360  *
4361  * Must be called between walk_shadow_page_lockless_{begin,end}.
4362  */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4363 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4364 {
4365 	struct kvm_shadow_walk_iterator iterator;
4366 	int leaf = -1;
4367 	u64 spte;
4368 
4369 	for (shadow_walk_init(&iterator, vcpu, addr),
4370 	     *root_level = iterator.level;
4371 	     shadow_walk_okay(&iterator);
4372 	     __shadow_walk_next(&iterator, spte)) {
4373 		leaf = iterator.level;
4374 		spte = mmu_spte_get_lockless(iterator.sptep);
4375 
4376 		sptes[leaf] = spte;
4377 	}
4378 
4379 	return leaf;
4380 }
4381 
get_sptes_lockless(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4382 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
4383 			      int *root_level)
4384 {
4385 	int leaf;
4386 
4387 	walk_shadow_page_lockless_begin(vcpu);
4388 
4389 	if (is_tdp_mmu_active(vcpu))
4390 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
4391 	else
4392 		leaf = get_walk(vcpu, addr, sptes, root_level);
4393 
4394 	walk_shadow_page_lockless_end(vcpu);
4395 	return leaf;
4396 }
4397 
4398 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)4399 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4400 {
4401 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4402 	struct rsvd_bits_validate *rsvd_check;
4403 	int root, leaf, level;
4404 	bool reserved = false;
4405 
4406 	leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
4407 	if (unlikely(leaf < 0)) {
4408 		*sptep = 0ull;
4409 		return reserved;
4410 	}
4411 
4412 	*sptep = sptes[leaf];
4413 
4414 	/*
4415 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
4416 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4417 	 * design, always have reserved bits set.  The purpose of the checks is
4418 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4419 	 */
4420 	if (!is_shadow_present_pte(sptes[leaf]))
4421 		leaf++;
4422 
4423 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4424 
4425 	for (level = root; level >= leaf; level--)
4426 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4427 
4428 	if (reserved) {
4429 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4430 		       __func__, addr);
4431 		for (level = root; level >= leaf; level--)
4432 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4433 			       sptes[level], level,
4434 			       get_rsvd_bits(rsvd_check, sptes[level], level));
4435 	}
4436 
4437 	return reserved;
4438 }
4439 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)4440 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4441 {
4442 	u64 spte;
4443 	bool reserved;
4444 
4445 	if (mmio_info_in_cache(vcpu, addr, direct))
4446 		return RET_PF_EMULATE;
4447 
4448 	reserved = get_mmio_spte(vcpu, addr, &spte);
4449 	if (WARN_ON_ONCE(reserved))
4450 		return -EINVAL;
4451 
4452 	if (is_mmio_spte(vcpu->kvm, spte)) {
4453 		gfn_t gfn = get_mmio_spte_gfn(spte);
4454 		unsigned int access = get_mmio_spte_access(spte);
4455 
4456 		if (!check_mmio_spte(vcpu, spte))
4457 			return RET_PF_INVALID;
4458 
4459 		if (direct)
4460 			addr = 0;
4461 
4462 		trace_handle_mmio_page_fault(addr, gfn, access);
4463 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4464 		return RET_PF_EMULATE;
4465 	}
4466 
4467 	/*
4468 	 * If the page table is zapped by other cpus, let CPU fault again on
4469 	 * the address.
4470 	 */
4471 	return RET_PF_RETRY;
4472 }
4473 
page_fault_handle_page_track(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4474 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4475 					 struct kvm_page_fault *fault)
4476 {
4477 	if (unlikely(fault->rsvd))
4478 		return false;
4479 
4480 	if (!fault->present || !fault->write)
4481 		return false;
4482 
4483 	/*
4484 	 * guest is writing the page which is write tracked which can
4485 	 * not be fixed by page fault handler.
4486 	 */
4487 	if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4488 		return true;
4489 
4490 	return false;
4491 }
4492 
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)4493 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4494 {
4495 	struct kvm_shadow_walk_iterator iterator;
4496 	u64 spte;
4497 
4498 	walk_shadow_page_lockless_begin(vcpu);
4499 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4500 		clear_sp_write_flooding_count(iterator.sptep);
4501 	walk_shadow_page_lockless_end(vcpu);
4502 }
4503 
alloc_apf_token(struct kvm_vcpu * vcpu)4504 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4505 {
4506 	/* make sure the token value is not 0 */
4507 	u32 id = vcpu->arch.apf.id;
4508 
4509 	if (id << 12 == 0)
4510 		vcpu->arch.apf.id = 1;
4511 
4512 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4513 }
4514 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4515 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
4516 				    struct kvm_page_fault *fault)
4517 {
4518 	struct kvm_arch_async_pf arch;
4519 
4520 	arch.token = alloc_apf_token(vcpu);
4521 	arch.gfn = fault->gfn;
4522 	arch.error_code = fault->error_code;
4523 	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4524 	arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4525 
4526 	return kvm_setup_async_pf(vcpu, fault->addr,
4527 				  kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
4528 }
4529 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4530 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4531 {
4532 	int r;
4533 
4534 	if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
4535 		return;
4536 
4537 	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4538 	      work->wakeup_all)
4539 		return;
4540 
4541 	r = kvm_mmu_reload(vcpu);
4542 	if (unlikely(r))
4543 		return;
4544 
4545 	if (!vcpu->arch.mmu->root_role.direct &&
4546 	      work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4547 		return;
4548 
4549 	r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code,
4550 				  true, NULL, NULL);
4551 
4552 	/*
4553 	 * Account fixed page faults, otherwise they'll never be counted, but
4554 	 * ignore stats for all other return times.  Page-ready "faults" aren't
4555 	 * truly spurious and never trigger emulation
4556 	 */
4557 	if (r == RET_PF_FIXED)
4558 		vcpu->stat.pf_fixed++;
4559 }
4560 
kvm_mmu_finish_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,int r)4561 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu,
4562 				      struct kvm_page_fault *fault, int r)
4563 {
4564 	kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page,
4565 				 r == RET_PF_RETRY, fault->map_writable);
4566 }
4567 
kvm_mmu_faultin_pfn_gmem(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4568 static int kvm_mmu_faultin_pfn_gmem(struct kvm_vcpu *vcpu,
4569 				    struct kvm_page_fault *fault)
4570 {
4571 	int max_order, r;
4572 
4573 	if (!kvm_slot_has_gmem(fault->slot)) {
4574 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4575 		return -EFAULT;
4576 	}
4577 
4578 	r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4579 			     &fault->refcounted_page, &max_order);
4580 	if (r) {
4581 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4582 		return r;
4583 	}
4584 
4585 	fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4586 	fault->max_level = kvm_max_level_for_order(max_order);
4587 
4588 	return RET_PF_CONTINUE;
4589 }
4590 
__kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4591 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4592 				 struct kvm_page_fault *fault)
4593 {
4594 	unsigned int foll = fault->write ? FOLL_WRITE : 0;
4595 
4596 	if (fault->is_private || kvm_memslot_is_gmem_only(fault->slot))
4597 		return kvm_mmu_faultin_pfn_gmem(vcpu, fault);
4598 
4599 	foll |= FOLL_NOWAIT;
4600 	fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4601 				       &fault->map_writable, &fault->refcounted_page);
4602 
4603 	/*
4604 	 * If resolving the page failed because I/O is needed to fault-in the
4605 	 * page, then either set up an asynchronous #PF to do the I/O, or if
4606 	 * doing an async #PF isn't possible, retry with I/O allowed.  All
4607 	 * other failures are terminal, i.e. retrying won't help.
4608 	 */
4609 	if (fault->pfn != KVM_PFN_ERR_NEEDS_IO)
4610 		return RET_PF_CONTINUE;
4611 
4612 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4613 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4614 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4615 			trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4616 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4617 			return RET_PF_RETRY;
4618 		} else if (kvm_arch_setup_async_pf(vcpu, fault)) {
4619 			return RET_PF_RETRY;
4620 		}
4621 	}
4622 
4623 	/*
4624 	 * Allow gup to bail on pending non-fatal signals when it's also allowed
4625 	 * to wait for IO.  Note, gup always bails if it is unable to quickly
4626 	 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4627 	 */
4628 	foll |= FOLL_INTERRUPTIBLE;
4629 	foll &= ~FOLL_NOWAIT;
4630 	fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4631 				       &fault->map_writable, &fault->refcounted_page);
4632 
4633 	return RET_PF_CONTINUE;
4634 }
4635 
kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)4636 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4637 			       struct kvm_page_fault *fault, unsigned int access)
4638 {
4639 	struct kvm_memory_slot *slot = fault->slot;
4640 	struct kvm *kvm = vcpu->kvm;
4641 	int ret;
4642 
4643 	if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm))
4644 		return -EFAULT;
4645 
4646 	/*
4647 	 * Note that the mmu_invalidate_seq also serves to detect a concurrent
4648 	 * change in attributes.  is_page_fault_stale() will detect an
4649 	 * invalidation relate to fault->fn and resume the guest without
4650 	 * installing a mapping in the page tables.
4651 	 */
4652 	fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4653 	smp_rmb();
4654 
4655 	/*
4656 	 * Now that we have a snapshot of mmu_invalidate_seq we can check for a
4657 	 * private vs. shared mismatch.
4658 	 */
4659 	if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) {
4660 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4661 		return -EFAULT;
4662 	}
4663 
4664 	if (unlikely(!slot))
4665 		return kvm_handle_noslot_fault(vcpu, fault, access);
4666 
4667 	/*
4668 	 * Retry the page fault if the gfn hit a memslot that is being deleted
4669 	 * or moved.  This ensures any existing SPTEs for the old memslot will
4670 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.  Punt the
4671 	 * error to userspace if this is a prefault, as KVM's prefaulting ABI
4672 	 * doesn't provide the same forward progress guarantees as KVM_RUN.
4673 	 */
4674 	if (slot->flags & KVM_MEMSLOT_INVALID) {
4675 		if (fault->prefetch)
4676 			return -EAGAIN;
4677 
4678 		return RET_PF_RETRY;
4679 	}
4680 
4681 	if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
4682 		/*
4683 		 * Don't map L1's APIC access page into L2, KVM doesn't support
4684 		 * using APICv/AVIC to accelerate L2 accesses to L1's APIC,
4685 		 * i.e. the access needs to be emulated.  Emulating access to
4686 		 * L1's APIC is also correct if L1 is accelerating L2's own
4687 		 * virtual APIC, but for some reason L1 also maps _L1's_ APIC
4688 		 * into L2.  Note, vcpu_is_mmio_gpa() always treats access to
4689 		 * the APIC as MMIO.  Allow an MMIO SPTE to be created, as KVM
4690 		 * uses different roots for L1 vs. L2, i.e. there is no danger
4691 		 * of breaking APICv/AVIC for L1.
4692 		 */
4693 		if (is_guest_mode(vcpu))
4694 			return kvm_handle_noslot_fault(vcpu, fault, access);
4695 
4696 		/*
4697 		 * If the APIC access page exists but is disabled, go directly
4698 		 * to emulation without caching the MMIO access or creating a
4699 		 * MMIO SPTE.  That way the cache doesn't need to be purged
4700 		 * when the AVIC is re-enabled.
4701 		 */
4702 		if (!kvm_apicv_activated(vcpu->kvm))
4703 			return RET_PF_EMULATE;
4704 	}
4705 
4706 	/*
4707 	 * Check for a relevant mmu_notifier invalidation event before getting
4708 	 * the pfn from the primary MMU, and before acquiring mmu_lock.
4709 	 *
4710 	 * For mmu_lock, if there is an in-progress invalidation and the kernel
4711 	 * allows preemption, the invalidation task may drop mmu_lock and yield
4712 	 * in response to mmu_lock being contended, which is *very* counter-
4713 	 * productive as this vCPU can't actually make forward progress until
4714 	 * the invalidation completes.
4715 	 *
4716 	 * Retrying now can also avoid unnessary lock contention in the primary
4717 	 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4718 	 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4719 	 * can cause the invalidation to take longer by holding locks that are
4720 	 * needed to complete the invalidation.
4721 	 *
4722 	 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4723 	 * will never yield mmu_lock in response to contention, as this vCPU is
4724 	 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4725 	 * to detect retry guarantees the worst case latency for the vCPU.
4726 	 */
4727 	if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn))
4728 		return RET_PF_RETRY;
4729 
4730 	ret = __kvm_mmu_faultin_pfn(vcpu, fault);
4731 	if (ret != RET_PF_CONTINUE)
4732 		return ret;
4733 
4734 	if (unlikely(is_error_pfn(fault->pfn)))
4735 		return kvm_handle_error_pfn(vcpu, fault);
4736 
4737 	if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
4738 		return kvm_handle_noslot_fault(vcpu, fault, access);
4739 
4740 	/*
4741 	 * Check again for a relevant mmu_notifier invalidation event purely to
4742 	 * avoid contending mmu_lock.  Most invalidations will be detected by
4743 	 * the previous check, but checking is extremely cheap relative to the
4744 	 * overall cost of failing to detect the invalidation until after
4745 	 * mmu_lock is acquired.
4746 	 */
4747 	if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) {
4748 		kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
4749 		return RET_PF_RETRY;
4750 	}
4751 
4752 	return RET_PF_CONTINUE;
4753 }
4754 
4755 /*
4756  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4757  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4758  */
is_page_fault_stale(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4759 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4760 				struct kvm_page_fault *fault)
4761 {
4762 	struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4763 
4764 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4765 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
4766 		return true;
4767 
4768 	/*
4769 	 * Roots without an associated shadow page are considered invalid if
4770 	 * there is a pending request to free obsolete roots.  The request is
4771 	 * only a hint that the current root _may_ be obsolete and needs to be
4772 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4773 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4774 	 * to reload even if no vCPU is actively using the root.
4775 	 */
4776 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4777 		return true;
4778 
4779 	/*
4780 	 * Check for a relevant mmu_notifier invalidation event one last time
4781 	 * now that mmu_lock is held, as the "unsafe" checks performed without
4782 	 * holding mmu_lock can get false negatives.
4783 	 */
4784 	return fault->slot &&
4785 	       mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4786 }
4787 
direct_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4788 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4789 {
4790 	int r;
4791 
4792 	/* Dummy roots are used only for shadowing bad guest roots. */
4793 	if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4794 		return RET_PF_RETRY;
4795 
4796 	if (page_fault_handle_page_track(vcpu, fault))
4797 		return RET_PF_WRITE_PROTECTED;
4798 
4799 	r = fast_page_fault(vcpu, fault);
4800 	if (r != RET_PF_INVALID)
4801 		return r;
4802 
4803 	r = mmu_topup_memory_caches(vcpu, false);
4804 	if (r)
4805 		return r;
4806 
4807 	r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4808 	if (r != RET_PF_CONTINUE)
4809 		return r;
4810 
4811 	r = RET_PF_RETRY;
4812 	write_lock(&vcpu->kvm->mmu_lock);
4813 
4814 	if (is_page_fault_stale(vcpu, fault))
4815 		goto out_unlock;
4816 
4817 	r = make_mmu_pages_available(vcpu);
4818 	if (r)
4819 		goto out_unlock;
4820 
4821 	r = direct_map(vcpu, fault);
4822 
4823 out_unlock:
4824 	kvm_mmu_finish_page_fault(vcpu, fault, r);
4825 	write_unlock(&vcpu->kvm->mmu_lock);
4826 	return r;
4827 }
4828 
nonpaging_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4829 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4830 				struct kvm_page_fault *fault)
4831 {
4832 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4833 	fault->max_level = PG_LEVEL_2M;
4834 	return direct_page_fault(vcpu, fault);
4835 }
4836 
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4837 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4838 				u64 fault_address, char *insn, int insn_len)
4839 {
4840 	int r = 1;
4841 	u32 flags = vcpu->arch.apf.host_apf_flags;
4842 
4843 #ifndef CONFIG_X86_64
4844 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4845 	if (WARN_ON_ONCE(fault_address >> 32))
4846 		return -EFAULT;
4847 #endif
4848 	/*
4849 	 * Legacy #PF exception only have a 32-bit error code.  Simply drop the
4850 	 * upper bits as KVM doesn't use them for #PF (because they are never
4851 	 * set), and to ensure there are no collisions with KVM-defined bits.
4852 	 */
4853 	if (WARN_ON_ONCE(error_code >> 32))
4854 		error_code = lower_32_bits(error_code);
4855 
4856 	/*
4857 	 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for
4858 	 * them to conflict with #PF error codes, which are limited to 32 bits.
4859 	 */
4860 	BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
4861 
4862 	vcpu->arch.l1tf_flush_l1d = true;
4863 	if (!flags) {
4864 		trace_kvm_page_fault(vcpu, fault_address, error_code);
4865 
4866 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4867 				insn_len);
4868 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4869 		vcpu->arch.apf.host_apf_flags = 0;
4870 		local_irq_disable();
4871 		kvm_async_pf_task_wait_schedule(fault_address);
4872 		local_irq_enable();
4873 	} else {
4874 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4875 	}
4876 
4877 	return r;
4878 }
4879 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_page_fault);
4880 
4881 #ifdef CONFIG_X86_64
kvm_tdp_mmu_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4882 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4883 				  struct kvm_page_fault *fault)
4884 {
4885 	int r;
4886 
4887 	if (page_fault_handle_page_track(vcpu, fault))
4888 		return RET_PF_WRITE_PROTECTED;
4889 
4890 	r = fast_page_fault(vcpu, fault);
4891 	if (r != RET_PF_INVALID)
4892 		return r;
4893 
4894 	r = mmu_topup_memory_caches(vcpu, false);
4895 	if (r)
4896 		return r;
4897 
4898 	r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4899 	if (r != RET_PF_CONTINUE)
4900 		return r;
4901 
4902 	r = RET_PF_RETRY;
4903 	read_lock(&vcpu->kvm->mmu_lock);
4904 
4905 	if (is_page_fault_stale(vcpu, fault))
4906 		goto out_unlock;
4907 
4908 	r = kvm_tdp_mmu_map(vcpu, fault);
4909 
4910 out_unlock:
4911 	kvm_mmu_finish_page_fault(vcpu, fault, r);
4912 	read_unlock(&vcpu->kvm->mmu_lock);
4913 	return r;
4914 }
4915 #endif
4916 
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4917 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4918 {
4919 #ifdef CONFIG_X86_64
4920 	if (tdp_mmu_enabled)
4921 		return kvm_tdp_mmu_page_fault(vcpu, fault);
4922 #endif
4923 
4924 	return direct_page_fault(vcpu, fault);
4925 }
4926 
kvm_tdp_map_page(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code,u8 * level)4927 int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level)
4928 {
4929 	int r;
4930 
4931 	/*
4932 	 * Restrict to TDP page fault, since that's the only case where the MMU
4933 	 * is indexed by GPA.
4934 	 */
4935 	if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault)
4936 		return -EOPNOTSUPP;
4937 
4938 	do {
4939 		if (signal_pending(current))
4940 			return -EINTR;
4941 
4942 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
4943 			return -EIO;
4944 
4945 		cond_resched();
4946 		r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
4947 	} while (r == RET_PF_RETRY);
4948 
4949 	if (r < 0)
4950 		return r;
4951 
4952 	switch (r) {
4953 	case RET_PF_FIXED:
4954 	case RET_PF_SPURIOUS:
4955 	case RET_PF_WRITE_PROTECTED:
4956 		return 0;
4957 
4958 	case RET_PF_EMULATE:
4959 		return -ENOENT;
4960 
4961 	case RET_PF_RETRY:
4962 	case RET_PF_CONTINUE:
4963 	case RET_PF_INVALID:
4964 	default:
4965 		WARN_ONCE(1, "could not fix page fault during prefault");
4966 		return -EIO;
4967 	}
4968 }
4969 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_tdp_map_page);
4970 
kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4971 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4972 				    struct kvm_pre_fault_memory *range)
4973 {
4974 	u64 error_code = PFERR_GUEST_FINAL_MASK;
4975 	u8 level = PG_LEVEL_4K;
4976 	u64 direct_bits;
4977 	u64 end;
4978 	int r;
4979 
4980 	if (!vcpu->kvm->arch.pre_fault_allowed)
4981 		return -EOPNOTSUPP;
4982 
4983 	if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa)))
4984 		return -EINVAL;
4985 
4986 	/*
4987 	 * reload is efficient when called repeatedly, so we can do it on
4988 	 * every iteration.
4989 	 */
4990 	r = kvm_mmu_reload(vcpu);
4991 	if (r)
4992 		return r;
4993 
4994 	direct_bits = 0;
4995 	if (kvm_arch_has_private_mem(vcpu->kvm) &&
4996 	    kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
4997 		error_code |= PFERR_PRIVATE_ACCESS;
4998 	else
4999 		direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
5000 
5001 	/*
5002 	 * Shadow paging uses GVA for kvm page fault, so restrict to
5003 	 * two-dimensional paging.
5004 	 */
5005 	r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level);
5006 	if (r < 0)
5007 		return r;
5008 
5009 	/*
5010 	 * If the mapping that covers range->gpa can use a huge page, it
5011 	 * may start below it or end after range->gpa + range->size.
5012 	 */
5013 	end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level);
5014 	return min(range->size, end - range->gpa);
5015 }
5016 
nonpaging_init_context(struct kvm_mmu * context)5017 static void nonpaging_init_context(struct kvm_mmu *context)
5018 {
5019 	context->page_fault = nonpaging_page_fault;
5020 	context->gva_to_gpa = nonpaging_gva_to_gpa;
5021 	context->sync_spte = NULL;
5022 }
5023 
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)5024 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
5025 				  union kvm_mmu_page_role role)
5026 {
5027 	struct kvm_mmu_page *sp;
5028 
5029 	if (!VALID_PAGE(root->hpa))
5030 		return false;
5031 
5032 	if (!role.direct && pgd != root->pgd)
5033 		return false;
5034 
5035 	sp = root_to_sp(root->hpa);
5036 	if (WARN_ON_ONCE(!sp))
5037 		return false;
5038 
5039 	return role.word == sp->role.word;
5040 }
5041 
5042 /*
5043  * Find out if a previously cached root matching the new pgd/role is available,
5044  * and insert the current root as the MRU in the cache.
5045  * If a matching root is found, it is assigned to kvm_mmu->root and
5046  * true is returned.
5047  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
5048  * evicted to make room for the current root, and false is returned.
5049  */
cached_root_find_and_keep_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5050 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
5051 					      gpa_t new_pgd,
5052 					      union kvm_mmu_page_role new_role)
5053 {
5054 	uint i;
5055 
5056 	if (is_root_usable(&mmu->root, new_pgd, new_role))
5057 		return true;
5058 
5059 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5060 		/*
5061 		 * The swaps end up rotating the cache like this:
5062 		 *   C   0 1 2 3   (on entry to the function)
5063 		 *   0   C 1 2 3
5064 		 *   1   C 0 2 3
5065 		 *   2   C 0 1 3
5066 		 *   3   C 0 1 2   (on exit from the loop)
5067 		 */
5068 		swap(mmu->root, mmu->prev_roots[i]);
5069 		if (is_root_usable(&mmu->root, new_pgd, new_role))
5070 			return true;
5071 	}
5072 
5073 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
5074 	return false;
5075 }
5076 
5077 /*
5078  * Find out if a previously cached root matching the new pgd/role is available.
5079  * On entry, mmu->root is invalid.
5080  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
5081  * of the cache becomes invalid, and true is returned.
5082  * If no match is found, kvm_mmu->root is left invalid and false is returned.
5083  */
cached_root_find_without_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5084 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
5085 					     gpa_t new_pgd,
5086 					     union kvm_mmu_page_role new_role)
5087 {
5088 	uint i;
5089 
5090 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5091 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
5092 			goto hit;
5093 
5094 	return false;
5095 
5096 hit:
5097 	swap(mmu->root, mmu->prev_roots[i]);
5098 	/* Bubble up the remaining roots.  */
5099 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
5100 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
5101 	mmu->prev_roots[i].hpa = INVALID_PAGE;
5102 	return true;
5103 }
5104 
fast_pgd_switch(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5105 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
5106 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
5107 {
5108 	/*
5109 	 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
5110 	 * avoid having to deal with PDPTEs and other complexities.
5111 	 */
5112 	if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
5113 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
5114 
5115 	if (VALID_PAGE(mmu->root.hpa))
5116 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
5117 	else
5118 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
5119 }
5120 
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)5121 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
5122 {
5123 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5124 	union kvm_mmu_page_role new_role = mmu->root_role;
5125 
5126 	/*
5127 	 * Return immediately if no usable root was found, kvm_mmu_reload()
5128 	 * will establish a valid root prior to the next VM-Enter.
5129 	 */
5130 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
5131 		return;
5132 
5133 	/*
5134 	 * It's possible that the cached previous root page is obsolete because
5135 	 * of a change in the MMU generation number. However, changing the
5136 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
5137 	 * which will free the root set here and allocate a new one.
5138 	 */
5139 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
5140 
5141 	if (force_flush_and_sync_on_reuse) {
5142 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
5143 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5144 	}
5145 
5146 	/*
5147 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
5148 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
5149 	 * valid. So clear any cached MMIO info even when we don't need to sync
5150 	 * the shadow page tables.
5151 	 */
5152 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5153 
5154 	/*
5155 	 * If this is a direct root page, it doesn't have a write flooding
5156 	 * count. Otherwise, clear the write flooding count.
5157 	 */
5158 	if (!new_role.direct) {
5159 		struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
5160 
5161 		if (!WARN_ON_ONCE(!sp))
5162 			__clear_sp_write_flooding_count(sp);
5163 	}
5164 }
5165 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_new_pgd);
5166 
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access)5167 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
5168 			   unsigned int access)
5169 {
5170 	if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
5171 		if (gfn != get_mmio_spte_gfn(*sptep)) {
5172 			mmu_spte_clear_no_track(sptep);
5173 			return true;
5174 		}
5175 
5176 		mark_mmio_spte(vcpu, sptep, gfn, access);
5177 		return true;
5178 	}
5179 
5180 	return false;
5181 }
5182 
5183 #define PTTYPE_EPT 18 /* arbitrary */
5184 #define PTTYPE PTTYPE_EPT
5185 #include "paging_tmpl.h"
5186 #undef PTTYPE
5187 
5188 #define PTTYPE 64
5189 #include "paging_tmpl.h"
5190 #undef PTTYPE
5191 
5192 #define PTTYPE 32
5193 #include "paging_tmpl.h"
5194 #undef PTTYPE
5195 
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)5196 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
5197 				    u64 pa_bits_rsvd, int level, bool nx,
5198 				    bool gbpages, bool pse, bool amd)
5199 {
5200 	u64 gbpages_bit_rsvd = 0;
5201 	u64 nonleaf_bit8_rsvd = 0;
5202 	u64 high_bits_rsvd;
5203 
5204 	rsvd_check->bad_mt_xwr = 0;
5205 
5206 	if (!gbpages)
5207 		gbpages_bit_rsvd = rsvd_bits(7, 7);
5208 
5209 	if (level == PT32E_ROOT_LEVEL)
5210 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
5211 	else
5212 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5213 
5214 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
5215 	if (!nx)
5216 		high_bits_rsvd |= rsvd_bits(63, 63);
5217 
5218 	/*
5219 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
5220 	 * leaf entries) on AMD CPUs only.
5221 	 */
5222 	if (amd)
5223 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
5224 
5225 	switch (level) {
5226 	case PT32_ROOT_LEVEL:
5227 		/* no rsvd bits for 2 level 4K page table entries */
5228 		rsvd_check->rsvd_bits_mask[0][1] = 0;
5229 		rsvd_check->rsvd_bits_mask[0][0] = 0;
5230 		rsvd_check->rsvd_bits_mask[1][0] =
5231 			rsvd_check->rsvd_bits_mask[0][0];
5232 
5233 		if (!pse) {
5234 			rsvd_check->rsvd_bits_mask[1][1] = 0;
5235 			break;
5236 		}
5237 
5238 		if (is_cpuid_PSE36())
5239 			/* 36bits PSE 4MB page */
5240 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
5241 		else
5242 			/* 32 bits PSE 4MB page */
5243 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
5244 		break;
5245 	case PT32E_ROOT_LEVEL:
5246 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
5247 						   high_bits_rsvd |
5248 						   rsvd_bits(5, 8) |
5249 						   rsvd_bits(1, 2);	/* PDPTE */
5250 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
5251 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
5252 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5253 						   rsvd_bits(13, 20);	/* large page */
5254 		rsvd_check->rsvd_bits_mask[1][0] =
5255 			rsvd_check->rsvd_bits_mask[0][0];
5256 		break;
5257 	case PT64_ROOT_5LEVEL:
5258 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
5259 						   nonleaf_bit8_rsvd |
5260 						   rsvd_bits(7, 7);
5261 		rsvd_check->rsvd_bits_mask[1][4] =
5262 			rsvd_check->rsvd_bits_mask[0][4];
5263 		fallthrough;
5264 	case PT64_ROOT_4LEVEL:
5265 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
5266 						   nonleaf_bit8_rsvd |
5267 						   rsvd_bits(7, 7);
5268 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
5269 						   gbpages_bit_rsvd;
5270 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
5271 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5272 		rsvd_check->rsvd_bits_mask[1][3] =
5273 			rsvd_check->rsvd_bits_mask[0][3];
5274 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
5275 						   gbpages_bit_rsvd |
5276 						   rsvd_bits(13, 29);
5277 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5278 						   rsvd_bits(13, 20); /* large page */
5279 		rsvd_check->rsvd_bits_mask[1][0] =
5280 			rsvd_check->rsvd_bits_mask[0][0];
5281 		break;
5282 	}
5283 }
5284 
reset_guest_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5285 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
5286 					struct kvm_mmu *context)
5287 {
5288 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
5289 				vcpu->arch.reserved_gpa_bits,
5290 				context->cpu_role.base.level, is_efer_nx(context),
5291 				guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5292 				is_cr4_pse(context),
5293 				guest_cpuid_is_amd_compatible(vcpu));
5294 }
5295 
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly,int huge_page_level)5296 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5297 					u64 pa_bits_rsvd, bool execonly,
5298 					int huge_page_level)
5299 {
5300 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5301 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
5302 	u64 bad_mt_xwr;
5303 
5304 	if (huge_page_level < PG_LEVEL_1G)
5305 		large_1g_rsvd = rsvd_bits(7, 7);
5306 	if (huge_page_level < PG_LEVEL_2M)
5307 		large_2m_rsvd = rsvd_bits(7, 7);
5308 
5309 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
5310 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
5311 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
5312 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
5313 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5314 
5315 	/* large page */
5316 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
5317 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5318 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
5319 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
5320 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
5321 
5322 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
5323 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
5324 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
5325 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
5326 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
5327 	if (!execonly) {
5328 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
5329 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
5330 	}
5331 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
5332 }
5333 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly,int huge_page_level)5334 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
5335 		struct kvm_mmu *context, bool execonly, int huge_page_level)
5336 {
5337 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5338 				    vcpu->arch.reserved_gpa_bits, execonly,
5339 				    huge_page_level);
5340 }
5341 
reserved_hpa_bits(void)5342 static inline u64 reserved_hpa_bits(void)
5343 {
5344 	return rsvd_bits(kvm_host.maxphyaddr, 63);
5345 }
5346 
5347 /*
5348  * the page table on host is the shadow page table for the page
5349  * table in guest or amd nested guest, its mmu features completely
5350  * follow the features in guest.
5351  */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5352 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
5353 					struct kvm_mmu *context)
5354 {
5355 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5356 	bool is_amd = true;
5357 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
5358 	bool is_pse = false;
5359 	struct rsvd_bits_validate *shadow_zero_check;
5360 	int i;
5361 
5362 	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5363 
5364 	shadow_zero_check = &context->shadow_zero_check;
5365 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5366 				context->root_role.level,
5367 				context->root_role.efer_nx,
5368 				guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5369 				is_pse, is_amd);
5370 
5371 	if (!shadow_me_mask)
5372 		return;
5373 
5374 	for (i = context->root_role.level; --i >= 0;) {
5375 		/*
5376 		 * So far shadow_me_value is a constant during KVM's life
5377 		 * time.  Bits in shadow_me_value are allowed to be set.
5378 		 * Bits in shadow_me_mask but not in shadow_me_value are
5379 		 * not allowed to be set.
5380 		 */
5381 		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5382 		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5383 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5384 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5385 	}
5386 
5387 }
5388 
boot_cpu_is_amd(void)5389 static inline bool boot_cpu_is_amd(void)
5390 {
5391 	WARN_ON_ONCE(!tdp_enabled);
5392 	return shadow_x_mask == 0;
5393 }
5394 
5395 /*
5396  * the direct page table on host, use as much mmu features as
5397  * possible, however, kvm currently does not do execution-protection.
5398  */
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu * context)5399 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5400 {
5401 	struct rsvd_bits_validate *shadow_zero_check;
5402 	int i;
5403 
5404 	shadow_zero_check = &context->shadow_zero_check;
5405 
5406 	if (boot_cpu_is_amd())
5407 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5408 					context->root_role.level, true,
5409 					boot_cpu_has(X86_FEATURE_GBPAGES),
5410 					false, true);
5411 	else
5412 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
5413 					    reserved_hpa_bits(), false,
5414 					    max_huge_page_level);
5415 
5416 	if (!shadow_me_mask)
5417 		return;
5418 
5419 	for (i = context->root_role.level; --i >= 0;) {
5420 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5421 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5422 	}
5423 }
5424 
5425 /*
5426  * as the comments in reset_shadow_zero_bits_mask() except it
5427  * is the shadow page table for intel nested guest.
5428  */
5429 static void
reset_ept_shadow_zero_bits_mask(struct kvm_mmu * context,bool execonly)5430 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5431 {
5432 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5433 				    reserved_hpa_bits(), execonly,
5434 				    max_huge_page_level);
5435 }
5436 
5437 #define BYTE_MASK(access) \
5438 	((1 & (access) ? 2 : 0) | \
5439 	 (2 & (access) ? 4 : 0) | \
5440 	 (3 & (access) ? 8 : 0) | \
5441 	 (4 & (access) ? 16 : 0) | \
5442 	 (5 & (access) ? 32 : 0) | \
5443 	 (6 & (access) ? 64 : 0) | \
5444 	 (7 & (access) ? 128 : 0))
5445 
5446 
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)5447 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5448 {
5449 	unsigned byte;
5450 
5451 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5452 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5453 	const u8 u = BYTE_MASK(ACC_USER_MASK);
5454 
5455 	bool cr4_smep = is_cr4_smep(mmu);
5456 	bool cr4_smap = is_cr4_smap(mmu);
5457 	bool cr0_wp = is_cr0_wp(mmu);
5458 	bool efer_nx = is_efer_nx(mmu);
5459 
5460 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5461 		unsigned pfec = byte << 1;
5462 
5463 		/*
5464 		 * Each "*f" variable has a 1 bit for each UWX value
5465 		 * that causes a fault with the given PFEC.
5466 		 */
5467 
5468 		/* Faults from writes to non-writable pages */
5469 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5470 		/* Faults from user mode accesses to supervisor pages */
5471 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5472 		/* Faults from fetches of non-executable pages*/
5473 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5474 		/* Faults from kernel mode fetches of user pages */
5475 		u8 smepf = 0;
5476 		/* Faults from kernel mode accesses of user pages */
5477 		u8 smapf = 0;
5478 
5479 		if (!ept) {
5480 			/* Faults from kernel mode accesses to user pages */
5481 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5482 
5483 			/* Not really needed: !nx will cause pte.nx to fault */
5484 			if (!efer_nx)
5485 				ff = 0;
5486 
5487 			/* Allow supervisor writes if !cr0.wp */
5488 			if (!cr0_wp)
5489 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5490 
5491 			/* Disallow supervisor fetches of user code if cr4.smep */
5492 			if (cr4_smep)
5493 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5494 
5495 			/*
5496 			 * SMAP:kernel-mode data accesses from user-mode
5497 			 * mappings should fault. A fault is considered
5498 			 * as a SMAP violation if all of the following
5499 			 * conditions are true:
5500 			 *   - X86_CR4_SMAP is set in CR4
5501 			 *   - A user page is accessed
5502 			 *   - The access is not a fetch
5503 			 *   - The access is supervisor mode
5504 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5505 			 *
5506 			 * Here, we cover the first four conditions.
5507 			 * The fifth is computed dynamically in permission_fault();
5508 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5509 			 * *not* subject to SMAP restrictions.
5510 			 */
5511 			if (cr4_smap)
5512 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5513 		}
5514 
5515 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5516 	}
5517 }
5518 
5519 /*
5520 * PKU is an additional mechanism by which the paging controls access to
5521 * user-mode addresses based on the value in the PKRU register.  Protection
5522 * key violations are reported through a bit in the page fault error code.
5523 * Unlike other bits of the error code, the PK bit is not known at the
5524 * call site of e.g. gva_to_gpa; it must be computed directly in
5525 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5526 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5527 *
5528 * In particular the following conditions come from the error code, the
5529 * page tables and the machine state:
5530 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5531 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5532 * - PK is always zero if U=0 in the page tables
5533 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5534 *
5535 * The PKRU bitmask caches the result of these four conditions.  The error
5536 * code (minus the P bit) and the page table's U bit form an index into the
5537 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5538 * with the two bits of the PKRU register corresponding to the protection key.
5539 * For the first three conditions above the bits will be 00, thus masking
5540 * away both AD and WD.  For all reads or if the last condition holds, WD
5541 * only will be masked away.
5542 */
update_pkru_bitmask(struct kvm_mmu * mmu)5543 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5544 {
5545 	unsigned bit;
5546 	bool wp;
5547 
5548 	mmu->pkru_mask = 0;
5549 
5550 	if (!is_cr4_pke(mmu))
5551 		return;
5552 
5553 	wp = is_cr0_wp(mmu);
5554 
5555 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5556 		unsigned pfec, pkey_bits;
5557 		bool check_pkey, check_write, ff, uf, wf, pte_user;
5558 
5559 		pfec = bit << 1;
5560 		ff = pfec & PFERR_FETCH_MASK;
5561 		uf = pfec & PFERR_USER_MASK;
5562 		wf = pfec & PFERR_WRITE_MASK;
5563 
5564 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
5565 		pte_user = pfec & PFERR_RSVD_MASK;
5566 
5567 		/*
5568 		 * Only need to check the access which is not an
5569 		 * instruction fetch and is to a user page.
5570 		 */
5571 		check_pkey = (!ff && pte_user);
5572 		/*
5573 		 * write access is controlled by PKRU if it is a
5574 		 * user access or CR0.WP = 1.
5575 		 */
5576 		check_write = check_pkey && wf && (uf || wp);
5577 
5578 		/* PKRU.AD stops both read and write access. */
5579 		pkey_bits = !!check_pkey;
5580 		/* PKRU.WD stops write access. */
5581 		pkey_bits |= (!!check_write) << 1;
5582 
5583 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5584 	}
5585 }
5586 
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5587 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5588 					struct kvm_mmu *mmu)
5589 {
5590 	if (!is_cr0_pg(mmu))
5591 		return;
5592 
5593 	reset_guest_rsvds_bits_mask(vcpu, mmu);
5594 	update_permission_bitmask(mmu, false);
5595 	update_pkru_bitmask(mmu);
5596 }
5597 
paging64_init_context(struct kvm_mmu * context)5598 static void paging64_init_context(struct kvm_mmu *context)
5599 {
5600 	context->page_fault = paging64_page_fault;
5601 	context->gva_to_gpa = paging64_gva_to_gpa;
5602 	context->sync_spte = paging64_sync_spte;
5603 }
5604 
paging32_init_context(struct kvm_mmu * context)5605 static void paging32_init_context(struct kvm_mmu *context)
5606 {
5607 	context->page_fault = paging32_page_fault;
5608 	context->gva_to_gpa = paging32_gva_to_gpa;
5609 	context->sync_spte = paging32_sync_spte;
5610 }
5611 
kvm_calc_cpu_role(struct kvm_vcpu * vcpu,const struct kvm_mmu_role_regs * regs)5612 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5613 					    const struct kvm_mmu_role_regs *regs)
5614 {
5615 	union kvm_cpu_role role = {0};
5616 
5617 	role.base.access = ACC_ALL;
5618 	role.base.smm = is_smm(vcpu);
5619 	role.base.guest_mode = is_guest_mode(vcpu);
5620 	role.ext.valid = 1;
5621 
5622 	if (!____is_cr0_pg(regs)) {
5623 		role.base.direct = 1;
5624 		return role;
5625 	}
5626 
5627 	role.base.efer_nx = ____is_efer_nx(regs);
5628 	role.base.cr0_wp = ____is_cr0_wp(regs);
5629 	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5630 	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5631 	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5632 
5633 	if (____is_efer_lma(regs))
5634 		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5635 							: PT64_ROOT_4LEVEL;
5636 	else if (____is_cr4_pae(regs))
5637 		role.base.level = PT32E_ROOT_LEVEL;
5638 	else
5639 		role.base.level = PT32_ROOT_LEVEL;
5640 
5641 	role.ext.cr4_smep = ____is_cr4_smep(regs);
5642 	role.ext.cr4_smap = ____is_cr4_smap(regs);
5643 	role.ext.cr4_pse = ____is_cr4_pse(regs);
5644 
5645 	/* PKEY and LA57 are active iff long mode is active. */
5646 	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5647 	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5648 	role.ext.efer_lma = ____is_efer_lma(regs);
5649 	return role;
5650 }
5651 
__kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5652 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5653 					struct kvm_mmu *mmu)
5654 {
5655 	const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5656 
5657 	BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5658 	BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5659 
5660 	if (is_cr0_wp(mmu) == cr0_wp)
5661 		return;
5662 
5663 	mmu->cpu_role.base.cr0_wp = cr0_wp;
5664 	reset_guest_paging_metadata(vcpu, mmu);
5665 }
5666 
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)5667 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5668 {
5669 	int maxpa;
5670 
5671 	if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM)
5672 		maxpa = cpuid_query_maxguestphyaddr(vcpu);
5673 	else
5674 		maxpa = cpuid_maxphyaddr(vcpu);
5675 
5676 	/* tdp_root_level is architecture forced level, use it if nonzero */
5677 	if (tdp_root_level)
5678 		return tdp_root_level;
5679 
5680 	/* Use 5-level TDP if and only if it's useful/necessary. */
5681 	if (max_tdp_level == 5 && maxpa <= 48)
5682 		return 4;
5683 
5684 	return max_tdp_level;
5685 }
5686 
kvm_mmu_get_max_tdp_level(void)5687 u8 kvm_mmu_get_max_tdp_level(void)
5688 {
5689 	return tdp_root_level ? tdp_root_level : max_tdp_level;
5690 }
5691 
5692 static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5693 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5694 				union kvm_cpu_role cpu_role)
5695 {
5696 	union kvm_mmu_page_role role = {0};
5697 
5698 	role.access = ACC_ALL;
5699 	role.cr0_wp = true;
5700 	role.efer_nx = true;
5701 	role.smm = cpu_role.base.smm;
5702 	role.guest_mode = cpu_role.base.guest_mode;
5703 	role.ad_disabled = !kvm_ad_enabled;
5704 	role.level = kvm_mmu_get_tdp_level(vcpu);
5705 	role.direct = true;
5706 	role.has_4_byte_gpte = false;
5707 
5708 	return role;
5709 }
5710 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5711 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5712 			     union kvm_cpu_role cpu_role)
5713 {
5714 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5715 	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5716 
5717 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5718 	    root_role.word == context->root_role.word)
5719 		return;
5720 
5721 	context->cpu_role.as_u64 = cpu_role.as_u64;
5722 	context->root_role.word = root_role.word;
5723 	context->page_fault = kvm_tdp_page_fault;
5724 	context->sync_spte = NULL;
5725 	context->get_guest_pgd = get_guest_cr3;
5726 	context->get_pdptr = kvm_pdptr_read;
5727 	context->inject_page_fault = kvm_inject_page_fault;
5728 
5729 	if (!is_cr0_pg(context))
5730 		context->gva_to_gpa = nonpaging_gva_to_gpa;
5731 	else if (is_cr4_pae(context))
5732 		context->gva_to_gpa = paging64_gva_to_gpa;
5733 	else
5734 		context->gva_to_gpa = paging32_gva_to_gpa;
5735 
5736 	reset_guest_paging_metadata(vcpu, context);
5737 	reset_tdp_shadow_zero_bits_mask(context);
5738 }
5739 
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,union kvm_cpu_role cpu_role,union kvm_mmu_page_role root_role)5740 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5741 				    union kvm_cpu_role cpu_role,
5742 				    union kvm_mmu_page_role root_role)
5743 {
5744 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5745 	    root_role.word == context->root_role.word)
5746 		return;
5747 
5748 	context->cpu_role.as_u64 = cpu_role.as_u64;
5749 	context->root_role.word = root_role.word;
5750 
5751 	if (!is_cr0_pg(context))
5752 		nonpaging_init_context(context);
5753 	else if (is_cr4_pae(context))
5754 		paging64_init_context(context);
5755 	else
5756 		paging32_init_context(context);
5757 
5758 	reset_guest_paging_metadata(vcpu, context);
5759 	reset_shadow_zero_bits_mask(vcpu, context);
5760 }
5761 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5762 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5763 				union kvm_cpu_role cpu_role)
5764 {
5765 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5766 	union kvm_mmu_page_role root_role;
5767 
5768 	root_role = cpu_role.base;
5769 
5770 	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5771 	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5772 
5773 	/*
5774 	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5775 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5776 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5777 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5778 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
5779 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
5780 	 * MMU contexts.
5781 	 */
5782 	root_role.efer_nx = true;
5783 
5784 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5785 }
5786 
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)5787 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5788 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
5789 {
5790 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5791 	struct kvm_mmu_role_regs regs = {
5792 		.cr0 = cr0,
5793 		.cr4 = cr4 & ~X86_CR4_PKE,
5794 		.efer = efer,
5795 	};
5796 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5797 	union kvm_mmu_page_role root_role;
5798 
5799 	/* NPT requires CR0.PG=1. */
5800 	WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode);
5801 
5802 	root_role = cpu_role.base;
5803 	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5804 	if (root_role.level == PT64_ROOT_5LEVEL &&
5805 	    cpu_role.base.level == PT64_ROOT_4LEVEL)
5806 		root_role.passthrough = 1;
5807 
5808 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5809 	kvm_mmu_new_pgd(vcpu, nested_cr3);
5810 }
5811 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_npt_mmu);
5812 
5813 static union kvm_cpu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)5814 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5815 				   bool execonly, u8 level)
5816 {
5817 	union kvm_cpu_role role = {0};
5818 
5819 	/*
5820 	 * KVM does not support SMM transfer monitors, and consequently does not
5821 	 * support the "entry to SMM" control either.  role.base.smm is always 0.
5822 	 */
5823 	WARN_ON_ONCE(is_smm(vcpu));
5824 	role.base.level = level;
5825 	role.base.has_4_byte_gpte = false;
5826 	role.base.direct = false;
5827 	role.base.ad_disabled = !accessed_dirty;
5828 	role.base.guest_mode = true;
5829 	role.base.access = ACC_ALL;
5830 
5831 	role.ext.word = 0;
5832 	role.ext.execonly = execonly;
5833 	role.ext.valid = 1;
5834 
5835 	return role;
5836 }
5837 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,int huge_page_level,bool accessed_dirty,gpa_t new_eptp)5838 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5839 			     int huge_page_level, bool accessed_dirty,
5840 			     gpa_t new_eptp)
5841 {
5842 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5843 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5844 	union kvm_cpu_role new_mode =
5845 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5846 						   execonly, level);
5847 
5848 	if (new_mode.as_u64 != context->cpu_role.as_u64) {
5849 		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5850 		context->cpu_role.as_u64 = new_mode.as_u64;
5851 		context->root_role.word = new_mode.base.word;
5852 
5853 		context->page_fault = ept_page_fault;
5854 		context->gva_to_gpa = ept_gva_to_gpa;
5855 		context->sync_spte = ept_sync_spte;
5856 
5857 		update_permission_bitmask(context, true);
5858 		context->pkru_mask = 0;
5859 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5860 		reset_ept_shadow_zero_bits_mask(context, execonly);
5861 	}
5862 
5863 	kvm_mmu_new_pgd(vcpu, new_eptp);
5864 }
5865 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_ept_mmu);
5866 
init_kvm_softmmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5867 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5868 			     union kvm_cpu_role cpu_role)
5869 {
5870 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5871 
5872 	kvm_init_shadow_mmu(vcpu, cpu_role);
5873 
5874 	context->get_guest_pgd     = get_guest_cr3;
5875 	context->get_pdptr         = kvm_pdptr_read;
5876 	context->inject_page_fault = kvm_inject_page_fault;
5877 }
5878 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role new_mode)5879 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5880 				union kvm_cpu_role new_mode)
5881 {
5882 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5883 
5884 	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5885 		return;
5886 
5887 	g_context->cpu_role.as_u64   = new_mode.as_u64;
5888 	g_context->get_guest_pgd     = get_guest_cr3;
5889 	g_context->get_pdptr         = kvm_pdptr_read;
5890 	g_context->inject_page_fault = kvm_inject_page_fault;
5891 
5892 	/*
5893 	 * L2 page tables are never shadowed, so there is no need to sync
5894 	 * SPTEs.
5895 	 */
5896 	g_context->sync_spte         = NULL;
5897 
5898 	/*
5899 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5900 	 * L1's nested page tables (e.g. EPT12). The nested translation
5901 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5902 	 * L2's page tables as the first level of translation and L1's
5903 	 * nested page tables as the second level of translation. Basically
5904 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5905 	 */
5906 	if (!is_paging(vcpu))
5907 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5908 	else if (is_long_mode(vcpu))
5909 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5910 	else if (is_pae(vcpu))
5911 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5912 	else
5913 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5914 
5915 	reset_guest_paging_metadata(vcpu, g_context);
5916 }
5917 
kvm_init_mmu(struct kvm_vcpu * vcpu)5918 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5919 {
5920 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5921 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5922 
5923 	if (mmu_is_nested(vcpu))
5924 		init_kvm_nested_mmu(vcpu, cpu_role);
5925 	else if (tdp_enabled)
5926 		init_kvm_tdp_mmu(vcpu, cpu_role);
5927 	else
5928 		init_kvm_softmmu(vcpu, cpu_role);
5929 }
5930 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_mmu);
5931 
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5932 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5933 {
5934 	/*
5935 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5936 	 * information is factored into reserved bit calculations.
5937 	 *
5938 	 * Correctly handling multiple vCPU models with respect to paging and
5939 	 * physical address properties) in a single VM would require tracking
5940 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5941 	 * undesirable as it would increase the memory requirements for
5942 	 * gfn_write_track (see struct kvm_mmu_page_role comments).  For now
5943 	 * that problem is swept under the rug; KVM's CPUID API is horrific and
5944 	 * it's all but impossible to solve it without introducing a new API.
5945 	 */
5946 	vcpu->arch.root_mmu.root_role.invalid = 1;
5947 	vcpu->arch.guest_mmu.root_role.invalid = 1;
5948 	vcpu->arch.nested_mmu.root_role.invalid = 1;
5949 	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5950 	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5951 	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5952 	kvm_mmu_reset_context(vcpu);
5953 
5954 	/*
5955 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5956 	 * kvm_arch_vcpu_ioctl().
5957 	 */
5958 	KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5959 }
5960 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5961 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5962 {
5963 	kvm_mmu_unload(vcpu);
5964 	kvm_init_mmu(vcpu);
5965 }
5966 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_reset_context);
5967 
kvm_mmu_load(struct kvm_vcpu * vcpu)5968 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5969 {
5970 	int r;
5971 
5972 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5973 	if (r)
5974 		goto out;
5975 	r = mmu_alloc_special_roots(vcpu);
5976 	if (r)
5977 		goto out;
5978 	if (vcpu->arch.mmu->root_role.direct)
5979 		r = mmu_alloc_direct_roots(vcpu);
5980 	else
5981 		r = mmu_alloc_shadow_roots(vcpu);
5982 	if (r)
5983 		goto out;
5984 
5985 	kvm_mmu_sync_roots(vcpu);
5986 
5987 	kvm_mmu_load_pgd(vcpu);
5988 
5989 	/*
5990 	 * Flush any TLB entries for the new root, the provenance of the root
5991 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5992 	 * for a freed root, in theory another hypervisor could have left
5993 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5994 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5995 	 */
5996 	kvm_x86_call(flush_tlb_current)(vcpu);
5997 out:
5998 	return r;
5999 }
6000 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_load);
6001 
kvm_mmu_unload(struct kvm_vcpu * vcpu)6002 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
6003 {
6004 	struct kvm *kvm = vcpu->kvm;
6005 
6006 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
6007 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
6008 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
6009 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
6010 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
6011 }
6012 
is_obsolete_root(struct kvm * kvm,hpa_t root_hpa)6013 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
6014 {
6015 	struct kvm_mmu_page *sp;
6016 
6017 	if (!VALID_PAGE(root_hpa))
6018 		return false;
6019 
6020 	/*
6021 	 * When freeing obsolete roots, treat roots as obsolete if they don't
6022 	 * have an associated shadow page, as it's impossible to determine if
6023 	 * such roots are fresh or stale.  This does mean KVM will get false
6024 	 * positives and free roots that don't strictly need to be freed, but
6025 	 * such false positives are relatively rare:
6026 	 *
6027 	 *  (a) only PAE paging and nested NPT have roots without shadow pages
6028 	 *      (or any shadow paging flavor with a dummy root, see note below)
6029 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
6030 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
6031 	 *      is unlikely to zap an in-use PGD.
6032 	 *
6033 	 * Note!  Dummy roots are unique in that they are obsoleted by memslot
6034 	 * _creation_!  See also FNAME(fetch).
6035 	 */
6036 	sp = root_to_sp(root_hpa);
6037 	return !sp || is_obsolete_sp(kvm, sp);
6038 }
6039 
__kvm_mmu_free_obsolete_roots(struct kvm * kvm,struct kvm_mmu * mmu)6040 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
6041 {
6042 	unsigned long roots_to_free = 0;
6043 	int i;
6044 
6045 	if (is_obsolete_root(kvm, mmu->root.hpa))
6046 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
6047 
6048 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6049 		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
6050 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
6051 	}
6052 
6053 	if (roots_to_free)
6054 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
6055 }
6056 
kvm_mmu_free_obsolete_roots(struct kvm_vcpu * vcpu)6057 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
6058 {
6059 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6060 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
6061 }
6062 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_obsolete_roots);
6063 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)6064 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
6065 				    int *bytes)
6066 {
6067 	u64 gentry = 0;
6068 	int r;
6069 
6070 	/*
6071 	 * Assume that the pte write on a page table of the same type
6072 	 * as the current vcpu paging mode since we update the sptes only
6073 	 * when they have the same mode.
6074 	 */
6075 	if (is_pae(vcpu) && *bytes == 4) {
6076 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
6077 		*gpa &= ~(gpa_t)7;
6078 		*bytes = 8;
6079 	}
6080 
6081 	if (*bytes == 4 || *bytes == 8) {
6082 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
6083 		if (r)
6084 			gentry = 0;
6085 	}
6086 
6087 	return gentry;
6088 }
6089 
6090 /*
6091  * If we're seeing too many writes to a page, it may no longer be a page table,
6092  * or we may be forking, in which case it is better to unmap the page.
6093  */
detect_write_flooding(struct kvm_mmu_page * sp)6094 static bool detect_write_flooding(struct kvm_mmu_page *sp)
6095 {
6096 	/*
6097 	 * Skip write-flooding detected for the sp whose level is 1, because
6098 	 * it can become unsync, then the guest page is not write-protected.
6099 	 */
6100 	if (sp->role.level == PG_LEVEL_4K)
6101 		return false;
6102 
6103 	atomic_inc(&sp->write_flooding_count);
6104 	return atomic_read(&sp->write_flooding_count) >= 3;
6105 }
6106 
6107 /*
6108  * Misaligned accesses are too much trouble to fix up; also, they usually
6109  * indicate a page is not used as a page table.
6110  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)6111 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
6112 				    int bytes)
6113 {
6114 	unsigned offset, pte_size, misaligned;
6115 
6116 	offset = offset_in_page(gpa);
6117 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
6118 
6119 	/*
6120 	 * Sometimes, the OS only writes the last one bytes to update status
6121 	 * bits, for example, in linux, andb instruction is used in clear_bit().
6122 	 */
6123 	if (!(offset & (pte_size - 1)) && bytes == 1)
6124 		return false;
6125 
6126 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
6127 	misaligned |= bytes < 4;
6128 
6129 	return misaligned;
6130 }
6131 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)6132 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
6133 {
6134 	unsigned page_offset, quadrant;
6135 	u64 *spte;
6136 	int level;
6137 
6138 	page_offset = offset_in_page(gpa);
6139 	level = sp->role.level;
6140 	*nspte = 1;
6141 	if (sp->role.has_4_byte_gpte) {
6142 		page_offset <<= 1;	/* 32->64 */
6143 		/*
6144 		 * A 32-bit pde maps 4MB while the shadow pdes map
6145 		 * only 2MB.  So we need to double the offset again
6146 		 * and zap two pdes instead of one.
6147 		 */
6148 		if (level == PT32_ROOT_LEVEL) {
6149 			page_offset &= ~7; /* kill rounding error */
6150 			page_offset <<= 1;
6151 			*nspte = 2;
6152 		}
6153 		quadrant = page_offset >> PAGE_SHIFT;
6154 		page_offset &= ~PAGE_MASK;
6155 		if (quadrant != sp->role.quadrant)
6156 			return NULL;
6157 	}
6158 
6159 	spte = &sp->spt[page_offset / sizeof(*spte)];
6160 	return spte;
6161 }
6162 
kvm_mmu_track_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)6163 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
6164 			 int bytes)
6165 {
6166 	gfn_t gfn = gpa >> PAGE_SHIFT;
6167 	struct kvm_mmu_page *sp;
6168 	LIST_HEAD(invalid_list);
6169 	u64 entry, gentry, *spte;
6170 	int npte;
6171 	bool flush = false;
6172 
6173 	/*
6174 	 * When emulating guest writes, ensure the written value is visible to
6175 	 * any task that is handling page faults before checking whether or not
6176 	 * KVM is shadowing a guest PTE.  This ensures either KVM will create
6177 	 * the correct SPTE in the page fault handler, or this task will see
6178 	 * a non-zero indirect_shadow_pages.  Pairs with the smp_mb() in
6179 	 * account_shadowed().
6180 	 */
6181 	smp_mb();
6182 	if (!vcpu->kvm->arch.indirect_shadow_pages)
6183 		return;
6184 
6185 	write_lock(&vcpu->kvm->mmu_lock);
6186 
6187 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
6188 
6189 	++vcpu->kvm->stat.mmu_pte_write;
6190 
6191 	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
6192 		if (detect_write_misaligned(sp, gpa, bytes) ||
6193 		      detect_write_flooding(sp)) {
6194 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
6195 			++vcpu->kvm->stat.mmu_flooded;
6196 			continue;
6197 		}
6198 
6199 		spte = get_written_sptes(sp, gpa, &npte);
6200 		if (!spte)
6201 			continue;
6202 
6203 		while (npte--) {
6204 			entry = *spte;
6205 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
6206 			if (gentry && sp->role.level != PG_LEVEL_4K)
6207 				++vcpu->kvm->stat.mmu_pde_zapped;
6208 			if (is_shadow_present_pte(entry))
6209 				flush = true;
6210 			++spte;
6211 		}
6212 	}
6213 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
6214 	write_unlock(&vcpu->kvm->mmu_lock);
6215 }
6216 
is_write_to_guest_page_table(u64 error_code)6217 static bool is_write_to_guest_page_table(u64 error_code)
6218 {
6219 	const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
6220 
6221 	return (error_code & mask) == mask;
6222 }
6223 
kvm_mmu_write_protect_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,int * emulation_type)6224 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6225 				       u64 error_code, int *emulation_type)
6226 {
6227 	bool direct = vcpu->arch.mmu->root_role.direct;
6228 
6229 	/*
6230 	 * Do not try to unprotect and retry if the vCPU re-faulted on the same
6231 	 * RIP with the same address that was previously unprotected, as doing
6232 	 * so will likely put the vCPU into an infinite.  E.g. if the vCPU uses
6233 	 * a non-page-table modifying instruction on the PDE that points to the
6234 	 * instruction, then unprotecting the gfn will unmap the instruction's
6235 	 * code, i.e. make it impossible for the instruction to ever complete.
6236 	 */
6237 	if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
6238 	    vcpu->arch.last_retry_addr == cr2_or_gpa)
6239 		return RET_PF_EMULATE;
6240 
6241 	/*
6242 	 * Reset the unprotect+retry values that guard against infinite loops.
6243 	 * The values will be refreshed if KVM explicitly unprotects a gfn and
6244 	 * retries, in all other cases it's safe to retry in the future even if
6245 	 * the next page fault happens on the same RIP+address.
6246 	 */
6247 	vcpu->arch.last_retry_eip = 0;
6248 	vcpu->arch.last_retry_addr = 0;
6249 
6250 	/*
6251 	 * It should be impossible to reach this point with an MMIO cache hit,
6252 	 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
6253 	 * writable memslot, and creating a memslot should invalidate the MMIO
6254 	 * cache by way of changing the memslot generation.  WARN and disallow
6255 	 * retry if MMIO is detected, as retrying MMIO emulation is pointless
6256 	 * and could put the vCPU into an infinite loop because the processor
6257 	 * will keep faulting on the non-existent MMIO address.
6258 	 */
6259 	if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
6260 		return RET_PF_EMULATE;
6261 
6262 	/*
6263 	 * Before emulating the instruction, check to see if the access was due
6264 	 * to a read-only violation while the CPU was walking non-nested NPT
6265 	 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
6266 	 * If L1 is sharing (a subset of) its page tables with L2, e.g. by
6267 	 * having nCR3 share lower level page tables with hCR3, then when KVM
6268 	 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
6269 	 * unknowingly write-protecting L1's guest page tables, which KVM isn't
6270 	 * shadowing.
6271 	 *
6272 	 * Because the CPU (by default) walks NPT page tables using a write
6273 	 * access (to ensure the CPU can do A/D updates), page walks in L1 can
6274 	 * trigger write faults for the above case even when L1 isn't modifying
6275 	 * PTEs.  As a result, KVM will unnecessarily emulate (or at least, try
6276 	 * to emulate) an excessive number of L1 instructions; because L1's MMU
6277 	 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
6278 	 * and thus no need to emulate in order to guarantee forward progress.
6279 	 *
6280 	 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
6281 	 * proceed without triggering emulation.  If one or more shadow pages
6282 	 * was zapped, skip emulation and resume L1 to let it natively execute
6283 	 * the instruction.  If no shadow pages were zapped, then the write-
6284 	 * fault is due to something else entirely, i.e. KVM needs to emulate,
6285 	 * as resuming the guest will put it into an infinite loop.
6286 	 *
6287 	 * Note, this code also applies to Intel CPUs, even though it is *very*
6288 	 * unlikely that an L1 will share its page tables (IA32/PAE/paging64
6289 	 * format) with L2's page tables (EPT format).
6290 	 *
6291 	 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
6292 	 * unprotect the gfn and retry if an event is awaiting reinjection.  If
6293 	 * KVM emulates multiple instructions before completing event injection,
6294 	 * the event could be delayed beyond what is architecturally allowed,
6295 	 * e.g. KVM could inject an IRQ after the TPR has been raised.
6296 	 */
6297 	if (((direct && is_write_to_guest_page_table(error_code)) ||
6298 	     (!direct && kvm_event_needs_reinjection(vcpu))) &&
6299 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
6300 		return RET_PF_RETRY;
6301 
6302 	/*
6303 	 * The gfn is write-protected, but if KVM detects its emulating an
6304 	 * instruction that is unlikely to be used to modify page tables, or if
6305 	 * emulation fails, KVM can try to unprotect the gfn and let the CPU
6306 	 * re-execute the instruction that caused the page fault.  Do not allow
6307 	 * retrying an instruction from a nested guest as KVM is only explicitly
6308 	 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't
6309 	 * going to magically fix whatever issue caused L2 to fail.
6310 	 */
6311 	if (!is_guest_mode(vcpu))
6312 		*emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
6313 
6314 	return RET_PF_EMULATE;
6315 }
6316 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)6317 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
6318 		       void *insn, int insn_len)
6319 {
6320 	int r, emulation_type = EMULTYPE_PF;
6321 	bool direct = vcpu->arch.mmu->root_role.direct;
6322 
6323 	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
6324 		return RET_PF_RETRY;
6325 
6326 	/*
6327 	 * Except for reserved faults (emulated MMIO is shared-only), set the
6328 	 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
6329 	 * current attributes, which are the source of truth for such VMs.  Note,
6330 	 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
6331 	 * currently supported nested virtualization (among many other things)
6332 	 * for software-protected VMs.
6333 	 */
6334 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
6335 	    !(error_code & PFERR_RSVD_MASK) &&
6336 	    vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
6337 	    kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
6338 		error_code |= PFERR_PRIVATE_ACCESS;
6339 
6340 	r = RET_PF_INVALID;
6341 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
6342 		if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
6343 			return -EFAULT;
6344 
6345 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
6346 		if (r == RET_PF_EMULATE)
6347 			goto emulate;
6348 	}
6349 
6350 	if (r == RET_PF_INVALID) {
6351 		vcpu->stat.pf_taken++;
6352 
6353 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
6354 					  &emulation_type, NULL);
6355 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
6356 			return -EIO;
6357 	}
6358 
6359 	if (r < 0)
6360 		return r;
6361 
6362 	if (r == RET_PF_WRITE_PROTECTED)
6363 		r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
6364 						&emulation_type);
6365 
6366 	if (r == RET_PF_FIXED)
6367 		vcpu->stat.pf_fixed++;
6368 	else if (r == RET_PF_EMULATE)
6369 		vcpu->stat.pf_emulate++;
6370 	else if (r == RET_PF_SPURIOUS)
6371 		vcpu->stat.pf_spurious++;
6372 
6373 	/*
6374 	 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or
6375 	 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE.
6376 	 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to
6377 	 * indicate continuing the page fault handling until to the final
6378 	 * page table mapping phase.
6379 	 */
6380 	WARN_ON_ONCE(r == RET_PF_CONTINUE);
6381 	if (r != RET_PF_EMULATE)
6382 		return r;
6383 
6384 emulate:
6385 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
6386 				       insn_len);
6387 }
6388 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_page_fault);
6389 
kvm_mmu_print_sptes(struct kvm_vcpu * vcpu,gpa_t gpa,const char * msg)6390 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
6391 {
6392 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
6393 	int root_level, leaf, level;
6394 
6395 	leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
6396 	if (unlikely(leaf < 0))
6397 		return;
6398 
6399 	pr_err("%s %llx", msg, gpa);
6400 	for (level = root_level; level >= leaf; level--)
6401 		pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
6402 	pr_cont("\n");
6403 }
6404 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_print_sptes);
6405 
__kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,hpa_t root_hpa)6406 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6407 				      u64 addr, hpa_t root_hpa)
6408 {
6409 	struct kvm_shadow_walk_iterator iterator;
6410 
6411 	vcpu_clear_mmio_info(vcpu, addr);
6412 
6413 	/*
6414 	 * Walking and synchronizing SPTEs both assume they are operating in
6415 	 * the context of the current MMU, and would need to be reworked if
6416 	 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
6417 	 */
6418 	if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
6419 		return;
6420 
6421 	if (!VALID_PAGE(root_hpa))
6422 		return;
6423 
6424 	write_lock(&vcpu->kvm->mmu_lock);
6425 	for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
6426 		struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
6427 
6428 		if (sp->unsync) {
6429 			int ret = kvm_sync_spte(vcpu, sp, iterator.index);
6430 
6431 			if (ret < 0)
6432 				mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
6433 			if (ret)
6434 				kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
6435 		}
6436 
6437 		if (!sp->unsync_children)
6438 			break;
6439 	}
6440 	write_unlock(&vcpu->kvm->mmu_lock);
6441 }
6442 
kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,unsigned long roots)6443 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6444 			     u64 addr, unsigned long roots)
6445 {
6446 	int i;
6447 
6448 	WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
6449 
6450 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
6451 	if (mmu != &vcpu->arch.guest_mmu) {
6452 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
6453 		if (is_noncanonical_invlpg_address(addr, vcpu))
6454 			return;
6455 
6456 		kvm_x86_call(flush_tlb_gva)(vcpu, addr);
6457 	}
6458 
6459 	if (!mmu->sync_spte)
6460 		return;
6461 
6462 	if (roots & KVM_MMU_ROOT_CURRENT)
6463 		__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
6464 
6465 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6466 		if (roots & KVM_MMU_ROOT_PREVIOUS(i))
6467 			__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
6468 	}
6469 }
6470 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invalidate_addr);
6471 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)6472 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
6473 {
6474 	/*
6475 	 * INVLPG is required to invalidate any global mappings for the VA,
6476 	 * irrespective of PCID.  Blindly sync all roots as it would take
6477 	 * roughly the same amount of work/time to determine whether any of the
6478 	 * previous roots have a global mapping.
6479 	 *
6480 	 * Mappings not reachable via the current or previous cached roots will
6481 	 * be synced when switching to that new cr3, so nothing needs to be
6482 	 * done here for them.
6483 	 */
6484 	kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
6485 	++vcpu->stat.invlpg;
6486 }
6487 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invlpg);
6488 
6489 
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)6490 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6491 {
6492 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6493 	unsigned long roots = 0;
6494 	uint i;
6495 
6496 	if (pcid == kvm_get_active_pcid(vcpu))
6497 		roots |= KVM_MMU_ROOT_CURRENT;
6498 
6499 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6500 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6501 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6502 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
6503 	}
6504 
6505 	if (roots)
6506 		kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6507 	++vcpu->stat.invlpg;
6508 
6509 	/*
6510 	 * Mappings not reachable via the current cr3 or the prev_roots will be
6511 	 * synced when switching to that cr3, so nothing needs to be done here
6512 	 * for them.
6513 	 */
6514 }
6515 
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)6516 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6517 		       int tdp_max_root_level, int tdp_huge_page_level)
6518 {
6519 	tdp_enabled = enable_tdp;
6520 	tdp_root_level = tdp_forced_root_level;
6521 	max_tdp_level = tdp_max_root_level;
6522 
6523 #ifdef CONFIG_X86_64
6524 	tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6525 #endif
6526 	/*
6527 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6528 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6529 	 * the kernel is not.  But, KVM never creates a page size greater than
6530 	 * what is used by the kernel for any given HVA, i.e. the kernel's
6531 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6532 	 */
6533 	if (tdp_enabled)
6534 		max_huge_page_level = tdp_huge_page_level;
6535 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6536 		max_huge_page_level = PG_LEVEL_1G;
6537 	else
6538 		max_huge_page_level = PG_LEVEL_2M;
6539 }
6540 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_configure_mmu);
6541 
free_mmu_pages(struct kvm_mmu * mmu)6542 static void free_mmu_pages(struct kvm_mmu *mmu)
6543 {
6544 	if (!tdp_enabled && mmu->pae_root)
6545 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6546 	free_page((unsigned long)mmu->pae_root);
6547 	free_page((unsigned long)mmu->pml4_root);
6548 	free_page((unsigned long)mmu->pml5_root);
6549 }
6550 
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)6551 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6552 {
6553 	struct page *page;
6554 	int i;
6555 
6556 	mmu->root.hpa = INVALID_PAGE;
6557 	mmu->root.pgd = 0;
6558 	mmu->mirror_root_hpa = INVALID_PAGE;
6559 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6560 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6561 
6562 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6563 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6564 		return 0;
6565 
6566 	/*
6567 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6568 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
6569 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
6570 	 * x86_64.  Therefore we need to allocate the PDP table in the first
6571 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6572 	 * generally doesn't use PAE paging and can skip allocating the PDP
6573 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6574 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6575 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6576 	 */
6577 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6578 		return 0;
6579 
6580 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6581 	if (!page)
6582 		return -ENOMEM;
6583 
6584 	mmu->pae_root = page_address(page);
6585 
6586 	/*
6587 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6588 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6589 	 * that KVM's writes and the CPU's reads get along.  Note, this is
6590 	 * only necessary when using shadow paging, as 64-bit NPT can get at
6591 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6592 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6593 	 */
6594 	if (!tdp_enabled)
6595 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6596 	else
6597 		WARN_ON_ONCE(shadow_me_value);
6598 
6599 	for (i = 0; i < 4; ++i)
6600 		mmu->pae_root[i] = INVALID_PAE_ROOT;
6601 
6602 	return 0;
6603 }
6604 
kvm_mmu_create(struct kvm_vcpu * vcpu)6605 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6606 {
6607 	int ret;
6608 
6609 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6610 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6611 
6612 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6613 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6614 
6615 	vcpu->arch.mmu_shadow_page_cache.init_value =
6616 		SHADOW_NONPRESENT_VALUE;
6617 	if (!vcpu->arch.mmu_shadow_page_cache.init_value)
6618 		vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6619 
6620 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
6621 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6622 
6623 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6624 	if (ret)
6625 		return ret;
6626 
6627 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6628 	if (ret)
6629 		goto fail_allocate_root;
6630 
6631 	return ret;
6632  fail_allocate_root:
6633 	free_mmu_pages(&vcpu->arch.guest_mmu);
6634 	return ret;
6635 }
6636 
6637 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)6638 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6639 {
6640 	struct kvm_mmu_page *sp, *node;
6641 	int nr_zapped, batch = 0;
6642 	LIST_HEAD(invalid_list);
6643 	bool unstable;
6644 
6645 	lockdep_assert_held(&kvm->slots_lock);
6646 
6647 restart:
6648 	list_for_each_entry_safe_reverse(sp, node,
6649 	      &kvm->arch.active_mmu_pages, link) {
6650 		/*
6651 		 * No obsolete valid page exists before a newly created page
6652 		 * since active_mmu_pages is a FIFO list.
6653 		 */
6654 		if (!is_obsolete_sp(kvm, sp))
6655 			break;
6656 
6657 		/*
6658 		 * Invalid pages should never land back on the list of active
6659 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
6660 		 * infinite loop if the page gets put back on the list (again).
6661 		 */
6662 		if (WARN_ON_ONCE(sp->role.invalid))
6663 			continue;
6664 
6665 		/*
6666 		 * No need to flush the TLB since we're only zapping shadow
6667 		 * pages with an obsolete generation number and all vCPUS have
6668 		 * loaded a new root, i.e. the shadow pages being zapped cannot
6669 		 * be in active use by the guest.
6670 		 */
6671 		if (batch >= BATCH_ZAP_PAGES &&
6672 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
6673 			batch = 0;
6674 			goto restart;
6675 		}
6676 
6677 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6678 				&invalid_list, &nr_zapped);
6679 		batch += nr_zapped;
6680 
6681 		if (unstable)
6682 			goto restart;
6683 	}
6684 
6685 	/*
6686 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6687 	 * to ensure KVM is not in the middle of a lockless shadow page table
6688 	 * walk, which may reference the pages.  The remote TLB flush itself is
6689 	 * not required and is simply a convenient way to kick vCPUs as needed.
6690 	 * KVM performs a local TLB flush when allocating a new root (see
6691 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6692 	 * running with an obsolete MMU.
6693 	 */
6694 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6695 }
6696 
6697 /*
6698  * Fast invalidate all shadow pages and use lock-break technique
6699  * to zap obsolete pages.
6700  *
6701  * It's required when memslot is being deleted or VM is being
6702  * destroyed, in these cases, we should ensure that KVM MMU does
6703  * not use any resource of the being-deleted slot or all slots
6704  * after calling the function.
6705  */
kvm_mmu_zap_all_fast(struct kvm * kvm)6706 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6707 {
6708 	lockdep_assert_held(&kvm->slots_lock);
6709 
6710 	write_lock(&kvm->mmu_lock);
6711 	trace_kvm_mmu_zap_all_fast(kvm);
6712 
6713 	/*
6714 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6715 	 * held for the entire duration of zapping obsolete pages, it's
6716 	 * impossible for there to be multiple invalid generations associated
6717 	 * with *valid* shadow pages at any given time, i.e. there is exactly
6718 	 * one valid generation and (at most) one invalid generation.
6719 	 */
6720 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6721 
6722 	/*
6723 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6724 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
6725 	 * write and in the same critical section as making the reload request,
6726 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6727 	 */
6728 	if (tdp_mmu_enabled) {
6729 		/*
6730 		 * External page tables don't support fast zapping, therefore
6731 		 * their mirrors must be invalidated separately by the caller.
6732 		 */
6733 		kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS);
6734 	}
6735 
6736 	/*
6737 	 * Notify all vcpus to reload its shadow page table and flush TLB.
6738 	 * Then all vcpus will switch to new shadow page table with the new
6739 	 * mmu_valid_gen.
6740 	 *
6741 	 * Note: we need to do this under the protection of mmu_lock,
6742 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
6743 	 */
6744 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6745 
6746 	kvm_zap_obsolete_pages(kvm);
6747 
6748 	write_unlock(&kvm->mmu_lock);
6749 
6750 	/*
6751 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6752 	 * returning to the caller, e.g. if the zap is in response to a memslot
6753 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6754 	 * associated with the deleted memslot once the update completes, and
6755 	 * Deferring the zap until the final reference to the root is put would
6756 	 * lead to use-after-free.
6757 	 */
6758 	if (tdp_mmu_enabled)
6759 		kvm_tdp_mmu_zap_invalidated_roots(kvm, true);
6760 }
6761 
kvm_mmu_init_vm(struct kvm * kvm)6762 int kvm_mmu_init_vm(struct kvm *kvm)
6763 {
6764 	int r, i;
6765 
6766 	kvm->arch.shadow_mmio_value = shadow_mmio_value;
6767 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6768 	for (i = 0; i < KVM_NR_MMU_TYPES; ++i)
6769 		INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages[i].pages);
6770 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6771 
6772 	if (tdp_mmu_enabled) {
6773 		kvm_mmu_init_tdp_mmu(kvm);
6774 	} else {
6775 		r = kvm_mmu_alloc_page_hash(kvm);
6776 		if (r)
6777 			return r;
6778 	}
6779 
6780 	kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6781 	kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6782 
6783 	kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6784 
6785 	kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6786 	kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6787 	return 0;
6788 }
6789 
mmu_free_vm_memory_caches(struct kvm * kvm)6790 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6791 {
6792 	kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6793 	kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6794 	kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6795 }
6796 
kvm_mmu_uninit_vm(struct kvm * kvm)6797 void kvm_mmu_uninit_vm(struct kvm *kvm)
6798 {
6799 	kvfree(kvm->arch.mmu_page_hash);
6800 
6801 	if (tdp_mmu_enabled)
6802 		kvm_mmu_uninit_tdp_mmu(kvm);
6803 
6804 	mmu_free_vm_memory_caches(kvm);
6805 }
6806 
kvm_rmap_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6807 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6808 {
6809 	const struct kvm_memory_slot *memslot;
6810 	struct kvm_memslots *slots;
6811 	struct kvm_memslot_iter iter;
6812 	bool flush = false;
6813 	gfn_t start, end;
6814 	int i;
6815 
6816 	if (!kvm_memslots_have_rmaps(kvm))
6817 		return flush;
6818 
6819 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6820 		slots = __kvm_memslots(kvm, i);
6821 
6822 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6823 			memslot = iter.slot;
6824 			start = max(gfn_start, memslot->base_gfn);
6825 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
6826 			if (WARN_ON_ONCE(start >= end))
6827 				continue;
6828 
6829 			flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
6830 							 end, true, flush);
6831 		}
6832 	}
6833 
6834 	return flush;
6835 }
6836 
6837 /*
6838  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6839  * (not including it)
6840  */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6841 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6842 {
6843 	bool flush;
6844 
6845 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
6846 		return;
6847 
6848 	write_lock(&kvm->mmu_lock);
6849 
6850 	kvm_mmu_invalidate_begin(kvm);
6851 
6852 	kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6853 
6854 	flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6855 
6856 	if (tdp_mmu_enabled)
6857 		flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6858 
6859 	if (flush)
6860 		kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6861 
6862 	kvm_mmu_invalidate_end(kvm);
6863 
6864 	write_unlock(&kvm->mmu_lock);
6865 }
6866 
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6867 static bool slot_rmap_write_protect(struct kvm *kvm,
6868 				    struct kvm_rmap_head *rmap_head,
6869 				    const struct kvm_memory_slot *slot)
6870 {
6871 	return rmap_write_protect(rmap_head, false);
6872 }
6873 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)6874 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6875 				      const struct kvm_memory_slot *memslot,
6876 				      int start_level)
6877 {
6878 	if (kvm_memslots_have_rmaps(kvm)) {
6879 		write_lock(&kvm->mmu_lock);
6880 		walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6881 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6882 		write_unlock(&kvm->mmu_lock);
6883 	}
6884 
6885 	if (tdp_mmu_enabled) {
6886 		read_lock(&kvm->mmu_lock);
6887 		kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6888 		read_unlock(&kvm->mmu_lock);
6889 	}
6890 }
6891 
need_topup(struct kvm_mmu_memory_cache * cache,int min)6892 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6893 {
6894 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6895 }
6896 
need_topup_split_caches_or_resched(struct kvm * kvm)6897 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6898 {
6899 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6900 		return true;
6901 
6902 	/*
6903 	 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6904 	 * to split a single huge page. Calculating how many are actually needed
6905 	 * is possible but not worth the complexity.
6906 	 */
6907 	return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6908 	       need_topup(&kvm->arch.split_page_header_cache, 1) ||
6909 	       need_topup(&kvm->arch.split_shadow_page_cache, 1);
6910 }
6911 
topup_split_caches(struct kvm * kvm)6912 static int topup_split_caches(struct kvm *kvm)
6913 {
6914 	/*
6915 	 * Allocating rmap list entries when splitting huge pages for nested
6916 	 * MMUs is uncommon as KVM needs to use a list if and only if there is
6917 	 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6918 	 * aliased by multiple L2 gfns and/or from multiple nested roots with
6919 	 * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6920 	 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6921 	 * but aliasing rarely occurs post-boot or for many gfns.  If there is
6922 	 * only one rmap entry, rmap->val points directly at that one entry and
6923 	 * doesn't need to allocate a list.  Buffer the cache by the default
6924 	 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6925 	 * encounters an aliased gfn or two.
6926 	 */
6927 	const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6928 			     KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6929 	int r;
6930 
6931 	lockdep_assert_held(&kvm->slots_lock);
6932 
6933 	r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6934 					 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6935 	if (r)
6936 		return r;
6937 
6938 	r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6939 	if (r)
6940 		return r;
6941 
6942 	return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6943 }
6944 
shadow_mmu_get_sp_for_split(struct kvm * kvm,u64 * huge_sptep)6945 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6946 {
6947 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6948 	struct shadow_page_caches caches = {};
6949 	union kvm_mmu_page_role role;
6950 	unsigned int access;
6951 	gfn_t gfn;
6952 
6953 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6954 	access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6955 
6956 	/*
6957 	 * Note, huge page splitting always uses direct shadow pages, regardless
6958 	 * of whether the huge page itself is mapped by a direct or indirect
6959 	 * shadow page, since the huge page region itself is being directly
6960 	 * mapped with smaller pages.
6961 	 */
6962 	role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6963 
6964 	/* Direct SPs do not require a shadowed_info_cache. */
6965 	caches.page_header_cache = &kvm->arch.split_page_header_cache;
6966 	caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6967 
6968 	/* Safe to pass NULL for vCPU since requesting a direct SP. */
6969 	return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6970 }
6971 
shadow_mmu_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6972 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6973 				       const struct kvm_memory_slot *slot,
6974 				       u64 *huge_sptep)
6975 
6976 {
6977 	struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6978 	u64 huge_spte = READ_ONCE(*huge_sptep);
6979 	struct kvm_mmu_page *sp;
6980 	bool flush = false;
6981 	u64 *sptep, spte;
6982 	gfn_t gfn;
6983 	int index;
6984 
6985 	sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6986 
6987 	for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6988 		sptep = &sp->spt[index];
6989 		gfn = kvm_mmu_page_get_gfn(sp, index);
6990 
6991 		/*
6992 		 * The SP may already have populated SPTEs, e.g. if this huge
6993 		 * page is aliased by multiple sptes with the same access
6994 		 * permissions. These entries are guaranteed to map the same
6995 		 * gfn-to-pfn translation since the SP is direct, so no need to
6996 		 * modify them.
6997 		 *
6998 		 * However, if a given SPTE points to a lower level page table,
6999 		 * that lower level page table may only be partially populated.
7000 		 * Installing such SPTEs would effectively unmap a potion of the
7001 		 * huge page. Unmapping guest memory always requires a TLB flush
7002 		 * since a subsequent operation on the unmapped regions would
7003 		 * fail to detect the need to flush.
7004 		 */
7005 		if (is_shadow_present_pte(*sptep)) {
7006 			flush |= !is_last_spte(*sptep, sp->role.level);
7007 			continue;
7008 		}
7009 
7010 		spte = make_small_spte(kvm, huge_spte, sp->role, index);
7011 		mmu_spte_set(sptep, spte);
7012 		__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
7013 	}
7014 
7015 	__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
7016 }
7017 
shadow_mmu_try_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)7018 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
7019 					  const struct kvm_memory_slot *slot,
7020 					  u64 *huge_sptep)
7021 {
7022 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
7023 	int level, r = 0;
7024 	gfn_t gfn;
7025 	u64 spte;
7026 
7027 	/* Grab information for the tracepoint before dropping the MMU lock. */
7028 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
7029 	level = huge_sp->role.level;
7030 	spte = *huge_sptep;
7031 
7032 	if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
7033 		r = -ENOSPC;
7034 		goto out;
7035 	}
7036 
7037 	if (need_topup_split_caches_or_resched(kvm)) {
7038 		write_unlock(&kvm->mmu_lock);
7039 		cond_resched();
7040 		/*
7041 		 * If the topup succeeds, return -EAGAIN to indicate that the
7042 		 * rmap iterator should be restarted because the MMU lock was
7043 		 * dropped.
7044 		 */
7045 		r = topup_split_caches(kvm) ?: -EAGAIN;
7046 		write_lock(&kvm->mmu_lock);
7047 		goto out;
7048 	}
7049 
7050 	shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
7051 
7052 out:
7053 	trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
7054 	return r;
7055 }
7056 
shadow_mmu_try_split_huge_pages(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)7057 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
7058 					    struct kvm_rmap_head *rmap_head,
7059 					    const struct kvm_memory_slot *slot)
7060 {
7061 	struct rmap_iterator iter;
7062 	struct kvm_mmu_page *sp;
7063 	u64 *huge_sptep;
7064 	int r;
7065 
7066 restart:
7067 	for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
7068 		sp = sptep_to_sp(huge_sptep);
7069 
7070 		/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
7071 		if (WARN_ON_ONCE(!sp->role.guest_mode))
7072 			continue;
7073 
7074 		/* The rmaps should never contain non-leaf SPTEs. */
7075 		if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
7076 			continue;
7077 
7078 		/* SPs with level >PG_LEVEL_4K should never by unsync. */
7079 		if (WARN_ON_ONCE(sp->unsync))
7080 			continue;
7081 
7082 		/* Don't bother splitting huge pages on invalid SPs. */
7083 		if (sp->role.invalid)
7084 			continue;
7085 
7086 		r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
7087 
7088 		/*
7089 		 * The split succeeded or needs to be retried because the MMU
7090 		 * lock was dropped. Either way, restart the iterator to get it
7091 		 * back into a consistent state.
7092 		 */
7093 		if (!r || r == -EAGAIN)
7094 			goto restart;
7095 
7096 		/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
7097 		break;
7098 	}
7099 
7100 	return false;
7101 }
7102 
kvm_shadow_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,int target_level)7103 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
7104 						const struct kvm_memory_slot *slot,
7105 						gfn_t start, gfn_t end,
7106 						int target_level)
7107 {
7108 	int level;
7109 
7110 	/*
7111 	 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
7112 	 * down to the target level. This ensures pages are recursively split
7113 	 * all the way to the target level. There's no need to split pages
7114 	 * already at the target level.
7115 	 */
7116 	for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
7117 		__walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
7118 				  level, level, start, end - 1, true, true, false);
7119 }
7120 
7121 /* Must be called with the mmu_lock held in write-mode. */
kvm_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,u64 start,u64 end,int target_level)7122 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
7123 				   const struct kvm_memory_slot *memslot,
7124 				   u64 start, u64 end,
7125 				   int target_level)
7126 {
7127 	if (!tdp_mmu_enabled)
7128 		return;
7129 
7130 	if (kvm_memslots_have_rmaps(kvm))
7131 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7132 
7133 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
7134 
7135 	/*
7136 	 * A TLB flush is unnecessary at this point for the same reasons as in
7137 	 * kvm_mmu_slot_try_split_huge_pages().
7138 	 */
7139 }
7140 
kvm_mmu_slot_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,int target_level)7141 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
7142 					const struct kvm_memory_slot *memslot,
7143 					int target_level)
7144 {
7145 	u64 start = memslot->base_gfn;
7146 	u64 end = start + memslot->npages;
7147 
7148 	if (!tdp_mmu_enabled)
7149 		return;
7150 
7151 	if (kvm_memslots_have_rmaps(kvm)) {
7152 		write_lock(&kvm->mmu_lock);
7153 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7154 		write_unlock(&kvm->mmu_lock);
7155 	}
7156 
7157 	read_lock(&kvm->mmu_lock);
7158 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
7159 	read_unlock(&kvm->mmu_lock);
7160 
7161 	/*
7162 	 * No TLB flush is necessary here. KVM will flush TLBs after
7163 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
7164 	 * ensure that guest writes are reflected in the dirty log before the
7165 	 * ioctl to enable dirty logging on this memslot completes. Since the
7166 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
7167 	 * safe for KVM to decide if a TLB flush is necessary based on the split
7168 	 * SPTEs.
7169 	 */
7170 }
7171 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)7172 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
7173 					 struct kvm_rmap_head *rmap_head,
7174 					 const struct kvm_memory_slot *slot)
7175 {
7176 	u64 *sptep;
7177 	struct rmap_iterator iter;
7178 	int need_tlb_flush = 0;
7179 	struct kvm_mmu_page *sp;
7180 
7181 restart:
7182 	for_each_rmap_spte(rmap_head, &iter, sptep) {
7183 		sp = sptep_to_sp(sptep);
7184 
7185 		/*
7186 		 * We cannot do huge page mapping for indirect shadow pages,
7187 		 * which are found on the last rmap (level = 1) when not using
7188 		 * tdp; such shadow pages are synced with the page table in
7189 		 * the guest, and the guest page table is using 4K page size
7190 		 * mapping if the indirect sp has level = 1.
7191 		 */
7192 		if (sp->role.direct &&
7193 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, NULL, slot, sp->gfn)) {
7194 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
7195 
7196 			if (kvm_available_flush_remote_tlbs_range())
7197 				kvm_flush_remote_tlbs_sptep(kvm, sptep);
7198 			else
7199 				need_tlb_flush = 1;
7200 
7201 			goto restart;
7202 		}
7203 	}
7204 
7205 	return need_tlb_flush;
7206 }
7207 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_zap_gfn_range);
7208 
kvm_rmap_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)7209 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
7210 					   const struct kvm_memory_slot *slot)
7211 {
7212 	/*
7213 	 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
7214 	 * pages that are already mapped at the maximum hugepage level.
7215 	 */
7216 	if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
7217 			    PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
7218 		kvm_flush_remote_tlbs_memslot(kvm, slot);
7219 }
7220 
kvm_mmu_recover_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot)7221 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
7222 				const struct kvm_memory_slot *slot)
7223 {
7224 	if (kvm_memslots_have_rmaps(kvm)) {
7225 		write_lock(&kvm->mmu_lock);
7226 		kvm_rmap_zap_collapsible_sptes(kvm, slot);
7227 		write_unlock(&kvm->mmu_lock);
7228 	}
7229 
7230 	if (tdp_mmu_enabled) {
7231 		read_lock(&kvm->mmu_lock);
7232 		kvm_tdp_mmu_recover_huge_pages(kvm, slot);
7233 		read_unlock(&kvm->mmu_lock);
7234 	}
7235 }
7236 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)7237 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
7238 				   const struct kvm_memory_slot *memslot)
7239 {
7240 	if (kvm_memslots_have_rmaps(kvm)) {
7241 		write_lock(&kvm->mmu_lock);
7242 		/*
7243 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
7244 		 * support dirty logging at a 4k granularity.
7245 		 */
7246 		walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
7247 		write_unlock(&kvm->mmu_lock);
7248 	}
7249 
7250 	if (tdp_mmu_enabled) {
7251 		read_lock(&kvm->mmu_lock);
7252 		kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
7253 		read_unlock(&kvm->mmu_lock);
7254 	}
7255 
7256 	/*
7257 	 * The caller will flush the TLBs after this function returns.
7258 	 *
7259 	 * It's also safe to flush TLBs out of mmu lock here as currently this
7260 	 * function is only used for dirty logging, in which case flushing TLB
7261 	 * out of mmu lock also guarantees no dirty pages will be lost in
7262 	 * dirty_bitmap.
7263 	 */
7264 }
7265 
kvm_mmu_zap_all(struct kvm * kvm)7266 static void kvm_mmu_zap_all(struct kvm *kvm)
7267 {
7268 	struct kvm_mmu_page *sp, *node;
7269 	LIST_HEAD(invalid_list);
7270 	int ign;
7271 
7272 	write_lock(&kvm->mmu_lock);
7273 restart:
7274 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
7275 		if (WARN_ON_ONCE(sp->role.invalid))
7276 			continue;
7277 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
7278 			goto restart;
7279 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
7280 			goto restart;
7281 	}
7282 
7283 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
7284 
7285 	if (tdp_mmu_enabled)
7286 		kvm_tdp_mmu_zap_all(kvm);
7287 
7288 	write_unlock(&kvm->mmu_lock);
7289 }
7290 
kvm_arch_flush_shadow_all(struct kvm * kvm)7291 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7292 {
7293 	kvm_mmu_zap_all(kvm);
7294 }
7295 
kvm_mmu_zap_memslot_pages_and_flush(struct kvm * kvm,struct kvm_memory_slot * slot,bool flush)7296 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm,
7297 						struct kvm_memory_slot *slot,
7298 						bool flush)
7299 {
7300 	LIST_HEAD(invalid_list);
7301 	unsigned long i;
7302 
7303 	if (list_empty(&kvm->arch.active_mmu_pages))
7304 		goto out_flush;
7305 
7306 	/*
7307 	 * Since accounting information is stored in struct kvm_arch_memory_slot,
7308 	 * all MMU pages that are shadowing guest PTEs must be zapped before the
7309 	 * memslot is deleted, as freeing such pages after the memslot is freed
7310 	 * will result in use-after-free, e.g. in unaccount_shadowed().
7311 	 */
7312 	for (i = 0; i < slot->npages; i++) {
7313 		struct kvm_mmu_page *sp;
7314 		gfn_t gfn = slot->base_gfn + i;
7315 
7316 		for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn)
7317 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7318 
7319 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7320 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7321 			flush = false;
7322 			cond_resched_rwlock_write(&kvm->mmu_lock);
7323 		}
7324 	}
7325 
7326 out_flush:
7327 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7328 }
7329 
kvm_mmu_zap_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7330 static void kvm_mmu_zap_memslot(struct kvm *kvm,
7331 				struct kvm_memory_slot *slot)
7332 {
7333 	struct kvm_gfn_range range = {
7334 		.slot = slot,
7335 		.start = slot->base_gfn,
7336 		.end = slot->base_gfn + slot->npages,
7337 		.may_block = true,
7338 		.attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED,
7339 	};
7340 	bool flush;
7341 
7342 	write_lock(&kvm->mmu_lock);
7343 	flush = kvm_unmap_gfn_range(kvm, &range);
7344 	kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush);
7345 	write_unlock(&kvm->mmu_lock);
7346 }
7347 
kvm_memslot_flush_zap_all(struct kvm * kvm)7348 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm)
7349 {
7350 	return kvm->arch.vm_type == KVM_X86_DEFAULT_VM &&
7351 	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL);
7352 }
7353 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7354 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7355 				   struct kvm_memory_slot *slot)
7356 {
7357 	if (kvm_memslot_flush_zap_all(kvm))
7358 		kvm_mmu_zap_all_fast(kvm);
7359 	else
7360 		kvm_mmu_zap_memslot(kvm, slot);
7361 }
7362 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)7363 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
7364 {
7365 	WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
7366 
7367 	gen &= MMIO_SPTE_GEN_MASK;
7368 
7369 	/*
7370 	 * Generation numbers are incremented in multiples of the number of
7371 	 * address spaces in order to provide unique generations across all
7372 	 * address spaces.  Strip what is effectively the address space
7373 	 * modifier prior to checking for a wrap of the MMIO generation so
7374 	 * that a wrap in any address space is detected.
7375 	 */
7376 	gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
7377 
7378 	/*
7379 	 * The very rare case: if the MMIO generation number has wrapped,
7380 	 * zap all shadow pages.
7381 	 */
7382 	if (unlikely(gen == 0)) {
7383 		kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
7384 		kvm_mmu_zap_all_fast(kvm);
7385 	}
7386 }
7387 
mmu_destroy_caches(void)7388 static void mmu_destroy_caches(void)
7389 {
7390 	kmem_cache_destroy(pte_list_desc_cache);
7391 	kmem_cache_destroy(mmu_page_header_cache);
7392 }
7393 
kvm_wake_nx_recovery_thread(struct kvm * kvm)7394 static void kvm_wake_nx_recovery_thread(struct kvm *kvm)
7395 {
7396 	/*
7397 	 * The NX recovery thread is spawned on-demand at the first KVM_RUN and
7398 	 * may not be valid even though the VM is globally visible.  Do nothing,
7399 	 * as such a VM can't have any possible NX huge pages.
7400 	 */
7401 	struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread);
7402 
7403 	if (nx_thread)
7404 		vhost_task_wake(nx_thread);
7405 }
7406 
get_nx_huge_pages(char * buffer,const struct kernel_param * kp)7407 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
7408 {
7409 	if (nx_hugepage_mitigation_hard_disabled)
7410 		return sysfs_emit(buffer, "never\n");
7411 
7412 	return param_get_bool(buffer, kp);
7413 }
7414 
get_nx_auto_mode(void)7415 static bool get_nx_auto_mode(void)
7416 {
7417 	/* Return true when CPU has the bug, and mitigations are ON */
7418 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
7419 }
7420 
__set_nx_huge_pages(bool val)7421 static void __set_nx_huge_pages(bool val)
7422 {
7423 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
7424 }
7425 
set_nx_huge_pages(const char * val,const struct kernel_param * kp)7426 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
7427 {
7428 	bool old_val = nx_huge_pages;
7429 	bool new_val;
7430 
7431 	if (nx_hugepage_mitigation_hard_disabled)
7432 		return -EPERM;
7433 
7434 	/* In "auto" mode deploy workaround only if CPU has the bug. */
7435 	if (sysfs_streq(val, "off")) {
7436 		new_val = 0;
7437 	} else if (sysfs_streq(val, "force")) {
7438 		new_val = 1;
7439 	} else if (sysfs_streq(val, "auto")) {
7440 		new_val = get_nx_auto_mode();
7441 	} else if (sysfs_streq(val, "never")) {
7442 		new_val = 0;
7443 
7444 		mutex_lock(&kvm_lock);
7445 		if (!list_empty(&vm_list)) {
7446 			mutex_unlock(&kvm_lock);
7447 			return -EBUSY;
7448 		}
7449 		nx_hugepage_mitigation_hard_disabled = true;
7450 		mutex_unlock(&kvm_lock);
7451 	} else if (kstrtobool(val, &new_val) < 0) {
7452 		return -EINVAL;
7453 	}
7454 
7455 	__set_nx_huge_pages(new_val);
7456 
7457 	if (new_val != old_val) {
7458 		struct kvm *kvm;
7459 
7460 		mutex_lock(&kvm_lock);
7461 
7462 		list_for_each_entry(kvm, &vm_list, vm_list) {
7463 			mutex_lock(&kvm->slots_lock);
7464 			kvm_mmu_zap_all_fast(kvm);
7465 			mutex_unlock(&kvm->slots_lock);
7466 
7467 			kvm_wake_nx_recovery_thread(kvm);
7468 		}
7469 		mutex_unlock(&kvm_lock);
7470 	}
7471 
7472 	return 0;
7473 }
7474 
7475 /*
7476  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7477  * its default value of -1 is technically undefined behavior for a boolean.
7478  * Forward the module init call to SPTE code so that it too can handle module
7479  * params that need to be resolved/snapshot.
7480  */
kvm_mmu_x86_module_init(void)7481 void __init kvm_mmu_x86_module_init(void)
7482 {
7483 	if (nx_huge_pages == -1)
7484 		__set_nx_huge_pages(get_nx_auto_mode());
7485 
7486 	/*
7487 	 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7488 	 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7489 	 * when the vendor module is loaded.
7490 	 */
7491 	tdp_mmu_allowed = tdp_mmu_enabled;
7492 
7493 	kvm_mmu_spte_module_init();
7494 }
7495 
7496 /*
7497  * The bulk of the MMU initialization is deferred until the vendor module is
7498  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7499  * to be reset when a potentially different vendor module is loaded.
7500  */
kvm_mmu_vendor_module_init(void)7501 int kvm_mmu_vendor_module_init(void)
7502 {
7503 	int ret = -ENOMEM;
7504 
7505 	/*
7506 	 * MMU roles use union aliasing which is, generally speaking, an
7507 	 * undefined behavior. However, we supposedly know how compilers behave
7508 	 * and the current status quo is unlikely to change. Guardians below are
7509 	 * supposed to let us know if the assumption becomes false.
7510 	 */
7511 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7512 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7513 	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7514 
7515 	kvm_mmu_reset_all_pte_masks();
7516 
7517 	pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7518 	if (!pte_list_desc_cache)
7519 		goto out;
7520 
7521 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7522 						  sizeof(struct kvm_mmu_page),
7523 						  0, SLAB_ACCOUNT, NULL);
7524 	if (!mmu_page_header_cache)
7525 		goto out;
7526 
7527 	return 0;
7528 
7529 out:
7530 	mmu_destroy_caches();
7531 	return ret;
7532 }
7533 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)7534 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7535 {
7536 	kvm_mmu_unload(vcpu);
7537 	if (tdp_mmu_enabled) {
7538 		read_lock(&vcpu->kvm->mmu_lock);
7539 		mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa,
7540 				   NULL);
7541 		read_unlock(&vcpu->kvm->mmu_lock);
7542 	}
7543 	free_mmu_pages(&vcpu->arch.root_mmu);
7544 	free_mmu_pages(&vcpu->arch.guest_mmu);
7545 	mmu_free_memory_caches(vcpu);
7546 }
7547 
kvm_mmu_vendor_module_exit(void)7548 void kvm_mmu_vendor_module_exit(void)
7549 {
7550 	mmu_destroy_caches();
7551 }
7552 
7553 /*
7554  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7555  * select a halving time of 1 hour".  Returns true if recovery is enabled.
7556  */
calc_nx_huge_pages_recovery_period(uint * period)7557 static bool calc_nx_huge_pages_recovery_period(uint *period)
7558 {
7559 	/*
7560 	 * Use READ_ONCE to get the params, this may be called outside of the
7561 	 * param setters, e.g. by the kthread to compute its next timeout.
7562 	 */
7563 	bool enabled = READ_ONCE(nx_huge_pages);
7564 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7565 
7566 	if (!enabled || !ratio)
7567 		return false;
7568 
7569 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7570 	if (!*period) {
7571 		/* Make sure the period is not less than one second.  */
7572 		ratio = min(ratio, 3600u);
7573 		*period = 60 * 60 * 1000 / ratio;
7574 	}
7575 	return true;
7576 }
7577 
set_nx_huge_pages_recovery_param(const char * val,const struct kernel_param * kp)7578 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7579 {
7580 	bool was_recovery_enabled, is_recovery_enabled;
7581 	uint old_period, new_period;
7582 	int err;
7583 
7584 	if (nx_hugepage_mitigation_hard_disabled)
7585 		return -EPERM;
7586 
7587 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7588 
7589 	err = param_set_uint(val, kp);
7590 	if (err)
7591 		return err;
7592 
7593 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7594 
7595 	if (is_recovery_enabled &&
7596 	    (!was_recovery_enabled || old_period > new_period)) {
7597 		struct kvm *kvm;
7598 
7599 		mutex_lock(&kvm_lock);
7600 
7601 		list_for_each_entry(kvm, &vm_list, vm_list)
7602 			kvm_wake_nx_recovery_thread(kvm);
7603 
7604 		mutex_unlock(&kvm_lock);
7605 	}
7606 
7607 	return err;
7608 }
7609 
nx_huge_pages_to_zap(struct kvm * kvm,enum kvm_mmu_type mmu_type)7610 static unsigned long nx_huge_pages_to_zap(struct kvm *kvm,
7611 					  enum kvm_mmu_type mmu_type)
7612 {
7613 	unsigned long pages = READ_ONCE(kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages);
7614 	unsigned int ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7615 
7616 	return ratio ? DIV_ROUND_UP(pages, ratio) : 0;
7617 }
7618 
kvm_mmu_sp_dirty_logging_enabled(struct kvm * kvm,struct kvm_mmu_page * sp)7619 static bool kvm_mmu_sp_dirty_logging_enabled(struct kvm *kvm,
7620 					     struct kvm_mmu_page *sp)
7621 {
7622 	struct kvm_memory_slot *slot;
7623 
7624 	/*
7625 	 * Skip the memslot lookup if dirty tracking can't possibly be enabled,
7626 	 * as memslot lookups are relatively expensive.
7627 	 *
7628 	 * If a memslot update is in progress, reading an incorrect value of
7629 	 * kvm->nr_memslots_dirty_logging is not a problem: if it is becoming
7630 	 * zero, KVM will  do an unnecessary memslot lookup;  if it is becoming
7631 	 * nonzero, the page will be zapped unnecessarily.  Either way, this
7632 	 * only affects efficiency in racy situations, and not correctness.
7633 	 */
7634 	if (!atomic_read(&kvm->nr_memslots_dirty_logging))
7635 		return false;
7636 
7637 	slot = __gfn_to_memslot(kvm_memslots_for_spte_role(kvm, sp->role), sp->gfn);
7638 	if (WARN_ON_ONCE(!slot))
7639 		return false;
7640 
7641 	return kvm_slot_dirty_track_enabled(slot);
7642 }
7643 
kvm_recover_nx_huge_pages(struct kvm * kvm,const enum kvm_mmu_type mmu_type)7644 static void kvm_recover_nx_huge_pages(struct kvm *kvm,
7645 				      const enum kvm_mmu_type mmu_type)
7646 {
7647 #ifdef CONFIG_X86_64
7648 	const bool is_tdp_mmu = mmu_type == KVM_TDP_MMU;
7649 	spinlock_t *tdp_mmu_pages_lock = &kvm->arch.tdp_mmu_pages_lock;
7650 #else
7651 	const bool is_tdp_mmu = false;
7652 	spinlock_t *tdp_mmu_pages_lock = NULL;
7653 #endif
7654 	unsigned long to_zap = nx_huge_pages_to_zap(kvm, mmu_type);
7655 	struct list_head *nx_huge_pages;
7656 	struct kvm_mmu_page *sp;
7657 	LIST_HEAD(invalid_list);
7658 	bool flush = false;
7659 	int rcu_idx;
7660 
7661 	nx_huge_pages = &kvm->arch.possible_nx_huge_pages[mmu_type].pages;
7662 
7663 	rcu_idx = srcu_read_lock(&kvm->srcu);
7664 	if (is_tdp_mmu)
7665 		read_lock(&kvm->mmu_lock);
7666 	else
7667 		write_lock(&kvm->mmu_lock);
7668 
7669 	/*
7670 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7671 	 * be done under RCU protection, because the pages are freed via RCU
7672 	 * callback.
7673 	 */
7674 	rcu_read_lock();
7675 
7676 	for ( ; to_zap; --to_zap) {
7677 		if (is_tdp_mmu)
7678 			spin_lock(tdp_mmu_pages_lock);
7679 
7680 		if (list_empty(nx_huge_pages)) {
7681 			if (is_tdp_mmu)
7682 				spin_unlock(tdp_mmu_pages_lock);
7683 			break;
7684 		}
7685 
7686 		/*
7687 		 * We use a separate list instead of just using active_mmu_pages
7688 		 * because the number of shadow pages that be replaced with an
7689 		 * NX huge page is expected to be relatively small compared to
7690 		 * the total number of shadow pages.  And because the TDP MMU
7691 		 * doesn't use active_mmu_pages.
7692 		 */
7693 		sp = list_first_entry(nx_huge_pages,
7694 				      struct kvm_mmu_page,
7695 				      possible_nx_huge_page_link);
7696 		WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7697 		WARN_ON_ONCE(!sp->role.direct);
7698 
7699 		unaccount_nx_huge_page(kvm, sp);
7700 
7701 		if (is_tdp_mmu)
7702 			spin_unlock(tdp_mmu_pages_lock);
7703 
7704 		/*
7705 		 * Do not attempt to recover any NX Huge Pages that are being
7706 		 * dirty tracked, as they would just be faulted back in as 4KiB
7707 		 * pages. The NX Huge Pages in this slot will be recovered,
7708 		 * along with all the other huge pages in the slot, when dirty
7709 		 * logging is disabled.
7710 		 */
7711 		if (!kvm_mmu_sp_dirty_logging_enabled(kvm, sp)) {
7712 			if (is_tdp_mmu)
7713 				flush |= kvm_tdp_mmu_zap_possible_nx_huge_page(kvm, sp);
7714 			else
7715 				kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7716 
7717 		}
7718 
7719 		WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7720 
7721 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7722 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7723 			rcu_read_unlock();
7724 
7725 			if (is_tdp_mmu)
7726 				cond_resched_rwlock_read(&kvm->mmu_lock);
7727 			else
7728 				cond_resched_rwlock_write(&kvm->mmu_lock);
7729 
7730 			flush = false;
7731 			rcu_read_lock();
7732 		}
7733 	}
7734 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7735 
7736 	rcu_read_unlock();
7737 
7738 	if (is_tdp_mmu)
7739 		read_unlock(&kvm->mmu_lock);
7740 	else
7741 		write_unlock(&kvm->mmu_lock);
7742 	srcu_read_unlock(&kvm->srcu, rcu_idx);
7743 }
7744 
kvm_nx_huge_page_recovery_worker_kill(void * data)7745 static void kvm_nx_huge_page_recovery_worker_kill(void *data)
7746 {
7747 }
7748 
kvm_nx_huge_page_recovery_worker(void * data)7749 static bool kvm_nx_huge_page_recovery_worker(void *data)
7750 {
7751 	struct kvm *kvm = data;
7752 	long remaining_time;
7753 	bool enabled;
7754 	uint period;
7755 	int i;
7756 
7757 	enabled = calc_nx_huge_pages_recovery_period(&period);
7758 	if (!enabled)
7759 		return false;
7760 
7761 	remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period)
7762 		- get_jiffies_64();
7763 	if (remaining_time > 0) {
7764 		schedule_timeout(remaining_time);
7765 		/* check for signals and come back */
7766 		return true;
7767 	}
7768 
7769 	__set_current_state(TASK_RUNNING);
7770 	for (i = 0; i < KVM_NR_MMU_TYPES; ++i)
7771 		kvm_recover_nx_huge_pages(kvm, i);
7772 	kvm->arch.nx_huge_page_last = get_jiffies_64();
7773 	return true;
7774 }
7775 
kvm_mmu_start_lpage_recovery(struct once * once)7776 static int kvm_mmu_start_lpage_recovery(struct once *once)
7777 {
7778 	struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once);
7779 	struct kvm *kvm = container_of(ka, struct kvm, arch);
7780 	struct vhost_task *nx_thread;
7781 
7782 	kvm->arch.nx_huge_page_last = get_jiffies_64();
7783 	nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker,
7784 				      kvm_nx_huge_page_recovery_worker_kill,
7785 				      kvm, "kvm-nx-lpage-recovery");
7786 
7787 	if (IS_ERR(nx_thread))
7788 		return PTR_ERR(nx_thread);
7789 
7790 	vhost_task_start(nx_thread);
7791 
7792 	/* Make the task visible only once it is fully started. */
7793 	WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread);
7794 	return 0;
7795 }
7796 
kvm_mmu_post_init_vm(struct kvm * kvm)7797 int kvm_mmu_post_init_vm(struct kvm *kvm)
7798 {
7799 	if (nx_hugepage_mitigation_hard_disabled)
7800 		return 0;
7801 
7802 	return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery);
7803 }
7804 
kvm_mmu_pre_destroy_vm(struct kvm * kvm)7805 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7806 {
7807 	if (kvm->arch.nx_huge_page_recovery_thread)
7808 		vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread);
7809 }
7810 
7811 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
hugepage_test_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7812 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7813 				int level)
7814 {
7815 	return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7816 }
7817 
hugepage_clear_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7818 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7819 				 int level)
7820 {
7821 	lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7822 }
7823 
hugepage_set_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7824 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7825 			       int level)
7826 {
7827 	lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7828 }
7829 
kvm_arch_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7830 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7831 					struct kvm_gfn_range *range)
7832 {
7833 	struct kvm_memory_slot *slot = range->slot;
7834 	int level;
7835 
7836 	/*
7837 	 * Zap SPTEs even if the slot can't be mapped PRIVATE.  KVM x86 only
7838 	 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7839 	 * can simply ignore such slots.  But if userspace is making memory
7840 	 * PRIVATE, then KVM must prevent the guest from accessing the memory
7841 	 * as shared.  And if userspace is making memory SHARED and this point
7842 	 * is reached, then at least one page within the range was previously
7843 	 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7844 	 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7845 	 * a hugepage can be used for affected ranges.
7846 	 */
7847 	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7848 		return false;
7849 
7850 	if (WARN_ON_ONCE(range->end <= range->start))
7851 		return false;
7852 
7853 	/*
7854 	 * If the head and tail pages of the range currently allow a hugepage,
7855 	 * i.e. reside fully in the slot and don't have mixed attributes, then
7856 	 * add each corresponding hugepage range to the ongoing invalidation,
7857 	 * e.g. to prevent KVM from creating a hugepage in response to a fault
7858 	 * for a gfn whose attributes aren't changing.  Note, only the range
7859 	 * of gfns whose attributes are being modified needs to be explicitly
7860 	 * unmapped, as that will unmap any existing hugepages.
7861 	 */
7862 	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7863 		gfn_t start = gfn_round_for_level(range->start, level);
7864 		gfn_t end = gfn_round_for_level(range->end - 1, level);
7865 		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7866 
7867 		if ((start != range->start || start + nr_pages > range->end) &&
7868 		    start >= slot->base_gfn &&
7869 		    start + nr_pages <= slot->base_gfn + slot->npages &&
7870 		    !hugepage_test_mixed(slot, start, level))
7871 			kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages);
7872 
7873 		if (end == start)
7874 			continue;
7875 
7876 		if ((end + nr_pages) > range->end &&
7877 		    (end + nr_pages) <= (slot->base_gfn + slot->npages) &&
7878 		    !hugepage_test_mixed(slot, end, level))
7879 			kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages);
7880 	}
7881 
7882 	/* Unmap the old attribute page. */
7883 	if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE)
7884 		range->attr_filter = KVM_FILTER_SHARED;
7885 	else
7886 		range->attr_filter = KVM_FILTER_PRIVATE;
7887 
7888 	return kvm_unmap_gfn_range(kvm, range);
7889 }
7890 
7891 
7892 
hugepage_has_attrs(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long attrs)7893 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7894 			       gfn_t gfn, int level, unsigned long attrs)
7895 {
7896 	const unsigned long start = gfn;
7897 	const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7898 
7899 	if (level == PG_LEVEL_2M)
7900 		return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs);
7901 
7902 	for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7903 		if (hugepage_test_mixed(slot, gfn, level - 1) ||
7904 		    attrs != kvm_get_memory_attributes(kvm, gfn))
7905 			return false;
7906 	}
7907 	return true;
7908 }
7909 
kvm_arch_post_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7910 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7911 					 struct kvm_gfn_range *range)
7912 {
7913 	unsigned long attrs = range->arg.attributes;
7914 	struct kvm_memory_slot *slot = range->slot;
7915 	int level;
7916 
7917 	lockdep_assert_held_write(&kvm->mmu_lock);
7918 	lockdep_assert_held(&kvm->slots_lock);
7919 
7920 	/*
7921 	 * Calculate which ranges can be mapped with hugepages even if the slot
7922 	 * can't map memory PRIVATE.  KVM mustn't create a SHARED hugepage over
7923 	 * a range that has PRIVATE GFNs, and conversely converting a range to
7924 	 * SHARED may now allow hugepages.
7925 	 */
7926 	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7927 		return false;
7928 
7929 	/*
7930 	 * The sequence matters here: upper levels consume the result of lower
7931 	 * level's scanning.
7932 	 */
7933 	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7934 		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7935 		gfn_t gfn = gfn_round_for_level(range->start, level);
7936 
7937 		/* Process the head page if it straddles the range. */
7938 		if (gfn != range->start || gfn + nr_pages > range->end) {
7939 			/*
7940 			 * Skip mixed tracking if the aligned gfn isn't covered
7941 			 * by the memslot, KVM can't use a hugepage due to the
7942 			 * misaligned address regardless of memory attributes.
7943 			 */
7944 			if (gfn >= slot->base_gfn &&
7945 			    gfn + nr_pages <= slot->base_gfn + slot->npages) {
7946 				if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7947 					hugepage_clear_mixed(slot, gfn, level);
7948 				else
7949 					hugepage_set_mixed(slot, gfn, level);
7950 			}
7951 			gfn += nr_pages;
7952 		}
7953 
7954 		/*
7955 		 * Pages entirely covered by the range are guaranteed to have
7956 		 * only the attributes which were just set.
7957 		 */
7958 		for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7959 			hugepage_clear_mixed(slot, gfn, level);
7960 
7961 		/*
7962 		 * Process the last tail page if it straddles the range and is
7963 		 * contained by the memslot.  Like the head page, KVM can't
7964 		 * create a hugepage if the slot size is misaligned.
7965 		 */
7966 		if (gfn < range->end &&
7967 		    (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7968 			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7969 				hugepage_clear_mixed(slot, gfn, level);
7970 			else
7971 				hugepage_set_mixed(slot, gfn, level);
7972 		}
7973 	}
7974 	return false;
7975 }
7976 
kvm_mmu_init_memslot_memory_attributes(struct kvm * kvm,struct kvm_memory_slot * slot)7977 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7978 					    struct kvm_memory_slot *slot)
7979 {
7980 	int level;
7981 
7982 	if (!kvm_arch_has_private_mem(kvm))
7983 		return;
7984 
7985 	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7986 		/*
7987 		 * Don't bother tracking mixed attributes for pages that can't
7988 		 * be huge due to alignment, i.e. process only pages that are
7989 		 * entirely contained by the memslot.
7990 		 */
7991 		gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7992 		gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7993 		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7994 		gfn_t gfn;
7995 
7996 		if (start < slot->base_gfn)
7997 			start += nr_pages;
7998 
7999 		/*
8000 		 * Unlike setting attributes, every potential hugepage needs to
8001 		 * be manually checked as the attributes may already be mixed.
8002 		 */
8003 		for (gfn = start; gfn < end; gfn += nr_pages) {
8004 			unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
8005 
8006 			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
8007 				hugepage_clear_mixed(slot, gfn, level);
8008 			else
8009 				hugepage_set_mixed(slot, gfn, level);
8010 		}
8011 	}
8012 }
8013 #endif
8014