1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 #include <linux/wordpart.h>
51
52 #include <asm/page.h>
53 #include <asm/memtype.h>
54 #include <asm/cmpxchg.h>
55 #include <asm/io.h>
56 #include <asm/set_memory.h>
57 #include <asm/spec-ctrl.h>
58 #include <asm/vmx.h>
59
60 #include "trace.h"
61
62 static bool nx_hugepage_mitigation_hard_disabled;
63
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 .set = set_nx_huge_pages,
79 .get = get_nx_huge_pages,
80 };
81
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 .set = set_nx_huge_pages_recovery_param,
84 .get = param_get_uint,
85 };
86
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 &nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 &nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99 /*
100 * When setting this variable to true it enables Two-Dimensional-Paging
101 * where the hardware walks 2 page tables:
102 * 1. the guest-virtual to guest-physical
103 * 2. while doing 1. it walks guest-physical to host-physical
104 * If the hardware supports that we don't need to do shadow paging.
105 */
106 bool tdp_enabled = false;
107
108 static bool __ro_after_init tdp_mmu_allowed;
109
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 EXPORT_SYMBOL_GPL(tdp_mmu_enabled);
114 #endif
115
116 static int max_huge_page_level __read_mostly;
117 static int tdp_root_level __read_mostly;
118 static int max_tdp_level __read_mostly;
119
120 #define PTE_PREFETCH_NUM 8
121
122 #include <trace/events/kvm.h>
123
124 /* make pte_list_desc fit well in cache lines */
125 #define PTE_LIST_EXT 14
126
127 /*
128 * struct pte_list_desc is the core data structure used to implement a custom
129 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
130 * given GFN when used in the context of rmaps. Using a custom list allows KVM
131 * to optimize for the common case where many GFNs will have at most a handful
132 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
133 * memory footprint, which in turn improves runtime performance by exploiting
134 * cache locality.
135 *
136 * A list is comprised of one or more pte_list_desc objects (descriptors).
137 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor
138 * is full and a new SPTEs needs to be added, a new descriptor is allocated and
139 * becomes the head of the list. This means that by definitions, all tail
140 * descriptors are full.
141 *
142 * Note, the meta data fields are deliberately placed at the start of the
143 * structure to optimize the cacheline layout; accessing the descriptor will
144 * touch only a single cacheline so long as @spte_count<=6 (or if only the
145 * descriptors metadata is accessed).
146 */
147 struct pte_list_desc {
148 struct pte_list_desc *more;
149 /* The number of PTEs stored in _this_ descriptor. */
150 u32 spte_count;
151 /* The number of PTEs stored in all tails of this descriptor. */
152 u32 tail_count;
153 u64 *sptes[PTE_LIST_EXT];
154 };
155
156 struct kvm_shadow_walk_iterator {
157 u64 addr;
158 hpa_t shadow_addr;
159 u64 *sptep;
160 int level;
161 unsigned index;
162 };
163
164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
165 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
166 (_root), (_addr)); \
167 shadow_walk_okay(&(_walker)); \
168 shadow_walk_next(&(_walker)))
169
170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
174
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
180
181 static struct kmem_cache *pte_list_desc_cache;
182 struct kmem_cache *mmu_page_header_cache;
183
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185
186 struct kvm_mmu_role_regs {
187 const unsigned long cr0;
188 const unsigned long cr4;
189 const u64 efer;
190 };
191
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194
195 /*
196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
197 * reading from the role_regs. Once the root_role is constructed, it becomes
198 * the single source of truth for the MMU's state.
199 */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
201 static inline bool __maybe_unused \
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
203 { \
204 return !!(regs->reg & flag); \
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216
217 /*
218 * The MMU itself (with a valid role) is the single source of truth for the
219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221 * and the vCPU may be incorrect/irrelevant.
222 */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
225 { \
226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
236
is_cr0_pg(struct kvm_mmu * mmu)237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239 return mmu->cpu_role.base.level > 0;
240 }
241
is_cr4_pae(struct kvm_mmu * mmu)242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244 return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246
vcpu_to_role_regs(struct kvm_vcpu * vcpu)247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249 struct kvm_mmu_role_regs regs = {
250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 .efer = vcpu->arch.efer,
253 };
254
255 return regs;
256 }
257
get_guest_cr3(struct kvm_vcpu * vcpu)258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260 return kvm_read_cr3(vcpu);
261 }
262
kvm_mmu_get_guest_pgd(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264 struct kvm_mmu *mmu)
265 {
266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267 return kvm_read_cr3(vcpu);
268
269 return mmu->get_guest_pgd(vcpu);
270 }
271
kvm_available_flush_remote_tlbs_range(void)272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274 #if IS_ENABLED(CONFIG_HYPERV)
275 return kvm_x86_ops.flush_remote_tlbs_range;
276 #else
277 return false;
278 #endif
279 }
280
281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
282
283 /* Flush the range of guest memory mapped by the given SPTE. */
kvm_flush_remote_tlbs_sptep(struct kvm * kvm,u64 * sptep)284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
285 {
286 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
288
289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
290 }
291
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293 unsigned int access)
294 {
295 u64 spte = make_mmio_spte(vcpu, gfn, access);
296
297 trace_mark_mmio_spte(sptep, gfn, spte);
298 mmu_spte_set(sptep, spte);
299 }
300
get_mmio_spte_gfn(u64 spte)301 static gfn_t get_mmio_spte_gfn(u64 spte)
302 {
303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
304
305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
306 & shadow_nonpresent_or_rsvd_mask;
307
308 return gpa >> PAGE_SHIFT;
309 }
310
get_mmio_spte_access(u64 spte)311 static unsigned get_mmio_spte_access(u64 spte)
312 {
313 return spte & shadow_mmio_access_mask;
314 }
315
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
317 {
318 u64 kvm_gen, spte_gen, gen;
319
320 gen = kvm_vcpu_memslots(vcpu)->generation;
321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
322 return false;
323
324 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
325 spte_gen = get_mmio_spte_generation(spte);
326
327 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
328 return likely(kvm_gen == spte_gen);
329 }
330
is_cpuid_PSE36(void)331 static int is_cpuid_PSE36(void)
332 {
333 return 1;
334 }
335
336 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
340 WRITE_ONCE(*sptep, spte);
341 }
342
__update_clear_spte_fast(u64 * sptep,u64 spte)343 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
344 {
345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
346 WRITE_ONCE(*sptep, spte);
347 }
348
__update_clear_spte_slow(u64 * sptep,u64 spte)349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
350 {
351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
352 return xchg(sptep, spte);
353 }
354
__get_spte_lockless(u64 * sptep)355 static u64 __get_spte_lockless(u64 *sptep)
356 {
357 return READ_ONCE(*sptep);
358 }
359 #else
360 union split_spte {
361 struct {
362 u32 spte_low;
363 u32 spte_high;
364 };
365 u64 spte;
366 };
367
count_spte_clear(u64 * sptep,u64 spte)368 static void count_spte_clear(u64 *sptep, u64 spte)
369 {
370 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
371
372 if (is_shadow_present_pte(spte))
373 return;
374
375 /* Ensure the spte is completely set before we increase the count */
376 smp_wmb();
377 sp->clear_spte_count++;
378 }
379
__set_spte(u64 * sptep,u64 spte)380 static void __set_spte(u64 *sptep, u64 spte)
381 {
382 union split_spte *ssptep, sspte;
383
384 ssptep = (union split_spte *)sptep;
385 sspte = (union split_spte)spte;
386
387 ssptep->spte_high = sspte.spte_high;
388
389 /*
390 * If we map the spte from nonpresent to present, We should store
391 * the high bits firstly, then set present bit, so cpu can not
392 * fetch this spte while we are setting the spte.
393 */
394 smp_wmb();
395
396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 }
398
__update_clear_spte_fast(u64 * sptep,u64 spte)399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401 union split_spte *ssptep, sspte;
402
403 ssptep = (union split_spte *)sptep;
404 sspte = (union split_spte)spte;
405
406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407
408 /*
409 * If we map the spte from present to nonpresent, we should clear
410 * present bit firstly to avoid vcpu fetch the old high bits.
411 */
412 smp_wmb();
413
414 ssptep->spte_high = sspte.spte_high;
415 count_spte_clear(sptep, spte);
416 }
417
__update_clear_spte_slow(u64 * sptep,u64 spte)418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419 {
420 union split_spte *ssptep, sspte, orig;
421
422 ssptep = (union split_spte *)sptep;
423 sspte = (union split_spte)spte;
424
425 /* xchg acts as a barrier before the setting of the high bits */
426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 orig.spte_high = ssptep->spte_high;
428 ssptep->spte_high = sspte.spte_high;
429 count_spte_clear(sptep, spte);
430
431 return orig.spte;
432 }
433
434 /*
435 * The idea using the light way get the spte on x86_32 guest is from
436 * gup_get_pte (mm/gup.c).
437 *
438 * An spte tlb flush may be pending, because they are coalesced and
439 * we are running out of the MMU lock. Therefore
440 * we need to protect against in-progress updates of the spte.
441 *
442 * Reading the spte while an update is in progress may get the old value
443 * for the high part of the spte. The race is fine for a present->non-present
444 * change (because the high part of the spte is ignored for non-present spte),
445 * but for a present->present change we must reread the spte.
446 *
447 * All such changes are done in two steps (present->non-present and
448 * non-present->present), hence it is enough to count the number of
449 * present->non-present updates: if it changed while reading the spte,
450 * we might have hit the race. This is done using clear_spte_count.
451 */
__get_spte_lockless(u64 * sptep)452 static u64 __get_spte_lockless(u64 *sptep)
453 {
454 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
455 union split_spte spte, *orig = (union split_spte *)sptep;
456 int count;
457
458 retry:
459 count = sp->clear_spte_count;
460 smp_rmb();
461
462 spte.spte_low = orig->spte_low;
463 smp_rmb();
464
465 spte.spte_high = orig->spte_high;
466 smp_rmb();
467
468 if (unlikely(spte.spte_low != orig->spte_low ||
469 count != sp->clear_spte_count))
470 goto retry;
471
472 return spte.spte;
473 }
474 #endif
475
476 /* Rules for using mmu_spte_set:
477 * Set the sptep from nonpresent to present.
478 * Note: the sptep being assigned *must* be either not present
479 * or in a state where the hardware will not attempt to update
480 * the spte.
481 */
mmu_spte_set(u64 * sptep,u64 new_spte)482 static void mmu_spte_set(u64 *sptep, u64 new_spte)
483 {
484 WARN_ON_ONCE(is_shadow_present_pte(*sptep));
485 __set_spte(sptep, new_spte);
486 }
487
488 /* Rules for using mmu_spte_update:
489 * Update the state bits, it means the mapped pfn is not changed.
490 *
491 * Returns true if the TLB needs to be flushed
492 */
mmu_spte_update(u64 * sptep,u64 new_spte)493 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494 {
495 u64 old_spte = *sptep;
496
497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
498 check_spte_writable_invariants(new_spte);
499
500 if (!is_shadow_present_pte(old_spte)) {
501 mmu_spte_set(sptep, new_spte);
502 return false;
503 }
504
505 if (!spte_needs_atomic_update(old_spte))
506 __update_clear_spte_fast(sptep, new_spte);
507 else
508 old_spte = __update_clear_spte_slow(sptep, new_spte);
509
510 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) ||
511 spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
512
513 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte);
514 }
515
516 /*
517 * Rules for using mmu_spte_clear_track_bits:
518 * It sets the sptep from present to nonpresent, and track the
519 * state bits, it is used to clear the last level sptep.
520 * Returns the old PTE.
521 */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)522 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
523 {
524 u64 old_spte = *sptep;
525 int level = sptep_to_sp(sptep)->role.level;
526
527 if (!is_shadow_present_pte(old_spte) ||
528 !spte_needs_atomic_update(old_spte))
529 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
530 else
531 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
532
533 if (!is_shadow_present_pte(old_spte))
534 return old_spte;
535
536 kvm_update_page_stats(kvm, level, -1);
537 return old_spte;
538 }
539
540 /*
541 * Rules for using mmu_spte_clear_no_track:
542 * Directly clear spte without caring the state bits of sptep,
543 * it is used to set the upper level spte.
544 */
mmu_spte_clear_no_track(u64 * sptep)545 static void mmu_spte_clear_no_track(u64 *sptep)
546 {
547 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
548 }
549
mmu_spte_get_lockless(u64 * sptep)550 static u64 mmu_spte_get_lockless(u64 *sptep)
551 {
552 return __get_spte_lockless(sptep);
553 }
554
is_tdp_mmu_active(struct kvm_vcpu * vcpu)555 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
556 {
557 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
558 }
559
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)560 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
561 {
562 if (is_tdp_mmu_active(vcpu)) {
563 kvm_tdp_mmu_walk_lockless_begin();
564 } else {
565 /*
566 * Prevent page table teardown by making any free-er wait during
567 * kvm_flush_remote_tlbs() IPI to all active vcpus.
568 */
569 local_irq_disable();
570
571 /*
572 * Make sure a following spte read is not reordered ahead of the write
573 * to vcpu->mode.
574 */
575 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
576 }
577 }
578
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)579 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
580 {
581 if (is_tdp_mmu_active(vcpu)) {
582 kvm_tdp_mmu_walk_lockless_end();
583 } else {
584 /*
585 * Make sure the write to vcpu->mode is not reordered in front of
586 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
587 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
588 */
589 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
590 local_irq_enable();
591 }
592 }
593
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)594 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
595 {
596 int r;
597
598 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
599 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
600 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
601 if (r)
602 return r;
603 if (kvm_has_mirrored_tdp(vcpu->kvm)) {
604 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache,
605 PT64_ROOT_MAX_LEVEL);
606 if (r)
607 return r;
608 }
609 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
610 PT64_ROOT_MAX_LEVEL);
611 if (r)
612 return r;
613 if (maybe_indirect) {
614 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
615 PT64_ROOT_MAX_LEVEL);
616 if (r)
617 return r;
618 }
619 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
620 PT64_ROOT_MAX_LEVEL);
621 }
622
mmu_free_memory_caches(struct kvm_vcpu * vcpu)623 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
624 {
625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache);
629 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
630 }
631
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)632 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
633 {
634 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
635 }
636
637 static bool sp_has_gptes(struct kvm_mmu_page *sp);
638
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)639 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
640 {
641 if (sp->role.passthrough)
642 return sp->gfn;
643
644 if (sp->shadowed_translation)
645 return sp->shadowed_translation[index] >> PAGE_SHIFT;
646
647 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
648 }
649
650 /*
651 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
652 * that the SPTE itself may have a more constrained access permissions that
653 * what the guest enforces. For example, a guest may create an executable
654 * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
655 */
kvm_mmu_page_get_access(struct kvm_mmu_page * sp,int index)656 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
657 {
658 if (sp->shadowed_translation)
659 return sp->shadowed_translation[index] & ACC_ALL;
660
661 /*
662 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
663 * KVM is not shadowing any guest page tables, so the "guest access
664 * permissions" are just ACC_ALL.
665 *
666 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
667 * is shadowing a guest huge page with small pages, the guest access
668 * permissions being shadowed are the access permissions of the huge
669 * page.
670 *
671 * In both cases, sp->role.access contains the correct access bits.
672 */
673 return sp->role.access;
674 }
675
kvm_mmu_page_set_translation(struct kvm_mmu_page * sp,int index,gfn_t gfn,unsigned int access)676 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
677 gfn_t gfn, unsigned int access)
678 {
679 if (sp->shadowed_translation) {
680 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
681 return;
682 }
683
684 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
685 "access mismatch under %s page %llx (expected %u, got %u)\n",
686 sp->role.passthrough ? "passthrough" : "direct",
687 sp->gfn, kvm_mmu_page_get_access(sp, index), access);
688
689 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
690 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
691 sp->role.passthrough ? "passthrough" : "direct",
692 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
693 }
694
kvm_mmu_page_set_access(struct kvm_mmu_page * sp,int index,unsigned int access)695 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
696 unsigned int access)
697 {
698 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
699
700 kvm_mmu_page_set_translation(sp, index, gfn, access);
701 }
702
703 /*
704 * Return the pointer to the large page information for a given gfn,
705 * handling slots that are not large page aligned.
706 */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)707 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
708 const struct kvm_memory_slot *slot, int level)
709 {
710 unsigned long idx;
711
712 idx = gfn_to_index(gfn, slot->base_gfn, level);
713 return &slot->arch.lpage_info[level - 2][idx];
714 }
715
716 /*
717 * The most significant bit in disallow_lpage tracks whether or not memory
718 * attributes are mixed, i.e. not identical for all gfns at the current level.
719 * The lower order bits are used to refcount other cases where a hugepage is
720 * disallowed, e.g. if KVM has shadow a page table at the gfn.
721 */
722 #define KVM_LPAGE_MIXED_FLAG BIT(31)
723
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)724 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
725 gfn_t gfn, int count)
726 {
727 struct kvm_lpage_info *linfo;
728 int old, i;
729
730 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
731 linfo = lpage_info_slot(gfn, slot, i);
732
733 old = linfo->disallow_lpage;
734 linfo->disallow_lpage += count;
735 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
736 }
737 }
738
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)739 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
740 {
741 update_gfn_disallow_lpage_count(slot, gfn, 1);
742 }
743
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)744 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
745 {
746 update_gfn_disallow_lpage_count(slot, gfn, -1);
747 }
748
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
750 {
751 struct kvm_memslots *slots;
752 struct kvm_memory_slot *slot;
753 gfn_t gfn;
754
755 kvm->arch.indirect_shadow_pages++;
756 /*
757 * Ensure indirect_shadow_pages is elevated prior to re-reading guest
758 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
759 * emulated writes are visible before re-reading guest PTEs, or that
760 * an emulated write will see the elevated count and acquire mmu_lock
761 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write().
762 */
763 smp_mb();
764
765 gfn = sp->gfn;
766 slots = kvm_memslots_for_spte_role(kvm, sp->role);
767 slot = __gfn_to_memslot(slots, gfn);
768
769 /* the non-leaf shadow pages are keeping readonly. */
770 if (sp->role.level > PG_LEVEL_4K)
771 return __kvm_write_track_add_gfn(kvm, slot, gfn);
772
773 kvm_mmu_gfn_disallow_lpage(slot, gfn);
774
775 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
776 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
777 }
778
track_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)779 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 /*
782 * If it's possible to replace the shadow page with an NX huge page,
783 * i.e. if the shadow page is the only thing currently preventing KVM
784 * from using a huge page, add the shadow page to the list of "to be
785 * zapped for NX recovery" pages. Note, the shadow page can already be
786 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
787 * links a shadow page at multiple points.
788 */
789 if (!list_empty(&sp->possible_nx_huge_page_link))
790 return;
791
792 ++kvm->stat.nx_lpage_splits;
793 list_add_tail(&sp->possible_nx_huge_page_link,
794 &kvm->arch.possible_nx_huge_pages);
795 }
796
account_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp,bool nx_huge_page_possible)797 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
798 bool nx_huge_page_possible)
799 {
800 sp->nx_huge_page_disallowed = true;
801
802 if (nx_huge_page_possible)
803 track_possible_nx_huge_page(kvm, sp);
804 }
805
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)806 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
807 {
808 struct kvm_memslots *slots;
809 struct kvm_memory_slot *slot;
810 gfn_t gfn;
811
812 kvm->arch.indirect_shadow_pages--;
813 gfn = sp->gfn;
814 slots = kvm_memslots_for_spte_role(kvm, sp->role);
815 slot = __gfn_to_memslot(slots, gfn);
816 if (sp->role.level > PG_LEVEL_4K)
817 return __kvm_write_track_remove_gfn(kvm, slot, gfn);
818
819 kvm_mmu_gfn_allow_lpage(slot, gfn);
820 }
821
untrack_possible_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)822 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
823 {
824 if (list_empty(&sp->possible_nx_huge_page_link))
825 return;
826
827 --kvm->stat.nx_lpage_splits;
828 list_del_init(&sp->possible_nx_huge_page_link);
829 }
830
unaccount_nx_huge_page(struct kvm * kvm,struct kvm_mmu_page * sp)831 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
832 {
833 sp->nx_huge_page_disallowed = false;
834
835 untrack_possible_nx_huge_page(kvm, sp);
836 }
837
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)838 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
839 gfn_t gfn,
840 bool no_dirty_log)
841 {
842 struct kvm_memory_slot *slot;
843
844 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
845 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
846 return NULL;
847 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
848 return NULL;
849
850 return slot;
851 }
852
853 /*
854 * About rmap_head encoding:
855 *
856 * If the bit zero of rmap_head->val is clear, then it points to the only spte
857 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct
858 * pte_list_desc containing more mappings.
859 */
860 #define KVM_RMAP_MANY BIT(0)
861
862 /*
863 * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always
864 * operates with mmu_lock held for write), but rmaps can be walked without
865 * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain
866 * being zapped/dropped _while the rmap is locked_.
867 *
868 * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be
869 * done while holding mmu_lock for write. This allows a task walking rmaps
870 * without holding mmu_lock to concurrently walk the same entries as a task
871 * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify
872 * the rmaps, thus the walks are stable.
873 *
874 * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED,
875 * only the rmap chains themselves are protected. E.g. holding an rmap's lock
876 * ensures all "struct pte_list_desc" fields are stable.
877 */
878 #define KVM_RMAP_LOCKED BIT(1)
879
__kvm_rmap_lock(struct kvm_rmap_head * rmap_head)880 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head)
881 {
882 unsigned long old_val, new_val;
883
884 lockdep_assert_preemption_disabled();
885
886 /*
887 * Elide the lock if the rmap is empty, as lockless walkers (read-only
888 * mode) don't need to (and can't) walk an empty rmap, nor can they add
889 * entries to the rmap. I.e. the only paths that process empty rmaps
890 * do so while holding mmu_lock for write, and are mutually exclusive.
891 */
892 old_val = atomic_long_read(&rmap_head->val);
893 if (!old_val)
894 return 0;
895
896 do {
897 /*
898 * If the rmap is locked, wait for it to be unlocked before
899 * trying acquire the lock, e.g. to avoid bouncing the cache
900 * line.
901 */
902 while (old_val & KVM_RMAP_LOCKED) {
903 cpu_relax();
904 old_val = atomic_long_read(&rmap_head->val);
905 }
906
907 /*
908 * Recheck for an empty rmap, it may have been purged by the
909 * task that held the lock.
910 */
911 if (!old_val)
912 return 0;
913
914 new_val = old_val | KVM_RMAP_LOCKED;
915 /*
916 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap
917 * from being reordered outside of the critical section created by
918 * __kvm_rmap_lock().
919 *
920 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock().
921 *
922 * For the !old_val case, no ordering is needed, as there is no rmap
923 * to walk.
924 */
925 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val));
926
927 /*
928 * Return the old value, i.e. _without_ the LOCKED bit set. It's
929 * impossible for the return value to be 0 (see above), i.e. the read-
930 * only unlock flow can't get a false positive and fail to unlock.
931 */
932 return old_val;
933 }
934
kvm_rmap_lock(struct kvm * kvm,struct kvm_rmap_head * rmap_head)935 static unsigned long kvm_rmap_lock(struct kvm *kvm,
936 struct kvm_rmap_head *rmap_head)
937 {
938 lockdep_assert_held_write(&kvm->mmu_lock);
939
940 return __kvm_rmap_lock(rmap_head);
941 }
942
__kvm_rmap_unlock(struct kvm_rmap_head * rmap_head,unsigned long val)943 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head,
944 unsigned long val)
945 {
946 KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED);
947 /*
948 * Ensure that all accesses to the rmap have completed before unlocking
949 * the rmap.
950 *
951 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock().
952 */
953 atomic_long_set_release(&rmap_head->val, val);
954 }
955
kvm_rmap_unlock(struct kvm * kvm,struct kvm_rmap_head * rmap_head,unsigned long new_val)956 static void kvm_rmap_unlock(struct kvm *kvm,
957 struct kvm_rmap_head *rmap_head,
958 unsigned long new_val)
959 {
960 lockdep_assert_held_write(&kvm->mmu_lock);
961
962 __kvm_rmap_unlock(rmap_head, new_val);
963 }
964
kvm_rmap_get(struct kvm_rmap_head * rmap_head)965 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head)
966 {
967 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED;
968 }
969
970 /*
971 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The
972 * actual locking is the same, but the caller is disallowed from modifying the
973 * rmap, and so the unlock flow is a nop if the rmap is/was empty.
974 */
kvm_rmap_lock_readonly(struct kvm_rmap_head * rmap_head)975 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head)
976 {
977 unsigned long rmap_val;
978
979 preempt_disable();
980 rmap_val = __kvm_rmap_lock(rmap_head);
981
982 if (!rmap_val)
983 preempt_enable();
984
985 return rmap_val;
986 }
987
kvm_rmap_unlock_readonly(struct kvm_rmap_head * rmap_head,unsigned long old_val)988 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head,
989 unsigned long old_val)
990 {
991 if (!old_val)
992 return;
993
994 KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head));
995
996 __kvm_rmap_unlock(rmap_head, old_val);
997 preempt_enable();
998 }
999
1000 /*
1001 * Returns the number of pointers in the rmap chain, not counting the new one.
1002 */
pte_list_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * spte,struct kvm_rmap_head * rmap_head)1003 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1004 u64 *spte, struct kvm_rmap_head *rmap_head)
1005 {
1006 unsigned long old_val, new_val;
1007 struct pte_list_desc *desc;
1008 int count = 0;
1009
1010 old_val = kvm_rmap_lock(kvm, rmap_head);
1011
1012 if (!old_val) {
1013 new_val = (unsigned long)spte;
1014 } else if (!(old_val & KVM_RMAP_MANY)) {
1015 desc = kvm_mmu_memory_cache_alloc(cache);
1016 desc->sptes[0] = (u64 *)old_val;
1017 desc->sptes[1] = spte;
1018 desc->spte_count = 2;
1019 desc->tail_count = 0;
1020 new_val = (unsigned long)desc | KVM_RMAP_MANY;
1021 ++count;
1022 } else {
1023 desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1024 count = desc->tail_count + desc->spte_count;
1025
1026 /*
1027 * If the previous head is full, allocate a new head descriptor
1028 * as tail descriptors are always kept full.
1029 */
1030 if (desc->spte_count == PTE_LIST_EXT) {
1031 desc = kvm_mmu_memory_cache_alloc(cache);
1032 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
1033 desc->spte_count = 0;
1034 desc->tail_count = count;
1035 new_val = (unsigned long)desc | KVM_RMAP_MANY;
1036 } else {
1037 new_val = old_val;
1038 }
1039 desc->sptes[desc->spte_count++] = spte;
1040 }
1041
1042 kvm_rmap_unlock(kvm, rmap_head, new_val);
1043
1044 return count;
1045 }
1046
pte_list_desc_remove_entry(struct kvm * kvm,unsigned long * rmap_val,struct pte_list_desc * desc,int i)1047 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val,
1048 struct pte_list_desc *desc, int i)
1049 {
1050 struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY);
1051 int j = head_desc->spte_count - 1;
1052
1053 /*
1054 * The head descriptor should never be empty. A new head is added only
1055 * when adding an entry and the previous head is full, and heads are
1056 * removed (this flow) when they become empty.
1057 */
1058 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
1059
1060 /*
1061 * Replace the to-be-freed SPTE with the last valid entry from the head
1062 * descriptor to ensure that tail descriptors are full at all times.
1063 * Note, this also means that tail_count is stable for each descriptor.
1064 */
1065 desc->sptes[i] = head_desc->sptes[j];
1066 head_desc->sptes[j] = NULL;
1067 head_desc->spte_count--;
1068 if (head_desc->spte_count)
1069 return;
1070
1071 /*
1072 * The head descriptor is empty. If there are no tail descriptors,
1073 * nullify the rmap head to mark the list as empty, else point the rmap
1074 * head at the next descriptor, i.e. the new head.
1075 */
1076 if (!head_desc->more)
1077 *rmap_val = 0;
1078 else
1079 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
1080 mmu_free_pte_list_desc(head_desc);
1081 }
1082
pte_list_remove(struct kvm * kvm,u64 * spte,struct kvm_rmap_head * rmap_head)1083 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1084 struct kvm_rmap_head *rmap_head)
1085 {
1086 struct pte_list_desc *desc;
1087 unsigned long rmap_val;
1088 int i;
1089
1090 rmap_val = kvm_rmap_lock(kvm, rmap_head);
1091 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm))
1092 goto out;
1093
1094 if (!(rmap_val & KVM_RMAP_MANY)) {
1095 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm))
1096 goto out;
1097
1098 rmap_val = 0;
1099 } else {
1100 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1101 while (desc) {
1102 for (i = 0; i < desc->spte_count; ++i) {
1103 if (desc->sptes[i] == spte) {
1104 pte_list_desc_remove_entry(kvm, &rmap_val,
1105 desc, i);
1106 goto out;
1107 }
1108 }
1109 desc = desc->more;
1110 }
1111
1112 KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1113 }
1114
1115 out:
1116 kvm_rmap_unlock(kvm, rmap_head, rmap_val);
1117 }
1118
kvm_zap_one_rmap_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)1119 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1120 struct kvm_rmap_head *rmap_head, u64 *sptep)
1121 {
1122 mmu_spte_clear_track_bits(kvm, sptep);
1123 pte_list_remove(kvm, sptep, rmap_head);
1124 }
1125
1126 /* Return true if at least one SPTE was zapped, false otherwise */
kvm_zap_all_rmap_sptes(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1127 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head)
1129 {
1130 struct pte_list_desc *desc, *next;
1131 unsigned long rmap_val;
1132 int i;
1133
1134 rmap_val = kvm_rmap_lock(kvm, rmap_head);
1135 if (!rmap_val)
1136 return false;
1137
1138 if (!(rmap_val & KVM_RMAP_MANY)) {
1139 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val);
1140 goto out;
1141 }
1142
1143 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1144
1145 for (; desc; desc = next) {
1146 for (i = 0; i < desc->spte_count; i++)
1147 mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1148 next = desc->more;
1149 mmu_free_pte_list_desc(desc);
1150 }
1151 out:
1152 /* rmap_head is meaningless now, remember to reset it */
1153 kvm_rmap_unlock(kvm, rmap_head, 0);
1154 return true;
1155 }
1156
pte_list_count(struct kvm_rmap_head * rmap_head)1157 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1158 {
1159 unsigned long rmap_val = kvm_rmap_get(rmap_head);
1160 struct pte_list_desc *desc;
1161
1162 if (!rmap_val)
1163 return 0;
1164 else if (!(rmap_val & KVM_RMAP_MANY))
1165 return 1;
1166
1167 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1168 return desc->tail_count + desc->spte_count;
1169 }
1170
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1171 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1172 const struct kvm_memory_slot *slot)
1173 {
1174 unsigned long idx;
1175
1176 idx = gfn_to_index(gfn, slot->base_gfn, level);
1177 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1178 }
1179
rmap_remove(struct kvm * kvm,u64 * spte)1180 static void rmap_remove(struct kvm *kvm, u64 *spte)
1181 {
1182 struct kvm_memslots *slots;
1183 struct kvm_memory_slot *slot;
1184 struct kvm_mmu_page *sp;
1185 gfn_t gfn;
1186 struct kvm_rmap_head *rmap_head;
1187
1188 sp = sptep_to_sp(spte);
1189 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1190
1191 /*
1192 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1193 * so we have to determine which memslots to use based on context
1194 * information in sp->role.
1195 */
1196 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1197
1198 slot = __gfn_to_memslot(slots, gfn);
1199 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1200
1201 pte_list_remove(kvm, spte, rmap_head);
1202 }
1203
1204 /*
1205 * Used by the following functions to iterate through the sptes linked by a
1206 * rmap. All fields are private and not assumed to be used outside.
1207 */
1208 struct rmap_iterator {
1209 /* private fields */
1210 struct rmap_head *head;
1211 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1212 int pos; /* index of the sptep */
1213 };
1214
1215 /*
1216 * Iteration must be started by this function. This should also be used after
1217 * removing/dropping sptes from the rmap link because in such cases the
1218 * information in the iterator may not be valid.
1219 *
1220 * Returns sptep if found, NULL otherwise.
1221 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1222 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1223 struct rmap_iterator *iter)
1224 {
1225 unsigned long rmap_val = kvm_rmap_get(rmap_head);
1226
1227 if (!rmap_val)
1228 return NULL;
1229
1230 if (!(rmap_val & KVM_RMAP_MANY)) {
1231 iter->desc = NULL;
1232 return (u64 *)rmap_val;
1233 }
1234
1235 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
1236 iter->pos = 0;
1237 return iter->desc->sptes[iter->pos];
1238 }
1239
1240 /*
1241 * Must be used with a valid iterator: e.g. after rmap_get_first().
1242 *
1243 * Returns sptep if found, NULL otherwise.
1244 */
rmap_get_next(struct rmap_iterator * iter)1245 static u64 *rmap_get_next(struct rmap_iterator *iter)
1246 {
1247 if (iter->desc) {
1248 if (iter->pos < PTE_LIST_EXT - 1) {
1249 ++iter->pos;
1250 if (iter->desc->sptes[iter->pos])
1251 return iter->desc->sptes[iter->pos];
1252 }
1253
1254 iter->desc = iter->desc->more;
1255
1256 if (iter->desc) {
1257 iter->pos = 0;
1258 /* desc->sptes[0] cannot be NULL */
1259 return iter->desc->sptes[iter->pos];
1260 }
1261 }
1262
1263 return NULL;
1264 }
1265
1266 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1267 for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \
1268 _sptep_; _sptep_ = rmap_get_next(_iter_))
1269
1270 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1271 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1272 if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \
1273
1274 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \
1275 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
1276 if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep)))
1277
drop_spte(struct kvm * kvm,u64 * sptep)1278 static void drop_spte(struct kvm *kvm, u64 *sptep)
1279 {
1280 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1281
1282 if (is_shadow_present_pte(old_spte))
1283 rmap_remove(kvm, sptep);
1284 }
1285
drop_large_spte(struct kvm * kvm,u64 * sptep,bool flush)1286 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1287 {
1288 struct kvm_mmu_page *sp;
1289
1290 sp = sptep_to_sp(sptep);
1291 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1292
1293 drop_spte(kvm, sptep);
1294
1295 if (flush)
1296 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1297 }
1298
1299 /*
1300 * Write-protect on the specified @sptep, @pt_protect indicates whether
1301 * spte write-protection is caused by protecting shadow page table.
1302 *
1303 * Note: write protection is difference between dirty logging and spte
1304 * protection:
1305 * - for dirty logging, the spte can be set to writable at anytime if
1306 * its dirty bitmap is properly set.
1307 * - for spte protection, the spte can be writable only after unsync-ing
1308 * shadow page.
1309 *
1310 * Return true if tlb need be flushed.
1311 */
spte_write_protect(u64 * sptep,bool pt_protect)1312 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1313 {
1314 u64 spte = *sptep;
1315
1316 if (!is_writable_pte(spte) &&
1317 !(pt_protect && is_mmu_writable_spte(spte)))
1318 return false;
1319
1320 if (pt_protect)
1321 spte &= ~shadow_mmu_writable_mask;
1322 spte = spte & ~PT_WRITABLE_MASK;
1323
1324 return mmu_spte_update(sptep, spte);
1325 }
1326
rmap_write_protect(struct kvm_rmap_head * rmap_head,bool pt_protect)1327 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1328 bool pt_protect)
1329 {
1330 u64 *sptep;
1331 struct rmap_iterator iter;
1332 bool flush = false;
1333
1334 for_each_rmap_spte(rmap_head, &iter, sptep)
1335 flush |= spte_write_protect(sptep, pt_protect);
1336
1337 return flush;
1338 }
1339
spte_clear_dirty(u64 * sptep)1340 static bool spte_clear_dirty(u64 *sptep)
1341 {
1342 u64 spte = *sptep;
1343
1344 KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1345 spte &= ~shadow_dirty_mask;
1346 return mmu_spte_update(sptep, spte);
1347 }
1348
1349 /*
1350 * Gets the GFN ready for another round of dirty logging by clearing the
1351 * - D bit on ad-enabled SPTEs, and
1352 * - W bit on ad-disabled SPTEs.
1353 * Returns true iff any D or W bits were cleared.
1354 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1355 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1356 const struct kvm_memory_slot *slot)
1357 {
1358 u64 *sptep;
1359 struct rmap_iterator iter;
1360 bool flush = false;
1361
1362 for_each_rmap_spte(rmap_head, &iter, sptep) {
1363 if (spte_ad_need_write_protect(*sptep))
1364 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
1365 (unsigned long *)sptep);
1366 else
1367 flush |= spte_clear_dirty(sptep);
1368 }
1369
1370 return flush;
1371 }
1372
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1373 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1374 struct kvm_memory_slot *slot,
1375 gfn_t gfn_offset, unsigned long mask)
1376 {
1377 struct kvm_rmap_head *rmap_head;
1378
1379 if (tdp_mmu_enabled)
1380 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1381 slot->base_gfn + gfn_offset, mask, true);
1382
1383 if (!kvm_memslots_have_rmaps(kvm))
1384 return;
1385
1386 while (mask) {
1387 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1388 PG_LEVEL_4K, slot);
1389 rmap_write_protect(rmap_head, false);
1390
1391 /* clear the first set bit */
1392 mask &= mask - 1;
1393 }
1394 }
1395
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1396 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1397 struct kvm_memory_slot *slot,
1398 gfn_t gfn_offset, unsigned long mask)
1399 {
1400 struct kvm_rmap_head *rmap_head;
1401
1402 if (tdp_mmu_enabled)
1403 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1404 slot->base_gfn + gfn_offset, mask, false);
1405
1406 if (!kvm_memslots_have_rmaps(kvm))
1407 return;
1408
1409 while (mask) {
1410 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1411 PG_LEVEL_4K, slot);
1412 __rmap_clear_dirty(kvm, rmap_head, slot);
1413
1414 /* clear the first set bit */
1415 mask &= mask - 1;
1416 }
1417 }
1418
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1419 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1420 struct kvm_memory_slot *slot,
1421 gfn_t gfn_offset, unsigned long mask)
1422 {
1423 /*
1424 * If the slot was assumed to be "initially all dirty", write-protect
1425 * huge pages to ensure they are split to 4KiB on the first write (KVM
1426 * dirty logs at 4KiB granularity). If eager page splitting is enabled,
1427 * immediately try to split huge pages, e.g. so that vCPUs don't get
1428 * saddled with the cost of splitting.
1429 *
1430 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1431 * of memslot has no such restriction, so the range can cross two large
1432 * pages.
1433 */
1434 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1435 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1436 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1437
1438 if (READ_ONCE(eager_page_split))
1439 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1440
1441 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1442
1443 /* Cross two large pages? */
1444 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1445 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1446 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1447 PG_LEVEL_2M);
1448 }
1449
1450 /*
1451 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
1452 * mask. If PML is enabled and the GFN doesn't need to be write-
1453 * protected for other reasons, e.g. shadow paging, clear the Dirty bit.
1454 * Otherwise clear the Writable bit.
1455 *
1456 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
1457 * enabled but it chooses between clearing the Dirty bit and Writeable
1458 * bit based on the context.
1459 */
1460 if (kvm->arch.cpu_dirty_log_size)
1461 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1462 else
1463 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1464 }
1465
kvm_cpu_dirty_log_size(struct kvm * kvm)1466 int kvm_cpu_dirty_log_size(struct kvm *kvm)
1467 {
1468 return kvm->arch.cpu_dirty_log_size;
1469 }
1470
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1471 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1472 struct kvm_memory_slot *slot, u64 gfn,
1473 int min_level)
1474 {
1475 struct kvm_rmap_head *rmap_head;
1476 int i;
1477 bool write_protected = false;
1478
1479 if (kvm_memslots_have_rmaps(kvm)) {
1480 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1481 rmap_head = gfn_to_rmap(gfn, i, slot);
1482 write_protected |= rmap_write_protect(rmap_head, true);
1483 }
1484 }
1485
1486 if (tdp_mmu_enabled)
1487 write_protected |=
1488 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1489
1490 return write_protected;
1491 }
1492
kvm_vcpu_write_protect_gfn(struct kvm_vcpu * vcpu,u64 gfn)1493 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1494 {
1495 struct kvm_memory_slot *slot;
1496
1497 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1498 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1499 }
1500
kvm_zap_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1501 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1502 const struct kvm_memory_slot *slot)
1503 {
1504 return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1505 }
1506
1507 struct slot_rmap_walk_iterator {
1508 /* input fields. */
1509 const struct kvm_memory_slot *slot;
1510 gfn_t start_gfn;
1511 gfn_t end_gfn;
1512 int start_level;
1513 int end_level;
1514
1515 /* output fields. */
1516 gfn_t gfn;
1517 struct kvm_rmap_head *rmap;
1518 int level;
1519
1520 /* private field. */
1521 struct kvm_rmap_head *end_rmap;
1522 };
1523
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1524 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1525 int level)
1526 {
1527 iterator->level = level;
1528 iterator->gfn = iterator->start_gfn;
1529 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1530 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1531 }
1532
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1533 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1534 const struct kvm_memory_slot *slot,
1535 int start_level, int end_level,
1536 gfn_t start_gfn, gfn_t end_gfn)
1537 {
1538 iterator->slot = slot;
1539 iterator->start_level = start_level;
1540 iterator->end_level = end_level;
1541 iterator->start_gfn = start_gfn;
1542 iterator->end_gfn = end_gfn;
1543
1544 rmap_walk_init_level(iterator, iterator->start_level);
1545 }
1546
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1547 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1548 {
1549 return !!iterator->rmap;
1550 }
1551
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1552 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1553 {
1554 while (++iterator->rmap <= iterator->end_rmap) {
1555 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
1556
1557 if (atomic_long_read(&iterator->rmap->val))
1558 return;
1559 }
1560
1561 if (++iterator->level > iterator->end_level) {
1562 iterator->rmap = NULL;
1563 return;
1564 }
1565
1566 rmap_walk_init_level(iterator, iterator->level);
1567 }
1568
1569 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1570 _start_gfn, _end_gfn, _iter_) \
1571 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1572 _end_level_, _start_gfn, _end_gfn); \
1573 slot_rmap_walk_okay(_iter_); \
1574 slot_rmap_walk_next(_iter_))
1575
1576 /* The return value indicates if tlb flush on all vcpus is needed. */
1577 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
1578 struct kvm_rmap_head *rmap_head,
1579 const struct kvm_memory_slot *slot);
1580
__walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool can_yield,bool flush_on_yield,bool flush)1581 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
1582 const struct kvm_memory_slot *slot,
1583 slot_rmaps_handler fn,
1584 int start_level, int end_level,
1585 gfn_t start_gfn, gfn_t end_gfn,
1586 bool can_yield, bool flush_on_yield,
1587 bool flush)
1588 {
1589 struct slot_rmap_walk_iterator iterator;
1590
1591 lockdep_assert_held_write(&kvm->mmu_lock);
1592
1593 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
1594 end_gfn, &iterator) {
1595 if (iterator.rmap)
1596 flush |= fn(kvm, iterator.rmap, slot);
1597
1598 if (!can_yield)
1599 continue;
1600
1601 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1602 if (flush && flush_on_yield) {
1603 kvm_flush_remote_tlbs_range(kvm, start_gfn,
1604 iterator.gfn - start_gfn + 1);
1605 flush = false;
1606 }
1607 cond_resched_rwlock_write(&kvm->mmu_lock);
1608 }
1609 }
1610
1611 return flush;
1612 }
1613
walk_slot_rmaps(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,int start_level,int end_level,bool flush_on_yield)1614 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
1615 const struct kvm_memory_slot *slot,
1616 slot_rmaps_handler fn,
1617 int start_level, int end_level,
1618 bool flush_on_yield)
1619 {
1620 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
1621 slot->base_gfn, slot->base_gfn + slot->npages - 1,
1622 true, flush_on_yield, false);
1623 }
1624
walk_slot_rmaps_4k(struct kvm * kvm,const struct kvm_memory_slot * slot,slot_rmaps_handler fn,bool flush_on_yield)1625 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
1626 const struct kvm_memory_slot *slot,
1627 slot_rmaps_handler fn,
1628 bool flush_on_yield)
1629 {
1630 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
1631 }
1632
__kvm_rmap_zap_gfn_range(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,bool can_yield,bool flush)1633 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
1634 const struct kvm_memory_slot *slot,
1635 gfn_t start, gfn_t end, bool can_yield,
1636 bool flush)
1637 {
1638 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
1639 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1640 start, end - 1, can_yield, true, flush);
1641 }
1642
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1643 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1644 {
1645 bool flush = false;
1646
1647 /*
1648 * To prevent races with vCPUs faulting in a gfn using stale data,
1649 * zapping a gfn range must be protected by mmu_invalidate_in_progress
1650 * (and mmu_invalidate_seq). The only exception is memslot deletion;
1651 * in that case, SRCU synchronization ensures that SPTEs are zapped
1652 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the
1653 * invalid slot.
1654 */
1655 lockdep_assert_once(kvm->mmu_invalidate_in_progress ||
1656 lockdep_is_held(&kvm->slots_lock));
1657
1658 if (kvm_memslots_have_rmaps(kvm))
1659 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
1660 range->start, range->end,
1661 range->may_block, flush);
1662
1663 if (tdp_mmu_enabled)
1664 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1665
1666 if (kvm_x86_ops.set_apic_access_page_addr &&
1667 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1668 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1669
1670 return flush;
1671 }
1672
1673 #define RMAP_RECYCLE_THRESHOLD 1000
1674
__rmap_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1675 static void __rmap_add(struct kvm *kvm,
1676 struct kvm_mmu_memory_cache *cache,
1677 const struct kvm_memory_slot *slot,
1678 u64 *spte, gfn_t gfn, unsigned int access)
1679 {
1680 struct kvm_mmu_page *sp;
1681 struct kvm_rmap_head *rmap_head;
1682 int rmap_count;
1683
1684 sp = sptep_to_sp(spte);
1685 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1686 kvm_update_page_stats(kvm, sp->role.level, 1);
1687
1688 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1689 rmap_count = pte_list_add(kvm, cache, spte, rmap_head);
1690
1691 if (rmap_count > kvm->stat.max_mmu_rmap_size)
1692 kvm->stat.max_mmu_rmap_size = rmap_count;
1693 if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1694 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1695 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1696 }
1697 }
1698
rmap_add(struct kvm_vcpu * vcpu,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1699 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1700 u64 *spte, gfn_t gfn, unsigned int access)
1701 {
1702 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1703
1704 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1705 }
1706
kvm_rmap_age_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,bool test_only)1707 static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
1708 struct kvm_gfn_range *range,
1709 bool test_only)
1710 {
1711 struct kvm_rmap_head *rmap_head;
1712 struct rmap_iterator iter;
1713 unsigned long rmap_val;
1714 bool young = false;
1715 u64 *sptep;
1716 gfn_t gfn;
1717 int level;
1718 u64 spte;
1719
1720 for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
1721 for (gfn = range->start; gfn < range->end;
1722 gfn += KVM_PAGES_PER_HPAGE(level)) {
1723 rmap_head = gfn_to_rmap(gfn, level, range->slot);
1724 rmap_val = kvm_rmap_lock_readonly(rmap_head);
1725
1726 for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) {
1727 if (!is_accessed_spte(spte))
1728 continue;
1729
1730 if (test_only) {
1731 kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1732 return true;
1733 }
1734
1735 if (spte_ad_enabled(spte))
1736 clear_bit((ffs(shadow_accessed_mask) - 1),
1737 (unsigned long *)sptep);
1738 else
1739 /*
1740 * If the following cmpxchg fails, the
1741 * spte is being concurrently modified
1742 * and should most likely stay young.
1743 */
1744 cmpxchg64(sptep, spte,
1745 mark_spte_for_access_track(spte));
1746 young = true;
1747 }
1748
1749 kvm_rmap_unlock_readonly(rmap_head, rmap_val);
1750 }
1751 }
1752 return young;
1753 }
1754
kvm_may_have_shadow_mmu_sptes(struct kvm * kvm)1755 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm)
1756 {
1757 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages);
1758 }
1759
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1760 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1761 {
1762 bool young = false;
1763
1764 if (tdp_mmu_enabled)
1765 young = kvm_tdp_mmu_age_gfn_range(kvm, range);
1766
1767 if (kvm_may_have_shadow_mmu_sptes(kvm))
1768 young |= kvm_rmap_age_gfn_range(kvm, range, false);
1769
1770 return young;
1771 }
1772
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1773 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1774 {
1775 bool young = false;
1776
1777 if (tdp_mmu_enabled)
1778 young = kvm_tdp_mmu_test_age_gfn(kvm, range);
1779
1780 if (young)
1781 return young;
1782
1783 if (kvm_may_have_shadow_mmu_sptes(kvm))
1784 young |= kvm_rmap_age_gfn_range(kvm, range, true);
1785
1786 return young;
1787 }
1788
kvm_mmu_check_sptes_at_free(struct kvm_mmu_page * sp)1789 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1790 {
1791 #ifdef CONFIG_KVM_PROVE_MMU
1792 int i;
1793
1794 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1795 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1796 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1797 sp->spt[i], &sp->spt[i],
1798 kvm_mmu_page_get_gfn(sp, i));
1799 }
1800 #endif
1801 }
1802
kvm_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1803 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1804 {
1805 kvm->arch.n_used_mmu_pages++;
1806 kvm_account_pgtable_pages((void *)sp->spt, +1);
1807 }
1808
kvm_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1809 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1810 {
1811 kvm->arch.n_used_mmu_pages--;
1812 kvm_account_pgtable_pages((void *)sp->spt, -1);
1813 }
1814
kvm_mmu_free_shadow_page(struct kvm_mmu_page * sp)1815 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1816 {
1817 kvm_mmu_check_sptes_at_free(sp);
1818
1819 hlist_del(&sp->hash_link);
1820 list_del(&sp->link);
1821 free_page((unsigned long)sp->spt);
1822 free_page((unsigned long)sp->shadowed_translation);
1823 kmem_cache_free(mmu_page_header_cache, sp);
1824 }
1825
kvm_page_table_hashfn(gfn_t gfn)1826 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1827 {
1828 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1829 }
1830
mmu_page_add_parent_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,struct kvm_mmu_page * sp,u64 * parent_pte)1831 static void mmu_page_add_parent_pte(struct kvm *kvm,
1832 struct kvm_mmu_memory_cache *cache,
1833 struct kvm_mmu_page *sp, u64 *parent_pte)
1834 {
1835 if (!parent_pte)
1836 return;
1837
1838 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes);
1839 }
1840
mmu_page_remove_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1841 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1842 u64 *parent_pte)
1843 {
1844 pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1845 }
1846
drop_parent_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * parent_pte)1847 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1848 u64 *parent_pte)
1849 {
1850 mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1851 mmu_spte_clear_no_track(parent_pte);
1852 }
1853
1854 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1855 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1856 {
1857 u64 *sptep;
1858 struct rmap_iterator iter;
1859
1860 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1861 mark_unsync(sptep);
1862 }
1863 }
1864
mark_unsync(u64 * spte)1865 static void mark_unsync(u64 *spte)
1866 {
1867 struct kvm_mmu_page *sp;
1868
1869 sp = sptep_to_sp(spte);
1870 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1871 return;
1872 if (sp->unsync_children++)
1873 return;
1874 kvm_mmu_mark_parents_unsync(sp);
1875 }
1876
1877 #define KVM_PAGE_ARRAY_NR 16
1878
1879 struct kvm_mmu_pages {
1880 struct mmu_page_and_offset {
1881 struct kvm_mmu_page *sp;
1882 unsigned int idx;
1883 } page[KVM_PAGE_ARRAY_NR];
1884 unsigned int nr;
1885 };
1886
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1887 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1888 int idx)
1889 {
1890 int i;
1891
1892 if (sp->unsync)
1893 for (i=0; i < pvec->nr; i++)
1894 if (pvec->page[i].sp == sp)
1895 return 0;
1896
1897 pvec->page[pvec->nr].sp = sp;
1898 pvec->page[pvec->nr].idx = idx;
1899 pvec->nr++;
1900 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1901 }
1902
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1903 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1904 {
1905 --sp->unsync_children;
1906 WARN_ON_ONCE((int)sp->unsync_children < 0);
1907 __clear_bit(idx, sp->unsync_child_bitmap);
1908 }
1909
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1910 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1911 struct kvm_mmu_pages *pvec)
1912 {
1913 int i, ret, nr_unsync_leaf = 0;
1914
1915 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1916 struct kvm_mmu_page *child;
1917 u64 ent = sp->spt[i];
1918
1919 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1920 clear_unsync_child_bit(sp, i);
1921 continue;
1922 }
1923
1924 child = spte_to_child_sp(ent);
1925
1926 if (child->unsync_children) {
1927 if (mmu_pages_add(pvec, child, i))
1928 return -ENOSPC;
1929
1930 ret = __mmu_unsync_walk(child, pvec);
1931 if (!ret) {
1932 clear_unsync_child_bit(sp, i);
1933 continue;
1934 } else if (ret > 0) {
1935 nr_unsync_leaf += ret;
1936 } else
1937 return ret;
1938 } else if (child->unsync) {
1939 nr_unsync_leaf++;
1940 if (mmu_pages_add(pvec, child, i))
1941 return -ENOSPC;
1942 } else
1943 clear_unsync_child_bit(sp, i);
1944 }
1945
1946 return nr_unsync_leaf;
1947 }
1948
1949 #define INVALID_INDEX (-1)
1950
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1951 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1952 struct kvm_mmu_pages *pvec)
1953 {
1954 pvec->nr = 0;
1955 if (!sp->unsync_children)
1956 return 0;
1957
1958 mmu_pages_add(pvec, sp, INVALID_INDEX);
1959 return __mmu_unsync_walk(sp, pvec);
1960 }
1961
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1962 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1963 {
1964 WARN_ON_ONCE(!sp->unsync);
1965 trace_kvm_mmu_sync_page(sp);
1966 sp->unsync = 0;
1967 --kvm->stat.mmu_unsync;
1968 }
1969
1970 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1971 struct list_head *invalid_list);
1972 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1973 struct list_head *invalid_list);
1974
sp_has_gptes(struct kvm_mmu_page * sp)1975 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1976 {
1977 if (sp->role.direct)
1978 return false;
1979
1980 if (sp->role.passthrough)
1981 return false;
1982
1983 return true;
1984 }
1985
1986 static __ro_after_init HLIST_HEAD(empty_page_hash);
1987
kvm_get_mmu_page_hash(struct kvm * kvm,gfn_t gfn)1988 static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn)
1989 {
1990 /*
1991 * Ensure the load of the hash table pointer itself is ordered before
1992 * loads to walk the table. The pointer is set at runtime outside of
1993 * mmu_lock when the TDP MMU is enabled, i.e. when the hash table of
1994 * shadow pages becomes necessary only when KVM needs to shadow L1's
1995 * TDP for an L2 guest. Pairs with the smp_store_release() in
1996 * kvm_mmu_alloc_page_hash().
1997 */
1998 struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash);
1999
2000 lockdep_assert_held(&kvm->mmu_lock);
2001
2002 if (!page_hash)
2003 return &empty_page_hash;
2004
2005 return &page_hash[kvm_page_table_hashfn(gfn)];
2006 }
2007
2008 #define for_each_valid_sp(_kvm, _sp, _list) \
2009 hlist_for_each_entry(_sp, _list, hash_link) \
2010 if (is_obsolete_sp((_kvm), (_sp))) { \
2011 } else
2012
2013 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
2014 for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn)) \
2015 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
2016
kvm_sync_page_check(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2017 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2018 {
2019 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
2020
2021 /*
2022 * Ignore various flags when verifying that it's safe to sync a shadow
2023 * page using the current MMU context.
2024 *
2025 * - level: not part of the overall MMU role and will never match as the MMU's
2026 * level tracks the root level
2027 * - access: updated based on the new guest PTE
2028 * - quadrant: not part of the overall MMU role (similar to level)
2029 */
2030 const union kvm_mmu_page_role sync_role_ign = {
2031 .level = 0xf,
2032 .access = 0x7,
2033 .quadrant = 0x3,
2034 .passthrough = 0x1,
2035 };
2036
2037 /*
2038 * Direct pages can never be unsync, and KVM should never attempt to
2039 * sync a shadow page for a different MMU context, e.g. if the role
2040 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
2041 * reserved bits checks will be wrong, etc...
2042 */
2043 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
2044 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
2045 return false;
2046
2047 return true;
2048 }
2049
kvm_sync_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,int i)2050 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
2051 {
2052 /* sp->spt[i] has initial value of shadow page table allocation */
2053 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
2054 return 0;
2055
2056 return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
2057 }
2058
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2059 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2060 {
2061 int flush = 0;
2062 int i;
2063
2064 if (!kvm_sync_page_check(vcpu, sp))
2065 return -1;
2066
2067 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
2068 int ret = kvm_sync_spte(vcpu, sp, i);
2069
2070 if (ret < -1)
2071 return -1;
2072 flush |= ret;
2073 }
2074
2075 /*
2076 * Note, any flush is purely for KVM's correctness, e.g. when dropping
2077 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
2078 * unmap or dirty logging event doesn't fail to flush. The guest is
2079 * responsible for flushing the TLB to ensure any changes in protection
2080 * bits are recognized, i.e. until the guest flushes or page faults on
2081 * a relevant address, KVM is architecturally allowed to let vCPUs use
2082 * cached translations with the old protection bits.
2083 */
2084 return flush;
2085 }
2086
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2087 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2088 struct list_head *invalid_list)
2089 {
2090 int ret = __kvm_sync_page(vcpu, sp);
2091
2092 if (ret < 0)
2093 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2094 return ret;
2095 }
2096
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)2097 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2098 struct list_head *invalid_list,
2099 bool remote_flush)
2100 {
2101 if (!remote_flush && list_empty(invalid_list))
2102 return false;
2103
2104 if (!list_empty(invalid_list))
2105 kvm_mmu_commit_zap_page(kvm, invalid_list);
2106 else
2107 kvm_flush_remote_tlbs(kvm);
2108 return true;
2109 }
2110
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2111 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2112 {
2113 if (sp->role.invalid)
2114 return true;
2115
2116 /* TDP MMU pages do not use the MMU generation. */
2117 return !is_tdp_mmu_page(sp) &&
2118 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2119 }
2120
2121 struct mmu_page_path {
2122 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2123 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2124 };
2125
2126 #define for_each_sp(pvec, sp, parents, i) \
2127 for (i = mmu_pages_first(&pvec, &parents); \
2128 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2129 i = mmu_pages_next(&pvec, &parents, i))
2130
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)2131 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2132 struct mmu_page_path *parents,
2133 int i)
2134 {
2135 int n;
2136
2137 for (n = i+1; n < pvec->nr; n++) {
2138 struct kvm_mmu_page *sp = pvec->page[n].sp;
2139 unsigned idx = pvec->page[n].idx;
2140 int level = sp->role.level;
2141
2142 parents->idx[level-1] = idx;
2143 if (level == PG_LEVEL_4K)
2144 break;
2145
2146 parents->parent[level-2] = sp;
2147 }
2148
2149 return n;
2150 }
2151
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)2152 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2153 struct mmu_page_path *parents)
2154 {
2155 struct kvm_mmu_page *sp;
2156 int level;
2157
2158 if (pvec->nr == 0)
2159 return 0;
2160
2161 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2162
2163 sp = pvec->page[0].sp;
2164 level = sp->role.level;
2165 WARN_ON_ONCE(level == PG_LEVEL_4K);
2166
2167 parents->parent[level-2] = sp;
2168
2169 /* Also set up a sentinel. Further entries in pvec are all
2170 * children of sp, so this element is never overwritten.
2171 */
2172 parents->parent[level-1] = NULL;
2173 return mmu_pages_next(pvec, parents, 0);
2174 }
2175
mmu_pages_clear_parents(struct mmu_page_path * parents)2176 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2177 {
2178 struct kvm_mmu_page *sp;
2179 unsigned int level = 0;
2180
2181 do {
2182 unsigned int idx = parents->idx[level];
2183 sp = parents->parent[level];
2184 if (!sp)
2185 return;
2186
2187 WARN_ON_ONCE(idx == INVALID_INDEX);
2188 clear_unsync_child_bit(sp, idx);
2189 level++;
2190 } while (!sp->unsync_children);
2191 }
2192
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)2193 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2194 struct kvm_mmu_page *parent, bool can_yield)
2195 {
2196 int i;
2197 struct kvm_mmu_page *sp;
2198 struct mmu_page_path parents;
2199 struct kvm_mmu_pages pages;
2200 LIST_HEAD(invalid_list);
2201 bool flush = false;
2202
2203 while (mmu_unsync_walk(parent, &pages)) {
2204 bool protected = false;
2205
2206 for_each_sp(pages, sp, parents, i)
2207 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2208
2209 if (protected) {
2210 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2211 flush = false;
2212 }
2213
2214 for_each_sp(pages, sp, parents, i) {
2215 kvm_unlink_unsync_page(vcpu->kvm, sp);
2216 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2217 mmu_pages_clear_parents(&parents);
2218 }
2219 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2220 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2221 if (!can_yield) {
2222 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2223 return -EINTR;
2224 }
2225
2226 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2227 flush = false;
2228 }
2229 }
2230
2231 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2232 return 0;
2233 }
2234
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2235 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2236 {
2237 atomic_set(&sp->write_flooding_count, 0);
2238 }
2239
clear_sp_write_flooding_count(u64 * spte)2240 static void clear_sp_write_flooding_count(u64 *spte)
2241 {
2242 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2243 }
2244
2245 /*
2246 * The vCPU is required when finding indirect shadow pages; the shadow
2247 * page may already exist and syncing it needs the vCPU pointer in
2248 * order to read guest page tables. Direct shadow pages are never
2249 * unsync, thus @vcpu can be NULL if @role.direct is true.
2250 */
kvm_mmu_find_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2251 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2252 struct kvm_vcpu *vcpu,
2253 gfn_t gfn,
2254 struct hlist_head *sp_list,
2255 union kvm_mmu_page_role role)
2256 {
2257 struct kvm_mmu_page *sp;
2258 int ret;
2259 int collisions = 0;
2260 LIST_HEAD(invalid_list);
2261
2262 for_each_valid_sp(kvm, sp, sp_list) {
2263 if (sp->gfn != gfn) {
2264 collisions++;
2265 continue;
2266 }
2267
2268 if (sp->role.word != role.word) {
2269 /*
2270 * If the guest is creating an upper-level page, zap
2271 * unsync pages for the same gfn. While it's possible
2272 * the guest is using recursive page tables, in all
2273 * likelihood the guest has stopped using the unsync
2274 * page and is installing a completely unrelated page.
2275 * Unsync pages must not be left as is, because the new
2276 * upper-level page will be write-protected.
2277 */
2278 if (role.level > PG_LEVEL_4K && sp->unsync)
2279 kvm_mmu_prepare_zap_page(kvm, sp,
2280 &invalid_list);
2281 continue;
2282 }
2283
2284 /* unsync and write-flooding only apply to indirect SPs. */
2285 if (sp->role.direct)
2286 goto out;
2287
2288 if (sp->unsync) {
2289 if (KVM_BUG_ON(!vcpu, kvm))
2290 break;
2291
2292 /*
2293 * The page is good, but is stale. kvm_sync_page does
2294 * get the latest guest state, but (unlike mmu_unsync_children)
2295 * it doesn't write-protect the page or mark it synchronized!
2296 * This way the validity of the mapping is ensured, but the
2297 * overhead of write protection is not incurred until the
2298 * guest invalidates the TLB mapping. This allows multiple
2299 * SPs for a single gfn to be unsync.
2300 *
2301 * If the sync fails, the page is zapped. If so, break
2302 * in order to rebuild it.
2303 */
2304 ret = kvm_sync_page(vcpu, sp, &invalid_list);
2305 if (ret < 0)
2306 break;
2307
2308 WARN_ON_ONCE(!list_empty(&invalid_list));
2309 if (ret > 0)
2310 kvm_flush_remote_tlbs(kvm);
2311 }
2312
2313 __clear_sp_write_flooding_count(sp);
2314
2315 goto out;
2316 }
2317
2318 sp = NULL;
2319 ++kvm->stat.mmu_cache_miss;
2320
2321 out:
2322 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2323
2324 if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2325 kvm->stat.max_mmu_page_hash_collisions = collisions;
2326 return sp;
2327 }
2328
2329 /* Caches used when allocating a new shadow page. */
2330 struct shadow_page_caches {
2331 struct kvm_mmu_memory_cache *page_header_cache;
2332 struct kvm_mmu_memory_cache *shadow_page_cache;
2333 struct kvm_mmu_memory_cache *shadowed_info_cache;
2334 };
2335
kvm_mmu_alloc_shadow_page(struct kvm * kvm,struct shadow_page_caches * caches,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2336 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2337 struct shadow_page_caches *caches,
2338 gfn_t gfn,
2339 struct hlist_head *sp_list,
2340 union kvm_mmu_page_role role)
2341 {
2342 struct kvm_mmu_page *sp;
2343
2344 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2345 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2346 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL)
2347 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2348
2349 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2350
2351 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2352
2353 /*
2354 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2355 * depends on valid pages being added to the head of the list. See
2356 * comments in kvm_zap_obsolete_pages().
2357 */
2358 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2359 list_add(&sp->link, &kvm->arch.active_mmu_pages);
2360 kvm_account_mmu_page(kvm, sp);
2361
2362 sp->gfn = gfn;
2363 sp->role = role;
2364 hlist_add_head(&sp->hash_link, sp_list);
2365 if (sp_has_gptes(sp))
2366 account_shadowed(kvm, sp);
2367
2368 return sp;
2369 }
2370
2371 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
__kvm_mmu_get_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,struct shadow_page_caches * caches,gfn_t gfn,union kvm_mmu_page_role role)2372 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2373 struct kvm_vcpu *vcpu,
2374 struct shadow_page_caches *caches,
2375 gfn_t gfn,
2376 union kvm_mmu_page_role role)
2377 {
2378 struct hlist_head *sp_list;
2379 struct kvm_mmu_page *sp;
2380 bool created = false;
2381
2382 /*
2383 * No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as
2384 * mmu_page_hash must be set prior to creating the first shadow root,
2385 * i.e. reaching this point is fully serialized by slots_arch_lock.
2386 */
2387 BUG_ON(!kvm->arch.mmu_page_hash);
2388 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2389
2390 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2391 if (!sp) {
2392 created = true;
2393 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2394 }
2395
2396 trace_kvm_mmu_get_page(sp, created);
2397 return sp;
2398 }
2399
kvm_mmu_get_shadow_page(struct kvm_vcpu * vcpu,gfn_t gfn,union kvm_mmu_page_role role)2400 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2401 gfn_t gfn,
2402 union kvm_mmu_page_role role)
2403 {
2404 struct shadow_page_caches caches = {
2405 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2406 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2407 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2408 };
2409
2410 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2411 }
2412
kvm_mmu_child_role(u64 * sptep,bool direct,unsigned int access)2413 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2414 unsigned int access)
2415 {
2416 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2417 union kvm_mmu_page_role role;
2418
2419 role = parent_sp->role;
2420 role.level--;
2421 role.access = access;
2422 role.direct = direct;
2423 role.passthrough = 0;
2424
2425 /*
2426 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2427 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2428 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2429 * shadow each guest page table with multiple shadow page tables, which
2430 * requires extra bookkeeping in the role.
2431 *
2432 * Specifically, to shadow the guest's page directory (which covers a
2433 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2434 * 1GiB of the address space. @role.quadrant encodes which quarter of
2435 * the address space each maps.
2436 *
2437 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2438 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2439 * @role.quadrant encodes which half of the region they map.
2440 *
2441 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2442 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
2443 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2444 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
2445 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
2446 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2447 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
2448 * covers bit 21 (see above), thus the quadrant is calculated from the
2449 * _least_ significant bit of the PDE index.
2450 */
2451 if (role.has_4_byte_gpte) {
2452 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2453 role.quadrant = spte_index(sptep) & 1;
2454 }
2455
2456 return role;
2457 }
2458
kvm_mmu_get_child_sp(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,bool direct,unsigned int access)2459 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2460 u64 *sptep, gfn_t gfn,
2461 bool direct, unsigned int access)
2462 {
2463 union kvm_mmu_page_role role;
2464
2465 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2466 return ERR_PTR(-EEXIST);
2467
2468 role = kvm_mmu_child_role(sptep, direct, access);
2469 return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2470 }
2471
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2472 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2473 struct kvm_vcpu *vcpu, hpa_t root,
2474 u64 addr)
2475 {
2476 iterator->addr = addr;
2477 iterator->shadow_addr = root;
2478 iterator->level = vcpu->arch.mmu->root_role.level;
2479
2480 if (iterator->level >= PT64_ROOT_4LEVEL &&
2481 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2482 !vcpu->arch.mmu->root_role.direct)
2483 iterator->level = PT32E_ROOT_LEVEL;
2484
2485 if (iterator->level == PT32E_ROOT_LEVEL) {
2486 /*
2487 * prev_root is currently only used for 64-bit hosts. So only
2488 * the active root_hpa is valid here.
2489 */
2490 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2491
2492 iterator->shadow_addr
2493 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2494 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2495 --iterator->level;
2496 if (!iterator->shadow_addr)
2497 iterator->level = 0;
2498 }
2499 }
2500
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2501 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2502 struct kvm_vcpu *vcpu, u64 addr)
2503 {
2504 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2505 addr);
2506 }
2507
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2508 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2509 {
2510 if (iterator->level < PG_LEVEL_4K)
2511 return false;
2512
2513 iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2514 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2515 return true;
2516 }
2517
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2518 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2519 u64 spte)
2520 {
2521 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2522 iterator->level = 0;
2523 return;
2524 }
2525
2526 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2527 --iterator->level;
2528 }
2529
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2530 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2531 {
2532 __shadow_walk_next(iterator, *iterator->sptep);
2533 }
2534
__link_shadow_page(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * sptep,struct kvm_mmu_page * sp,bool flush)2535 static void __link_shadow_page(struct kvm *kvm,
2536 struct kvm_mmu_memory_cache *cache, u64 *sptep,
2537 struct kvm_mmu_page *sp, bool flush)
2538 {
2539 u64 spte;
2540
2541 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2542
2543 /*
2544 * If an SPTE is present already, it must be a leaf and therefore
2545 * a large one. Drop it, and flush the TLB if needed, before
2546 * installing sp.
2547 */
2548 if (is_shadow_present_pte(*sptep))
2549 drop_large_spte(kvm, sptep, flush);
2550
2551 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2552
2553 mmu_spte_set(sptep, spte);
2554
2555 mmu_page_add_parent_pte(kvm, cache, sp, sptep);
2556
2557 /*
2558 * The non-direct sub-pagetable must be updated before linking. For
2559 * L1 sp, the pagetable is updated via kvm_sync_page() in
2560 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2561 * so sp->unsync can be true or false. For higher level non-direct
2562 * sp, the pagetable is updated/synced via mmu_sync_children() in
2563 * FNAME(fetch)(), so sp->unsync_children can only be false.
2564 * WARN_ON_ONCE() if anything happens unexpectedly.
2565 */
2566 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2567 mark_unsync(sptep);
2568 }
2569
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2570 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2571 struct kvm_mmu_page *sp)
2572 {
2573 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2574 }
2575
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2576 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2577 unsigned direct_access)
2578 {
2579 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2580 struct kvm_mmu_page *child;
2581
2582 /*
2583 * For the direct sp, if the guest pte's dirty bit
2584 * changed form clean to dirty, it will corrupt the
2585 * sp's access: allow writable in the read-only sp,
2586 * so we should update the spte at this point to get
2587 * a new sp with the correct access.
2588 */
2589 child = spte_to_child_sp(*sptep);
2590 if (child->role.access == direct_access)
2591 return;
2592
2593 drop_parent_pte(vcpu->kvm, child, sptep);
2594 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2595 }
2596 }
2597
2598 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2599 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2600 u64 *spte, struct list_head *invalid_list)
2601 {
2602 u64 pte;
2603 struct kvm_mmu_page *child;
2604
2605 pte = *spte;
2606 if (is_shadow_present_pte(pte)) {
2607 if (is_last_spte(pte, sp->role.level)) {
2608 drop_spte(kvm, spte);
2609 } else {
2610 child = spte_to_child_sp(pte);
2611 drop_parent_pte(kvm, child, spte);
2612
2613 /*
2614 * Recursively zap nested TDP SPs, parentless SPs are
2615 * unlikely to be used again in the near future. This
2616 * avoids retaining a large number of stale nested SPs.
2617 */
2618 if (tdp_enabled && invalid_list &&
2619 child->role.guest_mode &&
2620 !atomic_long_read(&child->parent_ptes.val))
2621 return kvm_mmu_prepare_zap_page(kvm, child,
2622 invalid_list);
2623 }
2624 } else if (is_mmio_spte(kvm, pte)) {
2625 mmu_spte_clear_no_track(spte);
2626 }
2627 return 0;
2628 }
2629
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2630 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2631 struct kvm_mmu_page *sp,
2632 struct list_head *invalid_list)
2633 {
2634 int zapped = 0;
2635 unsigned i;
2636
2637 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2638 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2639
2640 return zapped;
2641 }
2642
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2643 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2644 {
2645 u64 *sptep;
2646 struct rmap_iterator iter;
2647
2648 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2649 drop_parent_pte(kvm, sp, sptep);
2650 }
2651
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2652 static int mmu_zap_unsync_children(struct kvm *kvm,
2653 struct kvm_mmu_page *parent,
2654 struct list_head *invalid_list)
2655 {
2656 int i, zapped = 0;
2657 struct mmu_page_path parents;
2658 struct kvm_mmu_pages pages;
2659
2660 if (parent->role.level == PG_LEVEL_4K)
2661 return 0;
2662
2663 while (mmu_unsync_walk(parent, &pages)) {
2664 struct kvm_mmu_page *sp;
2665
2666 for_each_sp(pages, sp, parents, i) {
2667 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2668 mmu_pages_clear_parents(&parents);
2669 zapped++;
2670 }
2671 }
2672
2673 return zapped;
2674 }
2675
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2676 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2677 struct kvm_mmu_page *sp,
2678 struct list_head *invalid_list,
2679 int *nr_zapped)
2680 {
2681 bool list_unstable, zapped_root = false;
2682
2683 lockdep_assert_held_write(&kvm->mmu_lock);
2684 trace_kvm_mmu_prepare_zap_page(sp);
2685 ++kvm->stat.mmu_shadow_zapped;
2686 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2687 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2688 kvm_mmu_unlink_parents(kvm, sp);
2689
2690 /* Zapping children means active_mmu_pages has become unstable. */
2691 list_unstable = *nr_zapped;
2692
2693 if (!sp->role.invalid && sp_has_gptes(sp))
2694 unaccount_shadowed(kvm, sp);
2695
2696 if (sp->unsync)
2697 kvm_unlink_unsync_page(kvm, sp);
2698 if (!sp->root_count) {
2699 /* Count self */
2700 (*nr_zapped)++;
2701
2702 /*
2703 * Already invalid pages (previously active roots) are not on
2704 * the active page list. See list_del() in the "else" case of
2705 * !sp->root_count.
2706 */
2707 if (sp->role.invalid)
2708 list_add(&sp->link, invalid_list);
2709 else
2710 list_move(&sp->link, invalid_list);
2711 kvm_unaccount_mmu_page(kvm, sp);
2712 } else {
2713 /*
2714 * Remove the active root from the active page list, the root
2715 * will be explicitly freed when the root_count hits zero.
2716 */
2717 list_del(&sp->link);
2718
2719 /*
2720 * Obsolete pages cannot be used on any vCPUs, see the comment
2721 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2722 * treats invalid shadow pages as being obsolete.
2723 */
2724 zapped_root = !is_obsolete_sp(kvm, sp);
2725 }
2726
2727 if (sp->nx_huge_page_disallowed)
2728 unaccount_nx_huge_page(kvm, sp);
2729
2730 sp->role.invalid = 1;
2731
2732 /*
2733 * Make the request to free obsolete roots after marking the root
2734 * invalid, otherwise other vCPUs may not see it as invalid.
2735 */
2736 if (zapped_root)
2737 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2738 return list_unstable;
2739 }
2740
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2741 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2742 struct list_head *invalid_list)
2743 {
2744 int nr_zapped;
2745
2746 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2747 return nr_zapped;
2748 }
2749
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2750 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2751 struct list_head *invalid_list)
2752 {
2753 struct kvm_mmu_page *sp, *nsp;
2754
2755 if (list_empty(invalid_list))
2756 return;
2757
2758 /*
2759 * We need to make sure everyone sees our modifications to
2760 * the page tables and see changes to vcpu->mode here. The barrier
2761 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2762 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2763 *
2764 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2765 * guest mode and/or lockless shadow page table walks.
2766 */
2767 kvm_flush_remote_tlbs(kvm);
2768
2769 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2770 WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2771 kvm_mmu_free_shadow_page(sp);
2772 }
2773 }
2774
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2775 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2776 unsigned long nr_to_zap)
2777 {
2778 unsigned long total_zapped = 0;
2779 struct kvm_mmu_page *sp, *tmp;
2780 LIST_HEAD(invalid_list);
2781 bool unstable;
2782 int nr_zapped;
2783
2784 if (list_empty(&kvm->arch.active_mmu_pages))
2785 return 0;
2786
2787 restart:
2788 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2789 /*
2790 * Don't zap active root pages, the page itself can't be freed
2791 * and zapping it will just force vCPUs to realloc and reload.
2792 */
2793 if (sp->root_count)
2794 continue;
2795
2796 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2797 &nr_zapped);
2798 total_zapped += nr_zapped;
2799 if (total_zapped >= nr_to_zap)
2800 break;
2801
2802 if (unstable)
2803 goto restart;
2804 }
2805
2806 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2807
2808 kvm->stat.mmu_recycled += total_zapped;
2809 return total_zapped;
2810 }
2811
kvm_mmu_available_pages(struct kvm * kvm)2812 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2813 {
2814 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2815 return kvm->arch.n_max_mmu_pages -
2816 kvm->arch.n_used_mmu_pages;
2817
2818 return 0;
2819 }
2820
make_mmu_pages_available(struct kvm_vcpu * vcpu)2821 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2822 {
2823 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2824
2825 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2826 return 0;
2827
2828 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2829
2830 /*
2831 * Note, this check is intentionally soft, it only guarantees that one
2832 * page is available, while the caller may end up allocating as many as
2833 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2834 * exceeding the (arbitrary by default) limit will not harm the host,
2835 * being too aggressive may unnecessarily kill the guest, and getting an
2836 * exact count is far more trouble than it's worth, especially in the
2837 * page fault paths.
2838 */
2839 if (!kvm_mmu_available_pages(vcpu->kvm))
2840 return -ENOSPC;
2841 return 0;
2842 }
2843
2844 /*
2845 * Changing the number of mmu pages allocated to the vm
2846 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2847 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2848 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2849 {
2850 write_lock(&kvm->mmu_lock);
2851
2852 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2853 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2854 goal_nr_mmu_pages);
2855
2856 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2857 }
2858
2859 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2860
2861 write_unlock(&kvm->mmu_lock);
2862 }
2863
__kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool always_retry)2864 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2865 bool always_retry)
2866 {
2867 struct kvm *kvm = vcpu->kvm;
2868 LIST_HEAD(invalid_list);
2869 struct kvm_mmu_page *sp;
2870 gpa_t gpa = cr2_or_gpa;
2871 bool r = false;
2872
2873 /*
2874 * Bail early if there aren't any write-protected shadow pages to avoid
2875 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
2876 * by a third party. Reading indirect_shadow_pages without holding
2877 * mmu_lock is safe, as this is purely an optimization, i.e. a false
2878 * positive is benign, and a false negative will simply result in KVM
2879 * skipping the unprotect+retry path, which is also an optimization.
2880 */
2881 if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
2882 goto out;
2883
2884 if (!vcpu->arch.mmu->root_role.direct) {
2885 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
2886 if (gpa == INVALID_GPA)
2887 goto out;
2888 }
2889
2890 write_lock(&kvm->mmu_lock);
2891 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
2892 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2893
2894 /*
2895 * Snapshot the result before zapping, as zapping will remove all list
2896 * entries, i.e. checking the list later would yield a false negative.
2897 */
2898 r = !list_empty(&invalid_list);
2899 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2900 write_unlock(&kvm->mmu_lock);
2901
2902 out:
2903 if (r || always_retry) {
2904 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
2905 vcpu->arch.last_retry_addr = cr2_or_gpa;
2906 }
2907 return r;
2908 }
2909
kvm_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2910 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2911 {
2912 trace_kvm_mmu_unsync_page(sp);
2913 ++kvm->stat.mmu_unsync;
2914 sp->unsync = 1;
2915
2916 kvm_mmu_mark_parents_unsync(sp);
2917 }
2918
2919 /*
2920 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2921 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2922 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2923 * be write-protected.
2924 */
mmu_try_to_unsync_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,bool synchronizing,bool prefetch)2925 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2926 gfn_t gfn, bool synchronizing, bool prefetch)
2927 {
2928 struct kvm_mmu_page *sp;
2929 bool locked = false;
2930
2931 /*
2932 * Force write-protection if the page is being tracked. Note, the page
2933 * track machinery is used to write-protect upper-level shadow pages,
2934 * i.e. this guards the role.level == 4K assertion below!
2935 */
2936 if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2937 return -EPERM;
2938
2939 /*
2940 * The page is not write-tracked, mark existing shadow pages unsync
2941 * unless KVM is synchronizing an unsync SP. In that case, KVM must
2942 * complete emulation of the guest TLB flush before allowing shadow
2943 * pages to become unsync (writable by the guest).
2944 */
2945 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2946 if (synchronizing)
2947 return -EPERM;
2948
2949 if (sp->unsync)
2950 continue;
2951
2952 if (prefetch)
2953 return -EEXIST;
2954
2955 /*
2956 * TDP MMU page faults require an additional spinlock as they
2957 * run with mmu_lock held for read, not write, and the unsync
2958 * logic is not thread safe. Take the spinklock regardless of
2959 * the MMU type to avoid extra conditionals/parameters, there's
2960 * no meaningful penalty if mmu_lock is held for write.
2961 */
2962 if (!locked) {
2963 locked = true;
2964 spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2965
2966 /*
2967 * Recheck after taking the spinlock, a different vCPU
2968 * may have since marked the page unsync. A false
2969 * negative on the unprotected check above is not
2970 * possible as clearing sp->unsync _must_ hold mmu_lock
2971 * for write, i.e. unsync cannot transition from 1->0
2972 * while this CPU holds mmu_lock for read (or write).
2973 */
2974 if (READ_ONCE(sp->unsync))
2975 continue;
2976 }
2977
2978 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2979 kvm_unsync_page(kvm, sp);
2980 }
2981 if (locked)
2982 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2983
2984 /*
2985 * We need to ensure that the marking of unsync pages is visible
2986 * before the SPTE is updated to allow writes because
2987 * kvm_mmu_sync_roots() checks the unsync flags without holding
2988 * the MMU lock and so can race with this. If the SPTE was updated
2989 * before the page had been marked as unsync-ed, something like the
2990 * following could happen:
2991 *
2992 * CPU 1 CPU 2
2993 * ---------------------------------------------------------------------
2994 * 1.2 Host updates SPTE
2995 * to be writable
2996 * 2.1 Guest writes a GPTE for GVA X.
2997 * (GPTE being in the guest page table shadowed
2998 * by the SP from CPU 1.)
2999 * This reads SPTE during the page table walk.
3000 * Since SPTE.W is read as 1, there is no
3001 * fault.
3002 *
3003 * 2.2 Guest issues TLB flush.
3004 * That causes a VM Exit.
3005 *
3006 * 2.3 Walking of unsync pages sees sp->unsync is
3007 * false and skips the page.
3008 *
3009 * 2.4 Guest accesses GVA X.
3010 * Since the mapping in the SP was not updated,
3011 * so the old mapping for GVA X incorrectly
3012 * gets used.
3013 * 1.1 Host marks SP
3014 * as unsync
3015 * (sp->unsync = true)
3016 *
3017 * The write barrier below ensures that 1.1 happens before 1.2 and thus
3018 * the situation in 2.4 does not arise. It pairs with the read barrier
3019 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
3020 */
3021 smp_wmb();
3022
3023 return 0;
3024 }
3025
mmu_set_spte(struct kvm_vcpu * vcpu,struct kvm_memory_slot * slot,u64 * sptep,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,struct kvm_page_fault * fault)3026 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
3027 u64 *sptep, unsigned int pte_access, gfn_t gfn,
3028 kvm_pfn_t pfn, struct kvm_page_fault *fault)
3029 {
3030 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
3031 int level = sp->role.level;
3032 int was_rmapped = 0;
3033 int ret = RET_PF_FIXED;
3034 bool flush = false;
3035 bool wrprot;
3036 u64 spte;
3037
3038 /* Prefetching always gets a writable pfn. */
3039 bool host_writable = !fault || fault->map_writable;
3040 bool prefetch = !fault || fault->prefetch;
3041 bool write_fault = fault && fault->write;
3042
3043 if (unlikely(is_noslot_pfn(pfn))) {
3044 vcpu->stat.pf_mmio_spte_created++;
3045 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
3046 return RET_PF_EMULATE;
3047 }
3048
3049 if (is_shadow_present_pte(*sptep)) {
3050 if (prefetch && is_last_spte(*sptep, level) &&
3051 pfn == spte_to_pfn(*sptep))
3052 return RET_PF_SPURIOUS;
3053
3054 /*
3055 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3056 * the parent of the now unreachable PTE.
3057 */
3058 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3059 struct kvm_mmu_page *child;
3060 u64 pte = *sptep;
3061
3062 child = spte_to_child_sp(pte);
3063 drop_parent_pte(vcpu->kvm, child, sptep);
3064 flush = true;
3065 } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) {
3066 drop_spte(vcpu->kvm, sptep);
3067 flush = true;
3068 } else
3069 was_rmapped = 1;
3070 }
3071
3072 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
3073 false, host_writable, &spte);
3074
3075 if (*sptep == spte) {
3076 ret = RET_PF_SPURIOUS;
3077 } else {
3078 flush |= mmu_spte_update(sptep, spte);
3079 trace_kvm_mmu_set_spte(level, gfn, sptep);
3080 }
3081
3082 if (wrprot && write_fault)
3083 ret = RET_PF_WRITE_PROTECTED;
3084
3085 if (flush)
3086 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
3087
3088 if (!was_rmapped) {
3089 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
3090 rmap_add(vcpu, slot, sptep, gfn, pte_access);
3091 } else {
3092 /* Already rmapped but the pte_access bits may have changed. */
3093 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
3094 }
3095
3096 return ret;
3097 }
3098
kvm_mmu_prefetch_sptes(struct kvm_vcpu * vcpu,gfn_t gfn,u64 * sptep,int nr_pages,unsigned int access)3099 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep,
3100 int nr_pages, unsigned int access)
3101 {
3102 struct page *pages[PTE_PREFETCH_NUM];
3103 struct kvm_memory_slot *slot;
3104 int i;
3105
3106 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM))
3107 return false;
3108
3109 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3110 if (!slot)
3111 return false;
3112
3113 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages);
3114 if (nr_pages <= 0)
3115 return false;
3116
3117 for (i = 0; i < nr_pages; i++, gfn++, sptep++) {
3118 mmu_set_spte(vcpu, slot, sptep, access, gfn,
3119 page_to_pfn(pages[i]), NULL);
3120
3121 /*
3122 * KVM always prefetches writable pages from the primary MMU,
3123 * and KVM can make its SPTE writable in the fast page handler,
3124 * without notifying the primary MMU. Mark pages/folios dirty
3125 * now to ensure file data is written back if it ends up being
3126 * written by the guest. Because KVM's prefetching GUPs
3127 * writable PTEs, the probability of unnecessary writeback is
3128 * extremely low.
3129 */
3130 kvm_release_page_dirty(pages[i]);
3131 }
3132
3133 return true;
3134 }
3135
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)3136 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3137 struct kvm_mmu_page *sp,
3138 u64 *start, u64 *end)
3139 {
3140 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
3141 unsigned int access = sp->role.access;
3142
3143 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access);
3144 }
3145
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)3146 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3147 struct kvm_mmu_page *sp, u64 *sptep)
3148 {
3149 u64 *spte, *start = NULL;
3150 int i;
3151
3152 WARN_ON_ONCE(!sp->role.direct);
3153
3154 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3155 spte = sp->spt + i;
3156
3157 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3158 if (is_shadow_present_pte(*spte) || spte == sptep) {
3159 if (!start)
3160 continue;
3161 if (!direct_pte_prefetch_many(vcpu, sp, start, spte))
3162 return;
3163
3164 start = NULL;
3165 } else if (!start)
3166 start = spte;
3167 }
3168 if (start)
3169 direct_pte_prefetch_many(vcpu, sp, start, spte);
3170 }
3171
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)3172 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3173 {
3174 struct kvm_mmu_page *sp;
3175
3176 sp = sptep_to_sp(sptep);
3177
3178 /*
3179 * Without accessed bits, there's no way to distinguish between
3180 * actually accessed translations and prefetched, so disable pte
3181 * prefetch if accessed bits aren't available.
3182 */
3183 if (sp_ad_disabled(sp))
3184 return;
3185
3186 if (sp->role.level > PG_LEVEL_4K)
3187 return;
3188
3189 /*
3190 * If addresses are being invalidated, skip prefetching to avoid
3191 * accidentally prefetching those addresses.
3192 */
3193 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3194 return;
3195
3196 __direct_pte_prefetch(vcpu, sp, sptep);
3197 }
3198
3199 /*
3200 * Lookup the mapping level for @gfn in the current mm.
3201 *
3202 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
3203 * consumer to be tied into KVM's handlers for MMU notifier events!
3204 *
3205 * There are several ways to safely use this helper:
3206 *
3207 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3208 * consuming it. In this case, mmu_lock doesn't need to be held during the
3209 * lookup, but it does need to be held while checking the MMU notifier.
3210 *
3211 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3212 * event for the hva. This can be done by explicit checking the MMU notifier
3213 * or by ensuring that KVM already has a valid mapping that covers the hva.
3214 *
3215 * - Do not use the result to install new mappings, e.g. use the host mapping
3216 * level only to decide whether or not to zap an entry. In this case, it's
3217 * not required to hold mmu_lock (though it's highly likely the caller will
3218 * want to hold mmu_lock anyways, e.g. to modify SPTEs).
3219 *
3220 * Note! The lookup can still race with modifications to host page tables, but
3221 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3222 * race with the primary MMU occurs.
3223 */
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,const struct kvm_memory_slot * slot)3224 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3225 const struct kvm_memory_slot *slot)
3226 {
3227 int level = PG_LEVEL_4K;
3228 unsigned long hva;
3229 unsigned long flags;
3230 pgd_t pgd;
3231 p4d_t p4d;
3232 pud_t pud;
3233 pmd_t pmd;
3234
3235 /*
3236 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3237 * is not solely for performance, it's also necessary to avoid the
3238 * "writable" check in __gfn_to_hva_many(), which will always fail on
3239 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3240 * page fault steps have already verified the guest isn't writing a
3241 * read-only memslot.
3242 */
3243 hva = __gfn_to_hva_memslot(slot, gfn);
3244
3245 /*
3246 * Disable IRQs to prevent concurrent tear down of host page tables,
3247 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3248 * the original page table.
3249 */
3250 local_irq_save(flags);
3251
3252 /*
3253 * Read each entry once. As above, a non-leaf entry can be promoted to
3254 * a huge page _during_ this walk. Re-reading the entry could send the
3255 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3256 * value) and then p*d_offset() walks into the target huge page instead
3257 * of the old page table (sees the new value).
3258 */
3259 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3260 if (pgd_none(pgd))
3261 goto out;
3262
3263 p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3264 if (p4d_none(p4d) || !p4d_present(p4d))
3265 goto out;
3266
3267 pud = READ_ONCE(*pud_offset(&p4d, hva));
3268 if (pud_none(pud) || !pud_present(pud))
3269 goto out;
3270
3271 if (pud_leaf(pud)) {
3272 level = PG_LEVEL_1G;
3273 goto out;
3274 }
3275
3276 pmd = READ_ONCE(*pmd_offset(&pud, hva));
3277 if (pmd_none(pmd) || !pmd_present(pmd))
3278 goto out;
3279
3280 if (pmd_leaf(pmd))
3281 level = PG_LEVEL_2M;
3282
3283 out:
3284 local_irq_restore(flags);
3285 return level;
3286 }
3287
__kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,int max_level,bool is_private)3288 static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3289 const struct kvm_memory_slot *slot,
3290 gfn_t gfn, int max_level, bool is_private)
3291 {
3292 struct kvm_lpage_info *linfo;
3293 int host_level;
3294
3295 max_level = min(max_level, max_huge_page_level);
3296 for ( ; max_level > PG_LEVEL_4K; max_level--) {
3297 linfo = lpage_info_slot(gfn, slot, max_level);
3298 if (!linfo->disallow_lpage)
3299 break;
3300 }
3301
3302 if (is_private)
3303 return max_level;
3304
3305 if (max_level == PG_LEVEL_4K)
3306 return PG_LEVEL_4K;
3307
3308 host_level = host_pfn_mapping_level(kvm, gfn, slot);
3309 return min(host_level, max_level);
3310 }
3311
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn)3312 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3313 const struct kvm_memory_slot *slot, gfn_t gfn)
3314 {
3315 bool is_private = kvm_slot_can_be_private(slot) &&
3316 kvm_mem_is_private(kvm, gfn);
3317
3318 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private);
3319 }
3320
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3321 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3322 {
3323 struct kvm_memory_slot *slot = fault->slot;
3324 kvm_pfn_t mask;
3325
3326 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3327
3328 if (unlikely(fault->max_level == PG_LEVEL_4K))
3329 return;
3330
3331 if (is_error_noslot_pfn(fault->pfn))
3332 return;
3333
3334 if (kvm_slot_dirty_track_enabled(slot))
3335 return;
3336
3337 /*
3338 * Enforce the iTLB multihit workaround after capturing the requested
3339 * level, which will be used to do precise, accurate accounting.
3340 */
3341 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3342 fault->gfn, fault->max_level,
3343 fault->is_private);
3344 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3345 return;
3346
3347 /*
3348 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3349 * the pmd can't be split from under us.
3350 */
3351 fault->goal_level = fault->req_level;
3352 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3353 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3354 fault->pfn &= ~mask;
3355 }
3356
disallowed_hugepage_adjust(struct kvm_page_fault * fault,u64 spte,int cur_level)3357 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3358 {
3359 if (cur_level > PG_LEVEL_4K &&
3360 cur_level == fault->goal_level &&
3361 is_shadow_present_pte(spte) &&
3362 !is_large_pte(spte) &&
3363 spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3364 /*
3365 * A small SPTE exists for this pfn, but FNAME(fetch),
3366 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3367 * large PTE instead: just force them to go down another level,
3368 * patching back for them into pfn the next 9 bits of the
3369 * address.
3370 */
3371 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3372 KVM_PAGES_PER_HPAGE(cur_level - 1);
3373 fault->pfn |= fault->gfn & page_mask;
3374 fault->goal_level--;
3375 }
3376 }
3377
direct_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3378 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3379 {
3380 struct kvm_shadow_walk_iterator it;
3381 struct kvm_mmu_page *sp;
3382 int ret;
3383 gfn_t base_gfn = fault->gfn;
3384
3385 kvm_mmu_hugepage_adjust(vcpu, fault);
3386
3387 trace_kvm_mmu_spte_requested(fault);
3388 for_each_shadow_entry(vcpu, fault->addr, it) {
3389 /*
3390 * We cannot overwrite existing page tables with an NX
3391 * large page, as the leaf could be executable.
3392 */
3393 if (fault->nx_huge_page_workaround_enabled)
3394 disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3395
3396 base_gfn = gfn_round_for_level(fault->gfn, it.level);
3397 if (it.level == fault->goal_level)
3398 break;
3399
3400 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3401 if (sp == ERR_PTR(-EEXIST))
3402 continue;
3403
3404 link_shadow_page(vcpu, it.sptep, sp);
3405 if (fault->huge_page_disallowed)
3406 account_nx_huge_page(vcpu->kvm, sp,
3407 fault->req_level >= it.level);
3408 }
3409
3410 if (WARN_ON_ONCE(it.level != fault->goal_level))
3411 return -EFAULT;
3412
3413 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3414 base_gfn, fault->pfn, fault);
3415 if (ret == RET_PF_SPURIOUS)
3416 return ret;
3417
3418 direct_pte_prefetch(vcpu, it.sptep);
3419 return ret;
3420 }
3421
kvm_send_hwpoison_signal(struct kvm_memory_slot * slot,gfn_t gfn)3422 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3423 {
3424 unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3425
3426 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3427 }
3428
kvm_handle_error_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3429 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3430 {
3431 if (is_sigpending_pfn(fault->pfn)) {
3432 kvm_handle_signal_exit(vcpu);
3433 return -EINTR;
3434 }
3435
3436 /*
3437 * Do not cache the mmio info caused by writing the readonly gfn
3438 * into the spte otherwise read access on readonly gfn also can
3439 * caused mmio page fault and treat it as mmio access.
3440 */
3441 if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3442 return RET_PF_EMULATE;
3443
3444 if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3445 kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3446 return RET_PF_RETRY;
3447 }
3448
3449 return -EFAULT;
3450 }
3451
kvm_handle_noslot_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)3452 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3453 struct kvm_page_fault *fault,
3454 unsigned int access)
3455 {
3456 gva_t gva = fault->is_tdp ? 0 : fault->addr;
3457
3458 if (fault->is_private) {
3459 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
3460 return -EFAULT;
3461 }
3462
3463 vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3464 access & shadow_mmio_access_mask);
3465
3466 fault->slot = NULL;
3467 fault->pfn = KVM_PFN_NOSLOT;
3468 fault->map_writable = false;
3469
3470 /*
3471 * If MMIO caching is disabled, emulate immediately without
3472 * touching the shadow page tables as attempting to install an
3473 * MMIO SPTE will just be an expensive nop.
3474 */
3475 if (unlikely(!enable_mmio_caching))
3476 return RET_PF_EMULATE;
3477
3478 /*
3479 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3480 * any guest that generates such gfns is running nested and is being
3481 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3482 * only if L1's MAXPHYADDR is inaccurate with respect to the
3483 * hardware's).
3484 */
3485 if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3486 return RET_PF_EMULATE;
3487
3488 return RET_PF_CONTINUE;
3489 }
3490
page_fault_can_be_fast(struct kvm * kvm,struct kvm_page_fault * fault)3491 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault)
3492 {
3493 /*
3494 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3495 * reach the common page fault handler if the SPTE has an invalid MMIO
3496 * generation number. Refreshing the MMIO generation needs to go down
3497 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
3498 */
3499 if (fault->rsvd)
3500 return false;
3501
3502 /*
3503 * For hardware-protected VMs, certain conditions like attempting to
3504 * perform a write to a page which is not in the state that the guest
3505 * expects it to be in can result in a nested/extended #PF. In this
3506 * case, the below code might misconstrue this situation as being the
3507 * result of a write-protected access, and treat it as a spurious case
3508 * rather than taking any action to satisfy the real source of the #PF
3509 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the
3510 * guest spinning on a #PF indefinitely, so don't attempt the fast path
3511 * in this case.
3512 *
3513 * Note that the kvm_mem_is_private() check might race with an
3514 * attribute update, but this will either result in the guest spinning
3515 * on RET_PF_SPURIOUS until the update completes, or an actual spurious
3516 * case might go down the slow path. Either case will resolve itself.
3517 */
3518 if (kvm->arch.has_private_mem &&
3519 fault->is_private != kvm_mem_is_private(kvm, fault->gfn))
3520 return false;
3521
3522 /*
3523 * #PF can be fast if:
3524 *
3525 * 1. The shadow page table entry is not present and A/D bits are
3526 * disabled _by KVM_, which could mean that the fault is potentially
3527 * caused by access tracking (if enabled). If A/D bits are enabled
3528 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3529 * bits for L2 and employ access tracking, but the fast page fault
3530 * mechanism only supports direct MMUs.
3531 * 2. The shadow page table entry is present, the access is a write,
3532 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3533 * the fault was caused by a write-protection violation. If the
3534 * SPTE is MMU-writable (determined later), the fault can be fixed
3535 * by setting the Writable bit, which can be done out of mmu_lock.
3536 */
3537 if (!fault->present)
3538 return !kvm_ad_enabled;
3539
3540 /*
3541 * Note, instruction fetches and writes are mutually exclusive, ignore
3542 * the "exec" flag.
3543 */
3544 return fault->write;
3545 }
3546
3547 /*
3548 * Returns true if the SPTE was fixed successfully. Otherwise,
3549 * someone else modified the SPTE from its original value.
3550 */
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,u64 * sptep,u64 old_spte,u64 new_spte)3551 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3552 struct kvm_page_fault *fault,
3553 u64 *sptep, u64 old_spte, u64 new_spte)
3554 {
3555 /*
3556 * Theoretically we could also set dirty bit (and flush TLB) here in
3557 * order to eliminate unnecessary PML logging. See comments in
3558 * set_spte. But fast_page_fault is very unlikely to happen with PML
3559 * enabled, so we do not do this. This might result in the same GPA
3560 * to be logged in PML buffer again when the write really happens, and
3561 * eventually to be called by mark_page_dirty twice. But it's also no
3562 * harm. This also avoids the TLB flush needed after setting dirty bit
3563 * so non-PML cases won't be impacted.
3564 *
3565 * Compare with make_spte() where instead shadow_dirty_mask is set.
3566 */
3567 if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3568 return false;
3569
3570 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3571 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3572
3573 return true;
3574 }
3575
3576 /*
3577 * Returns the last level spte pointer of the shadow page walk for the given
3578 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3579 * walk could be performed, returns NULL and *spte does not contain valid data.
3580 *
3581 * Contract:
3582 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3583 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3584 */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3585 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3586 {
3587 struct kvm_shadow_walk_iterator iterator;
3588 u64 old_spte;
3589 u64 *sptep = NULL;
3590
3591 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3592 sptep = iterator.sptep;
3593 *spte = old_spte;
3594 }
3595
3596 return sptep;
3597 }
3598
3599 /*
3600 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3601 */
fast_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3602 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3603 {
3604 struct kvm_mmu_page *sp;
3605 int ret = RET_PF_INVALID;
3606 u64 spte;
3607 u64 *sptep;
3608 uint retry_count = 0;
3609
3610 if (!page_fault_can_be_fast(vcpu->kvm, fault))
3611 return ret;
3612
3613 walk_shadow_page_lockless_begin(vcpu);
3614
3615 do {
3616 u64 new_spte;
3617
3618 if (tdp_mmu_enabled)
3619 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte);
3620 else
3621 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3622
3623 /*
3624 * It's entirely possible for the mapping to have been zapped
3625 * by a different task, but the root page should always be
3626 * available as the vCPU holds a reference to its root(s).
3627 */
3628 if (WARN_ON_ONCE(!sptep))
3629 spte = FROZEN_SPTE;
3630
3631 if (!is_shadow_present_pte(spte))
3632 break;
3633
3634 sp = sptep_to_sp(sptep);
3635 if (!is_last_spte(spte, sp->role.level))
3636 break;
3637
3638 /*
3639 * Check whether the memory access that caused the fault would
3640 * still cause it if it were to be performed right now. If not,
3641 * then this is a spurious fault caused by TLB lazily flushed,
3642 * or some other CPU has already fixed the PTE after the
3643 * current CPU took the fault.
3644 *
3645 * Need not check the access of upper level table entries since
3646 * they are always ACC_ALL.
3647 */
3648 if (is_access_allowed(fault, spte)) {
3649 ret = RET_PF_SPURIOUS;
3650 break;
3651 }
3652
3653 new_spte = spte;
3654
3655 /*
3656 * KVM only supports fixing page faults outside of MMU lock for
3657 * direct MMUs, nested MMUs are always indirect, and KVM always
3658 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
3659 * enabled, the SPTE can't be an access-tracked SPTE.
3660 */
3661 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte))
3662 new_spte = restore_acc_track_spte(new_spte) |
3663 shadow_accessed_mask;
3664
3665 /*
3666 * To keep things simple, only SPTEs that are MMU-writable can
3667 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3668 * that were write-protected for dirty-logging or access
3669 * tracking are handled here. Don't bother checking if the
3670 * SPTE is writable to prioritize running with A/D bits enabled.
3671 * The is_access_allowed() check above handles the common case
3672 * of the fault being spurious, and the SPTE is known to be
3673 * shadow-present, i.e. except for access tracking restoration
3674 * making the new SPTE writable, the check is wasteful.
3675 */
3676 if (fault->write && is_mmu_writable_spte(spte)) {
3677 new_spte |= PT_WRITABLE_MASK;
3678
3679 /*
3680 * Do not fix write-permission on the large spte when
3681 * dirty logging is enabled. Since we only dirty the
3682 * first page into the dirty-bitmap in
3683 * fast_pf_fix_direct_spte(), other pages are missed
3684 * if its slot has dirty logging enabled.
3685 *
3686 * Instead, we let the slow page fault path create a
3687 * normal spte to fix the access.
3688 */
3689 if (sp->role.level > PG_LEVEL_4K &&
3690 kvm_slot_dirty_track_enabled(fault->slot))
3691 break;
3692 }
3693
3694 /* Verify that the fault can be handled in the fast path */
3695 if (new_spte == spte ||
3696 !is_access_allowed(fault, new_spte))
3697 break;
3698
3699 /*
3700 * Currently, fast page fault only works for direct mapping
3701 * since the gfn is not stable for indirect shadow page. See
3702 * Documentation/virt/kvm/locking.rst to get more detail.
3703 */
3704 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3705 ret = RET_PF_FIXED;
3706 break;
3707 }
3708
3709 if (++retry_count > 4) {
3710 pr_warn_once("Fast #PF retrying more than 4 times.\n");
3711 break;
3712 }
3713
3714 } while (true);
3715
3716 trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3717 walk_shadow_page_lockless_end(vcpu);
3718
3719 if (ret != RET_PF_INVALID)
3720 vcpu->stat.pf_fast++;
3721
3722 return ret;
3723 }
3724
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3725 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3726 struct list_head *invalid_list)
3727 {
3728 struct kvm_mmu_page *sp;
3729
3730 if (!VALID_PAGE(*root_hpa))
3731 return;
3732
3733 sp = root_to_sp(*root_hpa);
3734 if (WARN_ON_ONCE(!sp))
3735 return;
3736
3737 if (is_tdp_mmu_page(sp)) {
3738 lockdep_assert_held_read(&kvm->mmu_lock);
3739 kvm_tdp_mmu_put_root(kvm, sp);
3740 } else {
3741 lockdep_assert_held_write(&kvm->mmu_lock);
3742 if (!--sp->root_count && sp->role.invalid)
3743 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3744 }
3745
3746 *root_hpa = INVALID_PAGE;
3747 }
3748
3749 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm * kvm,struct kvm_mmu * mmu,ulong roots_to_free)3750 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3751 ulong roots_to_free)
3752 {
3753 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3754 int i;
3755 LIST_HEAD(invalid_list);
3756 bool free_active_root;
3757
3758 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3759
3760 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3761
3762 /* Before acquiring the MMU lock, see if we need to do any real work. */
3763 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3764 && VALID_PAGE(mmu->root.hpa);
3765
3766 if (!free_active_root) {
3767 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3768 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3769 VALID_PAGE(mmu->prev_roots[i].hpa))
3770 break;
3771
3772 if (i == KVM_MMU_NUM_PREV_ROOTS)
3773 return;
3774 }
3775
3776 if (is_tdp_mmu)
3777 read_lock(&kvm->mmu_lock);
3778 else
3779 write_lock(&kvm->mmu_lock);
3780
3781 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3782 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3783 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3784 &invalid_list);
3785
3786 if (free_active_root) {
3787 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3788 /* Nothing to cleanup for dummy roots. */
3789 } else if (root_to_sp(mmu->root.hpa)) {
3790 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3791 } else if (mmu->pae_root) {
3792 for (i = 0; i < 4; ++i) {
3793 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3794 continue;
3795
3796 mmu_free_root_page(kvm, &mmu->pae_root[i],
3797 &invalid_list);
3798 mmu->pae_root[i] = INVALID_PAE_ROOT;
3799 }
3800 }
3801 mmu->root.hpa = INVALID_PAGE;
3802 mmu->root.pgd = 0;
3803 }
3804
3805 if (is_tdp_mmu) {
3806 read_unlock(&kvm->mmu_lock);
3807 WARN_ON_ONCE(!list_empty(&invalid_list));
3808 } else {
3809 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3810 write_unlock(&kvm->mmu_lock);
3811 }
3812 }
3813 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3814
kvm_mmu_free_guest_mode_roots(struct kvm * kvm,struct kvm_mmu * mmu)3815 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3816 {
3817 unsigned long roots_to_free = 0;
3818 struct kvm_mmu_page *sp;
3819 hpa_t root_hpa;
3820 int i;
3821
3822 /*
3823 * This should not be called while L2 is active, L2 can't invalidate
3824 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3825 */
3826 WARN_ON_ONCE(mmu->root_role.guest_mode);
3827
3828 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3829 root_hpa = mmu->prev_roots[i].hpa;
3830 if (!VALID_PAGE(root_hpa))
3831 continue;
3832
3833 sp = root_to_sp(root_hpa);
3834 if (!sp || sp->role.guest_mode)
3835 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3836 }
3837
3838 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3839 }
3840 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3841
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,int quadrant,u8 level)3842 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3843 u8 level)
3844 {
3845 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3846 struct kvm_mmu_page *sp;
3847
3848 role.level = level;
3849 role.quadrant = quadrant;
3850
3851 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3852 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3853
3854 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3855 ++sp->root_count;
3856
3857 return __pa(sp->spt);
3858 }
3859
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3860 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3861 {
3862 struct kvm_mmu *mmu = vcpu->arch.mmu;
3863 u8 shadow_root_level = mmu->root_role.level;
3864 hpa_t root;
3865 unsigned i;
3866 int r;
3867
3868 if (tdp_mmu_enabled) {
3869 if (kvm_has_mirrored_tdp(vcpu->kvm) &&
3870 !VALID_PAGE(mmu->mirror_root_hpa))
3871 kvm_tdp_mmu_alloc_root(vcpu, true);
3872 kvm_tdp_mmu_alloc_root(vcpu, false);
3873 return 0;
3874 }
3875
3876 write_lock(&vcpu->kvm->mmu_lock);
3877 r = make_mmu_pages_available(vcpu);
3878 if (r < 0)
3879 goto out_unlock;
3880
3881 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3882 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3883 mmu->root.hpa = root;
3884 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3885 if (WARN_ON_ONCE(!mmu->pae_root)) {
3886 r = -EIO;
3887 goto out_unlock;
3888 }
3889
3890 for (i = 0; i < 4; ++i) {
3891 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3892
3893 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3894 PT32_ROOT_LEVEL);
3895 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3896 shadow_me_value;
3897 }
3898 mmu->root.hpa = __pa(mmu->pae_root);
3899 } else {
3900 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3901 r = -EIO;
3902 goto out_unlock;
3903 }
3904
3905 /* root.pgd is ignored for direct MMUs. */
3906 mmu->root.pgd = 0;
3907 out_unlock:
3908 write_unlock(&vcpu->kvm->mmu_lock);
3909 return r;
3910 }
3911
kvm_mmu_alloc_page_hash(struct kvm * kvm)3912 static int kvm_mmu_alloc_page_hash(struct kvm *kvm)
3913 {
3914 struct hlist_head *h;
3915
3916 if (kvm->arch.mmu_page_hash)
3917 return 0;
3918
3919 h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT);
3920 if (!h)
3921 return -ENOMEM;
3922
3923 /*
3924 * Ensure the hash table pointer is set only after all stores to zero
3925 * the memory are retired. Pairs with the smp_load_acquire() in
3926 * kvm_get_mmu_page_hash(). Note, mmu_lock must be held for write to
3927 * add (or remove) shadow pages, and so readers are guaranteed to see
3928 * an empty list for their current mmu_lock critical section.
3929 */
3930 smp_store_release(&kvm->arch.mmu_page_hash, h);
3931 return 0;
3932 }
3933
mmu_first_shadow_root_alloc(struct kvm * kvm)3934 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3935 {
3936 struct kvm_memslots *slots;
3937 struct kvm_memory_slot *slot;
3938 int r = 0, i, bkt;
3939
3940 /*
3941 * Check if this is the first shadow root being allocated before
3942 * taking the lock.
3943 */
3944 if (kvm_shadow_root_allocated(kvm))
3945 return 0;
3946
3947 mutex_lock(&kvm->slots_arch_lock);
3948
3949 /* Recheck, under the lock, whether this is the first shadow root. */
3950 if (kvm_shadow_root_allocated(kvm))
3951 goto out_unlock;
3952
3953 r = kvm_mmu_alloc_page_hash(kvm);
3954 if (r)
3955 goto out_unlock;
3956
3957 /*
3958 * Check if memslot metadata actually needs to be allocated, e.g. all
3959 * metadata will be allocated upfront if TDP is disabled.
3960 */
3961 if (kvm_memslots_have_rmaps(kvm) &&
3962 kvm_page_track_write_tracking_enabled(kvm))
3963 goto out_success;
3964
3965 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3966 slots = __kvm_memslots(kvm, i);
3967 kvm_for_each_memslot(slot, bkt, slots) {
3968 /*
3969 * Both of these functions are no-ops if the target is
3970 * already allocated, so unconditionally calling both
3971 * is safe. Intentionally do NOT free allocations on
3972 * failure to avoid having to track which allocations
3973 * were made now versus when the memslot was created.
3974 * The metadata is guaranteed to be freed when the slot
3975 * is freed, and will be kept/used if userspace retries
3976 * KVM_RUN instead of killing the VM.
3977 */
3978 r = memslot_rmap_alloc(slot, slot->npages);
3979 if (r)
3980 goto out_unlock;
3981 r = kvm_page_track_write_tracking_alloc(slot);
3982 if (r)
3983 goto out_unlock;
3984 }
3985 }
3986
3987 /*
3988 * Ensure that shadow_root_allocated becomes true strictly after
3989 * all the related pointers are set.
3990 */
3991 out_success:
3992 smp_store_release(&kvm->arch.shadow_root_allocated, true);
3993
3994 out_unlock:
3995 mutex_unlock(&kvm->slots_arch_lock);
3996 return r;
3997 }
3998
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3999 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
4000 {
4001 struct kvm_mmu *mmu = vcpu->arch.mmu;
4002 u64 pdptrs[4], pm_mask;
4003 gfn_t root_gfn, root_pgd;
4004 int quadrant, i, r;
4005 hpa_t root;
4006
4007 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
4008 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
4009
4010 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
4011 mmu->root.hpa = kvm_mmu_get_dummy_root();
4012 return 0;
4013 }
4014
4015 /*
4016 * On SVM, reading PDPTRs might access guest memory, which might fault
4017 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
4018 */
4019 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
4020 for (i = 0; i < 4; ++i) {
4021 pdptrs[i] = mmu->get_pdptr(vcpu, i);
4022 if (!(pdptrs[i] & PT_PRESENT_MASK))
4023 continue;
4024
4025 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
4026 pdptrs[i] = 0;
4027 }
4028 }
4029
4030 r = mmu_first_shadow_root_alloc(vcpu->kvm);
4031 if (r)
4032 return r;
4033
4034 write_lock(&vcpu->kvm->mmu_lock);
4035 r = make_mmu_pages_available(vcpu);
4036 if (r < 0)
4037 goto out_unlock;
4038
4039 /*
4040 * Do we shadow a long mode page table? If so we need to
4041 * write-protect the guests page table root.
4042 */
4043 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4044 root = mmu_alloc_root(vcpu, root_gfn, 0,
4045 mmu->root_role.level);
4046 mmu->root.hpa = root;
4047 goto set_root_pgd;
4048 }
4049
4050 if (WARN_ON_ONCE(!mmu->pae_root)) {
4051 r = -EIO;
4052 goto out_unlock;
4053 }
4054
4055 /*
4056 * We shadow a 32 bit page table. This may be a legacy 2-level
4057 * or a PAE 3-level page table. In either case we need to be aware that
4058 * the shadow page table may be a PAE or a long mode page table.
4059 */
4060 pm_mask = PT_PRESENT_MASK | shadow_me_value;
4061 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
4062 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
4063
4064 if (WARN_ON_ONCE(!mmu->pml4_root)) {
4065 r = -EIO;
4066 goto out_unlock;
4067 }
4068 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
4069
4070 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
4071 if (WARN_ON_ONCE(!mmu->pml5_root)) {
4072 r = -EIO;
4073 goto out_unlock;
4074 }
4075 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
4076 }
4077 }
4078
4079 for (i = 0; i < 4; ++i) {
4080 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
4081
4082 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
4083 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
4084 mmu->pae_root[i] = INVALID_PAE_ROOT;
4085 continue;
4086 }
4087 root_gfn = pdptrs[i] >> PAGE_SHIFT;
4088 }
4089
4090 /*
4091 * If shadowing 32-bit non-PAE page tables, each PAE page
4092 * directory maps one quarter of the guest's non-PAE page
4093 * directory. Othwerise each PAE page direct shadows one guest
4094 * PAE page directory so that quadrant should be 0.
4095 */
4096 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
4097
4098 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
4099 mmu->pae_root[i] = root | pm_mask;
4100 }
4101
4102 if (mmu->root_role.level == PT64_ROOT_5LEVEL)
4103 mmu->root.hpa = __pa(mmu->pml5_root);
4104 else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
4105 mmu->root.hpa = __pa(mmu->pml4_root);
4106 else
4107 mmu->root.hpa = __pa(mmu->pae_root);
4108
4109 set_root_pgd:
4110 mmu->root.pgd = root_pgd;
4111 out_unlock:
4112 write_unlock(&vcpu->kvm->mmu_lock);
4113
4114 return r;
4115 }
4116
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)4117 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
4118 {
4119 struct kvm_mmu *mmu = vcpu->arch.mmu;
4120 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
4121 u64 *pml5_root = NULL;
4122 u64 *pml4_root = NULL;
4123 u64 *pae_root;
4124
4125 /*
4126 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
4127 * tables are allocated and initialized at root creation as there is no
4128 * equivalent level in the guest's NPT to shadow. Allocate the tables
4129 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
4130 */
4131 if (mmu->root_role.direct ||
4132 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
4133 mmu->root_role.level < PT64_ROOT_4LEVEL)
4134 return 0;
4135
4136 /*
4137 * NPT, the only paging mode that uses this horror, uses a fixed number
4138 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
4139 * all MMus are 5-level. Thus, this can safely require that pml5_root
4140 * is allocated if the other roots are valid and pml5 is needed, as any
4141 * prior MMU would also have required pml5.
4142 */
4143 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
4144 return 0;
4145
4146 /*
4147 * The special roots should always be allocated in concert. Yell and
4148 * bail if KVM ends up in a state where only one of the roots is valid.
4149 */
4150 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
4151 (need_pml5 && mmu->pml5_root)))
4152 return -EIO;
4153
4154 /*
4155 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
4156 * doesn't need to be decrypted.
4157 */
4158 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4159 if (!pae_root)
4160 return -ENOMEM;
4161
4162 #ifdef CONFIG_X86_64
4163 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4164 if (!pml4_root)
4165 goto err_pml4;
4166
4167 if (need_pml5) {
4168 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4169 if (!pml5_root)
4170 goto err_pml5;
4171 }
4172 #endif
4173
4174 mmu->pae_root = pae_root;
4175 mmu->pml4_root = pml4_root;
4176 mmu->pml5_root = pml5_root;
4177
4178 return 0;
4179
4180 #ifdef CONFIG_X86_64
4181 err_pml5:
4182 free_page((unsigned long)pml4_root);
4183 err_pml4:
4184 free_page((unsigned long)pae_root);
4185 return -ENOMEM;
4186 #endif
4187 }
4188
is_unsync_root(hpa_t root)4189 static bool is_unsync_root(hpa_t root)
4190 {
4191 struct kvm_mmu_page *sp;
4192
4193 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
4194 return false;
4195
4196 /*
4197 * The read barrier orders the CPU's read of SPTE.W during the page table
4198 * walk before the reads of sp->unsync/sp->unsync_children here.
4199 *
4200 * Even if another CPU was marking the SP as unsync-ed simultaneously,
4201 * any guest page table changes are not guaranteed to be visible anyway
4202 * until this VCPU issues a TLB flush strictly after those changes are
4203 * made. We only need to ensure that the other CPU sets these flags
4204 * before any actual changes to the page tables are made. The comments
4205 * in mmu_try_to_unsync_pages() describe what could go wrong if this
4206 * requirement isn't satisfied.
4207 */
4208 smp_rmb();
4209 sp = root_to_sp(root);
4210
4211 /*
4212 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4213 * PDPTEs for a given PAE root need to be synchronized individually.
4214 */
4215 if (WARN_ON_ONCE(!sp))
4216 return false;
4217
4218 if (sp->unsync || sp->unsync_children)
4219 return true;
4220
4221 return false;
4222 }
4223
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)4224 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4225 {
4226 int i;
4227 struct kvm_mmu_page *sp;
4228
4229 if (vcpu->arch.mmu->root_role.direct)
4230 return;
4231
4232 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4233 return;
4234
4235 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4236
4237 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4238 hpa_t root = vcpu->arch.mmu->root.hpa;
4239
4240 if (!is_unsync_root(root))
4241 return;
4242
4243 sp = root_to_sp(root);
4244
4245 write_lock(&vcpu->kvm->mmu_lock);
4246 mmu_sync_children(vcpu, sp, true);
4247 write_unlock(&vcpu->kvm->mmu_lock);
4248 return;
4249 }
4250
4251 write_lock(&vcpu->kvm->mmu_lock);
4252
4253 for (i = 0; i < 4; ++i) {
4254 hpa_t root = vcpu->arch.mmu->pae_root[i];
4255
4256 if (IS_VALID_PAE_ROOT(root)) {
4257 sp = spte_to_child_sp(root);
4258 mmu_sync_children(vcpu, sp, true);
4259 }
4260 }
4261
4262 write_unlock(&vcpu->kvm->mmu_lock);
4263 }
4264
kvm_mmu_sync_prev_roots(struct kvm_vcpu * vcpu)4265 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4266 {
4267 unsigned long roots_to_free = 0;
4268 int i;
4269
4270 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4271 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4272 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4273
4274 /* sync prev_roots by simply freeing them */
4275 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4276 }
4277
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t vaddr,u64 access,struct x86_exception * exception)4278 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4279 gpa_t vaddr, u64 access,
4280 struct x86_exception *exception)
4281 {
4282 if (exception)
4283 exception->error_code = 0;
4284 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4285 }
4286
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)4287 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4288 {
4289 /*
4290 * A nested guest cannot use the MMIO cache if it is using nested
4291 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4292 */
4293 if (mmu_is_nested(vcpu))
4294 return false;
4295
4296 if (direct)
4297 return vcpu_match_mmio_gpa(vcpu, addr);
4298
4299 return vcpu_match_mmio_gva(vcpu, addr);
4300 }
4301
4302 /*
4303 * Return the level of the lowest level SPTE added to sptes.
4304 * That SPTE may be non-present.
4305 *
4306 * Must be called between walk_shadow_page_lockless_{begin,end}.
4307 */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4308 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4309 {
4310 struct kvm_shadow_walk_iterator iterator;
4311 int leaf = -1;
4312 u64 spte;
4313
4314 for (shadow_walk_init(&iterator, vcpu, addr),
4315 *root_level = iterator.level;
4316 shadow_walk_okay(&iterator);
4317 __shadow_walk_next(&iterator, spte)) {
4318 leaf = iterator.level;
4319 spte = mmu_spte_get_lockless(iterator.sptep);
4320
4321 sptes[leaf] = spte;
4322 }
4323
4324 return leaf;
4325 }
4326
get_sptes_lockless(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)4327 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
4328 int *root_level)
4329 {
4330 int leaf;
4331
4332 walk_shadow_page_lockless_begin(vcpu);
4333
4334 if (is_tdp_mmu_active(vcpu))
4335 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
4336 else
4337 leaf = get_walk(vcpu, addr, sptes, root_level);
4338
4339 walk_shadow_page_lockless_end(vcpu);
4340 return leaf;
4341 }
4342
4343 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)4344 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4345 {
4346 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4347 struct rsvd_bits_validate *rsvd_check;
4348 int root, leaf, level;
4349 bool reserved = false;
4350
4351 leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
4352 if (unlikely(leaf < 0)) {
4353 *sptep = 0ull;
4354 return reserved;
4355 }
4356
4357 *sptep = sptes[leaf];
4358
4359 /*
4360 * Skip reserved bits checks on the terminal leaf if it's not a valid
4361 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
4362 * design, always have reserved bits set. The purpose of the checks is
4363 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4364 */
4365 if (!is_shadow_present_pte(sptes[leaf]))
4366 leaf++;
4367
4368 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4369
4370 for (level = root; level >= leaf; level--)
4371 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4372
4373 if (reserved) {
4374 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4375 __func__, addr);
4376 for (level = root; level >= leaf; level--)
4377 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4378 sptes[level], level,
4379 get_rsvd_bits(rsvd_check, sptes[level], level));
4380 }
4381
4382 return reserved;
4383 }
4384
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)4385 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4386 {
4387 u64 spte;
4388 bool reserved;
4389
4390 if (mmio_info_in_cache(vcpu, addr, direct))
4391 return RET_PF_EMULATE;
4392
4393 reserved = get_mmio_spte(vcpu, addr, &spte);
4394 if (WARN_ON_ONCE(reserved))
4395 return -EINVAL;
4396
4397 if (is_mmio_spte(vcpu->kvm, spte)) {
4398 gfn_t gfn = get_mmio_spte_gfn(spte);
4399 unsigned int access = get_mmio_spte_access(spte);
4400
4401 if (!check_mmio_spte(vcpu, spte))
4402 return RET_PF_INVALID;
4403
4404 if (direct)
4405 addr = 0;
4406
4407 trace_handle_mmio_page_fault(addr, gfn, access);
4408 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4409 return RET_PF_EMULATE;
4410 }
4411
4412 /*
4413 * If the page table is zapped by other cpus, let CPU fault again on
4414 * the address.
4415 */
4416 return RET_PF_RETRY;
4417 }
4418
page_fault_handle_page_track(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4419 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4420 struct kvm_page_fault *fault)
4421 {
4422 if (unlikely(fault->rsvd))
4423 return false;
4424
4425 if (!fault->present || !fault->write)
4426 return false;
4427
4428 /*
4429 * guest is writing the page which is write tracked which can
4430 * not be fixed by page fault handler.
4431 */
4432 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4433 return true;
4434
4435 return false;
4436 }
4437
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)4438 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4439 {
4440 struct kvm_shadow_walk_iterator iterator;
4441 u64 spte;
4442
4443 walk_shadow_page_lockless_begin(vcpu);
4444 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4445 clear_sp_write_flooding_count(iterator.sptep);
4446 walk_shadow_page_lockless_end(vcpu);
4447 }
4448
alloc_apf_token(struct kvm_vcpu * vcpu)4449 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4450 {
4451 /* make sure the token value is not 0 */
4452 u32 id = vcpu->arch.apf.id;
4453
4454 if (id << 12 == 0)
4455 vcpu->arch.apf.id = 1;
4456
4457 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4458 }
4459
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4460 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
4461 struct kvm_page_fault *fault)
4462 {
4463 struct kvm_arch_async_pf arch;
4464
4465 arch.token = alloc_apf_token(vcpu);
4466 arch.gfn = fault->gfn;
4467 arch.error_code = fault->error_code;
4468 arch.direct_map = vcpu->arch.mmu->root_role.direct;
4469 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4470
4471 return kvm_setup_async_pf(vcpu, fault->addr,
4472 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
4473 }
4474
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4475 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4476 {
4477 int r;
4478
4479 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
4480 return;
4481
4482 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4483 work->wakeup_all)
4484 return;
4485
4486 r = kvm_mmu_reload(vcpu);
4487 if (unlikely(r))
4488 return;
4489
4490 if (!vcpu->arch.mmu->root_role.direct &&
4491 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4492 return;
4493
4494 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code,
4495 true, NULL, NULL);
4496
4497 /*
4498 * Account fixed page faults, otherwise they'll never be counted, but
4499 * ignore stats for all other return times. Page-ready "faults" aren't
4500 * truly spurious and never trigger emulation
4501 */
4502 if (r == RET_PF_FIXED)
4503 vcpu->stat.pf_fixed++;
4504 }
4505
kvm_max_level_for_order(int order)4506 static inline u8 kvm_max_level_for_order(int order)
4507 {
4508 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4509
4510 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4511 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4512 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4513
4514 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4515 return PG_LEVEL_1G;
4516
4517 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4518 return PG_LEVEL_2M;
4519
4520 return PG_LEVEL_4K;
4521 }
4522
kvm_max_private_mapping_level(struct kvm * kvm,kvm_pfn_t pfn,u8 max_level,int gmem_order)4523 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn,
4524 u8 max_level, int gmem_order)
4525 {
4526 u8 req_max_level;
4527
4528 if (max_level == PG_LEVEL_4K)
4529 return PG_LEVEL_4K;
4530
4531 max_level = min(kvm_max_level_for_order(gmem_order), max_level);
4532 if (max_level == PG_LEVEL_4K)
4533 return PG_LEVEL_4K;
4534
4535 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn);
4536 if (req_max_level)
4537 max_level = min(max_level, req_max_level);
4538
4539 return max_level;
4540 }
4541
kvm_mmu_finish_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,int r)4542 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu,
4543 struct kvm_page_fault *fault, int r)
4544 {
4545 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page,
4546 r == RET_PF_RETRY, fault->map_writable);
4547 }
4548
kvm_mmu_faultin_pfn_private(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4549 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu,
4550 struct kvm_page_fault *fault)
4551 {
4552 int max_order, r;
4553
4554 if (!kvm_slot_can_be_private(fault->slot)) {
4555 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4556 return -EFAULT;
4557 }
4558
4559 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4560 &fault->refcounted_page, &max_order);
4561 if (r) {
4562 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4563 return r;
4564 }
4565
4566 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4567 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn,
4568 fault->max_level, max_order);
4569
4570 return RET_PF_CONTINUE;
4571 }
4572
__kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4573 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4574 struct kvm_page_fault *fault)
4575 {
4576 unsigned int foll = fault->write ? FOLL_WRITE : 0;
4577
4578 if (fault->is_private)
4579 return kvm_mmu_faultin_pfn_private(vcpu, fault);
4580
4581 foll |= FOLL_NOWAIT;
4582 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4583 &fault->map_writable, &fault->refcounted_page);
4584
4585 /*
4586 * If resolving the page failed because I/O is needed to fault-in the
4587 * page, then either set up an asynchronous #PF to do the I/O, or if
4588 * doing an async #PF isn't possible, retry with I/O allowed. All
4589 * other failures are terminal, i.e. retrying won't help.
4590 */
4591 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO)
4592 return RET_PF_CONTINUE;
4593
4594 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4595 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4596 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4597 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4598 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4599 return RET_PF_RETRY;
4600 } else if (kvm_arch_setup_async_pf(vcpu, fault)) {
4601 return RET_PF_RETRY;
4602 }
4603 }
4604
4605 /*
4606 * Allow gup to bail on pending non-fatal signals when it's also allowed
4607 * to wait for IO. Note, gup always bails if it is unable to quickly
4608 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4609 */
4610 foll |= FOLL_INTERRUPTIBLE;
4611 foll &= ~FOLL_NOWAIT;
4612 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
4613 &fault->map_writable, &fault->refcounted_page);
4614
4615 return RET_PF_CONTINUE;
4616 }
4617
kvm_mmu_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)4618 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
4619 struct kvm_page_fault *fault, unsigned int access)
4620 {
4621 struct kvm_memory_slot *slot = fault->slot;
4622 struct kvm *kvm = vcpu->kvm;
4623 int ret;
4624
4625 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm))
4626 return -EFAULT;
4627
4628 /*
4629 * Note that the mmu_invalidate_seq also serves to detect a concurrent
4630 * change in attributes. is_page_fault_stale() will detect an
4631 * invalidation relate to fault->fn and resume the guest without
4632 * installing a mapping in the page tables.
4633 */
4634 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4635 smp_rmb();
4636
4637 /*
4638 * Now that we have a snapshot of mmu_invalidate_seq we can check for a
4639 * private vs. shared mismatch.
4640 */
4641 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) {
4642 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4643 return -EFAULT;
4644 }
4645
4646 if (unlikely(!slot))
4647 return kvm_handle_noslot_fault(vcpu, fault, access);
4648
4649 /*
4650 * Retry the page fault if the gfn hit a memslot that is being deleted
4651 * or moved. This ensures any existing SPTEs for the old memslot will
4652 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4653 */
4654 if (slot->flags & KVM_MEMSLOT_INVALID)
4655 return RET_PF_RETRY;
4656
4657 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
4658 /*
4659 * Don't map L1's APIC access page into L2, KVM doesn't support
4660 * using APICv/AVIC to accelerate L2 accesses to L1's APIC,
4661 * i.e. the access needs to be emulated. Emulating access to
4662 * L1's APIC is also correct if L1 is accelerating L2's own
4663 * virtual APIC, but for some reason L1 also maps _L1's_ APIC
4664 * into L2. Note, vcpu_is_mmio_gpa() always treats access to
4665 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM
4666 * uses different roots for L1 vs. L2, i.e. there is no danger
4667 * of breaking APICv/AVIC for L1.
4668 */
4669 if (is_guest_mode(vcpu))
4670 return kvm_handle_noslot_fault(vcpu, fault, access);
4671
4672 /*
4673 * If the APIC access page exists but is disabled, go directly
4674 * to emulation without caching the MMIO access or creating a
4675 * MMIO SPTE. That way the cache doesn't need to be purged
4676 * when the AVIC is re-enabled.
4677 */
4678 if (!kvm_apicv_activated(vcpu->kvm))
4679 return RET_PF_EMULATE;
4680 }
4681
4682 /*
4683 * Check for a relevant mmu_notifier invalidation event before getting
4684 * the pfn from the primary MMU, and before acquiring mmu_lock.
4685 *
4686 * For mmu_lock, if there is an in-progress invalidation and the kernel
4687 * allows preemption, the invalidation task may drop mmu_lock and yield
4688 * in response to mmu_lock being contended, which is *very* counter-
4689 * productive as this vCPU can't actually make forward progress until
4690 * the invalidation completes.
4691 *
4692 * Retrying now can also avoid unnessary lock contention in the primary
4693 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4694 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4695 * can cause the invalidation to take longer by holding locks that are
4696 * needed to complete the invalidation.
4697 *
4698 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4699 * will never yield mmu_lock in response to contention, as this vCPU is
4700 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4701 * to detect retry guarantees the worst case latency for the vCPU.
4702 */
4703 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn))
4704 return RET_PF_RETRY;
4705
4706 ret = __kvm_mmu_faultin_pfn(vcpu, fault);
4707 if (ret != RET_PF_CONTINUE)
4708 return ret;
4709
4710 if (unlikely(is_error_pfn(fault->pfn)))
4711 return kvm_handle_error_pfn(vcpu, fault);
4712
4713 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
4714 return kvm_handle_noslot_fault(vcpu, fault, access);
4715
4716 /*
4717 * Check again for a relevant mmu_notifier invalidation event purely to
4718 * avoid contending mmu_lock. Most invalidations will be detected by
4719 * the previous check, but checking is extremely cheap relative to the
4720 * overall cost of failing to detect the invalidation until after
4721 * mmu_lock is acquired.
4722 */
4723 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) {
4724 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
4725 return RET_PF_RETRY;
4726 }
4727
4728 return RET_PF_CONTINUE;
4729 }
4730
4731 /*
4732 * Returns true if the page fault is stale and needs to be retried, i.e. if the
4733 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4734 */
is_page_fault_stale(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4735 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4736 struct kvm_page_fault *fault)
4737 {
4738 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4739
4740 /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4741 if (sp && is_obsolete_sp(vcpu->kvm, sp))
4742 return true;
4743
4744 /*
4745 * Roots without an associated shadow page are considered invalid if
4746 * there is a pending request to free obsolete roots. The request is
4747 * only a hint that the current root _may_ be obsolete and needs to be
4748 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4749 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4750 * to reload even if no vCPU is actively using the root.
4751 */
4752 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4753 return true;
4754
4755 /*
4756 * Check for a relevant mmu_notifier invalidation event one last time
4757 * now that mmu_lock is held, as the "unsafe" checks performed without
4758 * holding mmu_lock can get false negatives.
4759 */
4760 return fault->slot &&
4761 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4762 }
4763
direct_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4764 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4765 {
4766 int r;
4767
4768 /* Dummy roots are used only for shadowing bad guest roots. */
4769 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4770 return RET_PF_RETRY;
4771
4772 if (page_fault_handle_page_track(vcpu, fault))
4773 return RET_PF_WRITE_PROTECTED;
4774
4775 r = fast_page_fault(vcpu, fault);
4776 if (r != RET_PF_INVALID)
4777 return r;
4778
4779 r = mmu_topup_memory_caches(vcpu, false);
4780 if (r)
4781 return r;
4782
4783 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4784 if (r != RET_PF_CONTINUE)
4785 return r;
4786
4787 r = RET_PF_RETRY;
4788 write_lock(&vcpu->kvm->mmu_lock);
4789
4790 if (is_page_fault_stale(vcpu, fault))
4791 goto out_unlock;
4792
4793 r = make_mmu_pages_available(vcpu);
4794 if (r)
4795 goto out_unlock;
4796
4797 r = direct_map(vcpu, fault);
4798
4799 out_unlock:
4800 kvm_mmu_finish_page_fault(vcpu, fault, r);
4801 write_unlock(&vcpu->kvm->mmu_lock);
4802 return r;
4803 }
4804
nonpaging_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4805 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4806 struct kvm_page_fault *fault)
4807 {
4808 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4809 fault->max_level = PG_LEVEL_2M;
4810 return direct_page_fault(vcpu, fault);
4811 }
4812
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4813 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4814 u64 fault_address, char *insn, int insn_len)
4815 {
4816 int r = 1;
4817 u32 flags = vcpu->arch.apf.host_apf_flags;
4818
4819 #ifndef CONFIG_X86_64
4820 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4821 if (WARN_ON_ONCE(fault_address >> 32))
4822 return -EFAULT;
4823 #endif
4824 /*
4825 * Legacy #PF exception only have a 32-bit error code. Simply drop the
4826 * upper bits as KVM doesn't use them for #PF (because they are never
4827 * set), and to ensure there are no collisions with KVM-defined bits.
4828 */
4829 if (WARN_ON_ONCE(error_code >> 32))
4830 error_code = lower_32_bits(error_code);
4831
4832 /*
4833 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for
4834 * them to conflict with #PF error codes, which are limited to 32 bits.
4835 */
4836 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
4837
4838 vcpu->arch.l1tf_flush_l1d = true;
4839 if (!flags) {
4840 trace_kvm_page_fault(vcpu, fault_address, error_code);
4841
4842 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4843 insn_len);
4844 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4845 vcpu->arch.apf.host_apf_flags = 0;
4846 local_irq_disable();
4847 kvm_async_pf_task_wait_schedule(fault_address);
4848 local_irq_enable();
4849 } else {
4850 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4851 }
4852
4853 return r;
4854 }
4855 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4856
4857 #ifdef CONFIG_X86_64
kvm_tdp_mmu_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4858 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4859 struct kvm_page_fault *fault)
4860 {
4861 int r;
4862
4863 if (page_fault_handle_page_track(vcpu, fault))
4864 return RET_PF_WRITE_PROTECTED;
4865
4866 r = fast_page_fault(vcpu, fault);
4867 if (r != RET_PF_INVALID)
4868 return r;
4869
4870 r = mmu_topup_memory_caches(vcpu, false);
4871 if (r)
4872 return r;
4873
4874 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
4875 if (r != RET_PF_CONTINUE)
4876 return r;
4877
4878 r = RET_PF_RETRY;
4879 read_lock(&vcpu->kvm->mmu_lock);
4880
4881 if (is_page_fault_stale(vcpu, fault))
4882 goto out_unlock;
4883
4884 r = kvm_tdp_mmu_map(vcpu, fault);
4885
4886 out_unlock:
4887 kvm_mmu_finish_page_fault(vcpu, fault, r);
4888 read_unlock(&vcpu->kvm->mmu_lock);
4889 return r;
4890 }
4891 #endif
4892
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4893 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4894 {
4895 #ifdef CONFIG_X86_64
4896 if (tdp_mmu_enabled)
4897 return kvm_tdp_mmu_page_fault(vcpu, fault);
4898 #endif
4899
4900 return direct_page_fault(vcpu, fault);
4901 }
4902
kvm_tdp_map_page(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code,u8 * level)4903 int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level)
4904 {
4905 int r;
4906
4907 /*
4908 * Restrict to TDP page fault, since that's the only case where the MMU
4909 * is indexed by GPA.
4910 */
4911 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault)
4912 return -EOPNOTSUPP;
4913
4914 do {
4915 if (signal_pending(current))
4916 return -EINTR;
4917
4918 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
4919 return -EIO;
4920
4921 cond_resched();
4922 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
4923 } while (r == RET_PF_RETRY);
4924
4925 if (r < 0)
4926 return r;
4927
4928 switch (r) {
4929 case RET_PF_FIXED:
4930 case RET_PF_SPURIOUS:
4931 case RET_PF_WRITE_PROTECTED:
4932 return 0;
4933
4934 case RET_PF_EMULATE:
4935 return -ENOENT;
4936
4937 case RET_PF_RETRY:
4938 case RET_PF_CONTINUE:
4939 case RET_PF_INVALID:
4940 default:
4941 WARN_ONCE(1, "could not fix page fault during prefault");
4942 return -EIO;
4943 }
4944 }
4945 EXPORT_SYMBOL_GPL(kvm_tdp_map_page);
4946
kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4947 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4948 struct kvm_pre_fault_memory *range)
4949 {
4950 u64 error_code = PFERR_GUEST_FINAL_MASK;
4951 u8 level = PG_LEVEL_4K;
4952 u64 direct_bits;
4953 u64 end;
4954 int r;
4955
4956 if (!vcpu->kvm->arch.pre_fault_allowed)
4957 return -EOPNOTSUPP;
4958
4959 if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa)))
4960 return -EINVAL;
4961
4962 /*
4963 * reload is efficient when called repeatedly, so we can do it on
4964 * every iteration.
4965 */
4966 r = kvm_mmu_reload(vcpu);
4967 if (r)
4968 return r;
4969
4970 direct_bits = 0;
4971 if (kvm_arch_has_private_mem(vcpu->kvm) &&
4972 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
4973 error_code |= PFERR_PRIVATE_ACCESS;
4974 else
4975 direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
4976
4977 /*
4978 * Shadow paging uses GVA for kvm page fault, so restrict to
4979 * two-dimensional paging.
4980 */
4981 r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level);
4982 if (r < 0)
4983 return r;
4984
4985 /*
4986 * If the mapping that covers range->gpa can use a huge page, it
4987 * may start below it or end after range->gpa + range->size.
4988 */
4989 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level);
4990 return min(range->size, end - range->gpa);
4991 }
4992
nonpaging_init_context(struct kvm_mmu * context)4993 static void nonpaging_init_context(struct kvm_mmu *context)
4994 {
4995 context->page_fault = nonpaging_page_fault;
4996 context->gva_to_gpa = nonpaging_gva_to_gpa;
4997 context->sync_spte = NULL;
4998 }
4999
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)5000 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
5001 union kvm_mmu_page_role role)
5002 {
5003 struct kvm_mmu_page *sp;
5004
5005 if (!VALID_PAGE(root->hpa))
5006 return false;
5007
5008 if (!role.direct && pgd != root->pgd)
5009 return false;
5010
5011 sp = root_to_sp(root->hpa);
5012 if (WARN_ON_ONCE(!sp))
5013 return false;
5014
5015 return role.word == sp->role.word;
5016 }
5017
5018 /*
5019 * Find out if a previously cached root matching the new pgd/role is available,
5020 * and insert the current root as the MRU in the cache.
5021 * If a matching root is found, it is assigned to kvm_mmu->root and
5022 * true is returned.
5023 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
5024 * evicted to make room for the current root, and false is returned.
5025 */
cached_root_find_and_keep_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5026 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
5027 gpa_t new_pgd,
5028 union kvm_mmu_page_role new_role)
5029 {
5030 uint i;
5031
5032 if (is_root_usable(&mmu->root, new_pgd, new_role))
5033 return true;
5034
5035 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5036 /*
5037 * The swaps end up rotating the cache like this:
5038 * C 0 1 2 3 (on entry to the function)
5039 * 0 C 1 2 3
5040 * 1 C 0 2 3
5041 * 2 C 0 1 3
5042 * 3 C 0 1 2 (on exit from the loop)
5043 */
5044 swap(mmu->root, mmu->prev_roots[i]);
5045 if (is_root_usable(&mmu->root, new_pgd, new_role))
5046 return true;
5047 }
5048
5049 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
5050 return false;
5051 }
5052
5053 /*
5054 * Find out if a previously cached root matching the new pgd/role is available.
5055 * On entry, mmu->root is invalid.
5056 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
5057 * of the cache becomes invalid, and true is returned.
5058 * If no match is found, kvm_mmu->root is left invalid and false is returned.
5059 */
cached_root_find_without_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5060 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
5061 gpa_t new_pgd,
5062 union kvm_mmu_page_role new_role)
5063 {
5064 uint i;
5065
5066 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5067 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
5068 goto hit;
5069
5070 return false;
5071
5072 hit:
5073 swap(mmu->root, mmu->prev_roots[i]);
5074 /* Bubble up the remaining roots. */
5075 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
5076 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
5077 mmu->prev_roots[i].hpa = INVALID_PAGE;
5078 return true;
5079 }
5080
fast_pgd_switch(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)5081 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
5082 gpa_t new_pgd, union kvm_mmu_page_role new_role)
5083 {
5084 /*
5085 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
5086 * avoid having to deal with PDPTEs and other complexities.
5087 */
5088 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
5089 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
5090
5091 if (VALID_PAGE(mmu->root.hpa))
5092 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
5093 else
5094 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
5095 }
5096
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)5097 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
5098 {
5099 struct kvm_mmu *mmu = vcpu->arch.mmu;
5100 union kvm_mmu_page_role new_role = mmu->root_role;
5101
5102 /*
5103 * Return immediately if no usable root was found, kvm_mmu_reload()
5104 * will establish a valid root prior to the next VM-Enter.
5105 */
5106 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
5107 return;
5108
5109 /*
5110 * It's possible that the cached previous root page is obsolete because
5111 * of a change in the MMU generation number. However, changing the
5112 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
5113 * which will free the root set here and allocate a new one.
5114 */
5115 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
5116
5117 if (force_flush_and_sync_on_reuse) {
5118 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
5119 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5120 }
5121
5122 /*
5123 * The last MMIO access's GVA and GPA are cached in the VCPU. When
5124 * switching to a new CR3, that GVA->GPA mapping may no longer be
5125 * valid. So clear any cached MMIO info even when we don't need to sync
5126 * the shadow page tables.
5127 */
5128 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5129
5130 /*
5131 * If this is a direct root page, it doesn't have a write flooding
5132 * count. Otherwise, clear the write flooding count.
5133 */
5134 if (!new_role.direct) {
5135 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
5136
5137 if (!WARN_ON_ONCE(!sp))
5138 __clear_sp_write_flooding_count(sp);
5139 }
5140 }
5141 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
5142
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access)5143 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
5144 unsigned int access)
5145 {
5146 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
5147 if (gfn != get_mmio_spte_gfn(*sptep)) {
5148 mmu_spte_clear_no_track(sptep);
5149 return true;
5150 }
5151
5152 mark_mmio_spte(vcpu, sptep, gfn, access);
5153 return true;
5154 }
5155
5156 return false;
5157 }
5158
5159 #define PTTYPE_EPT 18 /* arbitrary */
5160 #define PTTYPE PTTYPE_EPT
5161 #include "paging_tmpl.h"
5162 #undef PTTYPE
5163
5164 #define PTTYPE 64
5165 #include "paging_tmpl.h"
5166 #undef PTTYPE
5167
5168 #define PTTYPE 32
5169 #include "paging_tmpl.h"
5170 #undef PTTYPE
5171
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)5172 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
5173 u64 pa_bits_rsvd, int level, bool nx,
5174 bool gbpages, bool pse, bool amd)
5175 {
5176 u64 gbpages_bit_rsvd = 0;
5177 u64 nonleaf_bit8_rsvd = 0;
5178 u64 high_bits_rsvd;
5179
5180 rsvd_check->bad_mt_xwr = 0;
5181
5182 if (!gbpages)
5183 gbpages_bit_rsvd = rsvd_bits(7, 7);
5184
5185 if (level == PT32E_ROOT_LEVEL)
5186 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
5187 else
5188 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5189
5190 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
5191 if (!nx)
5192 high_bits_rsvd |= rsvd_bits(63, 63);
5193
5194 /*
5195 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
5196 * leaf entries) on AMD CPUs only.
5197 */
5198 if (amd)
5199 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
5200
5201 switch (level) {
5202 case PT32_ROOT_LEVEL:
5203 /* no rsvd bits for 2 level 4K page table entries */
5204 rsvd_check->rsvd_bits_mask[0][1] = 0;
5205 rsvd_check->rsvd_bits_mask[0][0] = 0;
5206 rsvd_check->rsvd_bits_mask[1][0] =
5207 rsvd_check->rsvd_bits_mask[0][0];
5208
5209 if (!pse) {
5210 rsvd_check->rsvd_bits_mask[1][1] = 0;
5211 break;
5212 }
5213
5214 if (is_cpuid_PSE36())
5215 /* 36bits PSE 4MB page */
5216 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
5217 else
5218 /* 32 bits PSE 4MB page */
5219 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
5220 break;
5221 case PT32E_ROOT_LEVEL:
5222 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
5223 high_bits_rsvd |
5224 rsvd_bits(5, 8) |
5225 rsvd_bits(1, 2); /* PDPTE */
5226 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
5227 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
5228 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5229 rsvd_bits(13, 20); /* large page */
5230 rsvd_check->rsvd_bits_mask[1][0] =
5231 rsvd_check->rsvd_bits_mask[0][0];
5232 break;
5233 case PT64_ROOT_5LEVEL:
5234 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
5235 nonleaf_bit8_rsvd |
5236 rsvd_bits(7, 7);
5237 rsvd_check->rsvd_bits_mask[1][4] =
5238 rsvd_check->rsvd_bits_mask[0][4];
5239 fallthrough;
5240 case PT64_ROOT_4LEVEL:
5241 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
5242 nonleaf_bit8_rsvd |
5243 rsvd_bits(7, 7);
5244 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
5245 gbpages_bit_rsvd;
5246 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
5247 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5248 rsvd_check->rsvd_bits_mask[1][3] =
5249 rsvd_check->rsvd_bits_mask[0][3];
5250 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
5251 gbpages_bit_rsvd |
5252 rsvd_bits(13, 29);
5253 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5254 rsvd_bits(13, 20); /* large page */
5255 rsvd_check->rsvd_bits_mask[1][0] =
5256 rsvd_check->rsvd_bits_mask[0][0];
5257 break;
5258 }
5259 }
5260
reset_guest_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5261 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
5262 struct kvm_mmu *context)
5263 {
5264 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
5265 vcpu->arch.reserved_gpa_bits,
5266 context->cpu_role.base.level, is_efer_nx(context),
5267 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5268 is_cr4_pse(context),
5269 guest_cpuid_is_amd_compatible(vcpu));
5270 }
5271
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly,int huge_page_level)5272 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5273 u64 pa_bits_rsvd, bool execonly,
5274 int huge_page_level)
5275 {
5276 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5277 u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
5278 u64 bad_mt_xwr;
5279
5280 if (huge_page_level < PG_LEVEL_1G)
5281 large_1g_rsvd = rsvd_bits(7, 7);
5282 if (huge_page_level < PG_LEVEL_2M)
5283 large_2m_rsvd = rsvd_bits(7, 7);
5284
5285 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
5286 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
5287 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
5288 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
5289 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5290
5291 /* large page */
5292 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
5293 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5294 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
5295 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
5296 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
5297
5298 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
5299 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
5300 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
5301 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
5302 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
5303 if (!execonly) {
5304 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
5305 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
5306 }
5307 rsvd_check->bad_mt_xwr = bad_mt_xwr;
5308 }
5309
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly,int huge_page_level)5310 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
5311 struct kvm_mmu *context, bool execonly, int huge_page_level)
5312 {
5313 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5314 vcpu->arch.reserved_gpa_bits, execonly,
5315 huge_page_level);
5316 }
5317
reserved_hpa_bits(void)5318 static inline u64 reserved_hpa_bits(void)
5319 {
5320 return rsvd_bits(kvm_host.maxphyaddr, 63);
5321 }
5322
5323 /*
5324 * the page table on host is the shadow page table for the page
5325 * table in guest or amd nested guest, its mmu features completely
5326 * follow the features in guest.
5327 */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)5328 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
5329 struct kvm_mmu *context)
5330 {
5331 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5332 bool is_amd = true;
5333 /* KVM doesn't use 2-level page tables for the shadow MMU. */
5334 bool is_pse = false;
5335 struct rsvd_bits_validate *shadow_zero_check;
5336 int i;
5337
5338 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5339
5340 shadow_zero_check = &context->shadow_zero_check;
5341 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5342 context->root_role.level,
5343 context->root_role.efer_nx,
5344 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES),
5345 is_pse, is_amd);
5346
5347 if (!shadow_me_mask)
5348 return;
5349
5350 for (i = context->root_role.level; --i >= 0;) {
5351 /*
5352 * So far shadow_me_value is a constant during KVM's life
5353 * time. Bits in shadow_me_value are allowed to be set.
5354 * Bits in shadow_me_mask but not in shadow_me_value are
5355 * not allowed to be set.
5356 */
5357 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5358 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5359 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5360 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5361 }
5362
5363 }
5364
boot_cpu_is_amd(void)5365 static inline bool boot_cpu_is_amd(void)
5366 {
5367 WARN_ON_ONCE(!tdp_enabled);
5368 return shadow_x_mask == 0;
5369 }
5370
5371 /*
5372 * the direct page table on host, use as much mmu features as
5373 * possible, however, kvm currently does not do execution-protection.
5374 */
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu * context)5375 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5376 {
5377 struct rsvd_bits_validate *shadow_zero_check;
5378 int i;
5379
5380 shadow_zero_check = &context->shadow_zero_check;
5381
5382 if (boot_cpu_is_amd())
5383 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5384 context->root_role.level, true,
5385 boot_cpu_has(X86_FEATURE_GBPAGES),
5386 false, true);
5387 else
5388 __reset_rsvds_bits_mask_ept(shadow_zero_check,
5389 reserved_hpa_bits(), false,
5390 max_huge_page_level);
5391
5392 if (!shadow_me_mask)
5393 return;
5394
5395 for (i = context->root_role.level; --i >= 0;) {
5396 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5397 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5398 }
5399 }
5400
5401 /*
5402 * as the comments in reset_shadow_zero_bits_mask() except it
5403 * is the shadow page table for intel nested guest.
5404 */
5405 static void
reset_ept_shadow_zero_bits_mask(struct kvm_mmu * context,bool execonly)5406 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5407 {
5408 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5409 reserved_hpa_bits(), execonly,
5410 max_huge_page_level);
5411 }
5412
5413 #define BYTE_MASK(access) \
5414 ((1 & (access) ? 2 : 0) | \
5415 (2 & (access) ? 4 : 0) | \
5416 (3 & (access) ? 8 : 0) | \
5417 (4 & (access) ? 16 : 0) | \
5418 (5 & (access) ? 32 : 0) | \
5419 (6 & (access) ? 64 : 0) | \
5420 (7 & (access) ? 128 : 0))
5421
5422
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)5423 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5424 {
5425 unsigned byte;
5426
5427 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5428 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5429 const u8 u = BYTE_MASK(ACC_USER_MASK);
5430
5431 bool cr4_smep = is_cr4_smep(mmu);
5432 bool cr4_smap = is_cr4_smap(mmu);
5433 bool cr0_wp = is_cr0_wp(mmu);
5434 bool efer_nx = is_efer_nx(mmu);
5435
5436 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5437 unsigned pfec = byte << 1;
5438
5439 /*
5440 * Each "*f" variable has a 1 bit for each UWX value
5441 * that causes a fault with the given PFEC.
5442 */
5443
5444 /* Faults from writes to non-writable pages */
5445 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5446 /* Faults from user mode accesses to supervisor pages */
5447 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5448 /* Faults from fetches of non-executable pages*/
5449 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5450 /* Faults from kernel mode fetches of user pages */
5451 u8 smepf = 0;
5452 /* Faults from kernel mode accesses of user pages */
5453 u8 smapf = 0;
5454
5455 if (!ept) {
5456 /* Faults from kernel mode accesses to user pages */
5457 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5458
5459 /* Not really needed: !nx will cause pte.nx to fault */
5460 if (!efer_nx)
5461 ff = 0;
5462
5463 /* Allow supervisor writes if !cr0.wp */
5464 if (!cr0_wp)
5465 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5466
5467 /* Disallow supervisor fetches of user code if cr4.smep */
5468 if (cr4_smep)
5469 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5470
5471 /*
5472 * SMAP:kernel-mode data accesses from user-mode
5473 * mappings should fault. A fault is considered
5474 * as a SMAP violation if all of the following
5475 * conditions are true:
5476 * - X86_CR4_SMAP is set in CR4
5477 * - A user page is accessed
5478 * - The access is not a fetch
5479 * - The access is supervisor mode
5480 * - If implicit supervisor access or X86_EFLAGS_AC is clear
5481 *
5482 * Here, we cover the first four conditions.
5483 * The fifth is computed dynamically in permission_fault();
5484 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5485 * *not* subject to SMAP restrictions.
5486 */
5487 if (cr4_smap)
5488 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5489 }
5490
5491 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5492 }
5493 }
5494
5495 /*
5496 * PKU is an additional mechanism by which the paging controls access to
5497 * user-mode addresses based on the value in the PKRU register. Protection
5498 * key violations are reported through a bit in the page fault error code.
5499 * Unlike other bits of the error code, the PK bit is not known at the
5500 * call site of e.g. gva_to_gpa; it must be computed directly in
5501 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5502 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5503 *
5504 * In particular the following conditions come from the error code, the
5505 * page tables and the machine state:
5506 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5507 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5508 * - PK is always zero if U=0 in the page tables
5509 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5510 *
5511 * The PKRU bitmask caches the result of these four conditions. The error
5512 * code (minus the P bit) and the page table's U bit form an index into the
5513 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
5514 * with the two bits of the PKRU register corresponding to the protection key.
5515 * For the first three conditions above the bits will be 00, thus masking
5516 * away both AD and WD. For all reads or if the last condition holds, WD
5517 * only will be masked away.
5518 */
update_pkru_bitmask(struct kvm_mmu * mmu)5519 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5520 {
5521 unsigned bit;
5522 bool wp;
5523
5524 mmu->pkru_mask = 0;
5525
5526 if (!is_cr4_pke(mmu))
5527 return;
5528
5529 wp = is_cr0_wp(mmu);
5530
5531 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5532 unsigned pfec, pkey_bits;
5533 bool check_pkey, check_write, ff, uf, wf, pte_user;
5534
5535 pfec = bit << 1;
5536 ff = pfec & PFERR_FETCH_MASK;
5537 uf = pfec & PFERR_USER_MASK;
5538 wf = pfec & PFERR_WRITE_MASK;
5539
5540 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5541 pte_user = pfec & PFERR_RSVD_MASK;
5542
5543 /*
5544 * Only need to check the access which is not an
5545 * instruction fetch and is to a user page.
5546 */
5547 check_pkey = (!ff && pte_user);
5548 /*
5549 * write access is controlled by PKRU if it is a
5550 * user access or CR0.WP = 1.
5551 */
5552 check_write = check_pkey && wf && (uf || wp);
5553
5554 /* PKRU.AD stops both read and write access. */
5555 pkey_bits = !!check_pkey;
5556 /* PKRU.WD stops write access. */
5557 pkey_bits |= (!!check_write) << 1;
5558
5559 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5560 }
5561 }
5562
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5563 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5564 struct kvm_mmu *mmu)
5565 {
5566 if (!is_cr0_pg(mmu))
5567 return;
5568
5569 reset_guest_rsvds_bits_mask(vcpu, mmu);
5570 update_permission_bitmask(mmu, false);
5571 update_pkru_bitmask(mmu);
5572 }
5573
paging64_init_context(struct kvm_mmu * context)5574 static void paging64_init_context(struct kvm_mmu *context)
5575 {
5576 context->page_fault = paging64_page_fault;
5577 context->gva_to_gpa = paging64_gva_to_gpa;
5578 context->sync_spte = paging64_sync_spte;
5579 }
5580
paging32_init_context(struct kvm_mmu * context)5581 static void paging32_init_context(struct kvm_mmu *context)
5582 {
5583 context->page_fault = paging32_page_fault;
5584 context->gva_to_gpa = paging32_gva_to_gpa;
5585 context->sync_spte = paging32_sync_spte;
5586 }
5587
kvm_calc_cpu_role(struct kvm_vcpu * vcpu,const struct kvm_mmu_role_regs * regs)5588 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5589 const struct kvm_mmu_role_regs *regs)
5590 {
5591 union kvm_cpu_role role = {0};
5592
5593 role.base.access = ACC_ALL;
5594 role.base.smm = is_smm(vcpu);
5595 role.base.guest_mode = is_guest_mode(vcpu);
5596 role.ext.valid = 1;
5597
5598 if (!____is_cr0_pg(regs)) {
5599 role.base.direct = 1;
5600 return role;
5601 }
5602
5603 role.base.efer_nx = ____is_efer_nx(regs);
5604 role.base.cr0_wp = ____is_cr0_wp(regs);
5605 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5606 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5607 role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5608
5609 if (____is_efer_lma(regs))
5610 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5611 : PT64_ROOT_4LEVEL;
5612 else if (____is_cr4_pae(regs))
5613 role.base.level = PT32E_ROOT_LEVEL;
5614 else
5615 role.base.level = PT32_ROOT_LEVEL;
5616
5617 role.ext.cr4_smep = ____is_cr4_smep(regs);
5618 role.ext.cr4_smap = ____is_cr4_smap(regs);
5619 role.ext.cr4_pse = ____is_cr4_pse(regs);
5620
5621 /* PKEY and LA57 are active iff long mode is active. */
5622 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5623 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5624 role.ext.efer_lma = ____is_efer_lma(regs);
5625 return role;
5626 }
5627
__kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5628 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5629 struct kvm_mmu *mmu)
5630 {
5631 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5632
5633 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5634 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5635
5636 if (is_cr0_wp(mmu) == cr0_wp)
5637 return;
5638
5639 mmu->cpu_role.base.cr0_wp = cr0_wp;
5640 reset_guest_paging_metadata(vcpu, mmu);
5641 }
5642
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)5643 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5644 {
5645 int maxpa;
5646
5647 if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM)
5648 maxpa = cpuid_query_maxguestphyaddr(vcpu);
5649 else
5650 maxpa = cpuid_maxphyaddr(vcpu);
5651
5652 /* tdp_root_level is architecture forced level, use it if nonzero */
5653 if (tdp_root_level)
5654 return tdp_root_level;
5655
5656 /* Use 5-level TDP if and only if it's useful/necessary. */
5657 if (max_tdp_level == 5 && maxpa <= 48)
5658 return 4;
5659
5660 return max_tdp_level;
5661 }
5662
kvm_mmu_get_max_tdp_level(void)5663 u8 kvm_mmu_get_max_tdp_level(void)
5664 {
5665 return tdp_root_level ? tdp_root_level : max_tdp_level;
5666 }
5667
5668 static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5669 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5670 union kvm_cpu_role cpu_role)
5671 {
5672 union kvm_mmu_page_role role = {0};
5673
5674 role.access = ACC_ALL;
5675 role.cr0_wp = true;
5676 role.efer_nx = true;
5677 role.smm = cpu_role.base.smm;
5678 role.guest_mode = cpu_role.base.guest_mode;
5679 role.ad_disabled = !kvm_ad_enabled;
5680 role.level = kvm_mmu_get_tdp_level(vcpu);
5681 role.direct = true;
5682 role.has_4_byte_gpte = false;
5683
5684 return role;
5685 }
5686
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5687 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5688 union kvm_cpu_role cpu_role)
5689 {
5690 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5691 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5692
5693 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5694 root_role.word == context->root_role.word)
5695 return;
5696
5697 context->cpu_role.as_u64 = cpu_role.as_u64;
5698 context->root_role.word = root_role.word;
5699 context->page_fault = kvm_tdp_page_fault;
5700 context->sync_spte = NULL;
5701 context->get_guest_pgd = get_guest_cr3;
5702 context->get_pdptr = kvm_pdptr_read;
5703 context->inject_page_fault = kvm_inject_page_fault;
5704
5705 if (!is_cr0_pg(context))
5706 context->gva_to_gpa = nonpaging_gva_to_gpa;
5707 else if (is_cr4_pae(context))
5708 context->gva_to_gpa = paging64_gva_to_gpa;
5709 else
5710 context->gva_to_gpa = paging32_gva_to_gpa;
5711
5712 reset_guest_paging_metadata(vcpu, context);
5713 reset_tdp_shadow_zero_bits_mask(context);
5714 }
5715
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,union kvm_cpu_role cpu_role,union kvm_mmu_page_role root_role)5716 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5717 union kvm_cpu_role cpu_role,
5718 union kvm_mmu_page_role root_role)
5719 {
5720 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5721 root_role.word == context->root_role.word)
5722 return;
5723
5724 context->cpu_role.as_u64 = cpu_role.as_u64;
5725 context->root_role.word = root_role.word;
5726
5727 if (!is_cr0_pg(context))
5728 nonpaging_init_context(context);
5729 else if (is_cr4_pae(context))
5730 paging64_init_context(context);
5731 else
5732 paging32_init_context(context);
5733
5734 reset_guest_paging_metadata(vcpu, context);
5735 reset_shadow_zero_bits_mask(vcpu, context);
5736 }
5737
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5738 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5739 union kvm_cpu_role cpu_role)
5740 {
5741 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5742 union kvm_mmu_page_role root_role;
5743
5744 root_role = cpu_role.base;
5745
5746 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5747 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5748
5749 /*
5750 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5751 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5752 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5753 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5754 * The iTLB multi-hit workaround can be toggled at any time, so assume
5755 * NX can be used by any non-nested shadow MMU to avoid having to reset
5756 * MMU contexts.
5757 */
5758 root_role.efer_nx = true;
5759
5760 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5761 }
5762
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)5763 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5764 unsigned long cr4, u64 efer, gpa_t nested_cr3)
5765 {
5766 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5767 struct kvm_mmu_role_regs regs = {
5768 .cr0 = cr0,
5769 .cr4 = cr4 & ~X86_CR4_PKE,
5770 .efer = efer,
5771 };
5772 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
5773 union kvm_mmu_page_role root_role;
5774
5775 /* NPT requires CR0.PG=1. */
5776 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode);
5777
5778 root_role = cpu_role.base;
5779 root_role.level = kvm_mmu_get_tdp_level(vcpu);
5780 if (root_role.level == PT64_ROOT_5LEVEL &&
5781 cpu_role.base.level == PT64_ROOT_4LEVEL)
5782 root_role.passthrough = 1;
5783
5784 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5785 kvm_mmu_new_pgd(vcpu, nested_cr3);
5786 }
5787 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5788
5789 static union kvm_cpu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)5790 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5791 bool execonly, u8 level)
5792 {
5793 union kvm_cpu_role role = {0};
5794
5795 /*
5796 * KVM does not support SMM transfer monitors, and consequently does not
5797 * support the "entry to SMM" control either. role.base.smm is always 0.
5798 */
5799 WARN_ON_ONCE(is_smm(vcpu));
5800 role.base.level = level;
5801 role.base.has_4_byte_gpte = false;
5802 role.base.direct = false;
5803 role.base.ad_disabled = !accessed_dirty;
5804 role.base.guest_mode = true;
5805 role.base.access = ACC_ALL;
5806
5807 role.ext.word = 0;
5808 role.ext.execonly = execonly;
5809 role.ext.valid = 1;
5810
5811 return role;
5812 }
5813
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,int huge_page_level,bool accessed_dirty,gpa_t new_eptp)5814 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5815 int huge_page_level, bool accessed_dirty,
5816 gpa_t new_eptp)
5817 {
5818 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5819 u8 level = vmx_eptp_page_walk_level(new_eptp);
5820 union kvm_cpu_role new_mode =
5821 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5822 execonly, level);
5823
5824 if (new_mode.as_u64 != context->cpu_role.as_u64) {
5825 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5826 context->cpu_role.as_u64 = new_mode.as_u64;
5827 context->root_role.word = new_mode.base.word;
5828
5829 context->page_fault = ept_page_fault;
5830 context->gva_to_gpa = ept_gva_to_gpa;
5831 context->sync_spte = ept_sync_spte;
5832
5833 update_permission_bitmask(context, true);
5834 context->pkru_mask = 0;
5835 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5836 reset_ept_shadow_zero_bits_mask(context, execonly);
5837 }
5838
5839 kvm_mmu_new_pgd(vcpu, new_eptp);
5840 }
5841 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5842
init_kvm_softmmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5843 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5844 union kvm_cpu_role cpu_role)
5845 {
5846 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5847
5848 kvm_init_shadow_mmu(vcpu, cpu_role);
5849
5850 context->get_guest_pgd = get_guest_cr3;
5851 context->get_pdptr = kvm_pdptr_read;
5852 context->inject_page_fault = kvm_inject_page_fault;
5853 }
5854
init_kvm_nested_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role new_mode)5855 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5856 union kvm_cpu_role new_mode)
5857 {
5858 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5859
5860 if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5861 return;
5862
5863 g_context->cpu_role.as_u64 = new_mode.as_u64;
5864 g_context->get_guest_pgd = get_guest_cr3;
5865 g_context->get_pdptr = kvm_pdptr_read;
5866 g_context->inject_page_fault = kvm_inject_page_fault;
5867
5868 /*
5869 * L2 page tables are never shadowed, so there is no need to sync
5870 * SPTEs.
5871 */
5872 g_context->sync_spte = NULL;
5873
5874 /*
5875 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5876 * L1's nested page tables (e.g. EPT12). The nested translation
5877 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5878 * L2's page tables as the first level of translation and L1's
5879 * nested page tables as the second level of translation. Basically
5880 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5881 */
5882 if (!is_paging(vcpu))
5883 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5884 else if (is_long_mode(vcpu))
5885 g_context->gva_to_gpa = paging64_gva_to_gpa;
5886 else if (is_pae(vcpu))
5887 g_context->gva_to_gpa = paging64_gva_to_gpa;
5888 else
5889 g_context->gva_to_gpa = paging32_gva_to_gpa;
5890
5891 reset_guest_paging_metadata(vcpu, g_context);
5892 }
5893
kvm_init_mmu(struct kvm_vcpu * vcpu)5894 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5895 {
5896 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5897 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
5898
5899 if (mmu_is_nested(vcpu))
5900 init_kvm_nested_mmu(vcpu, cpu_role);
5901 else if (tdp_enabled)
5902 init_kvm_tdp_mmu(vcpu, cpu_role);
5903 else
5904 init_kvm_softmmu(vcpu, cpu_role);
5905 }
5906 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5907
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5908 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5909 {
5910 /*
5911 * Invalidate all MMU roles to force them to reinitialize as CPUID
5912 * information is factored into reserved bit calculations.
5913 *
5914 * Correctly handling multiple vCPU models with respect to paging and
5915 * physical address properties) in a single VM would require tracking
5916 * all relevant CPUID information in kvm_mmu_page_role. That is very
5917 * undesirable as it would increase the memory requirements for
5918 * gfn_write_track (see struct kvm_mmu_page_role comments). For now
5919 * that problem is swept under the rug; KVM's CPUID API is horrific and
5920 * it's all but impossible to solve it without introducing a new API.
5921 */
5922 vcpu->arch.root_mmu.root_role.invalid = 1;
5923 vcpu->arch.guest_mmu.root_role.invalid = 1;
5924 vcpu->arch.nested_mmu.root_role.invalid = 1;
5925 vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5926 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5927 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5928 kvm_mmu_reset_context(vcpu);
5929
5930 /*
5931 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5932 * kvm_arch_vcpu_ioctl().
5933 */
5934 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5935 }
5936
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5937 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5938 {
5939 kvm_mmu_unload(vcpu);
5940 kvm_init_mmu(vcpu);
5941 }
5942 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5943
kvm_mmu_load(struct kvm_vcpu * vcpu)5944 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5945 {
5946 int r;
5947
5948 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5949 if (r)
5950 goto out;
5951 r = mmu_alloc_special_roots(vcpu);
5952 if (r)
5953 goto out;
5954 if (vcpu->arch.mmu->root_role.direct)
5955 r = mmu_alloc_direct_roots(vcpu);
5956 else
5957 r = mmu_alloc_shadow_roots(vcpu);
5958 if (r)
5959 goto out;
5960
5961 kvm_mmu_sync_roots(vcpu);
5962
5963 kvm_mmu_load_pgd(vcpu);
5964
5965 /*
5966 * Flush any TLB entries for the new root, the provenance of the root
5967 * is unknown. Even if KVM ensures there are no stale TLB entries
5968 * for a freed root, in theory another hypervisor could have left
5969 * stale entries. Flushing on alloc also allows KVM to skip the TLB
5970 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5971 */
5972 kvm_x86_call(flush_tlb_current)(vcpu);
5973 out:
5974 return r;
5975 }
5976 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5977
kvm_mmu_unload(struct kvm_vcpu * vcpu)5978 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5979 {
5980 struct kvm *kvm = vcpu->kvm;
5981
5982 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5983 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5984 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5985 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5986 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5987 }
5988
is_obsolete_root(struct kvm * kvm,hpa_t root_hpa)5989 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5990 {
5991 struct kvm_mmu_page *sp;
5992
5993 if (!VALID_PAGE(root_hpa))
5994 return false;
5995
5996 /*
5997 * When freeing obsolete roots, treat roots as obsolete if they don't
5998 * have an associated shadow page, as it's impossible to determine if
5999 * such roots are fresh or stale. This does mean KVM will get false
6000 * positives and free roots that don't strictly need to be freed, but
6001 * such false positives are relatively rare:
6002 *
6003 * (a) only PAE paging and nested NPT have roots without shadow pages
6004 * (or any shadow paging flavor with a dummy root, see note below)
6005 * (b) remote reloads due to a memslot update obsoletes _all_ roots
6006 * (c) KVM doesn't track previous roots for PAE paging, and the guest
6007 * is unlikely to zap an in-use PGD.
6008 *
6009 * Note! Dummy roots are unique in that they are obsoleted by memslot
6010 * _creation_! See also FNAME(fetch).
6011 */
6012 sp = root_to_sp(root_hpa);
6013 return !sp || is_obsolete_sp(kvm, sp);
6014 }
6015
__kvm_mmu_free_obsolete_roots(struct kvm * kvm,struct kvm_mmu * mmu)6016 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
6017 {
6018 unsigned long roots_to_free = 0;
6019 int i;
6020
6021 if (is_obsolete_root(kvm, mmu->root.hpa))
6022 roots_to_free |= KVM_MMU_ROOT_CURRENT;
6023
6024 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6025 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
6026 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
6027 }
6028
6029 if (roots_to_free)
6030 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
6031 }
6032
kvm_mmu_free_obsolete_roots(struct kvm_vcpu * vcpu)6033 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
6034 {
6035 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6036 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
6037 }
6038 EXPORT_SYMBOL_GPL(kvm_mmu_free_obsolete_roots);
6039
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)6040 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
6041 int *bytes)
6042 {
6043 u64 gentry = 0;
6044 int r;
6045
6046 /*
6047 * Assume that the pte write on a page table of the same type
6048 * as the current vcpu paging mode since we update the sptes only
6049 * when they have the same mode.
6050 */
6051 if (is_pae(vcpu) && *bytes == 4) {
6052 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
6053 *gpa &= ~(gpa_t)7;
6054 *bytes = 8;
6055 }
6056
6057 if (*bytes == 4 || *bytes == 8) {
6058 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
6059 if (r)
6060 gentry = 0;
6061 }
6062
6063 return gentry;
6064 }
6065
6066 /*
6067 * If we're seeing too many writes to a page, it may no longer be a page table,
6068 * or we may be forking, in which case it is better to unmap the page.
6069 */
detect_write_flooding(struct kvm_mmu_page * sp)6070 static bool detect_write_flooding(struct kvm_mmu_page *sp)
6071 {
6072 /*
6073 * Skip write-flooding detected for the sp whose level is 1, because
6074 * it can become unsync, then the guest page is not write-protected.
6075 */
6076 if (sp->role.level == PG_LEVEL_4K)
6077 return false;
6078
6079 atomic_inc(&sp->write_flooding_count);
6080 return atomic_read(&sp->write_flooding_count) >= 3;
6081 }
6082
6083 /*
6084 * Misaligned accesses are too much trouble to fix up; also, they usually
6085 * indicate a page is not used as a page table.
6086 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)6087 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
6088 int bytes)
6089 {
6090 unsigned offset, pte_size, misaligned;
6091
6092 offset = offset_in_page(gpa);
6093 pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
6094
6095 /*
6096 * Sometimes, the OS only writes the last one bytes to update status
6097 * bits, for example, in linux, andb instruction is used in clear_bit().
6098 */
6099 if (!(offset & (pte_size - 1)) && bytes == 1)
6100 return false;
6101
6102 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
6103 misaligned |= bytes < 4;
6104
6105 return misaligned;
6106 }
6107
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)6108 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
6109 {
6110 unsigned page_offset, quadrant;
6111 u64 *spte;
6112 int level;
6113
6114 page_offset = offset_in_page(gpa);
6115 level = sp->role.level;
6116 *nspte = 1;
6117 if (sp->role.has_4_byte_gpte) {
6118 page_offset <<= 1; /* 32->64 */
6119 /*
6120 * A 32-bit pde maps 4MB while the shadow pdes map
6121 * only 2MB. So we need to double the offset again
6122 * and zap two pdes instead of one.
6123 */
6124 if (level == PT32_ROOT_LEVEL) {
6125 page_offset &= ~7; /* kill rounding error */
6126 page_offset <<= 1;
6127 *nspte = 2;
6128 }
6129 quadrant = page_offset >> PAGE_SHIFT;
6130 page_offset &= ~PAGE_MASK;
6131 if (quadrant != sp->role.quadrant)
6132 return NULL;
6133 }
6134
6135 spte = &sp->spt[page_offset / sizeof(*spte)];
6136 return spte;
6137 }
6138
kvm_mmu_track_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)6139 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
6140 int bytes)
6141 {
6142 gfn_t gfn = gpa >> PAGE_SHIFT;
6143 struct kvm_mmu_page *sp;
6144 LIST_HEAD(invalid_list);
6145 u64 entry, gentry, *spte;
6146 int npte;
6147 bool flush = false;
6148
6149 /*
6150 * When emulating guest writes, ensure the written value is visible to
6151 * any task that is handling page faults before checking whether or not
6152 * KVM is shadowing a guest PTE. This ensures either KVM will create
6153 * the correct SPTE in the page fault handler, or this task will see
6154 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in
6155 * account_shadowed().
6156 */
6157 smp_mb();
6158 if (!vcpu->kvm->arch.indirect_shadow_pages)
6159 return;
6160
6161 write_lock(&vcpu->kvm->mmu_lock);
6162
6163 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
6164
6165 ++vcpu->kvm->stat.mmu_pte_write;
6166
6167 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
6168 if (detect_write_misaligned(sp, gpa, bytes) ||
6169 detect_write_flooding(sp)) {
6170 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
6171 ++vcpu->kvm->stat.mmu_flooded;
6172 continue;
6173 }
6174
6175 spte = get_written_sptes(sp, gpa, &npte);
6176 if (!spte)
6177 continue;
6178
6179 while (npte--) {
6180 entry = *spte;
6181 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
6182 if (gentry && sp->role.level != PG_LEVEL_4K)
6183 ++vcpu->kvm->stat.mmu_pde_zapped;
6184 if (is_shadow_present_pte(entry))
6185 flush = true;
6186 ++spte;
6187 }
6188 }
6189 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
6190 write_unlock(&vcpu->kvm->mmu_lock);
6191 }
6192
is_write_to_guest_page_table(u64 error_code)6193 static bool is_write_to_guest_page_table(u64 error_code)
6194 {
6195 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
6196
6197 return (error_code & mask) == mask;
6198 }
6199
kvm_mmu_write_protect_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,int * emulation_type)6200 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6201 u64 error_code, int *emulation_type)
6202 {
6203 bool direct = vcpu->arch.mmu->root_role.direct;
6204
6205 /*
6206 * Do not try to unprotect and retry if the vCPU re-faulted on the same
6207 * RIP with the same address that was previously unprotected, as doing
6208 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses
6209 * a non-page-table modifying instruction on the PDE that points to the
6210 * instruction, then unprotecting the gfn will unmap the instruction's
6211 * code, i.e. make it impossible for the instruction to ever complete.
6212 */
6213 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
6214 vcpu->arch.last_retry_addr == cr2_or_gpa)
6215 return RET_PF_EMULATE;
6216
6217 /*
6218 * Reset the unprotect+retry values that guard against infinite loops.
6219 * The values will be refreshed if KVM explicitly unprotects a gfn and
6220 * retries, in all other cases it's safe to retry in the future even if
6221 * the next page fault happens on the same RIP+address.
6222 */
6223 vcpu->arch.last_retry_eip = 0;
6224 vcpu->arch.last_retry_addr = 0;
6225
6226 /*
6227 * It should be impossible to reach this point with an MMIO cache hit,
6228 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
6229 * writable memslot, and creating a memslot should invalidate the MMIO
6230 * cache by way of changing the memslot generation. WARN and disallow
6231 * retry if MMIO is detected, as retrying MMIO emulation is pointless
6232 * and could put the vCPU into an infinite loop because the processor
6233 * will keep faulting on the non-existent MMIO address.
6234 */
6235 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
6236 return RET_PF_EMULATE;
6237
6238 /*
6239 * Before emulating the instruction, check to see if the access was due
6240 * to a read-only violation while the CPU was walking non-nested NPT
6241 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
6242 * If L1 is sharing (a subset of) its page tables with L2, e.g. by
6243 * having nCR3 share lower level page tables with hCR3, then when KVM
6244 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
6245 * unknowingly write-protecting L1's guest page tables, which KVM isn't
6246 * shadowing.
6247 *
6248 * Because the CPU (by default) walks NPT page tables using a write
6249 * access (to ensure the CPU can do A/D updates), page walks in L1 can
6250 * trigger write faults for the above case even when L1 isn't modifying
6251 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try
6252 * to emulate) an excessive number of L1 instructions; because L1's MMU
6253 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
6254 * and thus no need to emulate in order to guarantee forward progress.
6255 *
6256 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
6257 * proceed without triggering emulation. If one or more shadow pages
6258 * was zapped, skip emulation and resume L1 to let it natively execute
6259 * the instruction. If no shadow pages were zapped, then the write-
6260 * fault is due to something else entirely, i.e. KVM needs to emulate,
6261 * as resuming the guest will put it into an infinite loop.
6262 *
6263 * Note, this code also applies to Intel CPUs, even though it is *very*
6264 * unlikely that an L1 will share its page tables (IA32/PAE/paging64
6265 * format) with L2's page tables (EPT format).
6266 *
6267 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
6268 * unprotect the gfn and retry if an event is awaiting reinjection. If
6269 * KVM emulates multiple instructions before completing event injection,
6270 * the event could be delayed beyond what is architecturally allowed,
6271 * e.g. KVM could inject an IRQ after the TPR has been raised.
6272 */
6273 if (((direct && is_write_to_guest_page_table(error_code)) ||
6274 (!direct && kvm_event_needs_reinjection(vcpu))) &&
6275 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
6276 return RET_PF_RETRY;
6277
6278 /*
6279 * The gfn is write-protected, but if KVM detects its emulating an
6280 * instruction that is unlikely to be used to modify page tables, or if
6281 * emulation fails, KVM can try to unprotect the gfn and let the CPU
6282 * re-execute the instruction that caused the page fault. Do not allow
6283 * retrying an instruction from a nested guest as KVM is only explicitly
6284 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't
6285 * going to magically fix whatever issue caused L2 to fail.
6286 */
6287 if (!is_guest_mode(vcpu))
6288 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
6289
6290 return RET_PF_EMULATE;
6291 }
6292
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)6293 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
6294 void *insn, int insn_len)
6295 {
6296 int r, emulation_type = EMULTYPE_PF;
6297 bool direct = vcpu->arch.mmu->root_role.direct;
6298
6299 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
6300 return RET_PF_RETRY;
6301
6302 /*
6303 * Except for reserved faults (emulated MMIO is shared-only), set the
6304 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
6305 * current attributes, which are the source of truth for such VMs. Note,
6306 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
6307 * currently supported nested virtualization (among many other things)
6308 * for software-protected VMs.
6309 */
6310 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
6311 !(error_code & PFERR_RSVD_MASK) &&
6312 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
6313 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
6314 error_code |= PFERR_PRIVATE_ACCESS;
6315
6316 r = RET_PF_INVALID;
6317 if (unlikely(error_code & PFERR_RSVD_MASK)) {
6318 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
6319 return -EFAULT;
6320
6321 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
6322 if (r == RET_PF_EMULATE)
6323 goto emulate;
6324 }
6325
6326 if (r == RET_PF_INVALID) {
6327 vcpu->stat.pf_taken++;
6328
6329 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
6330 &emulation_type, NULL);
6331 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
6332 return -EIO;
6333 }
6334
6335 if (r < 0)
6336 return r;
6337
6338 if (r == RET_PF_WRITE_PROTECTED)
6339 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
6340 &emulation_type);
6341
6342 if (r == RET_PF_FIXED)
6343 vcpu->stat.pf_fixed++;
6344 else if (r == RET_PF_EMULATE)
6345 vcpu->stat.pf_emulate++;
6346 else if (r == RET_PF_SPURIOUS)
6347 vcpu->stat.pf_spurious++;
6348
6349 /*
6350 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or
6351 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE.
6352 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to
6353 * indicate continuing the page fault handling until to the final
6354 * page table mapping phase.
6355 */
6356 WARN_ON_ONCE(r == RET_PF_CONTINUE);
6357 if (r != RET_PF_EMULATE)
6358 return r;
6359
6360 emulate:
6361 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
6362 insn_len);
6363 }
6364 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
6365
kvm_mmu_print_sptes(struct kvm_vcpu * vcpu,gpa_t gpa,const char * msg)6366 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
6367 {
6368 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
6369 int root_level, leaf, level;
6370
6371 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
6372 if (unlikely(leaf < 0))
6373 return;
6374
6375 pr_err("%s %llx", msg, gpa);
6376 for (level = root_level; level >= leaf; level--)
6377 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
6378 pr_cont("\n");
6379 }
6380 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes);
6381
__kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,hpa_t root_hpa)6382 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6383 u64 addr, hpa_t root_hpa)
6384 {
6385 struct kvm_shadow_walk_iterator iterator;
6386
6387 vcpu_clear_mmio_info(vcpu, addr);
6388
6389 /*
6390 * Walking and synchronizing SPTEs both assume they are operating in
6391 * the context of the current MMU, and would need to be reworked if
6392 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
6393 */
6394 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
6395 return;
6396
6397 if (!VALID_PAGE(root_hpa))
6398 return;
6399
6400 write_lock(&vcpu->kvm->mmu_lock);
6401 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
6402 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
6403
6404 if (sp->unsync) {
6405 int ret = kvm_sync_spte(vcpu, sp, iterator.index);
6406
6407 if (ret < 0)
6408 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
6409 if (ret)
6410 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
6411 }
6412
6413 if (!sp->unsync_children)
6414 break;
6415 }
6416 write_unlock(&vcpu->kvm->mmu_lock);
6417 }
6418
kvm_mmu_invalidate_addr(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,u64 addr,unsigned long roots)6419 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6420 u64 addr, unsigned long roots)
6421 {
6422 int i;
6423
6424 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
6425
6426 /* It's actually a GPA for vcpu->arch.guest_mmu. */
6427 if (mmu != &vcpu->arch.guest_mmu) {
6428 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
6429 if (is_noncanonical_invlpg_address(addr, vcpu))
6430 return;
6431
6432 kvm_x86_call(flush_tlb_gva)(vcpu, addr);
6433 }
6434
6435 if (!mmu->sync_spte)
6436 return;
6437
6438 if (roots & KVM_MMU_ROOT_CURRENT)
6439 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
6440
6441 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6442 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
6443 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
6444 }
6445 }
6446 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
6447
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)6448 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
6449 {
6450 /*
6451 * INVLPG is required to invalidate any global mappings for the VA,
6452 * irrespective of PCID. Blindly sync all roots as it would take
6453 * roughly the same amount of work/time to determine whether any of the
6454 * previous roots have a global mapping.
6455 *
6456 * Mappings not reachable via the current or previous cached roots will
6457 * be synced when switching to that new cr3, so nothing needs to be
6458 * done here for them.
6459 */
6460 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
6461 ++vcpu->stat.invlpg;
6462 }
6463 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
6464
6465
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)6466 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6467 {
6468 struct kvm_mmu *mmu = vcpu->arch.mmu;
6469 unsigned long roots = 0;
6470 uint i;
6471
6472 if (pcid == kvm_get_active_pcid(vcpu))
6473 roots |= KVM_MMU_ROOT_CURRENT;
6474
6475 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6476 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6477 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6478 roots |= KVM_MMU_ROOT_PREVIOUS(i);
6479 }
6480
6481 if (roots)
6482 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6483 ++vcpu->stat.invlpg;
6484
6485 /*
6486 * Mappings not reachable via the current cr3 or the prev_roots will be
6487 * synced when switching to that cr3, so nothing needs to be done here
6488 * for them.
6489 */
6490 }
6491
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)6492 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6493 int tdp_max_root_level, int tdp_huge_page_level)
6494 {
6495 tdp_enabled = enable_tdp;
6496 tdp_root_level = tdp_forced_root_level;
6497 max_tdp_level = tdp_max_root_level;
6498
6499 #ifdef CONFIG_X86_64
6500 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6501 #endif
6502 /*
6503 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6504 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6505 * the kernel is not. But, KVM never creates a page size greater than
6506 * what is used by the kernel for any given HVA, i.e. the kernel's
6507 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6508 */
6509 if (tdp_enabled)
6510 max_huge_page_level = tdp_huge_page_level;
6511 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6512 max_huge_page_level = PG_LEVEL_1G;
6513 else
6514 max_huge_page_level = PG_LEVEL_2M;
6515 }
6516 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6517
free_mmu_pages(struct kvm_mmu * mmu)6518 static void free_mmu_pages(struct kvm_mmu *mmu)
6519 {
6520 if (!tdp_enabled && mmu->pae_root)
6521 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6522 free_page((unsigned long)mmu->pae_root);
6523 free_page((unsigned long)mmu->pml4_root);
6524 free_page((unsigned long)mmu->pml5_root);
6525 }
6526
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)6527 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6528 {
6529 struct page *page;
6530 int i;
6531
6532 mmu->root.hpa = INVALID_PAGE;
6533 mmu->root.pgd = 0;
6534 mmu->mirror_root_hpa = INVALID_PAGE;
6535 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6536 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6537
6538 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6539 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6540 return 0;
6541
6542 /*
6543 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6544 * while the PDP table is a per-vCPU construct that's allocated at MMU
6545 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
6546 * x86_64. Therefore we need to allocate the PDP table in the first
6547 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
6548 * generally doesn't use PAE paging and can skip allocating the PDP
6549 * table. The main exception, handled here, is SVM's 32-bit NPT. The
6550 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6551 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6552 */
6553 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6554 return 0;
6555
6556 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6557 if (!page)
6558 return -ENOMEM;
6559
6560 mmu->pae_root = page_address(page);
6561
6562 /*
6563 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6564 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
6565 * that KVM's writes and the CPU's reads get along. Note, this is
6566 * only necessary when using shadow paging, as 64-bit NPT can get at
6567 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6568 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6569 */
6570 if (!tdp_enabled)
6571 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6572 else
6573 WARN_ON_ONCE(shadow_me_value);
6574
6575 for (i = 0; i < 4; ++i)
6576 mmu->pae_root[i] = INVALID_PAE_ROOT;
6577
6578 return 0;
6579 }
6580
kvm_mmu_create(struct kvm_vcpu * vcpu)6581 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6582 {
6583 int ret;
6584
6585 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6586 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6587
6588 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6589 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6590
6591 vcpu->arch.mmu_shadow_page_cache.init_value =
6592 SHADOW_NONPRESENT_VALUE;
6593 if (!vcpu->arch.mmu_shadow_page_cache.init_value)
6594 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6595
6596 vcpu->arch.mmu = &vcpu->arch.root_mmu;
6597 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6598
6599 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6600 if (ret)
6601 return ret;
6602
6603 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6604 if (ret)
6605 goto fail_allocate_root;
6606
6607 return ret;
6608 fail_allocate_root:
6609 free_mmu_pages(&vcpu->arch.guest_mmu);
6610 return ret;
6611 }
6612
6613 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)6614 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6615 {
6616 struct kvm_mmu_page *sp, *node;
6617 int nr_zapped, batch = 0;
6618 LIST_HEAD(invalid_list);
6619 bool unstable;
6620
6621 lockdep_assert_held(&kvm->slots_lock);
6622
6623 restart:
6624 list_for_each_entry_safe_reverse(sp, node,
6625 &kvm->arch.active_mmu_pages, link) {
6626 /*
6627 * No obsolete valid page exists before a newly created page
6628 * since active_mmu_pages is a FIFO list.
6629 */
6630 if (!is_obsolete_sp(kvm, sp))
6631 break;
6632
6633 /*
6634 * Invalid pages should never land back on the list of active
6635 * pages. Skip the bogus page, otherwise we'll get stuck in an
6636 * infinite loop if the page gets put back on the list (again).
6637 */
6638 if (WARN_ON_ONCE(sp->role.invalid))
6639 continue;
6640
6641 /*
6642 * No need to flush the TLB since we're only zapping shadow
6643 * pages with an obsolete generation number and all vCPUS have
6644 * loaded a new root, i.e. the shadow pages being zapped cannot
6645 * be in active use by the guest.
6646 */
6647 if (batch >= BATCH_ZAP_PAGES &&
6648 cond_resched_rwlock_write(&kvm->mmu_lock)) {
6649 batch = 0;
6650 goto restart;
6651 }
6652
6653 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6654 &invalid_list, &nr_zapped);
6655 batch += nr_zapped;
6656
6657 if (unstable)
6658 goto restart;
6659 }
6660
6661 /*
6662 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6663 * to ensure KVM is not in the middle of a lockless shadow page table
6664 * walk, which may reference the pages. The remote TLB flush itself is
6665 * not required and is simply a convenient way to kick vCPUs as needed.
6666 * KVM performs a local TLB flush when allocating a new root (see
6667 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6668 * running with an obsolete MMU.
6669 */
6670 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6671 }
6672
6673 /*
6674 * Fast invalidate all shadow pages and use lock-break technique
6675 * to zap obsolete pages.
6676 *
6677 * It's required when memslot is being deleted or VM is being
6678 * destroyed, in these cases, we should ensure that KVM MMU does
6679 * not use any resource of the being-deleted slot or all slots
6680 * after calling the function.
6681 */
kvm_mmu_zap_all_fast(struct kvm * kvm)6682 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6683 {
6684 lockdep_assert_held(&kvm->slots_lock);
6685
6686 write_lock(&kvm->mmu_lock);
6687 trace_kvm_mmu_zap_all_fast(kvm);
6688
6689 /*
6690 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
6691 * held for the entire duration of zapping obsolete pages, it's
6692 * impossible for there to be multiple invalid generations associated
6693 * with *valid* shadow pages at any given time, i.e. there is exactly
6694 * one valid generation and (at most) one invalid generation.
6695 */
6696 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6697
6698 /*
6699 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6700 * invalidating TDP MMU roots must be done while holding mmu_lock for
6701 * write and in the same critical section as making the reload request,
6702 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6703 */
6704 if (tdp_mmu_enabled) {
6705 /*
6706 * External page tables don't support fast zapping, therefore
6707 * their mirrors must be invalidated separately by the caller.
6708 */
6709 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS);
6710 }
6711
6712 /*
6713 * Notify all vcpus to reload its shadow page table and flush TLB.
6714 * Then all vcpus will switch to new shadow page table with the new
6715 * mmu_valid_gen.
6716 *
6717 * Note: we need to do this under the protection of mmu_lock,
6718 * otherwise, vcpu would purge shadow page but miss tlb flush.
6719 */
6720 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6721
6722 kvm_zap_obsolete_pages(kvm);
6723
6724 write_unlock(&kvm->mmu_lock);
6725
6726 /*
6727 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6728 * returning to the caller, e.g. if the zap is in response to a memslot
6729 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6730 * associated with the deleted memslot once the update completes, and
6731 * Deferring the zap until the final reference to the root is put would
6732 * lead to use-after-free.
6733 */
6734 if (tdp_mmu_enabled)
6735 kvm_tdp_mmu_zap_invalidated_roots(kvm, true);
6736 }
6737
kvm_mmu_init_vm(struct kvm * kvm)6738 int kvm_mmu_init_vm(struct kvm *kvm)
6739 {
6740 int r;
6741
6742 kvm->arch.shadow_mmio_value = shadow_mmio_value;
6743 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6744 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6745 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6746
6747 if (tdp_mmu_enabled) {
6748 kvm_mmu_init_tdp_mmu(kvm);
6749 } else {
6750 r = kvm_mmu_alloc_page_hash(kvm);
6751 if (r)
6752 return r;
6753 }
6754
6755 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6756 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6757
6758 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6759
6760 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6761 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6762 return 0;
6763 }
6764
mmu_free_vm_memory_caches(struct kvm * kvm)6765 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6766 {
6767 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6768 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6769 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6770 }
6771
kvm_mmu_uninit_vm(struct kvm * kvm)6772 void kvm_mmu_uninit_vm(struct kvm *kvm)
6773 {
6774 kvfree(kvm->arch.mmu_page_hash);
6775
6776 if (tdp_mmu_enabled)
6777 kvm_mmu_uninit_tdp_mmu(kvm);
6778
6779 mmu_free_vm_memory_caches(kvm);
6780 }
6781
kvm_rmap_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6782 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6783 {
6784 const struct kvm_memory_slot *memslot;
6785 struct kvm_memslots *slots;
6786 struct kvm_memslot_iter iter;
6787 bool flush = false;
6788 gfn_t start, end;
6789 int i;
6790
6791 if (!kvm_memslots_have_rmaps(kvm))
6792 return flush;
6793
6794 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6795 slots = __kvm_memslots(kvm, i);
6796
6797 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6798 memslot = iter.slot;
6799 start = max(gfn_start, memslot->base_gfn);
6800 end = min(gfn_end, memslot->base_gfn + memslot->npages);
6801 if (WARN_ON_ONCE(start >= end))
6802 continue;
6803
6804 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
6805 end, true, flush);
6806 }
6807 }
6808
6809 return flush;
6810 }
6811
6812 /*
6813 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6814 * (not including it)
6815 */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6816 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6817 {
6818 bool flush;
6819
6820 if (WARN_ON_ONCE(gfn_end <= gfn_start))
6821 return;
6822
6823 write_lock(&kvm->mmu_lock);
6824
6825 kvm_mmu_invalidate_begin(kvm);
6826
6827 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6828
6829 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6830
6831 if (tdp_mmu_enabled)
6832 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6833
6834 if (flush)
6835 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6836
6837 kvm_mmu_invalidate_end(kvm);
6838
6839 write_unlock(&kvm->mmu_lock);
6840 }
6841
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6842 static bool slot_rmap_write_protect(struct kvm *kvm,
6843 struct kvm_rmap_head *rmap_head,
6844 const struct kvm_memory_slot *slot)
6845 {
6846 return rmap_write_protect(rmap_head, false);
6847 }
6848
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)6849 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6850 const struct kvm_memory_slot *memslot,
6851 int start_level)
6852 {
6853 if (kvm_memslots_have_rmaps(kvm)) {
6854 write_lock(&kvm->mmu_lock);
6855 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6856 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6857 write_unlock(&kvm->mmu_lock);
6858 }
6859
6860 if (tdp_mmu_enabled) {
6861 read_lock(&kvm->mmu_lock);
6862 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6863 read_unlock(&kvm->mmu_lock);
6864 }
6865 }
6866
need_topup(struct kvm_mmu_memory_cache * cache,int min)6867 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6868 {
6869 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6870 }
6871
need_topup_split_caches_or_resched(struct kvm * kvm)6872 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6873 {
6874 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6875 return true;
6876
6877 /*
6878 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6879 * to split a single huge page. Calculating how many are actually needed
6880 * is possible but not worth the complexity.
6881 */
6882 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6883 need_topup(&kvm->arch.split_page_header_cache, 1) ||
6884 need_topup(&kvm->arch.split_shadow_page_cache, 1);
6885 }
6886
topup_split_caches(struct kvm * kvm)6887 static int topup_split_caches(struct kvm *kvm)
6888 {
6889 /*
6890 * Allocating rmap list entries when splitting huge pages for nested
6891 * MMUs is uncommon as KVM needs to use a list if and only if there is
6892 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6893 * aliased by multiple L2 gfns and/or from multiple nested roots with
6894 * different roles. Aliasing gfns when using TDP is atypical for VMMs;
6895 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6896 * but aliasing rarely occurs post-boot or for many gfns. If there is
6897 * only one rmap entry, rmap->val points directly at that one entry and
6898 * doesn't need to allocate a list. Buffer the cache by the default
6899 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6900 * encounters an aliased gfn or two.
6901 */
6902 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6903 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6904 int r;
6905
6906 lockdep_assert_held(&kvm->slots_lock);
6907
6908 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6909 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6910 if (r)
6911 return r;
6912
6913 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6914 if (r)
6915 return r;
6916
6917 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6918 }
6919
shadow_mmu_get_sp_for_split(struct kvm * kvm,u64 * huge_sptep)6920 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6921 {
6922 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6923 struct shadow_page_caches caches = {};
6924 union kvm_mmu_page_role role;
6925 unsigned int access;
6926 gfn_t gfn;
6927
6928 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6929 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6930
6931 /*
6932 * Note, huge page splitting always uses direct shadow pages, regardless
6933 * of whether the huge page itself is mapped by a direct or indirect
6934 * shadow page, since the huge page region itself is being directly
6935 * mapped with smaller pages.
6936 */
6937 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6938
6939 /* Direct SPs do not require a shadowed_info_cache. */
6940 caches.page_header_cache = &kvm->arch.split_page_header_cache;
6941 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6942
6943 /* Safe to pass NULL for vCPU since requesting a direct SP. */
6944 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6945 }
6946
shadow_mmu_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6947 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6948 const struct kvm_memory_slot *slot,
6949 u64 *huge_sptep)
6950
6951 {
6952 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6953 u64 huge_spte = READ_ONCE(*huge_sptep);
6954 struct kvm_mmu_page *sp;
6955 bool flush = false;
6956 u64 *sptep, spte;
6957 gfn_t gfn;
6958 int index;
6959
6960 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6961
6962 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6963 sptep = &sp->spt[index];
6964 gfn = kvm_mmu_page_get_gfn(sp, index);
6965
6966 /*
6967 * The SP may already have populated SPTEs, e.g. if this huge
6968 * page is aliased by multiple sptes with the same access
6969 * permissions. These entries are guaranteed to map the same
6970 * gfn-to-pfn translation since the SP is direct, so no need to
6971 * modify them.
6972 *
6973 * However, if a given SPTE points to a lower level page table,
6974 * that lower level page table may only be partially populated.
6975 * Installing such SPTEs would effectively unmap a potion of the
6976 * huge page. Unmapping guest memory always requires a TLB flush
6977 * since a subsequent operation on the unmapped regions would
6978 * fail to detect the need to flush.
6979 */
6980 if (is_shadow_present_pte(*sptep)) {
6981 flush |= !is_last_spte(*sptep, sp->role.level);
6982 continue;
6983 }
6984
6985 spte = make_small_spte(kvm, huge_spte, sp->role, index);
6986 mmu_spte_set(sptep, spte);
6987 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6988 }
6989
6990 __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6991 }
6992
shadow_mmu_try_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6993 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6994 const struct kvm_memory_slot *slot,
6995 u64 *huge_sptep)
6996 {
6997 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6998 int level, r = 0;
6999 gfn_t gfn;
7000 u64 spte;
7001
7002 /* Grab information for the tracepoint before dropping the MMU lock. */
7003 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
7004 level = huge_sp->role.level;
7005 spte = *huge_sptep;
7006
7007 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
7008 r = -ENOSPC;
7009 goto out;
7010 }
7011
7012 if (need_topup_split_caches_or_resched(kvm)) {
7013 write_unlock(&kvm->mmu_lock);
7014 cond_resched();
7015 /*
7016 * If the topup succeeds, return -EAGAIN to indicate that the
7017 * rmap iterator should be restarted because the MMU lock was
7018 * dropped.
7019 */
7020 r = topup_split_caches(kvm) ?: -EAGAIN;
7021 write_lock(&kvm->mmu_lock);
7022 goto out;
7023 }
7024
7025 shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
7026
7027 out:
7028 trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
7029 return r;
7030 }
7031
shadow_mmu_try_split_huge_pages(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)7032 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
7033 struct kvm_rmap_head *rmap_head,
7034 const struct kvm_memory_slot *slot)
7035 {
7036 struct rmap_iterator iter;
7037 struct kvm_mmu_page *sp;
7038 u64 *huge_sptep;
7039 int r;
7040
7041 restart:
7042 for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
7043 sp = sptep_to_sp(huge_sptep);
7044
7045 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
7046 if (WARN_ON_ONCE(!sp->role.guest_mode))
7047 continue;
7048
7049 /* The rmaps should never contain non-leaf SPTEs. */
7050 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
7051 continue;
7052
7053 /* SPs with level >PG_LEVEL_4K should never by unsync. */
7054 if (WARN_ON_ONCE(sp->unsync))
7055 continue;
7056
7057 /* Don't bother splitting huge pages on invalid SPs. */
7058 if (sp->role.invalid)
7059 continue;
7060
7061 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
7062
7063 /*
7064 * The split succeeded or needs to be retried because the MMU
7065 * lock was dropped. Either way, restart the iterator to get it
7066 * back into a consistent state.
7067 */
7068 if (!r || r == -EAGAIN)
7069 goto restart;
7070
7071 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
7072 break;
7073 }
7074
7075 return false;
7076 }
7077
kvm_shadow_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,int target_level)7078 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
7079 const struct kvm_memory_slot *slot,
7080 gfn_t start, gfn_t end,
7081 int target_level)
7082 {
7083 int level;
7084
7085 /*
7086 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
7087 * down to the target level. This ensures pages are recursively split
7088 * all the way to the target level. There's no need to split pages
7089 * already at the target level.
7090 */
7091 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
7092 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
7093 level, level, start, end - 1, true, true, false);
7094 }
7095
7096 /* Must be called with the mmu_lock held in write-mode. */
kvm_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,u64 start,u64 end,int target_level)7097 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
7098 const struct kvm_memory_slot *memslot,
7099 u64 start, u64 end,
7100 int target_level)
7101 {
7102 if (!tdp_mmu_enabled)
7103 return;
7104
7105 if (kvm_memslots_have_rmaps(kvm))
7106 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7107
7108 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
7109
7110 /*
7111 * A TLB flush is unnecessary at this point for the same reasons as in
7112 * kvm_mmu_slot_try_split_huge_pages().
7113 */
7114 }
7115
kvm_mmu_slot_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,int target_level)7116 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
7117 const struct kvm_memory_slot *memslot,
7118 int target_level)
7119 {
7120 u64 start = memslot->base_gfn;
7121 u64 end = start + memslot->npages;
7122
7123 if (!tdp_mmu_enabled)
7124 return;
7125
7126 if (kvm_memslots_have_rmaps(kvm)) {
7127 write_lock(&kvm->mmu_lock);
7128 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
7129 write_unlock(&kvm->mmu_lock);
7130 }
7131
7132 read_lock(&kvm->mmu_lock);
7133 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
7134 read_unlock(&kvm->mmu_lock);
7135
7136 /*
7137 * No TLB flush is necessary here. KVM will flush TLBs after
7138 * write-protecting and/or clearing dirty on the newly split SPTEs to
7139 * ensure that guest writes are reflected in the dirty log before the
7140 * ioctl to enable dirty logging on this memslot completes. Since the
7141 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
7142 * safe for KVM to decide if a TLB flush is necessary based on the split
7143 * SPTEs.
7144 */
7145 }
7146
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)7147 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
7148 struct kvm_rmap_head *rmap_head,
7149 const struct kvm_memory_slot *slot)
7150 {
7151 u64 *sptep;
7152 struct rmap_iterator iter;
7153 int need_tlb_flush = 0;
7154 struct kvm_mmu_page *sp;
7155
7156 restart:
7157 for_each_rmap_spte(rmap_head, &iter, sptep) {
7158 sp = sptep_to_sp(sptep);
7159
7160 /*
7161 * We cannot do huge page mapping for indirect shadow pages,
7162 * which are found on the last rmap (level = 1) when not using
7163 * tdp; such shadow pages are synced with the page table in
7164 * the guest, and the guest page table is using 4K page size
7165 * mapping if the indirect sp has level = 1.
7166 */
7167 if (sp->role.direct &&
7168 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) {
7169 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
7170
7171 if (kvm_available_flush_remote_tlbs_range())
7172 kvm_flush_remote_tlbs_sptep(kvm, sptep);
7173 else
7174 need_tlb_flush = 1;
7175
7176 goto restart;
7177 }
7178 }
7179
7180 return need_tlb_flush;
7181 }
7182 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range);
7183
kvm_rmap_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)7184 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
7185 const struct kvm_memory_slot *slot)
7186 {
7187 /*
7188 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
7189 * pages that are already mapped at the maximum hugepage level.
7190 */
7191 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
7192 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
7193 kvm_flush_remote_tlbs_memslot(kvm, slot);
7194 }
7195
kvm_mmu_recover_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot)7196 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
7197 const struct kvm_memory_slot *slot)
7198 {
7199 if (kvm_memslots_have_rmaps(kvm)) {
7200 write_lock(&kvm->mmu_lock);
7201 kvm_rmap_zap_collapsible_sptes(kvm, slot);
7202 write_unlock(&kvm->mmu_lock);
7203 }
7204
7205 if (tdp_mmu_enabled) {
7206 read_lock(&kvm->mmu_lock);
7207 kvm_tdp_mmu_recover_huge_pages(kvm, slot);
7208 read_unlock(&kvm->mmu_lock);
7209 }
7210 }
7211
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)7212 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
7213 const struct kvm_memory_slot *memslot)
7214 {
7215 if (kvm_memslots_have_rmaps(kvm)) {
7216 write_lock(&kvm->mmu_lock);
7217 /*
7218 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
7219 * support dirty logging at a 4k granularity.
7220 */
7221 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
7222 write_unlock(&kvm->mmu_lock);
7223 }
7224
7225 if (tdp_mmu_enabled) {
7226 read_lock(&kvm->mmu_lock);
7227 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
7228 read_unlock(&kvm->mmu_lock);
7229 }
7230
7231 /*
7232 * The caller will flush the TLBs after this function returns.
7233 *
7234 * It's also safe to flush TLBs out of mmu lock here as currently this
7235 * function is only used for dirty logging, in which case flushing TLB
7236 * out of mmu lock also guarantees no dirty pages will be lost in
7237 * dirty_bitmap.
7238 */
7239 }
7240
kvm_mmu_zap_all(struct kvm * kvm)7241 static void kvm_mmu_zap_all(struct kvm *kvm)
7242 {
7243 struct kvm_mmu_page *sp, *node;
7244 LIST_HEAD(invalid_list);
7245 int ign;
7246
7247 write_lock(&kvm->mmu_lock);
7248 restart:
7249 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
7250 if (WARN_ON_ONCE(sp->role.invalid))
7251 continue;
7252 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
7253 goto restart;
7254 if (cond_resched_rwlock_write(&kvm->mmu_lock))
7255 goto restart;
7256 }
7257
7258 kvm_mmu_commit_zap_page(kvm, &invalid_list);
7259
7260 if (tdp_mmu_enabled)
7261 kvm_tdp_mmu_zap_all(kvm);
7262
7263 write_unlock(&kvm->mmu_lock);
7264 }
7265
kvm_arch_flush_shadow_all(struct kvm * kvm)7266 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7267 {
7268 kvm_mmu_zap_all(kvm);
7269 }
7270
kvm_mmu_zap_memslot_pages_and_flush(struct kvm * kvm,struct kvm_memory_slot * slot,bool flush)7271 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm,
7272 struct kvm_memory_slot *slot,
7273 bool flush)
7274 {
7275 LIST_HEAD(invalid_list);
7276 unsigned long i;
7277
7278 if (list_empty(&kvm->arch.active_mmu_pages))
7279 goto out_flush;
7280
7281 /*
7282 * Since accounting information is stored in struct kvm_arch_memory_slot,
7283 * all MMU pages that are shadowing guest PTEs must be zapped before the
7284 * memslot is deleted, as freeing such pages after the memslot is freed
7285 * will result in use-after-free, e.g. in unaccount_shadowed().
7286 */
7287 for (i = 0; i < slot->npages; i++) {
7288 struct kvm_mmu_page *sp;
7289 gfn_t gfn = slot->base_gfn + i;
7290
7291 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn)
7292 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7293
7294 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7295 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7296 flush = false;
7297 cond_resched_rwlock_write(&kvm->mmu_lock);
7298 }
7299 }
7300
7301 out_flush:
7302 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7303 }
7304
kvm_mmu_zap_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7305 static void kvm_mmu_zap_memslot(struct kvm *kvm,
7306 struct kvm_memory_slot *slot)
7307 {
7308 struct kvm_gfn_range range = {
7309 .slot = slot,
7310 .start = slot->base_gfn,
7311 .end = slot->base_gfn + slot->npages,
7312 .may_block = true,
7313 .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED,
7314 };
7315 bool flush;
7316
7317 write_lock(&kvm->mmu_lock);
7318 flush = kvm_unmap_gfn_range(kvm, &range);
7319 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush);
7320 write_unlock(&kvm->mmu_lock);
7321 }
7322
kvm_memslot_flush_zap_all(struct kvm * kvm)7323 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm)
7324 {
7325 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM &&
7326 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL);
7327 }
7328
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7329 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7330 struct kvm_memory_slot *slot)
7331 {
7332 if (kvm_memslot_flush_zap_all(kvm))
7333 kvm_mmu_zap_all_fast(kvm);
7334 else
7335 kvm_mmu_zap_memslot(kvm, slot);
7336 }
7337
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)7338 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
7339 {
7340 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
7341
7342 gen &= MMIO_SPTE_GEN_MASK;
7343
7344 /*
7345 * Generation numbers are incremented in multiples of the number of
7346 * address spaces in order to provide unique generations across all
7347 * address spaces. Strip what is effectively the address space
7348 * modifier prior to checking for a wrap of the MMIO generation so
7349 * that a wrap in any address space is detected.
7350 */
7351 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
7352
7353 /*
7354 * The very rare case: if the MMIO generation number has wrapped,
7355 * zap all shadow pages.
7356 */
7357 if (unlikely(gen == 0)) {
7358 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
7359 kvm_mmu_zap_all_fast(kvm);
7360 }
7361 }
7362
mmu_destroy_caches(void)7363 static void mmu_destroy_caches(void)
7364 {
7365 kmem_cache_destroy(pte_list_desc_cache);
7366 kmem_cache_destroy(mmu_page_header_cache);
7367 }
7368
kvm_wake_nx_recovery_thread(struct kvm * kvm)7369 static void kvm_wake_nx_recovery_thread(struct kvm *kvm)
7370 {
7371 /*
7372 * The NX recovery thread is spawned on-demand at the first KVM_RUN and
7373 * may not be valid even though the VM is globally visible. Do nothing,
7374 * as such a VM can't have any possible NX huge pages.
7375 */
7376 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread);
7377
7378 if (nx_thread)
7379 vhost_task_wake(nx_thread);
7380 }
7381
get_nx_huge_pages(char * buffer,const struct kernel_param * kp)7382 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
7383 {
7384 if (nx_hugepage_mitigation_hard_disabled)
7385 return sysfs_emit(buffer, "never\n");
7386
7387 return param_get_bool(buffer, kp);
7388 }
7389
get_nx_auto_mode(void)7390 static bool get_nx_auto_mode(void)
7391 {
7392 /* Return true when CPU has the bug, and mitigations are ON */
7393 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
7394 }
7395
__set_nx_huge_pages(bool val)7396 static void __set_nx_huge_pages(bool val)
7397 {
7398 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
7399 }
7400
set_nx_huge_pages(const char * val,const struct kernel_param * kp)7401 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
7402 {
7403 bool old_val = nx_huge_pages;
7404 bool new_val;
7405
7406 if (nx_hugepage_mitigation_hard_disabled)
7407 return -EPERM;
7408
7409 /* In "auto" mode deploy workaround only if CPU has the bug. */
7410 if (sysfs_streq(val, "off")) {
7411 new_val = 0;
7412 } else if (sysfs_streq(val, "force")) {
7413 new_val = 1;
7414 } else if (sysfs_streq(val, "auto")) {
7415 new_val = get_nx_auto_mode();
7416 } else if (sysfs_streq(val, "never")) {
7417 new_val = 0;
7418
7419 mutex_lock(&kvm_lock);
7420 if (!list_empty(&vm_list)) {
7421 mutex_unlock(&kvm_lock);
7422 return -EBUSY;
7423 }
7424 nx_hugepage_mitigation_hard_disabled = true;
7425 mutex_unlock(&kvm_lock);
7426 } else if (kstrtobool(val, &new_val) < 0) {
7427 return -EINVAL;
7428 }
7429
7430 __set_nx_huge_pages(new_val);
7431
7432 if (new_val != old_val) {
7433 struct kvm *kvm;
7434
7435 mutex_lock(&kvm_lock);
7436
7437 list_for_each_entry(kvm, &vm_list, vm_list) {
7438 mutex_lock(&kvm->slots_lock);
7439 kvm_mmu_zap_all_fast(kvm);
7440 mutex_unlock(&kvm->slots_lock);
7441
7442 kvm_wake_nx_recovery_thread(kvm);
7443 }
7444 mutex_unlock(&kvm_lock);
7445 }
7446
7447 return 0;
7448 }
7449
7450 /*
7451 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7452 * its default value of -1 is technically undefined behavior for a boolean.
7453 * Forward the module init call to SPTE code so that it too can handle module
7454 * params that need to be resolved/snapshot.
7455 */
kvm_mmu_x86_module_init(void)7456 void __init kvm_mmu_x86_module_init(void)
7457 {
7458 if (nx_huge_pages == -1)
7459 __set_nx_huge_pages(get_nx_auto_mode());
7460
7461 /*
7462 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7463 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7464 * when the vendor module is loaded.
7465 */
7466 tdp_mmu_allowed = tdp_mmu_enabled;
7467
7468 kvm_mmu_spte_module_init();
7469 }
7470
7471 /*
7472 * The bulk of the MMU initialization is deferred until the vendor module is
7473 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7474 * to be reset when a potentially different vendor module is loaded.
7475 */
kvm_mmu_vendor_module_init(void)7476 int kvm_mmu_vendor_module_init(void)
7477 {
7478 int ret = -ENOMEM;
7479
7480 /*
7481 * MMU roles use union aliasing which is, generally speaking, an
7482 * undefined behavior. However, we supposedly know how compilers behave
7483 * and the current status quo is unlikely to change. Guardians below are
7484 * supposed to let us know if the assumption becomes false.
7485 */
7486 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7487 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7488 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7489
7490 kvm_mmu_reset_all_pte_masks();
7491
7492 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7493 if (!pte_list_desc_cache)
7494 goto out;
7495
7496 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7497 sizeof(struct kvm_mmu_page),
7498 0, SLAB_ACCOUNT, NULL);
7499 if (!mmu_page_header_cache)
7500 goto out;
7501
7502 return 0;
7503
7504 out:
7505 mmu_destroy_caches();
7506 return ret;
7507 }
7508
kvm_mmu_destroy(struct kvm_vcpu * vcpu)7509 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7510 {
7511 kvm_mmu_unload(vcpu);
7512 if (tdp_mmu_enabled) {
7513 read_lock(&vcpu->kvm->mmu_lock);
7514 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa,
7515 NULL);
7516 read_unlock(&vcpu->kvm->mmu_lock);
7517 }
7518 free_mmu_pages(&vcpu->arch.root_mmu);
7519 free_mmu_pages(&vcpu->arch.guest_mmu);
7520 mmu_free_memory_caches(vcpu);
7521 }
7522
kvm_mmu_vendor_module_exit(void)7523 void kvm_mmu_vendor_module_exit(void)
7524 {
7525 mmu_destroy_caches();
7526 }
7527
7528 /*
7529 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7530 * select a halving time of 1 hour". Returns true if recovery is enabled.
7531 */
calc_nx_huge_pages_recovery_period(uint * period)7532 static bool calc_nx_huge_pages_recovery_period(uint *period)
7533 {
7534 /*
7535 * Use READ_ONCE to get the params, this may be called outside of the
7536 * param setters, e.g. by the kthread to compute its next timeout.
7537 */
7538 bool enabled = READ_ONCE(nx_huge_pages);
7539 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7540
7541 if (!enabled || !ratio)
7542 return false;
7543
7544 *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7545 if (!*period) {
7546 /* Make sure the period is not less than one second. */
7547 ratio = min(ratio, 3600u);
7548 *period = 60 * 60 * 1000 / ratio;
7549 }
7550 return true;
7551 }
7552
set_nx_huge_pages_recovery_param(const char * val,const struct kernel_param * kp)7553 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7554 {
7555 bool was_recovery_enabled, is_recovery_enabled;
7556 uint old_period, new_period;
7557 int err;
7558
7559 if (nx_hugepage_mitigation_hard_disabled)
7560 return -EPERM;
7561
7562 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7563
7564 err = param_set_uint(val, kp);
7565 if (err)
7566 return err;
7567
7568 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7569
7570 if (is_recovery_enabled &&
7571 (!was_recovery_enabled || old_period > new_period)) {
7572 struct kvm *kvm;
7573
7574 mutex_lock(&kvm_lock);
7575
7576 list_for_each_entry(kvm, &vm_list, vm_list)
7577 kvm_wake_nx_recovery_thread(kvm);
7578
7579 mutex_unlock(&kvm_lock);
7580 }
7581
7582 return err;
7583 }
7584
kvm_recover_nx_huge_pages(struct kvm * kvm)7585 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7586 {
7587 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7588 struct kvm_memory_slot *slot;
7589 int rcu_idx;
7590 struct kvm_mmu_page *sp;
7591 unsigned int ratio;
7592 LIST_HEAD(invalid_list);
7593 bool flush = false;
7594 ulong to_zap;
7595
7596 rcu_idx = srcu_read_lock(&kvm->srcu);
7597 write_lock(&kvm->mmu_lock);
7598
7599 /*
7600 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7601 * be done under RCU protection, because the pages are freed via RCU
7602 * callback.
7603 */
7604 rcu_read_lock();
7605
7606 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7607 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7608 for ( ; to_zap; --to_zap) {
7609 if (list_empty(&kvm->arch.possible_nx_huge_pages))
7610 break;
7611
7612 /*
7613 * We use a separate list instead of just using active_mmu_pages
7614 * because the number of shadow pages that be replaced with an
7615 * NX huge page is expected to be relatively small compared to
7616 * the total number of shadow pages. And because the TDP MMU
7617 * doesn't use active_mmu_pages.
7618 */
7619 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7620 struct kvm_mmu_page,
7621 possible_nx_huge_page_link);
7622 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7623 WARN_ON_ONCE(!sp->role.direct);
7624
7625 /*
7626 * Unaccount and do not attempt to recover any NX Huge Pages
7627 * that are being dirty tracked, as they would just be faulted
7628 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7629 * recovered, along with all the other huge pages in the slot,
7630 * when dirty logging is disabled.
7631 *
7632 * Since gfn_to_memslot() is relatively expensive, it helps to
7633 * skip it if it the test cannot possibly return true. On the
7634 * other hand, if any memslot has logging enabled, chances are
7635 * good that all of them do, in which case unaccount_nx_huge_page()
7636 * is much cheaper than zapping the page.
7637 *
7638 * If a memslot update is in progress, reading an incorrect value
7639 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7640 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7641 * it is becoming nonzero, the page will be zapped unnecessarily.
7642 * Either way, this only affects efficiency in racy situations,
7643 * and not correctness.
7644 */
7645 slot = NULL;
7646 if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7647 struct kvm_memslots *slots;
7648
7649 slots = kvm_memslots_for_spte_role(kvm, sp->role);
7650 slot = __gfn_to_memslot(slots, sp->gfn);
7651 WARN_ON_ONCE(!slot);
7652 }
7653
7654 if (slot && kvm_slot_dirty_track_enabled(slot))
7655 unaccount_nx_huge_page(kvm, sp);
7656 else if (is_tdp_mmu_page(sp))
7657 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7658 else
7659 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7660 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7661
7662 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7663 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7664 rcu_read_unlock();
7665
7666 cond_resched_rwlock_write(&kvm->mmu_lock);
7667 flush = false;
7668
7669 rcu_read_lock();
7670 }
7671 }
7672 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7673
7674 rcu_read_unlock();
7675
7676 write_unlock(&kvm->mmu_lock);
7677 srcu_read_unlock(&kvm->srcu, rcu_idx);
7678 }
7679
kvm_nx_huge_page_recovery_worker_kill(void * data)7680 static void kvm_nx_huge_page_recovery_worker_kill(void *data)
7681 {
7682 }
7683
kvm_nx_huge_page_recovery_worker(void * data)7684 static bool kvm_nx_huge_page_recovery_worker(void *data)
7685 {
7686 struct kvm *kvm = data;
7687 bool enabled;
7688 uint period;
7689 long remaining_time;
7690
7691 enabled = calc_nx_huge_pages_recovery_period(&period);
7692 if (!enabled)
7693 return false;
7694
7695 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period)
7696 - get_jiffies_64();
7697 if (remaining_time > 0) {
7698 schedule_timeout(remaining_time);
7699 /* check for signals and come back */
7700 return true;
7701 }
7702
7703 __set_current_state(TASK_RUNNING);
7704 kvm_recover_nx_huge_pages(kvm);
7705 kvm->arch.nx_huge_page_last = get_jiffies_64();
7706 return true;
7707 }
7708
kvm_mmu_start_lpage_recovery(struct once * once)7709 static int kvm_mmu_start_lpage_recovery(struct once *once)
7710 {
7711 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once);
7712 struct kvm *kvm = container_of(ka, struct kvm, arch);
7713 struct vhost_task *nx_thread;
7714
7715 kvm->arch.nx_huge_page_last = get_jiffies_64();
7716 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker,
7717 kvm_nx_huge_page_recovery_worker_kill,
7718 kvm, "kvm-nx-lpage-recovery");
7719
7720 if (IS_ERR(nx_thread))
7721 return PTR_ERR(nx_thread);
7722
7723 vhost_task_start(nx_thread);
7724
7725 /* Make the task visible only once it is fully started. */
7726 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread);
7727 return 0;
7728 }
7729
kvm_mmu_post_init_vm(struct kvm * kvm)7730 int kvm_mmu_post_init_vm(struct kvm *kvm)
7731 {
7732 if (nx_hugepage_mitigation_hard_disabled)
7733 return 0;
7734
7735 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery);
7736 }
7737
kvm_mmu_pre_destroy_vm(struct kvm * kvm)7738 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7739 {
7740 if (kvm->arch.nx_huge_page_recovery_thread)
7741 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread);
7742 }
7743
7744 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
hugepage_test_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7745 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7746 int level)
7747 {
7748 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7749 }
7750
hugepage_clear_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7751 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7752 int level)
7753 {
7754 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7755 }
7756
hugepage_set_mixed(struct kvm_memory_slot * slot,gfn_t gfn,int level)7757 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7758 int level)
7759 {
7760 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7761 }
7762
kvm_arch_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7763 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7764 struct kvm_gfn_range *range)
7765 {
7766 struct kvm_memory_slot *slot = range->slot;
7767 int level;
7768
7769 /*
7770 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only
7771 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7772 * can simply ignore such slots. But if userspace is making memory
7773 * PRIVATE, then KVM must prevent the guest from accessing the memory
7774 * as shared. And if userspace is making memory SHARED and this point
7775 * is reached, then at least one page within the range was previously
7776 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7777 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7778 * a hugepage can be used for affected ranges.
7779 */
7780 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7781 return false;
7782
7783 if (WARN_ON_ONCE(range->end <= range->start))
7784 return false;
7785
7786 /*
7787 * If the head and tail pages of the range currently allow a hugepage,
7788 * i.e. reside fully in the slot and don't have mixed attributes, then
7789 * add each corresponding hugepage range to the ongoing invalidation,
7790 * e.g. to prevent KVM from creating a hugepage in response to a fault
7791 * for a gfn whose attributes aren't changing. Note, only the range
7792 * of gfns whose attributes are being modified needs to be explicitly
7793 * unmapped, as that will unmap any existing hugepages.
7794 */
7795 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7796 gfn_t start = gfn_round_for_level(range->start, level);
7797 gfn_t end = gfn_round_for_level(range->end - 1, level);
7798 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7799
7800 if ((start != range->start || start + nr_pages > range->end) &&
7801 start >= slot->base_gfn &&
7802 start + nr_pages <= slot->base_gfn + slot->npages &&
7803 !hugepage_test_mixed(slot, start, level))
7804 kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages);
7805
7806 if (end == start)
7807 continue;
7808
7809 if ((end + nr_pages) > range->end &&
7810 (end + nr_pages) <= (slot->base_gfn + slot->npages) &&
7811 !hugepage_test_mixed(slot, end, level))
7812 kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages);
7813 }
7814
7815 /* Unmap the old attribute page. */
7816 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE)
7817 range->attr_filter = KVM_FILTER_SHARED;
7818 else
7819 range->attr_filter = KVM_FILTER_PRIVATE;
7820
7821 return kvm_unmap_gfn_range(kvm, range);
7822 }
7823
7824
7825
hugepage_has_attrs(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long attrs)7826 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7827 gfn_t gfn, int level, unsigned long attrs)
7828 {
7829 const unsigned long start = gfn;
7830 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7831
7832 if (level == PG_LEVEL_2M)
7833 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs);
7834
7835 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7836 if (hugepage_test_mixed(slot, gfn, level - 1) ||
7837 attrs != kvm_get_memory_attributes(kvm, gfn))
7838 return false;
7839 }
7840 return true;
7841 }
7842
kvm_arch_post_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)7843 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7844 struct kvm_gfn_range *range)
7845 {
7846 unsigned long attrs = range->arg.attributes;
7847 struct kvm_memory_slot *slot = range->slot;
7848 int level;
7849
7850 lockdep_assert_held_write(&kvm->mmu_lock);
7851 lockdep_assert_held(&kvm->slots_lock);
7852
7853 /*
7854 * Calculate which ranges can be mapped with hugepages even if the slot
7855 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over
7856 * a range that has PRIVATE GFNs, and conversely converting a range to
7857 * SHARED may now allow hugepages.
7858 */
7859 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7860 return false;
7861
7862 /*
7863 * The sequence matters here: upper levels consume the result of lower
7864 * level's scanning.
7865 */
7866 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7867 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7868 gfn_t gfn = gfn_round_for_level(range->start, level);
7869
7870 /* Process the head page if it straddles the range. */
7871 if (gfn != range->start || gfn + nr_pages > range->end) {
7872 /*
7873 * Skip mixed tracking if the aligned gfn isn't covered
7874 * by the memslot, KVM can't use a hugepage due to the
7875 * misaligned address regardless of memory attributes.
7876 */
7877 if (gfn >= slot->base_gfn &&
7878 gfn + nr_pages <= slot->base_gfn + slot->npages) {
7879 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7880 hugepage_clear_mixed(slot, gfn, level);
7881 else
7882 hugepage_set_mixed(slot, gfn, level);
7883 }
7884 gfn += nr_pages;
7885 }
7886
7887 /*
7888 * Pages entirely covered by the range are guaranteed to have
7889 * only the attributes which were just set.
7890 */
7891 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7892 hugepage_clear_mixed(slot, gfn, level);
7893
7894 /*
7895 * Process the last tail page if it straddles the range and is
7896 * contained by the memslot. Like the head page, KVM can't
7897 * create a hugepage if the slot size is misaligned.
7898 */
7899 if (gfn < range->end &&
7900 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7901 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7902 hugepage_clear_mixed(slot, gfn, level);
7903 else
7904 hugepage_set_mixed(slot, gfn, level);
7905 }
7906 }
7907 return false;
7908 }
7909
kvm_mmu_init_memslot_memory_attributes(struct kvm * kvm,struct kvm_memory_slot * slot)7910 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7911 struct kvm_memory_slot *slot)
7912 {
7913 int level;
7914
7915 if (!kvm_arch_has_private_mem(kvm))
7916 return;
7917
7918 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7919 /*
7920 * Don't bother tracking mixed attributes for pages that can't
7921 * be huge due to alignment, i.e. process only pages that are
7922 * entirely contained by the memslot.
7923 */
7924 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7925 gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7926 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7927 gfn_t gfn;
7928
7929 if (start < slot->base_gfn)
7930 start += nr_pages;
7931
7932 /*
7933 * Unlike setting attributes, every potential hugepage needs to
7934 * be manually checked as the attributes may already be mixed.
7935 */
7936 for (gfn = start; gfn < end; gfn += nr_pages) {
7937 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7938
7939 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7940 hugepage_clear_mixed(slot, gfn, level);
7941 else
7942 hugepage_set_mixed(slot, gfn, level);
7943 }
7944 }
7945 }
7946 #endif
7947