xref: /linux/arch/x86/kvm/hyperv.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include "x86.h"
23 #include "lapic.h"
24 #include "ioapic.h"
25 #include "cpuid.h"
26 #include "hyperv.h"
27 #include "mmu.h"
28 #include "xen.h"
29 
30 #include <linux/cpu.h>
31 #include <linux/kvm_host.h>
32 #include <linux/highmem.h>
33 #include <linux/sched/cputime.h>
34 #include <linux/spinlock.h>
35 #include <linux/eventfd.h>
36 
37 #include <asm/apicdef.h>
38 #include <asm/mshyperv.h>
39 #include <trace/events/kvm.h>
40 
41 #include "trace.h"
42 #include "irq.h"
43 #include "fpu.h"
44 
45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
46 
47 /*
48  * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49  * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50  * where each bit tells which extended hypercall is available besides
51  * HvExtCallQueryCapabilities.
52  *
53  * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54  * assigned.
55  *
56  * 0x8002 - Bit 0
57  * 0x8003 - Bit 1
58  * ..
59  * 0x8041 - Bit 63
60  *
61  * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62  */
63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64 
65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66 				bool vcpu_kick);
67 
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)68 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69 {
70 	return atomic64_read(&synic->sint[sint]);
71 }
72 
synic_get_sint_vector(u64 sint_value)73 static inline int synic_get_sint_vector(u64 sint_value)
74 {
75 	if (sint_value & HV_SYNIC_SINT_MASKED)
76 		return -1;
77 	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78 }
79 
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81 				      int vector)
82 {
83 	int i;
84 
85 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
87 			return true;
88 	}
89 	return false;
90 }
91 
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93 				     int vector)
94 {
95 	int i;
96 	u64 sint_value;
97 
98 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99 		sint_value = synic_read_sint(synic, i);
100 		if (synic_get_sint_vector(sint_value) == vector &&
101 		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
102 			return true;
103 	}
104 	return false;
105 }
106 
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)107 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108 				int vector)
109 {
110 	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111 	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
112 	bool auto_eoi_old, auto_eoi_new;
113 
114 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115 		return;
116 
117 	if (synic_has_vector_connected(synic, vector))
118 		__set_bit(vector, synic->vec_bitmap);
119 	else
120 		__clear_bit(vector, synic->vec_bitmap);
121 
122 	auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
123 
124 	if (synic_has_vector_auto_eoi(synic, vector))
125 		__set_bit(vector, synic->auto_eoi_bitmap);
126 	else
127 		__clear_bit(vector, synic->auto_eoi_bitmap);
128 
129 	auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
130 
131 	if (auto_eoi_old == auto_eoi_new)
132 		return;
133 
134 	if (!enable_apicv)
135 		return;
136 
137 	down_write(&vcpu->kvm->arch.apicv_update_lock);
138 
139 	if (auto_eoi_new)
140 		hv->synic_auto_eoi_used++;
141 	else
142 		hv->synic_auto_eoi_used--;
143 
144 	/*
145 	 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 	 * the hypervisor to manually inject IRQs.
147 	 */
148 	__kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
149 					 APICV_INHIBIT_REASON_HYPERV,
150 					 !!hv->synic_auto_eoi_used);
151 
152 	up_write(&vcpu->kvm->arch.apicv_update_lock);
153 }
154 
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)155 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156 			  u64 data, bool host)
157 {
158 	int vector, old_vector;
159 	bool masked;
160 
161 	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
162 	masked = data & HV_SYNIC_SINT_MASKED;
163 
164 	/*
165 	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 	 * default '0x10000' value on boot and this should not #GP. We need to
167 	 * allow zero-initing the register from host as well.
168 	 */
169 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
170 		return 1;
171 	/*
172 	 * Guest may configure multiple SINTs to use the same vector, so
173 	 * we maintain a bitmap of vectors handled by synic, and a
174 	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
175 	 * updated here, and atomically queried on fast paths.
176 	 */
177 	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
178 
179 	atomic64_set(&synic->sint[sint], data);
180 
181 	synic_update_vector(synic, old_vector);
182 
183 	synic_update_vector(synic, vector);
184 
185 	/* Load SynIC vectors into EOI exit bitmap */
186 	kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
187 	return 0;
188 }
189 
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)190 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191 {
192 	struct kvm_vcpu *vcpu = NULL;
193 	unsigned long i;
194 
195 	if (vpidx >= KVM_MAX_VCPUS)
196 		return NULL;
197 
198 	vcpu = kvm_get_vcpu(kvm, vpidx);
199 	if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
200 		return vcpu;
201 	kvm_for_each_vcpu(i, vcpu, kvm)
202 		if (kvm_hv_get_vpindex(vcpu) == vpidx)
203 			return vcpu;
204 	return NULL;
205 }
206 
synic_get(struct kvm * kvm,u32 vpidx)207 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
208 {
209 	struct kvm_vcpu *vcpu;
210 	struct kvm_vcpu_hv_synic *synic;
211 
212 	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
213 	if (!vcpu || !to_hv_vcpu(vcpu))
214 		return NULL;
215 	synic = to_hv_synic(vcpu);
216 	return (synic->active) ? synic : NULL;
217 }
218 
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220 {
221 	struct kvm *kvm = vcpu->kvm;
222 	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
223 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
224 	struct kvm_vcpu_hv_stimer *stimer;
225 	int gsi, idx;
226 
227 	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
228 
229 	/* Try to deliver pending Hyper-V SynIC timers messages */
230 	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231 		stimer = &hv_vcpu->stimer[idx];
232 		if (stimer->msg_pending && stimer->config.enable &&
233 		    !stimer->config.direct_mode &&
234 		    stimer->config.sintx == sint)
235 			stimer_mark_pending(stimer, false);
236 	}
237 
238 	idx = srcu_read_lock(&kvm->irq_srcu);
239 	gsi = atomic_read(&synic->sint_to_gsi[sint]);
240 	if (gsi != -1)
241 		kvm_notify_acked_gsi(kvm, gsi);
242 	srcu_read_unlock(&kvm->irq_srcu, idx);
243 }
244 
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)245 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246 {
247 	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
248 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
249 
250 	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251 	hv_vcpu->exit.u.synic.msr = msr;
252 	hv_vcpu->exit.u.synic.control = synic->control;
253 	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254 	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255 
256 	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257 }
258 
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)259 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260 			 u32 msr, u64 data, bool host)
261 {
262 	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
263 	int ret;
264 
265 	if (!synic->active && (!host || data))
266 		return 1;
267 
268 	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
269 
270 	ret = 0;
271 	switch (msr) {
272 	case HV_X64_MSR_SCONTROL:
273 		synic->control = data;
274 		if (!host)
275 			synic_exit(synic, msr);
276 		break;
277 	case HV_X64_MSR_SVERSION:
278 		if (!host) {
279 			ret = 1;
280 			break;
281 		}
282 		synic->version = data;
283 		break;
284 	case HV_X64_MSR_SIEFP:
285 		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286 		    !synic->dont_zero_synic_pages)
287 			if (kvm_clear_guest(vcpu->kvm,
288 					    data & PAGE_MASK, PAGE_SIZE)) {
289 				ret = 1;
290 				break;
291 			}
292 		synic->evt_page = data;
293 		if (!host)
294 			synic_exit(synic, msr);
295 		break;
296 	case HV_X64_MSR_SIMP:
297 		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298 		    !synic->dont_zero_synic_pages)
299 			if (kvm_clear_guest(vcpu->kvm,
300 					    data & PAGE_MASK, PAGE_SIZE)) {
301 				ret = 1;
302 				break;
303 			}
304 		synic->msg_page = data;
305 		if (!host)
306 			synic_exit(synic, msr);
307 		break;
308 	case HV_X64_MSR_EOM: {
309 		int i;
310 
311 		if (!synic->active)
312 			break;
313 
314 		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315 			kvm_hv_notify_acked_sint(vcpu, i);
316 		break;
317 	}
318 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
319 		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
320 		break;
321 	default:
322 		ret = 1;
323 		break;
324 	}
325 	return ret;
326 }
327 
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329 {
330 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
331 
332 	return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333 		HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
334 }
335 
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337 {
338 	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
339 
340 	if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341 		hv->hv_syndbg.control.status =
342 			vcpu->run->hyperv.u.syndbg.status;
343 	return 1;
344 }
345 
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)346 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347 {
348 	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
349 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
350 
351 	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352 	hv_vcpu->exit.u.syndbg.msr = msr;
353 	hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354 	hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355 	hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356 	hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357 	vcpu->arch.complete_userspace_io =
358 			kvm_hv_syndbg_complete_userspace;
359 
360 	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361 }
362 
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)363 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364 {
365 	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
366 
367 	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368 		return 1;
369 
370 	trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
371 				    to_hv_vcpu(vcpu)->vp_index, msr, data);
372 	switch (msr) {
373 	case HV_X64_MSR_SYNDBG_CONTROL:
374 		syndbg->control.control = data;
375 		if (!host)
376 			syndbg_exit(vcpu, msr);
377 		break;
378 	case HV_X64_MSR_SYNDBG_STATUS:
379 		syndbg->control.status = data;
380 		break;
381 	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382 		syndbg->control.send_page = data;
383 		break;
384 	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385 		syndbg->control.recv_page = data;
386 		break;
387 	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388 		syndbg->control.pending_page = data;
389 		if (!host)
390 			syndbg_exit(vcpu, msr);
391 		break;
392 	case HV_X64_MSR_SYNDBG_OPTIONS:
393 		syndbg->options = data;
394 		break;
395 	default:
396 		break;
397 	}
398 
399 	return 0;
400 }
401 
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)402 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403 {
404 	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
405 
406 	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407 		return 1;
408 
409 	switch (msr) {
410 	case HV_X64_MSR_SYNDBG_CONTROL:
411 		*pdata = syndbg->control.control;
412 		break;
413 	case HV_X64_MSR_SYNDBG_STATUS:
414 		*pdata = syndbg->control.status;
415 		break;
416 	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417 		*pdata = syndbg->control.send_page;
418 		break;
419 	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420 		*pdata = syndbg->control.recv_page;
421 		break;
422 	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423 		*pdata = syndbg->control.pending_page;
424 		break;
425 	case HV_X64_MSR_SYNDBG_OPTIONS:
426 		*pdata = syndbg->options;
427 		break;
428 	default:
429 		break;
430 	}
431 
432 	trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
433 
434 	return 0;
435 }
436 
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)437 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438 			 bool host)
439 {
440 	int ret;
441 
442 	if (!synic->active && !host)
443 		return 1;
444 
445 	ret = 0;
446 	switch (msr) {
447 	case HV_X64_MSR_SCONTROL:
448 		*pdata = synic->control;
449 		break;
450 	case HV_X64_MSR_SVERSION:
451 		*pdata = synic->version;
452 		break;
453 	case HV_X64_MSR_SIEFP:
454 		*pdata = synic->evt_page;
455 		break;
456 	case HV_X64_MSR_SIMP:
457 		*pdata = synic->msg_page;
458 		break;
459 	case HV_X64_MSR_EOM:
460 		*pdata = 0;
461 		break;
462 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463 		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
464 		break;
465 	default:
466 		ret = 1;
467 		break;
468 	}
469 	return ret;
470 }
471 
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)472 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
473 {
474 	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
475 	struct kvm_lapic_irq irq;
476 	int ret, vector;
477 
478 	if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479 		return -EINVAL;
480 
481 	if (sint >= ARRAY_SIZE(synic->sint))
482 		return -EINVAL;
483 
484 	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
485 	if (vector < 0)
486 		return -ENOENT;
487 
488 	memset(&irq, 0, sizeof(irq));
489 	irq.shorthand = APIC_DEST_SELF;
490 	irq.dest_mode = APIC_DEST_PHYSICAL;
491 	irq.delivery_mode = APIC_DM_FIXED;
492 	irq.vector = vector;
493 	irq.level = 1;
494 
495 	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
496 	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
497 	return ret;
498 }
499 
kvm_hv_synic_set_irq(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)500 int kvm_hv_synic_set_irq(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
501 			 int irq_source_id, int level, bool line_status)
502 {
503 	struct kvm_vcpu_hv_synic *synic;
504 
505 	if (!level)
506 		return -1;
507 
508 	synic = synic_get(kvm, e->hv_sint.vcpu);
509 	if (!synic)
510 		return -EINVAL;
511 
512 	return synic_set_irq(synic, e->hv_sint.sint);
513 }
514 
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)515 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
516 {
517 	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
518 	int i;
519 
520 	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
521 
522 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
523 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
524 			kvm_hv_notify_acked_sint(vcpu, i);
525 }
526 
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)527 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
528 {
529 	struct kvm_vcpu_hv_synic *synic;
530 
531 	synic = synic_get(kvm, vpidx);
532 	if (!synic)
533 		return -EINVAL;
534 
535 	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
536 		return -EINVAL;
537 
538 	atomic_set(&synic->sint_to_gsi[sint], gsi);
539 	return 0;
540 }
541 
kvm_hv_irq_routing_update(struct kvm * kvm)542 void kvm_hv_irq_routing_update(struct kvm *kvm)
543 {
544 	struct kvm_irq_routing_table *irq_rt;
545 	struct kvm_kernel_irq_routing_entry *e;
546 	u32 gsi;
547 
548 	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
549 					lockdep_is_held(&kvm->irq_lock));
550 
551 	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
552 		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
553 			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
554 				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
555 						    e->hv_sint.sint, gsi);
556 		}
557 	}
558 }
559 
synic_init(struct kvm_vcpu_hv_synic * synic)560 static void synic_init(struct kvm_vcpu_hv_synic *synic)
561 {
562 	int i;
563 
564 	memset(synic, 0, sizeof(*synic));
565 	synic->version = HV_SYNIC_VERSION_1;
566 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
567 		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
568 		atomic_set(&synic->sint_to_gsi[i], -1);
569 	}
570 }
571 
get_time_ref_counter(struct kvm * kvm)572 static u64 get_time_ref_counter(struct kvm *kvm)
573 {
574 	struct kvm_hv *hv = to_kvm_hv(kvm);
575 	struct kvm_vcpu *vcpu;
576 	u64 tsc;
577 
578 	/*
579 	 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
580 	 * is broken, disabled or being updated.
581 	 */
582 	if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
583 		return div_u64(get_kvmclock_ns(kvm), 100);
584 
585 	vcpu = kvm_get_vcpu(kvm, 0);
586 	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
587 	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
588 		+ hv->tsc_ref.tsc_offset;
589 }
590 
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)591 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
592 				bool vcpu_kick)
593 {
594 	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
595 
596 	set_bit(stimer->index,
597 		to_hv_vcpu(vcpu)->stimer_pending_bitmap);
598 	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
599 	if (vcpu_kick)
600 		kvm_vcpu_kick(vcpu);
601 }
602 
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)603 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
604 {
605 	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
606 
607 	trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
608 				    stimer->index);
609 
610 	hrtimer_cancel(&stimer->timer);
611 	clear_bit(stimer->index,
612 		  to_hv_vcpu(vcpu)->stimer_pending_bitmap);
613 	stimer->msg_pending = false;
614 	stimer->exp_time = 0;
615 }
616 
stimer_timer_callback(struct hrtimer * timer)617 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
618 {
619 	struct kvm_vcpu_hv_stimer *stimer;
620 
621 	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
622 	trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
623 				     stimer->index);
624 	stimer_mark_pending(stimer, true);
625 
626 	return HRTIMER_NORESTART;
627 }
628 
629 /*
630  * stimer_start() assumptions:
631  * a) stimer->count is not equal to 0
632  * b) stimer->config has HV_STIMER_ENABLE flag
633  */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)634 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
635 {
636 	u64 time_now;
637 	ktime_t ktime_now;
638 
639 	time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
640 	ktime_now = ktime_get();
641 
642 	if (stimer->config.periodic) {
643 		if (stimer->exp_time) {
644 			if (time_now >= stimer->exp_time) {
645 				u64 remainder;
646 
647 				div64_u64_rem(time_now - stimer->exp_time,
648 					      stimer->count, &remainder);
649 				stimer->exp_time =
650 					time_now + (stimer->count - remainder);
651 			}
652 		} else
653 			stimer->exp_time = time_now + stimer->count;
654 
655 		trace_kvm_hv_stimer_start_periodic(
656 					hv_stimer_to_vcpu(stimer)->vcpu_id,
657 					stimer->index,
658 					time_now, stimer->exp_time);
659 
660 		hrtimer_start(&stimer->timer,
661 			      ktime_add_ns(ktime_now,
662 					   100 * (stimer->exp_time - time_now)),
663 			      HRTIMER_MODE_ABS);
664 		return 0;
665 	}
666 	stimer->exp_time = stimer->count;
667 	if (time_now >= stimer->count) {
668 		/*
669 		 * Expire timer according to Hypervisor Top-Level Functional
670 		 * specification v4(15.3.1):
671 		 * "If a one shot is enabled and the specified count is in
672 		 * the past, it will expire immediately."
673 		 */
674 		stimer_mark_pending(stimer, false);
675 		return 0;
676 	}
677 
678 	trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
679 					   stimer->index,
680 					   time_now, stimer->count);
681 
682 	hrtimer_start(&stimer->timer,
683 		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
684 		      HRTIMER_MODE_ABS);
685 	return 0;
686 }
687 
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)688 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
689 			     bool host)
690 {
691 	union hv_stimer_config new_config = {.as_uint64 = config},
692 		old_config = {.as_uint64 = stimer->config.as_uint64};
693 	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
694 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
695 	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
696 
697 	if (!synic->active && (!host || config))
698 		return 1;
699 
700 	if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
701 		     !(hv_vcpu->cpuid_cache.features_edx &
702 		       HV_STIMER_DIRECT_MODE_AVAILABLE)))
703 		return 1;
704 
705 	trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
706 				       stimer->index, config, host);
707 
708 	stimer_cleanup(stimer);
709 	if (old_config.enable &&
710 	    !new_config.direct_mode && new_config.sintx == 0)
711 		new_config.enable = 0;
712 	stimer->config.as_uint64 = new_config.as_uint64;
713 
714 	if (stimer->config.enable)
715 		stimer_mark_pending(stimer, false);
716 
717 	return 0;
718 }
719 
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)720 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
721 			    bool host)
722 {
723 	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
724 	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
725 
726 	if (!synic->active && (!host || count))
727 		return 1;
728 
729 	trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
730 				      stimer->index, count, host);
731 
732 	stimer_cleanup(stimer);
733 	stimer->count = count;
734 	if (!host) {
735 		if (stimer->count == 0)
736 			stimer->config.enable = 0;
737 		else if (stimer->config.auto_enable)
738 			stimer->config.enable = 1;
739 	}
740 
741 	if (stimer->config.enable)
742 		stimer_mark_pending(stimer, false);
743 
744 	return 0;
745 }
746 
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)747 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
748 {
749 	*pconfig = stimer->config.as_uint64;
750 	return 0;
751 }
752 
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)753 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
754 {
755 	*pcount = stimer->count;
756 	return 0;
757 }
758 
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)759 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
760 			     struct hv_message *src_msg, bool no_retry)
761 {
762 	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
763 	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
764 	gfn_t msg_page_gfn;
765 	struct hv_message_header hv_hdr;
766 	int r;
767 
768 	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
769 		return -ENOENT;
770 
771 	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
772 
773 	/*
774 	 * Strictly following the spec-mandated ordering would assume setting
775 	 * .msg_pending before checking .message_type.  However, this function
776 	 * is only called in vcpu context so the entire update is atomic from
777 	 * guest POV and thus the exact order here doesn't matter.
778 	 */
779 	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
780 				     msg_off + offsetof(struct hv_message,
781 							header.message_type),
782 				     sizeof(hv_hdr.message_type));
783 	if (r < 0)
784 		return r;
785 
786 	if (hv_hdr.message_type != HVMSG_NONE) {
787 		if (no_retry)
788 			return 0;
789 
790 		hv_hdr.message_flags.msg_pending = 1;
791 		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
792 					      &hv_hdr.message_flags,
793 					      msg_off +
794 					      offsetof(struct hv_message,
795 						       header.message_flags),
796 					      sizeof(hv_hdr.message_flags));
797 		if (r < 0)
798 			return r;
799 		return -EAGAIN;
800 	}
801 
802 	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
803 				      sizeof(src_msg->header) +
804 				      src_msg->header.payload_size);
805 	if (r < 0)
806 		return r;
807 
808 	r = synic_set_irq(synic, sint);
809 	if (r < 0)
810 		return r;
811 	if (r == 0)
812 		return -EFAULT;
813 	return 0;
814 }
815 
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)816 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
817 {
818 	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
819 	struct hv_message *msg = &stimer->msg;
820 	struct hv_timer_message_payload *payload =
821 			(struct hv_timer_message_payload *)&msg->u.payload;
822 
823 	/*
824 	 * To avoid piling up periodic ticks, don't retry message
825 	 * delivery for them (within "lazy" lost ticks policy).
826 	 */
827 	bool no_retry = stimer->config.periodic;
828 
829 	payload->expiration_time = stimer->exp_time;
830 	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
831 	return synic_deliver_msg(to_hv_synic(vcpu),
832 				 stimer->config.sintx, msg,
833 				 no_retry);
834 }
835 
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)836 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
837 {
838 	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
839 	struct kvm_lapic_irq irq = {
840 		.delivery_mode = APIC_DM_FIXED,
841 		.vector = stimer->config.apic_vector
842 	};
843 
844 	if (lapic_in_kernel(vcpu))
845 		return !kvm_apic_set_irq(vcpu, &irq, NULL);
846 	return 0;
847 }
848 
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)849 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
850 {
851 	int r, direct = stimer->config.direct_mode;
852 
853 	stimer->msg_pending = true;
854 	if (!direct)
855 		r = stimer_send_msg(stimer);
856 	else
857 		r = stimer_notify_direct(stimer);
858 	trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
859 				       stimer->index, direct, r);
860 	if (!r) {
861 		stimer->msg_pending = false;
862 		if (!(stimer->config.periodic))
863 			stimer->config.enable = 0;
864 	}
865 }
866 
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)867 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
868 {
869 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
870 	struct kvm_vcpu_hv_stimer *stimer;
871 	u64 time_now, exp_time;
872 	int i;
873 
874 	if (!hv_vcpu)
875 		return;
876 
877 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
878 		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
879 			stimer = &hv_vcpu->stimer[i];
880 			if (stimer->config.enable) {
881 				exp_time = stimer->exp_time;
882 
883 				if (exp_time) {
884 					time_now =
885 						get_time_ref_counter(vcpu->kvm);
886 					if (time_now >= exp_time)
887 						stimer_expiration(stimer);
888 				}
889 
890 				if ((stimer->config.enable) &&
891 				    stimer->count) {
892 					if (!stimer->msg_pending)
893 						stimer_start(stimer);
894 				} else
895 					stimer_cleanup(stimer);
896 			}
897 		}
898 }
899 
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)900 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
901 {
902 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
903 	int i;
904 
905 	if (!hv_vcpu)
906 		return;
907 
908 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
909 		stimer_cleanup(&hv_vcpu->stimer[i]);
910 
911 	kfree(hv_vcpu);
912 	vcpu->arch.hyperv = NULL;
913 }
914 
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)915 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
916 {
917 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
918 
919 	if (!hv_vcpu)
920 		return false;
921 
922 	if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
923 		return false;
924 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
925 }
926 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
927 
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu)928 int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
929 {
930 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
931 
932 	if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
933 		return -EFAULT;
934 
935 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
936 				     &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
937 }
938 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
939 
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)940 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
941 {
942 	struct hv_message *msg = &stimer->msg;
943 	struct hv_timer_message_payload *payload =
944 			(struct hv_timer_message_payload *)&msg->u.payload;
945 
946 	memset(&msg->header, 0, sizeof(msg->header));
947 	msg->header.message_type = HVMSG_TIMER_EXPIRED;
948 	msg->header.payload_size = sizeof(*payload);
949 
950 	payload->timer_index = stimer->index;
951 	payload->expiration_time = 0;
952 	payload->delivery_time = 0;
953 }
954 
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)955 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
956 {
957 	memset(stimer, 0, sizeof(*stimer));
958 	stimer->index = timer_index;
959 	hrtimer_setup(&stimer->timer, stimer_timer_callback, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
960 	stimer_prepare_msg(stimer);
961 }
962 
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)963 int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
964 {
965 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
966 	int i;
967 
968 	if (hv_vcpu)
969 		return 0;
970 
971 	hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
972 	if (!hv_vcpu)
973 		return -ENOMEM;
974 
975 	vcpu->arch.hyperv = hv_vcpu;
976 	hv_vcpu->vcpu = vcpu;
977 
978 	synic_init(&hv_vcpu->synic);
979 
980 	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
981 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
982 		stimer_init(&hv_vcpu->stimer[i], i);
983 
984 	hv_vcpu->vp_index = vcpu->vcpu_idx;
985 
986 	for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
987 		INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
988 		spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
989 	}
990 
991 	return 0;
992 }
993 
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)994 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
995 {
996 	struct kvm_vcpu_hv_synic *synic;
997 	int r;
998 
999 	r = kvm_hv_vcpu_init(vcpu);
1000 	if (r)
1001 		return r;
1002 
1003 	synic = to_hv_synic(vcpu);
1004 
1005 	synic->active = true;
1006 	synic->dont_zero_synic_pages = dont_zero_synic_pages;
1007 	synic->control = HV_SYNIC_CONTROL_ENABLE;
1008 	return 0;
1009 }
1010 
kvm_hv_msr_partition_wide(u32 msr)1011 static bool kvm_hv_msr_partition_wide(u32 msr)
1012 {
1013 	bool r = false;
1014 
1015 	switch (msr) {
1016 	case HV_X64_MSR_GUEST_OS_ID:
1017 	case HV_X64_MSR_HYPERCALL:
1018 	case HV_X64_MSR_REFERENCE_TSC:
1019 	case HV_X64_MSR_TIME_REF_COUNT:
1020 	case HV_X64_MSR_CRASH_CTL:
1021 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1022 	case HV_X64_MSR_RESET:
1023 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1024 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1025 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1026 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1027 	case HV_X64_MSR_SYNDBG_OPTIONS:
1028 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1029 		r = true;
1030 		break;
1031 	}
1032 
1033 	return r;
1034 }
1035 
kvm_hv_msr_get_crash_data(struct kvm * kvm,u32 index,u64 * pdata)1036 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
1037 {
1038 	struct kvm_hv *hv = to_kvm_hv(kvm);
1039 	size_t size = ARRAY_SIZE(hv->hv_crash_param);
1040 
1041 	if (WARN_ON_ONCE(index >= size))
1042 		return -EINVAL;
1043 
1044 	*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
1045 	return 0;
1046 }
1047 
kvm_hv_msr_get_crash_ctl(struct kvm * kvm,u64 * pdata)1048 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1049 {
1050 	struct kvm_hv *hv = to_kvm_hv(kvm);
1051 
1052 	*pdata = hv->hv_crash_ctl;
1053 	return 0;
1054 }
1055 
kvm_hv_msr_set_crash_ctl(struct kvm * kvm,u64 data)1056 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1057 {
1058 	struct kvm_hv *hv = to_kvm_hv(kvm);
1059 
1060 	hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1061 
1062 	return 0;
1063 }
1064 
kvm_hv_msr_set_crash_data(struct kvm * kvm,u32 index,u64 data)1065 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1066 {
1067 	struct kvm_hv *hv = to_kvm_hv(kvm);
1068 	size_t size = ARRAY_SIZE(hv->hv_crash_param);
1069 
1070 	if (WARN_ON_ONCE(index >= size))
1071 		return -EINVAL;
1072 
1073 	hv->hv_crash_param[array_index_nospec(index, size)] = data;
1074 	return 0;
1075 }
1076 
1077 /*
1078  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1079  * between them is possible:
1080  *
1081  * kvmclock formula:
1082  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1083  *           + system_time
1084  *
1085  * Hyper-V formula:
1086  *    nsec/100 = ticks * scale / 2^64 + offset
1087  *
1088  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1089  * By dividing the kvmclock formula by 100 and equating what's left we get:
1090  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1091  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1092  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1093  *
1094  * Now expand the kvmclock formula and divide by 100:
1095  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1096  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1097  *           + system_time
1098  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1099  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1100  *               + system_time / 100
1101  *
1102  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1103  *    nsec/100 = ticks * scale / 2^64
1104  *               - tsc_timestamp * scale / 2^64
1105  *               + system_time / 100
1106  *
1107  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1108  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1109  *
1110  * These two equivalencies are implemented in this function.
1111  */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1112 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1113 					struct ms_hyperv_tsc_page *tsc_ref)
1114 {
1115 	u64 max_mul;
1116 
1117 	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1118 		return false;
1119 
1120 	/*
1121 	 * check if scale would overflow, if so we use the time ref counter
1122 	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1123 	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1124 	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1125 	 */
1126 	max_mul = 100ull << (32 - hv_clock->tsc_shift);
1127 	if (hv_clock->tsc_to_system_mul >= max_mul)
1128 		return false;
1129 
1130 	/*
1131 	 * Otherwise compute the scale and offset according to the formulas
1132 	 * derived above.
1133 	 */
1134 	tsc_ref->tsc_scale =
1135 		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1136 				hv_clock->tsc_to_system_mul,
1137 				100);
1138 
1139 	tsc_ref->tsc_offset = hv_clock->system_time;
1140 	do_div(tsc_ref->tsc_offset, 100);
1141 	tsc_ref->tsc_offset -=
1142 		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1143 	return true;
1144 }
1145 
1146 /*
1147  * Don't touch TSC page values if the guest has opted for TSC emulation after
1148  * migration. KVM doesn't fully support reenlightenment notifications and TSC
1149  * access emulation and Hyper-V is known to expect the values in TSC page to
1150  * stay constant before TSC access emulation is disabled from guest side
1151  * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1152  * frequency and guest visible TSC value across migration (and prevent it when
1153  * TSC scaling is unsupported).
1154  */
tsc_page_update_unsafe(struct kvm_hv * hv)1155 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1156 {
1157 	return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1158 		hv->hv_tsc_emulation_control;
1159 }
1160 
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1161 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1162 			   struct pvclock_vcpu_time_info *hv_clock)
1163 {
1164 	struct kvm_hv *hv = to_kvm_hv(kvm);
1165 	u32 tsc_seq;
1166 	u64 gfn;
1167 
1168 	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1169 	BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1170 
1171 	mutex_lock(&hv->hv_lock);
1172 
1173 	if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1174 	    hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
1175 	    hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1176 		goto out_unlock;
1177 
1178 	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1179 		goto out_unlock;
1180 
1181 	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1182 	/*
1183 	 * Because the TSC parameters only vary when there is a
1184 	 * change in the master clock, do not bother with caching.
1185 	 */
1186 	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1187 				    &tsc_seq, sizeof(tsc_seq))))
1188 		goto out_err;
1189 
1190 	if (tsc_seq && tsc_page_update_unsafe(hv)) {
1191 		if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1192 			goto out_err;
1193 
1194 		hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1195 		goto out_unlock;
1196 	}
1197 
1198 	/*
1199 	 * While we're computing and writing the parameters, force the
1200 	 * guest to use the time reference count MSR.
1201 	 */
1202 	hv->tsc_ref.tsc_sequence = 0;
1203 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1204 			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1205 		goto out_err;
1206 
1207 	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1208 		goto out_err;
1209 
1210 	/* Ensure sequence is zero before writing the rest of the struct.  */
1211 	smp_wmb();
1212 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1213 		goto out_err;
1214 
1215 	/*
1216 	 * Now switch to the TSC page mechanism by writing the sequence.
1217 	 */
1218 	tsc_seq++;
1219 	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1220 		tsc_seq = 1;
1221 
1222 	/* Write the struct entirely before the non-zero sequence.  */
1223 	smp_wmb();
1224 
1225 	hv->tsc_ref.tsc_sequence = tsc_seq;
1226 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1227 			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1228 		goto out_err;
1229 
1230 	hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1231 	goto out_unlock;
1232 
1233 out_err:
1234 	hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1235 out_unlock:
1236 	mutex_unlock(&hv->hv_lock);
1237 }
1238 
kvm_hv_request_tsc_page_update(struct kvm * kvm)1239 void kvm_hv_request_tsc_page_update(struct kvm *kvm)
1240 {
1241 	struct kvm_hv *hv = to_kvm_hv(kvm);
1242 
1243 	mutex_lock(&hv->hv_lock);
1244 
1245 	if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1246 	    !tsc_page_update_unsafe(hv))
1247 		hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1248 
1249 	mutex_unlock(&hv->hv_lock);
1250 }
1251 
hv_check_msr_access(struct kvm_vcpu_hv * hv_vcpu,u32 msr)1252 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1253 {
1254 	if (!hv_vcpu->enforce_cpuid)
1255 		return true;
1256 
1257 	switch (msr) {
1258 	case HV_X64_MSR_GUEST_OS_ID:
1259 	case HV_X64_MSR_HYPERCALL:
1260 		return hv_vcpu->cpuid_cache.features_eax &
1261 			HV_MSR_HYPERCALL_AVAILABLE;
1262 	case HV_X64_MSR_VP_RUNTIME:
1263 		return hv_vcpu->cpuid_cache.features_eax &
1264 			HV_MSR_VP_RUNTIME_AVAILABLE;
1265 	case HV_X64_MSR_TIME_REF_COUNT:
1266 		return hv_vcpu->cpuid_cache.features_eax &
1267 			HV_MSR_TIME_REF_COUNT_AVAILABLE;
1268 	case HV_X64_MSR_VP_INDEX:
1269 		return hv_vcpu->cpuid_cache.features_eax &
1270 			HV_MSR_VP_INDEX_AVAILABLE;
1271 	case HV_X64_MSR_RESET:
1272 		return hv_vcpu->cpuid_cache.features_eax &
1273 			HV_MSR_RESET_AVAILABLE;
1274 	case HV_X64_MSR_REFERENCE_TSC:
1275 		return hv_vcpu->cpuid_cache.features_eax &
1276 			HV_MSR_REFERENCE_TSC_AVAILABLE;
1277 	case HV_X64_MSR_SCONTROL:
1278 	case HV_X64_MSR_SVERSION:
1279 	case HV_X64_MSR_SIEFP:
1280 	case HV_X64_MSR_SIMP:
1281 	case HV_X64_MSR_EOM:
1282 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1283 		return hv_vcpu->cpuid_cache.features_eax &
1284 			HV_MSR_SYNIC_AVAILABLE;
1285 	case HV_X64_MSR_STIMER0_CONFIG:
1286 	case HV_X64_MSR_STIMER1_CONFIG:
1287 	case HV_X64_MSR_STIMER2_CONFIG:
1288 	case HV_X64_MSR_STIMER3_CONFIG:
1289 	case HV_X64_MSR_STIMER0_COUNT:
1290 	case HV_X64_MSR_STIMER1_COUNT:
1291 	case HV_X64_MSR_STIMER2_COUNT:
1292 	case HV_X64_MSR_STIMER3_COUNT:
1293 		return hv_vcpu->cpuid_cache.features_eax &
1294 			HV_MSR_SYNTIMER_AVAILABLE;
1295 	case HV_X64_MSR_EOI:
1296 	case HV_X64_MSR_ICR:
1297 	case HV_X64_MSR_TPR:
1298 	case HV_X64_MSR_VP_ASSIST_PAGE:
1299 		return hv_vcpu->cpuid_cache.features_eax &
1300 			HV_MSR_APIC_ACCESS_AVAILABLE;
1301 	case HV_X64_MSR_TSC_FREQUENCY:
1302 	case HV_X64_MSR_APIC_FREQUENCY:
1303 		return hv_vcpu->cpuid_cache.features_eax &
1304 			HV_ACCESS_FREQUENCY_MSRS;
1305 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1306 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1307 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1308 		return hv_vcpu->cpuid_cache.features_eax &
1309 			HV_ACCESS_REENLIGHTENMENT;
1310 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1311 		return hv_vcpu->cpuid_cache.features_eax &
1312 			HV_ACCESS_TSC_INVARIANT;
1313 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1314 	case HV_X64_MSR_CRASH_CTL:
1315 		return hv_vcpu->cpuid_cache.features_edx &
1316 			HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1317 	case HV_X64_MSR_SYNDBG_OPTIONS:
1318 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1319 		return hv_vcpu->cpuid_cache.features_edx &
1320 			HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1321 	default:
1322 		break;
1323 	}
1324 
1325 	return false;
1326 }
1327 
1328 #define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839
1329 #define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */
1330 
1331 /*
1332  * Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC
1333  * configuration.
1334  * Such configuration can result from, for example, AMD Erratum 1386 workaround.
1335  *
1336  * Print a notice so users aren't left wondering what's suddenly gone wrong.
1337  */
__kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu * vcpu)1338 static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1339 {
1340 	struct kvm *kvm = vcpu->kvm;
1341 	struct kvm_hv *hv = to_kvm_hv(kvm);
1342 
1343 	/* Check again under the hv_lock.  */
1344 	if (hv->xsaves_xsavec_checked)
1345 		return;
1346 
1347 	if ((hv->hv_guest_os_id & KVM_HV_WIN2016_GUEST_ID_MASK) !=
1348 	    KVM_HV_WIN2016_GUEST_ID)
1349 		return;
1350 
1351 	hv->xsaves_xsavec_checked = true;
1352 
1353 	/* UP configurations aren't affected */
1354 	if (atomic_read(&kvm->online_vcpus) < 2)
1355 		return;
1356 
1357 	if (guest_cpuid_has(vcpu, X86_FEATURE_XSAVES) ||
1358 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVEC))
1359 		return;
1360 
1361 	pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. "
1362 			      "If it fails to boot try disabling XSAVEC in the VM config.\n");
1363 }
1364 
kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu * vcpu)1365 void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1366 {
1367 	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1368 
1369 	if (!vcpu->arch.hyperv_enabled ||
1370 	    hv->xsaves_xsavec_checked)
1371 		return;
1372 
1373 	mutex_lock(&hv->hv_lock);
1374 	__kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1375 	mutex_unlock(&hv->hv_lock);
1376 }
1377 
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1378 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1379 			     bool host)
1380 {
1381 	struct kvm *kvm = vcpu->kvm;
1382 	struct kvm_hv *hv = to_kvm_hv(kvm);
1383 
1384 	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1385 		return 1;
1386 
1387 	switch (msr) {
1388 	case HV_X64_MSR_GUEST_OS_ID:
1389 		hv->hv_guest_os_id = data;
1390 		/* setting guest os id to zero disables hypercall page */
1391 		if (!hv->hv_guest_os_id)
1392 			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1393 		break;
1394 	case HV_X64_MSR_HYPERCALL: {
1395 		u8 instructions[9];
1396 		int i = 0;
1397 		u64 addr;
1398 
1399 		/* if guest os id is not set hypercall should remain disabled */
1400 		if (!hv->hv_guest_os_id)
1401 			break;
1402 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1403 			hv->hv_hypercall = data;
1404 			break;
1405 		}
1406 
1407 		/*
1408 		 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1409 		 * the same way Xen itself does, by setting the bit 31 of EAX
1410 		 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1411 		 * going to be clobbered on 64-bit.
1412 		 */
1413 		if (kvm_xen_hypercall_enabled(kvm)) {
1414 			/* orl $0x80000000, %eax */
1415 			instructions[i++] = 0x0d;
1416 			instructions[i++] = 0x00;
1417 			instructions[i++] = 0x00;
1418 			instructions[i++] = 0x00;
1419 			instructions[i++] = 0x80;
1420 		}
1421 
1422 		/* vmcall/vmmcall */
1423 		kvm_x86_call(patch_hypercall)(vcpu, instructions + i);
1424 		i += 3;
1425 
1426 		/* ret */
1427 		((unsigned char *)instructions)[i++] = 0xc3;
1428 
1429 		addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1430 		if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1431 			return 1;
1432 		hv->hv_hypercall = data;
1433 		break;
1434 	}
1435 	case HV_X64_MSR_REFERENCE_TSC:
1436 		hv->hv_tsc_page = data;
1437 		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1438 			if (!host)
1439 				hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1440 			else
1441 				hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1442 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1443 		} else {
1444 			hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1445 		}
1446 		break;
1447 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1448 		return kvm_hv_msr_set_crash_data(kvm,
1449 						 msr - HV_X64_MSR_CRASH_P0,
1450 						 data);
1451 	case HV_X64_MSR_CRASH_CTL:
1452 		if (host)
1453 			return kvm_hv_msr_set_crash_ctl(kvm, data);
1454 
1455 		if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1456 			vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1457 				   hv->hv_crash_param[0],
1458 				   hv->hv_crash_param[1],
1459 				   hv->hv_crash_param[2],
1460 				   hv->hv_crash_param[3],
1461 				   hv->hv_crash_param[4]);
1462 
1463 			/* Send notification about crash to user space */
1464 			kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1465 		}
1466 		break;
1467 	case HV_X64_MSR_RESET:
1468 		if (data == 1) {
1469 			vcpu_debug(vcpu, "hyper-v reset requested\n");
1470 			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1471 		}
1472 		break;
1473 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1474 		hv->hv_reenlightenment_control = data;
1475 		break;
1476 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1477 		hv->hv_tsc_emulation_control = data;
1478 		break;
1479 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1480 		if (data && !host)
1481 			return 1;
1482 
1483 		hv->hv_tsc_emulation_status = data;
1484 		break;
1485 	case HV_X64_MSR_TIME_REF_COUNT:
1486 		/* read-only, but still ignore it if host-initiated */
1487 		if (!host)
1488 			return 1;
1489 		break;
1490 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1491 		/* Only bit 0 is supported */
1492 		if (data & ~HV_EXPOSE_INVARIANT_TSC)
1493 			return 1;
1494 
1495 		/* The feature can't be disabled from the guest */
1496 		if (!host && hv->hv_invtsc_control && !data)
1497 			return 1;
1498 
1499 		hv->hv_invtsc_control = data;
1500 		break;
1501 	case HV_X64_MSR_SYNDBG_OPTIONS:
1502 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1503 		return syndbg_set_msr(vcpu, msr, data, host);
1504 	default:
1505 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1506 		return 1;
1507 	}
1508 	return 0;
1509 }
1510 
1511 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1512 static u64 current_task_runtime_100ns(void)
1513 {
1514 	u64 utime, stime;
1515 
1516 	task_cputime_adjusted(current, &utime, &stime);
1517 
1518 	return div_u64(utime + stime, 100);
1519 }
1520 
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1521 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1522 {
1523 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1524 
1525 	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1526 		return 1;
1527 
1528 	switch (msr) {
1529 	case HV_X64_MSR_VP_INDEX: {
1530 		struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1531 		u32 new_vp_index = (u32)data;
1532 
1533 		if (!host || new_vp_index >= KVM_MAX_VCPUS)
1534 			return 1;
1535 
1536 		if (new_vp_index == hv_vcpu->vp_index)
1537 			return 0;
1538 
1539 		/*
1540 		 * The VP index is initialized to vcpu_index by
1541 		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
1542 		 * VP index is changing, adjust num_mismatched_vp_indexes if
1543 		 * it now matches or no longer matches vcpu_idx.
1544 		 */
1545 		if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1546 			atomic_inc(&hv->num_mismatched_vp_indexes);
1547 		else if (new_vp_index == vcpu->vcpu_idx)
1548 			atomic_dec(&hv->num_mismatched_vp_indexes);
1549 
1550 		hv_vcpu->vp_index = new_vp_index;
1551 		break;
1552 	}
1553 	case HV_X64_MSR_VP_ASSIST_PAGE: {
1554 		u64 gfn;
1555 		unsigned long addr;
1556 
1557 		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1558 			hv_vcpu->hv_vapic = data;
1559 			if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
1560 				return 1;
1561 			break;
1562 		}
1563 		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1564 		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1565 		if (kvm_is_error_hva(addr))
1566 			return 1;
1567 
1568 		/*
1569 		 * Clear apic_assist portion of struct hv_vp_assist_page
1570 		 * only, there can be valuable data in the rest which needs
1571 		 * to be preserved e.g. on migration.
1572 		 */
1573 		if (__put_user(0, (u32 __user *)addr))
1574 			return 1;
1575 		hv_vcpu->hv_vapic = data;
1576 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
1577 		if (kvm_lapic_set_pv_eoi(vcpu,
1578 					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1579 					    sizeof(struct hv_vp_assist_page)))
1580 			return 1;
1581 		break;
1582 	}
1583 	case HV_X64_MSR_EOI:
1584 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1585 	case HV_X64_MSR_ICR:
1586 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1587 	case HV_X64_MSR_TPR:
1588 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1589 	case HV_X64_MSR_VP_RUNTIME:
1590 		if (!host)
1591 			return 1;
1592 		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1593 		break;
1594 	case HV_X64_MSR_SCONTROL:
1595 	case HV_X64_MSR_SVERSION:
1596 	case HV_X64_MSR_SIEFP:
1597 	case HV_X64_MSR_SIMP:
1598 	case HV_X64_MSR_EOM:
1599 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1600 		return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1601 	case HV_X64_MSR_STIMER0_CONFIG:
1602 	case HV_X64_MSR_STIMER1_CONFIG:
1603 	case HV_X64_MSR_STIMER2_CONFIG:
1604 	case HV_X64_MSR_STIMER3_CONFIG: {
1605 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1606 
1607 		return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1608 					 data, host);
1609 	}
1610 	case HV_X64_MSR_STIMER0_COUNT:
1611 	case HV_X64_MSR_STIMER1_COUNT:
1612 	case HV_X64_MSR_STIMER2_COUNT:
1613 	case HV_X64_MSR_STIMER3_COUNT: {
1614 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1615 
1616 		return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1617 					data, host);
1618 	}
1619 	case HV_X64_MSR_TSC_FREQUENCY:
1620 	case HV_X64_MSR_APIC_FREQUENCY:
1621 		/* read-only, but still ignore it if host-initiated */
1622 		if (!host)
1623 			return 1;
1624 		break;
1625 	default:
1626 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1627 		return 1;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1633 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1634 			     bool host)
1635 {
1636 	u64 data = 0;
1637 	struct kvm *kvm = vcpu->kvm;
1638 	struct kvm_hv *hv = to_kvm_hv(kvm);
1639 
1640 	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1641 		return 1;
1642 
1643 	switch (msr) {
1644 	case HV_X64_MSR_GUEST_OS_ID:
1645 		data = hv->hv_guest_os_id;
1646 		break;
1647 	case HV_X64_MSR_HYPERCALL:
1648 		data = hv->hv_hypercall;
1649 		break;
1650 	case HV_X64_MSR_TIME_REF_COUNT:
1651 		data = get_time_ref_counter(kvm);
1652 		break;
1653 	case HV_X64_MSR_REFERENCE_TSC:
1654 		data = hv->hv_tsc_page;
1655 		break;
1656 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1657 		return kvm_hv_msr_get_crash_data(kvm,
1658 						 msr - HV_X64_MSR_CRASH_P0,
1659 						 pdata);
1660 	case HV_X64_MSR_CRASH_CTL:
1661 		return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1662 	case HV_X64_MSR_RESET:
1663 		data = 0;
1664 		break;
1665 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1666 		data = hv->hv_reenlightenment_control;
1667 		break;
1668 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1669 		data = hv->hv_tsc_emulation_control;
1670 		break;
1671 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1672 		data = hv->hv_tsc_emulation_status;
1673 		break;
1674 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1675 		data = hv->hv_invtsc_control;
1676 		break;
1677 	case HV_X64_MSR_SYNDBG_OPTIONS:
1678 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1679 		return syndbg_get_msr(vcpu, msr, pdata, host);
1680 	default:
1681 		kvm_pr_unimpl_rdmsr(vcpu, msr);
1682 		return 1;
1683 	}
1684 
1685 	*pdata = data;
1686 	return 0;
1687 }
1688 
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1689 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1690 			  bool host)
1691 {
1692 	u64 data = 0;
1693 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1694 
1695 	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1696 		return 1;
1697 
1698 	switch (msr) {
1699 	case HV_X64_MSR_VP_INDEX:
1700 		data = hv_vcpu->vp_index;
1701 		break;
1702 	case HV_X64_MSR_EOI:
1703 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1704 	case HV_X64_MSR_ICR:
1705 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1706 	case HV_X64_MSR_TPR:
1707 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1708 	case HV_X64_MSR_VP_ASSIST_PAGE:
1709 		data = hv_vcpu->hv_vapic;
1710 		break;
1711 	case HV_X64_MSR_VP_RUNTIME:
1712 		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1713 		break;
1714 	case HV_X64_MSR_SCONTROL:
1715 	case HV_X64_MSR_SVERSION:
1716 	case HV_X64_MSR_SIEFP:
1717 	case HV_X64_MSR_SIMP:
1718 	case HV_X64_MSR_EOM:
1719 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1720 		return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1721 	case HV_X64_MSR_STIMER0_CONFIG:
1722 	case HV_X64_MSR_STIMER1_CONFIG:
1723 	case HV_X64_MSR_STIMER2_CONFIG:
1724 	case HV_X64_MSR_STIMER3_CONFIG: {
1725 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1726 
1727 		return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1728 					 pdata);
1729 	}
1730 	case HV_X64_MSR_STIMER0_COUNT:
1731 	case HV_X64_MSR_STIMER1_COUNT:
1732 	case HV_X64_MSR_STIMER2_COUNT:
1733 	case HV_X64_MSR_STIMER3_COUNT: {
1734 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1735 
1736 		return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1737 					pdata);
1738 	}
1739 	case HV_X64_MSR_TSC_FREQUENCY:
1740 		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1741 		break;
1742 	case HV_X64_MSR_APIC_FREQUENCY:
1743 		data = div64_u64(1000000000ULL,
1744 				 vcpu->kvm->arch.apic_bus_cycle_ns);
1745 		break;
1746 	default:
1747 		kvm_pr_unimpl_rdmsr(vcpu, msr);
1748 		return 1;
1749 	}
1750 	*pdata = data;
1751 	return 0;
1752 }
1753 
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1754 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1755 {
1756 	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1757 
1758 	if (!host && !vcpu->arch.hyperv_enabled)
1759 		return 1;
1760 
1761 	if (kvm_hv_vcpu_init(vcpu))
1762 		return 1;
1763 
1764 	if (kvm_hv_msr_partition_wide(msr)) {
1765 		int r;
1766 
1767 		mutex_lock(&hv->hv_lock);
1768 		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1769 		mutex_unlock(&hv->hv_lock);
1770 		return r;
1771 	} else
1772 		return kvm_hv_set_msr(vcpu, msr, data, host);
1773 }
1774 
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1775 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1776 {
1777 	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1778 
1779 	if (!host && !vcpu->arch.hyperv_enabled)
1780 		return 1;
1781 
1782 	if (kvm_hv_vcpu_init(vcpu))
1783 		return 1;
1784 
1785 	if (kvm_hv_msr_partition_wide(msr)) {
1786 		int r;
1787 
1788 		mutex_lock(&hv->hv_lock);
1789 		r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1790 		mutex_unlock(&hv->hv_lock);
1791 		return r;
1792 	} else
1793 		return kvm_hv_get_msr(vcpu, msr, pdata, host);
1794 }
1795 
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,unsigned long * vcpu_mask)1796 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1797 				    u64 valid_bank_mask, unsigned long *vcpu_mask)
1798 {
1799 	struct kvm_hv *hv = to_kvm_hv(kvm);
1800 	bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
1801 	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1802 	struct kvm_vcpu *vcpu;
1803 	int bank, sbank = 0;
1804 	unsigned long i;
1805 	u64 *bitmap;
1806 
1807 	BUILD_BUG_ON(sizeof(vp_bitmap) >
1808 		     sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1809 
1810 	/*
1811 	 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1812 	 * fill a temporary buffer and manually test each vCPU's VP index.
1813 	 */
1814 	if (likely(!has_mismatch))
1815 		bitmap = (u64 *)vcpu_mask;
1816 	else
1817 		bitmap = vp_bitmap;
1818 
1819 	/*
1820 	 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1821 	 * having a '1' for each bank that exists in sparse_banks.  Sets must
1822 	 * be in ascending order, i.e. bank0..bankN.
1823 	 */
1824 	memset(bitmap, 0, sizeof(vp_bitmap));
1825 	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1826 			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1827 		bitmap[bank] = sparse_banks[sbank++];
1828 
1829 	if (likely(!has_mismatch))
1830 		return;
1831 
1832 	bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
1833 	kvm_for_each_vcpu(i, vcpu, kvm) {
1834 		if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1835 			__set_bit(i, vcpu_mask);
1836 	}
1837 }
1838 
hv_is_vp_in_sparse_set(u32 vp_id,u64 valid_bank_mask,u64 sparse_banks[])1839 static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1840 {
1841 	int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1842 	unsigned long sbank;
1843 
1844 	if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1845 		return false;
1846 
1847 	/*
1848 	 * The index into the sparse bank is the number of preceding bits in
1849 	 * the valid mask.  Optimize for VMs with <64 vCPUs by skipping the
1850 	 * fancy math if there can't possibly be preceding bits.
1851 	 */
1852 	if (valid_bit_nr)
1853 		sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1854 	else
1855 		sbank = 0;
1856 
1857 	return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1858 			(unsigned long *)&sparse_banks[sbank]);
1859 }
1860 
1861 struct kvm_hv_hcall {
1862 	/* Hypercall input data */
1863 	u64 param;
1864 	u64 ingpa;
1865 	u64 outgpa;
1866 	u16 code;
1867 	u16 var_cnt;
1868 	u16 rep_cnt;
1869 	u16 rep_idx;
1870 	bool fast;
1871 	bool rep;
1872 	sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1873 
1874 	/*
1875 	 * Current read offset when KVM reads hypercall input data gradually,
1876 	 * either offset in bytes from 'ingpa' for regular hypercalls or the
1877 	 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1878 	 */
1879 	union {
1880 		gpa_t data_offset;
1881 		int consumed_xmm_halves;
1882 	};
1883 };
1884 
1885 
kvm_hv_get_hc_data(struct kvm * kvm,struct kvm_hv_hcall * hc,u16 orig_cnt,u16 cnt_cap,u64 * data)1886 static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
1887 			      u16 orig_cnt, u16 cnt_cap, u64 *data)
1888 {
1889 	/*
1890 	 * Preserve the original count when ignoring entries via a "cap", KVM
1891 	 * still needs to validate the guest input (though the non-XMM path
1892 	 * punts on the checks).
1893 	 */
1894 	u16 cnt = min(orig_cnt, cnt_cap);
1895 	int i, j;
1896 
1897 	if (hc->fast) {
1898 		/*
1899 		 * Each XMM holds two sparse banks, but do not count halves that
1900 		 * have already been consumed for hypercall parameters.
1901 		 */
1902 		if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
1903 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1904 
1905 		for (i = 0; i < cnt; i++) {
1906 			j = i + hc->consumed_xmm_halves;
1907 			if (j % 2)
1908 				data[i] = sse128_hi(hc->xmm[j / 2]);
1909 			else
1910 				data[i] = sse128_lo(hc->xmm[j / 2]);
1911 		}
1912 		return 0;
1913 	}
1914 
1915 	return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
1916 			      cnt * sizeof(*data));
1917 }
1918 
kvm_get_sparse_vp_set(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 * sparse_banks)1919 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
1920 				 u64 *sparse_banks)
1921 {
1922 	if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
1923 		return -EINVAL;
1924 
1925 	/* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1926 	return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
1927 				  sparse_banks);
1928 }
1929 
kvm_hv_get_tlb_flush_entries(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 entries[])1930 static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
1931 {
1932 	return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
1933 }
1934 
hv_tlb_flush_enqueue(struct kvm_vcpu * vcpu,struct kvm_vcpu_hv_tlb_flush_fifo * tlb_flush_fifo,u64 * entries,int count)1935 static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1936 				 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1937 				 u64 *entries, int count)
1938 {
1939 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1940 	u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1941 
1942 	if (!hv_vcpu)
1943 		return;
1944 
1945 	spin_lock(&tlb_flush_fifo->write_lock);
1946 
1947 	/*
1948 	 * All entries should fit on the fifo leaving one free for 'flush all'
1949 	 * entry in case another request comes in. In case there's not enough
1950 	 * space, just put 'flush all' entry there.
1951 	 */
1952 	if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1953 		WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1954 		goto out_unlock;
1955 	}
1956 
1957 	/*
1958 	 * Note: full fifo always contains 'flush all' entry, no need to check the
1959 	 * return value.
1960 	 */
1961 	kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1962 
1963 out_unlock:
1964 	spin_unlock(&tlb_flush_fifo->write_lock);
1965 }
1966 
kvm_hv_vcpu_flush_tlb(struct kvm_vcpu * vcpu)1967 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1968 {
1969 	struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1970 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1971 	u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1972 	int i, j, count;
1973 	gva_t gva;
1974 
1975 	if (!tdp_enabled || !hv_vcpu)
1976 		return -EINVAL;
1977 
1978 	tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
1979 
1980 	count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1981 
1982 	for (i = 0; i < count; i++) {
1983 		if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1984 			goto out_flush_all;
1985 
1986 		if (is_noncanonical_invlpg_address(entries[i], vcpu))
1987 			continue;
1988 
1989 		/*
1990 		 * Lower 12 bits of 'address' encode the number of additional
1991 		 * pages to flush.
1992 		 */
1993 		gva = entries[i] & PAGE_MASK;
1994 		for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1995 			kvm_x86_call(flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1996 
1997 		++vcpu->stat.tlb_flush;
1998 	}
1999 	return 0;
2000 
2001 out_flush_all:
2002 	kfifo_reset_out(&tlb_flush_fifo->entries);
2003 
2004 	/* Fall back to full flush. */
2005 	return -ENOSPC;
2006 }
2007 
kvm_hv_flush_tlb(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2008 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2009 {
2010 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2011 	unsigned long *vcpu_mask = hv_vcpu->vcpu_mask;
2012 	u64 *sparse_banks = hv_vcpu->sparse_banks;
2013 	struct kvm *kvm = vcpu->kvm;
2014 	struct hv_tlb_flush_ex flush_ex;
2015 	struct hv_tlb_flush flush;
2016 	struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
2017 	/*
2018 	 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
2019 	 * entries on the TLB flush fifo. The last entry, however, needs to be
2020 	 * always left free for 'flush all' entry which gets placed when
2021 	 * there is not enough space to put all the requested entries.
2022 	 */
2023 	u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
2024 	u64 *tlb_flush_entries;
2025 	u64 valid_bank_mask;
2026 	struct kvm_vcpu *v;
2027 	unsigned long i;
2028 	bool all_cpus;
2029 
2030 	/*
2031 	 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
2032 	 * sparse banks. Fail the build if KVM's max allowed number of
2033 	 * vCPUs (>4096) exceeds this limit.
2034 	 */
2035 	BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
2036 
2037 	/*
2038 	 * 'Slow' hypercall's first parameter is the address in guest's memory
2039 	 * where hypercall parameters are placed. This is either a GPA or a
2040 	 * nested GPA when KVM is handling the call from L2 ('direct' TLB
2041 	 * flush).  Translate the address here so the memory can be uniformly
2042 	 * read with kvm_read_guest().
2043 	 */
2044 	if (!hc->fast && is_guest_mode(vcpu)) {
2045 		hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
2046 		if (unlikely(hc->ingpa == INVALID_GPA))
2047 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
2048 	}
2049 
2050 	if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
2051 	    hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
2052 		if (hc->fast) {
2053 			flush.address_space = hc->ingpa;
2054 			flush.flags = hc->outgpa;
2055 			flush.processor_mask = sse128_lo(hc->xmm[0]);
2056 			hc->consumed_xmm_halves = 1;
2057 		} else {
2058 			if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2059 						    &flush, sizeof(flush))))
2060 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
2061 			hc->data_offset = sizeof(flush);
2062 		}
2063 
2064 		trace_kvm_hv_flush_tlb(flush.processor_mask,
2065 				       flush.address_space, flush.flags,
2066 				       is_guest_mode(vcpu));
2067 
2068 		valid_bank_mask = BIT_ULL(0);
2069 		sparse_banks[0] = flush.processor_mask;
2070 
2071 		/*
2072 		 * Work around possible WS2012 bug: it sends hypercalls
2073 		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2074 		 * while also expecting us to flush something and crashing if
2075 		 * we don't. Let's treat processor_mask == 0 same as
2076 		 * HV_FLUSH_ALL_PROCESSORS.
2077 		 */
2078 		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2079 			flush.processor_mask == 0;
2080 	} else {
2081 		if (hc->fast) {
2082 			flush_ex.address_space = hc->ingpa;
2083 			flush_ex.flags = hc->outgpa;
2084 			memcpy(&flush_ex.hv_vp_set,
2085 			       &hc->xmm[0], sizeof(hc->xmm[0]));
2086 			hc->consumed_xmm_halves = 2;
2087 		} else {
2088 			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2089 						    sizeof(flush_ex))))
2090 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
2091 			hc->data_offset = sizeof(flush_ex);
2092 		}
2093 
2094 		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
2095 					  flush_ex.hv_vp_set.format,
2096 					  flush_ex.address_space,
2097 					  flush_ex.flags, is_guest_mode(vcpu));
2098 
2099 		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2100 		all_cpus = flush_ex.hv_vp_set.format !=
2101 			HV_GENERIC_SET_SPARSE_4K;
2102 
2103 		if (hc->var_cnt != hweight64(valid_bank_mask))
2104 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
2105 
2106 		if (!all_cpus) {
2107 			if (!hc->var_cnt)
2108 				goto ret_success;
2109 
2110 			if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2111 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
2112 		}
2113 
2114 		/*
2115 		 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2116 		 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2117 		 * case (HV_GENERIC_SET_ALL).  Always adjust data_offset and
2118 		 * consumed_xmm_halves to make sure TLB flush entries are read
2119 		 * from the correct offset.
2120 		 */
2121 		if (hc->fast)
2122 			hc->consumed_xmm_halves += hc->var_cnt;
2123 		else
2124 			hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
2125 	}
2126 
2127 	if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2128 	    hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2129 	    hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2130 		tlb_flush_entries = NULL;
2131 	} else {
2132 		if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
2133 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
2134 		tlb_flush_entries = __tlb_flush_entries;
2135 	}
2136 
2137 	/*
2138 	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2139 	 * analyze it here, flush TLB regardless of the specified address space.
2140 	 */
2141 	if (all_cpus && !is_guest_mode(vcpu)) {
2142 		kvm_for_each_vcpu(i, v, kvm) {
2143 			tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2144 			hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2145 					     tlb_flush_entries, hc->rep_cnt);
2146 		}
2147 
2148 		kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
2149 	} else if (!is_guest_mode(vcpu)) {
2150 		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
2151 
2152 		for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2153 			v = kvm_get_vcpu(kvm, i);
2154 			if (!v)
2155 				continue;
2156 			tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2157 			hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2158 					     tlb_flush_entries, hc->rep_cnt);
2159 		}
2160 
2161 		kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2162 	} else {
2163 		struct kvm_vcpu_hv *hv_v;
2164 
2165 		bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
2166 
2167 		kvm_for_each_vcpu(i, v, kvm) {
2168 			hv_v = to_hv_vcpu(v);
2169 
2170 			/*
2171 			 * The following check races with nested vCPUs entering/exiting
2172 			 * and/or migrating between L1's vCPUs, however the only case when
2173 			 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2174 			 * running on the same L1 vCPU from the moment of the request until
2175 			 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2176 			 * cases, e.g. when the target L2 vCPU migrates to a different L1
2177 			 * vCPU or when the corresponding L1 vCPU temporary switches to a
2178 			 * different L2 vCPU while the request is being processed.
2179 			 */
2180 			if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2181 				continue;
2182 
2183 			if (!all_cpus &&
2184 			    !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
2185 						    sparse_banks))
2186 				continue;
2187 
2188 			__set_bit(i, vcpu_mask);
2189 			tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
2190 			hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2191 					     tlb_flush_entries, hc->rep_cnt);
2192 		}
2193 
2194 		kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2195 	}
2196 
2197 ret_success:
2198 	/* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2199 	return (u64)HV_STATUS_SUCCESS |
2200 		((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
2201 }
2202 
kvm_hv_send_ipi_to_many(struct kvm * kvm,u32 vector,u64 * sparse_banks,u64 valid_bank_mask)2203 static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2204 				    u64 *sparse_banks, u64 valid_bank_mask)
2205 {
2206 	struct kvm_lapic_irq irq = {
2207 		.delivery_mode = APIC_DM_FIXED,
2208 		.vector = vector
2209 	};
2210 	struct kvm_vcpu *vcpu;
2211 	unsigned long i;
2212 
2213 	kvm_for_each_vcpu(i, vcpu, kvm) {
2214 		if (sparse_banks &&
2215 		    !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
2216 					    valid_bank_mask, sparse_banks))
2217 			continue;
2218 
2219 		/* We fail only when APIC is disabled */
2220 		kvm_apic_set_irq(vcpu, &irq, NULL);
2221 	}
2222 }
2223 
kvm_hv_send_ipi(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2224 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2225 {
2226 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2227 	u64 *sparse_banks = hv_vcpu->sparse_banks;
2228 	struct kvm *kvm = vcpu->kvm;
2229 	struct hv_send_ipi_ex send_ipi_ex;
2230 	struct hv_send_ipi send_ipi;
2231 	u64 valid_bank_mask;
2232 	u32 vector;
2233 	bool all_cpus;
2234 
2235 	if (!lapic_in_kernel(vcpu))
2236 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
2237 
2238 	if (hc->code == HVCALL_SEND_IPI) {
2239 		if (!hc->fast) {
2240 			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
2241 						    sizeof(send_ipi))))
2242 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
2243 			sparse_banks[0] = send_ipi.cpu_mask;
2244 			vector = send_ipi.vector;
2245 		} else {
2246 			/* 'reserved' part of hv_send_ipi should be 0 */
2247 			if (unlikely(hc->ingpa >> 32 != 0))
2248 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
2249 			sparse_banks[0] = hc->outgpa;
2250 			vector = (u32)hc->ingpa;
2251 		}
2252 		all_cpus = false;
2253 		valid_bank_mask = BIT_ULL(0);
2254 
2255 		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
2256 	} else {
2257 		if (!hc->fast) {
2258 			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2259 						    sizeof(send_ipi_ex))))
2260 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
2261 		} else {
2262 			send_ipi_ex.vector = (u32)hc->ingpa;
2263 			send_ipi_ex.vp_set.format = hc->outgpa;
2264 			send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2265 		}
2266 
2267 		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
2268 					 send_ipi_ex.vp_set.format,
2269 					 send_ipi_ex.vp_set.valid_bank_mask);
2270 
2271 		vector = send_ipi_ex.vector;
2272 		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
2273 		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2274 
2275 		if (hc->var_cnt != hweight64(valid_bank_mask))
2276 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
2277 
2278 		if (all_cpus)
2279 			goto check_and_send_ipi;
2280 
2281 		if (!hc->var_cnt)
2282 			goto ret_success;
2283 
2284 		if (!hc->fast)
2285 			hc->data_offset = offsetof(struct hv_send_ipi_ex,
2286 						   vp_set.bank_contents);
2287 		else
2288 			hc->consumed_xmm_halves = 1;
2289 
2290 		if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2291 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
2292 	}
2293 
2294 check_and_send_ipi:
2295 	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
2296 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
2297 
2298 	if (all_cpus)
2299 		kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
2300 	else
2301 		kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
2302 
2303 ret_success:
2304 	return HV_STATUS_SUCCESS;
2305 }
2306 
kvm_hv_set_cpuid(struct kvm_vcpu * vcpu,bool hyperv_enabled)2307 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
2308 {
2309 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2310 	struct kvm_cpuid_entry2 *entry;
2311 
2312 	vcpu->arch.hyperv_enabled = hyperv_enabled;
2313 
2314 	if (!hv_vcpu) {
2315 		/*
2316 		 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2317 		 * enabled in CPUID.
2318 		 */
2319 		WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
2320 		return;
2321 	}
2322 
2323 	memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2324 
2325 	if (!vcpu->arch.hyperv_enabled)
2326 		return;
2327 
2328 	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
2329 	if (entry) {
2330 		hv_vcpu->cpuid_cache.features_eax = entry->eax;
2331 		hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2332 		hv_vcpu->cpuid_cache.features_edx = entry->edx;
2333 	}
2334 
2335 	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
2336 	if (entry) {
2337 		hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2338 		hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
2339 	}
2340 
2341 	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
2342 	if (entry)
2343 		hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
2344 
2345 	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2346 	if (entry) {
2347 		hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2348 		hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2349 	}
2350 }
2351 
kvm_hv_set_enforce_cpuid(struct kvm_vcpu * vcpu,bool enforce)2352 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2353 {
2354 	struct kvm_vcpu_hv *hv_vcpu;
2355 	int ret = 0;
2356 
2357 	if (!to_hv_vcpu(vcpu)) {
2358 		if (enforce) {
2359 			ret = kvm_hv_vcpu_init(vcpu);
2360 			if (ret)
2361 				return ret;
2362 		} else {
2363 			return 0;
2364 		}
2365 	}
2366 
2367 	hv_vcpu = to_hv_vcpu(vcpu);
2368 	hv_vcpu->enforce_cpuid = enforce;
2369 
2370 	return ret;
2371 }
2372 
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)2373 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2374 {
2375 	bool longmode;
2376 
2377 	longmode = is_64_bit_hypercall(vcpu);
2378 	if (longmode)
2379 		kvm_rax_write(vcpu, result);
2380 	else {
2381 		kvm_rdx_write(vcpu, result >> 32);
2382 		kvm_rax_write(vcpu, result & 0xffffffff);
2383 	}
2384 }
2385 
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)2386 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2387 {
2388 	u32 tlb_lock_count = 0;
2389 	int ret;
2390 
2391 	if (hv_result_success(result) && is_guest_mode(vcpu) &&
2392 	    kvm_hv_is_tlb_flush_hcall(vcpu) &&
2393 	    kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2394 			   &tlb_lock_count, sizeof(tlb_lock_count)))
2395 		result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2396 
2397 	trace_kvm_hv_hypercall_done(result);
2398 	kvm_hv_hypercall_set_result(vcpu, result);
2399 	++vcpu->stat.hypercalls;
2400 
2401 	ret = kvm_skip_emulated_instruction(vcpu);
2402 
2403 	if (tlb_lock_count)
2404 		kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2405 
2406 	return ret;
2407 }
2408 
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)2409 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2410 {
2411 	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2412 }
2413 
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2414 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2415 {
2416 	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2417 	struct eventfd_ctx *eventfd;
2418 
2419 	if (unlikely(!hc->fast)) {
2420 		int ret;
2421 		gpa_t gpa = hc->ingpa;
2422 
2423 		if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2424 		    offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2425 			return HV_STATUS_INVALID_ALIGNMENT;
2426 
2427 		ret = kvm_vcpu_read_guest(vcpu, gpa,
2428 					  &hc->ingpa, sizeof(hc->ingpa));
2429 		if (ret < 0)
2430 			return HV_STATUS_INVALID_ALIGNMENT;
2431 	}
2432 
2433 	/*
2434 	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
2435 	 * have no use for it, and in all known usecases it is zero, so just
2436 	 * report lookup failure if it isn't.
2437 	 */
2438 	if (hc->ingpa & 0xffff00000000ULL)
2439 		return HV_STATUS_INVALID_PORT_ID;
2440 	/* remaining bits are reserved-zero */
2441 	if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2442 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
2443 
2444 	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2445 	rcu_read_lock();
2446 	eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2447 	rcu_read_unlock();
2448 	if (!eventfd)
2449 		return HV_STATUS_INVALID_PORT_ID;
2450 
2451 	eventfd_signal(eventfd);
2452 	return HV_STATUS_SUCCESS;
2453 }
2454 
is_xmm_fast_hypercall(struct kvm_hv_hcall * hc)2455 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2456 {
2457 	switch (hc->code) {
2458 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2459 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2460 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2461 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2462 	case HVCALL_SEND_IPI_EX:
2463 		return true;
2464 	}
2465 
2466 	return false;
2467 }
2468 
kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall * hc)2469 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2470 {
2471 	int reg;
2472 
2473 	kvm_fpu_get();
2474 	for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2475 		_kvm_read_sse_reg(reg, &hc->xmm[reg]);
2476 	kvm_fpu_put();
2477 }
2478 
hv_check_hypercall_access(struct kvm_vcpu_hv * hv_vcpu,u16 code)2479 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2480 {
2481 	if (!hv_vcpu->enforce_cpuid)
2482 		return true;
2483 
2484 	switch (code) {
2485 	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2486 		return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2487 			hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2488 	case HVCALL_POST_MESSAGE:
2489 		return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2490 	case HVCALL_SIGNAL_EVENT:
2491 		return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2492 	case HVCALL_POST_DEBUG_DATA:
2493 	case HVCALL_RETRIEVE_DEBUG_DATA:
2494 	case HVCALL_RESET_DEBUG_SESSION:
2495 		/*
2496 		 * Return 'true' when SynDBG is disabled so the resulting code
2497 		 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2498 		 */
2499 		return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2500 			hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2501 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2502 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2503 		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2504 		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2505 			return false;
2506 		fallthrough;
2507 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2508 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2509 		return hv_vcpu->cpuid_cache.enlightenments_eax &
2510 			HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2511 	case HVCALL_SEND_IPI_EX:
2512 		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2513 		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2514 			return false;
2515 		fallthrough;
2516 	case HVCALL_SEND_IPI:
2517 		return hv_vcpu->cpuid_cache.enlightenments_eax &
2518 			HV_X64_CLUSTER_IPI_RECOMMENDED;
2519 	case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2520 		return hv_vcpu->cpuid_cache.features_ebx &
2521 			HV_ENABLE_EXTENDED_HYPERCALLS;
2522 	default:
2523 		break;
2524 	}
2525 
2526 	return true;
2527 }
2528 
kvm_hv_hypercall(struct kvm_vcpu * vcpu)2529 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2530 {
2531 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2532 	struct kvm_hv_hcall hc;
2533 	u64 ret = HV_STATUS_SUCCESS;
2534 
2535 	/*
2536 	 * hypercall generates UD from non zero cpl and real mode
2537 	 * per HYPER-V spec
2538 	 */
2539 	if (kvm_x86_call(get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2540 		kvm_queue_exception(vcpu, UD_VECTOR);
2541 		return 1;
2542 	}
2543 
2544 #ifdef CONFIG_X86_64
2545 	if (is_64_bit_hypercall(vcpu)) {
2546 		hc.param = kvm_rcx_read(vcpu);
2547 		hc.ingpa = kvm_rdx_read(vcpu);
2548 		hc.outgpa = kvm_r8_read(vcpu);
2549 	} else
2550 #endif
2551 	{
2552 		hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2553 			    (kvm_rax_read(vcpu) & 0xffffffff);
2554 		hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2555 			    (kvm_rcx_read(vcpu) & 0xffffffff);
2556 		hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2557 			     (kvm_rsi_read(vcpu) & 0xffffffff);
2558 	}
2559 
2560 	hc.code = hc.param & 0xffff;
2561 	hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
2562 	hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2563 	hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2564 	hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2565 	hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2566 
2567 	trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
2568 			       hc.rep_idx, hc.ingpa, hc.outgpa);
2569 
2570 	if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2571 		ret = HV_STATUS_ACCESS_DENIED;
2572 		goto hypercall_complete;
2573 	}
2574 
2575 	if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2576 		ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2577 		goto hypercall_complete;
2578 	}
2579 
2580 	if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2581 		if (unlikely(hv_vcpu->enforce_cpuid &&
2582 			     !(hv_vcpu->cpuid_cache.features_edx &
2583 			       HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2584 			kvm_queue_exception(vcpu, UD_VECTOR);
2585 			return 1;
2586 		}
2587 
2588 		kvm_hv_hypercall_read_xmm(&hc);
2589 	}
2590 
2591 	switch (hc.code) {
2592 	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2593 		if (unlikely(hc.rep || hc.var_cnt)) {
2594 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2595 			break;
2596 		}
2597 		kvm_vcpu_on_spin(vcpu, true);
2598 		break;
2599 	case HVCALL_SIGNAL_EVENT:
2600 		if (unlikely(hc.rep || hc.var_cnt)) {
2601 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2602 			break;
2603 		}
2604 		ret = kvm_hvcall_signal_event(vcpu, &hc);
2605 		if (ret != HV_STATUS_INVALID_PORT_ID)
2606 			break;
2607 		fallthrough;	/* maybe userspace knows this conn_id */
2608 	case HVCALL_POST_MESSAGE:
2609 		/* don't bother userspace if it has no way to handle it */
2610 		if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
2611 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2612 			break;
2613 		}
2614 		goto hypercall_userspace_exit;
2615 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2616 		if (unlikely(hc.var_cnt)) {
2617 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2618 			break;
2619 		}
2620 		fallthrough;
2621 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2622 		if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2623 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2624 			break;
2625 		}
2626 		ret = kvm_hv_flush_tlb(vcpu, &hc);
2627 		break;
2628 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2629 		if (unlikely(hc.var_cnt)) {
2630 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2631 			break;
2632 		}
2633 		fallthrough;
2634 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2635 		if (unlikely(hc.rep)) {
2636 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2637 			break;
2638 		}
2639 		ret = kvm_hv_flush_tlb(vcpu, &hc);
2640 		break;
2641 	case HVCALL_SEND_IPI:
2642 		if (unlikely(hc.var_cnt)) {
2643 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2644 			break;
2645 		}
2646 		fallthrough;
2647 	case HVCALL_SEND_IPI_EX:
2648 		if (unlikely(hc.rep)) {
2649 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2650 			break;
2651 		}
2652 		ret = kvm_hv_send_ipi(vcpu, &hc);
2653 		break;
2654 	case HVCALL_POST_DEBUG_DATA:
2655 	case HVCALL_RETRIEVE_DEBUG_DATA:
2656 		if (unlikely(hc.fast)) {
2657 			ret = HV_STATUS_INVALID_PARAMETER;
2658 			break;
2659 		}
2660 		fallthrough;
2661 	case HVCALL_RESET_DEBUG_SESSION: {
2662 		struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2663 
2664 		if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2665 			ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2666 			break;
2667 		}
2668 
2669 		if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2670 			ret = HV_STATUS_OPERATION_DENIED;
2671 			break;
2672 		}
2673 		goto hypercall_userspace_exit;
2674 	}
2675 	case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2676 		if (unlikely(hc.fast)) {
2677 			ret = HV_STATUS_INVALID_PARAMETER;
2678 			break;
2679 		}
2680 		goto hypercall_userspace_exit;
2681 	default:
2682 		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2683 		break;
2684 	}
2685 
2686 hypercall_complete:
2687 	return kvm_hv_hypercall_complete(vcpu, ret);
2688 
2689 hypercall_userspace_exit:
2690 	vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2691 	vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2692 	vcpu->run->hyperv.u.hcall.input = hc.param;
2693 	vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2694 	vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2695 	vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2696 	return 0;
2697 }
2698 
kvm_hv_init_vm(struct kvm * kvm)2699 void kvm_hv_init_vm(struct kvm *kvm)
2700 {
2701 	struct kvm_hv *hv = to_kvm_hv(kvm);
2702 
2703 	mutex_init(&hv->hv_lock);
2704 	idr_init(&hv->conn_to_evt);
2705 }
2706 
kvm_hv_destroy_vm(struct kvm * kvm)2707 void kvm_hv_destroy_vm(struct kvm *kvm)
2708 {
2709 	struct kvm_hv *hv = to_kvm_hv(kvm);
2710 	struct eventfd_ctx *eventfd;
2711 	int i;
2712 
2713 	idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2714 		eventfd_ctx_put(eventfd);
2715 	idr_destroy(&hv->conn_to_evt);
2716 }
2717 
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)2718 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2719 {
2720 	struct kvm_hv *hv = to_kvm_hv(kvm);
2721 	struct eventfd_ctx *eventfd;
2722 	int ret;
2723 
2724 	eventfd = eventfd_ctx_fdget(fd);
2725 	if (IS_ERR(eventfd))
2726 		return PTR_ERR(eventfd);
2727 
2728 	mutex_lock(&hv->hv_lock);
2729 	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2730 			GFP_KERNEL_ACCOUNT);
2731 	mutex_unlock(&hv->hv_lock);
2732 
2733 	if (ret >= 0)
2734 		return 0;
2735 
2736 	if (ret == -ENOSPC)
2737 		ret = -EEXIST;
2738 	eventfd_ctx_put(eventfd);
2739 	return ret;
2740 }
2741 
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)2742 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2743 {
2744 	struct kvm_hv *hv = to_kvm_hv(kvm);
2745 	struct eventfd_ctx *eventfd;
2746 
2747 	mutex_lock(&hv->hv_lock);
2748 	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2749 	mutex_unlock(&hv->hv_lock);
2750 
2751 	if (!eventfd)
2752 		return -ENOENT;
2753 
2754 	synchronize_srcu(&kvm->srcu);
2755 	eventfd_ctx_put(eventfd);
2756 	return 0;
2757 }
2758 
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)2759 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2760 {
2761 	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2762 	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2763 		return -EINVAL;
2764 
2765 	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2766 		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2767 	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2768 }
2769 
kvm_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2770 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2771 		     struct kvm_cpuid_entry2 __user *entries)
2772 {
2773 	uint16_t evmcs_ver = 0;
2774 	struct kvm_cpuid_entry2 cpuid_entries[] = {
2775 		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2776 		{ .function = HYPERV_CPUID_INTERFACE },
2777 		{ .function = HYPERV_CPUID_VERSION },
2778 		{ .function = HYPERV_CPUID_FEATURES },
2779 		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2780 		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2781 		{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2782 		{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2783 		{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES	},
2784 		{ .function = HYPERV_CPUID_NESTED_FEATURES },
2785 	};
2786 	int i, nent = ARRAY_SIZE(cpuid_entries);
2787 
2788 	if (kvm_x86_ops.nested_ops->get_evmcs_version)
2789 		evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2790 
2791 	if (cpuid->nent < nent)
2792 		return -E2BIG;
2793 
2794 	if (cpuid->nent > nent)
2795 		cpuid->nent = nent;
2796 
2797 	for (i = 0; i < nent; i++) {
2798 		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2799 		u32 signature[3];
2800 
2801 		switch (ent->function) {
2802 		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2803 			memcpy(signature, "Linux KVM Hv", 12);
2804 
2805 			ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2806 			ent->ebx = signature[0];
2807 			ent->ecx = signature[1];
2808 			ent->edx = signature[2];
2809 			break;
2810 
2811 		case HYPERV_CPUID_INTERFACE:
2812 			ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2813 			break;
2814 
2815 		case HYPERV_CPUID_VERSION:
2816 			/*
2817 			 * We implement some Hyper-V 2016 functions so let's use
2818 			 * this version.
2819 			 */
2820 			ent->eax = 0x00003839;
2821 			ent->ebx = 0x000A0000;
2822 			break;
2823 
2824 		case HYPERV_CPUID_FEATURES:
2825 			ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2826 			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2827 			ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2828 			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2829 			ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2830 			ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2831 			ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2832 			ent->eax |= HV_MSR_RESET_AVAILABLE;
2833 			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2834 			ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2835 			ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2836 			ent->eax |= HV_ACCESS_TSC_INVARIANT;
2837 
2838 			ent->ebx |= HV_POST_MESSAGES;
2839 			ent->ebx |= HV_SIGNAL_EVENTS;
2840 			ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2841 
2842 			ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2843 			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2844 			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2845 
2846 			ent->ebx |= HV_DEBUGGING;
2847 			ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2848 			ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2849 			ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
2850 
2851 			/*
2852 			 * Direct Synthetic timers only make sense with in-kernel
2853 			 * LAPIC
2854 			 */
2855 			if (!vcpu || lapic_in_kernel(vcpu))
2856 				ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2857 
2858 			break;
2859 
2860 		case HYPERV_CPUID_ENLIGHTMENT_INFO:
2861 			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2862 			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2863 			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2864 			if (!vcpu || lapic_in_kernel(vcpu))
2865 				ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2866 			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2867 			if (evmcs_ver)
2868 				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2869 			if (!cpu_smt_possible())
2870 				ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2871 
2872 			ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2873 			/*
2874 			 * Default number of spinlock retry attempts, matches
2875 			 * HyperV 2016.
2876 			 */
2877 			ent->ebx = 0x00000FFF;
2878 
2879 			break;
2880 
2881 		case HYPERV_CPUID_IMPLEMENT_LIMITS:
2882 			/* Maximum number of virtual processors */
2883 			ent->eax = KVM_MAX_VCPUS;
2884 			/*
2885 			 * Maximum number of logical processors, matches
2886 			 * HyperV 2016.
2887 			 */
2888 			ent->ebx = 64;
2889 
2890 			break;
2891 
2892 		case HYPERV_CPUID_NESTED_FEATURES:
2893 			ent->eax = evmcs_ver;
2894 			ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
2895 			ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2896 			ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2897 			break;
2898 
2899 		case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2900 			memcpy(signature, "Linux KVM Hv", 12);
2901 
2902 			ent->eax = 0;
2903 			ent->ebx = signature[0];
2904 			ent->ecx = signature[1];
2905 			ent->edx = signature[2];
2906 			break;
2907 
2908 		case HYPERV_CPUID_SYNDBG_INTERFACE:
2909 			memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2910 			ent->eax = signature[0];
2911 			break;
2912 
2913 		case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2914 			ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2915 			break;
2916 
2917 		default:
2918 			break;
2919 		}
2920 	}
2921 
2922 	if (copy_to_user(entries, cpuid_entries,
2923 			 nent * sizeof(struct kvm_cpuid_entry2)))
2924 		return -EFAULT;
2925 
2926 	return 0;
2927 }
2928