1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 #include <linux/wordpart.h>
51
52 #include <asm/page.h>
53 #include <asm/memtype.h>
54 #include <asm/cmpxchg.h>
55 #include <asm/io.h>
56 #include <asm/set_memory.h>
57 #include <asm/spec-ctrl.h>
58 #include <asm/vmx.h>
59
60 #include "trace.h"
61
62 static bool nx_hugepage_mitigation_hard_disabled;
63
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 .set = set_nx_huge_pages,
79 .get = get_nx_huge_pages,
80 };
81
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 .set = set_nx_huge_pages_recovery_param,
84 .get = param_get_uint,
85 };
86
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 &nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 &nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99 /*
100 * When setting this variable to true it enables Two-Dimensional-Paging
101 * where the hardware walks 2 page tables:
102 * 1. the guest-virtual to guest-physical
103 * 2. while doing 1. it walks guest-physical to host-physical
104 * If the hardware supports that we don't need to do shadow paging.
105 */
106 bool tdp_enabled = false;
107
108 static bool __ro_after_init tdp_mmu_allowed;
109
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118
119 #define PTE_PREFETCH_NUM 8
120
121 #include <trace/events/kvm.h>
122
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125
126 /*
127 * struct pte_list_desc is the core data structure used to implement a custom
128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129 * given GFN when used in the context of rmaps. Using a custom list allows KVM
130 * to optimize for the common case where many GFNs will have at most a handful
131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132 * memory footprint, which in turn improves runtime performance by exploiting
133 * cache locality.
134 *
135 * A list is comprised of one or more pte_list_desc objects (descriptors).
136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor
137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138 * becomes the head of the list. This means that by definitions, all tail
139 * descriptors are full.
140 *
141 * Note, the meta data fields are deliberately placed at the start of the
142 * structure to optimize the cacheline layout; accessing the descriptor will
143 * touch only a single cacheline so long as @spte_count<=6 (or if only the
144 * descriptors metadata is accessed).
145 */
146 struct pte_list_desc {
147 struct pte_list_desc *more;
148 /* The number of PTEs stored in _this_ descriptor. */
149 u32 spte_count;
150 /* The number of PTEs stored in all tails of this descriptor. */
151 u32 tail_count;
152 u64 *sptes[PTE_LIST_EXT];
153 };
154
155 struct kvm_shadow_walk_iterator {
156 u64 addr;
157 hpa_t shadow_addr;
158 u64 *sptep;
159 int level;
160 unsigned index;
161 };
162
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
165 (_root), (_addr)); \
166 shadow_walk_okay(&(_walker)); \
167 shadow_walk_next(&(_walker)))
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182
183 static void mmu_spte_set(u64 *sptep, u64 spte);
184
185 struct kvm_mmu_role_regs {
186 const unsigned long cr0;
187 const unsigned long cr4;
188 const u64 efer;
189 };
190
191 #define CREATE_TRACE_POINTS
192 #include "mmutrace.h"
193
194 /*
195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
196 * reading from the role_regs. Once the root_role is constructed, it becomes
197 * the single source of truth for the MMU's state.
198 */
199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
200 static inline bool __maybe_unused \
201 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
202 { \
203 return !!(regs->reg & flag); \
204 }
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
215
216 /*
217 * The MMU itself (with a valid role) is the single source of truth for the
218 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
220 * and the vCPU may be incorrect/irrelevant.
221 */
222 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
223 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
224 { \
225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
226 }
227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
233 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
235
is_cr0_pg(struct kvm_mmu * mmu)236 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
237 {
238 return mmu->cpu_role.base.level > 0;
239 }
240
is_cr4_pae(struct kvm_mmu * mmu)241 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
242 {
243 return !mmu->cpu_role.base.has_4_byte_gpte;
244 }
245
vcpu_to_role_regs(struct kvm_vcpu * vcpu)246 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
247 {
248 struct kvm_mmu_role_regs regs = {
249 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
250 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
251 .efer = vcpu->arch.efer,
252 };
253
254 return regs;
255 }
256
get_guest_cr3(struct kvm_vcpu * vcpu)257 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
258 {
259 return kvm_read_cr3(vcpu);
260 }
261
kvm_mmu_get_guest_pgd(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)262 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
263 struct kvm_mmu *mmu)
264 {
265 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
266 return kvm_read_cr3(vcpu);
267
268 return mmu->get_guest_pgd(vcpu);
269 }
270
kvm_available_flush_remote_tlbs_range(void)271 static inline bool kvm_available_flush_remote_tlbs_range(void)
272 {
273 #if IS_ENABLED(CONFIG_HYPERV)
274 return kvm_x86_ops.flush_remote_tlbs_range;
275 #else
276 return false;
277 #endif
278 }
279
280 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
281
282 /* Flush the range of guest memory mapped by the given SPTE. */
kvm_flush_remote_tlbs_sptep(struct kvm * kvm,u64 * sptep)283 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
284 {
285 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
286 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
287
288 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
289 }
290
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)291 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
292 unsigned int access)
293 {
294 u64 spte = make_mmio_spte(vcpu, gfn, access);
295
296 trace_mark_mmio_spte(sptep, gfn, spte);
297 mmu_spte_set(sptep, spte);
298 }
299
get_mmio_spte_gfn(u64 spte)300 static gfn_t get_mmio_spte_gfn(u64 spte)
301 {
302 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
303
304 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
305 & shadow_nonpresent_or_rsvd_mask;
306
307 return gpa >> PAGE_SHIFT;
308 }
309
get_mmio_spte_access(u64 spte)310 static unsigned get_mmio_spte_access(u64 spte)
311 {
312 return spte & shadow_mmio_access_mask;
313 }
314
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)315 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
316 {
317 u64 kvm_gen, spte_gen, gen;
318
319 gen = kvm_vcpu_memslots(vcpu)->generation;
320 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
321 return false;
322
323 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
324 spte_gen = get_mmio_spte_generation(spte);
325
326 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
327 return likely(kvm_gen == spte_gen);
328 }
329
is_cpuid_PSE36(void)330 static int is_cpuid_PSE36(void)
331 {
332 return 1;
333 }
334
335 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)336 static void __set_spte(u64 *sptep, u64 spte)
337 {
338 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
339 WRITE_ONCE(*sptep, spte);
340 }
341
__update_clear_spte_fast(u64 * sptep,u64 spte)342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
345 WRITE_ONCE(*sptep, spte);
346 }
347
__update_clear_spte_slow(u64 * sptep,u64 spte)348 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
349 {
350 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
351 return xchg(sptep, spte);
352 }
353
__get_spte_lockless(u64 * sptep)354 static u64 __get_spte_lockless(u64 *sptep)
355 {
356 return READ_ONCE(*sptep);
357 }
358 #else
359 union split_spte {
360 struct {
361 u32 spte_low;
362 u32 spte_high;
363 };
364 u64 spte;
365 };
366
count_spte_clear(u64 * sptep,u64 spte)367 static void count_spte_clear(u64 *sptep, u64 spte)
368 {
369 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
370
371 if (is_shadow_present_pte(spte))
372 return;
373
374 /* Ensure the spte is completely set before we increase the count */
375 smp_wmb();
376 sp->clear_spte_count++;
377 }
378
__set_spte(u64 * sptep,u64 spte)379 static void __set_spte(u64 *sptep, u64 spte)
380 {
381 union split_spte *ssptep, sspte;
382
383 ssptep = (union split_spte *)sptep;
384 sspte = (union split_spte)spte;
385
386 ssptep->spte_high = sspte.spte_high;
387
388 /*
389 * If we map the spte from nonpresent to present, We should store
390 * the high bits firstly, then set present bit, so cpu can not
391 * fetch this spte while we are setting the spte.
392 */
393 smp_wmb();
394
395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
396 }
397
__update_clear_spte_fast(u64 * sptep,u64 spte)398 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
399 {
400 union split_spte *ssptep, sspte;
401
402 ssptep = (union split_spte *)sptep;
403 sspte = (union split_spte)spte;
404
405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
406
407 /*
408 * If we map the spte from present to nonpresent, we should clear
409 * present bit firstly to avoid vcpu fetch the old high bits.
410 */
411 smp_wmb();
412
413 ssptep->spte_high = sspte.spte_high;
414 count_spte_clear(sptep, spte);
415 }
416
__update_clear_spte_slow(u64 * sptep,u64 spte)417 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
418 {
419 union split_spte *ssptep, sspte, orig;
420
421 ssptep = (union split_spte *)sptep;
422 sspte = (union split_spte)spte;
423
424 /* xchg acts as a barrier before the setting of the high bits */
425 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
426 orig.spte_high = ssptep->spte_high;
427 ssptep->spte_high = sspte.spte_high;
428 count_spte_clear(sptep, spte);
429
430 return orig.spte;
431 }
432
433 /*
434 * The idea using the light way get the spte on x86_32 guest is from
435 * gup_get_pte (mm/gup.c).
436 *
437 * An spte tlb flush may be pending, because they are coalesced and
438 * we are running out of the MMU lock. Therefore
439 * we need to protect against in-progress updates of the spte.
440 *
441 * Reading the spte while an update is in progress may get the old value
442 * for the high part of the spte. The race is fine for a present->non-present
443 * change (because the high part of the spte is ignored for non-present spte),
444 * but for a present->present change we must reread the spte.
445 *
446 * All such changes are done in two steps (present->non-present and
447 * non-present->present), hence it is enough to count the number of
448 * present->non-present updates: if it changed while reading the spte,
449 * we might have hit the race. This is done using clear_spte_count.
450 */
__get_spte_lockless(u64 * sptep)451 static u64 __get_spte_lockless(u64 *sptep)
452 {
453 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
454 union split_spte spte, *orig = (union split_spte *)sptep;
455 int count;
456
457 retry:
458 count = sp->clear_spte_count;
459 smp_rmb();
460
461 spte.spte_low = orig->spte_low;
462 smp_rmb();
463
464 spte.spte_high = orig->spte_high;
465 smp_rmb();
466
467 if (unlikely(spte.spte_low != orig->spte_low ||
468 count != sp->clear_spte_count))
469 goto retry;
470
471 return spte.spte;
472 }
473 #endif
474
475 /* Rules for using mmu_spte_set:
476 * Set the sptep from nonpresent to present.
477 * Note: the sptep being assigned *must* be either not present
478 * or in a state where the hardware will not attempt to update
479 * the spte.
480 */
mmu_spte_set(u64 * sptep,u64 new_spte)481 static void mmu_spte_set(u64 *sptep, u64 new_spte)
482 {
483 WARN_ON_ONCE(is_shadow_present_pte(*sptep));
484 __set_spte(sptep, new_spte);
485 }
486
487 /* Rules for using mmu_spte_update:
488 * Update the state bits, it means the mapped pfn is not changed.
489 *
490 * Returns true if the TLB needs to be flushed
491 */
mmu_spte_update(u64 * sptep,u64 new_spte)492 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
493 {
494 u64 old_spte = *sptep;
495
496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
497 check_spte_writable_invariants(new_spte);
498
499 if (!is_shadow_present_pte(old_spte)) {
500 mmu_spte_set(sptep, new_spte);
501 return false;
502 }
503
504 if (!spte_needs_atomic_update(old_spte))
505 __update_clear_spte_fast(sptep, new_spte);
506 else
507 old_spte = __update_clear_spte_slow(sptep, new_spte);
508
509 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) ||
510 spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
511
512 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte);
513 }
514
515 /*
516 * Rules for using mmu_spte_clear_track_bits:
517 * It sets the sptep from present to nonpresent, and track the
518 * state bits, it is used to clear the last level sptep.
519 * Returns the old PTE.
520 */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)521 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
522 {
523 u64 old_spte = *sptep;
524 int level = sptep_to_sp(sptep)->role.level;
525
526 if (!is_shadow_present_pte(old_spte) ||
527 !spte_needs_atomic_update(old_spte))
528 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
529 else
530 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
531
532 if (!is_shadow_present_pte(old_spte))
533 return old_spte;
534
535 kvm_update_page_stats(kvm, level, -1);
536 return old_spte;
537 }
538
539 /*
540 * Rules for using mmu_spte_clear_no_track:
541 * Directly clear spte without caring the state bits of sptep,
542 * it is used to set the upper level spte.
543 */
mmu_spte_clear_no_track(u64 * sptep)544 static void mmu_spte_clear_no_track(u64 *sptep)
545 {
546 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
547 }
548
mmu_spte_get_lockless(u64 * sptep)549 static u64 mmu_spte_get_lockless(u64 *sptep)
550 {
551 return __get_spte_lockless(sptep);
552 }
553
is_tdp_mmu_active(struct kvm_vcpu * vcpu)554 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
555 {
556 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
557 }
558
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)559 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
560 {
561 if (is_tdp_mmu_active(vcpu)) {
562 kvm_tdp_mmu_walk_lockless_begin();
563 } else {
564 /*
565 * Prevent page table teardown by making any free-er wait during
566 * kvm_flush_remote_tlbs() IPI to all active vcpus.
567 */
568 local_irq_disable();
569
570 /*
571 * Make sure a following spte read is not reordered ahead of the write
572 * to vcpu->mode.
573 */
574 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
575 }
576 }
577
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)578 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
579 {
580 if (is_tdp_mmu_active(vcpu)) {
581 kvm_tdp_mmu_walk_lockless_end();
582 } else {
583 /*
584 * Make sure the write to vcpu->mode is not reordered in front of
585 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
586 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
587 */
588 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
589 local_irq_enable();
590 }
591 }
592
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)593 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
594 {
595 int r;
596
597 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
598 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
599 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
600 if (r)
601 return r;
602 if (kvm_has_mirrored_tdp(vcpu->kvm)) {
603 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache,
604 PT64_ROOT_MAX_LEVEL);
605 if (r)
606 return r;
607 }
608 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
609 PT64_ROOT_MAX_LEVEL);
610 if (r)
611 return r;
612 if (maybe_indirect) {
613 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
614 PT64_ROOT_MAX_LEVEL);
615 if (r)
616 return r;
617 }
618 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
619 PT64_ROOT_MAX_LEVEL);
620 }
621
mmu_free_memory_caches(struct kvm_vcpu * vcpu)622 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
623 {
624 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache);
628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
629 }
630
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)631 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
632 {
633 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
634 }
635
636 static bool sp_has_gptes(struct kvm_mmu_page *sp);
637
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)638 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
639 {
640 if (sp->role.passthrough)
641 return sp->gfn;
642
643 if (sp->shadowed_translation)
644 return sp->shadowed_translation[index] >> PAGE_SHIFT;
645
646 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
647 }
648
649 /*
650 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
651 * that the SPTE itself may have a more constrained access permissions that
652 * what the guest enforces. For example, a guest may create an executable
653 * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
654 */
kvm_mmu_page_get_access(struct kvm_mmu_page * sp,int index)655 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
656 {
657 if (sp->shadowed_translation)
658 return sp->shadowed_translation[index] & ACC_ALL;
659
660 /*
661 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
662 * KVM is not shadowing any guest page tables, so the "guest access
663 * permissions" are just ACC_ALL.
664 *
665 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
666 * is shadowing a guest huge page with small pages, the guest access
667 * permissions being shadowed are the access permissions of the huge
668 * page.
669 *
670 * In both cases, sp->role.access contains the correct access bits.
671 */
672 return sp->role.access;
673 }
674
kvm_mmu_page_set_translation(struct kvm_mmu_page * sp,int index,gfn_t gfn,unsigned int access)675 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
676 gfn_t gfn, unsigned int access)
677 {
678 if (sp->shadowed_translation) {
679 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
680 return;
681 }
682
683 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
684 "access mismatch under %s page %llx (expected %u, got %u)\n",
685 sp->role.passthrough ? "passthrough" : "direct",
686 sp->gfn, kvm_mmu_page_get_access(sp, index), access);
687
688 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
689 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
690 sp->role.passthrough ? "passthrough" : "direct",
691 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
692 }
693
kvm_mmu_page_set_access(struct kvm_mmu_page * sp,int index,unsigned int access)694 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
695 unsigned int access)
696 {
697 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
698
699 kvm_mmu_page_set_translation(sp, index, gfn, access);
700 }
701
702 /*
703 * Return the pointer to the large page information for a given gfn,
704 * handling slots that are not large page aligned.
705 */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)706 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
707 const struct kvm_memory_slot *slot, int level)
708 {
709 unsigned long idx;
710
711 idx = gfn_to_index(gfn, slot->base_gfn, level);
712 return &slot->arch.lpage_info[level - 2][idx];
713 }
714
715 /*
716 * The most significant bit in disallow_lpage tracks whether or not memory
717 * attributes are mixed, i.e. not identical for all gfns at the current level.
718 * The lower order bits are used to refcount other cases where a hugepage is
719 * disallowed, e.g. if KVM has shadow a page table at the gfn.
720 */
721 #define KVM_LPAGE_MIXED_FLAG BIT(31)
722
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)723 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
724 gfn_t gfn, int count)
725 {
726 struct kvm_lpage_info *linfo;
727 int old, i;
728
729 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
730 linfo = lpage_info_slot(gfn, slot, i);
731
732 old = linfo->disallow_lpage;
733 linfo->disallow_lpage += count;
734 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
735 }
736 }
737
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)738 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
739 {
740 update_gfn_disallow_lpage_count(slot, gfn, 1);
741 }
742
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)743 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
744 {
745 update_gfn_disallow_lpage_count(slot, gfn, -1);
746 }
747
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)748 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
749 {
750 struct kvm_memslots *slots;
751 struct kvm_memory_slot *slot;
752 gfn_t gfn;
753
754 kvm->arch.indirect_shadow_pages++;
755 /*
756 * Ensure indirect_shadow_pages is elevated prior to re-reading guest
757 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
758 * emulated writes are visible before re-reading guest PTEs, or that
759 * an emulated write will see the elevated count and acquire mmu_lock
760 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write().
761 */
762 smp_mb();
763
764 gfn = sp->gfn;
765 slots = kvm_memslots_for_spte_role(kvm, sp->role);
766 slot = __gfn_to_memslot(slots, gfn);
767
768 /* the non-leaf shadow pages are keeping readonly. */
769 if (sp->role.level > PG_LEVEL_4K)
770 return __kvm_write_track_add_gfn(kvm, slot, gfn);
771
772 kvm_mmu_gfn_disallow_lpage(slot, gfn);
773
774 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
775 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
776 }
777
track_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)778 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
779 {
780 /*
781 * If it's possible to replace the shadow page with an NX huge page,
782 * i.e. if the shadow page is the only thing currently preventing KVM
783 * from using a huge page, add the shadow page to the list of "to be
784 * zapped for NX recovery" pages. Note, the shadow page can already be
785 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
786 * links a shadow page at multiple points.
787 */
788 if (!list_empty(&sp->possible_nx_huge_page_link))
789 return;
790
791 ++kvm->stat.nx_lpage_splits;
792 list_add_tail(&sp->possible_nx_huge_page_link,
793 &kvm->arch.possible_nx_huge_pages);
794 }
795
account_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp,bool nx_huge_page_possible)796 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
797 bool nx_huge_page_possible)
798 {
799 sp->nx_huge_page_disallowed = true;
800
801 if (nx_huge_page_possible)
802 track_possible_nx_huge_page(kvm, sp);
803 }
804
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)805 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
806 {
807 struct kvm_memslots *slots;
808 struct kvm_memory_slot *slot;
809 gfn_t gfn;
810
811 kvm->arch.indirect_shadow_pages--;
812 gfn = sp->gfn;
813 slots = kvm_memslots_for_spte_role(kvm, sp->role);
814 slot = __gfn_to_memslot(slots, gfn);
815 if (sp->role.level > PG_LEVEL_4K)
816 return __kvm_write_track_remove_gfn(kvm, slot, gfn);
817
818 kvm_mmu_gfn_allow_lpage(slot, gfn);
819 }
820
untrack_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)821 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
822 {
823 if (list_empty(&sp->possible_nx_huge_page_link))
824 return;
825
826 --kvm->stat.nx_lpage_splits;
827 list_del_init(&sp->possible_nx_huge_page_link);
828 }
829
unaccount_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)830 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
831 {
832 sp->nx_huge_page_disallowed = false;
833
834 untrack_possible_nx_huge_page(kvm, sp);
835 }
836
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)837 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
838 gfn_t gfn,
839 bool no_dirty_log)
840 {
841 struct kvm_memory_slot *slot;
842
843 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
844 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
845 return NULL;
846 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
847 return NULL;
848
849 return slot;
850 }
851
852 /*
853 * About rmap_head encoding:
854 *
855 * If the bit zero of rmap_head->val is clear, then it points to the only spte
856 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct
857 * pte_list_desc containing more mappings.
858 */
859 #define KVM_RMAP_MANY BIT(0)
860
861 /*
862 * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always
863 * operates with mmu_lock held for write), but rmaps can be walked without
864 * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain
865 * being zapped/dropped _while the rmap is locked_.
866 *
867 * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be
868 * done while holding mmu_lock for write. This allows a task walking rmaps
869 * without holding mmu_lock to concurrently walk the same entries as a task
870 * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify
871 * the rmaps, thus the walks are stable.
872 *
873 * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED,
874 * only the rmap chains themselves are protected. E.g. holding an rmap's lock
875 * ensures all "struct pte_list_desc" fields are stable.
876 */
877 #define KVM_RMAP_LOCKED BIT(1)
878
__kvm_rmap_lock(struct kvm_rmap_head * rmap_head)879 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head)
880 {
881 unsigned long old_val, new_val;
882
883 lockdep_assert_preemption_disabled();
884
885 /*
886 * Elide the lock if the rmap is empty, as lockless walkers (read-only
887 * mode) don't need to (and can't) walk an empty rmap, nor can they add
888 * entries to the rmap. I.e. the only paths that process empty rmaps
889 * do so while holding mmu_lock for write, and are mutually exclusive.
890 */
891 old_val = atomic_long_read(&rmap_head->val);
892 if (!old_val)
893 return 0;
894
895 do {
896 /*
897 * If the rmap is locked, wait for it to be unlocked before
898 * trying acquire the lock, e.g. to avoid bouncing the cache
899 * line.
900 */
901 while (old_val & KVM_RMAP_LOCKED) {
902 cpu_relax();
903 old_val = atomic_long_read(&rmap_head->val);
904 }
905
906 /*
907 * Recheck for an empty rmap, it may have been purged by the
908 * task that held the lock.
909 */
910 if (!old_val)
911 return 0;
912
913 new_val = old_val | KVM_RMAP_LOCKED;
914 /*
915 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap
916 * from being reordered outside of the critical section created by
917 * __kvm_rmap_lock().
918 *
919 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock().
920 *
921 * For the !old_val case, no ordering is needed, as there is no rmap
922 * to walk.
923 */
924 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val));
925
926 /*
927 * Return the old value, i.e. _without_ the LOCKED bit set. It's
928 * impossible for the return value to be 0 (see above), i.e. the read-
929 * only unlock flow can't get a false positive and fail to unlock.
930 */
931 return old_val;
932 }
933
kvm_rmap_lock(struct kvm * kvm,struct kvm_rmap_head * rmap_head)934 static unsigned long kvm_rmap_lock(struct kvm *kvm,
935 struct kvm_rmap_head *rmap_head)
936 {
937 lockdep_assert_held_write(&kvm->mmu_lock);
938
939 return __kvm_rmap_lock(rmap_head);
940 }
941
__kvm_rmap_unlock(struct kvm_rmap_head * rmap_head,unsigned long val)942 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head,
943 unsigned long val)
944 {
945 KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED);
946 /*
947 * Ensure that all accesses to the rmap have completed before unlocking
948 * the rmap.
949 *
950 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock().
951 */
952 atomic_long_set_release(&rmap_head->val, val);
953 }
954
kvm_rmap_unlock(struct kvm * kvm,struct kvm_rmap_head * rmap_head,unsigned long new_val)955 static void kvm_rmap_unlock(struct kvm *kvm,
956 struct kvm_rmap_head *rmap_head,
957 unsigned long new_val)
958 {
959 lockdep_assert_held_write(&kvm->mmu_lock);
960
961 __kvm_rmap_unlock(rmap_head, new_val);
962 }
963
kvm_rmap_get(struct kvm_rmap_head * rmap_head)964 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head)
965 {
966 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED;
967 }
968
969 /*
970 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The
971 * actual locking is the same, but the caller is disallowed from modifying the
972 * rmap, and so the unlock flow is a nop if the rmap is/was empty.
973 */
kvm_rmap_lock_readonly(struct kvm_rmap_head * rmap_head)974 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head)
975 {
976 unsigned long rmap_val;
977
978 preempt_disable();
979 rmap_val = __kvm_rmap_lock(rmap_head);
980
981 if (!rmap_val)
982 preempt_enable();
983
984 return rmap_val;
985 }
986
kvm_rmap_unlock_readonly(struct kvm_rmap_head * rmap_head,unsigned long old_val)987 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head,
988 unsigned long old_val)
989 {
990 if (!old_val)
991 return;
992
993 KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head));
994
995 __kvm_rmap_unlock(rmap_head, old_val);
996 preempt_enable();
997 }
998
999 /*
1000 * Returns the number of pointers in the rmap chain, not counting the new one.
1001 */
pte_list_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * spte,struct kvm_rmap_head * rmap_head)1002 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1003 u64 *spte, struct kvm_rmap_head *rmap_head)
1004 {
1005 unsigned long old_val, new_val;
1006 struct pte_list_desc *desc;
1007 int count = 0;
1008
1009 old_val = kvm_rmap_lock(kvm, rmap_head);
1010
1011 if (!old_val) {
1012 new_val = (unsigned long)spte;
1013 } else if (!(old_val & KVM_RMAP_MANY)) {
1014 desc = kvm_mmu_memory_cache_alloc(cache);
1015 desc->sptes[0] = (u64 *)old_val;
1016 desc->sptes[1] = spte;
1017 desc->spte_count = 2;
1018 desc->tail_count = 0;
1019 new_val = (unsigned long)desc | KVM_RMAP_MANY;
1020 ++count;
1021 } else {
1022 desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1023 count = desc->tail_count + desc->spte_count;
1024
1025 /*
1026 * If the previous head is full, allocate a new head descriptor
1027 * as tail descriptors are always kept full.
1028 */
1029 if (desc->spte_count == PTE_LIST_EXT) {
1030 desc = kvm_mmu_memory_cache_alloc(cache);
1031 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1032 desc->spte_count = 0;
1033 desc->tail_count = count;
1034 new_val = (unsigned long)desc | KVM_RMAP_MANY;
1035 } else {
1036 new_val = old_val;
1037 }
1038 desc->sptes[desc->spte_count++] = spte;
1039 }
1040
1041 kvm_rmap_unlock(kvm, rmap_head, new_val);
1042
1043 return count;
1044 }
1045
pte_list_desc_remove_entry(struct kvm * kvm,unsigned long * rmap_val,struct pte_list_desc * desc,int i)1046 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val,
1047 struct pte_list_desc *desc, int i)
1048 {
1049 struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY);
1050 int j = head_desc->spte_count - 1;
1051
1052 /*
1053 * The head descriptor should never be empty. A new head is added only
1054 * when adding an entry and the previous head is full, and heads are
1055 * removed (this flow) when they become empty.
1056 */
1057 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
1058
1059 /*
1060 * Replace the to-be-freed SPTE with the last valid entry from the head
1061 * descriptor to ensure that tail descriptors are full at all times.
1062 * Note, this also means that tail_count is stable for each descriptor.
1063 */
1064 desc->sptes[i] = head_desc->sptes[j];
1065 head_desc->sptes[j] = NULL;
1066 head_desc->spte_count--;
1067 if (head_desc->spte_count)
1068 return;
1069
1070 /*
1071 * The head descriptor is empty. If there are no tail descriptors,
1072 * nullify the rmap head to mark the list as empty, else point the rmap
1073 * head at the next descriptor, i.e. the new head.
1074 */
1075 if (!head_desc->more)
1076 *rmap_val = 0;
1077 else
1078 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
1079 mmu_free_pte_list_desc(head_desc);
1080 }
1081
pte_list_remove(struct kvm * kvm,u64 * spte,struct kvm_rmap_head * rmap_head)1082 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1083 struct kvm_rmap_head *rmap_head)
1084 {
1085 struct pte_list_desc *desc;
1086 unsigned long rmap_val;
1087 int i;
1088
1089 rmap_val = kvm_rmap_lock(kvm, rmap_head);
1090 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm))
1091 goto out;
1092
1093 if (!(rmap_val & KVM_RMAP_MANY)) {
1094 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm))
1095 goto out;
1096
1097 rmap_val = 0;
1098 } else {
1099 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1100 while (desc) {
1101 for (i = 0; i < desc->spte_count; ++i) {
1102 if (desc->sptes[i] == spte) {
1103 pte_list_desc_remove_entry(kvm, &rmap_val,
1104 desc, i);
1105 goto out;
1106 }
1107 }
1108 desc = desc->more;
1109 }
1110
1111 KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1112 }
1113
1114 out:
1115 kvm_rmap_unlock(kvm, rmap_head, rmap_val);
1116 }
1117
kvm_zap_one_rmap_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)1118 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1119 struct kvm_rmap_head *rmap_head, u64 *sptep)
1120 {
1121 mmu_spte_clear_track_bits(kvm, sptep);
1122 pte_list_remove(kvm, sptep, rmap_head);
1123 }
1124
1125 /* Return true if at least one SPTE was zapped, false otherwise */
kvm_zap_all_rmap_sptes(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1126 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1127 struct kvm_rmap_head *rmap_head)
1128 {
1129 struct pte_list_desc *desc, *next;
1130 unsigned long rmap_val;
1131 int i;
1132
1133 rmap_val = kvm_rmap_lock(kvm, rmap_head);
1134 if (!rmap_val)
1135 return false;
1136
1137 if (!(rmap_val & KVM_RMAP_MANY)) {
1138 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val);
1139 goto out;
1140 }
1141
1142 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1143
1144 for (; desc; desc = next) {
1145 for (i = 0; i < desc->spte_count; i++)
1146 mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1147 next = desc->more;
1148 mmu_free_pte_list_desc(desc);
1149 }
1150 out:
1151 /* rmap_head is meaningless now, remember to reset it */
1152 kvm_rmap_unlock(kvm, rmap_head, 0);
1153 return true;
1154 }
1155
pte_list_count(struct kvm_rmap_head * rmap_head)1156 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1157 {
1158 unsigned long rmap_val = kvm_rmap_get(rmap_head);
1159 struct pte_list_desc *desc;
1160
1161 if (!rmap_val)
1162 return 0;
1163 else if (!(rmap_val & KVM_RMAP_MANY))
1164 return 1;
1165
1166 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1167 return desc->tail_count + desc->spte_count;
1168 }
1169
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1170 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1171 const struct kvm_memory_slot *slot)
1172 {
1173 unsigned long idx;
1174
1175 idx = gfn_to_index(gfn, slot->base_gfn, level);
1176 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1177 }
1178
rmap_remove(struct kvm * kvm,u64 * spte)1179 static void rmap_remove(struct kvm *kvm, u64 *spte)
1180 {
1181 struct kvm_memslots *slots;
1182 struct kvm_memory_slot *slot;
1183 struct kvm_mmu_page *sp;
1184 gfn_t gfn;
1185 struct kvm_rmap_head *rmap_head;
1186
1187 sp = sptep_to_sp(spte);
1188 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1189
1190 /*
1191 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1192 * so we have to determine which memslots to use based on context
1193 * information in sp->role.
1194 */
1195 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1196
1197 slot = __gfn_to_memslot(slots, gfn);
1198 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1199
1200 pte_list_remove(kvm, spte, rmap_head);
1201 }
1202
1203 /*
1204 * Used by the following functions to iterate through the sptes linked by a
1205 * rmap. All fields are private and not assumed to be used outside.
1206 */
1207 struct rmap_iterator {
1208 /* private fields */
1209 struct rmap_head *head;
1210 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1211 int pos; /* index of the sptep */
1212 };
1213
1214 /*
1215 * Iteration must be started by this function. This should also be used after
1216 * removing/dropping sptes from the rmap link because in such cases the
1217 * information in the iterator may not be valid.
1218 *
1219 * Returns sptep if found, NULL otherwise.
1220 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1221 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1222 struct rmap_iterator *iter)
1223 {
1224 unsigned long rmap_val = kvm_rmap_get(rmap_head);
1225
1226 if (!rmap_val)
1227 return NULL;
1228
1229 if (!(rmap_val & KVM_RMAP_MANY)) {
1230 iter->desc = NULL;
1231 return (u64 *)rmap_val;
1232 }
1233
1234 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1235 iter->pos = 0;
1236 return iter->desc->sptes[iter->pos];
1237 }
1238
1239 /*
1240 * Must be used with a valid iterator: e.g. after rmap_get_first().
1241 *
1242 * Returns sptep if found, NULL otherwise.
1243 */
rmap_get_next(struct rmap_iterator * iter)1244 static u64 *rmap_get_next(struct rmap_iterator *iter)
1245 {
1246 if (iter->desc) {
1247 if (iter->pos < PTE_LIST_EXT - 1) {
1248 ++iter->pos;
1249 if (iter->desc->sptes[iter->pos])
1250 return iter->desc->sptes[iter->pos];
1251 }
1252
1253 iter->desc = iter->desc->more;
1254
1255 if (iter->desc) {
1256 iter->pos = 0;
1257 /* desc->sptes[0] cannot be NULL */
1258 return iter->desc->sptes[iter->pos];
1259 }
1260 }
1261
1262 return NULL;
1263 }
1264
1265 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1266 for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \
1267 _sptep_; _sptep_ = rmap_get_next(_iter_))
1268
1269 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1270 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1271 if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \
1272
1273 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \
1274 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1275 if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep)))
1276
drop_spte(struct kvm * kvm,u64 * sptep)1277 static void drop_spte(struct kvm *kvm, u64 *sptep)
1278 {
1279 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1280
1281 if (is_shadow_present_pte(old_spte))
1282 rmap_remove(kvm, sptep);
1283 }
1284
drop_large_spte(struct kvm * kvm,u64 * sptep,bool flush)1285 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1286 {
1287 struct kvm_mmu_page *sp;
1288
1289 sp = sptep_to_sp(sptep);
1290 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1291
1292 drop_spte(kvm, sptep);
1293
1294 if (flush)
1295 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1296 }
1297
1298 /*
1299 * Write-protect on the specified @sptep, @pt_protect indicates whether
1300 * spte write-protection is caused by protecting shadow page table.
1301 *
1302 * Note: write protection is difference between dirty logging and spte
1303 * protection:
1304 * - for dirty logging, the spte can be set to writable at anytime if
1305 * its dirty bitmap is properly set.
1306 * - for spte protection, the spte can be writable only after unsync-ing
1307 * shadow page.
1308 *
1309 * Return true if tlb need be flushed.
1310 */
spte_write_protect(u64 * sptep,bool pt_protect)1311 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1312 {
1313 u64 spte = *sptep;
1314
1315 if (!is_writable_pte(spte) &&
1316 !(pt_protect && is_mmu_writable_spte(spte)))
1317 return false;
1318
1319 if (pt_protect)
1320 spte &= ~shadow_mmu_writable_mask;
1321 spte = spte & ~PT_WRITABLE_MASK;
1322
1323 return mmu_spte_update(sptep, spte);
1324 }
1325
rmap_write_protect(struct kvm_rmap_head * rmap_head,bool pt_protect)1326 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1327 bool pt_protect)
1328 {
1329 u64 *sptep;
1330 struct rmap_iterator iter;
1331 bool flush = false;
1332
1333 for_each_rmap_spte(rmap_head, &iter, sptep)
1334 flush |= spte_write_protect(sptep, pt_protect);
1335
1336 return flush;
1337 }
1338
spte_clear_dirty(u64 * sptep)1339 static bool spte_clear_dirty(u64 *sptep)
1340 {
1341 u64 spte = *sptep;
1342
1343 KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1344 spte &= ~shadow_dirty_mask;
1345 return mmu_spte_update(sptep, spte);
1346 }
1347
1348 /*
1349 * Gets the GFN ready for another round of dirty logging by clearing the
1350 * - D bit on ad-enabled SPTEs, and
1351 * - W bit on ad-disabled SPTEs.
1352 * Returns true iff any D or W bits were cleared.
1353 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1354 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1355 const struct kvm_memory_slot *slot)
1356 {
1357 u64 *sptep;
1358 struct rmap_iterator iter;
1359 bool flush = false;
1360
1361 for_each_rmap_spte(rmap_head, &iter, sptep) {
1362 if (spte_ad_need_write_protect(*sptep))
1363 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
1364 (unsigned long *)sptep);
1365 else
1366 flush |= spte_clear_dirty(sptep);
1367 }
1368
1369 return flush;
1370 }
1371
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1372 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1373 struct kvm_memory_slot *slot,
1374 gfn_t gfn_offset, unsigned long mask)
1375 {
1376 struct kvm_rmap_head *rmap_head;
1377
1378 if (tdp_mmu_enabled)
1379 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1380 slot->base_gfn + gfn_offset, mask, true);
1381
1382 if (!kvm_memslots_have_rmaps(kvm))
1383 return;
1384
1385 while (mask) {
1386 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1387 PG_LEVEL_4K, slot);
1388 rmap_write_protect(rmap_head, false);
1389
1390 /* clear the first set bit */
1391 mask &= mask - 1;
1392 }
1393 }
1394
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1395 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1396 struct kvm_memory_slot *slot,
1397 gfn_t gfn_offset, unsigned long mask)
1398 {
1399 struct kvm_rmap_head *rmap_head;
1400
1401 if (tdp_mmu_enabled)
1402 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1403 slot->base_gfn + gfn_offset, mask, false);
1404
1405 if (!kvm_memslots_have_rmaps(kvm))
1406 return;
1407
1408 while (mask) {
1409 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1410 PG_LEVEL_4K, slot);
1411 __rmap_clear_dirty(kvm, rmap_head, slot);
1412
1413 /* clear the first set bit */
1414 mask &= mask - 1;
1415 }
1416 }
1417
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1418 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1419 struct kvm_memory_slot *slot,
1420 gfn_t gfn_offset, unsigned long mask)
1421 {
1422 /*
1423 * If the slot was assumed to be "initially all dirty", write-protect
1424 * huge pages to ensure they are split to 4KiB on the first write (KVM
1425 * dirty logs at 4KiB granularity). If eager page splitting is enabled,
1426 * immediately try to split huge pages, e.g. so that vCPUs don't get
1427 * saddled with the cost of splitting.
1428 *
1429 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1430 * of memslot has no such restriction, so the range can cross two large
1431 * pages.
1432 */
1433 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1434 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1435 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1436
1437 if (READ_ONCE(eager_page_split))
1438 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1439
1440 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1441
1442 /* Cross two large pages? */
1443 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1444 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1445 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1446 PG_LEVEL_2M);
1447 }
1448
1449 /*
1450 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
1451 * mask. If PML is enabled and the GFN doesn't need to be write-
1452 * protected for other reasons, e.g. shadow paging, clear the Dirty bit.
1453 * Otherwise clear the Writable bit.
1454 *
1455 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
1456 * enabled but it chooses between clearing the Dirty bit and Writeable
1457 * bit based on the context.
1458 */
1459 if (kvm_x86_ops.cpu_dirty_log_size)
1460 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1461 else
1462 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1463 }
1464
kvm_cpu_dirty_log_size(void)1465 int kvm_cpu_dirty_log_size(void)
1466 {
1467 return kvm_x86_ops.cpu_dirty_log_size;
1468 }
1469
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1470 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1471 struct kvm_memory_slot *slot, u64 gfn,
1472 int min_level)
1473 {
1474 struct kvm_rmap_head *rmap_head;
1475 int i;
1476 bool write_protected = false;
1477
1478 if (kvm_memslots_have_rmaps(kvm)) {
1479 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1480 rmap_head = gfn_to_rmap(gfn, i, slot);
1481 write_protected |= rmap_write_protect(rmap_head, true);
1482 }
1483 }
1484
1485 if (tdp_mmu_enabled)
1486 write_protected |=
1487 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1488
1489 return write_protected;
1490 }
1491
kvm_vcpu_write_protect_gfn(struct kvm_vcpu * vcpu,u64 gfn)1492 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1493 {
1494 struct kvm_memory_slot *slot;
1495
1496 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1497 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1498 }
1499
kvm_zap_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1500 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1501 const struct kvm_memory_slot *slot)
1502 {
1503 return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1504 }
1505
1506 struct slot_rmap_walk_iterator {
1507 /* input fields. */
1508 const struct kvm_memory_slot *slot;
1509 gfn_t start_gfn;
1510 gfn_t end_gfn;
1511 int start_level;
1512 int end_level;
1513
1514 /* output fields. */
1515 gfn_t gfn;
1516 struct kvm_rmap_head *rmap;
1517 int level;
1518
1519 /* private field. */
1520 struct kvm_rmap_head *end_rmap;
1521 };
1522
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1523 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1524 int level)
1525 {
1526 iterator->level = level;
1527 iterator->gfn = iterator->start_gfn;
1528 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1529 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1530 }
1531
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1532 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1533 const struct kvm_memory_slot *slot,
1534 int start_level, int end_level,
1535 gfn_t start_gfn, gfn_t end_gfn)
1536 {
1537 iterator->slot = slot;
1538 iterator->start_level = start_level;
1539 iterator->end_level = end_level;
1540 iterator->start_gfn = start_gfn;
1541 iterator->end_gfn = end_gfn;
1542
1543 rmap_walk_init_level(iterator, iterator->start_level);
1544 }
1545
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1546 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1547 {
1548 return !!iterator->rmap;
1549 }
1550
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1551 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1552 {
1553 while (++iterator->rmap <= iterator->end_rmap) {
1554 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
1555
1556 if (atomic_long_read(&iterator->rmap->val))
1557 return;
1558 }
1559
1560 if (++iterator->level > iterator->end_level) {
1561 iterator->rmap = NULL;
1562 return;
1563 }
1564
1565 rmap_walk_init_level(iterator, iterator->level);
1566 }
1567
1568 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1569 _start_gfn, _end_gfn, _iter_) \
1570 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1571 _end_level_, _start_gfn, _end_gfn); \
1572 slot_rmap_walk_okay(_iter_); \
1573 slot_rmap_walk_next(_iter_))
1574
1575 /* The return value indicates if tlb flush on all vcpus is needed. */
1576 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
1577 struct kvm_rmap_head *rmap_head,
1578 const struct kvm_memory_slot *slot);
1579
__walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool can_yield,bool flush_on_yield,bool flush)1580 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
1581 const struct kvm_memory_slot *slot,
1582 slot_rmaps_handler fn,
1583 int start_level, int end_level,
1584 gfn_t start_gfn, gfn_t end_gfn,
1585 bool can_yield, bool flush_on_yield,
1586 bool flush)
1587 {
1588 struct slot_rmap_walk_iterator iterator;
1589
1590 lockdep_assert_held_write(&kvm->mmu_lock);
1591
1592 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
1593 end_gfn, &iterator) {
1594 if (iterator.rmap)
1595 flush |= fn(kvm, iterator.rmap, slot);
1596
1597 if (!can_yield)
1598 continue;
1599
1600 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1601 if (flush && flush_on_yield) {
1602 kvm_flush_remote_tlbs_range(kvm, start_gfn,
1603 iterator.gfn - start_gfn + 1);
1604 flush = false;
1605 }
1606 cond_resched_rwlock_write(&kvm->mmu_lock);
1607 }
1608 }
1609
1610 return flush;
1611 }
1612
walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,bool flush_on_yield)1613 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
1614 const struct kvm_memory_slot *slot,
1615 slot_rmaps_handler fn,
1616 int start_level, int end_level,
1617 bool flush_on_yield)
1618 {
1619 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
1620 slot->base_gfn, slot->base_gfn + slot->npages - 1,
1621 true, flush_on_yield, false);
1622 }
1623
walk_slot_rmaps_4k(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,bool flush_on_yield)1624 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
1625 const struct kvm_memory_slot *slot,
1626 slot_rmaps_handler fn,
1627 bool flush_on_yield)
1628 {
1629 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
1630 }
1631
__kvm_rmap_zap_gfn_range(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,bool can_yield,bool flush)1632 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
1633 const struct kvm_memory_slot *slot,
1634 gfn_t start, gfn_t end, bool can_yield,
1635 bool flush)
1636 {
1637 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
1638 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1639 start, end - 1, can_yield, true, flush);
1640 }
1641
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1642 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1643 {
1644 bool flush = false;
1645
1646 /*
1647 * To prevent races with vCPUs faulting in a gfn using stale data,
1648 * zapping a gfn range must be protected by mmu_invalidate_in_progress
1649 * (and mmu_invalidate_seq). The only exception is memslot deletion;
1650 * in that case, SRCU synchronization ensures that SPTEs are zapped
1651 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the
1652 * invalid slot.
1653 */
1654 lockdep_assert_once(kvm->mmu_invalidate_in_progress ||
1655 lockdep_is_held(&kvm->slots_lock));
1656
1657 if (kvm_memslots_have_rmaps(kvm))
1658 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
1659 range->start, range->end,
1660 range->may_block, flush);
1661
1662 if (tdp_mmu_enabled)
1663 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1664
1665 if (kvm_x86_ops.set_apic_access_page_addr &&
1666 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1667 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1668
1669 return flush;
1670 }
1671
1672 #define RMAP_RECYCLE_THRESHOLD 1000
1673
__rmap_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1674 static void __rmap_add(struct kvm *kvm,
1675 struct kvm_mmu_memory_cache *cache,
1676 const struct kvm_memory_slot *slot,
1677 u64 *spte, gfn_t gfn, unsigned int access)
1678 {
1679 struct kvm_mmu_page *sp;
1680 struct kvm_rmap_head *rmap_head;
1681 int rmap_count;
1682
1683 sp = sptep_to_sp(spte);
1684 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1685 kvm_update_page_stats(kvm, sp->role.level, 1);
1686
1687 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1688 rmap_count = pte_list_add(kvm, cache, spte, rmap_head);
1689
1690 if (rmap_count > kvm->stat.max_mmu_rmap_size)
1691 kvm->stat.max_mmu_rmap_size = rmap_count;
1692 if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1693 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1694 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1695 }
1696 }
1697
rmap_add(struct kvm_vcpu * vcpu,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1698 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1699 u64 *spte, gfn_t gfn, unsigned int access)
1700 {
1701 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1702
1703 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1704 }
1705
kvm_rmap_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool test_only)1706 static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
1707 struct kvm_gfn_range *range,
1708 bool test_only)
1709 {
1710 struct kvm_rmap_head *rmap_head;
1711 struct rmap_iterator iter;
1712 unsigned long rmap_val;
1713 bool young = false;
1714 u64 *sptep;
1715 gfn_t gfn;
1716 int level;
1717 u64 spte;
1718
1719 for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
1720 for (gfn = range->start; gfn < range->end;
1721 gfn += KVM_PAGES_PER_HPAGE(level)) {
1722 rmap_head = gfn_to_rmap(gfn, level, range->slot);
1723 rmap_val = kvm_rmap_lock_readonly(rmap_head);
1724
1725 for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) {
1726 if (!is_accessed_spte(spte))
1727 continue;
1728
1729 if (test_only) {
1730 kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1731 return true;
1732 }
1733
1734 if (spte_ad_enabled(spte))
1735 clear_bit((ffs(shadow_accessed_mask) - 1),
1736 (unsigned long *)sptep);
1737 else
1738 /*
1739 * If the following cmpxchg fails, the
1740 * spte is being concurrently modified
1741 * and should most likely stay young.
1742 */
1743 cmpxchg64(sptep, spte,
1744 mark_spte_for_access_track(spte));
1745 young = true;
1746 }
1747
1748 kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1749 }
1750 }
1751 return young;
1752 }
1753
kvm_may_have_shadow_mmu_sptes(struct kvm * kvm)1754 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm)
1755 {
1756 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages);
1757 }
1758
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1759 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1760 {
1761 bool young = false;
1762
1763 if (tdp_mmu_enabled)
1764 young = kvm_tdp_mmu_age_gfn_range(kvm, range);
1765
1766 if (kvm_may_have_shadow_mmu_sptes(kvm))
1767 young |= kvm_rmap_age_gfn_range(kvm, range, false);
1768
1769 return young;
1770 }
1771
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1772 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1773 {
1774 bool young = false;
1775
1776 if (tdp_mmu_enabled)
1777 young = kvm_tdp_mmu_test_age_gfn(kvm, range);
1778
1779 if (young)
1780 return young;
1781
1782 if (kvm_may_have_shadow_mmu_sptes(kvm))
1783 young |= kvm_rmap_age_gfn_range(kvm, range, true);
1784
1785 return young;
1786 }
1787
kvm_mmu_check_sptes_at_free(struct kvm_mmu_page * sp)1788 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1789 {
1790 #ifdef CONFIG_KVM_PROVE_MMU
1791 int i;
1792
1793 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1794 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1795 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1796 sp->spt[i], &sp->spt[i],
1797 kvm_mmu_page_get_gfn(sp, i));
1798 }
1799 #endif
1800 }
1801
kvm_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1802 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1803 {
1804 kvm->arch.n_used_mmu_pages++;
1805 kvm_account_pgtable_pages((void *)sp->spt, +1);
1806 }
1807
kvm_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1808 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1809 {
1810 kvm->arch.n_used_mmu_pages--;
1811 kvm_account_pgtable_pages((void *)sp->spt, -1);
1812 }
1813
kvm_mmu_free_shadow_page(struct kvm_mmu_page * sp)1814 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1815 {
1816 kvm_mmu_check_sptes_at_free(sp);
1817
1818 hlist_del(&sp->hash_link);
1819 list_del(&sp->link);
1820 free_page((unsigned long)sp->spt);
1821 free_page((unsigned long)sp->shadowed_translation);
1822 kmem_cache_free(mmu_page_header_cache, sp);
1823 }
1824
kvm_page_table_hashfn(gfn_t gfn)1825 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1826 {
1827 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1828 }
1829
mmu_page_add_parent_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,struct kvm_mmu_page * sp,u64 * parent_pte)1830 static void mmu_page_add_parent_pte(struct kvm *kvm,
1831 struct kvm_mmu_memory_cache *cache,
1832 struct kvm_mmu_page *sp, u64 *parent_pte)
1833 {
1834 if (!parent_pte)
1835 return;
1836
1837 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes);
1838 }
1839
mmu_page_remove_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1840 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1841 u64 *parent_pte)
1842 {
1843 pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1844 }
1845
drop_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1846 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1847 u64 *parent_pte)
1848 {
1849 mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1850 mmu_spte_clear_no_track(parent_pte);
1851 }
1852
1853 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1854 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1855 {
1856 u64 *sptep;
1857 struct rmap_iterator iter;
1858
1859 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1860 mark_unsync(sptep);
1861 }
1862 }
1863
mark_unsync(u64 * spte)1864 static void mark_unsync(u64 *spte)
1865 {
1866 struct kvm_mmu_page *sp;
1867
1868 sp = sptep_to_sp(spte);
1869 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1870 return;
1871 if (sp->unsync_children++)
1872 return;
1873 kvm_mmu_mark_parents_unsync(sp);
1874 }
1875
1876 #define KVM_PAGE_ARRAY_NR 16
1877
1878 struct kvm_mmu_pages {
1879 struct mmu_page_and_offset {
1880 struct kvm_mmu_page *sp;
1881 unsigned int idx;
1882 } page[KVM_PAGE_ARRAY_NR];
1883 unsigned int nr;
1884 };
1885
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1886 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1887 int idx)
1888 {
1889 int i;
1890
1891 if (sp->unsync)
1892 for (i=0; i < pvec->nr; i++)
1893 if (pvec->page[i].sp == sp)
1894 return 0;
1895
1896 pvec->page[pvec->nr].sp = sp;
1897 pvec->page[pvec->nr].idx = idx;
1898 pvec->nr++;
1899 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1900 }
1901
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1902 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1903 {
1904 --sp->unsync_children;
1905 WARN_ON_ONCE((int)sp->unsync_children < 0);
1906 __clear_bit(idx, sp->unsync_child_bitmap);
1907 }
1908
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1909 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1910 struct kvm_mmu_pages *pvec)
1911 {
1912 int i, ret, nr_unsync_leaf = 0;
1913
1914 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1915 struct kvm_mmu_page *child;
1916 u64 ent = sp->spt[i];
1917
1918 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1919 clear_unsync_child_bit(sp, i);
1920 continue;
1921 }
1922
1923 child = spte_to_child_sp(ent);
1924
1925 if (child->unsync_children) {
1926 if (mmu_pages_add(pvec, child, i))
1927 return -ENOSPC;
1928
1929 ret = __mmu_unsync_walk(child, pvec);
1930 if (!ret) {
1931 clear_unsync_child_bit(sp, i);
1932 continue;
1933 } else if (ret > 0) {
1934 nr_unsync_leaf += ret;
1935 } else
1936 return ret;
1937 } else if (child->unsync) {
1938 nr_unsync_leaf++;
1939 if (mmu_pages_add(pvec, child, i))
1940 return -ENOSPC;
1941 } else
1942 clear_unsync_child_bit(sp, i);
1943 }
1944
1945 return nr_unsync_leaf;
1946 }
1947
1948 #define INVALID_INDEX (-1)
1949
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1950 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1951 struct kvm_mmu_pages *pvec)
1952 {
1953 pvec->nr = 0;
1954 if (!sp->unsync_children)
1955 return 0;
1956
1957 mmu_pages_add(pvec, sp, INVALID_INDEX);
1958 return __mmu_unsync_walk(sp, pvec);
1959 }
1960
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1961 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1962 {
1963 WARN_ON_ONCE(!sp->unsync);
1964 trace_kvm_mmu_sync_page(sp);
1965 sp->unsync = 0;
1966 --kvm->stat.mmu_unsync;
1967 }
1968
1969 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1970 struct list_head *invalid_list);
1971 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1972 struct list_head *invalid_list);
1973
sp_has_gptes(struct kvm_mmu_page * sp)1974 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1975 {
1976 if (sp->role.direct)
1977 return false;
1978
1979 if (sp->role.passthrough)
1980 return false;
1981
1982 return true;
1983 }
1984
1985 #define for_each_valid_sp(_kvm, _sp, _list) \
1986 hlist_for_each_entry(_sp, _list, hash_link) \
1987 if (is_obsolete_sp((_kvm), (_sp))) { \
1988 } else
1989
1990 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
1991 for_each_valid_sp(_kvm, _sp, \
1992 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1993 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1994
kvm_sync_page_check(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1995 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1996 {
1997 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1998
1999 /*
2000 * Ignore various flags when verifying that it's safe to sync a shadow
2001 * page using the current MMU context.
2002 *
2003 * - level: not part of the overall MMU role and will never match as the MMU's
2004 * level tracks the root level
2005 * - access: updated based on the new guest PTE
2006 * - quadrant: not part of the overall MMU role (similar to level)
2007 */
2008 const union kvm_mmu_page_role sync_role_ign = {
2009 .level = 0xf,
2010 .access = 0x7,
2011 .quadrant = 0x3,
2012 .passthrough = 0x1,
2013 };
2014
2015 /*
2016 * Direct pages can never be unsync, and KVM should never attempt to
2017 * sync a shadow page for a different MMU context, e.g. if the role
2018 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
2019 * reserved bits checks will be wrong, etc...
2020 */
2021 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
2022 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
2023 return false;
2024
2025 return true;
2026 }
2027
kvm_sync_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,int i)2028 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
2029 {
2030 /* sp->spt[i] has initial value of shadow page table allocation */
2031 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
2032 return 0;
2033
2034 return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
2035 }
2036
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2037 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2038 {
2039 int flush = 0;
2040 int i;
2041
2042 if (!kvm_sync_page_check(vcpu, sp))
2043 return -1;
2044
2045 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
2046 int ret = kvm_sync_spte(vcpu, sp, i);
2047
2048 if (ret < -1)
2049 return -1;
2050 flush |= ret;
2051 }
2052
2053 /*
2054 * Note, any flush is purely for KVM's correctness, e.g. when dropping
2055 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
2056 * unmap or dirty logging event doesn't fail to flush. The guest is
2057 * responsible for flushing the TLB to ensure any changes in protection
2058 * bits are recognized, i.e. until the guest flushes or page faults on
2059 * a relevant address, KVM is architecturally allowed to let vCPUs use
2060 * cached translations with the old protection bits.
2061 */
2062 return flush;
2063 }
2064
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2065 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2066 struct list_head *invalid_list)
2067 {
2068 int ret = __kvm_sync_page(vcpu, sp);
2069
2070 if (ret < 0)
2071 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2072 return ret;
2073 }
2074
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)2075 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2076 struct list_head *invalid_list,
2077 bool remote_flush)
2078 {
2079 if (!remote_flush && list_empty(invalid_list))
2080 return false;
2081
2082 if (!list_empty(invalid_list))
2083 kvm_mmu_commit_zap_page(kvm, invalid_list);
2084 else
2085 kvm_flush_remote_tlbs(kvm);
2086 return true;
2087 }
2088
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2089 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2090 {
2091 if (sp->role.invalid)
2092 return true;
2093
2094 /* TDP MMU pages do not use the MMU generation. */
2095 return !is_tdp_mmu_page(sp) &&
2096 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2097 }
2098
2099 struct mmu_page_path {
2100 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2101 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2102 };
2103
2104 #define for_each_sp(pvec, sp, parents, i) \
2105 for (i = mmu_pages_first(&pvec, &parents); \
2106 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2107 i = mmu_pages_next(&pvec, &parents, i))
2108
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)2109 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2110 struct mmu_page_path *parents,
2111 int i)
2112 {
2113 int n;
2114
2115 for (n = i+1; n < pvec->nr; n++) {
2116 struct kvm_mmu_page *sp = pvec->page[n].sp;
2117 unsigned idx = pvec->page[n].idx;
2118 int level = sp->role.level;
2119
2120 parents->idx[level-1] = idx;
2121 if (level == PG_LEVEL_4K)
2122 break;
2123
2124 parents->parent[level-2] = sp;
2125 }
2126
2127 return n;
2128 }
2129
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)2130 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2131 struct mmu_page_path *parents)
2132 {
2133 struct kvm_mmu_page *sp;
2134 int level;
2135
2136 if (pvec->nr == 0)
2137 return 0;
2138
2139 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2140
2141 sp = pvec->page[0].sp;
2142 level = sp->role.level;
2143 WARN_ON_ONCE(level == PG_LEVEL_4K);
2144
2145 parents->parent[level-2] = sp;
2146
2147 /* Also set up a sentinel. Further entries in pvec are all
2148 * children of sp, so this element is never overwritten.
2149 */
2150 parents->parent[level-1] = NULL;
2151 return mmu_pages_next(pvec, parents, 0);
2152 }
2153
mmu_pages_clear_parents(struct mmu_page_path * parents)2154 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2155 {
2156 struct kvm_mmu_page *sp;
2157 unsigned int level = 0;
2158
2159 do {
2160 unsigned int idx = parents->idx[level];
2161 sp = parents->parent[level];
2162 if (!sp)
2163 return;
2164
2165 WARN_ON_ONCE(idx == INVALID_INDEX);
2166 clear_unsync_child_bit(sp, idx);
2167 level++;
2168 } while (!sp->unsync_children);
2169 }
2170
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)2171 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2172 struct kvm_mmu_page *parent, bool can_yield)
2173 {
2174 int i;
2175 struct kvm_mmu_page *sp;
2176 struct mmu_page_path parents;
2177 struct kvm_mmu_pages pages;
2178 LIST_HEAD(invalid_list);
2179 bool flush = false;
2180
2181 while (mmu_unsync_walk(parent, &pages)) {
2182 bool protected = false;
2183
2184 for_each_sp(pages, sp, parents, i)
2185 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2186
2187 if (protected) {
2188 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2189 flush = false;
2190 }
2191
2192 for_each_sp(pages, sp, parents, i) {
2193 kvm_unlink_unsync_page(vcpu->kvm, sp);
2194 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2195 mmu_pages_clear_parents(&parents);
2196 }
2197 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2198 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2199 if (!can_yield) {
2200 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2201 return -EINTR;
2202 }
2203
2204 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2205 flush = false;
2206 }
2207 }
2208
2209 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2210 return 0;
2211 }
2212
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2213 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2214 {
2215 atomic_set(&sp->write_flooding_count, 0);
2216 }
2217
clear_sp_write_flooding_count(u64 * spte)2218 static void clear_sp_write_flooding_count(u64 *spte)
2219 {
2220 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2221 }
2222
2223 /*
2224 * The vCPU is required when finding indirect shadow pages; the shadow
2225 * page may already exist and syncing it needs the vCPU pointer in
2226 * order to read guest page tables. Direct shadow pages are never
2227 * unsync, thus @vcpu can be NULL if @role.direct is true.
2228 */
kvm_mmu_find_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2229 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2230 struct kvm_vcpu *vcpu,
2231 gfn_t gfn,
2232 struct hlist_head *sp_list,
2233 union kvm_mmu_page_role role)
2234 {
2235 struct kvm_mmu_page *sp;
2236 int ret;
2237 int collisions = 0;
2238 LIST_HEAD(invalid_list);
2239
2240 for_each_valid_sp(kvm, sp, sp_list) {
2241 if (sp->gfn != gfn) {
2242 collisions++;
2243 continue;
2244 }
2245
2246 if (sp->role.word != role.word) {
2247 /*
2248 * If the guest is creating an upper-level page, zap
2249 * unsync pages for the same gfn. While it's possible
2250 * the guest is using recursive page tables, in all
2251 * likelihood the guest has stopped using the unsync
2252 * page and is installing a completely unrelated page.
2253 * Unsync pages must not be left as is, because the new
2254 * upper-level page will be write-protected.
2255 */
2256 if (role.level > PG_LEVEL_4K && sp->unsync)
2257 kvm_mmu_prepare_zap_page(kvm, sp,
2258 &invalid_list);
2259 continue;
2260 }
2261
2262 /* unsync and write-flooding only apply to indirect SPs. */
2263 if (sp->role.direct)
2264 goto out;
2265
2266 if (sp->unsync) {
2267 if (KVM_BUG_ON(!vcpu, kvm))
2268 break;
2269
2270 /*
2271 * The page is good, but is stale. kvm_sync_page does
2272 * get the latest guest state, but (unlike mmu_unsync_children)
2273 * it doesn't write-protect the page or mark it synchronized!
2274 * This way the validity of the mapping is ensured, but the
2275 * overhead of write protection is not incurred until the
2276 * guest invalidates the TLB mapping. This allows multiple
2277 * SPs for a single gfn to be unsync.
2278 *
2279 * If the sync fails, the page is zapped. If so, break
2280 * in order to rebuild it.
2281 */
2282 ret = kvm_sync_page(vcpu, sp, &invalid_list);
2283 if (ret < 0)
2284 break;
2285
2286 WARN_ON_ONCE(!list_empty(&invalid_list));
2287 if (ret > 0)
2288 kvm_flush_remote_tlbs(kvm);
2289 }
2290
2291 __clear_sp_write_flooding_count(sp);
2292
2293 goto out;
2294 }
2295
2296 sp = NULL;
2297 ++kvm->stat.mmu_cache_miss;
2298
2299 out:
2300 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2301
2302 if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2303 kvm->stat.max_mmu_page_hash_collisions = collisions;
2304 return sp;
2305 }
2306
2307 /* Caches used when allocating a new shadow page. */
2308 struct shadow_page_caches {
2309 struct kvm_mmu_memory_cache *page_header_cache;
2310 struct kvm_mmu_memory_cache *shadow_page_cache;
2311 struct kvm_mmu_memory_cache *shadowed_info_cache;
2312 };
2313
kvm_mmu_alloc_shadow_page(struct kvm * kvm,struct shadow_page_caches * caches,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2314 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2315 struct shadow_page_caches *caches,
2316 gfn_t gfn,
2317 struct hlist_head *sp_list,
2318 union kvm_mmu_page_role role)
2319 {
2320 struct kvm_mmu_page *sp;
2321
2322 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2323 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2324 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL)
2325 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2326
2327 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2328
2329 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2330
2331 /*
2332 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2333 * depends on valid pages being added to the head of the list. See
2334 * comments in kvm_zap_obsolete_pages().
2335 */
2336 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2337 list_add(&sp->link, &kvm->arch.active_mmu_pages);
2338 kvm_account_mmu_page(kvm, sp);
2339
2340 sp->gfn = gfn;
2341 sp->role = role;
2342 hlist_add_head(&sp->hash_link, sp_list);
2343 if (sp_has_gptes(sp))
2344 account_shadowed(kvm, sp);
2345
2346 return sp;
2347 }
2348
2349 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
__kvm_mmu_get_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,struct shadow_page_caches * caches,gfn_t gfn,union kvm_mmu_page_role role)2350 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2351 struct kvm_vcpu *vcpu,
2352 struct shadow_page_caches *caches,
2353 gfn_t gfn,
2354 union kvm_mmu_page_role role)
2355 {
2356 struct hlist_head *sp_list;
2357 struct kvm_mmu_page *sp;
2358 bool created = false;
2359
2360 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2361
2362 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2363 if (!sp) {
2364 created = true;
2365 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2366 }
2367
2368 trace_kvm_mmu_get_page(sp, created);
2369 return sp;
2370 }
2371
kvm_mmu_get_shadow_page(struct kvm_vcpu * vcpu,gfn_t gfn,union kvm_mmu_page_role role)2372 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2373 gfn_t gfn,
2374 union kvm_mmu_page_role role)
2375 {
2376 struct shadow_page_caches caches = {
2377 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2378 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2379 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2380 };
2381
2382 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2383 }
2384
kvm_mmu_child_role(u64 * sptep,bool direct,unsigned int access)2385 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2386 unsigned int access)
2387 {
2388 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2389 union kvm_mmu_page_role role;
2390
2391 role = parent_sp->role;
2392 role.level--;
2393 role.access = access;
2394 role.direct = direct;
2395 role.passthrough = 0;
2396
2397 /*
2398 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2399 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2400 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2401 * shadow each guest page table with multiple shadow page tables, which
2402 * requires extra bookkeeping in the role.
2403 *
2404 * Specifically, to shadow the guest's page directory (which covers a
2405 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2406 * 1GiB of the address space. @role.quadrant encodes which quarter of
2407 * the address space each maps.
2408 *
2409 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2410 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2411 * @role.quadrant encodes which half of the region they map.
2412 *
2413 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2414 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
2415 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2416 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
2417 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
2418 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2419 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
2420 * covers bit 21 (see above), thus the quadrant is calculated from the
2421 * _least_ significant bit of the PDE index.
2422 */
2423 if (role.has_4_byte_gpte) {
2424 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2425 role.quadrant = spte_index(sptep) & 1;
2426 }
2427
2428 return role;
2429 }
2430
kvm_mmu_get_child_sp(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,bool direct,unsigned int access)2431 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2432 u64 *sptep, gfn_t gfn,
2433 bool direct, unsigned int access)
2434 {
2435 union kvm_mmu_page_role role;
2436
2437 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2438 return ERR_PTR(-EEXIST);
2439
2440 role = kvm_mmu_child_role(sptep, direct, access);
2441 return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2442 }
2443
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2444 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2445 struct kvm_vcpu *vcpu, hpa_t root,
2446 u64 addr)
2447 {
2448 iterator->addr = addr;
2449 iterator->shadow_addr = root;
2450 iterator->level = vcpu->arch.mmu->root_role.level;
2451
2452 if (iterator->level >= PT64_ROOT_4LEVEL &&
2453 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2454 !vcpu->arch.mmu->root_role.direct)
2455 iterator->level = PT32E_ROOT_LEVEL;
2456
2457 if (iterator->level == PT32E_ROOT_LEVEL) {
2458 /*
2459 * prev_root is currently only used for 64-bit hosts. So only
2460 * the active root_hpa is valid here.
2461 */
2462 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2463
2464 iterator->shadow_addr
2465 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2466 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2467 --iterator->level;
2468 if (!iterator->shadow_addr)
2469 iterator->level = 0;
2470 }
2471 }
2472
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2473 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2474 struct kvm_vcpu *vcpu, u64 addr)
2475 {
2476 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2477 addr);
2478 }
2479
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2480 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2481 {
2482 if (iterator->level < PG_LEVEL_4K)
2483 return false;
2484
2485 iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2486 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2487 return true;
2488 }
2489
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2490 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2491 u64 spte)
2492 {
2493 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2494 iterator->level = 0;
2495 return;
2496 }
2497
2498 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2499 --iterator->level;
2500 }
2501
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2502 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2503 {
2504 __shadow_walk_next(iterator, *iterator->sptep);
2505 }
2506
__link_shadow_page(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * sptep,struct kvm_mmu_page * sp,bool flush)2507 static void __link_shadow_page(struct kvm *kvm,
2508 struct kvm_mmu_memory_cache *cache, u64 *sptep,
2509 struct kvm_mmu_page *sp, bool flush)
2510 {
2511 u64 spte;
2512
2513 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2514
2515 /*
2516 * If an SPTE is present already, it must be a leaf and therefore
2517 * a large one. Drop it, and flush the TLB if needed, before
2518 * installing sp.
2519 */
2520 if (is_shadow_present_pte(*sptep))
2521 drop_large_spte(kvm, sptep, flush);
2522
2523 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2524
2525 mmu_spte_set(sptep, spte);
2526
2527 mmu_page_add_parent_pte(kvm, cache, sp, sptep);
2528
2529 /*
2530 * The non-direct sub-pagetable must be updated before linking. For
2531 * L1 sp, the pagetable is updated via kvm_sync_page() in
2532 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2533 * so sp->unsync can be true or false. For higher level non-direct
2534 * sp, the pagetable is updated/synced via mmu_sync_children() in
2535 * FNAME(fetch)(), so sp->unsync_children can only be false.
2536 * WARN_ON_ONCE() if anything happens unexpectedly.
2537 */
2538 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2539 mark_unsync(sptep);
2540 }
2541
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2542 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2543 struct kvm_mmu_page *sp)
2544 {
2545 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2546 }
2547
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2548 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2549 unsigned direct_access)
2550 {
2551 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2552 struct kvm_mmu_page *child;
2553
2554 /*
2555 * For the direct sp, if the guest pte's dirty bit
2556 * changed form clean to dirty, it will corrupt the
2557 * sp's access: allow writable in the read-only sp,
2558 * so we should update the spte at this point to get
2559 * a new sp with the correct access.
2560 */
2561 child = spte_to_child_sp(*sptep);
2562 if (child->role.access == direct_access)
2563 return;
2564
2565 drop_parent_pte(vcpu->kvm, child, sptep);
2566 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2567 }
2568 }
2569
2570 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2571 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2572 u64 *spte, struct list_head *invalid_list)
2573 {
2574 u64 pte;
2575 struct kvm_mmu_page *child;
2576
2577 pte = *spte;
2578 if (is_shadow_present_pte(pte)) {
2579 if (is_last_spte(pte, sp->role.level)) {
2580 drop_spte(kvm, spte);
2581 } else {
2582 child = spte_to_child_sp(pte);
2583 drop_parent_pte(kvm, child, spte);
2584
2585 /*
2586 * Recursively zap nested TDP SPs, parentless SPs are
2587 * unlikely to be used again in the near future. This
2588 * avoids retaining a large number of stale nested SPs.
2589 */
2590 if (tdp_enabled && invalid_list &&
2591 child->role.guest_mode &&
2592 !atomic_long_read(&child->parent_ptes.val))
2593 return kvm_mmu_prepare_zap_page(kvm, child,
2594 invalid_list);
2595 }
2596 } else if (is_mmio_spte(kvm, pte)) {
2597 mmu_spte_clear_no_track(spte);
2598 }
2599 return 0;
2600 }
2601
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2602 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2603 struct kvm_mmu_page *sp,
2604 struct list_head *invalid_list)
2605 {
2606 int zapped = 0;
2607 unsigned i;
2608
2609 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2610 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2611
2612 return zapped;
2613 }
2614
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2615 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2616 {
2617 u64 *sptep;
2618 struct rmap_iterator iter;
2619
2620 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2621 drop_parent_pte(kvm, sp, sptep);
2622 }
2623
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2624 static int mmu_zap_unsync_children(struct kvm *kvm,
2625 struct kvm_mmu_page *parent,
2626 struct list_head *invalid_list)
2627 {
2628 int i, zapped = 0;
2629 struct mmu_page_path parents;
2630 struct kvm_mmu_pages pages;
2631
2632 if (parent->role.level == PG_LEVEL_4K)
2633 return 0;
2634
2635 while (mmu_unsync_walk(parent, &pages)) {
2636 struct kvm_mmu_page *sp;
2637
2638 for_each_sp(pages, sp, parents, i) {
2639 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2640 mmu_pages_clear_parents(&parents);
2641 zapped++;
2642 }
2643 }
2644
2645 return zapped;
2646 }
2647
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2648 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2649 struct kvm_mmu_page *sp,
2650 struct list_head *invalid_list,
2651 int *nr_zapped)
2652 {
2653 bool list_unstable, zapped_root = false;
2654
2655 lockdep_assert_held_write(&kvm->mmu_lock);
2656 trace_kvm_mmu_prepare_zap_page(sp);
2657 ++kvm->stat.mmu_shadow_zapped;
2658 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2659 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2660 kvm_mmu_unlink_parents(kvm, sp);
2661
2662 /* Zapping children means active_mmu_pages has become unstable. */
2663 list_unstable = *nr_zapped;
2664
2665 if (!sp->role.invalid && sp_has_gptes(sp))
2666 unaccount_shadowed(kvm, sp);
2667
2668 if (sp->unsync)
2669 kvm_unlink_unsync_page(kvm, sp);
2670 if (!sp->root_count) {
2671 /* Count self */
2672 (*nr_zapped)++;
2673
2674 /*
2675 * Already invalid pages (previously active roots) are not on
2676 * the active page list. See list_del() in the "else" case of
2677 * !sp->root_count.
2678 */
2679 if (sp->role.invalid)
2680 list_add(&sp->link, invalid_list);
2681 else
2682 list_move(&sp->link, invalid_list);
2683 kvm_unaccount_mmu_page(kvm, sp);
2684 } else {
2685 /*
2686 * Remove the active root from the active page list, the root
2687 * will be explicitly freed when the root_count hits zero.
2688 */
2689 list_del(&sp->link);
2690
2691 /*
2692 * Obsolete pages cannot be used on any vCPUs, see the comment
2693 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2694 * treats invalid shadow pages as being obsolete.
2695 */
2696 zapped_root = !is_obsolete_sp(kvm, sp);
2697 }
2698
2699 if (sp->nx_huge_page_disallowed)
2700 unaccount_nx_huge_page(kvm, sp);
2701
2702 sp->role.invalid = 1;
2703
2704 /*
2705 * Make the request to free obsolete roots after marking the root
2706 * invalid, otherwise other vCPUs may not see it as invalid.
2707 */
2708 if (zapped_root)
2709 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2710 return list_unstable;
2711 }
2712
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2713 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2714 struct list_head *invalid_list)
2715 {
2716 int nr_zapped;
2717
2718 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2719 return nr_zapped;
2720 }
2721
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2722 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2723 struct list_head *invalid_list)
2724 {
2725 struct kvm_mmu_page *sp, *nsp;
2726
2727 if (list_empty(invalid_list))
2728 return;
2729
2730 /*
2731 * We need to make sure everyone sees our modifications to
2732 * the page tables and see changes to vcpu->mode here. The barrier
2733 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2734 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2735 *
2736 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2737 * guest mode and/or lockless shadow page table walks.
2738 */
2739 kvm_flush_remote_tlbs(kvm);
2740
2741 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2742 WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2743 kvm_mmu_free_shadow_page(sp);
2744 }
2745 }
2746
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2747 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2748 unsigned long nr_to_zap)
2749 {
2750 unsigned long total_zapped = 0;
2751 struct kvm_mmu_page *sp, *tmp;
2752 LIST_HEAD(invalid_list);
2753 bool unstable;
2754 int nr_zapped;
2755
2756 if (list_empty(&kvm->arch.active_mmu_pages))
2757 return 0;
2758
2759 restart:
2760 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2761 /*
2762 * Don't zap active root pages, the page itself can't be freed
2763 * and zapping it will just force vCPUs to realloc and reload.
2764 */
2765 if (sp->root_count)
2766 continue;
2767
2768 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2769 &nr_zapped);
2770 total_zapped += nr_zapped;
2771 if (total_zapped >= nr_to_zap)
2772 break;
2773
2774 if (unstable)
2775 goto restart;
2776 }
2777
2778 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2779
2780 kvm->stat.mmu_recycled += total_zapped;
2781 return total_zapped;
2782 }
2783
kvm_mmu_available_pages(struct kvm * kvm)2784 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2785 {
2786 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2787 return kvm->arch.n_max_mmu_pages -
2788 kvm->arch.n_used_mmu_pages;
2789
2790 return 0;
2791 }
2792
make_mmu_pages_available(struct kvm_vcpu * vcpu)2793 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2794 {
2795 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2796
2797 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2798 return 0;
2799
2800 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2801
2802 /*
2803 * Note, this check is intentionally soft, it only guarantees that one
2804 * page is available, while the caller may end up allocating as many as
2805 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2806 * exceeding the (arbitrary by default) limit will not harm the host,
2807 * being too aggressive may unnecessarily kill the guest, and getting an
2808 * exact count is far more trouble than it's worth, especially in the
2809 * page fault paths.
2810 */
2811 if (!kvm_mmu_available_pages(vcpu->kvm))
2812 return -ENOSPC;
2813 return 0;
2814 }
2815
2816 /*
2817 * Changing the number of mmu pages allocated to the vm
2818 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2819 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2820 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2821 {
2822 write_lock(&kvm->mmu_lock);
2823
2824 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2825 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2826 goal_nr_mmu_pages);
2827
2828 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2829 }
2830
2831 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2832
2833 write_unlock(&kvm->mmu_lock);
2834 }
2835
__kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool always_retry)2836 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2837 bool always_retry)
2838 {
2839 struct kvm *kvm = vcpu->kvm;
2840 LIST_HEAD(invalid_list);
2841 struct kvm_mmu_page *sp;
2842 gpa_t gpa = cr2_or_gpa;
2843 bool r = false;
2844
2845 /*
2846 * Bail early if there aren't any write-protected shadow pages to avoid
2847 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
2848 * by a third party. Reading indirect_shadow_pages without holding
2849 * mmu_lock is safe, as this is purely an optimization, i.e. a false
2850 * positive is benign, and a false negative will simply result in KVM
2851 * skipping the unprotect+retry path, which is also an optimization.
2852 */
2853 if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
2854 goto out;
2855
2856 if (!vcpu->arch.mmu->root_role.direct) {
2857 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
2858 if (gpa == INVALID_GPA)
2859 goto out;
2860 }
2861
2862 write_lock(&kvm->mmu_lock);
2863 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
2864 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2865
2866 /*
2867 * Snapshot the result before zapping, as zapping will remove all list
2868 * entries, i.e. checking the list later would yield a false negative.
2869 */
2870 r = !list_empty(&invalid_list);
2871 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2872 write_unlock(&kvm->mmu_lock);
2873
2874 out:
2875 if (r || always_retry) {
2876 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
2877 vcpu->arch.last_retry_addr = cr2_or_gpa;
2878 }
2879 return r;
2880 }
2881
kvm_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2882 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2883 {
2884 trace_kvm_mmu_unsync_page(sp);
2885 ++kvm->stat.mmu_unsync;
2886 sp->unsync = 1;
2887
2888 kvm_mmu_mark_parents_unsync(sp);
2889 }
2890
2891 /*
2892 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2893 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2894 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2895 * be write-protected.
2896 */
mmu_try_to_unsync_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,bool synchronizing,bool prefetch)2897 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2898 gfn_t gfn, bool synchronizing, bool prefetch)
2899 {
2900 struct kvm_mmu_page *sp;
2901 bool locked = false;
2902
2903 /*
2904 * Force write-protection if the page is being tracked. Note, the page
2905 * track machinery is used to write-protect upper-level shadow pages,
2906 * i.e. this guards the role.level == 4K assertion below!
2907 */
2908 if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2909 return -EPERM;
2910
2911 /*
2912 * The page is not write-tracked, mark existing shadow pages unsync
2913 * unless KVM is synchronizing an unsync SP. In that case, KVM must
2914 * complete emulation of the guest TLB flush before allowing shadow
2915 * pages to become unsync (writable by the guest).
2916 */
2917 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2918 if (synchronizing)
2919 return -EPERM;
2920
2921 if (sp->unsync)
2922 continue;
2923
2924 if (prefetch)
2925 return -EEXIST;
2926
2927 /*
2928 * TDP MMU page faults require an additional spinlock as they
2929 * run with mmu_lock held for read, not write, and the unsync
2930 * logic is not thread safe. Take the spinklock regardless of
2931 * the MMU type to avoid extra conditionals/parameters, there's
2932 * no meaningful penalty if mmu_lock is held for write.
2933 */
2934 if (!locked) {
2935 locked = true;
2936 spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2937
2938 /*
2939 * Recheck after taking the spinlock, a different vCPU
2940 * may have since marked the page unsync. A false
2941 * negative on the unprotected check above is not
2942 * possible as clearing sp->unsync _must_ hold mmu_lock
2943 * for write, i.e. unsync cannot transition from 1->0
2944 * while this CPU holds mmu_lock for read (or write).
2945 */
2946 if (READ_ONCE(sp->unsync))
2947 continue;
2948 }
2949
2950 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2951 kvm_unsync_page(kvm, sp);
2952 }
2953 if (locked)
2954 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2955
2956 /*
2957 * We need to ensure that the marking of unsync pages is visible
2958 * before the SPTE is updated to allow writes because
2959 * kvm_mmu_sync_roots() checks the unsync flags without holding
2960 * the MMU lock and so can race with this. If the SPTE was updated
2961 * before the page had been marked as unsync-ed, something like the
2962 * following could happen:
2963 *
2964 * CPU 1 CPU 2
2965 * ---------------------------------------------------------------------
2966 * 1.2 Host updates SPTE
2967 * to be writable
2968 * 2.1 Guest writes a GPTE for GVA X.
2969 * (GPTE being in the guest page table shadowed
2970 * by the SP from CPU 1.)
2971 * This reads SPTE during the page table walk.
2972 * Since SPTE.W is read as 1, there is no
2973 * fault.
2974 *
2975 * 2.2 Guest issues TLB flush.
2976 * That causes a VM Exit.
2977 *
2978 * 2.3 Walking of unsync pages sees sp->unsync is
2979 * false and skips the page.
2980 *
2981 * 2.4 Guest accesses GVA X.
2982 * Since the mapping in the SP was not updated,
2983 * so the old mapping for GVA X incorrectly
2984 * gets used.
2985 * 1.1 Host marks SP
2986 * as unsync
2987 * (sp->unsync = true)
2988 *
2989 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2990 * the situation in 2.4 does not arise. It pairs with the read barrier
2991 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2992 */
2993 smp_wmb();
2994
2995 return 0;
2996 }
2997
mmu_set_spte(struct kvm_vcpu * vcpu,struct kvm_memory_slot * slot,u64 * sptep,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,struct kvm_page_fault * fault)2998 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2999 u64 *sptep, unsigned int pte_access, gfn_t gfn,
3000 kvm_pfn_t pfn, struct kvm_page_fault *fault)
3001 {
3002 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
3003 int level = sp->role.level;
3004 int was_rmapped = 0;
3005 int ret = RET_PF_FIXED;
3006 bool flush = false;
3007 bool wrprot;
3008 u64 spte;
3009
3010 /* Prefetching always gets a writable pfn. */
3011 bool host_writable = !fault || fault->map_writable;
3012 bool prefetch = !fault || fault->prefetch;
3013 bool write_fault = fault && fault->write;
3014
3015 if (unlikely(is_noslot_pfn(pfn))) {
3016 vcpu->stat.pf_mmio_spte_created++;
3017 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
3018 return RET_PF_EMULATE;
3019 }
3020
3021 if (is_shadow_present_pte(*sptep)) {
3022 if (prefetch)
3023 return RET_PF_SPURIOUS;
3024
3025 /*
3026 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3027 * the parent of the now unreachable PTE.
3028 */
3029 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3030 struct kvm_mmu_page *child;
3031 u64 pte = *sptep;
3032
3033 child = spte_to_child_sp(pte);
3034 drop_parent_pte(vcpu->kvm, child, sptep);
3035 flush = true;
3036 } else if (pfn != spte_to_pfn(*sptep)) {
3037 drop_spte(vcpu->kvm, sptep);
3038 flush = true;
3039 } else
3040 was_rmapped = 1;
3041 }
3042
3043 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
3044 false, host_writable, &spte);
3045
3046 if (*sptep == spte) {
3047 ret = RET_PF_SPURIOUS;
3048 } else {
3049 flush |= mmu_spte_update(sptep, spte);
3050 trace_kvm_mmu_set_spte(level, gfn, sptep);
3051 }
3052
3053 if (wrprot && write_fault)
3054 ret = RET_PF_WRITE_PROTECTED;
3055
3056 if (flush)
3057 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
3058
3059 if (!was_rmapped) {
3060 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
3061 rmap_add(vcpu, slot, sptep, gfn, pte_access);
3062 } else {
3063 /* Already rmapped but the pte_access bits may have changed. */
3064 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
3065 }
3066
3067 return ret;
3068 }
3069
kvm_mmu_prefetch_sptes(struct kvm_vcpu * vcpu,gfn_t gfn,u64 * sptep,int nr_pages,unsigned int access)3070 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep,
3071 int nr_pages, unsigned int access)
3072 {
3073 struct page *pages[PTE_PREFETCH_NUM];
3074 struct kvm_memory_slot *slot;
3075 int i;
3076
3077 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM))
3078 return false;
3079
3080 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3081 if (!slot)
3082 return false;
3083
3084 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages);
3085 if (nr_pages <= 0)
3086 return false;
3087
3088 for (i = 0; i < nr_pages; i++, gfn++, sptep++) {
3089 mmu_set_spte(vcpu, slot, sptep, access, gfn,
3090 page_to_pfn(pages[i]), NULL);
3091
3092 /*
3093 * KVM always prefetches writable pages from the primary MMU,
3094 * and KVM can make its SPTE writable in the fast page handler,
3095 * without notifying the primary MMU. Mark pages/folios dirty
3096 * now to ensure file data is written back if it ends up being
3097 * written by the guest. Because KVM's prefetching GUPs
3098 * writable PTEs, the probability of unnecessary writeback is
3099 * extremely low.
3100 */
3101 kvm_release_page_dirty(pages[i]);
3102 }
3103
3104 return true;
3105 }
3106
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)3107 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3108 struct kvm_mmu_page *sp,
3109 u64 *start, u64 *end)
3110 {
3111 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
3112 unsigned int access = sp->role.access;
3113
3114 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access);
3115 }
3116
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)3117 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3118 struct kvm_mmu_page *sp, u64 *sptep)
3119 {
3120 u64 *spte, *start = NULL;
3121 int i;
3122
3123 WARN_ON_ONCE(!sp->role.direct);
3124
3125 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3126 spte = sp->spt + i;
3127
3128 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3129 if (is_shadow_present_pte(*spte) || spte == sptep) {
3130 if (!start)
3131 continue;
3132 if (!direct_pte_prefetch_many(vcpu, sp, start, spte))
3133 return;
3134
3135 start = NULL;
3136 } else if (!start)
3137 start = spte;
3138 }
3139 if (start)
3140 direct_pte_prefetch_many(vcpu, sp, start, spte);
3141 }
3142
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)3143 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3144 {
3145 struct kvm_mmu_page *sp;
3146
3147 sp = sptep_to_sp(sptep);
3148
3149 /*
3150 * Without accessed bits, there's no way to distinguish between
3151 * actually accessed translations and prefetched, so disable pte
3152 * prefetch if accessed bits aren't available.
3153 */
3154 if (sp_ad_disabled(sp))
3155 return;
3156
3157 if (sp->role.level > PG_LEVEL_4K)
3158 return;
3159
3160 /*
3161 * If addresses are being invalidated, skip prefetching to avoid
3162 * accidentally prefetching those addresses.
3163 */
3164 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3165 return;
3166
3167 __direct_pte_prefetch(vcpu, sp, sptep);
3168 }
3169
3170 /*
3171 * Lookup the mapping level for @gfn in the current mm.
3172 *
3173 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
3174 * consumer to be tied into KVM's handlers for MMU notifier events!
3175 *
3176 * There are several ways to safely use this helper:
3177 *
3178 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3179 * consuming it. In this case, mmu_lock doesn't need to be held during the
3180 * lookup, but it does need to be held while checking the MMU notifier.
3181 *
3182 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3183 * event for the hva. This can be done by explicit checking the MMU notifier
3184 * or by ensuring that KVM already has a valid mapping that covers the hva.
3185 *
3186 * - Do not use the result to install new mappings, e.g. use the host mapping
3187 * level only to decide whether or not to zap an entry. In this case, it's
3188 * not required to hold mmu_lock (though it's highly likely the caller will
3189 * want to hold mmu_lock anyways, e.g. to modify SPTEs).
3190 *
3191 * Note! The lookup can still race with modifications to host page tables, but
3192 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3193 * race with the primary MMU occurs.
3194 */
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,const struct kvm_memory_slot * slot)3195 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3196 const struct kvm_memory_slot *slot)
3197 {
3198 int level = PG_LEVEL_4K;
3199 unsigned long hva;
3200 unsigned long flags;
3201 pgd_t pgd;
3202 p4d_t p4d;
3203 pud_t pud;
3204 pmd_t pmd;
3205
3206 /*
3207 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3208 * is not solely for performance, it's also necessary to avoid the
3209 * "writable" check in __gfn_to_hva_many(), which will always fail on
3210 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3211 * page fault steps have already verified the guest isn't writing a
3212 * read-only memslot.
3213 */
3214 hva = __gfn_to_hva_memslot(slot, gfn);
3215
3216 /*
3217 * Disable IRQs to prevent concurrent tear down of host page tables,
3218 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3219 * the original page table.
3220 */
3221 local_irq_save(flags);
3222
3223 /*
3224 * Read each entry once. As above, a non-leaf entry can be promoted to
3225 * a huge page _during_ this walk. Re-reading the entry could send the
3226 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3227 * value) and then p*d_offset() walks into the target huge page instead
3228 * of the old page table (sees the new value).
3229 */
3230 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3231 if (pgd_none(pgd))
3232 goto out;
3233
3234 p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3235 if (p4d_none(p4d) || !p4d_present(p4d))
3236 goto out;
3237
3238 pud = READ_ONCE(*pud_offset(&p4d, hva));
3239 if (pud_none(pud) || !pud_present(pud))
3240 goto out;
3241
3242 if (pud_leaf(pud)) {
3243 level = PG_LEVEL_1G;
3244 goto out;
3245 }
3246
3247 pmd = READ_ONCE(*pmd_offset(&pud, hva));
3248 if (pmd_none(pmd) || !pmd_present(pmd))
3249 goto out;
3250
3251 if (pmd_leaf(pmd))
3252 level = PG_LEVEL_2M;
3253
3254 out:
3255 local_irq_restore(flags);
3256 return level;
3257 }
3258
__kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,int max_level,bool is_private)3259 static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3260 const struct kvm_memory_slot *slot,
3261 gfn_t gfn, int max_level, bool is_private)
3262 {
3263 struct kvm_lpage_info *linfo;
3264 int host_level;
3265
3266 max_level = min(max_level, max_huge_page_level);
3267 for ( ; max_level > PG_LEVEL_4K; max_level--) {
3268 linfo = lpage_info_slot(gfn, slot, max_level);
3269 if (!linfo->disallow_lpage)
3270 break;
3271 }
3272
3273 if (is_private)
3274 return max_level;
3275
3276 if (max_level == PG_LEVEL_4K)
3277 return PG_LEVEL_4K;
3278
3279 host_level = host_pfn_mapping_level(kvm, gfn, slot);
3280 return min(host_level, max_level);
3281 }
3282
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn)3283 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3284 const struct kvm_memory_slot *slot, gfn_t gfn)
3285 {
3286 bool is_private = kvm_slot_can_be_private(slot) &&
3287 kvm_mem_is_private(kvm, gfn);
3288
3289 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private);
3290 }
3291
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3292 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3293 {
3294 struct kvm_memory_slot *slot = fault->slot;
3295 kvm_pfn_t mask;
3296
3297 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3298
3299 if (unlikely(fault->max_level == PG_LEVEL_4K))
3300 return;
3301
3302 if (is_error_noslot_pfn(fault->pfn))
3303 return;
3304
3305 if (kvm_slot_dirty_track_enabled(slot))
3306 return;
3307
3308 /*
3309 * Enforce the iTLB multihit workaround after capturing the requested
3310 * level, which will be used to do precise, accurate accounting.
3311 */
3312 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3313 fault->gfn, fault->max_level,
3314 fault->is_private);
3315 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3316 return;
3317
3318 /*
3319 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3320 * the pmd can't be split from under us.
3321 */
3322 fault->goal_level = fault->req_level;
3323 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3324 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3325 fault->pfn &= ~mask;
3326 }
3327
disallowed_hugepage_adjust(struct kvm_page_fault * fault,u64 spte,int cur_level)3328 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3329 {
3330 if (cur_level > PG_LEVEL_4K &&
3331 cur_level == fault->goal_level &&
3332 is_shadow_present_pte(spte) &&
3333 !is_large_pte(spte) &&
3334 spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3335 /*
3336 * A small SPTE exists for this pfn, but FNAME(fetch),
3337 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3338 * large PTE instead: just force them to go down another level,
3339 * patching back for them into pfn the next 9 bits of the
3340 * address.
3341 */
3342 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3343 KVM_PAGES_PER_HPAGE(cur_level - 1);
3344 fault->pfn |= fault->gfn & page_mask;
3345 fault->goal_level--;
3346 }
3347 }
3348
direct_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3349 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3350 {
3351 struct kvm_shadow_walk_iterator it;
3352 struct kvm_mmu_page *sp;
3353 int ret;
3354 gfn_t base_gfn = fault->gfn;
3355
3356 kvm_mmu_hugepage_adjust(vcpu, fault);
3357
3358 trace_kvm_mmu_spte_requested(fault);
3359 for_each_shadow_entry(vcpu, fault->addr, it) {
3360 /*
3361 * We cannot overwrite existing page tables with an NX
3362 * large page, as the leaf could be executable.
3363 */
3364 if (fault->nx_huge_page_workaround_enabled)
3365 disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3366
3367 base_gfn = gfn_round_for_level(fault->gfn, it.level);
3368 if (it.level == fault->goal_level)
3369 break;
3370
3371 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3372 if (sp == ERR_PTR(-EEXIST))
3373 continue;
3374
3375 link_shadow_page(vcpu, it.sptep, sp);
3376 if (fault->huge_page_disallowed)
3377 account_nx_huge_page(vcpu->kvm, sp,
3378 fault->req_level >= it.level);
3379 }
3380
3381 if (WARN_ON_ONCE(it.level != fault->goal_level))
3382 return -EFAULT;
3383
3384 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3385 base_gfn, fault->pfn, fault);
3386 if (ret == RET_PF_SPURIOUS)
3387 return ret;
3388
3389 direct_pte_prefetch(vcpu, it.sptep);
3390 return ret;
3391 }
3392
kvm_send_hwpoison_signal(struct kvm_memory_slot * slot,gfn_t gfn)3393 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3394 {
3395 unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3396
3397 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3398 }
3399
kvm_handle_error_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3400 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3401 {
3402 if (is_sigpending_pfn(fault->pfn)) {
3403 kvm_handle_signal_exit(vcpu);
3404 return -EINTR;
3405 }
3406
3407 /*
3408 * Do not cache the mmio info caused by writing the readonly gfn
3409 * into the spte otherwise read access on readonly gfn also can
3410 * caused mmio page fault and treat it as mmio access.
3411 */
3412 if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3413 return RET_PF_EMULATE;
3414
3415 if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3416 kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3417 return RET_PF_RETRY;
3418 }
3419
3420 return -EFAULT;
3421 }
3422
kvm_handle_noslot_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)3423 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3424 struct kvm_page_fault *fault,
3425 unsigned int access)
3426 {
3427 gva_t gva = fault->is_tdp ? 0 : fault->addr;
3428
3429 if (fault->is_private) {
3430 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
3431 return -EFAULT;
3432 }
3433
3434 vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3435 access & shadow_mmio_access_mask);
3436
3437 fault->slot = NULL;
3438 fault->pfn = KVM_PFN_NOSLOT;
3439 fault->map_writable = false;
3440
3441 /*
3442 * If MMIO caching is disabled, emulate immediately without
3443 * touching the shadow page tables as attempting to install an
3444 * MMIO SPTE will just be an expensive nop.
3445 */
3446 if (unlikely(!enable_mmio_caching))
3447 return RET_PF_EMULATE;
3448
3449 /*
3450 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3451 * any guest that generates such gfns is running nested and is being
3452 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3453 * only if L1's MAXPHYADDR is inaccurate with respect to the
3454 * hardware's).
3455 */
3456 if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3457 return RET_PF_EMULATE;
3458
3459 return RET_PF_CONTINUE;
3460 }
3461
page_fault_can_be_fast(struct kvm * kvm,struct kvm_page_fault * fault)3462 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault)
3463 {
3464 /*
3465 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3466 * reach the common page fault handler if the SPTE has an invalid MMIO
3467 * generation number. Refreshing the MMIO generation needs to go down
3468 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
3469 */
3470 if (fault->rsvd)
3471 return false;
3472
3473 /*
3474 * For hardware-protected VMs, certain conditions like attempting to
3475 * perform a write to a page which is not in the state that the guest
3476 * expects it to be in can result in a nested/extended #PF. In this
3477 * case, the below code might misconstrue this situation as being the
3478 * result of a write-protected access, and treat it as a spurious case
3479 * rather than taking any action to satisfy the real source of the #PF
3480 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the
3481 * guest spinning on a #PF indefinitely, so don't attempt the fast path
3482 * in this case.
3483 *
3484 * Note that the kvm_mem_is_private() check might race with an
3485 * attribute update, but this will either result in the guest spinning
3486 * on RET_PF_SPURIOUS until the update completes, or an actual spurious
3487 * case might go down the slow path. Either case will resolve itself.
3488 */
3489 if (kvm->arch.has_private_mem &&
3490 fault->is_private != kvm_mem_is_private(kvm, fault->gfn))
3491 return false;
3492
3493 /*
3494 * #PF can be fast if:
3495 *
3496 * 1. The shadow page table entry is not present and A/D bits are
3497 * disabled _by KVM_, which could mean that the fault is potentially
3498 * caused by access tracking (if enabled). If A/D bits are enabled
3499 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3500 * bits for L2 and employ access tracking, but the fast page fault
3501 * mechanism only supports direct MMUs.
3502 * 2. The shadow page table entry is present, the access is a write,
3503 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3504 * the fault was caused by a write-protection violation. If the
3505 * SPTE is MMU-writable (determined later), the fault can be fixed
3506 * by setting the Writable bit, which can be done out of mmu_lock.
3507 */
3508 if (!fault->present)
3509 return !kvm_ad_enabled;
3510
3511 /*
3512 * Note, instruction fetches and writes are mutually exclusive, ignore
3513 * the "exec" flag.
3514 */
3515 return fault->write;
3516 }
3517
3518 /*
3519 * Returns true if the SPTE was fixed successfully. Otherwise,
3520 * someone else modified the SPTE from its original value.
3521 */
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,u64 * sptep,u64 old_spte,u64 new_spte)3522 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3523 struct kvm_page_fault *fault,
3524 u64 *sptep, u64 old_spte, u64 new_spte)
3525 {
3526 /*
3527 * Theoretically we could also set dirty bit (and flush TLB) here in
3528 * order to eliminate unnecessary PML logging. See comments in
3529 * set_spte. But fast_page_fault is very unlikely to happen with PML
3530 * enabled, so we do not do this. This might result in the same GPA
3531 * to be logged in PML buffer again when the write really happens, and
3532 * eventually to be called by mark_page_dirty twice. But it's also no
3533 * harm. This also avoids the TLB flush needed after setting dirty bit
3534 * so non-PML cases won't be impacted.
3535 *
3536 * Compare with make_spte() where instead shadow_dirty_mask is set.
3537 */
3538 if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3539 return false;
3540
3541 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3542 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3543
3544 return true;
3545 }
3546
3547 /*
3548 * Returns the last level spte pointer of the shadow page walk for the given
3549 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3550 * walk could be performed, returns NULL and *spte does not contain valid data.
3551 *
3552 * Contract:
3553 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3554 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3555 */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3556 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3557 {
3558 struct kvm_shadow_walk_iterator iterator;
3559 u64 old_spte;
3560 u64 *sptep = NULL;
3561
3562 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3563 sptep = iterator.sptep;
3564 *spte = old_spte;
3565 }
3566
3567 return sptep;
3568 }
3569
3570 /*
3571 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3572 */
fast_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3573 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3574 {
3575 struct kvm_mmu_page *sp;
3576 int ret = RET_PF_INVALID;
3577 u64 spte;
3578 u64 *sptep;
3579 uint retry_count = 0;
3580
3581 if (!page_fault_can_be_fast(vcpu->kvm, fault))
3582 return ret;
3583
3584 walk_shadow_page_lockless_begin(vcpu);
3585
3586 do {
3587 u64 new_spte;
3588
3589 if (tdp_mmu_enabled)
3590 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte);
3591 else
3592 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3593
3594 /*
3595 * It's entirely possible for the mapping to have been zapped
3596 * by a different task, but the root page should always be
3597 * available as the vCPU holds a reference to its root(s).
3598 */
3599 if (WARN_ON_ONCE(!sptep))
3600 spte = FROZEN_SPTE;
3601
3602 if (!is_shadow_present_pte(spte))
3603 break;
3604
3605 sp = sptep_to_sp(sptep);
3606 if (!is_last_spte(spte, sp->role.level))
3607 break;
3608
3609 /*
3610 * Check whether the memory access that caused the fault would
3611 * still cause it if it were to be performed right now. If not,
3612 * then this is a spurious fault caused by TLB lazily flushed,
3613 * or some other CPU has already fixed the PTE after the
3614 * current CPU took the fault.
3615 *
3616 * Need not check the access of upper level table entries since
3617 * they are always ACC_ALL.
3618 */
3619 if (is_access_allowed(fault, spte)) {
3620 ret = RET_PF_SPURIOUS;
3621 break;
3622 }
3623
3624 new_spte = spte;
3625
3626 /*
3627 * KVM only supports fixing page faults outside of MMU lock for
3628 * direct MMUs, nested MMUs are always indirect, and KVM always
3629 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
3630 * enabled, the SPTE can't be an access-tracked SPTE.
3631 */
3632 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte))
3633 new_spte = restore_acc_track_spte(new_spte) |
3634 shadow_accessed_mask;
3635
3636 /*
3637 * To keep things simple, only SPTEs that are MMU-writable can
3638 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3639 * that were write-protected for dirty-logging or access
3640 * tracking are handled here. Don't bother checking if the
3641 * SPTE is writable to prioritize running with A/D bits enabled.
3642 * The is_access_allowed() check above handles the common case
3643 * of the fault being spurious, and the SPTE is known to be
3644 * shadow-present, i.e. except for access tracking restoration
3645 * making the new SPTE writable, the check is wasteful.
3646 */
3647 if (fault->write && is_mmu_writable_spte(spte)) {
3648 new_spte |= PT_WRITABLE_MASK;
3649
3650 /*
3651 * Do not fix write-permission on the large spte when
3652 * dirty logging is enabled. Since we only dirty the
3653 * first page into the dirty-bitmap in
3654 * fast_pf_fix_direct_spte(), other pages are missed
3655 * if its slot has dirty logging enabled.
3656 *
3657 * Instead, we let the slow page fault path create a
3658 * normal spte to fix the access.
3659 */
3660 if (sp->role.level > PG_LEVEL_4K &&
3661 kvm_slot_dirty_track_enabled(fault->slot))
3662 break;
3663 }
3664
3665 /* Verify that the fault can be handled in the fast path */
3666 if (new_spte == spte ||
3667 !is_access_allowed(fault, new_spte))
3668 break;
3669
3670 /*
3671 * Currently, fast page fault only works for direct mapping
3672 * since the gfn is not stable for indirect shadow page. See
3673 * Documentation/virt/kvm/locking.rst to get more detail.
3674 */
3675 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3676 ret = RET_PF_FIXED;
3677 break;
3678 }
3679
3680 if (++retry_count > 4) {
3681 pr_warn_once("Fast #PF retrying more than 4 times.\n");
3682 break;
3683 }
3684
3685 } while (true);
3686
3687 trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3688 walk_shadow_page_lockless_end(vcpu);
3689
3690 if (ret != RET_PF_INVALID)
3691 vcpu->stat.pf_fast++;
3692
3693 return ret;
3694 }
3695
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3696 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3697 struct list_head *invalid_list)
3698 {
3699 struct kvm_mmu_page *sp;
3700
3701 if (!VALID_PAGE(*root_hpa))
3702 return;
3703
3704 sp = root_to_sp(*root_hpa);
3705 if (WARN_ON_ONCE(!sp))
3706 return;
3707
3708 if (is_tdp_mmu_page(sp)) {
3709 lockdep_assert_held_read(&kvm->mmu_lock);
3710 kvm_tdp_mmu_put_root(kvm, sp);
3711 } else {
3712 lockdep_assert_held_write(&kvm->mmu_lock);
3713 if (!--sp->root_count && sp->role.invalid)
3714 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3715 }
3716
3717 *root_hpa = INVALID_PAGE;
3718 }
3719
3720 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm * kvm,struct kvm_mmu * mmu,ulong roots_to_free)3721 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3722 ulong roots_to_free)
3723 {
3724 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3725 int i;
3726 LIST_HEAD(invalid_list);
3727 bool free_active_root;
3728
3729 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3730
3731 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3732
3733 /* Before acquiring the MMU lock, see if we need to do any real work. */
3734 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3735 && VALID_PAGE(mmu->root.hpa);
3736
3737 if (!free_active_root) {
3738 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3739 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3740 VALID_PAGE(mmu->prev_roots[i].hpa))
3741 break;
3742
3743 if (i == KVM_MMU_NUM_PREV_ROOTS)
3744 return;
3745 }
3746
3747 if (is_tdp_mmu)
3748 read_lock(&kvm->mmu_lock);
3749 else
3750 write_lock(&kvm->mmu_lock);
3751
3752 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3753 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3754 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3755 &invalid_list);
3756
3757 if (free_active_root) {
3758 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3759 /* Nothing to cleanup for dummy roots. */
3760 } else if (root_to_sp(mmu->root.hpa)) {
3761 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3762 } else if (mmu->pae_root) {
3763 for (i = 0; i < 4; ++i) {
3764 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3765 continue;
3766
3767 mmu_free_root_page(kvm, &mmu->pae_root[i],
3768 &invalid_list);
3769 mmu->pae_root[i] = INVALID_PAE_ROOT;
3770 }
3771 }
3772 mmu->root.hpa = INVALID_PAGE;
3773 mmu->root.pgd = 0;
3774 }
3775
3776 if (is_tdp_mmu) {
3777 read_unlock(&kvm->mmu_lock);
3778 WARN_ON_ONCE(!list_empty(&invalid_list));
3779 } else {
3780 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3781 write_unlock(&kvm->mmu_lock);
3782 }
3783 }
3784 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3785
kvm_mmu_free_guest_mode_roots(struct kvm * kvm,struct kvm_mmu * mmu)3786 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3787 {
3788 unsigned long roots_to_free = 0;
3789 struct kvm_mmu_page *sp;
3790 hpa_t root_hpa;
3791 int i;
3792
3793 /*
3794 * This should not be called while L2 is active, L2 can't invalidate
3795 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3796 */
3797 WARN_ON_ONCE(mmu->root_role.guest_mode);
3798
3799 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3800 root_hpa = mmu->prev_roots[i].hpa;
3801 if (!VALID_PAGE(root_hpa))
3802 continue;
3803
3804 sp = root_to_sp(root_hpa);
3805 if (!sp || sp->role.guest_mode)
3806 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3807 }
3808
3809 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3810 }
3811 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3812
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,int quadrant,u8 level)3813 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3814 u8 level)
3815 {
3816 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3817 struct kvm_mmu_page *sp;
3818
3819 role.level = level;
3820 role.quadrant = quadrant;
3821
3822 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3823 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3824
3825 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3826 ++sp->root_count;
3827
3828 return __pa(sp->spt);
3829 }
3830
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3831 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3832 {
3833 struct kvm_mmu *mmu = vcpu->arch.mmu;
3834 u8 shadow_root_level = mmu->root_role.level;
3835 hpa_t root;
3836 unsigned i;
3837 int r;
3838
3839 if (tdp_mmu_enabled) {
3840 if (kvm_has_mirrored_tdp(vcpu->kvm) &&
3841 !VALID_PAGE(mmu->mirror_root_hpa))
3842 kvm_tdp_mmu_alloc_root(vcpu, true);
3843 kvm_tdp_mmu_alloc_root(vcpu, false);
3844 return 0;
3845 }
3846
3847 write_lock(&vcpu->kvm->mmu_lock);
3848 r = make_mmu_pages_available(vcpu);
3849 if (r < 0)
3850 goto out_unlock;
3851
3852 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3853 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3854 mmu->root.hpa = root;
3855 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3856 if (WARN_ON_ONCE(!mmu->pae_root)) {
3857 r = -EIO;
3858 goto out_unlock;
3859 }
3860
3861 for (i = 0; i < 4; ++i) {
3862 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3863
3864 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3865 PT32_ROOT_LEVEL);
3866 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3867 shadow_me_value;
3868 }
3869 mmu->root.hpa = __pa(mmu->pae_root);
3870 } else {
3871 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3872 r = -EIO;
3873 goto out_unlock;
3874 }
3875
3876 /* root.pgd is ignored for direct MMUs. */
3877 mmu->root.pgd = 0;
3878 out_unlock:
3879 write_unlock(&vcpu->kvm->mmu_lock);
3880 return r;
3881 }
3882
mmu_first_shadow_root_alloc(struct kvm * kvm)3883 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3884 {
3885 struct kvm_memslots *slots;
3886 struct kvm_memory_slot *slot;
3887 int r = 0, i, bkt;
3888
3889 /*
3890 * Check if this is the first shadow root being allocated before
3891 * taking the lock.
3892 */
3893 if (kvm_shadow_root_allocated(kvm))
3894 return 0;
3895
3896 mutex_lock(&kvm->slots_arch_lock);
3897
3898 /* Recheck, under the lock, whether this is the first shadow root. */
3899 if (kvm_shadow_root_allocated(kvm))
3900 goto out_unlock;
3901
3902 /*
3903 * Check if anything actually needs to be allocated, e.g. all metadata
3904 * will be allocated upfront if TDP is disabled.
3905 */
3906 if (kvm_memslots_have_rmaps(kvm) &&
3907 kvm_page_track_write_tracking_enabled(kvm))
3908 goto out_success;
3909
3910 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3911 slots = __kvm_memslots(kvm, i);
3912 kvm_for_each_memslot(slot, bkt, slots) {
3913 /*
3914 * Both of these functions are no-ops if the target is
3915 * already allocated, so unconditionally calling both
3916 * is safe. Intentionally do NOT free allocations on
3917 * failure to avoid having to track which allocations
3918 * were made now versus when the memslot was created.
3919 * The metadata is guaranteed to be freed when the slot
3920 * is freed, and will be kept/used if userspace retries
3921 * KVM_RUN instead of killing the VM.
3922 */
3923 r = memslot_rmap_alloc(slot, slot->npages);
3924 if (r)
3925 goto out_unlock;
3926 r = kvm_page_track_write_tracking_alloc(slot);
3927 if (r)
3928 goto out_unlock;
3929 }
3930 }
3931
3932 /*
3933 * Ensure that shadow_root_allocated becomes true strictly after
3934 * all the related pointers are set.
3935 */
3936 out_success:
3937 smp_store_release(&kvm->arch.shadow_root_allocated, true);
3938
3939 out_unlock:
3940 mutex_unlock(&kvm->slots_arch_lock);
3941 return r;
3942 }
3943
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3944 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3945 {
3946 struct kvm_mmu *mmu = vcpu->arch.mmu;
3947 u64 pdptrs[4], pm_mask;
3948 gfn_t root_gfn, root_pgd;
3949 int quadrant, i, r;
3950 hpa_t root;
3951
3952 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3953 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
3954
3955 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3956 mmu->root.hpa = kvm_mmu_get_dummy_root();
3957 return 0;
3958 }
3959
3960 /*
3961 * On SVM, reading PDPTRs might access guest memory, which might fault
3962 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3963 */
3964 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3965 for (i = 0; i < 4; ++i) {
3966 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3967 if (!(pdptrs[i] & PT_PRESENT_MASK))
3968 continue;
3969
3970 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3971 pdptrs[i] = 0;
3972 }
3973 }
3974
3975 r = mmu_first_shadow_root_alloc(vcpu->kvm);
3976 if (r)
3977 return r;
3978
3979 write_lock(&vcpu->kvm->mmu_lock);
3980 r = make_mmu_pages_available(vcpu);
3981 if (r < 0)
3982 goto out_unlock;
3983
3984 /*
3985 * Do we shadow a long mode page table? If so we need to
3986 * write-protect the guests page table root.
3987 */
3988 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3989 root = mmu_alloc_root(vcpu, root_gfn, 0,
3990 mmu->root_role.level);
3991 mmu->root.hpa = root;
3992 goto set_root_pgd;
3993 }
3994
3995 if (WARN_ON_ONCE(!mmu->pae_root)) {
3996 r = -EIO;
3997 goto out_unlock;
3998 }
3999
4000 /*
4001 * We shadow a 32 bit page table. This may be a legacy 2-level
4002 * or a PAE 3-level page table. In either case we need to be aware that
4003 * the shadow page table may be a PAE or a long mode page table.
4004 */
4005 pm_mask = PT_PRESENT_MASK | shadow_me_value;
4006 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
4007 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
4008
4009 if (WARN_ON_ONCE(!mmu->pml4_root)) {
4010 r = -EIO;
4011 goto out_unlock;
4012 }
4013 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
4014
4015 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
4016 if (WARN_ON_ONCE(!mmu->pml5_root)) {
4017 r = -EIO;
4018 goto out_unlock;
4019 }
4020 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
4021 }
4022 }
4023
4024 for (i = 0; i < 4; ++i) {
4025 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
4026
4027 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
4028 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
4029 mmu->pae_root[i] = INVALID_PAE_ROOT;
4030 continue;
4031 }
4032 root_gfn = pdptrs[i] >> PAGE_SHIFT;
4033 }
4034
4035 /*
4036 * If shadowing 32-bit non-PAE page tables, each PAE page
4037 * directory maps one quarter of the guest's non-PAE page
4038 * directory. Othwerise each PAE page direct shadows one guest
4039 * PAE page directory so that quadrant should be 0.
4040 */
4041 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
4042
4043 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
4044 mmu->pae_root[i] = root | pm_mask;
4045 }
4046
4047 if (mmu->root_role.level == PT64_ROOT_5LEVEL)
4048 mmu->root.hpa = __pa(mmu->pml5_root);
4049 else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
4050 mmu->root.hpa = __pa(mmu->pml4_root);
4051 else
4052 mmu->root.hpa = __pa(mmu->pae_root);
4053
4054 set_root_pgd:
4055 mmu->root.pgd = root_pgd;
4056 out_unlock:
4057 write_unlock(&vcpu->kvm->mmu_lock);
4058
4059 return r;
4060 }
4061
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)4062 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
4063 {
4064 struct kvm_mmu *mmu = vcpu->arch.mmu;
4065 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
4066 u64 *pml5_root = NULL;
4067 u64 *pml4_root = NULL;
4068 u64 *pae_root;
4069
4070 /*
4071 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
4072 * tables are allocated and initialized at root creation as there is no
4073 * equivalent level in the guest's NPT to shadow. Allocate the tables
4074 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
4075 */
4076 if (mmu->root_role.direct ||
4077 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
4078 mmu->root_role.level < PT64_ROOT_4LEVEL)
4079 return 0;
4080
4081 /*
4082 * NPT, the only paging mode that uses this horror, uses a fixed number
4083 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
4084 * all MMus are 5-level. Thus, this can safely require that pml5_root
4085 * is allocated if the other roots are valid and pml5 is needed, as any
4086 * prior MMU would also have required pml5.
4087 */
4088 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
4089 return 0;
4090
4091 /*
4092 * The special roots should always be allocated in concert. Yell and
4093 * bail if KVM ends up in a state where only one of the roots is valid.
4094 */
4095 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
4096 (need_pml5 && mmu->pml5_root)))
4097 return -EIO;
4098
4099 /*
4100 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
4101 * doesn't need to be decrypted.
4102 */
4103 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4104 if (!pae_root)
4105 return -ENOMEM;
4106
4107 #ifdef CONFIG_X86_64
4108 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4109 if (!pml4_root)
4110 goto err_pml4;
4111
4112 if (need_pml5) {
4113 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4114 if (!pml5_root)
4115 goto err_pml5;
4116 }
4117 #endif
4118
4119 mmu->pae_root = pae_root;
4120 mmu->pml4_root = pml4_root;
4121 mmu->pml5_root = pml5_root;
4122
4123 return 0;
4124
4125 #ifdef CONFIG_X86_64
4126 err_pml5:
4127 free_page((unsigned long)pml4_root);
4128 err_pml4:
4129 free_page((unsigned long)pae_root);
4130 return -ENOMEM;
4131 #endif
4132 }
4133
is_unsync_root(hpa_t root)4134 static bool is_unsync_root(hpa_t root)
4135 {
4136 struct kvm_mmu_page *sp;
4137
4138 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
4139 return false;
4140
4141 /*
4142 * The read barrier orders the CPU's read of SPTE.W during the page table
4143 * walk before the reads of sp->unsync/sp->unsync_children here.
4144 *
4145 * Even if another CPU was marking the SP as unsync-ed simultaneously,
4146 * any guest page table changes are not guaranteed to be visible anyway
4147 * until this VCPU issues a TLB flush strictly after those changes are
4148 * made. We only need to ensure that the other CPU sets these flags
4149 * before any actual changes to the page tables are made. The comments
4150 * in mmu_try_to_unsync_pages() describe what could go wrong if this
4151 * requirement isn't satisfied.
4152 */
4153 smp_rmb();
4154 sp = root_to_sp(root);
4155
4156 /*
4157 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4158 * PDPTEs for a given PAE root need to be synchronized individually.
4159 */
4160 if (WARN_ON_ONCE(!sp))
4161 return false;
4162
4163 if (sp->unsync || sp->unsync_children)
4164 return true;
4165
4166 return false;
4167 }
4168
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)4169 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4170 {
4171 int i;
4172 struct kvm_mmu_page *sp;
4173
4174 if (vcpu->arch.mmu->root_role.direct)
4175 return;
4176
4177 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4178 return;
4179
4180 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4181
4182 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4183 hpa_t root = vcpu->arch.mmu->root.hpa;
4184
4185 if (!is_unsync_root(root))
4186 return;
4187
4188 sp = root_to_sp(root);
4189
4190 write_lock(&vcpu->kvm->mmu_lock);
4191 mmu_sync_children(vcpu, sp, true);
4192 write_unlock(&vcpu->kvm->mmu_lock);
4193 return;
4194 }
4195
4196 write_lock(&vcpu->kvm->mmu_lock);
4197
4198 for (i = 0; i < 4; ++i) {
4199 hpa_t root = vcpu->arch.mmu->pae_root[i];
4200
4201 if (IS_VALID_PAE_ROOT(root)) {
4202 sp = spte_to_child_sp(root);
4203 mmu_sync_children(vcpu, sp, true);
4204 }
4205 }
4206
4207 write_unlock(&vcpu->kvm->mmu_lock);
4208 }
4209
kvm_mmu_sync_prev_roots(struct kvm_vcpu * vcpu)4210 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4211 {
4212 unsigned long roots_to_free = 0;
4213 int i;
4214
4215 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4216 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4217 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4218
4219 /* sync prev_roots by simply freeing them */
4220 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4221 }
4222
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t vaddr,u64 access,struct x86_exception * exception)4223 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4224 gpa_t vaddr, u64 access,
4225 struct x86_exception *exception)
4226 {
4227 if (exception)
4228 exception->error_code = 0;
4229 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4230 }
4231
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)4232 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4233 {
4234 /*
4235 * A nested guest cannot use the MMIO cache if it is using nested
4236 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4237 */
4238 if (mmu_is_nested(vcpu))
4239 return false;
4240
4241 if (direct)
4242 return vcpu_match_mmio_gpa(vcpu, addr);
4243
4244 return vcpu_match_mmio_gva(vcpu, addr);
4245 }
4246
4247 /*
4248 * Return the level of the lowest level SPTE added to sptes.
4249 * That SPTE may be non-present.
4250 *
4251 * Must be called between walk_shadow_page_lockless_{begin,end}.
4252 */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4253 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4254 {
4255 struct kvm_shadow_walk_iterator iterator;
4256 int leaf = -1;
4257 u64 spte;
4258
4259 for (shadow_walk_init(&iterator, vcpu, addr),
4260 *root_level = iterator.level;
4261 shadow_walk_okay(&iterator);
4262 __shadow_walk_next(&iterator, spte)) {
4263 leaf = iterator.level;
4264 spte = mmu_spte_get_lockless(iterator.sptep);
4265
4266 sptes[leaf] = spte;
4267 }
4268
4269 return leaf;
4270 }
4271
get_sptes_lockless(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4272 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
4273 int *root_level)
4274 {
4275 int leaf;
4276
4277 walk_shadow_page_lockless_begin(vcpu);
4278
4279 if (is_tdp_mmu_active(vcpu))
4280 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
4281 else
4282 leaf = get_walk(vcpu, addr, sptes, root_level);
4283
4284 walk_shadow_page_lockless_end(vcpu);
4285 return leaf;
4286 }
4287
4288 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)4289 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4290 {
4291 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4292 struct rsvd_bits_validate *rsvd_check;
4293 int root, leaf, level;
4294 bool reserved = false;
4295
4296 leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
4297 if (unlikely(leaf < 0)) {
4298 *sptep = 0ull;
4299 return reserved;
4300 }
4301
4302 *sptep = sptes[leaf];
4303
4304 /*
4305 * Skip reserved bits checks on the terminal leaf if it's not a valid
4306 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
4307 * design, always have reserved bits set. The purpose of the checks is
4308 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4309 */
4310 if (!is_shadow_present_pte(sptes[leaf]))
4311 leaf++;
4312
4313 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4314
4315 for (level = root; level >= leaf; level--)
4316 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4317
4318 if (reserved) {
4319 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4320 __func__, addr);
4321 for (level = root; level >= leaf; level--)
4322 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4323 sptes[level], level,
4324 get_rsvd_bits(rsvd_check, sptes[level], level));
4325 }
4326
4327 return reserved;
4328 }
4329
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)4330 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4331 {
4332 u64 spte;
4333 bool reserved;
4334
4335 if (mmio_info_in_cache(vcpu, addr, direct))
4336 return RET_PF_EMULATE;
4337
4338 reserved = get_mmio_spte(vcpu, addr, &spte);
4339 if (WARN_ON_ONCE(reserved))
4340 return -EINVAL;
4341
4342 if (is_mmio_spte(vcpu->kvm, spte)) {
4343 gfn_t gfn = get_mmio_spte_gfn(spte);
4344 unsigned int access = get_mmio_spte_access(spte);
4345
4346 if (!check_mmio_spte(vcpu, spte))
4347 return RET_PF_INVALID;
4348
4349 if (direct)
4350 addr = 0;
4351
4352 trace_handle_mmio_page_fault(addr, gfn, access);
4353 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4354 return RET_PF_EMULATE;
4355 }
4356
4357 /*
4358 * If the page table is zapped by other cpus, let CPU fault again on
4359 * the address.
4360 */
4361 return RET_PF_RETRY;
4362 }
4363
page_fault_handle_page_track(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4364 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4365 struct kvm_page_fault *fault)
4366 {
4367 if (unlikely(fault->rsvd))
4368 return false;
4369
4370 if (!fault->present || !fault->write)
4371 return false;
4372
4373 /*
4374 * guest is writing the page which is write tracked which can
4375 * not be fixed by page fault handler.
4376 */
4377 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4378 return true;
4379
4380 return false;
4381 }
4382
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)4383 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4384 {
4385 struct kvm_shadow_walk_iterator iterator;
4386 u64 spte;
4387
4388 walk_shadow_page_lockless_begin(vcpu);
4389 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4390 clear_sp_write_flooding_count(iterator.sptep);
4391 walk_shadow_page_lockless_end(vcpu);
4392 }
4393
alloc_apf_token(struct kvm_vcpu * vcpu)4394 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4395 {
4396 /* make sure the token value is not 0 */
4397 u32 id = vcpu->arch.apf.id;
4398
4399 if (id << 12 == 0)
4400 vcpu->arch.apf.id = 1;
4401
4402 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4403 }
4404
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4405 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
4406 struct kvm_page_fault *fault)
4407 {
4408 struct kvm_arch_async_pf arch;
4409
4410 arch.token = alloc_apf_token(vcpu);
4411 arch.gfn = fault->gfn;
4412 arch.error_code = fault->error_code;
4413 arch.direct_map = vcpu->arch.mmu->root_role.direct;
4414 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4415
4416 return kvm_setup_async_pf(vcpu, fault->addr,
4417 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
4418 }
4419
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4420 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4421 {
4422 int r;
4423
4424 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
4425 return;
4426
4427 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4428 work->wakeup_all)
4429 return;
4430
4431 r = kvm_mmu_reload(vcpu);
4432 if (unlikely(r))
4433 return;
4434
4435 if (!vcpu->arch.mmu->root_role.direct &&
4436 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4437 return;
4438
4439 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code,
4440 true, NULL, NULL);
4441
4442 /*
4443 * Account fixed page faults, otherwise they'll never be counted, but
4444 * ignore stats for all other return times. Page-ready "faults" aren't
4445 * truly spurious and never trigger emulation
4446 */
4447 if (r == RET_PF_FIXED)
4448 vcpu->stat.pf_fixed++;
4449 }
4450
kvm_max_level_for_order(int order)4451 static inline u8 kvm_max_level_for_order(int order)
4452 {
4453 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4454
4455 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4456 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4457 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4458
4459 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4460 return PG_LEVEL_1G;
4461
4462 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4463 return PG_LEVEL_2M;
4464
4465 return PG_LEVEL_4K;
4466 }
4467
kvm_max_private_mapping_level(struct kvm * kvm,kvm_pfn_t pfn,u8 max_level,int gmem_order)4468 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn,
4469 u8 max_level, int gmem_order)
4470 {
4471 u8 req_max_level;
4472
4473 if (max_level == PG_LEVEL_4K)
4474 return PG_LEVEL_4K;
4475
4476 max_level = min(kvm_max_level_for_order(gmem_order), max_level);
4477 if (max_level == PG_LEVEL_4K)
4478 return PG_LEVEL_4K;
4479
4480 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn);
4481 if (req_max_level)
4482 max_level = min(max_level, req_max_level);
4483
4484 return max_level;
4485 }
4486
kvm_mmu_finish_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,int r)4487 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu,
4488 struct kvm_page_fault *fault, int r)
4489 {
4490 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page,
4491 r == RET_PF_RETRY, fault->map_writable);
4492 }
4493
kvm_mmu_faultin_pfn_private(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4494 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu,
4495 struct kvm_page_fault *fault)
4496 {
4497 int max_order, r;
4498
4499 if (!kvm_slot_can_be_private(fault->slot)) {
4500 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4501 return -EFAULT;
4502 }
4503
4504 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4505 &fault->refcounted_page, &max_order);
4506 if (r) {
4507 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4508 return r;
4509 }
4510
4511 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4512 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn,
4513 fault->max_level, max_order);
4514
4515 return RET_PF_CONTINUE;
4516 }
4517
__kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4518 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4519 struct kvm_page_fault *fault)
4520 {
4521 unsigned int foll = fault->write ? FOLL_WRITE : 0;
4522
4523 if (fault->is_private)
4524 return kvm_mmu_faultin_pfn_private(vcpu, fault);
4525
4526 foll |= FOLL_NOWAIT;
4527 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4528 &fault->map_writable, &fault->refcounted_page);
4529
4530 /*
4531 * If resolving the page failed because I/O is needed to fault-in the
4532 * page, then either set up an asynchronous #PF to do the I/O, or if
4533 * doing an async #PF isn't possible, retry with I/O allowed. All
4534 * other failures are terminal, i.e. retrying won't help.
4535 */
4536 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO)
4537 return RET_PF_CONTINUE;
4538
4539 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4540 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4541 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4542 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4543 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4544 return RET_PF_RETRY;
4545 } else if (kvm_arch_setup_async_pf(vcpu, fault)) {
4546 return RET_PF_RETRY;
4547 }
4548 }
4549
4550 /*
4551 * Allow gup to bail on pending non-fatal signals when it's also allowed
4552 * to wait for IO. Note, gup always bails if it is unable to quickly
4553 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4554 */
4555 foll |= FOLL_INTERRUPTIBLE;
4556 foll &= ~FOLL_NOWAIT;
4557 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4558 &fault->map_writable, &fault->refcounted_page);
4559
4560 return RET_PF_CONTINUE;
4561 }
4562
kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)4563 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4564 struct kvm_page_fault *fault, unsigned int access)
4565 {
4566 struct kvm_memory_slot *slot = fault->slot;
4567 struct kvm *kvm = vcpu->kvm;
4568 int ret;
4569
4570 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm))
4571 return -EFAULT;
4572
4573 /*
4574 * Note that the mmu_invalidate_seq also serves to detect a concurrent
4575 * change in attributes. is_page_fault_stale() will detect an
4576 * invalidation relate to fault->fn and resume the guest without
4577 * installing a mapping in the page tables.
4578 */
4579 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4580 smp_rmb();
4581
4582 /*
4583 * Now that we have a snapshot of mmu_invalidate_seq we can check for a
4584 * private vs. shared mismatch.
4585 */
4586 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) {
4587 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4588 return -EFAULT;
4589 }
4590
4591 if (unlikely(!slot))
4592 return kvm_handle_noslot_fault(vcpu, fault, access);
4593
4594 /*
4595 * Retry the page fault if the gfn hit a memslot that is being deleted
4596 * or moved. This ensures any existing SPTEs for the old memslot will
4597 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4598 */
4599 if (slot->flags & KVM_MEMSLOT_INVALID)
4600 return RET_PF_RETRY;
4601
4602 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
4603 /*
4604 * Don't map L1's APIC access page into L2, KVM doesn't support
4605 * using APICv/AVIC to accelerate L2 accesses to L1's APIC,
4606 * i.e. the access needs to be emulated. Emulating access to
4607 * L1's APIC is also correct if L1 is accelerating L2's own
4608 * virtual APIC, but for some reason L1 also maps _L1's_ APIC
4609 * into L2. Note, vcpu_is_mmio_gpa() always treats access to
4610 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM
4611 * uses different roots for L1 vs. L2, i.e. there is no danger
4612 * of breaking APICv/AVIC for L1.
4613 */
4614 if (is_guest_mode(vcpu))
4615 return kvm_handle_noslot_fault(vcpu, fault, access);
4616
4617 /*
4618 * If the APIC access page exists but is disabled, go directly
4619 * to emulation without caching the MMIO access or creating a
4620 * MMIO SPTE. That way the cache doesn't need to be purged
4621 * when the AVIC is re-enabled.
4622 */
4623 if (!kvm_apicv_activated(vcpu->kvm))
4624 return RET_PF_EMULATE;
4625 }
4626
4627 /*
4628 * Check for a relevant mmu_notifier invalidation event before getting
4629 * the pfn from the primary MMU, and before acquiring mmu_lock.
4630 *
4631 * For mmu_lock, if there is an in-progress invalidation and the kernel
4632 * allows preemption, the invalidation task may drop mmu_lock and yield
4633 * in response to mmu_lock being contended, which is *very* counter-
4634 * productive as this vCPU can't actually make forward progress until
4635 * the invalidation completes.
4636 *
4637 * Retrying now can also avoid unnessary lock contention in the primary
4638 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4639 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4640 * can cause the invalidation to take longer by holding locks that are
4641 * needed to complete the invalidation.
4642 *
4643 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4644 * will never yield mmu_lock in response to contention, as this vCPU is
4645 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4646 * to detect retry guarantees the worst case latency for the vCPU.
4647 */
4648 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn))
4649 return RET_PF_RETRY;
4650
4651 ret = __kvm_mmu_faultin_pfn(vcpu, fault);
4652 if (ret != RET_PF_CONTINUE)
4653 return ret;
4654
4655 if (unlikely(is_error_pfn(fault->pfn)))
4656 return kvm_handle_error_pfn(vcpu, fault);
4657
4658 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
4659 return kvm_handle_noslot_fault(vcpu, fault, access);
4660
4661 /*
4662 * Check again for a relevant mmu_notifier invalidation event purely to
4663 * avoid contending mmu_lock. Most invalidations will be detected by
4664 * the previous check, but checking is extremely cheap relative to the
4665 * overall cost of failing to detect the invalidation until after
4666 * mmu_lock is acquired.
4667 */
4668 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) {
4669 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
4670 return RET_PF_RETRY;
4671 }
4672
4673 return RET_PF_CONTINUE;
4674 }
4675
4676 /*
4677 * Returns true if the page fault is stale and needs to be retried, i.e. if the
4678 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4679 */
is_page_fault_stale(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4680 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4681 struct kvm_page_fault *fault)
4682 {
4683 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4684
4685 /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4686 if (sp && is_obsolete_sp(vcpu->kvm, sp))
4687 return true;
4688
4689 /*
4690 * Roots without an associated shadow page are considered invalid if
4691 * there is a pending request to free obsolete roots. The request is
4692 * only a hint that the current root _may_ be obsolete and needs to be
4693 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4694 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4695 * to reload even if no vCPU is actively using the root.
4696 */
4697 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4698 return true;
4699
4700 /*
4701 * Check for a relevant mmu_notifier invalidation event one last time
4702 * now that mmu_lock is held, as the "unsafe" checks performed without
4703 * holding mmu_lock can get false negatives.
4704 */
4705 return fault->slot &&
4706 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4707 }
4708
direct_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4709 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4710 {
4711 int r;
4712
4713 /* Dummy roots are used only for shadowing bad guest roots. */
4714 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4715 return RET_PF_RETRY;
4716
4717 if (page_fault_handle_page_track(vcpu, fault))
4718 return RET_PF_WRITE_PROTECTED;
4719
4720 r = fast_page_fault(vcpu, fault);
4721 if (r != RET_PF_INVALID)
4722 return r;
4723
4724 r = mmu_topup_memory_caches(vcpu, false);
4725 if (r)
4726 return r;
4727
4728 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4729 if (r != RET_PF_CONTINUE)
4730 return r;
4731
4732 r = RET_PF_RETRY;
4733 write_lock(&vcpu->kvm->mmu_lock);
4734
4735 if (is_page_fault_stale(vcpu, fault))
4736 goto out_unlock;
4737
4738 r = make_mmu_pages_available(vcpu);
4739 if (r)
4740 goto out_unlock;
4741
4742 r = direct_map(vcpu, fault);
4743
4744 out_unlock:
4745 kvm_mmu_finish_page_fault(vcpu, fault, r);
4746 write_unlock(&vcpu->kvm->mmu_lock);
4747 return r;
4748 }
4749
nonpaging_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4750 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4751 struct kvm_page_fault *fault)
4752 {
4753 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4754 fault->max_level = PG_LEVEL_2M;
4755 return direct_page_fault(vcpu, fault);
4756 }
4757
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4758 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4759 u64 fault_address, char *insn, int insn_len)
4760 {
4761 int r = 1;
4762 u32 flags = vcpu->arch.apf.host_apf_flags;
4763
4764 #ifndef CONFIG_X86_64
4765 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4766 if (WARN_ON_ONCE(fault_address >> 32))
4767 return -EFAULT;
4768 #endif
4769 /*
4770 * Legacy #PF exception only have a 32-bit error code. Simply drop the
4771 * upper bits as KVM doesn't use them for #PF (because they are never
4772 * set), and to ensure there are no collisions with KVM-defined bits.
4773 */
4774 if (WARN_ON_ONCE(error_code >> 32))
4775 error_code = lower_32_bits(error_code);
4776
4777 /*
4778 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for
4779 * them to conflict with #PF error codes, which are limited to 32 bits.
4780 */
4781 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
4782
4783 vcpu->arch.l1tf_flush_l1d = true;
4784 if (!flags) {
4785 trace_kvm_page_fault(vcpu, fault_address, error_code);
4786
4787 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4788 insn_len);
4789 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4790 vcpu->arch.apf.host_apf_flags = 0;
4791 local_irq_disable();
4792 kvm_async_pf_task_wait_schedule(fault_address);
4793 local_irq_enable();
4794 } else {
4795 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4796 }
4797
4798 return r;
4799 }
4800 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4801
4802 #ifdef CONFIG_X86_64
kvm_tdp_mmu_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4803 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4804 struct kvm_page_fault *fault)
4805 {
4806 int r;
4807
4808 if (page_fault_handle_page_track(vcpu, fault))
4809 return RET_PF_WRITE_PROTECTED;
4810
4811 r = fast_page_fault(vcpu, fault);
4812 if (r != RET_PF_INVALID)
4813 return r;
4814
4815 r = mmu_topup_memory_caches(vcpu, false);
4816 if (r)
4817 return r;
4818
4819 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4820 if (r != RET_PF_CONTINUE)
4821 return r;
4822
4823 r = RET_PF_RETRY;
4824 read_lock(&vcpu->kvm->mmu_lock);
4825
4826 if (is_page_fault_stale(vcpu, fault))
4827 goto out_unlock;
4828
4829 r = kvm_tdp_mmu_map(vcpu, fault);
4830
4831 out_unlock:
4832 kvm_mmu_finish_page_fault(vcpu, fault, r);
4833 read_unlock(&vcpu->kvm->mmu_lock);
4834 return r;
4835 }
4836 #endif
4837
kvm_mmu_may_ignore_guest_pat(void)4838 bool kvm_mmu_may_ignore_guest_pat(void)
4839 {
4840 /*
4841 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM
4842 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to
4843 * honor the memtype from the guest's PAT so that guest accesses to
4844 * memory that is DMA'd aren't cached against the guest's wishes. As a
4845 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA,
4846 * KVM _always_ ignores guest PAT (when EPT is enabled).
4847 */
4848 return shadow_memtype_mask;
4849 }
4850
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4851 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4852 {
4853 #ifdef CONFIG_X86_64
4854 if (tdp_mmu_enabled)
4855 return kvm_tdp_mmu_page_fault(vcpu, fault);
4856 #endif
4857
4858 return direct_page_fault(vcpu, fault);
4859 }
4860
kvm_tdp_map_page(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code,u8 * level)4861 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
4862 u8 *level)
4863 {
4864 int r;
4865
4866 /*
4867 * Restrict to TDP page fault, since that's the only case where the MMU
4868 * is indexed by GPA.
4869 */
4870 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault)
4871 return -EOPNOTSUPP;
4872
4873 do {
4874 if (signal_pending(current))
4875 return -EINTR;
4876 cond_resched();
4877 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
4878 } while (r == RET_PF_RETRY);
4879
4880 if (r < 0)
4881 return r;
4882
4883 switch (r) {
4884 case RET_PF_FIXED:
4885 case RET_PF_SPURIOUS:
4886 case RET_PF_WRITE_PROTECTED:
4887 return 0;
4888
4889 case RET_PF_EMULATE:
4890 return -ENOENT;
4891
4892 case RET_PF_RETRY:
4893 case RET_PF_CONTINUE:
4894 case RET_PF_INVALID:
4895 default:
4896 WARN_ONCE(1, "could not fix page fault during prefault");
4897 return -EIO;
4898 }
4899 }
4900
kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4901 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4902 struct kvm_pre_fault_memory *range)
4903 {
4904 u64 error_code = PFERR_GUEST_FINAL_MASK;
4905 u8 level = PG_LEVEL_4K;
4906 u64 end;
4907 int r;
4908
4909 if (!vcpu->kvm->arch.pre_fault_allowed)
4910 return -EOPNOTSUPP;
4911
4912 /*
4913 * reload is efficient when called repeatedly, so we can do it on
4914 * every iteration.
4915 */
4916 r = kvm_mmu_reload(vcpu);
4917 if (r)
4918 return r;
4919
4920 if (kvm_arch_has_private_mem(vcpu->kvm) &&
4921 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
4922 error_code |= PFERR_PRIVATE_ACCESS;
4923
4924 /*
4925 * Shadow paging uses GVA for kvm page fault, so restrict to
4926 * two-dimensional paging.
4927 */
4928 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level);
4929 if (r < 0)
4930 return r;
4931
4932 /*
4933 * If the mapping that covers range->gpa can use a huge page, it
4934 * may start below it or end after range->gpa + range->size.
4935 */
4936 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level);
4937 return min(range->size, end - range->gpa);
4938 }
4939
nonpaging_init_context(struct kvm_mmu * context)4940 static void nonpaging_init_context(struct kvm_mmu *context)
4941 {
4942 context->page_fault = nonpaging_page_fault;
4943 context->gva_to_gpa = nonpaging_gva_to_gpa;
4944 context->sync_spte = NULL;
4945 }
4946
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)4947 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4948 union kvm_mmu_page_role role)
4949 {
4950 struct kvm_mmu_page *sp;
4951
4952 if (!VALID_PAGE(root->hpa))
4953 return false;
4954
4955 if (!role.direct && pgd != root->pgd)
4956 return false;
4957
4958 sp = root_to_sp(root->hpa);
4959 if (WARN_ON_ONCE(!sp))
4960 return false;
4961
4962 return role.word == sp->role.word;
4963 }
4964
4965 /*
4966 * Find out if a previously cached root matching the new pgd/role is available,
4967 * and insert the current root as the MRU in the cache.
4968 * If a matching root is found, it is assigned to kvm_mmu->root and
4969 * true is returned.
4970 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4971 * evicted to make room for the current root, and false is returned.
4972 */
cached_root_find_and_keep_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4973 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4974 gpa_t new_pgd,
4975 union kvm_mmu_page_role new_role)
4976 {
4977 uint i;
4978
4979 if (is_root_usable(&mmu->root, new_pgd, new_role))
4980 return true;
4981
4982 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4983 /*
4984 * The swaps end up rotating the cache like this:
4985 * C 0 1 2 3 (on entry to the function)
4986 * 0 C 1 2 3
4987 * 1 C 0 2 3
4988 * 2 C 0 1 3
4989 * 3 C 0 1 2 (on exit from the loop)
4990 */
4991 swap(mmu->root, mmu->prev_roots[i]);
4992 if (is_root_usable(&mmu->root, new_pgd, new_role))
4993 return true;
4994 }
4995
4996 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4997 return false;
4998 }
4999
5000 /*
5001 * Find out if a previously cached root matching the new pgd/role is available.
5002 * On entry, mmu->root is invalid.
5003 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
5004 * of the cache becomes invalid, and true is returned.
5005 * If no match is found, kvm_mmu->root is left invalid and false is returned.
5006 */
cached_root_find_without_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5007 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
5008 gpa_t new_pgd,
5009 union kvm_mmu_page_role new_role)
5010 {
5011 uint i;
5012
5013 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5014 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
5015 goto hit;
5016
5017 return false;
5018
5019 hit:
5020 swap(mmu->root, mmu->prev_roots[i]);
5021 /* Bubble up the remaining roots. */
5022 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
5023 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
5024 mmu->prev_roots[i].hpa = INVALID_PAGE;
5025 return true;
5026 }
5027
fast_pgd_switch(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5028 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
5029 gpa_t new_pgd, union kvm_mmu_page_role new_role)
5030 {
5031 /*
5032 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
5033 * avoid having to deal with PDPTEs and other complexities.
5034 */
5035 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
5036 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
5037
5038 if (VALID_PAGE(mmu->root.hpa))
5039 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
5040 else
5041 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
5042 }
5043
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)5044 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
5045 {
5046 struct kvm_mmu *mmu = vcpu->arch.mmu;
5047 union kvm_mmu_page_role new_role = mmu->root_role;
5048
5049 /*
5050 * Return immediately if no usable root was found, kvm_mmu_reload()
5051 * will establish a valid root prior to the next VM-Enter.
5052 */
5053 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
5054 return;
5055
5056 /*
5057 * It's possible that the cached previous root page is obsolete because
5058 * of a change in the MMU generation number. However, changing the
5059 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
5060 * which will free the root set here and allocate a new one.
5061 */
5062 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
5063
5064 if (force_flush_and_sync_on_reuse) {
5065 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
5066 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5067 }
5068
5069 /*
5070 * The last MMIO access's GVA and GPA are cached in the VCPU. When
5071 * switching to a new CR3, that GVA->GPA mapping may no longer be
5072 * valid. So clear any cached MMIO info even when we don't need to sync
5073 * the shadow page tables.
5074 */
5075 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5076
5077 /*
5078 * If this is a direct root page, it doesn't have a write flooding
5079 * count. Otherwise, clear the write flooding count.
5080 */
5081 if (!new_role.direct) {
5082 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
5083
5084 if (!WARN_ON_ONCE(!sp))
5085 __clear_sp_write_flooding_count(sp);
5086 }
5087 }
5088 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
5089
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access)5090 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
5091 unsigned int access)
5092 {
5093 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
5094 if (gfn != get_mmio_spte_gfn(*sptep)) {
5095 mmu_spte_clear_no_track(sptep);
5096 return true;
5097 }
5098
5099 mark_mmio_spte(vcpu, sptep, gfn, access);
5100 return true;
5101 }
5102
5103 return false;
5104 }
5105
5106 #define PTTYPE_EPT 18 /* arbitrary */
5107 #define PTTYPE PTTYPE_EPT
5108 #include "paging_tmpl.h"
5109 #undef PTTYPE
5110
5111 #define PTTYPE 64
5112 #include "paging_tmpl.h"
5113 #undef PTTYPE
5114
5115 #define PTTYPE 32
5116 #include "paging_tmpl.h"
5117 #undef PTTYPE
5118
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)5119 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
5120 u64 pa_bits_rsvd, int level, bool nx,
5121 bool gbpages, bool pse, bool amd)
5122 {
5123 u64 gbpages_bit_rsvd = 0;
5124 u64 nonleaf_bit8_rsvd = 0;
5125 u64 high_bits_rsvd;
5126
5127 rsvd_check->bad_mt_xwr = 0;
5128
5129 if (!gbpages)
5130 gbpages_bit_rsvd = rsvd_bits(7, 7);
5131
5132 if (level == PT32E_ROOT_LEVEL)
5133 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
5134 else
5135 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5136
5137 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
5138 if (!nx)
5139 high_bits_rsvd |= rsvd_bits(63, 63);
5140
5141 /*
5142 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
5143 * leaf entries) on AMD CPUs only.
5144 */
5145 if (amd)
5146 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
5147
5148 switch (level) {
5149 case PT32_ROOT_LEVEL:
5150 /* no rsvd bits for 2 level 4K page table entries */
5151 rsvd_check->rsvd_bits_mask[0][1] = 0;
5152 rsvd_check->rsvd_bits_mask[0][0] = 0;
5153 rsvd_check->rsvd_bits_mask[1][0] =
5154 rsvd_check->rsvd_bits_mask[0][0];
5155
5156 if (!pse) {
5157 rsvd_check->rsvd_bits_mask[1][1] = 0;
5158 break;
5159 }
5160
5161 if (is_cpuid_PSE36())
5162 /* 36bits PSE 4MB page */
5163 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
5164 else
5165 /* 32 bits PSE 4MB page */
5166 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
5167 break;
5168 case PT32E_ROOT_LEVEL:
5169 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
5170 high_bits_rsvd |
5171 rsvd_bits(5, 8) |
5172 rsvd_bits(1, 2); /* PDPTE */
5173 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
5174 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
5175 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5176 rsvd_bits(13, 20); /* large page */
5177 rsvd_check->rsvd_bits_mask[1][0] =
5178 rsvd_check->rsvd_bits_mask[0][0];
5179 break;
5180 case PT64_ROOT_5LEVEL:
5181 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
5182 nonleaf_bit8_rsvd |
5183 rsvd_bits(7, 7);
5184 rsvd_check->rsvd_bits_mask[1][4] =
5185 rsvd_check->rsvd_bits_mask[0][4];
5186 fallthrough;
5187 case PT64_ROOT_4LEVEL:
5188 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
5189 nonleaf_bit8_rsvd |
5190 rsvd_bits(7, 7);
5191 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
5192 gbpages_bit_rsvd;
5193 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
5194 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5195 rsvd_check->rsvd_bits_mask[1][3] =
5196 rsvd_check->rsvd_bits_mask[0][3];
5197 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
5198 gbpages_bit_rsvd |
5199 rsvd_bits(13, 29);
5200 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5201 rsvd_bits(13, 20); /* large page */
5202 rsvd_check->rsvd_bits_mask[1][0] =
5203 rsvd_check->rsvd_bits_mask[0][0];
5204 break;
5205 }
5206 }
5207
reset_guest_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5208 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
5209 struct kvm_mmu *context)
5210 {
5211 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
5212 vcpu->arch.reserved_gpa_bits,
5213 context->cpu_role.base.level, is_efer_nx(context),
5214 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5215 is_cr4_pse(context),
5216 guest_cpuid_is_amd_compatible(vcpu));
5217 }
5218
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly,int huge_page_level)5219 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5220 u64 pa_bits_rsvd, bool execonly,
5221 int huge_page_level)
5222 {
5223 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5224 u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
5225 u64 bad_mt_xwr;
5226
5227 if (huge_page_level < PG_LEVEL_1G)
5228 large_1g_rsvd = rsvd_bits(7, 7);
5229 if (huge_page_level < PG_LEVEL_2M)
5230 large_2m_rsvd = rsvd_bits(7, 7);
5231
5232 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
5233 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
5234 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
5235 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
5236 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5237
5238 /* large page */
5239 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
5240 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5241 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
5242 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
5243 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
5244
5245 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
5246 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
5247 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
5248 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
5249 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
5250 if (!execonly) {
5251 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
5252 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
5253 }
5254 rsvd_check->bad_mt_xwr = bad_mt_xwr;
5255 }
5256
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly,int huge_page_level)5257 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
5258 struct kvm_mmu *context, bool execonly, int huge_page_level)
5259 {
5260 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5261 vcpu->arch.reserved_gpa_bits, execonly,
5262 huge_page_level);
5263 }
5264
reserved_hpa_bits(void)5265 static inline u64 reserved_hpa_bits(void)
5266 {
5267 return rsvd_bits(kvm_host.maxphyaddr, 63);
5268 }
5269
5270 /*
5271 * the page table on host is the shadow page table for the page
5272 * table in guest or amd nested guest, its mmu features completely
5273 * follow the features in guest.
5274 */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5275 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
5276 struct kvm_mmu *context)
5277 {
5278 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5279 bool is_amd = true;
5280 /* KVM doesn't use 2-level page tables for the shadow MMU. */
5281 bool is_pse = false;
5282 struct rsvd_bits_validate *shadow_zero_check;
5283 int i;
5284
5285 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5286
5287 shadow_zero_check = &context->shadow_zero_check;
5288 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5289 context->root_role.level,
5290 context->root_role.efer_nx,
5291 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5292 is_pse, is_amd);
5293
5294 if (!shadow_me_mask)
5295 return;
5296
5297 for (i = context->root_role.level; --i >= 0;) {
5298 /*
5299 * So far shadow_me_value is a constant during KVM's life
5300 * time. Bits in shadow_me_value are allowed to be set.
5301 * Bits in shadow_me_mask but not in shadow_me_value are
5302 * not allowed to be set.
5303 */
5304 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5305 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5306 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5307 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5308 }
5309
5310 }
5311
boot_cpu_is_amd(void)5312 static inline bool boot_cpu_is_amd(void)
5313 {
5314 WARN_ON_ONCE(!tdp_enabled);
5315 return shadow_x_mask == 0;
5316 }
5317
5318 /*
5319 * the direct page table on host, use as much mmu features as
5320 * possible, however, kvm currently does not do execution-protection.
5321 */
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu * context)5322 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5323 {
5324 struct rsvd_bits_validate *shadow_zero_check;
5325 int i;
5326
5327 shadow_zero_check = &context->shadow_zero_check;
5328
5329 if (boot_cpu_is_amd())
5330 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5331 context->root_role.level, true,
5332 boot_cpu_has(X86_FEATURE_GBPAGES),
5333 false, true);
5334 else
5335 __reset_rsvds_bits_mask_ept(shadow_zero_check,
5336 reserved_hpa_bits(), false,
5337 max_huge_page_level);
5338
5339 if (!shadow_me_mask)
5340 return;
5341
5342 for (i = context->root_role.level; --i >= 0;) {
5343 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5344 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5345 }
5346 }
5347
5348 /*
5349 * as the comments in reset_shadow_zero_bits_mask() except it
5350 * is the shadow page table for intel nested guest.
5351 */
5352 static void
reset_ept_shadow_zero_bits_mask(struct kvm_mmu * context,bool execonly)5353 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5354 {
5355 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5356 reserved_hpa_bits(), execonly,
5357 max_huge_page_level);
5358 }
5359
5360 #define BYTE_MASK(access) \
5361 ((1 & (access) ? 2 : 0) | \
5362 (2 & (access) ? 4 : 0) | \
5363 (3 & (access) ? 8 : 0) | \
5364 (4 & (access) ? 16 : 0) | \
5365 (5 & (access) ? 32 : 0) | \
5366 (6 & (access) ? 64 : 0) | \
5367 (7 & (access) ? 128 : 0))
5368
5369
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)5370 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5371 {
5372 unsigned byte;
5373
5374 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5375 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5376 const u8 u = BYTE_MASK(ACC_USER_MASK);
5377
5378 bool cr4_smep = is_cr4_smep(mmu);
5379 bool cr4_smap = is_cr4_smap(mmu);
5380 bool cr0_wp = is_cr0_wp(mmu);
5381 bool efer_nx = is_efer_nx(mmu);
5382
5383 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5384 unsigned pfec = byte << 1;
5385
5386 /*
5387 * Each "*f" variable has a 1 bit for each UWX value
5388 * that causes a fault with the given PFEC.
5389 */
5390
5391 /* Faults from writes to non-writable pages */
5392 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5393 /* Faults from user mode accesses to supervisor pages */
5394 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5395 /* Faults from fetches of non-executable pages*/
5396 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5397 /* Faults from kernel mode fetches of user pages */
5398 u8 smepf = 0;
5399 /* Faults from kernel mode accesses of user pages */
5400 u8 smapf = 0;
5401
5402 if (!ept) {
5403 /* Faults from kernel mode accesses to user pages */
5404 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5405
5406 /* Not really needed: !nx will cause pte.nx to fault */
5407 if (!efer_nx)
5408 ff = 0;
5409
5410 /* Allow supervisor writes if !cr0.wp */
5411 if (!cr0_wp)
5412 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5413
5414 /* Disallow supervisor fetches of user code if cr4.smep */
5415 if (cr4_smep)
5416 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5417
5418 /*
5419 * SMAP:kernel-mode data accesses from user-mode
5420 * mappings should fault. A fault is considered
5421 * as a SMAP violation if all of the following
5422 * conditions are true:
5423 * - X86_CR4_SMAP is set in CR4
5424 * - A user page is accessed
5425 * - The access is not a fetch
5426 * - The access is supervisor mode
5427 * - If implicit supervisor access or X86_EFLAGS_AC is clear
5428 *
5429 * Here, we cover the first four conditions.
5430 * The fifth is computed dynamically in permission_fault();
5431 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5432 * *not* subject to SMAP restrictions.
5433 */
5434 if (cr4_smap)
5435 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5436 }
5437
5438 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5439 }
5440 }
5441
5442 /*
5443 * PKU is an additional mechanism by which the paging controls access to
5444 * user-mode addresses based on the value in the PKRU register. Protection
5445 * key violations are reported through a bit in the page fault error code.
5446 * Unlike other bits of the error code, the PK bit is not known at the
5447 * call site of e.g. gva_to_gpa; it must be computed directly in
5448 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5449 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5450 *
5451 * In particular the following conditions come from the error code, the
5452 * page tables and the machine state:
5453 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5454 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5455 * - PK is always zero if U=0 in the page tables
5456 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5457 *
5458 * The PKRU bitmask caches the result of these four conditions. The error
5459 * code (minus the P bit) and the page table's U bit form an index into the
5460 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
5461 * with the two bits of the PKRU register corresponding to the protection key.
5462 * For the first three conditions above the bits will be 00, thus masking
5463 * away both AD and WD. For all reads or if the last condition holds, WD
5464 * only will be masked away.
5465 */
update_pkru_bitmask(struct kvm_mmu * mmu)5466 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5467 {
5468 unsigned bit;
5469 bool wp;
5470
5471 mmu->pkru_mask = 0;
5472
5473 if (!is_cr4_pke(mmu))
5474 return;
5475
5476 wp = is_cr0_wp(mmu);
5477
5478 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5479 unsigned pfec, pkey_bits;
5480 bool check_pkey, check_write, ff, uf, wf, pte_user;
5481
5482 pfec = bit << 1;
5483 ff = pfec & PFERR_FETCH_MASK;
5484 uf = pfec & PFERR_USER_MASK;
5485 wf = pfec & PFERR_WRITE_MASK;
5486
5487 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5488 pte_user = pfec & PFERR_RSVD_MASK;
5489
5490 /*
5491 * Only need to check the access which is not an
5492 * instruction fetch and is to a user page.
5493 */
5494 check_pkey = (!ff && pte_user);
5495 /*
5496 * write access is controlled by PKRU if it is a
5497 * user access or CR0.WP = 1.
5498 */
5499 check_write = check_pkey && wf && (uf || wp);
5500
5501 /* PKRU.AD stops both read and write access. */
5502 pkey_bits = !!check_pkey;
5503 /* PKRU.WD stops write access. */
5504 pkey_bits |= (!!check_write) << 1;
5505
5506 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5507 }
5508 }
5509
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5510 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5511 struct kvm_mmu *mmu)
5512 {
5513 if (!is_cr0_pg(mmu))
5514 return;
5515
5516 reset_guest_rsvds_bits_mask(vcpu, mmu);
5517 update_permission_bitmask(mmu, false);
5518 update_pkru_bitmask(mmu);
5519 }
5520
paging64_init_context(struct kvm_mmu * context)5521 static void paging64_init_context(struct kvm_mmu *context)
5522 {
5523 context->page_fault = paging64_page_fault;
5524 context->gva_to_gpa = paging64_gva_to_gpa;
5525 context->sync_spte = paging64_sync_spte;
5526 }
5527
paging32_init_context(struct kvm_mmu * context)5528 static void paging32_init_context(struct kvm_mmu *context)
5529 {
5530 context->page_fault = paging32_page_fault;
5531 context->gva_to_gpa = paging32_gva_to_gpa;
5532 context->sync_spte = paging32_sync_spte;
5533 }
5534
kvm_calc_cpu_role(struct kvm_vcpu * vcpu,const struct kvm_mmu_role_regs * regs)5535 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5536 const struct kvm_mmu_role_regs *regs)
5537 {
5538 union kvm_cpu_role role = {0};
5539
5540 role.base.access = ACC_ALL;
5541 role.base.smm = is_smm(vcpu);
5542 role.base.guest_mode = is_guest_mode(vcpu);
5543 role.ext.valid = 1;
5544
5545 if (!____is_cr0_pg(regs)) {
5546 role.base.direct = 1;
5547 return role;
5548 }
5549
5550 role.base.efer_nx = ____is_efer_nx(regs);
5551 role.base.cr0_wp = ____is_cr0_wp(regs);
5552 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5553 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5554 role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5555
5556 if (____is_efer_lma(regs))
5557 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5558 : PT64_ROOT_4LEVEL;
5559 else if (____is_cr4_pae(regs))
5560 role.base.level = PT32E_ROOT_LEVEL;
5561 else
5562 role.base.level = PT32_ROOT_LEVEL;
5563
5564 role.ext.cr4_smep = ____is_cr4_smep(regs);
5565 role.ext.cr4_smap = ____is_cr4_smap(regs);
5566 role.ext.cr4_pse = ____is_cr4_pse(regs);
5567
5568 /* PKEY and LA57 are active iff long mode is active. */
5569 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5570 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5571 role.ext.efer_lma = ____is_efer_lma(regs);
5572 return role;
5573 }
5574
__kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5575 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5576 struct kvm_mmu *mmu)
5577 {
5578 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5579
5580 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5581 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5582
5583 if (is_cr0_wp(mmu) == cr0_wp)
5584 return;
5585
5586 mmu->cpu_role.base.cr0_wp = cr0_wp;
5587 reset_guest_paging_metadata(vcpu, mmu);
5588 }
5589
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)5590 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5591 {
5592 /* tdp_root_level is architecture forced level, use it if nonzero */
5593 if (tdp_root_level)
5594 return tdp_root_level;
5595
5596 /* Use 5-level TDP if and only if it's useful/necessary. */
5597 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5598 return 4;
5599
5600 return max_tdp_level;
5601 }
5602
kvm_mmu_get_max_tdp_level(void)5603 u8 kvm_mmu_get_max_tdp_level(void)
5604 {
5605 return tdp_root_level ? tdp_root_level : max_tdp_level;
5606 }
5607
5608 static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5609 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5610 union kvm_cpu_role cpu_role)
5611 {
5612 union kvm_mmu_page_role role = {0};
5613
5614 role.access = ACC_ALL;
5615 role.cr0_wp = true;
5616 role.efer_nx = true;
5617 role.smm = cpu_role.base.smm;
5618 role.guest_mode = cpu_role.base.guest_mode;
5619 role.ad_disabled = !kvm_ad_enabled;
5620 role.level = kvm_mmu_get_tdp_level(vcpu);
5621 role.direct = true;
5622 role.has_4_byte_gpte = false;
5623
5624 return role;
5625 }
5626
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5627 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5628 union kvm_cpu_role cpu_role)
5629 {
5630 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5631 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5632
5633 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5634 root_role.word == context->root_role.word)
5635 return;
5636
5637 context->cpu_role.as_u64 = cpu_role.as_u64;
5638 context->root_role.word = root_role.word;
5639 context->page_fault = kvm_tdp_page_fault;
5640 context->sync_spte = NULL;
5641 context->get_guest_pgd = get_guest_cr3;
5642 context->get_pdptr = kvm_pdptr_read;
5643 context->inject_page_fault = kvm_inject_page_fault;
5644
5645 if (!is_cr0_pg(context))
5646 context->gva_to_gpa = nonpaging_gva_to_gpa;
5647 else if (is_cr4_pae(context))
5648 context->gva_to_gpa = paging64_gva_to_gpa;
5649 else
5650 context->gva_to_gpa = paging32_gva_to_gpa;
5651
5652 reset_guest_paging_metadata(vcpu, context);
5653 reset_tdp_shadow_zero_bits_mask(context);
5654 }
5655
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,union kvm_cpu_role cpu_role,union kvm_mmu_page_role root_role)5656 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5657 union kvm_cpu_role cpu_role,
5658 union kvm_mmu_page_role root_role)
5659 {
5660 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5661 root_role.word == context->root_role.word)
5662 return;
5663
5664 context->cpu_role.as_u64 = cpu_role.as_u64;
5665 context->root_role.word = root_role.word;
5666
5667 if (!is_cr0_pg(context))
5668 nonpaging_init_context(context);
5669 else if (is_cr4_pae(context))
5670 paging64_init_context(context);
5671 else
5672 paging32_init_context(context);
5673
5674 reset_guest_paging_metadata(vcpu, context);
5675 reset_shadow_zero_bits_mask(vcpu, context);
5676 }
5677
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5678 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5679 union kvm_cpu_role cpu_role)
5680 {
5681 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5682 union kvm_mmu_page_role root_role;
5683
5684 root_role = cpu_role.base;
5685
5686 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5687 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5688
5689 /*
5690 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5691 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5692 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5693 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5694 * The iTLB multi-hit workaround can be toggled at any time, so assume
5695 * NX can be used by any non-nested shadow MMU to avoid having to reset
5696 * MMU contexts.
5697 */
5698 root_role.efer_nx = true;
5699
5700 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5701 }
5702
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)5703 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5704 unsigned long cr4, u64 efer, gpa_t nested_cr3)
5705 {
5706 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5707 struct kvm_mmu_role_regs regs = {
5708 .cr0 = cr0,
5709 .cr4 = cr4 & ~X86_CR4_PKE,
5710 .efer = efer,
5711 };
5712 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
5713 union kvm_mmu_page_role root_role;
5714
5715 /* NPT requires CR0.PG=1. */
5716 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode);
5717
5718 root_role = cpu_role.base;
5719 root_role.level = kvm_mmu_get_tdp_level(vcpu);
5720 if (root_role.level == PT64_ROOT_5LEVEL &&
5721 cpu_role.base.level == PT64_ROOT_4LEVEL)
5722 root_role.passthrough = 1;
5723
5724 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5725 kvm_mmu_new_pgd(vcpu, nested_cr3);
5726 }
5727 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5728
5729 static union kvm_cpu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)5730 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5731 bool execonly, u8 level)
5732 {
5733 union kvm_cpu_role role = {0};
5734
5735 /*
5736 * KVM does not support SMM transfer monitors, and consequently does not
5737 * support the "entry to SMM" control either. role.base.smm is always 0.
5738 */
5739 WARN_ON_ONCE(is_smm(vcpu));
5740 role.base.level = level;
5741 role.base.has_4_byte_gpte = false;
5742 role.base.direct = false;
5743 role.base.ad_disabled = !accessed_dirty;
5744 role.base.guest_mode = true;
5745 role.base.access = ACC_ALL;
5746
5747 role.ext.word = 0;
5748 role.ext.execonly = execonly;
5749 role.ext.valid = 1;
5750
5751 return role;
5752 }
5753
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,int huge_page_level,bool accessed_dirty,gpa_t new_eptp)5754 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5755 int huge_page_level, bool accessed_dirty,
5756 gpa_t new_eptp)
5757 {
5758 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5759 u8 level = vmx_eptp_page_walk_level(new_eptp);
5760 union kvm_cpu_role new_mode =
5761 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5762 execonly, level);
5763
5764 if (new_mode.as_u64 != context->cpu_role.as_u64) {
5765 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5766 context->cpu_role.as_u64 = new_mode.as_u64;
5767 context->root_role.word = new_mode.base.word;
5768
5769 context->page_fault = ept_page_fault;
5770 context->gva_to_gpa = ept_gva_to_gpa;
5771 context->sync_spte = ept_sync_spte;
5772
5773 update_permission_bitmask(context, true);
5774 context->pkru_mask = 0;
5775 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5776 reset_ept_shadow_zero_bits_mask(context, execonly);
5777 }
5778
5779 kvm_mmu_new_pgd(vcpu, new_eptp);
5780 }
5781 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5782
init_kvm_softmmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5783 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5784 union kvm_cpu_role cpu_role)
5785 {
5786 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5787
5788 kvm_init_shadow_mmu(vcpu, cpu_role);
5789
5790 context->get_guest_pgd = get_guest_cr3;
5791 context->get_pdptr = kvm_pdptr_read;
5792 context->inject_page_fault = kvm_inject_page_fault;
5793 }
5794
init_kvm_nested_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role new_mode)5795 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5796 union kvm_cpu_role new_mode)
5797 {
5798 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5799
5800 if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5801 return;
5802
5803 g_context->cpu_role.as_u64 = new_mode.as_u64;
5804 g_context->get_guest_pgd = get_guest_cr3;
5805 g_context->get_pdptr = kvm_pdptr_read;
5806 g_context->inject_page_fault = kvm_inject_page_fault;
5807
5808 /*
5809 * L2 page tables are never shadowed, so there is no need to sync
5810 * SPTEs.
5811 */
5812 g_context->sync_spte = NULL;
5813
5814 /*
5815 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5816 * L1's nested page tables (e.g. EPT12). The nested translation
5817 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5818 * L2's page tables as the first level of translation and L1's
5819 * nested page tables as the second level of translation. Basically
5820 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5821 */
5822 if (!is_paging(vcpu))
5823 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5824 else if (is_long_mode(vcpu))
5825 g_context->gva_to_gpa = paging64_gva_to_gpa;
5826 else if (is_pae(vcpu))
5827 g_context->gva_to_gpa = paging64_gva_to_gpa;
5828 else
5829 g_context->gva_to_gpa = paging32_gva_to_gpa;
5830
5831 reset_guest_paging_metadata(vcpu, g_context);
5832 }
5833
kvm_init_mmu(struct kvm_vcpu * vcpu)5834 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5835 {
5836 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5837 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
5838
5839 if (mmu_is_nested(vcpu))
5840 init_kvm_nested_mmu(vcpu, cpu_role);
5841 else if (tdp_enabled)
5842 init_kvm_tdp_mmu(vcpu, cpu_role);
5843 else
5844 init_kvm_softmmu(vcpu, cpu_role);
5845 }
5846 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5847
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5848 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5849 {
5850 /*
5851 * Invalidate all MMU roles to force them to reinitialize as CPUID
5852 * information is factored into reserved bit calculations.
5853 *
5854 * Correctly handling multiple vCPU models with respect to paging and
5855 * physical address properties) in a single VM would require tracking
5856 * all relevant CPUID information in kvm_mmu_page_role. That is very
5857 * undesirable as it would increase the memory requirements for
5858 * gfn_write_track (see struct kvm_mmu_page_role comments). For now
5859 * that problem is swept under the rug; KVM's CPUID API is horrific and
5860 * it's all but impossible to solve it without introducing a new API.
5861 */
5862 vcpu->arch.root_mmu.root_role.invalid = 1;
5863 vcpu->arch.guest_mmu.root_role.invalid = 1;
5864 vcpu->arch.nested_mmu.root_role.invalid = 1;
5865 vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5866 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5867 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5868 kvm_mmu_reset_context(vcpu);
5869
5870 /*
5871 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5872 * kvm_arch_vcpu_ioctl().
5873 */
5874 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5875 }
5876
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5877 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5878 {
5879 kvm_mmu_unload(vcpu);
5880 kvm_init_mmu(vcpu);
5881 }
5882 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5883
kvm_mmu_load(struct kvm_vcpu * vcpu)5884 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5885 {
5886 int r;
5887
5888 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5889 if (r)
5890 goto out;
5891 r = mmu_alloc_special_roots(vcpu);
5892 if (r)
5893 goto out;
5894 if (vcpu->arch.mmu->root_role.direct)
5895 r = mmu_alloc_direct_roots(vcpu);
5896 else
5897 r = mmu_alloc_shadow_roots(vcpu);
5898 if (r)
5899 goto out;
5900
5901 kvm_mmu_sync_roots(vcpu);
5902
5903 kvm_mmu_load_pgd(vcpu);
5904
5905 /*
5906 * Flush any TLB entries for the new root, the provenance of the root
5907 * is unknown. Even if KVM ensures there are no stale TLB entries
5908 * for a freed root, in theory another hypervisor could have left
5909 * stale entries. Flushing on alloc also allows KVM to skip the TLB
5910 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5911 */
5912 kvm_x86_call(flush_tlb_current)(vcpu);
5913 out:
5914 return r;
5915 }
5916
kvm_mmu_unload(struct kvm_vcpu * vcpu)5917 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5918 {
5919 struct kvm *kvm = vcpu->kvm;
5920
5921 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5922 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5923 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5924 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5925 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5926 }
5927
is_obsolete_root(struct kvm * kvm,hpa_t root_hpa)5928 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5929 {
5930 struct kvm_mmu_page *sp;
5931
5932 if (!VALID_PAGE(root_hpa))
5933 return false;
5934
5935 /*
5936 * When freeing obsolete roots, treat roots as obsolete if they don't
5937 * have an associated shadow page, as it's impossible to determine if
5938 * such roots are fresh or stale. This does mean KVM will get false
5939 * positives and free roots that don't strictly need to be freed, but
5940 * such false positives are relatively rare:
5941 *
5942 * (a) only PAE paging and nested NPT have roots without shadow pages
5943 * (or any shadow paging flavor with a dummy root, see note below)
5944 * (b) remote reloads due to a memslot update obsoletes _all_ roots
5945 * (c) KVM doesn't track previous roots for PAE paging, and the guest
5946 * is unlikely to zap an in-use PGD.
5947 *
5948 * Note! Dummy roots are unique in that they are obsoleted by memslot
5949 * _creation_! See also FNAME(fetch).
5950 */
5951 sp = root_to_sp(root_hpa);
5952 return !sp || is_obsolete_sp(kvm, sp);
5953 }
5954
__kvm_mmu_free_obsolete_roots(struct kvm * kvm,struct kvm_mmu * mmu)5955 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5956 {
5957 unsigned long roots_to_free = 0;
5958 int i;
5959
5960 if (is_obsolete_root(kvm, mmu->root.hpa))
5961 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5962
5963 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5964 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5965 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5966 }
5967
5968 if (roots_to_free)
5969 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5970 }
5971
kvm_mmu_free_obsolete_roots(struct kvm_vcpu * vcpu)5972 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5973 {
5974 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5975 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5976 }
5977
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5978 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5979 int *bytes)
5980 {
5981 u64 gentry = 0;
5982 int r;
5983
5984 /*
5985 * Assume that the pte write on a page table of the same type
5986 * as the current vcpu paging mode since we update the sptes only
5987 * when they have the same mode.
5988 */
5989 if (is_pae(vcpu) && *bytes == 4) {
5990 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5991 *gpa &= ~(gpa_t)7;
5992 *bytes = 8;
5993 }
5994
5995 if (*bytes == 4 || *bytes == 8) {
5996 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5997 if (r)
5998 gentry = 0;
5999 }
6000
6001 return gentry;
6002 }
6003
6004 /*
6005 * If we're seeing too many writes to a page, it may no longer be a page table,
6006 * or we may be forking, in which case it is better to unmap the page.
6007 */
detect_write_flooding(struct kvm_mmu_page * sp)6008 static bool detect_write_flooding(struct kvm_mmu_page *sp)
6009 {
6010 /*
6011 * Skip write-flooding detected for the sp whose level is 1, because
6012 * it can become unsync, then the guest page is not write-protected.
6013 */
6014 if (sp->role.level == PG_LEVEL_4K)
6015 return false;
6016
6017 atomic_inc(&sp->write_flooding_count);
6018 return atomic_read(&sp->write_flooding_count) >= 3;
6019 }
6020
6021 /*
6022 * Misaligned accesses are too much trouble to fix up; also, they usually
6023 * indicate a page is not used as a page table.
6024 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)6025 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
6026 int bytes)
6027 {
6028 unsigned offset, pte_size, misaligned;
6029
6030 offset = offset_in_page(gpa);
6031 pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
6032
6033 /*
6034 * Sometimes, the OS only writes the last one bytes to update status
6035 * bits, for example, in linux, andb instruction is used in clear_bit().
6036 */
6037 if (!(offset & (pte_size - 1)) && bytes == 1)
6038 return false;
6039
6040 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
6041 misaligned |= bytes < 4;
6042
6043 return misaligned;
6044 }
6045
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)6046 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
6047 {
6048 unsigned page_offset, quadrant;
6049 u64 *spte;
6050 int level;
6051
6052 page_offset = offset_in_page(gpa);
6053 level = sp->role.level;
6054 *nspte = 1;
6055 if (sp->role.has_4_byte_gpte) {
6056 page_offset <<= 1; /* 32->64 */
6057 /*
6058 * A 32-bit pde maps 4MB while the shadow pdes map
6059 * only 2MB. So we need to double the offset again
6060 * and zap two pdes instead of one.
6061 */
6062 if (level == PT32_ROOT_LEVEL) {
6063 page_offset &= ~7; /* kill rounding error */
6064 page_offset <<= 1;
6065 *nspte = 2;
6066 }
6067 quadrant = page_offset >> PAGE_SHIFT;
6068 page_offset &= ~PAGE_MASK;
6069 if (quadrant != sp->role.quadrant)
6070 return NULL;
6071 }
6072
6073 spte = &sp->spt[page_offset / sizeof(*spte)];
6074 return spte;
6075 }
6076
kvm_mmu_track_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)6077 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
6078 int bytes)
6079 {
6080 gfn_t gfn = gpa >> PAGE_SHIFT;
6081 struct kvm_mmu_page *sp;
6082 LIST_HEAD(invalid_list);
6083 u64 entry, gentry, *spte;
6084 int npte;
6085 bool flush = false;
6086
6087 /*
6088 * When emulating guest writes, ensure the written value is visible to
6089 * any task that is handling page faults before checking whether or not
6090 * KVM is shadowing a guest PTE. This ensures either KVM will create
6091 * the correct SPTE in the page fault handler, or this task will see
6092 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in
6093 * account_shadowed().
6094 */
6095 smp_mb();
6096 if (!vcpu->kvm->arch.indirect_shadow_pages)
6097 return;
6098
6099 write_lock(&vcpu->kvm->mmu_lock);
6100
6101 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
6102
6103 ++vcpu->kvm->stat.mmu_pte_write;
6104
6105 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
6106 if (detect_write_misaligned(sp, gpa, bytes) ||
6107 detect_write_flooding(sp)) {
6108 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
6109 ++vcpu->kvm->stat.mmu_flooded;
6110 continue;
6111 }
6112
6113 spte = get_written_sptes(sp, gpa, &npte);
6114 if (!spte)
6115 continue;
6116
6117 while (npte--) {
6118 entry = *spte;
6119 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
6120 if (gentry && sp->role.level != PG_LEVEL_4K)
6121 ++vcpu->kvm->stat.mmu_pde_zapped;
6122 if (is_shadow_present_pte(entry))
6123 flush = true;
6124 ++spte;
6125 }
6126 }
6127 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
6128 write_unlock(&vcpu->kvm->mmu_lock);
6129 }
6130
is_write_to_guest_page_table(u64 error_code)6131 static bool is_write_to_guest_page_table(u64 error_code)
6132 {
6133 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
6134
6135 return (error_code & mask) == mask;
6136 }
6137
kvm_mmu_write_protect_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,int * emulation_type)6138 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6139 u64 error_code, int *emulation_type)
6140 {
6141 bool direct = vcpu->arch.mmu->root_role.direct;
6142
6143 /*
6144 * Do not try to unprotect and retry if the vCPU re-faulted on the same
6145 * RIP with the same address that was previously unprotected, as doing
6146 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses
6147 * a non-page-table modifying instruction on the PDE that points to the
6148 * instruction, then unprotecting the gfn will unmap the instruction's
6149 * code, i.e. make it impossible for the instruction to ever complete.
6150 */
6151 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
6152 vcpu->arch.last_retry_addr == cr2_or_gpa)
6153 return RET_PF_EMULATE;
6154
6155 /*
6156 * Reset the unprotect+retry values that guard against infinite loops.
6157 * The values will be refreshed if KVM explicitly unprotects a gfn and
6158 * retries, in all other cases it's safe to retry in the future even if
6159 * the next page fault happens on the same RIP+address.
6160 */
6161 vcpu->arch.last_retry_eip = 0;
6162 vcpu->arch.last_retry_addr = 0;
6163
6164 /*
6165 * It should be impossible to reach this point with an MMIO cache hit,
6166 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
6167 * writable memslot, and creating a memslot should invalidate the MMIO
6168 * cache by way of changing the memslot generation. WARN and disallow
6169 * retry if MMIO is detected, as retrying MMIO emulation is pointless
6170 * and could put the vCPU into an infinite loop because the processor
6171 * will keep faulting on the non-existent MMIO address.
6172 */
6173 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
6174 return RET_PF_EMULATE;
6175
6176 /*
6177 * Before emulating the instruction, check to see if the access was due
6178 * to a read-only violation while the CPU was walking non-nested NPT
6179 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
6180 * If L1 is sharing (a subset of) its page tables with L2, e.g. by
6181 * having nCR3 share lower level page tables with hCR3, then when KVM
6182 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
6183 * unknowingly write-protecting L1's guest page tables, which KVM isn't
6184 * shadowing.
6185 *
6186 * Because the CPU (by default) walks NPT page tables using a write
6187 * access (to ensure the CPU can do A/D updates), page walks in L1 can
6188 * trigger write faults for the above case even when L1 isn't modifying
6189 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try
6190 * to emulate) an excessive number of L1 instructions; because L1's MMU
6191 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
6192 * and thus no need to emulate in order to guarantee forward progress.
6193 *
6194 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
6195 * proceed without triggering emulation. If one or more shadow pages
6196 * was zapped, skip emulation and resume L1 to let it natively execute
6197 * the instruction. If no shadow pages were zapped, then the write-
6198 * fault is due to something else entirely, i.e. KVM needs to emulate,
6199 * as resuming the guest will put it into an infinite loop.
6200 *
6201 * Note, this code also applies to Intel CPUs, even though it is *very*
6202 * unlikely that an L1 will share its page tables (IA32/PAE/paging64
6203 * format) with L2's page tables (EPT format).
6204 *
6205 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
6206 * unprotect the gfn and retry if an event is awaiting reinjection. If
6207 * KVM emulates multiple instructions before completing event injection,
6208 * the event could be delayed beyond what is architecturally allowed,
6209 * e.g. KVM could inject an IRQ after the TPR has been raised.
6210 */
6211 if (((direct && is_write_to_guest_page_table(error_code)) ||
6212 (!direct && kvm_event_needs_reinjection(vcpu))) &&
6213 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
6214 return RET_PF_RETRY;
6215
6216 /*
6217 * The gfn is write-protected, but if KVM detects its emulating an
6218 * instruction that is unlikely to be used to modify page tables, or if
6219 * emulation fails, KVM can try to unprotect the gfn and let the CPU
6220 * re-execute the instruction that caused the page fault. Do not allow
6221 * retrying an instruction from a nested guest as KVM is only explicitly
6222 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't
6223 * going to magically fix whatever issue caused L2 to fail.
6224 */
6225 if (!is_guest_mode(vcpu))
6226 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
6227
6228 return RET_PF_EMULATE;
6229 }
6230
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)6231 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
6232 void *insn, int insn_len)
6233 {
6234 int r, emulation_type = EMULTYPE_PF;
6235 bool direct = vcpu->arch.mmu->root_role.direct;
6236
6237 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
6238 return RET_PF_RETRY;
6239
6240 /*
6241 * Except for reserved faults (emulated MMIO is shared-only), set the
6242 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
6243 * current attributes, which are the source of truth for such VMs. Note,
6244 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
6245 * currently supported nested virtualization (among many other things)
6246 * for software-protected VMs.
6247 */
6248 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
6249 !(error_code & PFERR_RSVD_MASK) &&
6250 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
6251 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
6252 error_code |= PFERR_PRIVATE_ACCESS;
6253
6254 r = RET_PF_INVALID;
6255 if (unlikely(error_code & PFERR_RSVD_MASK)) {
6256 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
6257 return -EFAULT;
6258
6259 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
6260 if (r == RET_PF_EMULATE)
6261 goto emulate;
6262 }
6263
6264 if (r == RET_PF_INVALID) {
6265 vcpu->stat.pf_taken++;
6266
6267 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
6268 &emulation_type, NULL);
6269 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
6270 return -EIO;
6271 }
6272
6273 if (r < 0)
6274 return r;
6275
6276 if (r == RET_PF_WRITE_PROTECTED)
6277 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
6278 &emulation_type);
6279
6280 if (r == RET_PF_FIXED)
6281 vcpu->stat.pf_fixed++;
6282 else if (r == RET_PF_EMULATE)
6283 vcpu->stat.pf_emulate++;
6284 else if (r == RET_PF_SPURIOUS)
6285 vcpu->stat.pf_spurious++;
6286
6287 /*
6288 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or
6289 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE.
6290 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to
6291 * indicate continuing the page fault handling until to the final
6292 * page table mapping phase.
6293 */
6294 WARN_ON_ONCE(r == RET_PF_CONTINUE);
6295 if (r != RET_PF_EMULATE)
6296 return r;
6297
6298 emulate:
6299 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
6300 insn_len);
6301 }
6302 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
6303
kvm_mmu_print_sptes(struct kvm_vcpu * vcpu,gpa_t gpa,const char * msg)6304 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
6305 {
6306 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
6307 int root_level, leaf, level;
6308
6309 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
6310 if (unlikely(leaf < 0))
6311 return;
6312
6313 pr_err("%s %llx", msg, gpa);
6314 for (level = root_level; level >= leaf; level--)
6315 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
6316 pr_cont("\n");
6317 }
6318 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes);
6319
__kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,hpa_t root_hpa)6320 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6321 u64 addr, hpa_t root_hpa)
6322 {
6323 struct kvm_shadow_walk_iterator iterator;
6324
6325 vcpu_clear_mmio_info(vcpu, addr);
6326
6327 /*
6328 * Walking and synchronizing SPTEs both assume they are operating in
6329 * the context of the current MMU, and would need to be reworked if
6330 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
6331 */
6332 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
6333 return;
6334
6335 if (!VALID_PAGE(root_hpa))
6336 return;
6337
6338 write_lock(&vcpu->kvm->mmu_lock);
6339 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
6340 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
6341
6342 if (sp->unsync) {
6343 int ret = kvm_sync_spte(vcpu, sp, iterator.index);
6344
6345 if (ret < 0)
6346 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
6347 if (ret)
6348 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
6349 }
6350
6351 if (!sp->unsync_children)
6352 break;
6353 }
6354 write_unlock(&vcpu->kvm->mmu_lock);
6355 }
6356
kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,unsigned long roots)6357 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6358 u64 addr, unsigned long roots)
6359 {
6360 int i;
6361
6362 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
6363
6364 /* It's actually a GPA for vcpu->arch.guest_mmu. */
6365 if (mmu != &vcpu->arch.guest_mmu) {
6366 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
6367 if (is_noncanonical_invlpg_address(addr, vcpu))
6368 return;
6369
6370 kvm_x86_call(flush_tlb_gva)(vcpu, addr);
6371 }
6372
6373 if (!mmu->sync_spte)
6374 return;
6375
6376 if (roots & KVM_MMU_ROOT_CURRENT)
6377 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
6378
6379 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6380 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
6381 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
6382 }
6383 }
6384 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
6385
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)6386 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
6387 {
6388 /*
6389 * INVLPG is required to invalidate any global mappings for the VA,
6390 * irrespective of PCID. Blindly sync all roots as it would take
6391 * roughly the same amount of work/time to determine whether any of the
6392 * previous roots have a global mapping.
6393 *
6394 * Mappings not reachable via the current or previous cached roots will
6395 * be synced when switching to that new cr3, so nothing needs to be
6396 * done here for them.
6397 */
6398 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
6399 ++vcpu->stat.invlpg;
6400 }
6401 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
6402
6403
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)6404 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6405 {
6406 struct kvm_mmu *mmu = vcpu->arch.mmu;
6407 unsigned long roots = 0;
6408 uint i;
6409
6410 if (pcid == kvm_get_active_pcid(vcpu))
6411 roots |= KVM_MMU_ROOT_CURRENT;
6412
6413 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6414 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6415 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6416 roots |= KVM_MMU_ROOT_PREVIOUS(i);
6417 }
6418
6419 if (roots)
6420 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6421 ++vcpu->stat.invlpg;
6422
6423 /*
6424 * Mappings not reachable via the current cr3 or the prev_roots will be
6425 * synced when switching to that cr3, so nothing needs to be done here
6426 * for them.
6427 */
6428 }
6429
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)6430 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6431 int tdp_max_root_level, int tdp_huge_page_level)
6432 {
6433 tdp_enabled = enable_tdp;
6434 tdp_root_level = tdp_forced_root_level;
6435 max_tdp_level = tdp_max_root_level;
6436
6437 #ifdef CONFIG_X86_64
6438 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6439 #endif
6440 /*
6441 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6442 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6443 * the kernel is not. But, KVM never creates a page size greater than
6444 * what is used by the kernel for any given HVA, i.e. the kernel's
6445 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6446 */
6447 if (tdp_enabled)
6448 max_huge_page_level = tdp_huge_page_level;
6449 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6450 max_huge_page_level = PG_LEVEL_1G;
6451 else
6452 max_huge_page_level = PG_LEVEL_2M;
6453 }
6454 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6455
free_mmu_pages(struct kvm_mmu * mmu)6456 static void free_mmu_pages(struct kvm_mmu *mmu)
6457 {
6458 if (!tdp_enabled && mmu->pae_root)
6459 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6460 free_page((unsigned long)mmu->pae_root);
6461 free_page((unsigned long)mmu->pml4_root);
6462 free_page((unsigned long)mmu->pml5_root);
6463 }
6464
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)6465 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6466 {
6467 struct page *page;
6468 int i;
6469
6470 mmu->root.hpa = INVALID_PAGE;
6471 mmu->root.pgd = 0;
6472 mmu->mirror_root_hpa = INVALID_PAGE;
6473 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6474 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6475
6476 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6477 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6478 return 0;
6479
6480 /*
6481 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6482 * while the PDP table is a per-vCPU construct that's allocated at MMU
6483 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
6484 * x86_64. Therefore we need to allocate the PDP table in the first
6485 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
6486 * generally doesn't use PAE paging and can skip allocating the PDP
6487 * table. The main exception, handled here, is SVM's 32-bit NPT. The
6488 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6489 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6490 */
6491 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6492 return 0;
6493
6494 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6495 if (!page)
6496 return -ENOMEM;
6497
6498 mmu->pae_root = page_address(page);
6499
6500 /*
6501 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6502 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
6503 * that KVM's writes and the CPU's reads get along. Note, this is
6504 * only necessary when using shadow paging, as 64-bit NPT can get at
6505 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6506 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6507 */
6508 if (!tdp_enabled)
6509 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6510 else
6511 WARN_ON_ONCE(shadow_me_value);
6512
6513 for (i = 0; i < 4; ++i)
6514 mmu->pae_root[i] = INVALID_PAE_ROOT;
6515
6516 return 0;
6517 }
6518
kvm_mmu_create(struct kvm_vcpu * vcpu)6519 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6520 {
6521 int ret;
6522
6523 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6524 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6525
6526 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6527 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6528
6529 vcpu->arch.mmu_shadow_page_cache.init_value =
6530 SHADOW_NONPRESENT_VALUE;
6531 if (!vcpu->arch.mmu_shadow_page_cache.init_value)
6532 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6533
6534 vcpu->arch.mmu = &vcpu->arch.root_mmu;
6535 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6536
6537 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6538 if (ret)
6539 return ret;
6540
6541 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6542 if (ret)
6543 goto fail_allocate_root;
6544
6545 return ret;
6546 fail_allocate_root:
6547 free_mmu_pages(&vcpu->arch.guest_mmu);
6548 return ret;
6549 }
6550
6551 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)6552 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6553 {
6554 struct kvm_mmu_page *sp, *node;
6555 int nr_zapped, batch = 0;
6556 LIST_HEAD(invalid_list);
6557 bool unstable;
6558
6559 lockdep_assert_held(&kvm->slots_lock);
6560
6561 restart:
6562 list_for_each_entry_safe_reverse(sp, node,
6563 &kvm->arch.active_mmu_pages, link) {
6564 /*
6565 * No obsolete valid page exists before a newly created page
6566 * since active_mmu_pages is a FIFO list.
6567 */
6568 if (!is_obsolete_sp(kvm, sp))
6569 break;
6570
6571 /*
6572 * Invalid pages should never land back on the list of active
6573 * pages. Skip the bogus page, otherwise we'll get stuck in an
6574 * infinite loop if the page gets put back on the list (again).
6575 */
6576 if (WARN_ON_ONCE(sp->role.invalid))
6577 continue;
6578
6579 /*
6580 * No need to flush the TLB since we're only zapping shadow
6581 * pages with an obsolete generation number and all vCPUS have
6582 * loaded a new root, i.e. the shadow pages being zapped cannot
6583 * be in active use by the guest.
6584 */
6585 if (batch >= BATCH_ZAP_PAGES &&
6586 cond_resched_rwlock_write(&kvm->mmu_lock)) {
6587 batch = 0;
6588 goto restart;
6589 }
6590
6591 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6592 &invalid_list, &nr_zapped);
6593 batch += nr_zapped;
6594
6595 if (unstable)
6596 goto restart;
6597 }
6598
6599 /*
6600 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6601 * to ensure KVM is not in the middle of a lockless shadow page table
6602 * walk, which may reference the pages. The remote TLB flush itself is
6603 * not required and is simply a convenient way to kick vCPUs as needed.
6604 * KVM performs a local TLB flush when allocating a new root (see
6605 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6606 * running with an obsolete MMU.
6607 */
6608 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6609 }
6610
6611 /*
6612 * Fast invalidate all shadow pages and use lock-break technique
6613 * to zap obsolete pages.
6614 *
6615 * It's required when memslot is being deleted or VM is being
6616 * destroyed, in these cases, we should ensure that KVM MMU does
6617 * not use any resource of the being-deleted slot or all slots
6618 * after calling the function.
6619 */
kvm_mmu_zap_all_fast(struct kvm * kvm)6620 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6621 {
6622 lockdep_assert_held(&kvm->slots_lock);
6623
6624 write_lock(&kvm->mmu_lock);
6625 trace_kvm_mmu_zap_all_fast(kvm);
6626
6627 /*
6628 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
6629 * held for the entire duration of zapping obsolete pages, it's
6630 * impossible for there to be multiple invalid generations associated
6631 * with *valid* shadow pages at any given time, i.e. there is exactly
6632 * one valid generation and (at most) one invalid generation.
6633 */
6634 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6635
6636 /*
6637 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6638 * invalidating TDP MMU roots must be done while holding mmu_lock for
6639 * write and in the same critical section as making the reload request,
6640 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6641 */
6642 if (tdp_mmu_enabled) {
6643 /*
6644 * External page tables don't support fast zapping, therefore
6645 * their mirrors must be invalidated separately by the caller.
6646 */
6647 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS);
6648 }
6649
6650 /*
6651 * Notify all vcpus to reload its shadow page table and flush TLB.
6652 * Then all vcpus will switch to new shadow page table with the new
6653 * mmu_valid_gen.
6654 *
6655 * Note: we need to do this under the protection of mmu_lock,
6656 * otherwise, vcpu would purge shadow page but miss tlb flush.
6657 */
6658 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6659
6660 kvm_zap_obsolete_pages(kvm);
6661
6662 write_unlock(&kvm->mmu_lock);
6663
6664 /*
6665 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6666 * returning to the caller, e.g. if the zap is in response to a memslot
6667 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6668 * associated with the deleted memslot once the update completes, and
6669 * Deferring the zap until the final reference to the root is put would
6670 * lead to use-after-free.
6671 */
6672 if (tdp_mmu_enabled)
6673 kvm_tdp_mmu_zap_invalidated_roots(kvm, true);
6674 }
6675
kvm_mmu_init_vm(struct kvm * kvm)6676 void kvm_mmu_init_vm(struct kvm *kvm)
6677 {
6678 kvm->arch.shadow_mmio_value = shadow_mmio_value;
6679 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6680 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6681 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6682
6683 if (tdp_mmu_enabled)
6684 kvm_mmu_init_tdp_mmu(kvm);
6685
6686 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6687 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6688
6689 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6690
6691 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6692 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6693 }
6694
mmu_free_vm_memory_caches(struct kvm * kvm)6695 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6696 {
6697 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6698 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6699 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6700 }
6701
kvm_mmu_uninit_vm(struct kvm * kvm)6702 void kvm_mmu_uninit_vm(struct kvm *kvm)
6703 {
6704 if (tdp_mmu_enabled)
6705 kvm_mmu_uninit_tdp_mmu(kvm);
6706
6707 mmu_free_vm_memory_caches(kvm);
6708 }
6709
kvm_rmap_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6710 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6711 {
6712 const struct kvm_memory_slot *memslot;
6713 struct kvm_memslots *slots;
6714 struct kvm_memslot_iter iter;
6715 bool flush = false;
6716 gfn_t start, end;
6717 int i;
6718
6719 if (!kvm_memslots_have_rmaps(kvm))
6720 return flush;
6721
6722 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6723 slots = __kvm_memslots(kvm, i);
6724
6725 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6726 memslot = iter.slot;
6727 start = max(gfn_start, memslot->base_gfn);
6728 end = min(gfn_end, memslot->base_gfn + memslot->npages);
6729 if (WARN_ON_ONCE(start >= end))
6730 continue;
6731
6732 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
6733 end, true, flush);
6734 }
6735 }
6736
6737 return flush;
6738 }
6739
6740 /*
6741 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6742 * (not including it)
6743 */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6744 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6745 {
6746 bool flush;
6747
6748 if (WARN_ON_ONCE(gfn_end <= gfn_start))
6749 return;
6750
6751 write_lock(&kvm->mmu_lock);
6752
6753 kvm_mmu_invalidate_begin(kvm);
6754
6755 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6756
6757 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6758
6759 if (tdp_mmu_enabled)
6760 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6761
6762 if (flush)
6763 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6764
6765 kvm_mmu_invalidate_end(kvm);
6766
6767 write_unlock(&kvm->mmu_lock);
6768 }
6769
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6770 static bool slot_rmap_write_protect(struct kvm *kvm,
6771 struct kvm_rmap_head *rmap_head,
6772 const struct kvm_memory_slot *slot)
6773 {
6774 return rmap_write_protect(rmap_head, false);
6775 }
6776
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)6777 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6778 const struct kvm_memory_slot *memslot,
6779 int start_level)
6780 {
6781 if (kvm_memslots_have_rmaps(kvm)) {
6782 write_lock(&kvm->mmu_lock);
6783 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6784 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6785 write_unlock(&kvm->mmu_lock);
6786 }
6787
6788 if (tdp_mmu_enabled) {
6789 read_lock(&kvm->mmu_lock);
6790 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6791 read_unlock(&kvm->mmu_lock);
6792 }
6793 }
6794
need_topup(struct kvm_mmu_memory_cache * cache,int min)6795 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6796 {
6797 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6798 }
6799
need_topup_split_caches_or_resched(struct kvm * kvm)6800 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6801 {
6802 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6803 return true;
6804
6805 /*
6806 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6807 * to split a single huge page. Calculating how many are actually needed
6808 * is possible but not worth the complexity.
6809 */
6810 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6811 need_topup(&kvm->arch.split_page_header_cache, 1) ||
6812 need_topup(&kvm->arch.split_shadow_page_cache, 1);
6813 }
6814
topup_split_caches(struct kvm * kvm)6815 static int topup_split_caches(struct kvm *kvm)
6816 {
6817 /*
6818 * Allocating rmap list entries when splitting huge pages for nested
6819 * MMUs is uncommon as KVM needs to use a list if and only if there is
6820 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6821 * aliased by multiple L2 gfns and/or from multiple nested roots with
6822 * different roles. Aliasing gfns when using TDP is atypical for VMMs;
6823 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6824 * but aliasing rarely occurs post-boot or for many gfns. If there is
6825 * only one rmap entry, rmap->val points directly at that one entry and
6826 * doesn't need to allocate a list. Buffer the cache by the default
6827 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6828 * encounters an aliased gfn or two.
6829 */
6830 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6831 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6832 int r;
6833
6834 lockdep_assert_held(&kvm->slots_lock);
6835
6836 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6837 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6838 if (r)
6839 return r;
6840
6841 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6842 if (r)
6843 return r;
6844
6845 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6846 }
6847
shadow_mmu_get_sp_for_split(struct kvm * kvm,u64 * huge_sptep)6848 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6849 {
6850 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6851 struct shadow_page_caches caches = {};
6852 union kvm_mmu_page_role role;
6853 unsigned int access;
6854 gfn_t gfn;
6855
6856 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6857 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6858
6859 /*
6860 * Note, huge page splitting always uses direct shadow pages, regardless
6861 * of whether the huge page itself is mapped by a direct or indirect
6862 * shadow page, since the huge page region itself is being directly
6863 * mapped with smaller pages.
6864 */
6865 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6866
6867 /* Direct SPs do not require a shadowed_info_cache. */
6868 caches.page_header_cache = &kvm->arch.split_page_header_cache;
6869 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6870
6871 /* Safe to pass NULL for vCPU since requesting a direct SP. */
6872 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6873 }
6874
shadow_mmu_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6875 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6876 const struct kvm_memory_slot *slot,
6877 u64 *huge_sptep)
6878
6879 {
6880 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6881 u64 huge_spte = READ_ONCE(*huge_sptep);
6882 struct kvm_mmu_page *sp;
6883 bool flush = false;
6884 u64 *sptep, spte;
6885 gfn_t gfn;
6886 int index;
6887
6888 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6889
6890 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6891 sptep = &sp->spt[index];
6892 gfn = kvm_mmu_page_get_gfn(sp, index);
6893
6894 /*
6895 * The SP may already have populated SPTEs, e.g. if this huge
6896 * page is aliased by multiple sptes with the same access
6897 * permissions. These entries are guaranteed to map the same
6898 * gfn-to-pfn translation since the SP is direct, so no need to
6899 * modify them.
6900 *
6901 * However, if a given SPTE points to a lower level page table,
6902 * that lower level page table may only be partially populated.
6903 * Installing such SPTEs would effectively unmap a potion of the
6904 * huge page. Unmapping guest memory always requires a TLB flush
6905 * since a subsequent operation on the unmapped regions would
6906 * fail to detect the need to flush.
6907 */
6908 if (is_shadow_present_pte(*sptep)) {
6909 flush |= !is_last_spte(*sptep, sp->role.level);
6910 continue;
6911 }
6912
6913 spte = make_small_spte(kvm, huge_spte, sp->role, index);
6914 mmu_spte_set(sptep, spte);
6915 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6916 }
6917
6918 __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6919 }
6920
shadow_mmu_try_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6921 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6922 const struct kvm_memory_slot *slot,
6923 u64 *huge_sptep)
6924 {
6925 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6926 int level, r = 0;
6927 gfn_t gfn;
6928 u64 spte;
6929
6930 /* Grab information for the tracepoint before dropping the MMU lock. */
6931 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6932 level = huge_sp->role.level;
6933 spte = *huge_sptep;
6934
6935 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6936 r = -ENOSPC;
6937 goto out;
6938 }
6939
6940 if (need_topup_split_caches_or_resched(kvm)) {
6941 write_unlock(&kvm->mmu_lock);
6942 cond_resched();
6943 /*
6944 * If the topup succeeds, return -EAGAIN to indicate that the
6945 * rmap iterator should be restarted because the MMU lock was
6946 * dropped.
6947 */
6948 r = topup_split_caches(kvm) ?: -EAGAIN;
6949 write_lock(&kvm->mmu_lock);
6950 goto out;
6951 }
6952
6953 shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6954
6955 out:
6956 trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6957 return r;
6958 }
6959
shadow_mmu_try_split_huge_pages(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6960 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6961 struct kvm_rmap_head *rmap_head,
6962 const struct kvm_memory_slot *slot)
6963 {
6964 struct rmap_iterator iter;
6965 struct kvm_mmu_page *sp;
6966 u64 *huge_sptep;
6967 int r;
6968
6969 restart:
6970 for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6971 sp = sptep_to_sp(huge_sptep);
6972
6973 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6974 if (WARN_ON_ONCE(!sp->role.guest_mode))
6975 continue;
6976
6977 /* The rmaps should never contain non-leaf SPTEs. */
6978 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6979 continue;
6980
6981 /* SPs with level >PG_LEVEL_4K should never by unsync. */
6982 if (WARN_ON_ONCE(sp->unsync))
6983 continue;
6984
6985 /* Don't bother splitting huge pages on invalid SPs. */
6986 if (sp->role.invalid)
6987 continue;
6988
6989 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6990
6991 /*
6992 * The split succeeded or needs to be retried because the MMU
6993 * lock was dropped. Either way, restart the iterator to get it
6994 * back into a consistent state.
6995 */
6996 if (!r || r == -EAGAIN)
6997 goto restart;
6998
6999 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
7000 break;
7001 }
7002
7003 return false;
7004 }
7005
kvm_shadow_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,int target_level)7006 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
7007 const struct kvm_memory_slot *slot,
7008 gfn_t start, gfn_t end,
7009 int target_level)
7010 {
7011 int level;
7012
7013 /*
7014 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
7015 * down to the target level. This ensures pages are recursively split
7016 * all the way to the target level. There's no need to split pages
7017 * already at the target level.
7018 */
7019 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
7020 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
7021 level, level, start, end - 1, true, true, false);
7022 }
7023
7024 /* Must be called with the mmu_lock held in write-mode. */
kvm_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,u64 start,u64 end,int target_level)7025 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
7026 const struct kvm_memory_slot *memslot,
7027 u64 start, u64 end,
7028 int target_level)
7029 {
7030 if (!tdp_mmu_enabled)
7031 return;
7032
7033 if (kvm_memslots_have_rmaps(kvm))
7034 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7035
7036 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
7037
7038 /*
7039 * A TLB flush is unnecessary at this point for the same reasons as in
7040 * kvm_mmu_slot_try_split_huge_pages().
7041 */
7042 }
7043
kvm_mmu_slot_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,int target_level)7044 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
7045 const struct kvm_memory_slot *memslot,
7046 int target_level)
7047 {
7048 u64 start = memslot->base_gfn;
7049 u64 end = start + memslot->npages;
7050
7051 if (!tdp_mmu_enabled)
7052 return;
7053
7054 if (kvm_memslots_have_rmaps(kvm)) {
7055 write_lock(&kvm->mmu_lock);
7056 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7057 write_unlock(&kvm->mmu_lock);
7058 }
7059
7060 read_lock(&kvm->mmu_lock);
7061 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
7062 read_unlock(&kvm->mmu_lock);
7063
7064 /*
7065 * No TLB flush is necessary here. KVM will flush TLBs after
7066 * write-protecting and/or clearing dirty on the newly split SPTEs to
7067 * ensure that guest writes are reflected in the dirty log before the
7068 * ioctl to enable dirty logging on this memslot completes. Since the
7069 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
7070 * safe for KVM to decide if a TLB flush is necessary based on the split
7071 * SPTEs.
7072 */
7073 }
7074
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)7075 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
7076 struct kvm_rmap_head *rmap_head,
7077 const struct kvm_memory_slot *slot)
7078 {
7079 u64 *sptep;
7080 struct rmap_iterator iter;
7081 int need_tlb_flush = 0;
7082 struct kvm_mmu_page *sp;
7083
7084 restart:
7085 for_each_rmap_spte(rmap_head, &iter, sptep) {
7086 sp = sptep_to_sp(sptep);
7087
7088 /*
7089 * We cannot do huge page mapping for indirect shadow pages,
7090 * which are found on the last rmap (level = 1) when not using
7091 * tdp; such shadow pages are synced with the page table in
7092 * the guest, and the guest page table is using 4K page size
7093 * mapping if the indirect sp has level = 1.
7094 */
7095 if (sp->role.direct &&
7096 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) {
7097 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
7098
7099 if (kvm_available_flush_remote_tlbs_range())
7100 kvm_flush_remote_tlbs_sptep(kvm, sptep);
7101 else
7102 need_tlb_flush = 1;
7103
7104 goto restart;
7105 }
7106 }
7107
7108 return need_tlb_flush;
7109 }
7110 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range);
7111
kvm_rmap_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)7112 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
7113 const struct kvm_memory_slot *slot)
7114 {
7115 /*
7116 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
7117 * pages that are already mapped at the maximum hugepage level.
7118 */
7119 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
7120 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
7121 kvm_flush_remote_tlbs_memslot(kvm, slot);
7122 }
7123
kvm_mmu_recover_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot)7124 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
7125 const struct kvm_memory_slot *slot)
7126 {
7127 if (kvm_memslots_have_rmaps(kvm)) {
7128 write_lock(&kvm->mmu_lock);
7129 kvm_rmap_zap_collapsible_sptes(kvm, slot);
7130 write_unlock(&kvm->mmu_lock);
7131 }
7132
7133 if (tdp_mmu_enabled) {
7134 read_lock(&kvm->mmu_lock);
7135 kvm_tdp_mmu_recover_huge_pages(kvm, slot);
7136 read_unlock(&kvm->mmu_lock);
7137 }
7138 }
7139
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)7140 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
7141 const struct kvm_memory_slot *memslot)
7142 {
7143 if (kvm_memslots_have_rmaps(kvm)) {
7144 write_lock(&kvm->mmu_lock);
7145 /*
7146 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
7147 * support dirty logging at a 4k granularity.
7148 */
7149 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
7150 write_unlock(&kvm->mmu_lock);
7151 }
7152
7153 if (tdp_mmu_enabled) {
7154 read_lock(&kvm->mmu_lock);
7155 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
7156 read_unlock(&kvm->mmu_lock);
7157 }
7158
7159 /*
7160 * The caller will flush the TLBs after this function returns.
7161 *
7162 * It's also safe to flush TLBs out of mmu lock here as currently this
7163 * function is only used for dirty logging, in which case flushing TLB
7164 * out of mmu lock also guarantees no dirty pages will be lost in
7165 * dirty_bitmap.
7166 */
7167 }
7168
kvm_mmu_zap_all(struct kvm * kvm)7169 static void kvm_mmu_zap_all(struct kvm *kvm)
7170 {
7171 struct kvm_mmu_page *sp, *node;
7172 LIST_HEAD(invalid_list);
7173 int ign;
7174
7175 write_lock(&kvm->mmu_lock);
7176 restart:
7177 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
7178 if (WARN_ON_ONCE(sp->role.invalid))
7179 continue;
7180 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
7181 goto restart;
7182 if (cond_resched_rwlock_write(&kvm->mmu_lock))
7183 goto restart;
7184 }
7185
7186 kvm_mmu_commit_zap_page(kvm, &invalid_list);
7187
7188 if (tdp_mmu_enabled)
7189 kvm_tdp_mmu_zap_all(kvm);
7190
7191 write_unlock(&kvm->mmu_lock);
7192 }
7193
kvm_arch_flush_shadow_all(struct kvm * kvm)7194 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7195 {
7196 kvm_mmu_zap_all(kvm);
7197 }
7198
kvm_mmu_zap_memslot_pages_and_flush(struct kvm * kvm,struct kvm_memory_slot * slot,bool flush)7199 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm,
7200 struct kvm_memory_slot *slot,
7201 bool flush)
7202 {
7203 LIST_HEAD(invalid_list);
7204 unsigned long i;
7205
7206 if (list_empty(&kvm->arch.active_mmu_pages))
7207 goto out_flush;
7208
7209 /*
7210 * Since accounting information is stored in struct kvm_arch_memory_slot,
7211 * all MMU pages that are shadowing guest PTEs must be zapped before the
7212 * memslot is deleted, as freeing such pages after the memslot is freed
7213 * will result in use-after-free, e.g. in unaccount_shadowed().
7214 */
7215 for (i = 0; i < slot->npages; i++) {
7216 struct kvm_mmu_page *sp;
7217 gfn_t gfn = slot->base_gfn + i;
7218
7219 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn)
7220 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7221
7222 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7223 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7224 flush = false;
7225 cond_resched_rwlock_write(&kvm->mmu_lock);
7226 }
7227 }
7228
7229 out_flush:
7230 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7231 }
7232
kvm_mmu_zap_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7233 static void kvm_mmu_zap_memslot(struct kvm *kvm,
7234 struct kvm_memory_slot *slot)
7235 {
7236 struct kvm_gfn_range range = {
7237 .slot = slot,
7238 .start = slot->base_gfn,
7239 .end = slot->base_gfn + slot->npages,
7240 .may_block = true,
7241 };
7242 bool flush;
7243
7244 write_lock(&kvm->mmu_lock);
7245 flush = kvm_unmap_gfn_range(kvm, &range);
7246 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush);
7247 write_unlock(&kvm->mmu_lock);
7248 }
7249
kvm_memslot_flush_zap_all(struct kvm * kvm)7250 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm)
7251 {
7252 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM &&
7253 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL);
7254 }
7255
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7256 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7257 struct kvm_memory_slot *slot)
7258 {
7259 if (kvm_memslot_flush_zap_all(kvm))
7260 kvm_mmu_zap_all_fast(kvm);
7261 else
7262 kvm_mmu_zap_memslot(kvm, slot);
7263 }
7264
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)7265 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
7266 {
7267 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
7268
7269 gen &= MMIO_SPTE_GEN_MASK;
7270
7271 /*
7272 * Generation numbers are incremented in multiples of the number of
7273 * address spaces in order to provide unique generations across all
7274 * address spaces. Strip what is effectively the address space
7275 * modifier prior to checking for a wrap of the MMIO generation so
7276 * that a wrap in any address space is detected.
7277 */
7278 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
7279
7280 /*
7281 * The very rare case: if the MMIO generation number has wrapped,
7282 * zap all shadow pages.
7283 */
7284 if (unlikely(gen == 0)) {
7285 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
7286 kvm_mmu_zap_all_fast(kvm);
7287 }
7288 }
7289
mmu_destroy_caches(void)7290 static void mmu_destroy_caches(void)
7291 {
7292 kmem_cache_destroy(pte_list_desc_cache);
7293 kmem_cache_destroy(mmu_page_header_cache);
7294 }
7295
kvm_wake_nx_recovery_thread(struct kvm * kvm)7296 static void kvm_wake_nx_recovery_thread(struct kvm *kvm)
7297 {
7298 /*
7299 * The NX recovery thread is spawned on-demand at the first KVM_RUN and
7300 * may not be valid even though the VM is globally visible. Do nothing,
7301 * as such a VM can't have any possible NX huge pages.
7302 */
7303 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread);
7304
7305 if (nx_thread)
7306 vhost_task_wake(nx_thread);
7307 }
7308
get_nx_huge_pages(char * buffer,const struct kernel_param * kp)7309 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
7310 {
7311 if (nx_hugepage_mitigation_hard_disabled)
7312 return sysfs_emit(buffer, "never\n");
7313
7314 return param_get_bool(buffer, kp);
7315 }
7316
get_nx_auto_mode(void)7317 static bool get_nx_auto_mode(void)
7318 {
7319 /* Return true when CPU has the bug, and mitigations are ON */
7320 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
7321 }
7322
__set_nx_huge_pages(bool val)7323 static void __set_nx_huge_pages(bool val)
7324 {
7325 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
7326 }
7327
set_nx_huge_pages(const char * val,const struct kernel_param * kp)7328 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
7329 {
7330 bool old_val = nx_huge_pages;
7331 bool new_val;
7332
7333 if (nx_hugepage_mitigation_hard_disabled)
7334 return -EPERM;
7335
7336 /* In "auto" mode deploy workaround only if CPU has the bug. */
7337 if (sysfs_streq(val, "off")) {
7338 new_val = 0;
7339 } else if (sysfs_streq(val, "force")) {
7340 new_val = 1;
7341 } else if (sysfs_streq(val, "auto")) {
7342 new_val = get_nx_auto_mode();
7343 } else if (sysfs_streq(val, "never")) {
7344 new_val = 0;
7345
7346 mutex_lock(&kvm_lock);
7347 if (!list_empty(&vm_list)) {
7348 mutex_unlock(&kvm_lock);
7349 return -EBUSY;
7350 }
7351 nx_hugepage_mitigation_hard_disabled = true;
7352 mutex_unlock(&kvm_lock);
7353 } else if (kstrtobool(val, &new_val) < 0) {
7354 return -EINVAL;
7355 }
7356
7357 __set_nx_huge_pages(new_val);
7358
7359 if (new_val != old_val) {
7360 struct kvm *kvm;
7361
7362 mutex_lock(&kvm_lock);
7363
7364 list_for_each_entry(kvm, &vm_list, vm_list) {
7365 mutex_lock(&kvm->slots_lock);
7366 kvm_mmu_zap_all_fast(kvm);
7367 mutex_unlock(&kvm->slots_lock);
7368
7369 kvm_wake_nx_recovery_thread(kvm);
7370 }
7371 mutex_unlock(&kvm_lock);
7372 }
7373
7374 return 0;
7375 }
7376
7377 /*
7378 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7379 * its default value of -1 is technically undefined behavior for a boolean.
7380 * Forward the module init call to SPTE code so that it too can handle module
7381 * params that need to be resolved/snapshot.
7382 */
kvm_mmu_x86_module_init(void)7383 void __init kvm_mmu_x86_module_init(void)
7384 {
7385 if (nx_huge_pages == -1)
7386 __set_nx_huge_pages(get_nx_auto_mode());
7387
7388 /*
7389 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7390 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7391 * when the vendor module is loaded.
7392 */
7393 tdp_mmu_allowed = tdp_mmu_enabled;
7394
7395 kvm_mmu_spte_module_init();
7396 }
7397
7398 /*
7399 * The bulk of the MMU initialization is deferred until the vendor module is
7400 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7401 * to be reset when a potentially different vendor module is loaded.
7402 */
kvm_mmu_vendor_module_init(void)7403 int kvm_mmu_vendor_module_init(void)
7404 {
7405 int ret = -ENOMEM;
7406
7407 /*
7408 * MMU roles use union aliasing which is, generally speaking, an
7409 * undefined behavior. However, we supposedly know how compilers behave
7410 * and the current status quo is unlikely to change. Guardians below are
7411 * supposed to let us know if the assumption becomes false.
7412 */
7413 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7414 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7415 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7416
7417 kvm_mmu_reset_all_pte_masks();
7418
7419 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7420 if (!pte_list_desc_cache)
7421 goto out;
7422
7423 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7424 sizeof(struct kvm_mmu_page),
7425 0, SLAB_ACCOUNT, NULL);
7426 if (!mmu_page_header_cache)
7427 goto out;
7428
7429 return 0;
7430
7431 out:
7432 mmu_destroy_caches();
7433 return ret;
7434 }
7435
kvm_mmu_destroy(struct kvm_vcpu * vcpu)7436 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7437 {
7438 kvm_mmu_unload(vcpu);
7439 if (tdp_mmu_enabled) {
7440 read_lock(&vcpu->kvm->mmu_lock);
7441 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa,
7442 NULL);
7443 read_unlock(&vcpu->kvm->mmu_lock);
7444 }
7445 free_mmu_pages(&vcpu->arch.root_mmu);
7446 free_mmu_pages(&vcpu->arch.guest_mmu);
7447 mmu_free_memory_caches(vcpu);
7448 }
7449
kvm_mmu_vendor_module_exit(void)7450 void kvm_mmu_vendor_module_exit(void)
7451 {
7452 mmu_destroy_caches();
7453 }
7454
7455 /*
7456 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7457 * select a halving time of 1 hour". Returns true if recovery is enabled.
7458 */
calc_nx_huge_pages_recovery_period(uint * period)7459 static bool calc_nx_huge_pages_recovery_period(uint *period)
7460 {
7461 /*
7462 * Use READ_ONCE to get the params, this may be called outside of the
7463 * param setters, e.g. by the kthread to compute its next timeout.
7464 */
7465 bool enabled = READ_ONCE(nx_huge_pages);
7466 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7467
7468 if (!enabled || !ratio)
7469 return false;
7470
7471 *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7472 if (!*period) {
7473 /* Make sure the period is not less than one second. */
7474 ratio = min(ratio, 3600u);
7475 *period = 60 * 60 * 1000 / ratio;
7476 }
7477 return true;
7478 }
7479
set_nx_huge_pages_recovery_param(const char * val,const struct kernel_param * kp)7480 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7481 {
7482 bool was_recovery_enabled, is_recovery_enabled;
7483 uint old_period, new_period;
7484 int err;
7485
7486 if (nx_hugepage_mitigation_hard_disabled)
7487 return -EPERM;
7488
7489 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7490
7491 err = param_set_uint(val, kp);
7492 if (err)
7493 return err;
7494
7495 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7496
7497 if (is_recovery_enabled &&
7498 (!was_recovery_enabled || old_period > new_period)) {
7499 struct kvm *kvm;
7500
7501 mutex_lock(&kvm_lock);
7502
7503 list_for_each_entry(kvm, &vm_list, vm_list)
7504 kvm_wake_nx_recovery_thread(kvm);
7505
7506 mutex_unlock(&kvm_lock);
7507 }
7508
7509 return err;
7510 }
7511
kvm_recover_nx_huge_pages(struct kvm * kvm)7512 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7513 {
7514 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7515 struct kvm_memory_slot *slot;
7516 int rcu_idx;
7517 struct kvm_mmu_page *sp;
7518 unsigned int ratio;
7519 LIST_HEAD(invalid_list);
7520 bool flush = false;
7521 ulong to_zap;
7522
7523 rcu_idx = srcu_read_lock(&kvm->srcu);
7524 write_lock(&kvm->mmu_lock);
7525
7526 /*
7527 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7528 * be done under RCU protection, because the pages are freed via RCU
7529 * callback.
7530 */
7531 rcu_read_lock();
7532
7533 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7534 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7535 for ( ; to_zap; --to_zap) {
7536 if (list_empty(&kvm->arch.possible_nx_huge_pages))
7537 break;
7538
7539 /*
7540 * We use a separate list instead of just using active_mmu_pages
7541 * because the number of shadow pages that be replaced with an
7542 * NX huge page is expected to be relatively small compared to
7543 * the total number of shadow pages. And because the TDP MMU
7544 * doesn't use active_mmu_pages.
7545 */
7546 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7547 struct kvm_mmu_page,
7548 possible_nx_huge_page_link);
7549 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7550 WARN_ON_ONCE(!sp->role.direct);
7551
7552 /*
7553 * Unaccount and do not attempt to recover any NX Huge Pages
7554 * that are being dirty tracked, as they would just be faulted
7555 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7556 * recovered, along with all the other huge pages in the slot,
7557 * when dirty logging is disabled.
7558 *
7559 * Since gfn_to_memslot() is relatively expensive, it helps to
7560 * skip it if it the test cannot possibly return true. On the
7561 * other hand, if any memslot has logging enabled, chances are
7562 * good that all of them do, in which case unaccount_nx_huge_page()
7563 * is much cheaper than zapping the page.
7564 *
7565 * If a memslot update is in progress, reading an incorrect value
7566 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7567 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7568 * it is becoming nonzero, the page will be zapped unnecessarily.
7569 * Either way, this only affects efficiency in racy situations,
7570 * and not correctness.
7571 */
7572 slot = NULL;
7573 if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7574 struct kvm_memslots *slots;
7575
7576 slots = kvm_memslots_for_spte_role(kvm, sp->role);
7577 slot = __gfn_to_memslot(slots, sp->gfn);
7578 WARN_ON_ONCE(!slot);
7579 }
7580
7581 if (slot && kvm_slot_dirty_track_enabled(slot))
7582 unaccount_nx_huge_page(kvm, sp);
7583 else if (is_tdp_mmu_page(sp))
7584 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7585 else
7586 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7587 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7588
7589 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7590 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7591 rcu_read_unlock();
7592
7593 cond_resched_rwlock_write(&kvm->mmu_lock);
7594 flush = false;
7595
7596 rcu_read_lock();
7597 }
7598 }
7599 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7600
7601 rcu_read_unlock();
7602
7603 write_unlock(&kvm->mmu_lock);
7604 srcu_read_unlock(&kvm->srcu, rcu_idx);
7605 }
7606
kvm_nx_huge_page_recovery_worker_kill(void * data)7607 static void kvm_nx_huge_page_recovery_worker_kill(void *data)
7608 {
7609 }
7610
kvm_nx_huge_page_recovery_worker(void * data)7611 static bool kvm_nx_huge_page_recovery_worker(void *data)
7612 {
7613 struct kvm *kvm = data;
7614 bool enabled;
7615 uint period;
7616 long remaining_time;
7617
7618 enabled = calc_nx_huge_pages_recovery_period(&period);
7619 if (!enabled)
7620 return false;
7621
7622 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period)
7623 - get_jiffies_64();
7624 if (remaining_time > 0) {
7625 schedule_timeout(remaining_time);
7626 /* check for signals and come back */
7627 return true;
7628 }
7629
7630 __set_current_state(TASK_RUNNING);
7631 kvm_recover_nx_huge_pages(kvm);
7632 kvm->arch.nx_huge_page_last = get_jiffies_64();
7633 return true;
7634 }
7635
kvm_mmu_start_lpage_recovery(struct once * once)7636 static int kvm_mmu_start_lpage_recovery(struct once *once)
7637 {
7638 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once);
7639 struct kvm *kvm = container_of(ka, struct kvm, arch);
7640 struct vhost_task *nx_thread;
7641
7642 kvm->arch.nx_huge_page_last = get_jiffies_64();
7643 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker,
7644 kvm_nx_huge_page_recovery_worker_kill,
7645 kvm, "kvm-nx-lpage-recovery");
7646
7647 if (IS_ERR(nx_thread))
7648 return PTR_ERR(nx_thread);
7649
7650 vhost_task_start(nx_thread);
7651
7652 /* Make the task visible only once it is fully started. */
7653 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread);
7654 return 0;
7655 }
7656
kvm_mmu_post_init_vm(struct kvm * kvm)7657 int kvm_mmu_post_init_vm(struct kvm *kvm)
7658 {
7659 if (nx_hugepage_mitigation_hard_disabled)
7660 return 0;
7661
7662 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery);
7663 }
7664
kvm_mmu_pre_destroy_vm(struct kvm * kvm)7665 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7666 {
7667 if (kvm->arch.nx_huge_page_recovery_thread)
7668 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread);
7669 }
7670
7671 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_arch_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7672 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7673 struct kvm_gfn_range *range)
7674 {
7675 /*
7676 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only
7677 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7678 * can simply ignore such slots. But if userspace is making memory
7679 * PRIVATE, then KVM must prevent the guest from accessing the memory
7680 * as shared. And if userspace is making memory SHARED and this point
7681 * is reached, then at least one page within the range was previously
7682 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7683 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7684 * a hugepage can be used for affected ranges.
7685 */
7686 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7687 return false;
7688
7689 /* Unmap the old attribute page. */
7690 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE)
7691 range->attr_filter = KVM_FILTER_SHARED;
7692 else
7693 range->attr_filter = KVM_FILTER_PRIVATE;
7694
7695 return kvm_unmap_gfn_range(kvm, range);
7696 }
7697
hugepage_test_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7698 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7699 int level)
7700 {
7701 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7702 }
7703
hugepage_clear_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7704 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7705 int level)
7706 {
7707 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7708 }
7709
hugepage_set_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7710 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7711 int level)
7712 {
7713 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7714 }
7715
hugepage_has_attrs(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long attrs)7716 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7717 gfn_t gfn, int level, unsigned long attrs)
7718 {
7719 const unsigned long start = gfn;
7720 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7721
7722 if (level == PG_LEVEL_2M)
7723 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs);
7724
7725 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7726 if (hugepage_test_mixed(slot, gfn, level - 1) ||
7727 attrs != kvm_get_memory_attributes(kvm, gfn))
7728 return false;
7729 }
7730 return true;
7731 }
7732
kvm_arch_post_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7733 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7734 struct kvm_gfn_range *range)
7735 {
7736 unsigned long attrs = range->arg.attributes;
7737 struct kvm_memory_slot *slot = range->slot;
7738 int level;
7739
7740 lockdep_assert_held_write(&kvm->mmu_lock);
7741 lockdep_assert_held(&kvm->slots_lock);
7742
7743 /*
7744 * Calculate which ranges can be mapped with hugepages even if the slot
7745 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over
7746 * a range that has PRIVATE GFNs, and conversely converting a range to
7747 * SHARED may now allow hugepages.
7748 */
7749 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7750 return false;
7751
7752 /*
7753 * The sequence matters here: upper levels consume the result of lower
7754 * level's scanning.
7755 */
7756 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7757 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7758 gfn_t gfn = gfn_round_for_level(range->start, level);
7759
7760 /* Process the head page if it straddles the range. */
7761 if (gfn != range->start || gfn + nr_pages > range->end) {
7762 /*
7763 * Skip mixed tracking if the aligned gfn isn't covered
7764 * by the memslot, KVM can't use a hugepage due to the
7765 * misaligned address regardless of memory attributes.
7766 */
7767 if (gfn >= slot->base_gfn &&
7768 gfn + nr_pages <= slot->base_gfn + slot->npages) {
7769 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7770 hugepage_clear_mixed(slot, gfn, level);
7771 else
7772 hugepage_set_mixed(slot, gfn, level);
7773 }
7774 gfn += nr_pages;
7775 }
7776
7777 /*
7778 * Pages entirely covered by the range are guaranteed to have
7779 * only the attributes which were just set.
7780 */
7781 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7782 hugepage_clear_mixed(slot, gfn, level);
7783
7784 /*
7785 * Process the last tail page if it straddles the range and is
7786 * contained by the memslot. Like the head page, KVM can't
7787 * create a hugepage if the slot size is misaligned.
7788 */
7789 if (gfn < range->end &&
7790 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7791 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7792 hugepage_clear_mixed(slot, gfn, level);
7793 else
7794 hugepage_set_mixed(slot, gfn, level);
7795 }
7796 }
7797 return false;
7798 }
7799
kvm_mmu_init_memslot_memory_attributes(struct kvm * kvm,struct kvm_memory_slot * slot)7800 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7801 struct kvm_memory_slot *slot)
7802 {
7803 int level;
7804
7805 if (!kvm_arch_has_private_mem(kvm))
7806 return;
7807
7808 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7809 /*
7810 * Don't bother tracking mixed attributes for pages that can't
7811 * be huge due to alignment, i.e. process only pages that are
7812 * entirely contained by the memslot.
7813 */
7814 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7815 gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7816 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7817 gfn_t gfn;
7818
7819 if (start < slot->base_gfn)
7820 start += nr_pages;
7821
7822 /*
7823 * Unlike setting attributes, every potential hugepage needs to
7824 * be manually checked as the attributes may already be mixed.
7825 */
7826 for (gfn = start; gfn < end; gfn += nr_pages) {
7827 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7828
7829 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7830 hugepage_clear_mixed(slot, gfn, level);
7831 else
7832 hugepage_set_mixed(slot, gfn, level);
7833 }
7834 }
7835 }
7836 #endif
7837