1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include "x86.h"
23 #include "lapic.h"
24 #include "ioapic.h"
25 #include "cpuid.h"
26 #include "hyperv.h"
27 #include "mmu.h"
28 #include "xen.h"
29
30 #include <linux/cpu.h>
31 #include <linux/kvm_host.h>
32 #include <linux/highmem.h>
33 #include <linux/sched/cputime.h>
34 #include <linux/spinlock.h>
35 #include <linux/eventfd.h>
36
37 #include <asm/apicdef.h>
38 #include <asm/mshyperv.h>
39 #include <trace/events/kvm.h>
40
41 #include "trace.h"
42 #include "irq.h"
43 #include "fpu.h"
44
45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
46
47 /*
48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50 * where each bit tells which extended hypercall is available besides
51 * HvExtCallQueryCapabilities.
52 *
53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54 * assigned.
55 *
56 * 0x8002 - Bit 0
57 * 0x8003 - Bit 1
58 * ..
59 * 0x8041 - Bit 63
60 *
61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62 */
63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64
65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66 bool vcpu_kick);
67
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)68 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69 {
70 return atomic64_read(&synic->sint[sint]);
71 }
72
synic_get_sint_vector(u64 sint_value)73 static inline int synic_get_sint_vector(u64 sint_value)
74 {
75 if (sint_value & HV_SYNIC_SINT_MASKED)
76 return -1;
77 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78 }
79
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81 int vector)
82 {
83 int i;
84
85 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
87 return true;
88 }
89 return false;
90 }
91
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93 int vector)
94 {
95 int i;
96 u64 sint_value;
97
98 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99 sint_value = synic_read_sint(synic, i);
100 if (synic_get_sint_vector(sint_value) == vector &&
101 sint_value & HV_SYNIC_SINT_AUTO_EOI)
102 return true;
103 }
104 return false;
105 }
106
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)107 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108 int vector)
109 {
110 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
112 bool auto_eoi_old, auto_eoi_new;
113
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115 return;
116
117 if (synic_has_vector_connected(synic, vector))
118 __set_bit(vector, synic->vec_bitmap);
119 else
120 __clear_bit(vector, synic->vec_bitmap);
121
122 auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
123
124 if (synic_has_vector_auto_eoi(synic, vector))
125 __set_bit(vector, synic->auto_eoi_bitmap);
126 else
127 __clear_bit(vector, synic->auto_eoi_bitmap);
128
129 auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
130
131 if (auto_eoi_old == auto_eoi_new)
132 return;
133
134 if (!enable_apicv)
135 return;
136
137 down_write(&vcpu->kvm->arch.apicv_update_lock);
138
139 if (auto_eoi_new)
140 hv->synic_auto_eoi_used++;
141 else
142 hv->synic_auto_eoi_used--;
143
144 /*
145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 * the hypervisor to manually inject IRQs.
147 */
148 __kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
149 APICV_INHIBIT_REASON_HYPERV,
150 !!hv->synic_auto_eoi_used);
151
152 up_write(&vcpu->kvm->arch.apicv_update_lock);
153 }
154
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)155 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156 u64 data, bool host)
157 {
158 int vector, old_vector;
159 bool masked;
160
161 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
162 masked = data & HV_SYNIC_SINT_MASKED;
163
164 /*
165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 * default '0x10000' value on boot and this should not #GP. We need to
167 * allow zero-initing the register from host as well.
168 */
169 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
170 return 1;
171 /*
172 * Guest may configure multiple SINTs to use the same vector, so
173 * we maintain a bitmap of vectors handled by synic, and a
174 * bitmap of vectors with auto-eoi behavior. The bitmaps are
175 * updated here, and atomically queried on fast paths.
176 */
177 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
178
179 atomic64_set(&synic->sint[sint], data);
180
181 synic_update_vector(synic, old_vector);
182
183 synic_update_vector(synic, vector);
184
185 /* Load SynIC vectors into EOI exit bitmap */
186 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
187 return 0;
188 }
189
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)190 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191 {
192 struct kvm_vcpu *vcpu = NULL;
193 unsigned long i;
194
195 if (vpidx >= KVM_MAX_VCPUS)
196 return NULL;
197
198 vcpu = kvm_get_vcpu(kvm, vpidx);
199 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
200 return vcpu;
201 kvm_for_each_vcpu(i, vcpu, kvm)
202 if (kvm_hv_get_vpindex(vcpu) == vpidx)
203 return vcpu;
204 return NULL;
205 }
206
synic_get(struct kvm * kvm,u32 vpidx)207 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
208 {
209 struct kvm_vcpu *vcpu;
210 struct kvm_vcpu_hv_synic *synic;
211
212 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
213 if (!vcpu || !to_hv_vcpu(vcpu))
214 return NULL;
215 synic = to_hv_synic(vcpu);
216 return (synic->active) ? synic : NULL;
217 }
218
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220 {
221 struct kvm *kvm = vcpu->kvm;
222 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
223 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
224 struct kvm_vcpu_hv_stimer *stimer;
225 int gsi, idx;
226
227 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
228
229 /* Try to deliver pending Hyper-V SynIC timers messages */
230 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231 stimer = &hv_vcpu->stimer[idx];
232 if (stimer->msg_pending && stimer->config.enable &&
233 !stimer->config.direct_mode &&
234 stimer->config.sintx == sint)
235 stimer_mark_pending(stimer, false);
236 }
237
238 idx = srcu_read_lock(&kvm->irq_srcu);
239 gsi = atomic_read(&synic->sint_to_gsi[sint]);
240 if (gsi != -1)
241 kvm_notify_acked_gsi(kvm, gsi);
242 srcu_read_unlock(&kvm->irq_srcu, idx);
243 }
244
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)245 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246 {
247 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
249
250 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251 hv_vcpu->exit.u.synic.msr = msr;
252 hv_vcpu->exit.u.synic.control = synic->control;
253 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255
256 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257 }
258
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)259 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260 u32 msr, u64 data, bool host)
261 {
262 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
263 int ret;
264
265 if (!synic->active && (!host || data))
266 return 1;
267
268 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
269
270 ret = 0;
271 switch (msr) {
272 case HV_X64_MSR_SCONTROL:
273 synic->control = data;
274 if (!host)
275 synic_exit(synic, msr);
276 break;
277 case HV_X64_MSR_SVERSION:
278 if (!host) {
279 ret = 1;
280 break;
281 }
282 synic->version = data;
283 break;
284 case HV_X64_MSR_SIEFP:
285 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286 !synic->dont_zero_synic_pages)
287 if (kvm_clear_guest(vcpu->kvm,
288 data & PAGE_MASK, PAGE_SIZE)) {
289 ret = 1;
290 break;
291 }
292 synic->evt_page = data;
293 if (!host)
294 synic_exit(synic, msr);
295 break;
296 case HV_X64_MSR_SIMP:
297 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298 !synic->dont_zero_synic_pages)
299 if (kvm_clear_guest(vcpu->kvm,
300 data & PAGE_MASK, PAGE_SIZE)) {
301 ret = 1;
302 break;
303 }
304 synic->msg_page = data;
305 if (!host)
306 synic_exit(synic, msr);
307 break;
308 case HV_X64_MSR_EOM: {
309 int i;
310
311 if (!synic->active)
312 break;
313
314 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315 kvm_hv_notify_acked_sint(vcpu, i);
316 break;
317 }
318 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
319 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
320 break;
321 default:
322 ret = 1;
323 break;
324 }
325 return ret;
326 }
327
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329 {
330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
331
332 return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
334 }
335
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337 {
338 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
339
340 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341 hv->hv_syndbg.control.status =
342 vcpu->run->hyperv.u.syndbg.status;
343 return 1;
344 }
345
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)346 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347 {
348 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
350
351 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352 hv_vcpu->exit.u.syndbg.msr = msr;
353 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357 vcpu->arch.complete_userspace_io =
358 kvm_hv_syndbg_complete_userspace;
359
360 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361 }
362
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)363 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364 {
365 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
366
367 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368 return 1;
369
370 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
371 to_hv_vcpu(vcpu)->vp_index, msr, data);
372 switch (msr) {
373 case HV_X64_MSR_SYNDBG_CONTROL:
374 syndbg->control.control = data;
375 if (!host)
376 syndbg_exit(vcpu, msr);
377 break;
378 case HV_X64_MSR_SYNDBG_STATUS:
379 syndbg->control.status = data;
380 break;
381 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382 syndbg->control.send_page = data;
383 break;
384 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385 syndbg->control.recv_page = data;
386 break;
387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388 syndbg->control.pending_page = data;
389 if (!host)
390 syndbg_exit(vcpu, msr);
391 break;
392 case HV_X64_MSR_SYNDBG_OPTIONS:
393 syndbg->options = data;
394 break;
395 default:
396 break;
397 }
398
399 return 0;
400 }
401
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)402 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403 {
404 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
405
406 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407 return 1;
408
409 switch (msr) {
410 case HV_X64_MSR_SYNDBG_CONTROL:
411 *pdata = syndbg->control.control;
412 break;
413 case HV_X64_MSR_SYNDBG_STATUS:
414 *pdata = syndbg->control.status;
415 break;
416 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417 *pdata = syndbg->control.send_page;
418 break;
419 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420 *pdata = syndbg->control.recv_page;
421 break;
422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423 *pdata = syndbg->control.pending_page;
424 break;
425 case HV_X64_MSR_SYNDBG_OPTIONS:
426 *pdata = syndbg->options;
427 break;
428 default:
429 break;
430 }
431
432 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
433
434 return 0;
435 }
436
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)437 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438 bool host)
439 {
440 int ret;
441
442 if (!synic->active && !host)
443 return 1;
444
445 ret = 0;
446 switch (msr) {
447 case HV_X64_MSR_SCONTROL:
448 *pdata = synic->control;
449 break;
450 case HV_X64_MSR_SVERSION:
451 *pdata = synic->version;
452 break;
453 case HV_X64_MSR_SIEFP:
454 *pdata = synic->evt_page;
455 break;
456 case HV_X64_MSR_SIMP:
457 *pdata = synic->msg_page;
458 break;
459 case HV_X64_MSR_EOM:
460 *pdata = 0;
461 break;
462 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
464 break;
465 default:
466 ret = 1;
467 break;
468 }
469 return ret;
470 }
471
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)472 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
473 {
474 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
475 struct kvm_lapic_irq irq;
476 int ret, vector;
477
478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479 return -EINVAL;
480
481 if (sint >= ARRAY_SIZE(synic->sint))
482 return -EINVAL;
483
484 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
485 if (vector < 0)
486 return -ENOENT;
487
488 memset(&irq, 0, sizeof(irq));
489 irq.shorthand = APIC_DEST_SELF;
490 irq.dest_mode = APIC_DEST_PHYSICAL;
491 irq.delivery_mode = APIC_DM_FIXED;
492 irq.vector = vector;
493 irq.level = 1;
494
495 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
496 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
497 return ret;
498 }
499
kvm_hv_synic_set_irq(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)500 int kvm_hv_synic_set_irq(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
501 int irq_source_id, int level, bool line_status)
502 {
503 struct kvm_vcpu_hv_synic *synic;
504
505 if (!level)
506 return -1;
507
508 synic = synic_get(kvm, e->hv_sint.vcpu);
509 if (!synic)
510 return -EINVAL;
511
512 return synic_set_irq(synic, e->hv_sint.sint);
513 }
514
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)515 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
516 {
517 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
518 int i;
519
520 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
521
522 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
523 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
524 kvm_hv_notify_acked_sint(vcpu, i);
525 }
526
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)527 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
528 {
529 struct kvm_vcpu_hv_synic *synic;
530
531 synic = synic_get(kvm, vpidx);
532 if (!synic)
533 return -EINVAL;
534
535 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
536 return -EINVAL;
537
538 atomic_set(&synic->sint_to_gsi[sint], gsi);
539 return 0;
540 }
541
kvm_hv_irq_routing_update(struct kvm * kvm)542 void kvm_hv_irq_routing_update(struct kvm *kvm)
543 {
544 struct kvm_irq_routing_table *irq_rt;
545 struct kvm_kernel_irq_routing_entry *e;
546 u32 gsi;
547
548 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
549 lockdep_is_held(&kvm->irq_lock));
550
551 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
552 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
553 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
554 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
555 e->hv_sint.sint, gsi);
556 }
557 }
558 }
559
synic_init(struct kvm_vcpu_hv_synic * synic)560 static void synic_init(struct kvm_vcpu_hv_synic *synic)
561 {
562 int i;
563
564 memset(synic, 0, sizeof(*synic));
565 synic->version = HV_SYNIC_VERSION_1;
566 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
567 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
568 atomic_set(&synic->sint_to_gsi[i], -1);
569 }
570 }
571
get_time_ref_counter(struct kvm * kvm)572 static u64 get_time_ref_counter(struct kvm *kvm)
573 {
574 struct kvm_hv *hv = to_kvm_hv(kvm);
575 struct kvm_vcpu *vcpu;
576 u64 tsc;
577
578 /*
579 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
580 * is broken, disabled or being updated.
581 */
582 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
583 return div_u64(get_kvmclock_ns(kvm), 100);
584
585 vcpu = kvm_get_vcpu(kvm, 0);
586 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
587 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
588 + hv->tsc_ref.tsc_offset;
589 }
590
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)591 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
592 bool vcpu_kick)
593 {
594 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
595
596 set_bit(stimer->index,
597 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
598 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
599 if (vcpu_kick)
600 kvm_vcpu_kick(vcpu);
601 }
602
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)603 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
604 {
605 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
606
607 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
608 stimer->index);
609
610 hrtimer_cancel(&stimer->timer);
611 clear_bit(stimer->index,
612 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
613 stimer->msg_pending = false;
614 stimer->exp_time = 0;
615 }
616
stimer_timer_callback(struct hrtimer * timer)617 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
618 {
619 struct kvm_vcpu_hv_stimer *stimer;
620
621 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
622 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
623 stimer->index);
624 stimer_mark_pending(stimer, true);
625
626 return HRTIMER_NORESTART;
627 }
628
629 /*
630 * stimer_start() assumptions:
631 * a) stimer->count is not equal to 0
632 * b) stimer->config has HV_STIMER_ENABLE flag
633 */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)634 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
635 {
636 u64 time_now;
637 ktime_t ktime_now;
638
639 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
640 ktime_now = ktime_get();
641
642 if (stimer->config.periodic) {
643 if (stimer->exp_time) {
644 if (time_now >= stimer->exp_time) {
645 u64 remainder;
646
647 div64_u64_rem(time_now - stimer->exp_time,
648 stimer->count, &remainder);
649 stimer->exp_time =
650 time_now + (stimer->count - remainder);
651 }
652 } else
653 stimer->exp_time = time_now + stimer->count;
654
655 trace_kvm_hv_stimer_start_periodic(
656 hv_stimer_to_vcpu(stimer)->vcpu_id,
657 stimer->index,
658 time_now, stimer->exp_time);
659
660 hrtimer_start(&stimer->timer,
661 ktime_add_ns(ktime_now,
662 100 * (stimer->exp_time - time_now)),
663 HRTIMER_MODE_ABS);
664 return 0;
665 }
666 stimer->exp_time = stimer->count;
667 if (time_now >= stimer->count) {
668 /*
669 * Expire timer according to Hypervisor Top-Level Functional
670 * specification v4(15.3.1):
671 * "If a one shot is enabled and the specified count is in
672 * the past, it will expire immediately."
673 */
674 stimer_mark_pending(stimer, false);
675 return 0;
676 }
677
678 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
679 stimer->index,
680 time_now, stimer->count);
681
682 hrtimer_start(&stimer->timer,
683 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
684 HRTIMER_MODE_ABS);
685 return 0;
686 }
687
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)688 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
689 bool host)
690 {
691 union hv_stimer_config new_config = {.as_uint64 = config},
692 old_config = {.as_uint64 = stimer->config.as_uint64};
693 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
694 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
695 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
696
697 if (!synic->active && (!host || config))
698 return 1;
699
700 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
701 !(hv_vcpu->cpuid_cache.features_edx &
702 HV_STIMER_DIRECT_MODE_AVAILABLE)))
703 return 1;
704
705 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
706 stimer->index, config, host);
707
708 stimer_cleanup(stimer);
709 if (old_config.enable &&
710 !new_config.direct_mode && new_config.sintx == 0)
711 new_config.enable = 0;
712 stimer->config.as_uint64 = new_config.as_uint64;
713
714 if (stimer->config.enable)
715 stimer_mark_pending(stimer, false);
716
717 return 0;
718 }
719
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)720 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
721 bool host)
722 {
723 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
724 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
725
726 if (!synic->active && (!host || count))
727 return 1;
728
729 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
730 stimer->index, count, host);
731
732 stimer_cleanup(stimer);
733 stimer->count = count;
734 if (!host) {
735 if (stimer->count == 0)
736 stimer->config.enable = 0;
737 else if (stimer->config.auto_enable)
738 stimer->config.enable = 1;
739 }
740
741 if (stimer->config.enable)
742 stimer_mark_pending(stimer, false);
743
744 return 0;
745 }
746
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)747 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
748 {
749 *pconfig = stimer->config.as_uint64;
750 return 0;
751 }
752
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)753 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
754 {
755 *pcount = stimer->count;
756 return 0;
757 }
758
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)759 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
760 struct hv_message *src_msg, bool no_retry)
761 {
762 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
763 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
764 gfn_t msg_page_gfn;
765 struct hv_message_header hv_hdr;
766 int r;
767
768 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
769 return -ENOENT;
770
771 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
772
773 /*
774 * Strictly following the spec-mandated ordering would assume setting
775 * .msg_pending before checking .message_type. However, this function
776 * is only called in vcpu context so the entire update is atomic from
777 * guest POV and thus the exact order here doesn't matter.
778 */
779 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
780 msg_off + offsetof(struct hv_message,
781 header.message_type),
782 sizeof(hv_hdr.message_type));
783 if (r < 0)
784 return r;
785
786 if (hv_hdr.message_type != HVMSG_NONE) {
787 if (no_retry)
788 return 0;
789
790 hv_hdr.message_flags.msg_pending = 1;
791 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
792 &hv_hdr.message_flags,
793 msg_off +
794 offsetof(struct hv_message,
795 header.message_flags),
796 sizeof(hv_hdr.message_flags));
797 if (r < 0)
798 return r;
799 return -EAGAIN;
800 }
801
802 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
803 sizeof(src_msg->header) +
804 src_msg->header.payload_size);
805 if (r < 0)
806 return r;
807
808 r = synic_set_irq(synic, sint);
809 if (r < 0)
810 return r;
811 if (r == 0)
812 return -EFAULT;
813 return 0;
814 }
815
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)816 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
817 {
818 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
819 struct hv_message *msg = &stimer->msg;
820 struct hv_timer_message_payload *payload =
821 (struct hv_timer_message_payload *)&msg->u.payload;
822
823 /*
824 * To avoid piling up periodic ticks, don't retry message
825 * delivery for them (within "lazy" lost ticks policy).
826 */
827 bool no_retry = stimer->config.periodic;
828
829 payload->expiration_time = stimer->exp_time;
830 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
831 return synic_deliver_msg(to_hv_synic(vcpu),
832 stimer->config.sintx, msg,
833 no_retry);
834 }
835
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)836 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
837 {
838 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
839 struct kvm_lapic_irq irq = {
840 .delivery_mode = APIC_DM_FIXED,
841 .vector = stimer->config.apic_vector
842 };
843
844 if (lapic_in_kernel(vcpu))
845 return !kvm_apic_set_irq(vcpu, &irq, NULL);
846 return 0;
847 }
848
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)849 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
850 {
851 int r, direct = stimer->config.direct_mode;
852
853 stimer->msg_pending = true;
854 if (!direct)
855 r = stimer_send_msg(stimer);
856 else
857 r = stimer_notify_direct(stimer);
858 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
859 stimer->index, direct, r);
860 if (!r) {
861 stimer->msg_pending = false;
862 if (!(stimer->config.periodic))
863 stimer->config.enable = 0;
864 }
865 }
866
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)867 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
868 {
869 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
870 struct kvm_vcpu_hv_stimer *stimer;
871 u64 time_now, exp_time;
872 int i;
873
874 if (!hv_vcpu)
875 return;
876
877 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
878 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
879 stimer = &hv_vcpu->stimer[i];
880 if (stimer->config.enable) {
881 exp_time = stimer->exp_time;
882
883 if (exp_time) {
884 time_now =
885 get_time_ref_counter(vcpu->kvm);
886 if (time_now >= exp_time)
887 stimer_expiration(stimer);
888 }
889
890 if ((stimer->config.enable) &&
891 stimer->count) {
892 if (!stimer->msg_pending)
893 stimer_start(stimer);
894 } else
895 stimer_cleanup(stimer);
896 }
897 }
898 }
899
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)900 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
901 {
902 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
903 int i;
904
905 if (!hv_vcpu)
906 return;
907
908 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
909 stimer_cleanup(&hv_vcpu->stimer[i]);
910
911 kfree(hv_vcpu);
912 vcpu->arch.hyperv = NULL;
913 }
914
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)915 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
916 {
917 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
918
919 if (!hv_vcpu)
920 return false;
921
922 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
923 return false;
924 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
925 }
926 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
927
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu)928 int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
929 {
930 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
931
932 if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
933 return -EFAULT;
934
935 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
936 &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
937 }
938 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
939
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)940 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
941 {
942 struct hv_message *msg = &stimer->msg;
943 struct hv_timer_message_payload *payload =
944 (struct hv_timer_message_payload *)&msg->u.payload;
945
946 memset(&msg->header, 0, sizeof(msg->header));
947 msg->header.message_type = HVMSG_TIMER_EXPIRED;
948 msg->header.payload_size = sizeof(*payload);
949
950 payload->timer_index = stimer->index;
951 payload->expiration_time = 0;
952 payload->delivery_time = 0;
953 }
954
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)955 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
956 {
957 memset(stimer, 0, sizeof(*stimer));
958 stimer->index = timer_index;
959 hrtimer_setup(&stimer->timer, stimer_timer_callback, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
960 stimer_prepare_msg(stimer);
961 }
962
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)963 int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
964 {
965 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
966 int i;
967
968 if (hv_vcpu)
969 return 0;
970
971 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
972 if (!hv_vcpu)
973 return -ENOMEM;
974
975 vcpu->arch.hyperv = hv_vcpu;
976 hv_vcpu->vcpu = vcpu;
977
978 synic_init(&hv_vcpu->synic);
979
980 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
981 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
982 stimer_init(&hv_vcpu->stimer[i], i);
983
984 hv_vcpu->vp_index = vcpu->vcpu_idx;
985
986 for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
987 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
988 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
989 }
990
991 return 0;
992 }
993
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)994 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
995 {
996 struct kvm_vcpu_hv_synic *synic;
997 int r;
998
999 r = kvm_hv_vcpu_init(vcpu);
1000 if (r)
1001 return r;
1002
1003 synic = to_hv_synic(vcpu);
1004
1005 synic->active = true;
1006 synic->dont_zero_synic_pages = dont_zero_synic_pages;
1007 synic->control = HV_SYNIC_CONTROL_ENABLE;
1008 return 0;
1009 }
1010
kvm_hv_msr_partition_wide(u32 msr)1011 static bool kvm_hv_msr_partition_wide(u32 msr)
1012 {
1013 bool r = false;
1014
1015 switch (msr) {
1016 case HV_X64_MSR_GUEST_OS_ID:
1017 case HV_X64_MSR_HYPERCALL:
1018 case HV_X64_MSR_REFERENCE_TSC:
1019 case HV_X64_MSR_TIME_REF_COUNT:
1020 case HV_X64_MSR_CRASH_CTL:
1021 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1022 case HV_X64_MSR_RESET:
1023 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1024 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1025 case HV_X64_MSR_TSC_EMULATION_STATUS:
1026 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1027 case HV_X64_MSR_SYNDBG_OPTIONS:
1028 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1029 r = true;
1030 break;
1031 }
1032
1033 return r;
1034 }
1035
kvm_hv_msr_get_crash_data(struct kvm * kvm,u32 index,u64 * pdata)1036 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
1037 {
1038 struct kvm_hv *hv = to_kvm_hv(kvm);
1039 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1040
1041 if (WARN_ON_ONCE(index >= size))
1042 return -EINVAL;
1043
1044 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
1045 return 0;
1046 }
1047
kvm_hv_msr_get_crash_ctl(struct kvm * kvm,u64 * pdata)1048 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1049 {
1050 struct kvm_hv *hv = to_kvm_hv(kvm);
1051
1052 *pdata = hv->hv_crash_ctl;
1053 return 0;
1054 }
1055
kvm_hv_msr_set_crash_ctl(struct kvm * kvm,u64 data)1056 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1057 {
1058 struct kvm_hv *hv = to_kvm_hv(kvm);
1059
1060 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1061
1062 return 0;
1063 }
1064
kvm_hv_msr_set_crash_data(struct kvm * kvm,u32 index,u64 data)1065 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1066 {
1067 struct kvm_hv *hv = to_kvm_hv(kvm);
1068 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1069
1070 if (WARN_ON_ONCE(index >= size))
1071 return -EINVAL;
1072
1073 hv->hv_crash_param[array_index_nospec(index, size)] = data;
1074 return 0;
1075 }
1076
1077 /*
1078 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1079 * between them is possible:
1080 *
1081 * kvmclock formula:
1082 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1083 * + system_time
1084 *
1085 * Hyper-V formula:
1086 * nsec/100 = ticks * scale / 2^64 + offset
1087 *
1088 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1089 * By dividing the kvmclock formula by 100 and equating what's left we get:
1090 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1091 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1092 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1093 *
1094 * Now expand the kvmclock formula and divide by 100:
1095 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1096 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1097 * + system_time
1098 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1099 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1100 * + system_time / 100
1101 *
1102 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1103 * nsec/100 = ticks * scale / 2^64
1104 * - tsc_timestamp * scale / 2^64
1105 * + system_time / 100
1106 *
1107 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1108 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1109 *
1110 * These two equivalencies are implemented in this function.
1111 */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1112 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1113 struct ms_hyperv_tsc_page *tsc_ref)
1114 {
1115 u64 max_mul;
1116
1117 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1118 return false;
1119
1120 /*
1121 * check if scale would overflow, if so we use the time ref counter
1122 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1123 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1124 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1125 */
1126 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1127 if (hv_clock->tsc_to_system_mul >= max_mul)
1128 return false;
1129
1130 /*
1131 * Otherwise compute the scale and offset according to the formulas
1132 * derived above.
1133 */
1134 tsc_ref->tsc_scale =
1135 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1136 hv_clock->tsc_to_system_mul,
1137 100);
1138
1139 tsc_ref->tsc_offset = hv_clock->system_time;
1140 do_div(tsc_ref->tsc_offset, 100);
1141 tsc_ref->tsc_offset -=
1142 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1143 return true;
1144 }
1145
1146 /*
1147 * Don't touch TSC page values if the guest has opted for TSC emulation after
1148 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1149 * access emulation and Hyper-V is known to expect the values in TSC page to
1150 * stay constant before TSC access emulation is disabled from guest side
1151 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1152 * frequency and guest visible TSC value across migration (and prevent it when
1153 * TSC scaling is unsupported).
1154 */
tsc_page_update_unsafe(struct kvm_hv * hv)1155 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1156 {
1157 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1158 hv->hv_tsc_emulation_control;
1159 }
1160
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1161 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1162 struct pvclock_vcpu_time_info *hv_clock)
1163 {
1164 struct kvm_hv *hv = to_kvm_hv(kvm);
1165 u32 tsc_seq;
1166 u64 gfn;
1167
1168 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1169 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1170
1171 mutex_lock(&hv->hv_lock);
1172
1173 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1174 hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
1175 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1176 goto out_unlock;
1177
1178 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1179 goto out_unlock;
1180
1181 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1182 /*
1183 * Because the TSC parameters only vary when there is a
1184 * change in the master clock, do not bother with caching.
1185 */
1186 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1187 &tsc_seq, sizeof(tsc_seq))))
1188 goto out_err;
1189
1190 if (tsc_seq && tsc_page_update_unsafe(hv)) {
1191 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1192 goto out_err;
1193
1194 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1195 goto out_unlock;
1196 }
1197
1198 /*
1199 * While we're computing and writing the parameters, force the
1200 * guest to use the time reference count MSR.
1201 */
1202 hv->tsc_ref.tsc_sequence = 0;
1203 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1204 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1205 goto out_err;
1206
1207 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1208 goto out_err;
1209
1210 /* Ensure sequence is zero before writing the rest of the struct. */
1211 smp_wmb();
1212 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1213 goto out_err;
1214
1215 /*
1216 * Now switch to the TSC page mechanism by writing the sequence.
1217 */
1218 tsc_seq++;
1219 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1220 tsc_seq = 1;
1221
1222 /* Write the struct entirely before the non-zero sequence. */
1223 smp_wmb();
1224
1225 hv->tsc_ref.tsc_sequence = tsc_seq;
1226 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1227 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1228 goto out_err;
1229
1230 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1231 goto out_unlock;
1232
1233 out_err:
1234 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1235 out_unlock:
1236 mutex_unlock(&hv->hv_lock);
1237 }
1238
kvm_hv_request_tsc_page_update(struct kvm * kvm)1239 void kvm_hv_request_tsc_page_update(struct kvm *kvm)
1240 {
1241 struct kvm_hv *hv = to_kvm_hv(kvm);
1242
1243 mutex_lock(&hv->hv_lock);
1244
1245 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1246 !tsc_page_update_unsafe(hv))
1247 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1248
1249 mutex_unlock(&hv->hv_lock);
1250 }
1251
hv_check_msr_access(struct kvm_vcpu_hv * hv_vcpu,u32 msr)1252 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1253 {
1254 if (!hv_vcpu->enforce_cpuid)
1255 return true;
1256
1257 switch (msr) {
1258 case HV_X64_MSR_GUEST_OS_ID:
1259 case HV_X64_MSR_HYPERCALL:
1260 return hv_vcpu->cpuid_cache.features_eax &
1261 HV_MSR_HYPERCALL_AVAILABLE;
1262 case HV_X64_MSR_VP_RUNTIME:
1263 return hv_vcpu->cpuid_cache.features_eax &
1264 HV_MSR_VP_RUNTIME_AVAILABLE;
1265 case HV_X64_MSR_TIME_REF_COUNT:
1266 return hv_vcpu->cpuid_cache.features_eax &
1267 HV_MSR_TIME_REF_COUNT_AVAILABLE;
1268 case HV_X64_MSR_VP_INDEX:
1269 return hv_vcpu->cpuid_cache.features_eax &
1270 HV_MSR_VP_INDEX_AVAILABLE;
1271 case HV_X64_MSR_RESET:
1272 return hv_vcpu->cpuid_cache.features_eax &
1273 HV_MSR_RESET_AVAILABLE;
1274 case HV_X64_MSR_REFERENCE_TSC:
1275 return hv_vcpu->cpuid_cache.features_eax &
1276 HV_MSR_REFERENCE_TSC_AVAILABLE;
1277 case HV_X64_MSR_SCONTROL:
1278 case HV_X64_MSR_SVERSION:
1279 case HV_X64_MSR_SIEFP:
1280 case HV_X64_MSR_SIMP:
1281 case HV_X64_MSR_EOM:
1282 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1283 return hv_vcpu->cpuid_cache.features_eax &
1284 HV_MSR_SYNIC_AVAILABLE;
1285 case HV_X64_MSR_STIMER0_CONFIG:
1286 case HV_X64_MSR_STIMER1_CONFIG:
1287 case HV_X64_MSR_STIMER2_CONFIG:
1288 case HV_X64_MSR_STIMER3_CONFIG:
1289 case HV_X64_MSR_STIMER0_COUNT:
1290 case HV_X64_MSR_STIMER1_COUNT:
1291 case HV_X64_MSR_STIMER2_COUNT:
1292 case HV_X64_MSR_STIMER3_COUNT:
1293 return hv_vcpu->cpuid_cache.features_eax &
1294 HV_MSR_SYNTIMER_AVAILABLE;
1295 case HV_X64_MSR_EOI:
1296 case HV_X64_MSR_ICR:
1297 case HV_X64_MSR_TPR:
1298 case HV_X64_MSR_VP_ASSIST_PAGE:
1299 return hv_vcpu->cpuid_cache.features_eax &
1300 HV_MSR_APIC_ACCESS_AVAILABLE;
1301 case HV_X64_MSR_TSC_FREQUENCY:
1302 case HV_X64_MSR_APIC_FREQUENCY:
1303 return hv_vcpu->cpuid_cache.features_eax &
1304 HV_ACCESS_FREQUENCY_MSRS;
1305 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1306 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1307 case HV_X64_MSR_TSC_EMULATION_STATUS:
1308 return hv_vcpu->cpuid_cache.features_eax &
1309 HV_ACCESS_REENLIGHTENMENT;
1310 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1311 return hv_vcpu->cpuid_cache.features_eax &
1312 HV_ACCESS_TSC_INVARIANT;
1313 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1314 case HV_X64_MSR_CRASH_CTL:
1315 return hv_vcpu->cpuid_cache.features_edx &
1316 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1317 case HV_X64_MSR_SYNDBG_OPTIONS:
1318 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1319 return hv_vcpu->cpuid_cache.features_edx &
1320 HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1321 default:
1322 break;
1323 }
1324
1325 return false;
1326 }
1327
1328 #define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839
1329 #define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */
1330
1331 /*
1332 * Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC
1333 * configuration.
1334 * Such configuration can result from, for example, AMD Erratum 1386 workaround.
1335 *
1336 * Print a notice so users aren't left wondering what's suddenly gone wrong.
1337 */
__kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu * vcpu)1338 static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1339 {
1340 struct kvm *kvm = vcpu->kvm;
1341 struct kvm_hv *hv = to_kvm_hv(kvm);
1342
1343 /* Check again under the hv_lock. */
1344 if (hv->xsaves_xsavec_checked)
1345 return;
1346
1347 if ((hv->hv_guest_os_id & KVM_HV_WIN2016_GUEST_ID_MASK) !=
1348 KVM_HV_WIN2016_GUEST_ID)
1349 return;
1350
1351 hv->xsaves_xsavec_checked = true;
1352
1353 /* UP configurations aren't affected */
1354 if (atomic_read(&kvm->online_vcpus) < 2)
1355 return;
1356
1357 if (guest_cpuid_has(vcpu, X86_FEATURE_XSAVES) ||
1358 !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVEC))
1359 return;
1360
1361 pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. "
1362 "If it fails to boot try disabling XSAVEC in the VM config.\n");
1363 }
1364
kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu * vcpu)1365 void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1366 {
1367 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1368
1369 if (!vcpu->arch.hyperv_enabled ||
1370 hv->xsaves_xsavec_checked)
1371 return;
1372
1373 mutex_lock(&hv->hv_lock);
1374 __kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1375 mutex_unlock(&hv->hv_lock);
1376 }
1377
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1378 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1379 bool host)
1380 {
1381 struct kvm *kvm = vcpu->kvm;
1382 struct kvm_hv *hv = to_kvm_hv(kvm);
1383
1384 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1385 return 1;
1386
1387 switch (msr) {
1388 case HV_X64_MSR_GUEST_OS_ID:
1389 hv->hv_guest_os_id = data;
1390 /* setting guest os id to zero disables hypercall page */
1391 if (!hv->hv_guest_os_id)
1392 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1393 break;
1394 case HV_X64_MSR_HYPERCALL: {
1395 u8 instructions[9];
1396 int i = 0;
1397 u64 addr;
1398
1399 /* if guest os id is not set hypercall should remain disabled */
1400 if (!hv->hv_guest_os_id)
1401 break;
1402 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1403 hv->hv_hypercall = data;
1404 break;
1405 }
1406
1407 /*
1408 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1409 * the same way Xen itself does, by setting the bit 31 of EAX
1410 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1411 * going to be clobbered on 64-bit.
1412 */
1413 if (kvm_xen_hypercall_enabled(kvm)) {
1414 /* orl $0x80000000, %eax */
1415 instructions[i++] = 0x0d;
1416 instructions[i++] = 0x00;
1417 instructions[i++] = 0x00;
1418 instructions[i++] = 0x00;
1419 instructions[i++] = 0x80;
1420 }
1421
1422 /* vmcall/vmmcall */
1423 kvm_x86_call(patch_hypercall)(vcpu, instructions + i);
1424 i += 3;
1425
1426 /* ret */
1427 ((unsigned char *)instructions)[i++] = 0xc3;
1428
1429 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1430 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1431 return 1;
1432 hv->hv_hypercall = data;
1433 break;
1434 }
1435 case HV_X64_MSR_REFERENCE_TSC:
1436 hv->hv_tsc_page = data;
1437 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1438 if (!host)
1439 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1440 else
1441 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1442 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1443 } else {
1444 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1445 }
1446 break;
1447 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1448 return kvm_hv_msr_set_crash_data(kvm,
1449 msr - HV_X64_MSR_CRASH_P0,
1450 data);
1451 case HV_X64_MSR_CRASH_CTL:
1452 if (host)
1453 return kvm_hv_msr_set_crash_ctl(kvm, data);
1454
1455 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1456 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1457 hv->hv_crash_param[0],
1458 hv->hv_crash_param[1],
1459 hv->hv_crash_param[2],
1460 hv->hv_crash_param[3],
1461 hv->hv_crash_param[4]);
1462
1463 /* Send notification about crash to user space */
1464 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1465 }
1466 break;
1467 case HV_X64_MSR_RESET:
1468 if (data == 1) {
1469 vcpu_debug(vcpu, "hyper-v reset requested\n");
1470 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1471 }
1472 break;
1473 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1474 hv->hv_reenlightenment_control = data;
1475 break;
1476 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1477 hv->hv_tsc_emulation_control = data;
1478 break;
1479 case HV_X64_MSR_TSC_EMULATION_STATUS:
1480 if (data && !host)
1481 return 1;
1482
1483 hv->hv_tsc_emulation_status = data;
1484 break;
1485 case HV_X64_MSR_TIME_REF_COUNT:
1486 /* read-only, but still ignore it if host-initiated */
1487 if (!host)
1488 return 1;
1489 break;
1490 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1491 /* Only bit 0 is supported */
1492 if (data & ~HV_EXPOSE_INVARIANT_TSC)
1493 return 1;
1494
1495 /* The feature can't be disabled from the guest */
1496 if (!host && hv->hv_invtsc_control && !data)
1497 return 1;
1498
1499 hv->hv_invtsc_control = data;
1500 break;
1501 case HV_X64_MSR_SYNDBG_OPTIONS:
1502 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1503 return syndbg_set_msr(vcpu, msr, data, host);
1504 default:
1505 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1506 return 1;
1507 }
1508 return 0;
1509 }
1510
1511 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1512 static u64 current_task_runtime_100ns(void)
1513 {
1514 u64 utime, stime;
1515
1516 task_cputime_adjusted(current, &utime, &stime);
1517
1518 return div_u64(utime + stime, 100);
1519 }
1520
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1521 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1522 {
1523 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1524
1525 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1526 return 1;
1527
1528 switch (msr) {
1529 case HV_X64_MSR_VP_INDEX: {
1530 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1531 u32 new_vp_index = (u32)data;
1532
1533 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1534 return 1;
1535
1536 if (new_vp_index == hv_vcpu->vp_index)
1537 return 0;
1538
1539 /*
1540 * The VP index is initialized to vcpu_index by
1541 * kvm_hv_vcpu_postcreate so they initially match. Now the
1542 * VP index is changing, adjust num_mismatched_vp_indexes if
1543 * it now matches or no longer matches vcpu_idx.
1544 */
1545 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1546 atomic_inc(&hv->num_mismatched_vp_indexes);
1547 else if (new_vp_index == vcpu->vcpu_idx)
1548 atomic_dec(&hv->num_mismatched_vp_indexes);
1549
1550 hv_vcpu->vp_index = new_vp_index;
1551 break;
1552 }
1553 case HV_X64_MSR_VP_ASSIST_PAGE: {
1554 u64 gfn;
1555 unsigned long addr;
1556
1557 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1558 hv_vcpu->hv_vapic = data;
1559 if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
1560 return 1;
1561 break;
1562 }
1563 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1564 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1565 if (kvm_is_error_hva(addr))
1566 return 1;
1567
1568 /*
1569 * Clear apic_assist portion of struct hv_vp_assist_page
1570 * only, there can be valuable data in the rest which needs
1571 * to be preserved e.g. on migration.
1572 */
1573 if (__put_user(0, (u32 __user *)addr))
1574 return 1;
1575 hv_vcpu->hv_vapic = data;
1576 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1577 if (kvm_lapic_set_pv_eoi(vcpu,
1578 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1579 sizeof(struct hv_vp_assist_page)))
1580 return 1;
1581 break;
1582 }
1583 case HV_X64_MSR_EOI:
1584 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1585 case HV_X64_MSR_ICR:
1586 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1587 case HV_X64_MSR_TPR:
1588 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1589 case HV_X64_MSR_VP_RUNTIME:
1590 if (!host)
1591 return 1;
1592 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1593 break;
1594 case HV_X64_MSR_SCONTROL:
1595 case HV_X64_MSR_SVERSION:
1596 case HV_X64_MSR_SIEFP:
1597 case HV_X64_MSR_SIMP:
1598 case HV_X64_MSR_EOM:
1599 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1600 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1601 case HV_X64_MSR_STIMER0_CONFIG:
1602 case HV_X64_MSR_STIMER1_CONFIG:
1603 case HV_X64_MSR_STIMER2_CONFIG:
1604 case HV_X64_MSR_STIMER3_CONFIG: {
1605 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1606
1607 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1608 data, host);
1609 }
1610 case HV_X64_MSR_STIMER0_COUNT:
1611 case HV_X64_MSR_STIMER1_COUNT:
1612 case HV_X64_MSR_STIMER2_COUNT:
1613 case HV_X64_MSR_STIMER3_COUNT: {
1614 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1615
1616 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1617 data, host);
1618 }
1619 case HV_X64_MSR_TSC_FREQUENCY:
1620 case HV_X64_MSR_APIC_FREQUENCY:
1621 /* read-only, but still ignore it if host-initiated */
1622 if (!host)
1623 return 1;
1624 break;
1625 default:
1626 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1627 return 1;
1628 }
1629
1630 return 0;
1631 }
1632
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1633 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1634 bool host)
1635 {
1636 u64 data = 0;
1637 struct kvm *kvm = vcpu->kvm;
1638 struct kvm_hv *hv = to_kvm_hv(kvm);
1639
1640 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1641 return 1;
1642
1643 switch (msr) {
1644 case HV_X64_MSR_GUEST_OS_ID:
1645 data = hv->hv_guest_os_id;
1646 break;
1647 case HV_X64_MSR_HYPERCALL:
1648 data = hv->hv_hypercall;
1649 break;
1650 case HV_X64_MSR_TIME_REF_COUNT:
1651 data = get_time_ref_counter(kvm);
1652 break;
1653 case HV_X64_MSR_REFERENCE_TSC:
1654 data = hv->hv_tsc_page;
1655 break;
1656 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1657 return kvm_hv_msr_get_crash_data(kvm,
1658 msr - HV_X64_MSR_CRASH_P0,
1659 pdata);
1660 case HV_X64_MSR_CRASH_CTL:
1661 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1662 case HV_X64_MSR_RESET:
1663 data = 0;
1664 break;
1665 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1666 data = hv->hv_reenlightenment_control;
1667 break;
1668 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1669 data = hv->hv_tsc_emulation_control;
1670 break;
1671 case HV_X64_MSR_TSC_EMULATION_STATUS:
1672 data = hv->hv_tsc_emulation_status;
1673 break;
1674 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1675 data = hv->hv_invtsc_control;
1676 break;
1677 case HV_X64_MSR_SYNDBG_OPTIONS:
1678 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1679 return syndbg_get_msr(vcpu, msr, pdata, host);
1680 default:
1681 kvm_pr_unimpl_rdmsr(vcpu, msr);
1682 return 1;
1683 }
1684
1685 *pdata = data;
1686 return 0;
1687 }
1688
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1689 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1690 bool host)
1691 {
1692 u64 data = 0;
1693 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1694
1695 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1696 return 1;
1697
1698 switch (msr) {
1699 case HV_X64_MSR_VP_INDEX:
1700 data = hv_vcpu->vp_index;
1701 break;
1702 case HV_X64_MSR_EOI:
1703 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1704 case HV_X64_MSR_ICR:
1705 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1706 case HV_X64_MSR_TPR:
1707 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1708 case HV_X64_MSR_VP_ASSIST_PAGE:
1709 data = hv_vcpu->hv_vapic;
1710 break;
1711 case HV_X64_MSR_VP_RUNTIME:
1712 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1713 break;
1714 case HV_X64_MSR_SCONTROL:
1715 case HV_X64_MSR_SVERSION:
1716 case HV_X64_MSR_SIEFP:
1717 case HV_X64_MSR_SIMP:
1718 case HV_X64_MSR_EOM:
1719 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1720 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1721 case HV_X64_MSR_STIMER0_CONFIG:
1722 case HV_X64_MSR_STIMER1_CONFIG:
1723 case HV_X64_MSR_STIMER2_CONFIG:
1724 case HV_X64_MSR_STIMER3_CONFIG: {
1725 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1726
1727 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1728 pdata);
1729 }
1730 case HV_X64_MSR_STIMER0_COUNT:
1731 case HV_X64_MSR_STIMER1_COUNT:
1732 case HV_X64_MSR_STIMER2_COUNT:
1733 case HV_X64_MSR_STIMER3_COUNT: {
1734 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1735
1736 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1737 pdata);
1738 }
1739 case HV_X64_MSR_TSC_FREQUENCY:
1740 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1741 break;
1742 case HV_X64_MSR_APIC_FREQUENCY:
1743 data = div64_u64(1000000000ULL,
1744 vcpu->kvm->arch.apic_bus_cycle_ns);
1745 break;
1746 default:
1747 kvm_pr_unimpl_rdmsr(vcpu, msr);
1748 return 1;
1749 }
1750 *pdata = data;
1751 return 0;
1752 }
1753
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1754 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1755 {
1756 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1757
1758 if (!host && !vcpu->arch.hyperv_enabled)
1759 return 1;
1760
1761 if (kvm_hv_vcpu_init(vcpu))
1762 return 1;
1763
1764 if (kvm_hv_msr_partition_wide(msr)) {
1765 int r;
1766
1767 mutex_lock(&hv->hv_lock);
1768 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1769 mutex_unlock(&hv->hv_lock);
1770 return r;
1771 } else
1772 return kvm_hv_set_msr(vcpu, msr, data, host);
1773 }
1774
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1775 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1776 {
1777 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1778
1779 if (!host && !vcpu->arch.hyperv_enabled)
1780 return 1;
1781
1782 if (kvm_hv_vcpu_init(vcpu))
1783 return 1;
1784
1785 if (kvm_hv_msr_partition_wide(msr)) {
1786 int r;
1787
1788 mutex_lock(&hv->hv_lock);
1789 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1790 mutex_unlock(&hv->hv_lock);
1791 return r;
1792 } else
1793 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1794 }
1795
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,unsigned long * vcpu_mask)1796 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1797 u64 valid_bank_mask, unsigned long *vcpu_mask)
1798 {
1799 struct kvm_hv *hv = to_kvm_hv(kvm);
1800 bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
1801 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1802 struct kvm_vcpu *vcpu;
1803 int bank, sbank = 0;
1804 unsigned long i;
1805 u64 *bitmap;
1806
1807 BUILD_BUG_ON(sizeof(vp_bitmap) >
1808 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1809
1810 /*
1811 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1812 * fill a temporary buffer and manually test each vCPU's VP index.
1813 */
1814 if (likely(!has_mismatch))
1815 bitmap = (u64 *)vcpu_mask;
1816 else
1817 bitmap = vp_bitmap;
1818
1819 /*
1820 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1821 * having a '1' for each bank that exists in sparse_banks. Sets must
1822 * be in ascending order, i.e. bank0..bankN.
1823 */
1824 memset(bitmap, 0, sizeof(vp_bitmap));
1825 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1826 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1827 bitmap[bank] = sparse_banks[sbank++];
1828
1829 if (likely(!has_mismatch))
1830 return;
1831
1832 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
1833 kvm_for_each_vcpu(i, vcpu, kvm) {
1834 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1835 __set_bit(i, vcpu_mask);
1836 }
1837 }
1838
hv_is_vp_in_sparse_set(u32 vp_id,u64 valid_bank_mask,u64 sparse_banks[])1839 static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1840 {
1841 int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1842 unsigned long sbank;
1843
1844 if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1845 return false;
1846
1847 /*
1848 * The index into the sparse bank is the number of preceding bits in
1849 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the
1850 * fancy math if there can't possibly be preceding bits.
1851 */
1852 if (valid_bit_nr)
1853 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1854 else
1855 sbank = 0;
1856
1857 return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1858 (unsigned long *)&sparse_banks[sbank]);
1859 }
1860
1861 struct kvm_hv_hcall {
1862 /* Hypercall input data */
1863 u64 param;
1864 u64 ingpa;
1865 u64 outgpa;
1866 u16 code;
1867 u16 var_cnt;
1868 u16 rep_cnt;
1869 u16 rep_idx;
1870 bool fast;
1871 bool rep;
1872 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1873
1874 /*
1875 * Current read offset when KVM reads hypercall input data gradually,
1876 * either offset in bytes from 'ingpa' for regular hypercalls or the
1877 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1878 */
1879 union {
1880 gpa_t data_offset;
1881 int consumed_xmm_halves;
1882 };
1883 };
1884
1885
kvm_hv_get_hc_data(struct kvm * kvm,struct kvm_hv_hcall * hc,u16 orig_cnt,u16 cnt_cap,u64 * data)1886 static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
1887 u16 orig_cnt, u16 cnt_cap, u64 *data)
1888 {
1889 /*
1890 * Preserve the original count when ignoring entries via a "cap", KVM
1891 * still needs to validate the guest input (though the non-XMM path
1892 * punts on the checks).
1893 */
1894 u16 cnt = min(orig_cnt, cnt_cap);
1895 int i, j;
1896
1897 if (hc->fast) {
1898 /*
1899 * Each XMM holds two sparse banks, but do not count halves that
1900 * have already been consumed for hypercall parameters.
1901 */
1902 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
1903 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1904
1905 for (i = 0; i < cnt; i++) {
1906 j = i + hc->consumed_xmm_halves;
1907 if (j % 2)
1908 data[i] = sse128_hi(hc->xmm[j / 2]);
1909 else
1910 data[i] = sse128_lo(hc->xmm[j / 2]);
1911 }
1912 return 0;
1913 }
1914
1915 return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
1916 cnt * sizeof(*data));
1917 }
1918
kvm_get_sparse_vp_set(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 * sparse_banks)1919 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
1920 u64 *sparse_banks)
1921 {
1922 if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
1923 return -EINVAL;
1924
1925 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1926 return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
1927 sparse_banks);
1928 }
1929
kvm_hv_get_tlb_flush_entries(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 entries[])1930 static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
1931 {
1932 return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
1933 }
1934
hv_tlb_flush_enqueue(struct kvm_vcpu * vcpu,struct kvm_vcpu_hv_tlb_flush_fifo * tlb_flush_fifo,u64 * entries,int count)1935 static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1936 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1937 u64 *entries, int count)
1938 {
1939 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1940 u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1941
1942 if (!hv_vcpu)
1943 return;
1944
1945 spin_lock(&tlb_flush_fifo->write_lock);
1946
1947 /*
1948 * All entries should fit on the fifo leaving one free for 'flush all'
1949 * entry in case another request comes in. In case there's not enough
1950 * space, just put 'flush all' entry there.
1951 */
1952 if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1953 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1954 goto out_unlock;
1955 }
1956
1957 /*
1958 * Note: full fifo always contains 'flush all' entry, no need to check the
1959 * return value.
1960 */
1961 kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1962
1963 out_unlock:
1964 spin_unlock(&tlb_flush_fifo->write_lock);
1965 }
1966
kvm_hv_vcpu_flush_tlb(struct kvm_vcpu * vcpu)1967 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1968 {
1969 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1970 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1971 u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1972 int i, j, count;
1973 gva_t gva;
1974
1975 if (!tdp_enabled || !hv_vcpu)
1976 return -EINVAL;
1977
1978 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
1979
1980 count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1981
1982 for (i = 0; i < count; i++) {
1983 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1984 goto out_flush_all;
1985
1986 if (is_noncanonical_invlpg_address(entries[i], vcpu))
1987 continue;
1988
1989 /*
1990 * Lower 12 bits of 'address' encode the number of additional
1991 * pages to flush.
1992 */
1993 gva = entries[i] & PAGE_MASK;
1994 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1995 kvm_x86_call(flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1996
1997 ++vcpu->stat.tlb_flush;
1998 }
1999 return 0;
2000
2001 out_flush_all:
2002 kfifo_reset_out(&tlb_flush_fifo->entries);
2003
2004 /* Fall back to full flush. */
2005 return -ENOSPC;
2006 }
2007
kvm_hv_flush_tlb(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2008 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2009 {
2010 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2011 unsigned long *vcpu_mask = hv_vcpu->vcpu_mask;
2012 u64 *sparse_banks = hv_vcpu->sparse_banks;
2013 struct kvm *kvm = vcpu->kvm;
2014 struct hv_tlb_flush_ex flush_ex;
2015 struct hv_tlb_flush flush;
2016 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
2017 /*
2018 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
2019 * entries on the TLB flush fifo. The last entry, however, needs to be
2020 * always left free for 'flush all' entry which gets placed when
2021 * there is not enough space to put all the requested entries.
2022 */
2023 u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
2024 u64 *tlb_flush_entries;
2025 u64 valid_bank_mask;
2026 struct kvm_vcpu *v;
2027 unsigned long i;
2028 bool all_cpus;
2029
2030 /*
2031 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
2032 * sparse banks. Fail the build if KVM's max allowed number of
2033 * vCPUs (>4096) exceeds this limit.
2034 */
2035 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
2036
2037 /*
2038 * 'Slow' hypercall's first parameter is the address in guest's memory
2039 * where hypercall parameters are placed. This is either a GPA or a
2040 * nested GPA when KVM is handling the call from L2 ('direct' TLB
2041 * flush). Translate the address here so the memory can be uniformly
2042 * read with kvm_read_guest().
2043 */
2044 if (!hc->fast && is_guest_mode(vcpu)) {
2045 hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
2046 if (unlikely(hc->ingpa == INVALID_GPA))
2047 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2048 }
2049
2050 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
2051 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
2052 if (hc->fast) {
2053 flush.address_space = hc->ingpa;
2054 flush.flags = hc->outgpa;
2055 flush.processor_mask = sse128_lo(hc->xmm[0]);
2056 hc->consumed_xmm_halves = 1;
2057 } else {
2058 if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2059 &flush, sizeof(flush))))
2060 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2061 hc->data_offset = sizeof(flush);
2062 }
2063
2064 trace_kvm_hv_flush_tlb(flush.processor_mask,
2065 flush.address_space, flush.flags,
2066 is_guest_mode(vcpu));
2067
2068 valid_bank_mask = BIT_ULL(0);
2069 sparse_banks[0] = flush.processor_mask;
2070
2071 /*
2072 * Work around possible WS2012 bug: it sends hypercalls
2073 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2074 * while also expecting us to flush something and crashing if
2075 * we don't. Let's treat processor_mask == 0 same as
2076 * HV_FLUSH_ALL_PROCESSORS.
2077 */
2078 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2079 flush.processor_mask == 0;
2080 } else {
2081 if (hc->fast) {
2082 flush_ex.address_space = hc->ingpa;
2083 flush_ex.flags = hc->outgpa;
2084 memcpy(&flush_ex.hv_vp_set,
2085 &hc->xmm[0], sizeof(hc->xmm[0]));
2086 hc->consumed_xmm_halves = 2;
2087 } else {
2088 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2089 sizeof(flush_ex))))
2090 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2091 hc->data_offset = sizeof(flush_ex);
2092 }
2093
2094 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
2095 flush_ex.hv_vp_set.format,
2096 flush_ex.address_space,
2097 flush_ex.flags, is_guest_mode(vcpu));
2098
2099 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2100 all_cpus = flush_ex.hv_vp_set.format !=
2101 HV_GENERIC_SET_SPARSE_4K;
2102
2103 if (hc->var_cnt != hweight64(valid_bank_mask))
2104 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2105
2106 if (!all_cpus) {
2107 if (!hc->var_cnt)
2108 goto ret_success;
2109
2110 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2111 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2112 }
2113
2114 /*
2115 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2116 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2117 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and
2118 * consumed_xmm_halves to make sure TLB flush entries are read
2119 * from the correct offset.
2120 */
2121 if (hc->fast)
2122 hc->consumed_xmm_halves += hc->var_cnt;
2123 else
2124 hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
2125 }
2126
2127 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2128 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2129 hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2130 tlb_flush_entries = NULL;
2131 } else {
2132 if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
2133 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2134 tlb_flush_entries = __tlb_flush_entries;
2135 }
2136
2137 /*
2138 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2139 * analyze it here, flush TLB regardless of the specified address space.
2140 */
2141 if (all_cpus && !is_guest_mode(vcpu)) {
2142 kvm_for_each_vcpu(i, v, kvm) {
2143 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2144 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2145 tlb_flush_entries, hc->rep_cnt);
2146 }
2147
2148 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
2149 } else if (!is_guest_mode(vcpu)) {
2150 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
2151
2152 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2153 v = kvm_get_vcpu(kvm, i);
2154 if (!v)
2155 continue;
2156 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2157 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2158 tlb_flush_entries, hc->rep_cnt);
2159 }
2160
2161 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2162 } else {
2163 struct kvm_vcpu_hv *hv_v;
2164
2165 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
2166
2167 kvm_for_each_vcpu(i, v, kvm) {
2168 hv_v = to_hv_vcpu(v);
2169
2170 /*
2171 * The following check races with nested vCPUs entering/exiting
2172 * and/or migrating between L1's vCPUs, however the only case when
2173 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2174 * running on the same L1 vCPU from the moment of the request until
2175 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2176 * cases, e.g. when the target L2 vCPU migrates to a different L1
2177 * vCPU or when the corresponding L1 vCPU temporary switches to a
2178 * different L2 vCPU while the request is being processed.
2179 */
2180 if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2181 continue;
2182
2183 if (!all_cpus &&
2184 !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
2185 sparse_banks))
2186 continue;
2187
2188 __set_bit(i, vcpu_mask);
2189 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
2190 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2191 tlb_flush_entries, hc->rep_cnt);
2192 }
2193
2194 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2195 }
2196
2197 ret_success:
2198 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2199 return (u64)HV_STATUS_SUCCESS |
2200 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
2201 }
2202
kvm_hv_send_ipi_to_many(struct kvm * kvm,u32 vector,u64 * sparse_banks,u64 valid_bank_mask)2203 static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2204 u64 *sparse_banks, u64 valid_bank_mask)
2205 {
2206 struct kvm_lapic_irq irq = {
2207 .delivery_mode = APIC_DM_FIXED,
2208 .vector = vector
2209 };
2210 struct kvm_vcpu *vcpu;
2211 unsigned long i;
2212
2213 kvm_for_each_vcpu(i, vcpu, kvm) {
2214 if (sparse_banks &&
2215 !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
2216 valid_bank_mask, sparse_banks))
2217 continue;
2218
2219 /* We fail only when APIC is disabled */
2220 kvm_apic_set_irq(vcpu, &irq, NULL);
2221 }
2222 }
2223
kvm_hv_send_ipi(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2224 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2225 {
2226 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2227 u64 *sparse_banks = hv_vcpu->sparse_banks;
2228 struct kvm *kvm = vcpu->kvm;
2229 struct hv_send_ipi_ex send_ipi_ex;
2230 struct hv_send_ipi send_ipi;
2231 u64 valid_bank_mask;
2232 u32 vector;
2233 bool all_cpus;
2234
2235 if (!lapic_in_kernel(vcpu))
2236 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2237
2238 if (hc->code == HVCALL_SEND_IPI) {
2239 if (!hc->fast) {
2240 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
2241 sizeof(send_ipi))))
2242 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2243 sparse_banks[0] = send_ipi.cpu_mask;
2244 vector = send_ipi.vector;
2245 } else {
2246 /* 'reserved' part of hv_send_ipi should be 0 */
2247 if (unlikely(hc->ingpa >> 32 != 0))
2248 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2249 sparse_banks[0] = hc->outgpa;
2250 vector = (u32)hc->ingpa;
2251 }
2252 all_cpus = false;
2253 valid_bank_mask = BIT_ULL(0);
2254
2255 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
2256 } else {
2257 if (!hc->fast) {
2258 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2259 sizeof(send_ipi_ex))))
2260 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2261 } else {
2262 send_ipi_ex.vector = (u32)hc->ingpa;
2263 send_ipi_ex.vp_set.format = hc->outgpa;
2264 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2265 }
2266
2267 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
2268 send_ipi_ex.vp_set.format,
2269 send_ipi_ex.vp_set.valid_bank_mask);
2270
2271 vector = send_ipi_ex.vector;
2272 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
2273 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2274
2275 if (hc->var_cnt != hweight64(valid_bank_mask))
2276 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2277
2278 if (all_cpus)
2279 goto check_and_send_ipi;
2280
2281 if (!hc->var_cnt)
2282 goto ret_success;
2283
2284 if (!hc->fast)
2285 hc->data_offset = offsetof(struct hv_send_ipi_ex,
2286 vp_set.bank_contents);
2287 else
2288 hc->consumed_xmm_halves = 1;
2289
2290 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2291 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2292 }
2293
2294 check_and_send_ipi:
2295 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
2296 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2297
2298 if (all_cpus)
2299 kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
2300 else
2301 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
2302
2303 ret_success:
2304 return HV_STATUS_SUCCESS;
2305 }
2306
kvm_hv_set_cpuid(struct kvm_vcpu * vcpu,bool hyperv_enabled)2307 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
2308 {
2309 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2310 struct kvm_cpuid_entry2 *entry;
2311
2312 vcpu->arch.hyperv_enabled = hyperv_enabled;
2313
2314 if (!hv_vcpu) {
2315 /*
2316 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2317 * enabled in CPUID.
2318 */
2319 WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
2320 return;
2321 }
2322
2323 memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2324
2325 if (!vcpu->arch.hyperv_enabled)
2326 return;
2327
2328 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
2329 if (entry) {
2330 hv_vcpu->cpuid_cache.features_eax = entry->eax;
2331 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2332 hv_vcpu->cpuid_cache.features_edx = entry->edx;
2333 }
2334
2335 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
2336 if (entry) {
2337 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2338 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
2339 }
2340
2341 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
2342 if (entry)
2343 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
2344
2345 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2346 if (entry) {
2347 hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2348 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2349 }
2350 }
2351
kvm_hv_set_enforce_cpuid(struct kvm_vcpu * vcpu,bool enforce)2352 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2353 {
2354 struct kvm_vcpu_hv *hv_vcpu;
2355 int ret = 0;
2356
2357 if (!to_hv_vcpu(vcpu)) {
2358 if (enforce) {
2359 ret = kvm_hv_vcpu_init(vcpu);
2360 if (ret)
2361 return ret;
2362 } else {
2363 return 0;
2364 }
2365 }
2366
2367 hv_vcpu = to_hv_vcpu(vcpu);
2368 hv_vcpu->enforce_cpuid = enforce;
2369
2370 return ret;
2371 }
2372
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)2373 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2374 {
2375 bool longmode;
2376
2377 longmode = is_64_bit_hypercall(vcpu);
2378 if (longmode)
2379 kvm_rax_write(vcpu, result);
2380 else {
2381 kvm_rdx_write(vcpu, result >> 32);
2382 kvm_rax_write(vcpu, result & 0xffffffff);
2383 }
2384 }
2385
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)2386 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2387 {
2388 u32 tlb_lock_count = 0;
2389 int ret;
2390
2391 if (hv_result_success(result) && is_guest_mode(vcpu) &&
2392 kvm_hv_is_tlb_flush_hcall(vcpu) &&
2393 kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2394 &tlb_lock_count, sizeof(tlb_lock_count)))
2395 result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2396
2397 trace_kvm_hv_hypercall_done(result);
2398 kvm_hv_hypercall_set_result(vcpu, result);
2399 ++vcpu->stat.hypercalls;
2400
2401 ret = kvm_skip_emulated_instruction(vcpu);
2402
2403 if (tlb_lock_count)
2404 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2405
2406 return ret;
2407 }
2408
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)2409 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2410 {
2411 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2412 }
2413
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2414 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2415 {
2416 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2417 struct eventfd_ctx *eventfd;
2418
2419 if (unlikely(!hc->fast)) {
2420 int ret;
2421 gpa_t gpa = hc->ingpa;
2422
2423 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2424 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2425 return HV_STATUS_INVALID_ALIGNMENT;
2426
2427 ret = kvm_vcpu_read_guest(vcpu, gpa,
2428 &hc->ingpa, sizeof(hc->ingpa));
2429 if (ret < 0)
2430 return HV_STATUS_INVALID_ALIGNMENT;
2431 }
2432
2433 /*
2434 * Per spec, bits 32-47 contain the extra "flag number". However, we
2435 * have no use for it, and in all known usecases it is zero, so just
2436 * report lookup failure if it isn't.
2437 */
2438 if (hc->ingpa & 0xffff00000000ULL)
2439 return HV_STATUS_INVALID_PORT_ID;
2440 /* remaining bits are reserved-zero */
2441 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2442 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2443
2444 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2445 rcu_read_lock();
2446 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2447 rcu_read_unlock();
2448 if (!eventfd)
2449 return HV_STATUS_INVALID_PORT_ID;
2450
2451 eventfd_signal(eventfd);
2452 return HV_STATUS_SUCCESS;
2453 }
2454
is_xmm_fast_hypercall(struct kvm_hv_hcall * hc)2455 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2456 {
2457 switch (hc->code) {
2458 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2459 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2460 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2461 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2462 case HVCALL_SEND_IPI_EX:
2463 return true;
2464 }
2465
2466 return false;
2467 }
2468
kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall * hc)2469 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2470 {
2471 int reg;
2472
2473 kvm_fpu_get();
2474 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2475 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2476 kvm_fpu_put();
2477 }
2478
hv_check_hypercall_access(struct kvm_vcpu_hv * hv_vcpu,u16 code)2479 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2480 {
2481 if (!hv_vcpu->enforce_cpuid)
2482 return true;
2483
2484 switch (code) {
2485 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2486 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2487 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2488 case HVCALL_POST_MESSAGE:
2489 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2490 case HVCALL_SIGNAL_EVENT:
2491 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2492 case HVCALL_POST_DEBUG_DATA:
2493 case HVCALL_RETRIEVE_DEBUG_DATA:
2494 case HVCALL_RESET_DEBUG_SESSION:
2495 /*
2496 * Return 'true' when SynDBG is disabled so the resulting code
2497 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2498 */
2499 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2500 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2501 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2502 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2503 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2504 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2505 return false;
2506 fallthrough;
2507 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2508 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2509 return hv_vcpu->cpuid_cache.enlightenments_eax &
2510 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2511 case HVCALL_SEND_IPI_EX:
2512 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2513 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2514 return false;
2515 fallthrough;
2516 case HVCALL_SEND_IPI:
2517 return hv_vcpu->cpuid_cache.enlightenments_eax &
2518 HV_X64_CLUSTER_IPI_RECOMMENDED;
2519 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2520 return hv_vcpu->cpuid_cache.features_ebx &
2521 HV_ENABLE_EXTENDED_HYPERCALLS;
2522 default:
2523 break;
2524 }
2525
2526 return true;
2527 }
2528
kvm_hv_hypercall(struct kvm_vcpu * vcpu)2529 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2530 {
2531 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2532 struct kvm_hv_hcall hc;
2533 u64 ret = HV_STATUS_SUCCESS;
2534
2535 /*
2536 * hypercall generates UD from non zero cpl and real mode
2537 * per HYPER-V spec
2538 */
2539 if (kvm_x86_call(get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2540 kvm_queue_exception(vcpu, UD_VECTOR);
2541 return 1;
2542 }
2543
2544 #ifdef CONFIG_X86_64
2545 if (is_64_bit_hypercall(vcpu)) {
2546 hc.param = kvm_rcx_read(vcpu);
2547 hc.ingpa = kvm_rdx_read(vcpu);
2548 hc.outgpa = kvm_r8_read(vcpu);
2549 } else
2550 #endif
2551 {
2552 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2553 (kvm_rax_read(vcpu) & 0xffffffff);
2554 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2555 (kvm_rcx_read(vcpu) & 0xffffffff);
2556 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2557 (kvm_rsi_read(vcpu) & 0xffffffff);
2558 }
2559
2560 hc.code = hc.param & 0xffff;
2561 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
2562 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2563 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2564 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2565 hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2566
2567 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
2568 hc.rep_idx, hc.ingpa, hc.outgpa);
2569
2570 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2571 ret = HV_STATUS_ACCESS_DENIED;
2572 goto hypercall_complete;
2573 }
2574
2575 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2576 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2577 goto hypercall_complete;
2578 }
2579
2580 if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2581 if (unlikely(hv_vcpu->enforce_cpuid &&
2582 !(hv_vcpu->cpuid_cache.features_edx &
2583 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2584 kvm_queue_exception(vcpu, UD_VECTOR);
2585 return 1;
2586 }
2587
2588 kvm_hv_hypercall_read_xmm(&hc);
2589 }
2590
2591 switch (hc.code) {
2592 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2593 if (unlikely(hc.rep || hc.var_cnt)) {
2594 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2595 break;
2596 }
2597 kvm_vcpu_on_spin(vcpu, true);
2598 break;
2599 case HVCALL_SIGNAL_EVENT:
2600 if (unlikely(hc.rep || hc.var_cnt)) {
2601 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2602 break;
2603 }
2604 ret = kvm_hvcall_signal_event(vcpu, &hc);
2605 if (ret != HV_STATUS_INVALID_PORT_ID)
2606 break;
2607 fallthrough; /* maybe userspace knows this conn_id */
2608 case HVCALL_POST_MESSAGE:
2609 /* don't bother userspace if it has no way to handle it */
2610 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
2611 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2612 break;
2613 }
2614 goto hypercall_userspace_exit;
2615 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2616 if (unlikely(hc.var_cnt)) {
2617 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2618 break;
2619 }
2620 fallthrough;
2621 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2622 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2623 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2624 break;
2625 }
2626 ret = kvm_hv_flush_tlb(vcpu, &hc);
2627 break;
2628 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2629 if (unlikely(hc.var_cnt)) {
2630 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2631 break;
2632 }
2633 fallthrough;
2634 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2635 if (unlikely(hc.rep)) {
2636 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2637 break;
2638 }
2639 ret = kvm_hv_flush_tlb(vcpu, &hc);
2640 break;
2641 case HVCALL_SEND_IPI:
2642 if (unlikely(hc.var_cnt)) {
2643 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2644 break;
2645 }
2646 fallthrough;
2647 case HVCALL_SEND_IPI_EX:
2648 if (unlikely(hc.rep)) {
2649 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2650 break;
2651 }
2652 ret = kvm_hv_send_ipi(vcpu, &hc);
2653 break;
2654 case HVCALL_POST_DEBUG_DATA:
2655 case HVCALL_RETRIEVE_DEBUG_DATA:
2656 if (unlikely(hc.fast)) {
2657 ret = HV_STATUS_INVALID_PARAMETER;
2658 break;
2659 }
2660 fallthrough;
2661 case HVCALL_RESET_DEBUG_SESSION: {
2662 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2663
2664 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2665 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2666 break;
2667 }
2668
2669 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2670 ret = HV_STATUS_OPERATION_DENIED;
2671 break;
2672 }
2673 goto hypercall_userspace_exit;
2674 }
2675 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2676 if (unlikely(hc.fast)) {
2677 ret = HV_STATUS_INVALID_PARAMETER;
2678 break;
2679 }
2680 goto hypercall_userspace_exit;
2681 default:
2682 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2683 break;
2684 }
2685
2686 hypercall_complete:
2687 return kvm_hv_hypercall_complete(vcpu, ret);
2688
2689 hypercall_userspace_exit:
2690 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2691 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2692 vcpu->run->hyperv.u.hcall.input = hc.param;
2693 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2694 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2695 vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2696 return 0;
2697 }
2698
kvm_hv_init_vm(struct kvm * kvm)2699 void kvm_hv_init_vm(struct kvm *kvm)
2700 {
2701 struct kvm_hv *hv = to_kvm_hv(kvm);
2702
2703 mutex_init(&hv->hv_lock);
2704 idr_init(&hv->conn_to_evt);
2705 }
2706
kvm_hv_destroy_vm(struct kvm * kvm)2707 void kvm_hv_destroy_vm(struct kvm *kvm)
2708 {
2709 struct kvm_hv *hv = to_kvm_hv(kvm);
2710 struct eventfd_ctx *eventfd;
2711 int i;
2712
2713 idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2714 eventfd_ctx_put(eventfd);
2715 idr_destroy(&hv->conn_to_evt);
2716 }
2717
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)2718 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2719 {
2720 struct kvm_hv *hv = to_kvm_hv(kvm);
2721 struct eventfd_ctx *eventfd;
2722 int ret;
2723
2724 eventfd = eventfd_ctx_fdget(fd);
2725 if (IS_ERR(eventfd))
2726 return PTR_ERR(eventfd);
2727
2728 mutex_lock(&hv->hv_lock);
2729 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2730 GFP_KERNEL_ACCOUNT);
2731 mutex_unlock(&hv->hv_lock);
2732
2733 if (ret >= 0)
2734 return 0;
2735
2736 if (ret == -ENOSPC)
2737 ret = -EEXIST;
2738 eventfd_ctx_put(eventfd);
2739 return ret;
2740 }
2741
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)2742 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2743 {
2744 struct kvm_hv *hv = to_kvm_hv(kvm);
2745 struct eventfd_ctx *eventfd;
2746
2747 mutex_lock(&hv->hv_lock);
2748 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2749 mutex_unlock(&hv->hv_lock);
2750
2751 if (!eventfd)
2752 return -ENOENT;
2753
2754 synchronize_srcu(&kvm->srcu);
2755 eventfd_ctx_put(eventfd);
2756 return 0;
2757 }
2758
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)2759 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2760 {
2761 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2762 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2763 return -EINVAL;
2764
2765 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2766 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2767 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2768 }
2769
kvm_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2770 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2771 struct kvm_cpuid_entry2 __user *entries)
2772 {
2773 uint16_t evmcs_ver = 0;
2774 struct kvm_cpuid_entry2 cpuid_entries[] = {
2775 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2776 { .function = HYPERV_CPUID_INTERFACE },
2777 { .function = HYPERV_CPUID_VERSION },
2778 { .function = HYPERV_CPUID_FEATURES },
2779 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2780 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2781 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2782 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2783 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2784 { .function = HYPERV_CPUID_NESTED_FEATURES },
2785 };
2786 int i, nent = ARRAY_SIZE(cpuid_entries);
2787
2788 if (kvm_x86_ops.nested_ops->get_evmcs_version)
2789 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2790
2791 if (cpuid->nent < nent)
2792 return -E2BIG;
2793
2794 if (cpuid->nent > nent)
2795 cpuid->nent = nent;
2796
2797 for (i = 0; i < nent; i++) {
2798 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2799 u32 signature[3];
2800
2801 switch (ent->function) {
2802 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2803 memcpy(signature, "Linux KVM Hv", 12);
2804
2805 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2806 ent->ebx = signature[0];
2807 ent->ecx = signature[1];
2808 ent->edx = signature[2];
2809 break;
2810
2811 case HYPERV_CPUID_INTERFACE:
2812 ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2813 break;
2814
2815 case HYPERV_CPUID_VERSION:
2816 /*
2817 * We implement some Hyper-V 2016 functions so let's use
2818 * this version.
2819 */
2820 ent->eax = 0x00003839;
2821 ent->ebx = 0x000A0000;
2822 break;
2823
2824 case HYPERV_CPUID_FEATURES:
2825 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2826 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2827 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2828 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2829 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2830 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2831 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2832 ent->eax |= HV_MSR_RESET_AVAILABLE;
2833 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2834 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2835 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2836 ent->eax |= HV_ACCESS_TSC_INVARIANT;
2837
2838 ent->ebx |= HV_POST_MESSAGES;
2839 ent->ebx |= HV_SIGNAL_EVENTS;
2840 ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2841
2842 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2843 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2844 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2845
2846 ent->ebx |= HV_DEBUGGING;
2847 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2848 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2849 ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
2850
2851 /*
2852 * Direct Synthetic timers only make sense with in-kernel
2853 * LAPIC
2854 */
2855 if (!vcpu || lapic_in_kernel(vcpu))
2856 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2857
2858 break;
2859
2860 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2861 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2862 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2863 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2864 if (!vcpu || lapic_in_kernel(vcpu))
2865 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2866 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2867 if (evmcs_ver)
2868 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2869 if (!cpu_smt_possible())
2870 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2871
2872 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2873 /*
2874 * Default number of spinlock retry attempts, matches
2875 * HyperV 2016.
2876 */
2877 ent->ebx = 0x00000FFF;
2878
2879 break;
2880
2881 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2882 /* Maximum number of virtual processors */
2883 ent->eax = KVM_MAX_VCPUS;
2884 /*
2885 * Maximum number of logical processors, matches
2886 * HyperV 2016.
2887 */
2888 ent->ebx = 64;
2889
2890 break;
2891
2892 case HYPERV_CPUID_NESTED_FEATURES:
2893 ent->eax = evmcs_ver;
2894 ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
2895 ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2896 ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2897 break;
2898
2899 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2900 memcpy(signature, "Linux KVM Hv", 12);
2901
2902 ent->eax = 0;
2903 ent->ebx = signature[0];
2904 ent->ecx = signature[1];
2905 ent->edx = signature[2];
2906 break;
2907
2908 case HYPERV_CPUID_SYNDBG_INTERFACE:
2909 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2910 ent->eax = signature[0];
2911 break;
2912
2913 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2914 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2915 break;
2916
2917 default:
2918 break;
2919 }
2920 }
2921
2922 if (copy_to_user(entries, cpuid_entries,
2923 nent * sizeof(struct kvm_cpuid_entry2)))
2924 return -EFAULT;
2925
2926 return 0;
2927 }
2928