1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2017 - Columbia University and Linaro Ltd.
4 * Author: Jintack Lim <jintack.lim@linaro.org>
5 */
6
7 #include <linux/bitfield.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10
11 #include <asm/kvm_arm.h>
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/kvm_nested.h>
15 #include <asm/sysreg.h>
16
17 #include "sys_regs.h"
18
19 /*
20 * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
21 * memory usage and potential number of different sets of S2 PTs in
22 * the guests. Running out of S2 MMUs only affects performance (we
23 * will invalidate them more often).
24 */
25 #define S2_MMU_PER_VCPU 2
26
kvm_init_nested(struct kvm * kvm)27 void kvm_init_nested(struct kvm *kvm)
28 {
29 kvm->arch.nested_mmus = NULL;
30 kvm->arch.nested_mmus_size = 0;
31 }
32
init_nested_s2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)33 static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
34 {
35 /*
36 * We only initialise the IPA range on the canonical MMU, which
37 * defines the contract between KVM and userspace on where the
38 * "hardware" is in the IPA space. This affects the validity of MMIO
39 * exits forwarded to userspace, for example.
40 *
41 * For nested S2s, we use the PARange as exposed to the guest, as it
42 * is allowed to use it at will to expose whatever memory map it
43 * wants to its own guests as it would be on real HW.
44 */
45 return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
46 }
47
kvm_vcpu_init_nested(struct kvm_vcpu * vcpu)48 int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
49 {
50 struct kvm *kvm = vcpu->kvm;
51 struct kvm_s2_mmu *tmp;
52 int num_mmus, ret = 0;
53
54 if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) &&
55 !cpus_have_final_cap(ARM64_HAS_HCR_NV1))
56 return -EINVAL;
57
58 /*
59 * Let's treat memory allocation failures as benign: If we fail to
60 * allocate anything, return an error and keep the allocated array
61 * alive. Userspace may try to recover by intializing the vcpu
62 * again, and there is no reason to affect the whole VM for this.
63 */
64 num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
65 tmp = kvrealloc(kvm->arch.nested_mmus,
66 size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
67 GFP_KERNEL_ACCOUNT | __GFP_ZERO);
68 if (!tmp)
69 return -ENOMEM;
70
71 swap(kvm->arch.nested_mmus, tmp);
72
73 /*
74 * If we went through a realocation, adjust the MMU back-pointers in
75 * the previously initialised kvm_pgtable structures.
76 */
77 if (kvm->arch.nested_mmus != tmp)
78 for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
79 kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i];
80
81 for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
82 ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]);
83
84 if (ret) {
85 for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
86 kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]);
87
88 return ret;
89 }
90
91 kvm->arch.nested_mmus_size = num_mmus;
92
93 return 0;
94 }
95
96 struct s2_walk_info {
97 int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
98 void *data;
99 u64 baddr;
100 unsigned int max_oa_bits;
101 unsigned int pgshift;
102 unsigned int sl;
103 unsigned int t0sz;
104 bool be;
105 };
106
compute_fsc(int level,u32 fsc)107 static u32 compute_fsc(int level, u32 fsc)
108 {
109 return fsc | (level & 0x3);
110 }
111
esr_s2_fault(struct kvm_vcpu * vcpu,int level,u32 fsc)112 static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
113 {
114 u32 esr;
115
116 esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
117 esr |= compute_fsc(level, fsc);
118 return esr;
119 }
120
get_ia_size(struct s2_walk_info * wi)121 static int get_ia_size(struct s2_walk_info *wi)
122 {
123 return 64 - wi->t0sz;
124 }
125
check_base_s2_limits(struct s2_walk_info * wi,int level,int input_size,int stride)126 static int check_base_s2_limits(struct s2_walk_info *wi,
127 int level, int input_size, int stride)
128 {
129 int start_size, ia_size;
130
131 ia_size = get_ia_size(wi);
132
133 /* Check translation limits */
134 switch (BIT(wi->pgshift)) {
135 case SZ_64K:
136 if (level == 0 || (level == 1 && ia_size <= 42))
137 return -EFAULT;
138 break;
139 case SZ_16K:
140 if (level == 0 || (level == 1 && ia_size <= 40))
141 return -EFAULT;
142 break;
143 case SZ_4K:
144 if (level < 0 || (level == 0 && ia_size <= 42))
145 return -EFAULT;
146 break;
147 }
148
149 /* Check input size limits */
150 if (input_size > ia_size)
151 return -EFAULT;
152
153 /* Check number of entries in starting level table */
154 start_size = input_size - ((3 - level) * stride + wi->pgshift);
155 if (start_size < 1 || start_size > stride + 4)
156 return -EFAULT;
157
158 return 0;
159 }
160
161 /* Check if output is within boundaries */
check_output_size(struct s2_walk_info * wi,phys_addr_t output)162 static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
163 {
164 unsigned int output_size = wi->max_oa_bits;
165
166 if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
167 return -1;
168
169 return 0;
170 }
171
172 /*
173 * This is essentially a C-version of the pseudo code from the ARM ARM
174 * AArch64.TranslationTableWalk function. I strongly recommend looking at
175 * that pseudocode in trying to understand this.
176 *
177 * Must be called with the kvm->srcu read lock held
178 */
walk_nested_s2_pgd(phys_addr_t ipa,struct s2_walk_info * wi,struct kvm_s2_trans * out)179 static int walk_nested_s2_pgd(phys_addr_t ipa,
180 struct s2_walk_info *wi, struct kvm_s2_trans *out)
181 {
182 int first_block_level, level, stride, input_size, base_lower_bound;
183 phys_addr_t base_addr;
184 unsigned int addr_top, addr_bottom;
185 u64 desc; /* page table entry */
186 int ret;
187 phys_addr_t paddr;
188
189 switch (BIT(wi->pgshift)) {
190 default:
191 case SZ_64K:
192 case SZ_16K:
193 level = 3 - wi->sl;
194 first_block_level = 2;
195 break;
196 case SZ_4K:
197 level = 2 - wi->sl;
198 first_block_level = 1;
199 break;
200 }
201
202 stride = wi->pgshift - 3;
203 input_size = get_ia_size(wi);
204 if (input_size > 48 || input_size < 25)
205 return -EFAULT;
206
207 ret = check_base_s2_limits(wi, level, input_size, stride);
208 if (WARN_ON(ret))
209 return ret;
210
211 base_lower_bound = 3 + input_size - ((3 - level) * stride +
212 wi->pgshift);
213 base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
214
215 if (check_output_size(wi, base_addr)) {
216 out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
217 return 1;
218 }
219
220 addr_top = input_size - 1;
221
222 while (1) {
223 phys_addr_t index;
224
225 addr_bottom = (3 - level) * stride + wi->pgshift;
226 index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
227 >> (addr_bottom - 3);
228
229 paddr = base_addr | index;
230 ret = wi->read_desc(paddr, &desc, wi->data);
231 if (ret < 0)
232 return ret;
233
234 /*
235 * Handle reversedescriptors if endianness differs between the
236 * host and the guest hypervisor.
237 */
238 if (wi->be)
239 desc = be64_to_cpu((__force __be64)desc);
240 else
241 desc = le64_to_cpu((__force __le64)desc);
242
243 /* Check for valid descriptor at this point */
244 if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
245 out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
246 out->desc = desc;
247 return 1;
248 }
249
250 /* We're at the final level or block translation level */
251 if ((desc & 3) == 1 || level == 3)
252 break;
253
254 if (check_output_size(wi, desc)) {
255 out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
256 out->desc = desc;
257 return 1;
258 }
259
260 base_addr = desc & GENMASK_ULL(47, wi->pgshift);
261
262 level += 1;
263 addr_top = addr_bottom - 1;
264 }
265
266 if (level < first_block_level) {
267 out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
268 out->desc = desc;
269 return 1;
270 }
271
272 if (check_output_size(wi, desc)) {
273 out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
274 out->desc = desc;
275 return 1;
276 }
277
278 if (!(desc & BIT(10))) {
279 out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
280 out->desc = desc;
281 return 1;
282 }
283
284 addr_bottom += contiguous_bit_shift(desc, wi, level);
285
286 /* Calculate and return the result */
287 paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
288 (ipa & GENMASK_ULL(addr_bottom - 1, 0));
289 out->output = paddr;
290 out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
291 out->readable = desc & (0b01 << 6);
292 out->writable = desc & (0b10 << 6);
293 out->level = level;
294 out->desc = desc;
295 return 0;
296 }
297
read_guest_s2_desc(phys_addr_t pa,u64 * desc,void * data)298 static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
299 {
300 struct kvm_vcpu *vcpu = data;
301
302 return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
303 }
304
vtcr_to_walk_info(u64 vtcr,struct s2_walk_info * wi)305 static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
306 {
307 wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
308
309 switch (vtcr & VTCR_EL2_TG0_MASK) {
310 case VTCR_EL2_TG0_4K:
311 wi->pgshift = 12; break;
312 case VTCR_EL2_TG0_16K:
313 wi->pgshift = 14; break;
314 case VTCR_EL2_TG0_64K:
315 default: /* IMPDEF: treat any other value as 64k */
316 wi->pgshift = 16; break;
317 }
318
319 wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
320 /* Global limit for now, should eventually be per-VM */
321 wi->max_oa_bits = min(get_kvm_ipa_limit(),
322 ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
323 }
324
kvm_walk_nested_s2(struct kvm_vcpu * vcpu,phys_addr_t gipa,struct kvm_s2_trans * result)325 int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
326 struct kvm_s2_trans *result)
327 {
328 u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
329 struct s2_walk_info wi;
330 int ret;
331
332 result->esr = 0;
333
334 if (!vcpu_has_nv(vcpu))
335 return 0;
336
337 wi.read_desc = read_guest_s2_desc;
338 wi.data = vcpu;
339 wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
340
341 vtcr_to_walk_info(vtcr, &wi);
342
343 wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
344
345 ret = walk_nested_s2_pgd(gipa, &wi, result);
346 if (ret)
347 result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
348
349 return ret;
350 }
351
ttl_to_size(u8 ttl)352 static unsigned int ttl_to_size(u8 ttl)
353 {
354 int level = ttl & 3;
355 int gran = (ttl >> 2) & 3;
356 unsigned int max_size = 0;
357
358 switch (gran) {
359 case TLBI_TTL_TG_4K:
360 switch (level) {
361 case 0:
362 break;
363 case 1:
364 max_size = SZ_1G;
365 break;
366 case 2:
367 max_size = SZ_2M;
368 break;
369 case 3:
370 max_size = SZ_4K;
371 break;
372 }
373 break;
374 case TLBI_TTL_TG_16K:
375 switch (level) {
376 case 0:
377 case 1:
378 break;
379 case 2:
380 max_size = SZ_32M;
381 break;
382 case 3:
383 max_size = SZ_16K;
384 break;
385 }
386 break;
387 case TLBI_TTL_TG_64K:
388 switch (level) {
389 case 0:
390 case 1:
391 /* No 52bit IPA support */
392 break;
393 case 2:
394 max_size = SZ_512M;
395 break;
396 case 3:
397 max_size = SZ_64K;
398 break;
399 }
400 break;
401 default: /* No size information */
402 break;
403 }
404
405 return max_size;
406 }
407
408 /*
409 * Compute the equivalent of the TTL field by parsing the shadow PT. The
410 * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
411 * retrieved from first entry carrying the level as a tag.
412 */
get_guest_mapping_ttl(struct kvm_s2_mmu * mmu,u64 addr)413 static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
414 {
415 u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
416 kvm_pte_t pte;
417 u8 ttl, level;
418
419 lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
420
421 switch (vtcr & VTCR_EL2_TG0_MASK) {
422 case VTCR_EL2_TG0_4K:
423 ttl = (TLBI_TTL_TG_4K << 2);
424 break;
425 case VTCR_EL2_TG0_16K:
426 ttl = (TLBI_TTL_TG_16K << 2);
427 break;
428 case VTCR_EL2_TG0_64K:
429 default: /* IMPDEF: treat any other value as 64k */
430 ttl = (TLBI_TTL_TG_64K << 2);
431 break;
432 }
433
434 tmp = addr;
435
436 again:
437 /* Iteratively compute the block sizes for a particular granule size */
438 switch (vtcr & VTCR_EL2_TG0_MASK) {
439 case VTCR_EL2_TG0_4K:
440 if (sz < SZ_4K) sz = SZ_4K;
441 else if (sz < SZ_2M) sz = SZ_2M;
442 else if (sz < SZ_1G) sz = SZ_1G;
443 else sz = 0;
444 break;
445 case VTCR_EL2_TG0_16K:
446 if (sz < SZ_16K) sz = SZ_16K;
447 else if (sz < SZ_32M) sz = SZ_32M;
448 else sz = 0;
449 break;
450 case VTCR_EL2_TG0_64K:
451 default: /* IMPDEF: treat any other value as 64k */
452 if (sz < SZ_64K) sz = SZ_64K;
453 else if (sz < SZ_512M) sz = SZ_512M;
454 else sz = 0;
455 break;
456 }
457
458 if (sz == 0)
459 return 0;
460
461 tmp &= ~(sz - 1);
462 if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
463 goto again;
464 if (!(pte & PTE_VALID))
465 goto again;
466 level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
467 if (!level)
468 goto again;
469
470 ttl |= level;
471
472 /*
473 * We now have found some level information in the shadow S2. Check
474 * that the resulting range is actually including the original IPA.
475 */
476 sz = ttl_to_size(ttl);
477 if (addr < (tmp + sz))
478 return ttl;
479
480 return 0;
481 }
482
compute_tlb_inval_range(struct kvm_s2_mmu * mmu,u64 val)483 unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
484 {
485 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
486 unsigned long max_size;
487 u8 ttl;
488
489 ttl = FIELD_GET(TLBI_TTL_MASK, val);
490
491 if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
492 /* No TTL, check the shadow S2 for a hint */
493 u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
494 ttl = get_guest_mapping_ttl(mmu, addr);
495 }
496
497 max_size = ttl_to_size(ttl);
498
499 if (!max_size) {
500 /* Compute the maximum extent of the invalidation */
501 switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
502 case VTCR_EL2_TG0_4K:
503 max_size = SZ_1G;
504 break;
505 case VTCR_EL2_TG0_16K:
506 max_size = SZ_32M;
507 break;
508 case VTCR_EL2_TG0_64K:
509 default: /* IMPDEF: treat any other value as 64k */
510 /*
511 * No, we do not support 52bit IPA in nested yet. Once
512 * we do, this should be 4TB.
513 */
514 max_size = SZ_512M;
515 break;
516 }
517 }
518
519 WARN_ON(!max_size);
520 return max_size;
521 }
522
523 /*
524 * We can have multiple *different* MMU contexts with the same VMID:
525 *
526 * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
527 *
528 * - Multiple vcpus using private S2s (huh huh...), hence differing by the
529 * VBBTR_EL2.BADDR address
530 *
531 * - A combination of the above...
532 *
533 * We can always identify which MMU context to pick at run-time. However,
534 * TLB invalidation involving a VMID must take action on all the TLBs using
535 * this particular VMID. This translates into applying the same invalidation
536 * operation to all the contexts that are using this VMID. Moar phun!
537 */
kvm_s2_mmu_iterate_by_vmid(struct kvm * kvm,u16 vmid,const union tlbi_info * info,void (* tlbi_callback)(struct kvm_s2_mmu *,const union tlbi_info *))538 void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
539 const union tlbi_info *info,
540 void (*tlbi_callback)(struct kvm_s2_mmu *,
541 const union tlbi_info *))
542 {
543 write_lock(&kvm->mmu_lock);
544
545 for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
546 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
547
548 if (!kvm_s2_mmu_valid(mmu))
549 continue;
550
551 if (vmid == get_vmid(mmu->tlb_vttbr))
552 tlbi_callback(mmu, info);
553 }
554
555 write_unlock(&kvm->mmu_lock);
556 }
557
lookup_s2_mmu(struct kvm_vcpu * vcpu)558 struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
559 {
560 struct kvm *kvm = vcpu->kvm;
561 bool nested_stage2_enabled;
562 u64 vttbr, vtcr, hcr;
563
564 lockdep_assert_held_write(&kvm->mmu_lock);
565
566 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
567 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
568 hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
569
570 nested_stage2_enabled = hcr & HCR_VM;
571
572 /* Don't consider the CnP bit for the vttbr match */
573 vttbr &= ~VTTBR_CNP_BIT;
574
575 /*
576 * Two possibilities when looking up a S2 MMU context:
577 *
578 * - either S2 is enabled in the guest, and we need a context that is
579 * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
580 * which makes it safe from a TLB conflict perspective (a broken
581 * guest won't be able to generate them),
582 *
583 * - or S2 is disabled, and we need a context that is S2-disabled
584 * and matches the VMID only, as all TLBs are tagged by VMID even
585 * if S2 translation is disabled.
586 */
587 for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
588 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
589
590 if (!kvm_s2_mmu_valid(mmu))
591 continue;
592
593 if (nested_stage2_enabled &&
594 mmu->nested_stage2_enabled &&
595 vttbr == mmu->tlb_vttbr &&
596 vtcr == mmu->tlb_vtcr)
597 return mmu;
598
599 if (!nested_stage2_enabled &&
600 !mmu->nested_stage2_enabled &&
601 get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
602 return mmu;
603 }
604 return NULL;
605 }
606
get_s2_mmu_nested(struct kvm_vcpu * vcpu)607 static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
608 {
609 struct kvm *kvm = vcpu->kvm;
610 struct kvm_s2_mmu *s2_mmu;
611 int i;
612
613 lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
614
615 s2_mmu = lookup_s2_mmu(vcpu);
616 if (s2_mmu)
617 goto out;
618
619 /*
620 * Make sure we don't always search from the same point, or we
621 * will always reuse a potentially active context, leaving
622 * free contexts unused.
623 */
624 for (i = kvm->arch.nested_mmus_next;
625 i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
626 i++) {
627 s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
628
629 if (atomic_read(&s2_mmu->refcnt) == 0)
630 break;
631 }
632 BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
633
634 /* Set the scene for the next search */
635 kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
636
637 /* Make sure we don't forget to do the laundry */
638 if (kvm_s2_mmu_valid(s2_mmu))
639 s2_mmu->pending_unmap = true;
640
641 /*
642 * The virtual VMID (modulo CnP) will be used as a key when matching
643 * an existing kvm_s2_mmu.
644 *
645 * We cache VTCR at allocation time, once and for all. It'd be great
646 * if the guest didn't screw that one up, as this is not very
647 * forgiving...
648 */
649 s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
650 s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
651 s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
652
653 out:
654 atomic_inc(&s2_mmu->refcnt);
655
656 /*
657 * Set the vCPU request to perform an unmap, even if the pending unmap
658 * originates from another vCPU. This guarantees that the MMU has been
659 * completely unmapped before any vCPU actually uses it, and allows
660 * multiple vCPUs to lend a hand with completing the unmap.
661 */
662 if (s2_mmu->pending_unmap)
663 kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu);
664
665 return s2_mmu;
666 }
667
kvm_init_nested_s2_mmu(struct kvm_s2_mmu * mmu)668 void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
669 {
670 /* CnP being set denotes an invalid entry */
671 mmu->tlb_vttbr = VTTBR_CNP_BIT;
672 mmu->nested_stage2_enabled = false;
673 atomic_set(&mmu->refcnt, 0);
674 }
675
kvm_vcpu_load_hw_mmu(struct kvm_vcpu * vcpu)676 void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
677 {
678 /*
679 * The vCPU kept its reference on the MMU after the last put, keep
680 * rolling with it.
681 */
682 if (vcpu->arch.hw_mmu)
683 return;
684
685 if (is_hyp_ctxt(vcpu)) {
686 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
687 } else {
688 write_lock(&vcpu->kvm->mmu_lock);
689 vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
690 write_unlock(&vcpu->kvm->mmu_lock);
691 }
692 }
693
kvm_vcpu_put_hw_mmu(struct kvm_vcpu * vcpu)694 void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
695 {
696 /*
697 * Keep a reference on the associated stage-2 MMU if the vCPU is
698 * scheduling out and not in WFI emulation, suggesting it is likely to
699 * reuse the MMU sometime soon.
700 */
701 if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI))
702 return;
703
704 if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu))
705 atomic_dec(&vcpu->arch.hw_mmu->refcnt);
706
707 vcpu->arch.hw_mmu = NULL;
708 }
709
710 /*
711 * Returns non-zero if permission fault is handled by injecting it to the next
712 * level hypervisor.
713 */
kvm_s2_handle_perm_fault(struct kvm_vcpu * vcpu,struct kvm_s2_trans * trans)714 int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
715 {
716 bool forward_fault = false;
717
718 trans->esr = 0;
719
720 if (!kvm_vcpu_trap_is_permission_fault(vcpu))
721 return 0;
722
723 if (kvm_vcpu_trap_is_iabt(vcpu)) {
724 forward_fault = !kvm_s2_trans_executable(trans);
725 } else {
726 bool write_fault = kvm_is_write_fault(vcpu);
727
728 forward_fault = ((write_fault && !trans->writable) ||
729 (!write_fault && !trans->readable));
730 }
731
732 if (forward_fault)
733 trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
734
735 return forward_fault;
736 }
737
kvm_inject_s2_fault(struct kvm_vcpu * vcpu,u64 esr_el2)738 int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
739 {
740 vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
741 vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
742
743 return kvm_inject_nested_sync(vcpu, esr_el2);
744 }
745
kvm_nested_s2_wp(struct kvm * kvm)746 void kvm_nested_s2_wp(struct kvm *kvm)
747 {
748 int i;
749
750 lockdep_assert_held_write(&kvm->mmu_lock);
751
752 for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
753 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
754
755 if (kvm_s2_mmu_valid(mmu))
756 kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
757 }
758 }
759
kvm_nested_s2_unmap(struct kvm * kvm,bool may_block)760 void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block)
761 {
762 int i;
763
764 lockdep_assert_held_write(&kvm->mmu_lock);
765
766 for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
767 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
768
769 if (kvm_s2_mmu_valid(mmu))
770 kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block);
771 }
772 }
773
kvm_nested_s2_flush(struct kvm * kvm)774 void kvm_nested_s2_flush(struct kvm *kvm)
775 {
776 int i;
777
778 lockdep_assert_held_write(&kvm->mmu_lock);
779
780 for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
781 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
782
783 if (kvm_s2_mmu_valid(mmu))
784 kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
785 }
786 }
787
kvm_arch_flush_shadow_all(struct kvm * kvm)788 void kvm_arch_flush_shadow_all(struct kvm *kvm)
789 {
790 int i;
791
792 for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
793 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
794
795 if (!WARN_ON(atomic_read(&mmu->refcnt)))
796 kvm_free_stage2_pgd(mmu);
797 }
798 kvfree(kvm->arch.nested_mmus);
799 kvm->arch.nested_mmus = NULL;
800 kvm->arch.nested_mmus_size = 0;
801 kvm_uninit_stage2_mmu(kvm);
802 }
803
804 /*
805 * Our emulated CPU doesn't support all the possible features. For the
806 * sake of simplicity (and probably mental sanity), wipe out a number
807 * of feature bits we don't intend to support for the time being.
808 * This list should get updated as new features get added to the NV
809 * support, and new extension to the architecture.
810 */
limit_nv_id_reg(struct kvm * kvm,u32 reg,u64 val)811 u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val)
812 {
813 switch (reg) {
814 case SYS_ID_AA64ISAR0_EL1:
815 /* Support everything but TME */
816 val &= ~ID_AA64ISAR0_EL1_TME;
817 break;
818
819 case SYS_ID_AA64ISAR1_EL1:
820 /* Support everything but LS64 and Spec Invalidation */
821 val &= ~(ID_AA64ISAR1_EL1_LS64 |
822 ID_AA64ISAR1_EL1_SPECRES);
823 break;
824
825 case SYS_ID_AA64PFR0_EL1:
826 /* No RME, AMU, MPAM, S-EL2, or RAS */
827 val &= ~(ID_AA64PFR0_EL1_RME |
828 ID_AA64PFR0_EL1_AMU |
829 ID_AA64PFR0_EL1_MPAM |
830 ID_AA64PFR0_EL1_SEL2 |
831 ID_AA64PFR0_EL1_RAS |
832 ID_AA64PFR0_EL1_EL3 |
833 ID_AA64PFR0_EL1_EL2 |
834 ID_AA64PFR0_EL1_EL1 |
835 ID_AA64PFR0_EL1_EL0);
836 /* 64bit only at any EL */
837 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP);
838 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP);
839 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP);
840 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP);
841 break;
842
843 case SYS_ID_AA64PFR1_EL1:
844 /* Only support BTI, SSBS, CSV2_frac */
845 val &= (ID_AA64PFR1_EL1_BT |
846 ID_AA64PFR1_EL1_SSBS |
847 ID_AA64PFR1_EL1_CSV2_frac);
848 break;
849
850 case SYS_ID_AA64MMFR0_EL1:
851 /* Hide ExS, Secure Memory */
852 val &= ~(ID_AA64MMFR0_EL1_EXS |
853 ID_AA64MMFR0_EL1_TGRAN4_2 |
854 ID_AA64MMFR0_EL1_TGRAN16_2 |
855 ID_AA64MMFR0_EL1_TGRAN64_2 |
856 ID_AA64MMFR0_EL1_SNSMEM);
857
858 /* Hide CNTPOFF if present */
859 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP);
860
861 /* Disallow unsupported S2 page sizes */
862 switch (PAGE_SIZE) {
863 case SZ_64K:
864 val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI);
865 fallthrough;
866 case SZ_16K:
867 val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI);
868 fallthrough;
869 case SZ_4K:
870 /* Support everything */
871 break;
872 }
873
874 /*
875 * Since we can't support a guest S2 page size smaller
876 * than the host's own page size (due to KVM only
877 * populating its own S2 using the kernel's page
878 * size), advertise the limitation using FEAT_GTG.
879 */
880 switch (PAGE_SIZE) {
881 case SZ_4K:
882 val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP);
883 fallthrough;
884 case SZ_16K:
885 val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP);
886 fallthrough;
887 case SZ_64K:
888 val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP);
889 break;
890 }
891
892 /* Cap PARange to 48bits */
893 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48);
894 break;
895
896 case SYS_ID_AA64MMFR1_EL1:
897 val &= (ID_AA64MMFR1_EL1_HCX |
898 ID_AA64MMFR1_EL1_PAN |
899 ID_AA64MMFR1_EL1_LO |
900 ID_AA64MMFR1_EL1_HPDS |
901 ID_AA64MMFR1_EL1_VH |
902 ID_AA64MMFR1_EL1_VMIDBits);
903 /* FEAT_E2H0 implies no VHE */
904 if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features))
905 val &= ~ID_AA64MMFR1_EL1_VH;
906 break;
907
908 case SYS_ID_AA64MMFR2_EL1:
909 val &= ~(ID_AA64MMFR2_EL1_BBM |
910 ID_AA64MMFR2_EL1_TTL |
911 GENMASK_ULL(47, 44) |
912 ID_AA64MMFR2_EL1_ST |
913 ID_AA64MMFR2_EL1_CCIDX |
914 ID_AA64MMFR2_EL1_VARange);
915
916 /* Force TTL support */
917 val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP);
918 break;
919
920 case SYS_ID_AA64MMFR4_EL1:
921 /*
922 * You get EITHER
923 *
924 * - FEAT_VHE without FEAT_E2H0
925 * - FEAT_NV limited to FEAT_NV2
926 * - HCR_EL2.NV1 being RES0
927 *
928 * OR
929 *
930 * - FEAT_E2H0 without FEAT_VHE nor FEAT_NV
931 *
932 * Life is too short for anything else.
933 */
934 if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) {
935 val = 0;
936 } else {
937 val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY);
938 val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1);
939 }
940 break;
941
942 case SYS_ID_AA64DFR0_EL1:
943 /* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */
944 val &= (ID_AA64DFR0_EL1_PMUVer |
945 ID_AA64DFR0_EL1_WRPs |
946 ID_AA64DFR0_EL1_BRPs |
947 ID_AA64DFR0_EL1_DebugVer|
948 ID_AA64DFR0_EL1_HPMN0);
949
950 /* Cap Debug to ARMv8.1 */
951 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE);
952 break;
953 }
954
955 return val;
956 }
957
kvm_vcpu_apply_reg_masks(const struct kvm_vcpu * vcpu,enum vcpu_sysreg sr,u64 v)958 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu,
959 enum vcpu_sysreg sr, u64 v)
960 {
961 struct kvm_sysreg_masks *masks;
962
963 masks = vcpu->kvm->arch.sysreg_masks;
964
965 if (masks) {
966 sr -= __SANITISED_REG_START__;
967
968 v &= ~masks->mask[sr].res0;
969 v |= masks->mask[sr].res1;
970 }
971
972 return v;
973 }
974
set_sysreg_masks(struct kvm * kvm,int sr,u64 res0,u64 res1)975 static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
976 {
977 int i = sr - __SANITISED_REG_START__;
978
979 BUILD_BUG_ON(!__builtin_constant_p(sr));
980 BUILD_BUG_ON(sr < __SANITISED_REG_START__);
981 BUILD_BUG_ON(sr >= NR_SYS_REGS);
982
983 kvm->arch.sysreg_masks->mask[i].res0 = res0;
984 kvm->arch.sysreg_masks->mask[i].res1 = res1;
985 }
986
kvm_init_nv_sysregs(struct kvm_vcpu * vcpu)987 int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu)
988 {
989 struct kvm *kvm = vcpu->kvm;
990 u64 res0, res1;
991
992 lockdep_assert_held(&kvm->arch.config_lock);
993
994 if (kvm->arch.sysreg_masks)
995 goto out;
996
997 kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
998 GFP_KERNEL_ACCOUNT);
999 if (!kvm->arch.sysreg_masks)
1000 return -ENOMEM;
1001
1002 /* VTTBR_EL2 */
1003 res0 = res1 = 0;
1004 if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
1005 res0 |= GENMASK(63, 56);
1006 if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
1007 res0 |= VTTBR_CNP_BIT;
1008 set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
1009
1010 /* VTCR_EL2 */
1011 res0 = GENMASK(63, 32) | GENMASK(30, 20);
1012 res1 = BIT(31);
1013 set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
1014
1015 /* VMPIDR_EL2 */
1016 res0 = GENMASK(63, 40) | GENMASK(30, 24);
1017 res1 = BIT(31);
1018 set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
1019
1020 /* HCR_EL2 */
1021 res0 = BIT(48);
1022 res1 = HCR_RW;
1023 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
1024 res0 |= GENMASK(63, 59);
1025 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
1026 res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
1027 if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
1028 res0 |= (HCR_TTLBIS | HCR_TTLBOS);
1029 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1030 !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1031 res0 |= HCR_ENSCXT;
1032 if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
1033 res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
1034 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1035 res0 |= HCR_AMVOFFEN;
1036 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
1037 res0 |= HCR_FIEN;
1038 if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
1039 res0 |= HCR_FWB;
1040 /* Implementation choice: NV2 is the only supported config */
1041 if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
1042 res0 |= (HCR_NV2 | HCR_NV | HCR_AT);
1043 if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, NI))
1044 res0 |= HCR_NV1;
1045 if (!(kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1046 kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1047 res0 |= (HCR_API | HCR_APK);
1048 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
1049 res0 |= BIT(39);
1050 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1051 res0 |= (HCR_TEA | HCR_TERR);
1052 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1053 res0 |= HCR_TLOR;
1054 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
1055 res0 |= HCR_E2H;
1056 if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
1057 res1 |= HCR_E2H;
1058 set_sysreg_masks(kvm, HCR_EL2, res0, res1);
1059
1060 /* HCRX_EL2 */
1061 res0 = HCRX_EL2_RES0;
1062 res1 = HCRX_EL2_RES1;
1063 if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
1064 res0 |= HCRX_EL2_PACMEn;
1065 if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
1066 res0 |= HCRX_EL2_EnFPM;
1067 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1068 res0 |= HCRX_EL2_GCSEn;
1069 if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
1070 res0 |= HCRX_EL2_EnIDCP128;
1071 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
1072 res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
1073 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
1074 res0 |= HCRX_EL2_TMEA;
1075 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
1076 res0 |= HCRX_EL2_D128En;
1077 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1078 res0 |= HCRX_EL2_PTTWI;
1079 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
1080 res0 |= HCRX_EL2_SCTLR2En;
1081 if (!kvm_has_tcr2(kvm))
1082 res0 |= HCRX_EL2_TCR2En;
1083 if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
1084 res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
1085 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
1086 res0 |= HCRX_EL2_CMOW;
1087 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
1088 res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
1089 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
1090 !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
1091 res0 |= HCRX_EL2_SMPME;
1092 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
1093 res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
1094 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
1095 res0 |= HCRX_EL2_EnASR;
1096 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
1097 res0 |= HCRX_EL2_EnALS;
1098 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1099 res0 |= HCRX_EL2_EnAS0;
1100 set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
1101
1102 /* HFG[RW]TR_EL2 */
1103 res0 = res1 = 0;
1104 if (!(kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1105 kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1106 res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
1107 HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
1108 HFGxTR_EL2_APIBKey);
1109 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1110 res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
1111 HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
1112 HFGxTR_EL2_LORSA_EL1);
1113 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1114 !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1115 res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
1116 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
1117 res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
1118 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1119 res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
1120 HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
1121 HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
1122 HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
1123 HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
1124 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1125 res0 |= HFGxTR_EL2_nACCDATA_EL1;
1126 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1127 res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
1128 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
1129 res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
1130 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1131 res0 |= HFGxTR_EL2_nRCWMASK_EL1;
1132 if (!kvm_has_s1pie(kvm))
1133 res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
1134 if (!kvm_has_s1poe(kvm))
1135 res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
1136 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
1137 res0 |= HFGxTR_EL2_nS2POR_EL1;
1138 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
1139 res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
1140 set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
1141 set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
1142
1143 /* HDFG[RW]TR_EL2 */
1144 res0 = res1 = 0;
1145 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
1146 res0 |= HDFGRTR_EL2_OSDLR_EL1;
1147 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1148 res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
1149 HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
1150 HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
1151 HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
1152 HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
1153 HDFGRTR_EL2_PMCEIDn_EL0);
1154 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
1155 res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
1156 HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
1157 HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
1158 HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
1159 HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
1160 HDFGRTR_EL2_PMBIDR_EL1);
1161 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1162 res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
1163 HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
1164 HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
1165 HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
1166 HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
1167 HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
1168 HDFGRTR_EL2_TRCVICTLR);
1169 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
1170 res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
1171 HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
1172 HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
1173 HDFGRTR_EL2_TRBTRG_EL1);
1174 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1175 res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
1176 HDFGRTR_EL2_nBRBDATA);
1177 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
1178 res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
1179 set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
1180
1181 /* Reuse the bits from the read-side and add the write-specific stuff */
1182 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1183 res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
1184 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1185 res0 |= HDFGWTR_EL2_TRCOSLAR;
1186 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
1187 res0 |= HDFGWTR_EL2_TRFCR_EL1;
1188 set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
1189
1190 /* HFGITR_EL2 */
1191 res0 = HFGITR_EL2_RES0;
1192 res1 = HFGITR_EL2_RES1;
1193 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
1194 res0 |= HFGITR_EL2_DCCVADP;
1195 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
1196 res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
1197 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
1198 res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1199 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
1200 HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
1201 HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
1202 HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
1203 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
1204 res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
1205 HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
1206 HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
1207 HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
1208 HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1209 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
1210 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
1211 res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
1212 HFGITR_EL2_CPPRCTX);
1213 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1214 res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
1215 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1216 res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
1217 HFGITR_EL2_nGCSEPP);
1218 if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
1219 res0 |= HFGITR_EL2_COSPRCTX;
1220 if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
1221 res0 |= HFGITR_EL2_ATS1E1A;
1222 set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
1223
1224 /* HAFGRTR_EL2 - not a lot to see here */
1225 res0 = HAFGRTR_EL2_RES0;
1226 res1 = HAFGRTR_EL2_RES1;
1227 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1228 res0 |= ~(res0 | res1);
1229 set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
1230
1231 /* TCR2_EL2 */
1232 res0 = TCR2_EL2_RES0;
1233 res1 = TCR2_EL2_RES1;
1234 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
1235 res0 |= (TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1 | TCR2_EL2_D128);
1236 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, MEC, IMP))
1237 res0 |= TCR2_EL2_AMEC1 | TCR2_EL2_AMEC0;
1238 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, HAFDBS, HAFT))
1239 res0 |= TCR2_EL2_HAFT;
1240 if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1241 res0 |= TCR2_EL2_PTTWI | TCR2_EL2_PnCH;
1242 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
1243 res0 |= TCR2_EL2_AIE;
1244 if (!kvm_has_s1poe(kvm))
1245 res0 |= TCR2_EL2_POE | TCR2_EL2_E0POE;
1246 if (!kvm_has_s1pie(kvm))
1247 res0 |= TCR2_EL2_PIE;
1248 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
1249 res0 |= (TCR2_EL2_E0POE | TCR2_EL2_D128 |
1250 TCR2_EL2_AMEC1 | TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1);
1251 set_sysreg_masks(kvm, TCR2_EL2, res0, res1);
1252
1253 /* SCTLR_EL1 */
1254 res0 = SCTLR_EL1_RES0;
1255 res1 = SCTLR_EL1_RES1;
1256 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
1257 res0 |= SCTLR_EL1_EPAN;
1258 set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
1259
1260 /* MDCR_EL2 */
1261 res0 = MDCR_EL2_RES0;
1262 res1 = MDCR_EL2_RES1;
1263 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1264 res0 |= (MDCR_EL2_HPMN | MDCR_EL2_TPMCR |
1265 MDCR_EL2_TPM | MDCR_EL2_HPME);
1266 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
1267 res0 |= MDCR_EL2_E2PB | MDCR_EL2_TPMS;
1268 if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, SPMU, IMP))
1269 res0 |= MDCR_EL2_EnSPM;
1270 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P1))
1271 res0 |= MDCR_EL2_HPMD;
1272 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
1273 res0 |= MDCR_EL2_TTRF;
1274 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
1275 res0 |= MDCR_EL2_HCCD | MDCR_EL2_HLP;
1276 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
1277 res0 |= MDCR_EL2_E2TB;
1278 if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, FGT, IMP))
1279 res0 |= MDCR_EL2_TDCC;
1280 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, MTPMU, IMP) ||
1281 kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
1282 res0 |= MDCR_EL2_MTPME;
1283 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P7))
1284 res0 |= MDCR_EL2_HPMFZO;
1285 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSS, IMP))
1286 res0 |= MDCR_EL2_PMSSE;
1287 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
1288 res0 |= MDCR_EL2_HPMFZS;
1289 if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, EBEP, IMP))
1290 res0 |= MDCR_EL2_PMEE;
1291 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DebugVer, V8P9))
1292 res0 |= MDCR_EL2_EBWE;
1293 if (!kvm_has_feat(kvm, ID_AA64DFR2_EL1, STEP, IMP))
1294 res0 |= MDCR_EL2_EnSTEPOP;
1295 set_sysreg_masks(kvm, MDCR_EL2, res0, res1);
1296
1297 /* CNTHCTL_EL2 */
1298 res0 = GENMASK(63, 20);
1299 res1 = 0;
1300 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP))
1301 res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK;
1302 if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) {
1303 res0 |= CNTHCTL_ECV;
1304 if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP))
1305 res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT |
1306 CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT);
1307 }
1308 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
1309 res0 |= GENMASK(11, 8);
1310 set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1);
1311
1312 /* ICH_HCR_EL2 */
1313 res0 = ICH_HCR_EL2_RES0;
1314 res1 = ICH_HCR_EL2_RES1;
1315 if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS))
1316 res0 |= ICH_HCR_EL2_TDIR;
1317 /* No GICv4 is presented to the guest */
1318 res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount;
1319 set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1);
1320
1321 out:
1322 for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++)
1323 (void)__vcpu_sys_reg(vcpu, sr);
1324
1325 return 0;
1326 }
1327
check_nested_vcpu_requests(struct kvm_vcpu * vcpu)1328 void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
1329 {
1330 if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) {
1331 struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1332
1333 write_lock(&vcpu->kvm->mmu_lock);
1334 if (mmu->pending_unmap) {
1335 kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true);
1336 mmu->pending_unmap = false;
1337 }
1338 write_unlock(&vcpu->kvm->mmu_lock);
1339 }
1340
1341 /* Must be last, as may switch context! */
1342 if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu))
1343 kvm_inject_nested_irq(vcpu);
1344 }
1345