xref: /linux/arch/arm64/kvm/nested.c (revision adc4fb9c814b5d5cc6021022900fd5eb0b3c8165)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 - Columbia University and Linaro Ltd.
4  * Author: Jintack Lim <jintack.lim@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 
11 #include <asm/kvm_arm.h>
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/kvm_nested.h>
15 #include <asm/sysreg.h>
16 
17 #include "sys_regs.h"
18 
19 /*
20  * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
21  * memory usage and potential number of different sets of S2 PTs in
22  * the guests. Running out of S2 MMUs only affects performance (we
23  * will invalidate them more often).
24  */
25 #define S2_MMU_PER_VCPU		2
26 
kvm_init_nested(struct kvm * kvm)27 void kvm_init_nested(struct kvm *kvm)
28 {
29 	kvm->arch.nested_mmus = NULL;
30 	kvm->arch.nested_mmus_size = 0;
31 }
32 
init_nested_s2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)33 static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
34 {
35 	/*
36 	 * We only initialise the IPA range on the canonical MMU, which
37 	 * defines the contract between KVM and userspace on where the
38 	 * "hardware" is in the IPA space. This affects the validity of MMIO
39 	 * exits forwarded to userspace, for example.
40 	 *
41 	 * For nested S2s, we use the PARange as exposed to the guest, as it
42 	 * is allowed to use it at will to expose whatever memory map it
43 	 * wants to its own guests as it would be on real HW.
44 	 */
45 	return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
46 }
47 
kvm_vcpu_init_nested(struct kvm_vcpu * vcpu)48 int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
49 {
50 	struct kvm *kvm = vcpu->kvm;
51 	struct kvm_s2_mmu *tmp;
52 	int num_mmus, ret = 0;
53 
54 	if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) &&
55 	    !cpus_have_final_cap(ARM64_HAS_HCR_NV1))
56 		return -EINVAL;
57 
58 	/*
59 	 * Let's treat memory allocation failures as benign: If we fail to
60 	 * allocate anything, return an error and keep the allocated array
61 	 * alive. Userspace may try to recover by intializing the vcpu
62 	 * again, and there is no reason to affect the whole VM for this.
63 	 */
64 	num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
65 	tmp = kvrealloc(kvm->arch.nested_mmus,
66 			size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
67 			GFP_KERNEL_ACCOUNT | __GFP_ZERO);
68 	if (!tmp)
69 		return -ENOMEM;
70 
71 	swap(kvm->arch.nested_mmus, tmp);
72 
73 	/*
74 	 * If we went through a realocation, adjust the MMU back-pointers in
75 	 * the previously initialised kvm_pgtable structures.
76 	 */
77 	if (kvm->arch.nested_mmus != tmp)
78 		for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
79 			kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i];
80 
81 	for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
82 		ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]);
83 
84 	if (ret) {
85 		for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
86 			kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]);
87 
88 		return ret;
89 	}
90 
91 	kvm->arch.nested_mmus_size = num_mmus;
92 
93 	return 0;
94 }
95 
96 struct s2_walk_info {
97 	int	     (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
98 	void	     *data;
99 	u64	     baddr;
100 	unsigned int max_oa_bits;
101 	unsigned int pgshift;
102 	unsigned int sl;
103 	unsigned int t0sz;
104 	bool	     be;
105 };
106 
compute_fsc(int level,u32 fsc)107 static u32 compute_fsc(int level, u32 fsc)
108 {
109 	return fsc | (level & 0x3);
110 }
111 
esr_s2_fault(struct kvm_vcpu * vcpu,int level,u32 fsc)112 static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
113 {
114 	u32 esr;
115 
116 	esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
117 	esr |= compute_fsc(level, fsc);
118 	return esr;
119 }
120 
get_ia_size(struct s2_walk_info * wi)121 static int get_ia_size(struct s2_walk_info *wi)
122 {
123 	return 64 - wi->t0sz;
124 }
125 
check_base_s2_limits(struct s2_walk_info * wi,int level,int input_size,int stride)126 static int check_base_s2_limits(struct s2_walk_info *wi,
127 				int level, int input_size, int stride)
128 {
129 	int start_size, ia_size;
130 
131 	ia_size = get_ia_size(wi);
132 
133 	/* Check translation limits */
134 	switch (BIT(wi->pgshift)) {
135 	case SZ_64K:
136 		if (level == 0 || (level == 1 && ia_size <= 42))
137 			return -EFAULT;
138 		break;
139 	case SZ_16K:
140 		if (level == 0 || (level == 1 && ia_size <= 40))
141 			return -EFAULT;
142 		break;
143 	case SZ_4K:
144 		if (level < 0 || (level == 0 && ia_size <= 42))
145 			return -EFAULT;
146 		break;
147 	}
148 
149 	/* Check input size limits */
150 	if (input_size > ia_size)
151 		return -EFAULT;
152 
153 	/* Check number of entries in starting level table */
154 	start_size = input_size - ((3 - level) * stride + wi->pgshift);
155 	if (start_size < 1 || start_size > stride + 4)
156 		return -EFAULT;
157 
158 	return 0;
159 }
160 
161 /* Check if output is within boundaries */
check_output_size(struct s2_walk_info * wi,phys_addr_t output)162 static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
163 {
164 	unsigned int output_size = wi->max_oa_bits;
165 
166 	if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
167 		return -1;
168 
169 	return 0;
170 }
171 
172 /*
173  * This is essentially a C-version of the pseudo code from the ARM ARM
174  * AArch64.TranslationTableWalk  function.  I strongly recommend looking at
175  * that pseudocode in trying to understand this.
176  *
177  * Must be called with the kvm->srcu read lock held
178  */
walk_nested_s2_pgd(phys_addr_t ipa,struct s2_walk_info * wi,struct kvm_s2_trans * out)179 static int walk_nested_s2_pgd(phys_addr_t ipa,
180 			      struct s2_walk_info *wi, struct kvm_s2_trans *out)
181 {
182 	int first_block_level, level, stride, input_size, base_lower_bound;
183 	phys_addr_t base_addr;
184 	unsigned int addr_top, addr_bottom;
185 	u64 desc;  /* page table entry */
186 	int ret;
187 	phys_addr_t paddr;
188 
189 	switch (BIT(wi->pgshift)) {
190 	default:
191 	case SZ_64K:
192 	case SZ_16K:
193 		level = 3 - wi->sl;
194 		first_block_level = 2;
195 		break;
196 	case SZ_4K:
197 		level = 2 - wi->sl;
198 		first_block_level = 1;
199 		break;
200 	}
201 
202 	stride = wi->pgshift - 3;
203 	input_size = get_ia_size(wi);
204 	if (input_size > 48 || input_size < 25)
205 		return -EFAULT;
206 
207 	ret = check_base_s2_limits(wi, level, input_size, stride);
208 	if (WARN_ON(ret))
209 		return ret;
210 
211 	base_lower_bound = 3 + input_size - ((3 - level) * stride +
212 			   wi->pgshift);
213 	base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
214 
215 	if (check_output_size(wi, base_addr)) {
216 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
217 		return 1;
218 	}
219 
220 	addr_top = input_size - 1;
221 
222 	while (1) {
223 		phys_addr_t index;
224 
225 		addr_bottom = (3 - level) * stride + wi->pgshift;
226 		index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
227 			>> (addr_bottom - 3);
228 
229 		paddr = base_addr | index;
230 		ret = wi->read_desc(paddr, &desc, wi->data);
231 		if (ret < 0)
232 			return ret;
233 
234 		/*
235 		 * Handle reversedescriptors if endianness differs between the
236 		 * host and the guest hypervisor.
237 		 */
238 		if (wi->be)
239 			desc = be64_to_cpu((__force __be64)desc);
240 		else
241 			desc = le64_to_cpu((__force __le64)desc);
242 
243 		/* Check for valid descriptor at this point */
244 		if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
245 			out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
246 			out->desc = desc;
247 			return 1;
248 		}
249 
250 		/* We're at the final level or block translation level */
251 		if ((desc & 3) == 1 || level == 3)
252 			break;
253 
254 		if (check_output_size(wi, desc)) {
255 			out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
256 			out->desc = desc;
257 			return 1;
258 		}
259 
260 		base_addr = desc & GENMASK_ULL(47, wi->pgshift);
261 
262 		level += 1;
263 		addr_top = addr_bottom - 1;
264 	}
265 
266 	if (level < first_block_level) {
267 		out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
268 		out->desc = desc;
269 		return 1;
270 	}
271 
272 	if (check_output_size(wi, desc)) {
273 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
274 		out->desc = desc;
275 		return 1;
276 	}
277 
278 	if (!(desc & BIT(10))) {
279 		out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
280 		out->desc = desc;
281 		return 1;
282 	}
283 
284 	addr_bottom += contiguous_bit_shift(desc, wi, level);
285 
286 	/* Calculate and return the result */
287 	paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
288 		(ipa & GENMASK_ULL(addr_bottom - 1, 0));
289 	out->output = paddr;
290 	out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
291 	out->readable = desc & (0b01 << 6);
292 	out->writable = desc & (0b10 << 6);
293 	out->level = level;
294 	out->desc = desc;
295 	return 0;
296 }
297 
read_guest_s2_desc(phys_addr_t pa,u64 * desc,void * data)298 static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
299 {
300 	struct kvm_vcpu *vcpu = data;
301 
302 	return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
303 }
304 
vtcr_to_walk_info(u64 vtcr,struct s2_walk_info * wi)305 static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
306 {
307 	wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
308 
309 	switch (vtcr & VTCR_EL2_TG0_MASK) {
310 	case VTCR_EL2_TG0_4K:
311 		wi->pgshift = 12;	 break;
312 	case VTCR_EL2_TG0_16K:
313 		wi->pgshift = 14;	 break;
314 	case VTCR_EL2_TG0_64K:
315 	default:	    /* IMPDEF: treat any other value as 64k */
316 		wi->pgshift = 16;	 break;
317 	}
318 
319 	wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
320 	/* Global limit for now, should eventually be per-VM */
321 	wi->max_oa_bits = min(get_kvm_ipa_limit(),
322 			      ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
323 }
324 
kvm_walk_nested_s2(struct kvm_vcpu * vcpu,phys_addr_t gipa,struct kvm_s2_trans * result)325 int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
326 		       struct kvm_s2_trans *result)
327 {
328 	u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
329 	struct s2_walk_info wi;
330 	int ret;
331 
332 	result->esr = 0;
333 
334 	if (!vcpu_has_nv(vcpu))
335 		return 0;
336 
337 	wi.read_desc = read_guest_s2_desc;
338 	wi.data = vcpu;
339 	wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
340 
341 	vtcr_to_walk_info(vtcr, &wi);
342 
343 	wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
344 
345 	ret = walk_nested_s2_pgd(gipa, &wi, result);
346 	if (ret)
347 		result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
348 
349 	return ret;
350 }
351 
ttl_to_size(u8 ttl)352 static unsigned int ttl_to_size(u8 ttl)
353 {
354 	int level = ttl & 3;
355 	int gran = (ttl >> 2) & 3;
356 	unsigned int max_size = 0;
357 
358 	switch (gran) {
359 	case TLBI_TTL_TG_4K:
360 		switch (level) {
361 		case 0:
362 			break;
363 		case 1:
364 			max_size = SZ_1G;
365 			break;
366 		case 2:
367 			max_size = SZ_2M;
368 			break;
369 		case 3:
370 			max_size = SZ_4K;
371 			break;
372 		}
373 		break;
374 	case TLBI_TTL_TG_16K:
375 		switch (level) {
376 		case 0:
377 		case 1:
378 			break;
379 		case 2:
380 			max_size = SZ_32M;
381 			break;
382 		case 3:
383 			max_size = SZ_16K;
384 			break;
385 		}
386 		break;
387 	case TLBI_TTL_TG_64K:
388 		switch (level) {
389 		case 0:
390 		case 1:
391 			/* No 52bit IPA support */
392 			break;
393 		case 2:
394 			max_size = SZ_512M;
395 			break;
396 		case 3:
397 			max_size = SZ_64K;
398 			break;
399 		}
400 		break;
401 	default:			/* No size information */
402 		break;
403 	}
404 
405 	return max_size;
406 }
407 
408 /*
409  * Compute the equivalent of the TTL field by parsing the shadow PT.  The
410  * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
411  * retrieved from first entry carrying the level as a tag.
412  */
get_guest_mapping_ttl(struct kvm_s2_mmu * mmu,u64 addr)413 static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
414 {
415 	u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
416 	kvm_pte_t pte;
417 	u8 ttl, level;
418 
419 	lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
420 
421 	switch (vtcr & VTCR_EL2_TG0_MASK) {
422 	case VTCR_EL2_TG0_4K:
423 		ttl = (TLBI_TTL_TG_4K << 2);
424 		break;
425 	case VTCR_EL2_TG0_16K:
426 		ttl = (TLBI_TTL_TG_16K << 2);
427 		break;
428 	case VTCR_EL2_TG0_64K:
429 	default:	    /* IMPDEF: treat any other value as 64k */
430 		ttl = (TLBI_TTL_TG_64K << 2);
431 		break;
432 	}
433 
434 	tmp = addr;
435 
436 again:
437 	/* Iteratively compute the block sizes for a particular granule size */
438 	switch (vtcr & VTCR_EL2_TG0_MASK) {
439 	case VTCR_EL2_TG0_4K:
440 		if	(sz < SZ_4K)	sz = SZ_4K;
441 		else if (sz < SZ_2M)	sz = SZ_2M;
442 		else if (sz < SZ_1G)	sz = SZ_1G;
443 		else			sz = 0;
444 		break;
445 	case VTCR_EL2_TG0_16K:
446 		if	(sz < SZ_16K)	sz = SZ_16K;
447 		else if (sz < SZ_32M)	sz = SZ_32M;
448 		else			sz = 0;
449 		break;
450 	case VTCR_EL2_TG0_64K:
451 	default:	    /* IMPDEF: treat any other value as 64k */
452 		if	(sz < SZ_64K)	sz = SZ_64K;
453 		else if (sz < SZ_512M)	sz = SZ_512M;
454 		else			sz = 0;
455 		break;
456 	}
457 
458 	if (sz == 0)
459 		return 0;
460 
461 	tmp &= ~(sz - 1);
462 	if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
463 		goto again;
464 	if (!(pte & PTE_VALID))
465 		goto again;
466 	level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
467 	if (!level)
468 		goto again;
469 
470 	ttl |= level;
471 
472 	/*
473 	 * We now have found some level information in the shadow S2. Check
474 	 * that the resulting range is actually including the original IPA.
475 	 */
476 	sz = ttl_to_size(ttl);
477 	if (addr < (tmp + sz))
478 		return ttl;
479 
480 	return 0;
481 }
482 
compute_tlb_inval_range(struct kvm_s2_mmu * mmu,u64 val)483 unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
484 {
485 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
486 	unsigned long max_size;
487 	u8 ttl;
488 
489 	ttl = FIELD_GET(TLBI_TTL_MASK, val);
490 
491 	if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
492 		/* No TTL, check the shadow S2 for a hint */
493 		u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
494 		ttl = get_guest_mapping_ttl(mmu, addr);
495 	}
496 
497 	max_size = ttl_to_size(ttl);
498 
499 	if (!max_size) {
500 		/* Compute the maximum extent of the invalidation */
501 		switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
502 		case VTCR_EL2_TG0_4K:
503 			max_size = SZ_1G;
504 			break;
505 		case VTCR_EL2_TG0_16K:
506 			max_size = SZ_32M;
507 			break;
508 		case VTCR_EL2_TG0_64K:
509 		default:    /* IMPDEF: treat any other value as 64k */
510 			/*
511 			 * No, we do not support 52bit IPA in nested yet. Once
512 			 * we do, this should be 4TB.
513 			 */
514 			max_size = SZ_512M;
515 			break;
516 		}
517 	}
518 
519 	WARN_ON(!max_size);
520 	return max_size;
521 }
522 
523 /*
524  * We can have multiple *different* MMU contexts with the same VMID:
525  *
526  * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
527  *
528  * - Multiple vcpus using private S2s (huh huh...), hence differing by the
529  *   VBBTR_EL2.BADDR address
530  *
531  * - A combination of the above...
532  *
533  * We can always identify which MMU context to pick at run-time.  However,
534  * TLB invalidation involving a VMID must take action on all the TLBs using
535  * this particular VMID. This translates into applying the same invalidation
536  * operation to all the contexts that are using this VMID. Moar phun!
537  */
kvm_s2_mmu_iterate_by_vmid(struct kvm * kvm,u16 vmid,const union tlbi_info * info,void (* tlbi_callback)(struct kvm_s2_mmu *,const union tlbi_info *))538 void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
539 				const union tlbi_info *info,
540 				void (*tlbi_callback)(struct kvm_s2_mmu *,
541 						      const union tlbi_info *))
542 {
543 	write_lock(&kvm->mmu_lock);
544 
545 	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
546 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
547 
548 		if (!kvm_s2_mmu_valid(mmu))
549 			continue;
550 
551 		if (vmid == get_vmid(mmu->tlb_vttbr))
552 			tlbi_callback(mmu, info);
553 	}
554 
555 	write_unlock(&kvm->mmu_lock);
556 }
557 
lookup_s2_mmu(struct kvm_vcpu * vcpu)558 struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
559 {
560 	struct kvm *kvm = vcpu->kvm;
561 	bool nested_stage2_enabled;
562 	u64 vttbr, vtcr, hcr;
563 
564 	lockdep_assert_held_write(&kvm->mmu_lock);
565 
566 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
567 	vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
568 	hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
569 
570 	nested_stage2_enabled = hcr & HCR_VM;
571 
572 	/* Don't consider the CnP bit for the vttbr match */
573 	vttbr &= ~VTTBR_CNP_BIT;
574 
575 	/*
576 	 * Two possibilities when looking up a S2 MMU context:
577 	 *
578 	 * - either S2 is enabled in the guest, and we need a context that is
579 	 *   S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
580 	 *   which makes it safe from a TLB conflict perspective (a broken
581 	 *   guest won't be able to generate them),
582 	 *
583 	 * - or S2 is disabled, and we need a context that is S2-disabled
584 	 *   and matches the VMID only, as all TLBs are tagged by VMID even
585 	 *   if S2 translation is disabled.
586 	 */
587 	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
588 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
589 
590 		if (!kvm_s2_mmu_valid(mmu))
591 			continue;
592 
593 		if (nested_stage2_enabled &&
594 		    mmu->nested_stage2_enabled &&
595 		    vttbr == mmu->tlb_vttbr &&
596 		    vtcr == mmu->tlb_vtcr)
597 			return mmu;
598 
599 		if (!nested_stage2_enabled &&
600 		    !mmu->nested_stage2_enabled &&
601 		    get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
602 			return mmu;
603 	}
604 	return NULL;
605 }
606 
get_s2_mmu_nested(struct kvm_vcpu * vcpu)607 static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
608 {
609 	struct kvm *kvm = vcpu->kvm;
610 	struct kvm_s2_mmu *s2_mmu;
611 	int i;
612 
613 	lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
614 
615 	s2_mmu = lookup_s2_mmu(vcpu);
616 	if (s2_mmu)
617 		goto out;
618 
619 	/*
620 	 * Make sure we don't always search from the same point, or we
621 	 * will always reuse a potentially active context, leaving
622 	 * free contexts unused.
623 	 */
624 	for (i = kvm->arch.nested_mmus_next;
625 	     i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
626 	     i++) {
627 		s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
628 
629 		if (atomic_read(&s2_mmu->refcnt) == 0)
630 			break;
631 	}
632 	BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
633 
634 	/* Set the scene for the next search */
635 	kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
636 
637 	/* Make sure we don't forget to do the laundry */
638 	if (kvm_s2_mmu_valid(s2_mmu))
639 		s2_mmu->pending_unmap = true;
640 
641 	/*
642 	 * The virtual VMID (modulo CnP) will be used as a key when matching
643 	 * an existing kvm_s2_mmu.
644 	 *
645 	 * We cache VTCR at allocation time, once and for all. It'd be great
646 	 * if the guest didn't screw that one up, as this is not very
647 	 * forgiving...
648 	 */
649 	s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
650 	s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
651 	s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
652 
653 out:
654 	atomic_inc(&s2_mmu->refcnt);
655 
656 	/*
657 	 * Set the vCPU request to perform an unmap, even if the pending unmap
658 	 * originates from another vCPU. This guarantees that the MMU has been
659 	 * completely unmapped before any vCPU actually uses it, and allows
660 	 * multiple vCPUs to lend a hand with completing the unmap.
661 	 */
662 	if (s2_mmu->pending_unmap)
663 		kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu);
664 
665 	return s2_mmu;
666 }
667 
kvm_init_nested_s2_mmu(struct kvm_s2_mmu * mmu)668 void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
669 {
670 	/* CnP being set denotes an invalid entry */
671 	mmu->tlb_vttbr = VTTBR_CNP_BIT;
672 	mmu->nested_stage2_enabled = false;
673 	atomic_set(&mmu->refcnt, 0);
674 }
675 
kvm_vcpu_load_hw_mmu(struct kvm_vcpu * vcpu)676 void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
677 {
678 	/*
679 	 * The vCPU kept its reference on the MMU after the last put, keep
680 	 * rolling with it.
681 	 */
682 	if (vcpu->arch.hw_mmu)
683 		return;
684 
685 	if (is_hyp_ctxt(vcpu)) {
686 		vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
687 	} else {
688 		write_lock(&vcpu->kvm->mmu_lock);
689 		vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
690 		write_unlock(&vcpu->kvm->mmu_lock);
691 	}
692 }
693 
kvm_vcpu_put_hw_mmu(struct kvm_vcpu * vcpu)694 void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
695 {
696 	/*
697 	 * Keep a reference on the associated stage-2 MMU if the vCPU is
698 	 * scheduling out and not in WFI emulation, suggesting it is likely to
699 	 * reuse the MMU sometime soon.
700 	 */
701 	if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI))
702 		return;
703 
704 	if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu))
705 		atomic_dec(&vcpu->arch.hw_mmu->refcnt);
706 
707 	vcpu->arch.hw_mmu = NULL;
708 }
709 
710 /*
711  * Returns non-zero if permission fault is handled by injecting it to the next
712  * level hypervisor.
713  */
kvm_s2_handle_perm_fault(struct kvm_vcpu * vcpu,struct kvm_s2_trans * trans)714 int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
715 {
716 	bool forward_fault = false;
717 
718 	trans->esr = 0;
719 
720 	if (!kvm_vcpu_trap_is_permission_fault(vcpu))
721 		return 0;
722 
723 	if (kvm_vcpu_trap_is_iabt(vcpu)) {
724 		forward_fault = !kvm_s2_trans_executable(trans);
725 	} else {
726 		bool write_fault = kvm_is_write_fault(vcpu);
727 
728 		forward_fault = ((write_fault && !trans->writable) ||
729 				 (!write_fault && !trans->readable));
730 	}
731 
732 	if (forward_fault)
733 		trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
734 
735 	return forward_fault;
736 }
737 
kvm_inject_s2_fault(struct kvm_vcpu * vcpu,u64 esr_el2)738 int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
739 {
740 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
741 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
742 
743 	return kvm_inject_nested_sync(vcpu, esr_el2);
744 }
745 
kvm_nested_s2_wp(struct kvm * kvm)746 void kvm_nested_s2_wp(struct kvm *kvm)
747 {
748 	int i;
749 
750 	lockdep_assert_held_write(&kvm->mmu_lock);
751 
752 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
753 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
754 
755 		if (kvm_s2_mmu_valid(mmu))
756 			kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
757 	}
758 }
759 
kvm_nested_s2_unmap(struct kvm * kvm,bool may_block)760 void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block)
761 {
762 	int i;
763 
764 	lockdep_assert_held_write(&kvm->mmu_lock);
765 
766 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
767 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
768 
769 		if (kvm_s2_mmu_valid(mmu))
770 			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block);
771 	}
772 }
773 
kvm_nested_s2_flush(struct kvm * kvm)774 void kvm_nested_s2_flush(struct kvm *kvm)
775 {
776 	int i;
777 
778 	lockdep_assert_held_write(&kvm->mmu_lock);
779 
780 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
781 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
782 
783 		if (kvm_s2_mmu_valid(mmu))
784 			kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
785 	}
786 }
787 
kvm_arch_flush_shadow_all(struct kvm * kvm)788 void kvm_arch_flush_shadow_all(struct kvm *kvm)
789 {
790 	int i;
791 
792 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
793 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
794 
795 		if (!WARN_ON(atomic_read(&mmu->refcnt)))
796 			kvm_free_stage2_pgd(mmu);
797 	}
798 	kvfree(kvm->arch.nested_mmus);
799 	kvm->arch.nested_mmus = NULL;
800 	kvm->arch.nested_mmus_size = 0;
801 	kvm_uninit_stage2_mmu(kvm);
802 }
803 
804 /*
805  * Our emulated CPU doesn't support all the possible features. For the
806  * sake of simplicity (and probably mental sanity), wipe out a number
807  * of feature bits we don't intend to support for the time being.
808  * This list should get updated as new features get added to the NV
809  * support, and new extension to the architecture.
810  */
limit_nv_id_reg(struct kvm * kvm,u32 reg,u64 val)811 u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val)
812 {
813 	switch (reg) {
814 	case SYS_ID_AA64ISAR0_EL1:
815 		/* Support everything but TME */
816 		val &= ~ID_AA64ISAR0_EL1_TME;
817 		break;
818 
819 	case SYS_ID_AA64ISAR1_EL1:
820 		/* Support everything but LS64 and Spec Invalidation */
821 		val &= ~(ID_AA64ISAR1_EL1_LS64	|
822 			 ID_AA64ISAR1_EL1_SPECRES);
823 		break;
824 
825 	case SYS_ID_AA64PFR0_EL1:
826 		/* No RME, AMU, MPAM, S-EL2, or RAS */
827 		val &= ~(ID_AA64PFR0_EL1_RME	|
828 			 ID_AA64PFR0_EL1_AMU	|
829 			 ID_AA64PFR0_EL1_MPAM	|
830 			 ID_AA64PFR0_EL1_SEL2	|
831 			 ID_AA64PFR0_EL1_RAS	|
832 			 ID_AA64PFR0_EL1_EL3	|
833 			 ID_AA64PFR0_EL1_EL2	|
834 			 ID_AA64PFR0_EL1_EL1	|
835 			 ID_AA64PFR0_EL1_EL0);
836 		/* 64bit only at any EL */
837 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP);
838 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP);
839 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP);
840 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP);
841 		break;
842 
843 	case SYS_ID_AA64PFR1_EL1:
844 		/* Only support BTI, SSBS, CSV2_frac */
845 		val &= (ID_AA64PFR1_EL1_BT	|
846 			ID_AA64PFR1_EL1_SSBS	|
847 			ID_AA64PFR1_EL1_CSV2_frac);
848 		break;
849 
850 	case SYS_ID_AA64MMFR0_EL1:
851 		/* Hide ExS, Secure Memory */
852 		val &= ~(ID_AA64MMFR0_EL1_EXS		|
853 			 ID_AA64MMFR0_EL1_TGRAN4_2	|
854 			 ID_AA64MMFR0_EL1_TGRAN16_2	|
855 			 ID_AA64MMFR0_EL1_TGRAN64_2	|
856 			 ID_AA64MMFR0_EL1_SNSMEM);
857 
858 		/* Hide CNTPOFF if present */
859 		val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP);
860 
861 		/* Disallow unsupported S2 page sizes */
862 		switch (PAGE_SIZE) {
863 		case SZ_64K:
864 			val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI);
865 			fallthrough;
866 		case SZ_16K:
867 			val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI);
868 			fallthrough;
869 		case SZ_4K:
870 			/* Support everything */
871 			break;
872 		}
873 
874 		/*
875 		 * Since we can't support a guest S2 page size smaller
876 		 * than the host's own page size (due to KVM only
877 		 * populating its own S2 using the kernel's page
878 		 * size), advertise the limitation using FEAT_GTG.
879 		 */
880 		switch (PAGE_SIZE) {
881 		case SZ_4K:
882 			val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP);
883 			fallthrough;
884 		case SZ_16K:
885 			val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP);
886 			fallthrough;
887 		case SZ_64K:
888 			val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP);
889 			break;
890 		}
891 
892 		/* Cap PARange to 48bits */
893 		val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48);
894 		break;
895 
896 	case SYS_ID_AA64MMFR1_EL1:
897 		val &= (ID_AA64MMFR1_EL1_HCX	|
898 			ID_AA64MMFR1_EL1_PAN	|
899 			ID_AA64MMFR1_EL1_LO	|
900 			ID_AA64MMFR1_EL1_HPDS	|
901 			ID_AA64MMFR1_EL1_VH	|
902 			ID_AA64MMFR1_EL1_VMIDBits);
903 		/* FEAT_E2H0 implies no VHE */
904 		if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features))
905 			val &= ~ID_AA64MMFR1_EL1_VH;
906 		break;
907 
908 	case SYS_ID_AA64MMFR2_EL1:
909 		val &= ~(ID_AA64MMFR2_EL1_BBM	|
910 			 ID_AA64MMFR2_EL1_TTL	|
911 			 GENMASK_ULL(47, 44)	|
912 			 ID_AA64MMFR2_EL1_ST	|
913 			 ID_AA64MMFR2_EL1_CCIDX	|
914 			 ID_AA64MMFR2_EL1_VARange);
915 
916 		/* Force TTL support */
917 		val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP);
918 		break;
919 
920 	case SYS_ID_AA64MMFR4_EL1:
921 		/*
922 		 * You get EITHER
923 		 *
924 		 * - FEAT_VHE without FEAT_E2H0
925 		 * - FEAT_NV limited to FEAT_NV2
926 		 * - HCR_EL2.NV1 being RES0
927 		 *
928 		 * OR
929 		 *
930 		 * - FEAT_E2H0 without FEAT_VHE nor FEAT_NV
931 		 *
932 		 * Life is too short for anything else.
933 		 */
934 		if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) {
935 			val = 0;
936 		} else {
937 			val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY);
938 			val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1);
939 		}
940 		break;
941 
942 	case SYS_ID_AA64DFR0_EL1:
943 		/* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */
944 		val &= (ID_AA64DFR0_EL1_PMUVer	|
945 			ID_AA64DFR0_EL1_WRPs	|
946 			ID_AA64DFR0_EL1_BRPs	|
947 			ID_AA64DFR0_EL1_DebugVer|
948 			ID_AA64DFR0_EL1_HPMN0);
949 
950 		/* Cap Debug to ARMv8.1 */
951 		val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE);
952 		break;
953 	}
954 
955 	return val;
956 }
957 
kvm_vcpu_apply_reg_masks(const struct kvm_vcpu * vcpu,enum vcpu_sysreg sr,u64 v)958 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu,
959 			     enum vcpu_sysreg sr, u64 v)
960 {
961 	struct kvm_sysreg_masks *masks;
962 
963 	masks = vcpu->kvm->arch.sysreg_masks;
964 
965 	if (masks) {
966 		sr -= __SANITISED_REG_START__;
967 
968 		v &= ~masks->mask[sr].res0;
969 		v |= masks->mask[sr].res1;
970 	}
971 
972 	return v;
973 }
974 
set_sysreg_masks(struct kvm * kvm,int sr,u64 res0,u64 res1)975 static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
976 {
977 	int i = sr - __SANITISED_REG_START__;
978 
979 	BUILD_BUG_ON(!__builtin_constant_p(sr));
980 	BUILD_BUG_ON(sr < __SANITISED_REG_START__);
981 	BUILD_BUG_ON(sr >= NR_SYS_REGS);
982 
983 	kvm->arch.sysreg_masks->mask[i].res0 = res0;
984 	kvm->arch.sysreg_masks->mask[i].res1 = res1;
985 }
986 
kvm_init_nv_sysregs(struct kvm_vcpu * vcpu)987 int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu)
988 {
989 	struct kvm *kvm = vcpu->kvm;
990 	u64 res0, res1;
991 
992 	lockdep_assert_held(&kvm->arch.config_lock);
993 
994 	if (kvm->arch.sysreg_masks)
995 		goto out;
996 
997 	kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
998 					 GFP_KERNEL_ACCOUNT);
999 	if (!kvm->arch.sysreg_masks)
1000 		return -ENOMEM;
1001 
1002 	/* VTTBR_EL2 */
1003 	res0 = res1 = 0;
1004 	if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
1005 		res0 |= GENMASK(63, 56);
1006 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
1007 		res0 |= VTTBR_CNP_BIT;
1008 	set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
1009 
1010 	/* VTCR_EL2 */
1011 	res0 = GENMASK(63, 32) | GENMASK(30, 20);
1012 	res1 = BIT(31);
1013 	set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
1014 
1015 	/* VMPIDR_EL2 */
1016 	res0 = GENMASK(63, 40) | GENMASK(30, 24);
1017 	res1 = BIT(31);
1018 	set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
1019 
1020 	/* HCR_EL2 */
1021 	res0 = BIT(48);
1022 	res1 = HCR_RW;
1023 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
1024 		res0 |= GENMASK(63, 59);
1025 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
1026 		res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
1027 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
1028 		res0 |= (HCR_TTLBIS | HCR_TTLBOS);
1029 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1030 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1031 		res0 |= HCR_ENSCXT;
1032 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
1033 		res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
1034 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1035 		res0 |= HCR_AMVOFFEN;
1036 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
1037 		res0 |= HCR_FIEN;
1038 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
1039 		res0 |= HCR_FWB;
1040 	/* Implementation choice: NV2 is the only supported config */
1041 	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
1042 		res0 |= (HCR_NV2 | HCR_NV | HCR_AT);
1043 	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, NI))
1044 		res0 |= HCR_NV1;
1045 	if (!(kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1046 	      kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1047 		res0 |= (HCR_API | HCR_APK);
1048 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
1049 		res0 |= BIT(39);
1050 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1051 		res0 |= (HCR_TEA | HCR_TERR);
1052 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1053 		res0 |= HCR_TLOR;
1054 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
1055 		res0 |= HCR_E2H;
1056 	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
1057 		res1 |= HCR_E2H;
1058 	set_sysreg_masks(kvm, HCR_EL2, res0, res1);
1059 
1060 	/* HCRX_EL2 */
1061 	res0 = HCRX_EL2_RES0;
1062 	res1 = HCRX_EL2_RES1;
1063 	if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
1064 		res0 |= HCRX_EL2_PACMEn;
1065 	if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
1066 		res0 |= HCRX_EL2_EnFPM;
1067 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1068 		res0 |= HCRX_EL2_GCSEn;
1069 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
1070 		res0 |= HCRX_EL2_EnIDCP128;
1071 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
1072 		res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
1073 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
1074 		res0 |= HCRX_EL2_TMEA;
1075 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
1076 		res0 |= HCRX_EL2_D128En;
1077 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1078 		res0 |= HCRX_EL2_PTTWI;
1079 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
1080 		res0 |= HCRX_EL2_SCTLR2En;
1081 	if (!kvm_has_tcr2(kvm))
1082 		res0 |= HCRX_EL2_TCR2En;
1083 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
1084 		res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
1085 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
1086 		res0 |= HCRX_EL2_CMOW;
1087 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
1088 		res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
1089 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
1090 	    !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
1091 		res0 |= HCRX_EL2_SMPME;
1092 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
1093 		res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
1094 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
1095 		res0 |= HCRX_EL2_EnASR;
1096 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
1097 		res0 |= HCRX_EL2_EnALS;
1098 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1099 		res0 |= HCRX_EL2_EnAS0;
1100 	set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
1101 
1102 	/* HFG[RW]TR_EL2 */
1103 	res0 = res1 = 0;
1104 	if (!(kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1105 	      kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1106 		res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
1107 			 HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
1108 			 HFGxTR_EL2_APIBKey);
1109 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1110 		res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
1111 			 HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
1112 			 HFGxTR_EL2_LORSA_EL1);
1113 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1114 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1115 		res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
1116 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
1117 		res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
1118 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1119 		res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
1120 			 HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
1121 			 HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
1122 			 HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
1123 			 HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
1124 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1125 		res0 |= HFGxTR_EL2_nACCDATA_EL1;
1126 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1127 		res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
1128 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
1129 		res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
1130 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1131 		res0 |= HFGxTR_EL2_nRCWMASK_EL1;
1132 	if (!kvm_has_s1pie(kvm))
1133 		res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
1134 	if (!kvm_has_s1poe(kvm))
1135 		res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
1136 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
1137 		res0 |= HFGxTR_EL2_nS2POR_EL1;
1138 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
1139 		res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
1140 	set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
1141 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
1142 
1143 	/* HDFG[RW]TR_EL2 */
1144 	res0 = res1 = 0;
1145 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
1146 		res0 |= HDFGRTR_EL2_OSDLR_EL1;
1147 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1148 		res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
1149 			 HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
1150 			 HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
1151 			 HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
1152 			 HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
1153 			 HDFGRTR_EL2_PMCEIDn_EL0);
1154 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
1155 		res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
1156 			 HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
1157 			 HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
1158 			 HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
1159 			 HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
1160 			 HDFGRTR_EL2_PMBIDR_EL1);
1161 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1162 		res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
1163 			 HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
1164 			 HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
1165 			 HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
1166 			 HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
1167 			 HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
1168 			 HDFGRTR_EL2_TRCVICTLR);
1169 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
1170 		res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
1171 			 HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
1172 			 HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
1173 			 HDFGRTR_EL2_TRBTRG_EL1);
1174 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1175 		res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
1176 			 HDFGRTR_EL2_nBRBDATA);
1177 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
1178 		res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
1179 	set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
1180 
1181 	/* Reuse the bits from the read-side and add the write-specific stuff */
1182 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1183 		res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
1184 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1185 		res0 |= HDFGWTR_EL2_TRCOSLAR;
1186 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
1187 		res0 |= HDFGWTR_EL2_TRFCR_EL1;
1188 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
1189 
1190 	/* HFGITR_EL2 */
1191 	res0 = HFGITR_EL2_RES0;
1192 	res1 = HFGITR_EL2_RES1;
1193 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
1194 		res0 |= HFGITR_EL2_DCCVADP;
1195 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
1196 		res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
1197 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
1198 		res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1199 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
1200 			 HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
1201 			 HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
1202 			 HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
1203 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
1204 		res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
1205 			 HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
1206 			 HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
1207 			 HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
1208 			 HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1209 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
1210 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
1211 		res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
1212 			 HFGITR_EL2_CPPRCTX);
1213 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1214 		res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
1215 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1216 		res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
1217 			 HFGITR_EL2_nGCSEPP);
1218 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
1219 		res0 |= HFGITR_EL2_COSPRCTX;
1220 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
1221 		res0 |= HFGITR_EL2_ATS1E1A;
1222 	set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
1223 
1224 	/* HAFGRTR_EL2 - not a lot to see here */
1225 	res0 = HAFGRTR_EL2_RES0;
1226 	res1 = HAFGRTR_EL2_RES1;
1227 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1228 		res0 |= ~(res0 | res1);
1229 	set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
1230 
1231 	/* TCR2_EL2 */
1232 	res0 = TCR2_EL2_RES0;
1233 	res1 = TCR2_EL2_RES1;
1234 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
1235 		res0 |= (TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1 | TCR2_EL2_D128);
1236 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, MEC, IMP))
1237 		res0 |= TCR2_EL2_AMEC1 | TCR2_EL2_AMEC0;
1238 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, HAFDBS, HAFT))
1239 		res0 |= TCR2_EL2_HAFT;
1240 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1241 		res0 |= TCR2_EL2_PTTWI | TCR2_EL2_PnCH;
1242 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
1243 		res0 |= TCR2_EL2_AIE;
1244 	if (!kvm_has_s1poe(kvm))
1245 		res0 |= TCR2_EL2_POE | TCR2_EL2_E0POE;
1246 	if (!kvm_has_s1pie(kvm))
1247 		res0 |= TCR2_EL2_PIE;
1248 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
1249 		res0 |= (TCR2_EL2_E0POE | TCR2_EL2_D128 |
1250 			 TCR2_EL2_AMEC1 | TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1);
1251 	set_sysreg_masks(kvm, TCR2_EL2, res0, res1);
1252 
1253 	/* SCTLR_EL1 */
1254 	res0 = SCTLR_EL1_RES0;
1255 	res1 = SCTLR_EL1_RES1;
1256 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
1257 		res0 |= SCTLR_EL1_EPAN;
1258 	set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
1259 
1260 	/* MDCR_EL2 */
1261 	res0 = MDCR_EL2_RES0;
1262 	res1 = MDCR_EL2_RES1;
1263 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1264 		res0 |= (MDCR_EL2_HPMN | MDCR_EL2_TPMCR |
1265 			 MDCR_EL2_TPM | MDCR_EL2_HPME);
1266 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
1267 		res0 |= MDCR_EL2_E2PB | MDCR_EL2_TPMS;
1268 	if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, SPMU, IMP))
1269 		res0 |= MDCR_EL2_EnSPM;
1270 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P1))
1271 		res0 |= MDCR_EL2_HPMD;
1272 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
1273 		res0 |= MDCR_EL2_TTRF;
1274 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
1275 		res0 |= MDCR_EL2_HCCD | MDCR_EL2_HLP;
1276 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
1277 		res0 |= MDCR_EL2_E2TB;
1278 	if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, FGT, IMP))
1279 		res0 |= MDCR_EL2_TDCC;
1280 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, MTPMU, IMP) ||
1281 	    kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
1282 		res0 |= MDCR_EL2_MTPME;
1283 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P7))
1284 		res0 |= MDCR_EL2_HPMFZO;
1285 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSS, IMP))
1286 		res0 |= MDCR_EL2_PMSSE;
1287 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
1288 		res0 |= MDCR_EL2_HPMFZS;
1289 	if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, EBEP, IMP))
1290 		res0 |= MDCR_EL2_PMEE;
1291 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DebugVer, V8P9))
1292 		res0 |= MDCR_EL2_EBWE;
1293 	if (!kvm_has_feat(kvm, ID_AA64DFR2_EL1, STEP, IMP))
1294 		res0 |= MDCR_EL2_EnSTEPOP;
1295 	set_sysreg_masks(kvm, MDCR_EL2, res0, res1);
1296 
1297 	/* CNTHCTL_EL2 */
1298 	res0 = GENMASK(63, 20);
1299 	res1 = 0;
1300 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP))
1301 		res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK;
1302 	if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) {
1303 		res0 |= CNTHCTL_ECV;
1304 		if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP))
1305 			res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT |
1306 				 CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT);
1307 	}
1308 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
1309 		res0 |= GENMASK(11, 8);
1310 	set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1);
1311 
1312 	/* ICH_HCR_EL2 */
1313 	res0 = ICH_HCR_EL2_RES0;
1314 	res1 = ICH_HCR_EL2_RES1;
1315 	if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS))
1316 		res0 |= ICH_HCR_EL2_TDIR;
1317 	/* No GICv4 is presented to the guest */
1318 	res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount;
1319 	set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1);
1320 
1321 out:
1322 	for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++)
1323 		(void)__vcpu_sys_reg(vcpu, sr);
1324 
1325 	return 0;
1326 }
1327 
check_nested_vcpu_requests(struct kvm_vcpu * vcpu)1328 void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
1329 {
1330 	if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) {
1331 		struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1332 
1333 		write_lock(&vcpu->kvm->mmu_lock);
1334 		if (mmu->pending_unmap) {
1335 			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true);
1336 			mmu->pending_unmap = false;
1337 		}
1338 		write_unlock(&vcpu->kvm->mmu_lock);
1339 	}
1340 
1341 	/* Must be last, as may switch context! */
1342 	if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu))
1343 		kvm_inject_nested_irq(vcpu);
1344 }
1345