xref: /linux/arch/arm64/kvm/arm.c (revision bf2c3138ae3694d4687cbe451c774c288ae2ad06)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_ptrauth.h>
42 #include <asm/sections.h>
43 #include <asm/stacktrace/nvhe.h>
44 
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48 
49 #include "sys_regs.h"
50 
51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
52 
53 enum kvm_wfx_trap_policy {
54 	KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
55 	KVM_WFX_NOTRAP,
56 	KVM_WFX_TRAP,
57 };
58 
59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
61 
62 /*
63  * Tracks KVM IOCTLs and their associated KVM capabilities.
64  */
65 struct kvm_ioctl_cap_map {
66 	unsigned int ioctl;
67 	long ext;
68 };
69 
70 /* Make KVM_CAP_NR_VCPUS the reference for features we always supported */
71 #define KVM_CAP_ARM_BASIC	KVM_CAP_NR_VCPUS
72 
73 /*
74  * Sorted by ioctl to allow for potential binary search,
75  * though linear scan is sufficient for this size.
76  */
77 static const struct kvm_ioctl_cap_map vm_ioctl_caps[] = {
78 	{ KVM_CREATE_IRQCHIP, KVM_CAP_IRQCHIP },
79 	{ KVM_ARM_SET_DEVICE_ADDR, KVM_CAP_ARM_SET_DEVICE_ADDR },
80 	{ KVM_ARM_MTE_COPY_TAGS, KVM_CAP_ARM_MTE },
81 	{ KVM_SET_DEVICE_ATTR, KVM_CAP_DEVICE_CTRL },
82 	{ KVM_GET_DEVICE_ATTR, KVM_CAP_DEVICE_CTRL },
83 	{ KVM_HAS_DEVICE_ATTR, KVM_CAP_DEVICE_CTRL },
84 	{ KVM_ARM_SET_COUNTER_OFFSET, KVM_CAP_COUNTER_OFFSET },
85 	{ KVM_ARM_GET_REG_WRITABLE_MASKS, KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES },
86 	{ KVM_ARM_PREFERRED_TARGET, KVM_CAP_ARM_BASIC },
87 };
88 
89 /*
90  * Set *ext to the capability.
91  * Return 0 if found, or -EINVAL if no IOCTL matches.
92  */
93 long kvm_get_cap_for_kvm_ioctl(unsigned int ioctl, long *ext)
94 {
95 	int i;
96 
97 	for (i = 0; i < ARRAY_SIZE(vm_ioctl_caps); i++) {
98 		if (vm_ioctl_caps[i].ioctl == ioctl) {
99 			*ext = vm_ioctl_caps[i].ext;
100 			return 0;
101 		}
102 	}
103 
104 	return -EINVAL;
105 }
106 
107 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
108 
109 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
110 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
111 
112 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
113 
114 static bool vgic_present, kvm_arm_initialised;
115 
116 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
117 
118 bool is_kvm_arm_initialised(void)
119 {
120 	return kvm_arm_initialised;
121 }
122 
123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
126 }
127 
128 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
129 			    struct kvm_enable_cap *cap)
130 {
131 	int r = -EINVAL;
132 
133 	if (cap->flags)
134 		return -EINVAL;
135 
136 	if (is_protected_kvm_enabled() && !kvm_pkvm_ext_allowed(kvm, cap->cap))
137 		return -EINVAL;
138 
139 	switch (cap->cap) {
140 	case KVM_CAP_ARM_NISV_TO_USER:
141 		r = 0;
142 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
143 			&kvm->arch.flags);
144 		break;
145 	case KVM_CAP_ARM_MTE:
146 		mutex_lock(&kvm->lock);
147 		if (system_supports_mte() && !kvm->created_vcpus) {
148 			r = 0;
149 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
150 		}
151 		mutex_unlock(&kvm->lock);
152 		break;
153 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
154 		r = 0;
155 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
156 		break;
157 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
158 		mutex_lock(&kvm->slots_lock);
159 		/*
160 		 * To keep things simple, allow changing the chunk
161 		 * size only when no memory slots have been created.
162 		 */
163 		if (kvm_are_all_memslots_empty(kvm)) {
164 			u64 new_cap = cap->args[0];
165 
166 			if (!new_cap || kvm_is_block_size_supported(new_cap)) {
167 				r = 0;
168 				kvm->arch.mmu.split_page_chunk_size = new_cap;
169 			}
170 		}
171 		mutex_unlock(&kvm->slots_lock);
172 		break;
173 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
174 		mutex_lock(&kvm->lock);
175 		if (!kvm->created_vcpus) {
176 			r = 0;
177 			set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
178 		}
179 		mutex_unlock(&kvm->lock);
180 		break;
181 	case KVM_CAP_ARM_SEA_TO_USER:
182 		r = 0;
183 		set_bit(KVM_ARCH_FLAG_EXIT_SEA, &kvm->arch.flags);
184 		break;
185 	default:
186 		break;
187 	}
188 
189 	return r;
190 }
191 
192 static int kvm_arm_default_max_vcpus(void)
193 {
194 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
195 }
196 
197 /**
198  * kvm_arch_init_vm - initializes a VM data structure
199  * @kvm:	pointer to the KVM struct
200  * @type:	kvm device type
201  */
202 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
203 {
204 	int ret;
205 
206 	mutex_init(&kvm->arch.config_lock);
207 
208 #ifdef CONFIG_LOCKDEP
209 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
210 	mutex_lock(&kvm->lock);
211 	mutex_lock(&kvm->arch.config_lock);
212 	mutex_unlock(&kvm->arch.config_lock);
213 	mutex_unlock(&kvm->lock);
214 #endif
215 
216 	kvm_init_nested(kvm);
217 
218 	ret = kvm_share_hyp(kvm, kvm + 1);
219 	if (ret)
220 		return ret;
221 
222 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
223 		ret = -ENOMEM;
224 		goto err_unshare_kvm;
225 	}
226 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
227 
228 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
229 	if (ret)
230 		goto err_free_cpumask;
231 
232 	if (is_protected_kvm_enabled()) {
233 		/*
234 		 * If any failures occur after this is successful, make sure to
235 		 * call __pkvm_unreserve_vm to unreserve the VM in hyp.
236 		 */
237 		ret = pkvm_init_host_vm(kvm);
238 		if (ret)
239 			goto err_free_cpumask;
240 	}
241 
242 	kvm_vgic_early_init(kvm);
243 
244 	kvm_timer_init_vm(kvm);
245 
246 	/* The maximum number of VCPUs is limited by the host's GIC model */
247 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
248 
249 	kvm_arm_init_hypercalls(kvm);
250 
251 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
252 
253 	return 0;
254 
255 err_free_cpumask:
256 	free_cpumask_var(kvm->arch.supported_cpus);
257 err_unshare_kvm:
258 	kvm_unshare_hyp(kvm, kvm + 1);
259 	return ret;
260 }
261 
262 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
263 {
264 	return VM_FAULT_SIGBUS;
265 }
266 
267 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
268 {
269 	kvm_sys_regs_create_debugfs(kvm);
270 	kvm_s2_ptdump_create_debugfs(kvm);
271 }
272 
273 static void kvm_destroy_mpidr_data(struct kvm *kvm)
274 {
275 	struct kvm_mpidr_data *data;
276 
277 	mutex_lock(&kvm->arch.config_lock);
278 
279 	data = rcu_dereference_protected(kvm->arch.mpidr_data,
280 					 lockdep_is_held(&kvm->arch.config_lock));
281 	if (data) {
282 		rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
283 		synchronize_rcu();
284 		kfree(data);
285 	}
286 
287 	mutex_unlock(&kvm->arch.config_lock);
288 }
289 
290 /**
291  * kvm_arch_destroy_vm - destroy the VM data structure
292  * @kvm:	pointer to the KVM struct
293  */
294 void kvm_arch_destroy_vm(struct kvm *kvm)
295 {
296 	bitmap_free(kvm->arch.pmu_filter);
297 	free_cpumask_var(kvm->arch.supported_cpus);
298 
299 	kvm_vgic_destroy(kvm);
300 
301 	if (is_protected_kvm_enabled())
302 		pkvm_destroy_hyp_vm(kvm);
303 
304 	kvm_destroy_mpidr_data(kvm);
305 
306 	kfree(kvm->arch.sysreg_masks);
307 	kvm_destroy_vcpus(kvm);
308 
309 	kvm_unshare_hyp(kvm, kvm + 1);
310 
311 	kvm_arm_teardown_hypercalls(kvm);
312 }
313 
314 static bool kvm_has_full_ptr_auth(void)
315 {
316 	bool apa, gpa, api, gpi, apa3, gpa3;
317 	u64 isar1, isar2, val;
318 
319 	/*
320 	 * Check that:
321 	 *
322 	 * - both Address and Generic auth are implemented for a given
323          *   algorithm (Q5, IMPDEF or Q3)
324 	 * - only a single algorithm is implemented.
325 	 */
326 	if (!system_has_full_ptr_auth())
327 		return false;
328 
329 	isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
330 	isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
331 
332 	apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
333 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
334 	gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
335 
336 	api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
337 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
338 	gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
339 
340 	apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
341 	val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
342 	gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
343 
344 	return (apa == gpa && api == gpi && apa3 == gpa3 &&
345 		(apa + api + apa3) == 1);
346 }
347 
348 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
349 {
350 	int r;
351 
352 	if (is_protected_kvm_enabled() && !kvm_pkvm_ext_allowed(kvm, ext))
353 		return 0;
354 
355 	switch (ext) {
356 	case KVM_CAP_IRQCHIP:
357 		r = vgic_present;
358 		break;
359 	case KVM_CAP_IOEVENTFD:
360 	case KVM_CAP_USER_MEMORY:
361 	case KVM_CAP_SYNC_MMU:
362 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
363 	case KVM_CAP_ONE_REG:
364 	case KVM_CAP_ARM_PSCI:
365 	case KVM_CAP_ARM_PSCI_0_2:
366 	case KVM_CAP_READONLY_MEM:
367 	case KVM_CAP_MP_STATE:
368 	case KVM_CAP_IMMEDIATE_EXIT:
369 	case KVM_CAP_VCPU_EVENTS:
370 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
371 	case KVM_CAP_ARM_NISV_TO_USER:
372 	case KVM_CAP_ARM_INJECT_EXT_DABT:
373 	case KVM_CAP_SET_GUEST_DEBUG:
374 	case KVM_CAP_VCPU_ATTRIBUTES:
375 	case KVM_CAP_PTP_KVM:
376 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
377 	case KVM_CAP_IRQFD_RESAMPLE:
378 	case KVM_CAP_COUNTER_OFFSET:
379 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
380 	case KVM_CAP_ARM_SEA_TO_USER:
381 		r = 1;
382 		break;
383 	case KVM_CAP_SET_GUEST_DEBUG2:
384 		return KVM_GUESTDBG_VALID_MASK;
385 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
386 		r = 1;
387 		break;
388 	case KVM_CAP_NR_VCPUS:
389 		/*
390 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
391 		 * architectures, as it does not always bound it to
392 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
393 		 * this is just an advisory value.
394 		 */
395 		r = min_t(unsigned int, num_online_cpus(),
396 			  kvm_arm_default_max_vcpus());
397 		break;
398 	case KVM_CAP_MAX_VCPUS:
399 	case KVM_CAP_MAX_VCPU_ID:
400 		if (kvm)
401 			r = kvm->max_vcpus;
402 		else
403 			r = kvm_arm_default_max_vcpus();
404 		break;
405 	case KVM_CAP_MSI_DEVID:
406 		if (!kvm)
407 			r = -EINVAL;
408 		else
409 			r = kvm->arch.vgic.msis_require_devid;
410 		break;
411 	case KVM_CAP_ARM_USER_IRQ:
412 		/*
413 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
414 		 * (bump this number if adding more devices)
415 		 */
416 		r = 1;
417 		break;
418 	case KVM_CAP_ARM_MTE:
419 		r = system_supports_mte();
420 		break;
421 	case KVM_CAP_STEAL_TIME:
422 		r = kvm_arm_pvtime_supported();
423 		break;
424 	case KVM_CAP_ARM_EL1_32BIT:
425 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
426 		break;
427 	case KVM_CAP_ARM_EL2:
428 		r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
429 		break;
430 	case KVM_CAP_ARM_EL2_E2H0:
431 		r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
432 		break;
433 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
434 		r = get_num_brps();
435 		break;
436 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
437 		r = get_num_wrps();
438 		break;
439 	case KVM_CAP_ARM_PMU_V3:
440 		r = kvm_supports_guest_pmuv3();
441 		break;
442 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
443 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
444 		break;
445 	case KVM_CAP_ARM_VM_IPA_SIZE:
446 		r = get_kvm_ipa_limit();
447 		break;
448 	case KVM_CAP_ARM_SVE:
449 		r = system_supports_sve();
450 		break;
451 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
452 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
453 		r = kvm_has_full_ptr_auth();
454 		break;
455 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
456 		if (kvm)
457 			r = kvm->arch.mmu.split_page_chunk_size;
458 		else
459 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
460 		break;
461 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
462 		r = kvm_supported_block_sizes();
463 		break;
464 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
465 		r = BIT(0);
466 		break;
467 	case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED:
468 		if (!kvm)
469 			r = -EINVAL;
470 		else
471 			r = kvm_supports_cacheable_pfnmap();
472 		break;
473 
474 	default:
475 		r = 0;
476 	}
477 
478 	return r;
479 }
480 
481 long kvm_arch_dev_ioctl(struct file *filp,
482 			unsigned int ioctl, unsigned long arg)
483 {
484 	return -EINVAL;
485 }
486 
487 struct kvm *kvm_arch_alloc_vm(void)
488 {
489 	size_t sz = sizeof(struct kvm);
490 
491 	if (!has_vhe())
492 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
493 
494 	return kvzalloc(sz, GFP_KERNEL_ACCOUNT);
495 }
496 
497 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
498 {
499 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
500 		return -EBUSY;
501 
502 	if (id >= kvm->max_vcpus)
503 		return -EINVAL;
504 
505 	return 0;
506 }
507 
508 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
509 {
510 	int err;
511 
512 	spin_lock_init(&vcpu->arch.mp_state_lock);
513 
514 #ifdef CONFIG_LOCKDEP
515 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
516 	mutex_lock(&vcpu->mutex);
517 	mutex_lock(&vcpu->kvm->arch.config_lock);
518 	mutex_unlock(&vcpu->kvm->arch.config_lock);
519 	mutex_unlock(&vcpu->mutex);
520 #endif
521 
522 	/* Force users to call KVM_ARM_VCPU_INIT */
523 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
524 
525 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
526 
527 	/* Set up the timer */
528 	kvm_timer_vcpu_init(vcpu);
529 
530 	kvm_pmu_vcpu_init(vcpu);
531 
532 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
533 
534 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
535 
536 	/*
537 	 * This vCPU may have been created after mpidr_data was initialized.
538 	 * Throw out the pre-computed mappings if that is the case which forces
539 	 * KVM to fall back to iteratively searching the vCPUs.
540 	 */
541 	kvm_destroy_mpidr_data(vcpu->kvm);
542 
543 	err = kvm_vgic_vcpu_init(vcpu);
544 	if (err)
545 		return err;
546 
547 	err = kvm_share_hyp(vcpu, vcpu + 1);
548 	if (err)
549 		kvm_vgic_vcpu_destroy(vcpu);
550 
551 	return err;
552 }
553 
554 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
555 {
556 }
557 
558 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
559 {
560 	if (!is_protected_kvm_enabled())
561 		kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
562 	else
563 		free_hyp_memcache(&vcpu->arch.pkvm_memcache);
564 	kvm_timer_vcpu_terminate(vcpu);
565 	kvm_pmu_vcpu_destroy(vcpu);
566 	kvm_vgic_vcpu_destroy(vcpu);
567 	kvm_arm_vcpu_destroy(vcpu);
568 }
569 
570 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
571 {
572 
573 }
574 
575 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
576 {
577 
578 }
579 
580 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
581 {
582 	if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
583 		/*
584 		 * Either we're running an L2 guest, and the API/APK bits come
585 		 * from L1's HCR_EL2, or API/APK are both set.
586 		 */
587 		if (unlikely(is_nested_ctxt(vcpu))) {
588 			u64 val;
589 
590 			val = __vcpu_sys_reg(vcpu, HCR_EL2);
591 			val &= (HCR_API | HCR_APK);
592 			vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
593 			vcpu->arch.hcr_el2 |= val;
594 		} else {
595 			vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
596 		}
597 
598 		/*
599 		 * Save the host keys if there is any chance for the guest
600 		 * to use pauth, as the entry code will reload the guest
601 		 * keys in that case.
602 		 */
603 		if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
604 			struct kvm_cpu_context *ctxt;
605 
606 			ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
607 			ptrauth_save_keys(ctxt);
608 		}
609 	}
610 }
611 
612 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
613 {
614 	if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
615 		return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
616 
617 	return single_task_running() &&
618 	       vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
619 	       (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
620 		vcpu->kvm->arch.vgic.nassgireq);
621 }
622 
623 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
624 {
625 	if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
626 		return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
627 
628 	return single_task_running();
629 }
630 
631 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
632 {
633 	struct kvm_s2_mmu *mmu;
634 	int *last_ran;
635 
636 	if (is_protected_kvm_enabled())
637 		goto nommu;
638 
639 	if (vcpu_has_nv(vcpu))
640 		kvm_vcpu_load_hw_mmu(vcpu);
641 
642 	mmu = vcpu->arch.hw_mmu;
643 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
644 
645 	/*
646 	 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
647 	 * which happens eagerly in VHE.
648 	 *
649 	 * Also, the VMID allocator only preserves VMIDs that are active at the
650 	 * time of rollover, so KVM might need to grab a new VMID for the MMU if
651 	 * this is called from kvm_sched_in().
652 	 */
653 	kvm_arm_vmid_update(&mmu->vmid);
654 
655 	/*
656 	 * We guarantee that both TLBs and I-cache are private to each
657 	 * vcpu. If detecting that a vcpu from the same VM has
658 	 * previously run on the same physical CPU, call into the
659 	 * hypervisor code to nuke the relevant contexts.
660 	 *
661 	 * We might get preempted before the vCPU actually runs, but
662 	 * over-invalidation doesn't affect correctness.
663 	 */
664 	if (*last_ran != vcpu->vcpu_idx) {
665 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
666 		*last_ran = vcpu->vcpu_idx;
667 	}
668 
669 nommu:
670 	vcpu->cpu = cpu;
671 
672 	/*
673 	 * The timer must be loaded before the vgic to correctly set up physical
674 	 * interrupt deactivation in nested state (e.g. timer interrupt).
675 	 */
676 	kvm_timer_vcpu_load(vcpu);
677 	kvm_vgic_load(vcpu);
678 	kvm_vcpu_load_debug(vcpu);
679 	kvm_vcpu_load_fgt(vcpu);
680 	if (has_vhe())
681 		kvm_vcpu_load_vhe(vcpu);
682 	kvm_arch_vcpu_load_fp(vcpu);
683 	kvm_vcpu_pmu_restore_guest(vcpu);
684 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
685 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
686 
687 	if (kvm_vcpu_should_clear_twe(vcpu))
688 		vcpu->arch.hcr_el2 &= ~HCR_TWE;
689 	else
690 		vcpu->arch.hcr_el2 |= HCR_TWE;
691 
692 	if (kvm_vcpu_should_clear_twi(vcpu))
693 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
694 	else
695 		vcpu->arch.hcr_el2 |= HCR_TWI;
696 
697 	vcpu_set_pauth_traps(vcpu);
698 
699 	if (is_protected_kvm_enabled()) {
700 		kvm_call_hyp_nvhe(__pkvm_vcpu_load,
701 				  vcpu->kvm->arch.pkvm.handle,
702 				  vcpu->vcpu_idx, vcpu->arch.hcr_el2);
703 		kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
704 			     &vcpu->arch.vgic_cpu.vgic_v3);
705 	}
706 
707 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
708 		vcpu_set_on_unsupported_cpu(vcpu);
709 }
710 
711 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
712 {
713 	if (is_protected_kvm_enabled()) {
714 		kvm_call_hyp(__vgic_v3_save_aprs, &vcpu->arch.vgic_cpu.vgic_v3);
715 		kvm_call_hyp_nvhe(__pkvm_vcpu_put);
716 	}
717 
718 	kvm_vcpu_put_debug(vcpu);
719 	kvm_arch_vcpu_put_fp(vcpu);
720 	if (has_vhe())
721 		kvm_vcpu_put_vhe(vcpu);
722 	kvm_timer_vcpu_put(vcpu);
723 	kvm_vgic_put(vcpu);
724 	kvm_vcpu_pmu_restore_host(vcpu);
725 	if (vcpu_has_nv(vcpu))
726 		kvm_vcpu_put_hw_mmu(vcpu);
727 	kvm_arm_vmid_clear_active();
728 
729 	vcpu_clear_on_unsupported_cpu(vcpu);
730 	vcpu->cpu = -1;
731 }
732 
733 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
734 {
735 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
736 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
737 	kvm_vcpu_kick(vcpu);
738 }
739 
740 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
741 {
742 	spin_lock(&vcpu->arch.mp_state_lock);
743 	__kvm_arm_vcpu_power_off(vcpu);
744 	spin_unlock(&vcpu->arch.mp_state_lock);
745 }
746 
747 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
748 {
749 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
750 }
751 
752 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
753 {
754 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
755 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
756 	kvm_vcpu_kick(vcpu);
757 }
758 
759 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
760 {
761 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
762 }
763 
764 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
765 				    struct kvm_mp_state *mp_state)
766 {
767 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
768 
769 	return 0;
770 }
771 
772 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
773 				    struct kvm_mp_state *mp_state)
774 {
775 	int ret = 0;
776 
777 	spin_lock(&vcpu->arch.mp_state_lock);
778 
779 	switch (mp_state->mp_state) {
780 	case KVM_MP_STATE_RUNNABLE:
781 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
782 		break;
783 	case KVM_MP_STATE_STOPPED:
784 		__kvm_arm_vcpu_power_off(vcpu);
785 		break;
786 	case KVM_MP_STATE_SUSPENDED:
787 		kvm_arm_vcpu_suspend(vcpu);
788 		break;
789 	default:
790 		ret = -EINVAL;
791 	}
792 
793 	spin_unlock(&vcpu->arch.mp_state_lock);
794 
795 	return ret;
796 }
797 
798 /**
799  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
800  * @v:		The VCPU pointer
801  *
802  * If the guest CPU is not waiting for interrupts or an interrupt line is
803  * asserted, the CPU is by definition runnable.
804  */
805 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
806 {
807 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
808 
809 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
810 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
811 }
812 
813 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
814 {
815 	return vcpu_mode_priv(vcpu);
816 }
817 
818 #ifdef CONFIG_GUEST_PERF_EVENTS
819 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
820 {
821 	return *vcpu_pc(vcpu);
822 }
823 #endif
824 
825 static void kvm_init_mpidr_data(struct kvm *kvm)
826 {
827 	struct kvm_mpidr_data *data = NULL;
828 	unsigned long c, mask, nr_entries;
829 	u64 aff_set = 0, aff_clr = ~0UL;
830 	struct kvm_vcpu *vcpu;
831 
832 	mutex_lock(&kvm->arch.config_lock);
833 
834 	if (rcu_access_pointer(kvm->arch.mpidr_data) ||
835 	    atomic_read(&kvm->online_vcpus) == 1)
836 		goto out;
837 
838 	kvm_for_each_vcpu(c, vcpu, kvm) {
839 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
840 		aff_set |= aff;
841 		aff_clr &= aff;
842 	}
843 
844 	/*
845 	 * A significant bit can be either 0 or 1, and will only appear in
846 	 * aff_set. Use aff_clr to weed out the useless stuff.
847 	 */
848 	mask = aff_set ^ aff_clr;
849 	nr_entries = BIT_ULL(hweight_long(mask));
850 
851 	/*
852 	 * Don't let userspace fool us. If we need more than a single page
853 	 * to describe the compressed MPIDR array, just fall back to the
854 	 * iterative method. Single vcpu VMs do not need this either.
855 	 */
856 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
857 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
858 			       GFP_KERNEL_ACCOUNT);
859 
860 	if (!data)
861 		goto out;
862 
863 	data->mpidr_mask = mask;
864 
865 	kvm_for_each_vcpu(c, vcpu, kvm) {
866 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
867 		u16 index = kvm_mpidr_index(data, aff);
868 
869 		data->cmpidr_to_idx[index] = c;
870 	}
871 
872 	rcu_assign_pointer(kvm->arch.mpidr_data, data);
873 out:
874 	mutex_unlock(&kvm->arch.config_lock);
875 }
876 
877 /*
878  * Handle both the initialisation that is being done when the vcpu is
879  * run for the first time, as well as the updates that must be
880  * performed each time we get a new thread dealing with this vcpu.
881  */
882 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
883 {
884 	struct kvm *kvm = vcpu->kvm;
885 	int ret;
886 
887 	if (!kvm_vcpu_initialized(vcpu))
888 		return -ENOEXEC;
889 
890 	if (!kvm_arm_vcpu_is_finalized(vcpu))
891 		return -EPERM;
892 
893 	if (likely(vcpu_has_run_once(vcpu)))
894 		return 0;
895 
896 	kvm_init_mpidr_data(kvm);
897 
898 	if (likely(irqchip_in_kernel(kvm))) {
899 		/*
900 		 * Map the VGIC hardware resources before running a vcpu the
901 		 * first time on this VM.
902 		 */
903 		ret = kvm_vgic_map_resources(kvm);
904 		if (ret)
905 			return ret;
906 	}
907 
908 	ret = kvm_finalize_sys_regs(vcpu);
909 	if (ret)
910 		return ret;
911 
912 	if (vcpu_has_nv(vcpu)) {
913 		ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
914 		if (ret)
915 			return ret;
916 
917 		ret = kvm_vgic_vcpu_nv_init(vcpu);
918 		if (ret)
919 			return ret;
920 	}
921 
922 	/*
923 	 * This needs to happen after any restriction has been applied
924 	 * to the feature set.
925 	 */
926 	kvm_calculate_traps(vcpu);
927 
928 	ret = kvm_timer_enable(vcpu);
929 	if (ret)
930 		return ret;
931 
932 	if (kvm_vcpu_has_pmu(vcpu)) {
933 		ret = kvm_arm_pmu_v3_enable(vcpu);
934 		if (ret)
935 			return ret;
936 	}
937 
938 	if (is_protected_kvm_enabled()) {
939 		ret = pkvm_create_hyp_vm(kvm);
940 		if (ret)
941 			return ret;
942 
943 		ret = pkvm_create_hyp_vcpu(vcpu);
944 		if (ret)
945 			return ret;
946 	}
947 
948 	mutex_lock(&kvm->arch.config_lock);
949 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
950 	mutex_unlock(&kvm->arch.config_lock);
951 
952 	return ret;
953 }
954 
955 bool kvm_arch_intc_initialized(struct kvm *kvm)
956 {
957 	return vgic_initialized(kvm);
958 }
959 
960 void kvm_arm_halt_guest(struct kvm *kvm)
961 {
962 	unsigned long i;
963 	struct kvm_vcpu *vcpu;
964 
965 	kvm_for_each_vcpu(i, vcpu, kvm)
966 		vcpu->arch.pause = true;
967 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
968 }
969 
970 void kvm_arm_resume_guest(struct kvm *kvm)
971 {
972 	unsigned long i;
973 	struct kvm_vcpu *vcpu;
974 
975 	kvm_for_each_vcpu(i, vcpu, kvm) {
976 		vcpu->arch.pause = false;
977 		__kvm_vcpu_wake_up(vcpu);
978 	}
979 }
980 
981 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
982 {
983 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
984 
985 	rcuwait_wait_event(wait,
986 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
987 			   TASK_INTERRUPTIBLE);
988 
989 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
990 		/* Awaken to handle a signal, request we sleep again later. */
991 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
992 	}
993 
994 	/*
995 	 * Make sure we will observe a potential reset request if we've
996 	 * observed a change to the power state. Pairs with the smp_wmb() in
997 	 * kvm_psci_vcpu_on().
998 	 */
999 	smp_rmb();
1000 }
1001 
1002 /**
1003  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
1004  * @vcpu:	The VCPU pointer
1005  *
1006  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
1007  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
1008  * on when a wake event arrives, e.g. there may already be a pending wake event.
1009  */
1010 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
1011 {
1012 	/*
1013 	 * Sync back the state of the GIC CPU interface so that we have
1014 	 * the latest PMR and group enables. This ensures that
1015 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
1016 	 * we have pending interrupts, e.g. when determining if the
1017 	 * vCPU should block.
1018 	 *
1019 	 * For the same reason, we want to tell GICv4 that we need
1020 	 * doorbells to be signalled, should an interrupt become pending.
1021 	 */
1022 	preempt_disable();
1023 	vcpu_set_flag(vcpu, IN_WFI);
1024 	kvm_vgic_put(vcpu);
1025 	preempt_enable();
1026 
1027 	kvm_vcpu_halt(vcpu);
1028 	vcpu_clear_flag(vcpu, IN_WFIT);
1029 
1030 	preempt_disable();
1031 	vcpu_clear_flag(vcpu, IN_WFI);
1032 	kvm_vgic_load(vcpu);
1033 	preempt_enable();
1034 }
1035 
1036 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
1037 {
1038 	if (!kvm_arm_vcpu_suspended(vcpu))
1039 		return 1;
1040 
1041 	kvm_vcpu_wfi(vcpu);
1042 
1043 	/*
1044 	 * The suspend state is sticky; we do not leave it until userspace
1045 	 * explicitly marks the vCPU as runnable. Request that we suspend again
1046 	 * later.
1047 	 */
1048 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
1049 
1050 	/*
1051 	 * Check to make sure the vCPU is actually runnable. If so, exit to
1052 	 * userspace informing it of the wakeup condition.
1053 	 */
1054 	if (kvm_arch_vcpu_runnable(vcpu)) {
1055 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
1056 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1057 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1058 		return 0;
1059 	}
1060 
1061 	/*
1062 	 * Otherwise, we were unblocked to process a different event, such as a
1063 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1064 	 * process the event.
1065 	 */
1066 	return 1;
1067 }
1068 
1069 /**
1070  * check_vcpu_requests - check and handle pending vCPU requests
1071  * @vcpu:	the VCPU pointer
1072  *
1073  * Return: 1 if we should enter the guest
1074  *	   0 if we should exit to userspace
1075  *	   < 0 if we should exit to userspace, where the return value indicates
1076  *	   an error
1077  */
1078 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1079 {
1080 	if (kvm_request_pending(vcpu)) {
1081 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1082 			return -EIO;
1083 
1084 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1085 			kvm_vcpu_sleep(vcpu);
1086 
1087 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1088 			kvm_reset_vcpu(vcpu);
1089 
1090 		/*
1091 		 * Clear IRQ_PENDING requests that were made to guarantee
1092 		 * that a VCPU sees new virtual interrupts.
1093 		 */
1094 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1095 
1096 		/* Process interrupts deactivated through a trap */
1097 		if (kvm_check_request(KVM_REQ_VGIC_PROCESS_UPDATE, vcpu))
1098 			kvm_vgic_process_async_update(vcpu);
1099 
1100 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1101 			kvm_update_stolen_time(vcpu);
1102 
1103 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1104 			/* The distributor enable bits were changed */
1105 			preempt_disable();
1106 			vgic_v4_put(vcpu);
1107 			vgic_v4_load(vcpu);
1108 			preempt_enable();
1109 		}
1110 
1111 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1112 			kvm_vcpu_reload_pmu(vcpu);
1113 
1114 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1115 			kvm_vcpu_pmu_restore_guest(vcpu);
1116 
1117 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1118 			return kvm_vcpu_suspend(vcpu);
1119 
1120 		if (kvm_dirty_ring_check_request(vcpu))
1121 			return 0;
1122 
1123 		check_nested_vcpu_requests(vcpu);
1124 	}
1125 
1126 	return 1;
1127 }
1128 
1129 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1130 {
1131 	if (likely(!vcpu_mode_is_32bit(vcpu)))
1132 		return false;
1133 
1134 	if (vcpu_has_nv(vcpu))
1135 		return true;
1136 
1137 	return !kvm_supports_32bit_el0();
1138 }
1139 
1140 /**
1141  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1142  * @vcpu:	The VCPU pointer
1143  * @ret:	Pointer to write optional return code
1144  *
1145  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1146  *	    and skip guest entry.
1147  *
1148  * This function disambiguates between two different types of exits: exits to a
1149  * preemptible + interruptible kernel context and exits to userspace. For an
1150  * exit to userspace, this function will write the return code to ret and return
1151  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1152  * for pending work and re-enter), return true without writing to ret.
1153  */
1154 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1155 {
1156 	struct kvm_run *run = vcpu->run;
1157 
1158 	/*
1159 	 * If we're using a userspace irqchip, then check if we need
1160 	 * to tell a userspace irqchip about timer or PMU level
1161 	 * changes and if so, exit to userspace (the actual level
1162 	 * state gets updated in kvm_timer_update_run and
1163 	 * kvm_pmu_update_run below).
1164 	 */
1165 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1166 		if (kvm_timer_should_notify_user(vcpu) ||
1167 		    kvm_pmu_should_notify_user(vcpu)) {
1168 			*ret = -EINTR;
1169 			run->exit_reason = KVM_EXIT_INTR;
1170 			return true;
1171 		}
1172 	}
1173 
1174 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1175 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1176 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1177 		run->fail_entry.cpu = smp_processor_id();
1178 		*ret = 0;
1179 		return true;
1180 	}
1181 
1182 	return kvm_request_pending(vcpu) ||
1183 			xfer_to_guest_mode_work_pending();
1184 }
1185 
1186 /*
1187  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1188  * the vCPU is running.
1189  *
1190  * This must be noinstr as instrumentation may make use of RCU, and this is not
1191  * safe during the EQS.
1192  */
1193 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1194 {
1195 	int ret;
1196 
1197 	guest_state_enter_irqoff();
1198 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1199 	guest_state_exit_irqoff();
1200 
1201 	return ret;
1202 }
1203 
1204 /**
1205  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1206  * @vcpu:	The VCPU pointer
1207  *
1208  * This function is called through the VCPU_RUN ioctl called from user space. It
1209  * will execute VM code in a loop until the time slice for the process is used
1210  * or some emulation is needed from user space in which case the function will
1211  * return with return value 0 and with the kvm_run structure filled in with the
1212  * required data for the requested emulation.
1213  */
1214 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1215 {
1216 	struct kvm_run *run = vcpu->run;
1217 	int ret;
1218 
1219 	if (run->exit_reason == KVM_EXIT_MMIO) {
1220 		ret = kvm_handle_mmio_return(vcpu);
1221 		if (ret <= 0)
1222 			return ret;
1223 	}
1224 
1225 	vcpu_load(vcpu);
1226 
1227 	if (!vcpu->wants_to_run) {
1228 		ret = -EINTR;
1229 		goto out;
1230 	}
1231 
1232 	kvm_sigset_activate(vcpu);
1233 
1234 	ret = 1;
1235 	run->exit_reason = KVM_EXIT_UNKNOWN;
1236 	run->flags = 0;
1237 	while (ret > 0) {
1238 		/*
1239 		 * Check conditions before entering the guest
1240 		 */
1241 		ret = kvm_xfer_to_guest_mode_handle_work(vcpu);
1242 		if (!ret)
1243 			ret = 1;
1244 
1245 		if (ret > 0)
1246 			ret = check_vcpu_requests(vcpu);
1247 
1248 		/*
1249 		 * Preparing the interrupts to be injected also
1250 		 * involves poking the GIC, which must be done in a
1251 		 * non-preemptible context.
1252 		 */
1253 		preempt_disable();
1254 
1255 		kvm_nested_flush_hwstate(vcpu);
1256 
1257 		if (kvm_vcpu_has_pmu(vcpu))
1258 			kvm_pmu_flush_hwstate(vcpu);
1259 
1260 		local_irq_disable();
1261 
1262 		kvm_vgic_flush_hwstate(vcpu);
1263 
1264 		kvm_pmu_update_vcpu_events(vcpu);
1265 
1266 		/*
1267 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1268 		 * interrupts and before the final VCPU requests check.
1269 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1270 		 * Documentation/virt/kvm/vcpu-requests.rst
1271 		 */
1272 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1273 
1274 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1275 			vcpu->mode = OUTSIDE_GUEST_MODE;
1276 			isb(); /* Ensure work in x_flush_hwstate is committed */
1277 			if (kvm_vcpu_has_pmu(vcpu))
1278 				kvm_pmu_sync_hwstate(vcpu);
1279 			if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1280 				kvm_timer_sync_user(vcpu);
1281 			kvm_vgic_sync_hwstate(vcpu);
1282 			local_irq_enable();
1283 			preempt_enable();
1284 			continue;
1285 		}
1286 
1287 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1288 
1289 		/**************************************************************
1290 		 * Enter the guest
1291 		 */
1292 		trace_kvm_entry(*vcpu_pc(vcpu));
1293 		guest_timing_enter_irqoff();
1294 
1295 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1296 
1297 		vcpu->mode = OUTSIDE_GUEST_MODE;
1298 		vcpu->stat.exits++;
1299 		/*
1300 		 * Back from guest
1301 		 *************************************************************/
1302 
1303 		/*
1304 		 * We must sync the PMU state before the vgic state so
1305 		 * that the vgic can properly sample the updated state of the
1306 		 * interrupt line.
1307 		 */
1308 		if (kvm_vcpu_has_pmu(vcpu))
1309 			kvm_pmu_sync_hwstate(vcpu);
1310 
1311 		/*
1312 		 * Sync the vgic state before syncing the timer state because
1313 		 * the timer code needs to know if the virtual timer
1314 		 * interrupts are active.
1315 		 */
1316 		kvm_vgic_sync_hwstate(vcpu);
1317 
1318 		/*
1319 		 * Sync the timer hardware state before enabling interrupts as
1320 		 * we don't want vtimer interrupts to race with syncing the
1321 		 * timer virtual interrupt state.
1322 		 */
1323 		if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1324 			kvm_timer_sync_user(vcpu);
1325 
1326 		if (is_hyp_ctxt(vcpu))
1327 			kvm_timer_sync_nested(vcpu);
1328 
1329 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1330 
1331 		/*
1332 		 * We must ensure that any pending interrupts are taken before
1333 		 * we exit guest timing so that timer ticks are accounted as
1334 		 * guest time. Transiently unmask interrupts so that any
1335 		 * pending interrupts are taken.
1336 		 *
1337 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1338 		 * context synchronization event) is necessary to ensure that
1339 		 * pending interrupts are taken.
1340 		 */
1341 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1342 			local_irq_enable();
1343 			isb();
1344 			local_irq_disable();
1345 		}
1346 
1347 		guest_timing_exit_irqoff();
1348 
1349 		local_irq_enable();
1350 
1351 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1352 
1353 		/* Exit types that need handling before we can be preempted */
1354 		handle_exit_early(vcpu, ret);
1355 
1356 		kvm_nested_sync_hwstate(vcpu);
1357 
1358 		preempt_enable();
1359 
1360 		/*
1361 		 * The ARMv8 architecture doesn't give the hypervisor
1362 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1363 		 * if implemented by the CPU. If we spot the guest in such
1364 		 * state and that we decided it wasn't supposed to do so (like
1365 		 * with the asymmetric AArch32 case), return to userspace with
1366 		 * a fatal error.
1367 		 */
1368 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1369 			/*
1370 			 * As we have caught the guest red-handed, decide that
1371 			 * it isn't fit for purpose anymore by making the vcpu
1372 			 * invalid. The VMM can try and fix it by issuing  a
1373 			 * KVM_ARM_VCPU_INIT if it really wants to.
1374 			 */
1375 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1376 			ret = ARM_EXCEPTION_IL;
1377 		}
1378 
1379 		ret = handle_exit(vcpu, ret);
1380 	}
1381 
1382 	/* Tell userspace about in-kernel device output levels */
1383 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1384 		kvm_timer_update_run(vcpu);
1385 		kvm_pmu_update_run(vcpu);
1386 	}
1387 
1388 	kvm_sigset_deactivate(vcpu);
1389 
1390 out:
1391 	/*
1392 	 * In the unlikely event that we are returning to userspace
1393 	 * with pending exceptions or PC adjustment, commit these
1394 	 * adjustments in order to give userspace a consistent view of
1395 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1396 	 * being preempt-safe on VHE.
1397 	 */
1398 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1399 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1400 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1401 
1402 	vcpu_put(vcpu);
1403 	return ret;
1404 }
1405 
1406 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1407 {
1408 	int bit_index;
1409 	bool set;
1410 	unsigned long *hcr;
1411 
1412 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1413 		bit_index = __ffs(HCR_VI);
1414 	else /* KVM_ARM_IRQ_CPU_FIQ */
1415 		bit_index = __ffs(HCR_VF);
1416 
1417 	hcr = vcpu_hcr(vcpu);
1418 	if (level)
1419 		set = test_and_set_bit(bit_index, hcr);
1420 	else
1421 		set = test_and_clear_bit(bit_index, hcr);
1422 
1423 	/*
1424 	 * If we didn't change anything, no need to wake up or kick other CPUs
1425 	 */
1426 	if (set == level)
1427 		return 0;
1428 
1429 	/*
1430 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1431 	 * trigger a world-switch round on the running physical CPU to set the
1432 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1433 	 */
1434 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1435 	kvm_vcpu_kick(vcpu);
1436 
1437 	return 0;
1438 }
1439 
1440 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1441 			  bool line_status)
1442 {
1443 	u32 irq = irq_level->irq;
1444 	unsigned int irq_type, vcpu_id, irq_num;
1445 	struct kvm_vcpu *vcpu = NULL;
1446 	bool level = irq_level->level;
1447 
1448 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1449 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1450 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1451 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1452 
1453 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1454 
1455 	switch (irq_type) {
1456 	case KVM_ARM_IRQ_TYPE_CPU:
1457 		if (irqchip_in_kernel(kvm))
1458 			return -ENXIO;
1459 
1460 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1461 		if (!vcpu)
1462 			return -EINVAL;
1463 
1464 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1465 			return -EINVAL;
1466 
1467 		return vcpu_interrupt_line(vcpu, irq_num, level);
1468 	case KVM_ARM_IRQ_TYPE_PPI:
1469 		if (!irqchip_in_kernel(kvm))
1470 			return -ENXIO;
1471 
1472 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1473 		if (!vcpu)
1474 			return -EINVAL;
1475 
1476 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1477 			return -EINVAL;
1478 
1479 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1480 	case KVM_ARM_IRQ_TYPE_SPI:
1481 		if (!irqchip_in_kernel(kvm))
1482 			return -ENXIO;
1483 
1484 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1485 			return -EINVAL;
1486 
1487 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1488 	}
1489 
1490 	return -EINVAL;
1491 }
1492 
1493 static unsigned long system_supported_vcpu_features(void)
1494 {
1495 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1496 
1497 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1498 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1499 
1500 	if (!kvm_supports_guest_pmuv3())
1501 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1502 
1503 	if (!system_supports_sve())
1504 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1505 
1506 	if (!kvm_has_full_ptr_auth()) {
1507 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1508 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1509 	}
1510 
1511 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1512 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1513 
1514 	return features;
1515 }
1516 
1517 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1518 					const struct kvm_vcpu_init *init)
1519 {
1520 	unsigned long features = init->features[0];
1521 	int i;
1522 
1523 	if (features & ~KVM_VCPU_VALID_FEATURES)
1524 		return -ENOENT;
1525 
1526 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1527 		if (init->features[i])
1528 			return -ENOENT;
1529 	}
1530 
1531 	if (features & ~system_supported_vcpu_features())
1532 		return -EINVAL;
1533 
1534 	/*
1535 	 * For now make sure that both address/generic pointer authentication
1536 	 * features are requested by the userspace together.
1537 	 */
1538 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1539 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1540 		return -EINVAL;
1541 
1542 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1543 		return 0;
1544 
1545 	/* MTE is incompatible with AArch32 */
1546 	if (kvm_has_mte(vcpu->kvm))
1547 		return -EINVAL;
1548 
1549 	/* NV is incompatible with AArch32 */
1550 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1551 		return -EINVAL;
1552 
1553 	return 0;
1554 }
1555 
1556 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1557 				  const struct kvm_vcpu_init *init)
1558 {
1559 	unsigned long features = init->features[0];
1560 
1561 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1562 			     KVM_VCPU_MAX_FEATURES);
1563 }
1564 
1565 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1566 {
1567 	struct kvm *kvm = vcpu->kvm;
1568 	int ret = 0;
1569 
1570 	/*
1571 	 * When the vCPU has a PMU, but no PMU is set for the guest
1572 	 * yet, set the default one.
1573 	 */
1574 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1575 		ret = kvm_arm_set_default_pmu(kvm);
1576 
1577 	/* Prepare for nested if required */
1578 	if (!ret && vcpu_has_nv(vcpu))
1579 		ret = kvm_vcpu_init_nested(vcpu);
1580 
1581 	return ret;
1582 }
1583 
1584 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1585 				 const struct kvm_vcpu_init *init)
1586 {
1587 	unsigned long features = init->features[0];
1588 	struct kvm *kvm = vcpu->kvm;
1589 	int ret = -EINVAL;
1590 
1591 	mutex_lock(&kvm->arch.config_lock);
1592 
1593 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1594 	    kvm_vcpu_init_changed(vcpu, init))
1595 		goto out_unlock;
1596 
1597 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1598 
1599 	ret = kvm_setup_vcpu(vcpu);
1600 	if (ret)
1601 		goto out_unlock;
1602 
1603 	/* Now we know what it is, we can reset it. */
1604 	kvm_reset_vcpu(vcpu);
1605 
1606 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1607 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1608 	ret = 0;
1609 out_unlock:
1610 	mutex_unlock(&kvm->arch.config_lock);
1611 	return ret;
1612 }
1613 
1614 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1615 			       const struct kvm_vcpu_init *init)
1616 {
1617 	int ret;
1618 
1619 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1620 	    init->target != kvm_target_cpu())
1621 		return -EINVAL;
1622 
1623 	ret = kvm_vcpu_init_check_features(vcpu, init);
1624 	if (ret)
1625 		return ret;
1626 
1627 	if (!kvm_vcpu_initialized(vcpu))
1628 		return __kvm_vcpu_set_target(vcpu, init);
1629 
1630 	if (kvm_vcpu_init_changed(vcpu, init))
1631 		return -EINVAL;
1632 
1633 	kvm_reset_vcpu(vcpu);
1634 	return 0;
1635 }
1636 
1637 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1638 					 struct kvm_vcpu_init *init)
1639 {
1640 	bool power_off = false;
1641 	int ret;
1642 
1643 	/*
1644 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1645 	 * reflecting it in the finalized feature set, thus limiting its scope
1646 	 * to a single KVM_ARM_VCPU_INIT call.
1647 	 */
1648 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1649 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1650 		power_off = true;
1651 	}
1652 
1653 	ret = kvm_vcpu_set_target(vcpu, init);
1654 	if (ret)
1655 		return ret;
1656 
1657 	/*
1658 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1659 	 * guest MMU is turned off and flush the caches as needed.
1660 	 *
1661 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1662 	 * ensuring that the data side is always coherent. We still
1663 	 * need to invalidate the I-cache though, as FWB does *not*
1664 	 * imply CTR_EL0.DIC.
1665 	 */
1666 	if (vcpu_has_run_once(vcpu)) {
1667 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1668 			stage2_unmap_vm(vcpu->kvm);
1669 		else
1670 			icache_inval_all_pou();
1671 	}
1672 
1673 	vcpu_reset_hcr(vcpu);
1674 
1675 	/*
1676 	 * Handle the "start in power-off" case.
1677 	 */
1678 	spin_lock(&vcpu->arch.mp_state_lock);
1679 
1680 	if (power_off)
1681 		__kvm_arm_vcpu_power_off(vcpu);
1682 	else
1683 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1684 
1685 	spin_unlock(&vcpu->arch.mp_state_lock);
1686 
1687 	return 0;
1688 }
1689 
1690 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1691 				 struct kvm_device_attr *attr)
1692 {
1693 	int ret = -ENXIO;
1694 
1695 	switch (attr->group) {
1696 	default:
1697 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1698 		break;
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1705 				 struct kvm_device_attr *attr)
1706 {
1707 	int ret = -ENXIO;
1708 
1709 	switch (attr->group) {
1710 	default:
1711 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1712 		break;
1713 	}
1714 
1715 	return ret;
1716 }
1717 
1718 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1719 				 struct kvm_device_attr *attr)
1720 {
1721 	int ret = -ENXIO;
1722 
1723 	switch (attr->group) {
1724 	default:
1725 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1726 		break;
1727 	}
1728 
1729 	return ret;
1730 }
1731 
1732 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1733 				   struct kvm_vcpu_events *events)
1734 {
1735 	memset(events, 0, sizeof(*events));
1736 
1737 	return __kvm_arm_vcpu_get_events(vcpu, events);
1738 }
1739 
1740 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1741 				   struct kvm_vcpu_events *events)
1742 {
1743 	int i;
1744 
1745 	/* check whether the reserved field is zero */
1746 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1747 		if (events->reserved[i])
1748 			return -EINVAL;
1749 
1750 	/* check whether the pad field is zero */
1751 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1752 		if (events->exception.pad[i])
1753 			return -EINVAL;
1754 
1755 	return __kvm_arm_vcpu_set_events(vcpu, events);
1756 }
1757 
1758 long kvm_arch_vcpu_ioctl(struct file *filp,
1759 			 unsigned int ioctl, unsigned long arg)
1760 {
1761 	struct kvm_vcpu *vcpu = filp->private_data;
1762 	void __user *argp = (void __user *)arg;
1763 	struct kvm_device_attr attr;
1764 	long r;
1765 
1766 	switch (ioctl) {
1767 	case KVM_ARM_VCPU_INIT: {
1768 		struct kvm_vcpu_init init;
1769 
1770 		r = -EFAULT;
1771 		if (copy_from_user(&init, argp, sizeof(init)))
1772 			break;
1773 
1774 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1775 		break;
1776 	}
1777 	case KVM_SET_ONE_REG:
1778 	case KVM_GET_ONE_REG: {
1779 		struct kvm_one_reg reg;
1780 
1781 		r = -ENOEXEC;
1782 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1783 			break;
1784 
1785 		r = -EFAULT;
1786 		if (copy_from_user(&reg, argp, sizeof(reg)))
1787 			break;
1788 
1789 		/*
1790 		 * We could owe a reset due to PSCI. Handle the pending reset
1791 		 * here to ensure userspace register accesses are ordered after
1792 		 * the reset.
1793 		 */
1794 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1795 			kvm_reset_vcpu(vcpu);
1796 
1797 		if (ioctl == KVM_SET_ONE_REG)
1798 			r = kvm_arm_set_reg(vcpu, &reg);
1799 		else
1800 			r = kvm_arm_get_reg(vcpu, &reg);
1801 		break;
1802 	}
1803 	case KVM_GET_REG_LIST: {
1804 		struct kvm_reg_list __user *user_list = argp;
1805 		struct kvm_reg_list reg_list;
1806 		unsigned n;
1807 
1808 		r = -ENOEXEC;
1809 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1810 			break;
1811 
1812 		r = -EPERM;
1813 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1814 			break;
1815 
1816 		r = -EFAULT;
1817 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1818 			break;
1819 		n = reg_list.n;
1820 		reg_list.n = kvm_arm_num_regs(vcpu);
1821 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1822 			break;
1823 		r = -E2BIG;
1824 		if (n < reg_list.n)
1825 			break;
1826 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1827 		break;
1828 	}
1829 	case KVM_SET_DEVICE_ATTR: {
1830 		r = -EFAULT;
1831 		if (copy_from_user(&attr, argp, sizeof(attr)))
1832 			break;
1833 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1834 		break;
1835 	}
1836 	case KVM_GET_DEVICE_ATTR: {
1837 		r = -EFAULT;
1838 		if (copy_from_user(&attr, argp, sizeof(attr)))
1839 			break;
1840 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1841 		break;
1842 	}
1843 	case KVM_HAS_DEVICE_ATTR: {
1844 		r = -EFAULT;
1845 		if (copy_from_user(&attr, argp, sizeof(attr)))
1846 			break;
1847 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1848 		break;
1849 	}
1850 	case KVM_GET_VCPU_EVENTS: {
1851 		struct kvm_vcpu_events events;
1852 
1853 		if (!kvm_vcpu_initialized(vcpu))
1854 			return -ENOEXEC;
1855 
1856 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1857 			return -EINVAL;
1858 
1859 		if (copy_to_user(argp, &events, sizeof(events)))
1860 			return -EFAULT;
1861 
1862 		return 0;
1863 	}
1864 	case KVM_SET_VCPU_EVENTS: {
1865 		struct kvm_vcpu_events events;
1866 
1867 		if (!kvm_vcpu_initialized(vcpu))
1868 			return -ENOEXEC;
1869 
1870 		if (copy_from_user(&events, argp, sizeof(events)))
1871 			return -EFAULT;
1872 
1873 		return kvm_arm_vcpu_set_events(vcpu, &events);
1874 	}
1875 	case KVM_ARM_VCPU_FINALIZE: {
1876 		int what;
1877 
1878 		if (!kvm_vcpu_initialized(vcpu))
1879 			return -ENOEXEC;
1880 
1881 		if (get_user(what, (const int __user *)argp))
1882 			return -EFAULT;
1883 
1884 		return kvm_arm_vcpu_finalize(vcpu, what);
1885 	}
1886 	default:
1887 		r = -EINVAL;
1888 	}
1889 
1890 	return r;
1891 }
1892 
1893 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
1894 				  unsigned long arg)
1895 {
1896 	return -ENOIOCTLCMD;
1897 }
1898 
1899 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1900 {
1901 
1902 }
1903 
1904 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1905 					struct kvm_arm_device_addr *dev_addr)
1906 {
1907 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1908 	case KVM_ARM_DEVICE_VGIC_V2:
1909 		if (!vgic_present)
1910 			return -ENXIO;
1911 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1912 	default:
1913 		return -ENODEV;
1914 	}
1915 }
1916 
1917 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1918 {
1919 	switch (attr->group) {
1920 	case KVM_ARM_VM_SMCCC_CTRL:
1921 		return kvm_vm_smccc_has_attr(kvm, attr);
1922 	default:
1923 		return -ENXIO;
1924 	}
1925 }
1926 
1927 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1928 {
1929 	switch (attr->group) {
1930 	case KVM_ARM_VM_SMCCC_CTRL:
1931 		return kvm_vm_smccc_set_attr(kvm, attr);
1932 	default:
1933 		return -ENXIO;
1934 	}
1935 }
1936 
1937 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1938 {
1939 	struct kvm *kvm = filp->private_data;
1940 	void __user *argp = (void __user *)arg;
1941 	struct kvm_device_attr attr;
1942 
1943 	if (is_protected_kvm_enabled() && !kvm_pkvm_ioctl_allowed(kvm, ioctl))
1944 		return -EINVAL;
1945 
1946 	switch (ioctl) {
1947 	case KVM_CREATE_IRQCHIP: {
1948 		int ret;
1949 		if (!vgic_present)
1950 			return -ENXIO;
1951 		mutex_lock(&kvm->lock);
1952 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1953 		mutex_unlock(&kvm->lock);
1954 		return ret;
1955 	}
1956 	case KVM_ARM_SET_DEVICE_ADDR: {
1957 		struct kvm_arm_device_addr dev_addr;
1958 
1959 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1960 			return -EFAULT;
1961 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1962 	}
1963 	case KVM_ARM_PREFERRED_TARGET: {
1964 		struct kvm_vcpu_init init = {
1965 			.target = KVM_ARM_TARGET_GENERIC_V8,
1966 		};
1967 
1968 		if (copy_to_user(argp, &init, sizeof(init)))
1969 			return -EFAULT;
1970 
1971 		return 0;
1972 	}
1973 	case KVM_ARM_MTE_COPY_TAGS: {
1974 		struct kvm_arm_copy_mte_tags copy_tags;
1975 
1976 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1977 			return -EFAULT;
1978 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1979 	}
1980 	case KVM_ARM_SET_COUNTER_OFFSET: {
1981 		struct kvm_arm_counter_offset offset;
1982 
1983 		if (copy_from_user(&offset, argp, sizeof(offset)))
1984 			return -EFAULT;
1985 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1986 	}
1987 	case KVM_HAS_DEVICE_ATTR: {
1988 		if (copy_from_user(&attr, argp, sizeof(attr)))
1989 			return -EFAULT;
1990 
1991 		return kvm_vm_has_attr(kvm, &attr);
1992 	}
1993 	case KVM_SET_DEVICE_ATTR: {
1994 		if (copy_from_user(&attr, argp, sizeof(attr)))
1995 			return -EFAULT;
1996 
1997 		return kvm_vm_set_attr(kvm, &attr);
1998 	}
1999 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
2000 		struct reg_mask_range range;
2001 
2002 		if (copy_from_user(&range, argp, sizeof(range)))
2003 			return -EFAULT;
2004 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
2005 	}
2006 	default:
2007 		return -EINVAL;
2008 	}
2009 }
2010 
2011 static unsigned long nvhe_percpu_size(void)
2012 {
2013 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
2014 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
2015 }
2016 
2017 static unsigned long nvhe_percpu_order(void)
2018 {
2019 	unsigned long size = nvhe_percpu_size();
2020 
2021 	return size ? get_order(size) : 0;
2022 }
2023 
2024 static size_t pkvm_host_sve_state_order(void)
2025 {
2026 	return get_order(pkvm_host_sve_state_size());
2027 }
2028 
2029 /* A lookup table holding the hypervisor VA for each vector slot */
2030 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
2031 
2032 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
2033 {
2034 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
2035 }
2036 
2037 static int kvm_init_vector_slots(void)
2038 {
2039 	int err;
2040 	void *base;
2041 
2042 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
2043 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
2044 
2045 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
2046 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
2047 
2048 	if (kvm_system_needs_idmapped_vectors() &&
2049 	    !is_protected_kvm_enabled()) {
2050 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
2051 					       __BP_HARDEN_HYP_VECS_SZ, &base);
2052 		if (err)
2053 			return err;
2054 	}
2055 
2056 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2057 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2058 	return 0;
2059 }
2060 
2061 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2062 {
2063 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2064 	unsigned long tcr;
2065 
2066 	/*
2067 	 * Calculate the raw per-cpu offset without a translation from the
2068 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
2069 	 * so that we can use adr_l to access per-cpu variables in EL2.
2070 	 * Also drop the KASAN tag which gets in the way...
2071 	 */
2072 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2073 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2074 
2075 	params->mair_el2 = read_sysreg(mair_el1);
2076 
2077 	tcr = read_sysreg(tcr_el1);
2078 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2079 		tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2080 		tcr |= TCR_EPD1_MASK;
2081 	} else {
2082 		unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2083 
2084 		tcr &= TCR_EL2_MASK;
2085 		tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2086 		if (lpa2_is_enabled())
2087 			tcr |= TCR_EL2_DS;
2088 	}
2089 	tcr |= TCR_T0SZ(hyp_va_bits);
2090 	params->tcr_el2 = tcr;
2091 
2092 	params->pgd_pa = kvm_mmu_get_httbr();
2093 	if (is_protected_kvm_enabled())
2094 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2095 	else
2096 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2097 
2098 	if (system_supports_mte())
2099 		params->hcr_el2 |= HCR_ATA;
2100 	else
2101 		params->hcr_el2 |= HCR_TID5;
2102 
2103 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
2104 		params->hcr_el2 |= HCR_E2H;
2105 	params->vttbr = params->vtcr = 0;
2106 
2107 	/*
2108 	 * Flush the init params from the data cache because the struct will
2109 	 * be read while the MMU is off.
2110 	 */
2111 	kvm_flush_dcache_to_poc(params, sizeof(*params));
2112 }
2113 
2114 static void hyp_install_host_vector(void)
2115 {
2116 	struct kvm_nvhe_init_params *params;
2117 	struct arm_smccc_res res;
2118 
2119 	/* Switch from the HYP stub to our own HYP init vector */
2120 	__hyp_set_vectors(kvm_get_idmap_vector());
2121 
2122 	/*
2123 	 * Call initialization code, and switch to the full blown HYP code.
2124 	 * If the cpucaps haven't been finalized yet, something has gone very
2125 	 * wrong, and hyp will crash and burn when it uses any
2126 	 * cpus_have_*_cap() wrapper.
2127 	 */
2128 	BUG_ON(!system_capabilities_finalized());
2129 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2130 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2131 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2132 }
2133 
2134 static void cpu_init_hyp_mode(void)
2135 {
2136 	hyp_install_host_vector();
2137 
2138 	/*
2139 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2140 	 * at EL2.
2141 	 */
2142 	if (this_cpu_has_cap(ARM64_SSBS) &&
2143 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2144 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2145 	}
2146 }
2147 
2148 static void cpu_hyp_reset(void)
2149 {
2150 	if (!is_kernel_in_hyp_mode())
2151 		__hyp_reset_vectors();
2152 }
2153 
2154 /*
2155  * EL2 vectors can be mapped and rerouted in a number of ways,
2156  * depending on the kernel configuration and CPU present:
2157  *
2158  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2159  *   placed in one of the vector slots, which is executed before jumping
2160  *   to the real vectors.
2161  *
2162  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2163  *   containing the hardening sequence is mapped next to the idmap page,
2164  *   and executed before jumping to the real vectors.
2165  *
2166  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2167  *   empty slot is selected, mapped next to the idmap page, and
2168  *   executed before jumping to the real vectors.
2169  *
2170  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2171  * VHE, as we don't have hypervisor-specific mappings. If the system
2172  * is VHE and yet selects this capability, it will be ignored.
2173  */
2174 static void cpu_set_hyp_vector(void)
2175 {
2176 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2177 	void *vector = hyp_spectre_vector_selector[data->slot];
2178 
2179 	if (!is_protected_kvm_enabled())
2180 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2181 	else
2182 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2183 }
2184 
2185 static void cpu_hyp_init_context(void)
2186 {
2187 	kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2188 	kvm_init_host_debug_data();
2189 
2190 	if (!is_kernel_in_hyp_mode())
2191 		cpu_init_hyp_mode();
2192 }
2193 
2194 static void cpu_hyp_init_features(void)
2195 {
2196 	cpu_set_hyp_vector();
2197 
2198 	if (is_kernel_in_hyp_mode()) {
2199 		kvm_timer_init_vhe();
2200 		kvm_debug_init_vhe();
2201 	}
2202 
2203 	if (vgic_present)
2204 		kvm_vgic_init_cpu_hardware();
2205 }
2206 
2207 static void cpu_hyp_reinit(void)
2208 {
2209 	cpu_hyp_reset();
2210 	cpu_hyp_init_context();
2211 	cpu_hyp_init_features();
2212 }
2213 
2214 static void cpu_hyp_init(void *discard)
2215 {
2216 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2217 		cpu_hyp_reinit();
2218 		__this_cpu_write(kvm_hyp_initialized, 1);
2219 	}
2220 }
2221 
2222 static void cpu_hyp_uninit(void *discard)
2223 {
2224 	if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) {
2225 		cpu_hyp_reset();
2226 		__this_cpu_write(kvm_hyp_initialized, 0);
2227 	}
2228 }
2229 
2230 int kvm_arch_enable_virtualization_cpu(void)
2231 {
2232 	/*
2233 	 * Most calls to this function are made with migration
2234 	 * disabled, but not with preemption disabled. The former is
2235 	 * enough to ensure correctness, but most of the helpers
2236 	 * expect the later and will throw a tantrum otherwise.
2237 	 */
2238 	preempt_disable();
2239 
2240 	cpu_hyp_init(NULL);
2241 
2242 	kvm_vgic_cpu_up();
2243 	kvm_timer_cpu_up();
2244 
2245 	preempt_enable();
2246 
2247 	return 0;
2248 }
2249 
2250 void kvm_arch_disable_virtualization_cpu(void)
2251 {
2252 	kvm_timer_cpu_down();
2253 	kvm_vgic_cpu_down();
2254 
2255 	if (!is_protected_kvm_enabled())
2256 		cpu_hyp_uninit(NULL);
2257 }
2258 
2259 #ifdef CONFIG_CPU_PM
2260 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2261 				    unsigned long cmd,
2262 				    void *v)
2263 {
2264 	/*
2265 	 * kvm_hyp_initialized is left with its old value over
2266 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2267 	 * re-enable hyp.
2268 	 */
2269 	switch (cmd) {
2270 	case CPU_PM_ENTER:
2271 		if (__this_cpu_read(kvm_hyp_initialized))
2272 			/*
2273 			 * don't update kvm_hyp_initialized here
2274 			 * so that the hyp will be re-enabled
2275 			 * when we resume. See below.
2276 			 */
2277 			cpu_hyp_reset();
2278 
2279 		return NOTIFY_OK;
2280 	case CPU_PM_ENTER_FAILED:
2281 	case CPU_PM_EXIT:
2282 		if (__this_cpu_read(kvm_hyp_initialized))
2283 			/* The hyp was enabled before suspend. */
2284 			cpu_hyp_reinit();
2285 
2286 		return NOTIFY_OK;
2287 
2288 	default:
2289 		return NOTIFY_DONE;
2290 	}
2291 }
2292 
2293 static struct notifier_block hyp_init_cpu_pm_nb = {
2294 	.notifier_call = hyp_init_cpu_pm_notifier,
2295 };
2296 
2297 static void __init hyp_cpu_pm_init(void)
2298 {
2299 	if (!is_protected_kvm_enabled())
2300 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2301 }
2302 static void __init hyp_cpu_pm_exit(void)
2303 {
2304 	if (!is_protected_kvm_enabled())
2305 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2306 }
2307 #else
2308 static inline void __init hyp_cpu_pm_init(void)
2309 {
2310 }
2311 static inline void __init hyp_cpu_pm_exit(void)
2312 {
2313 }
2314 #endif
2315 
2316 static void __init init_cpu_logical_map(void)
2317 {
2318 	unsigned int cpu;
2319 
2320 	/*
2321 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2322 	 * Only copy the set of online CPUs whose features have been checked
2323 	 * against the finalized system capabilities. The hypervisor will not
2324 	 * allow any other CPUs from the `possible` set to boot.
2325 	 */
2326 	for_each_online_cpu(cpu)
2327 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2328 }
2329 
2330 #define init_psci_0_1_impl_state(config, what)	\
2331 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2332 
2333 static bool __init init_psci_relay(void)
2334 {
2335 	/*
2336 	 * If PSCI has not been initialized, protected KVM cannot install
2337 	 * itself on newly booted CPUs.
2338 	 */
2339 	if (!psci_ops.get_version) {
2340 		kvm_err("Cannot initialize protected mode without PSCI\n");
2341 		return false;
2342 	}
2343 
2344 	kvm_host_psci_config.version = psci_ops.get_version();
2345 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2346 
2347 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2348 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2349 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2350 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2351 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2352 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2353 	}
2354 	return true;
2355 }
2356 
2357 static int __init init_subsystems(void)
2358 {
2359 	int err = 0;
2360 
2361 	/*
2362 	 * Enable hardware so that subsystem initialisation can access EL2.
2363 	 */
2364 	on_each_cpu(cpu_hyp_init, NULL, 1);
2365 
2366 	/*
2367 	 * Register CPU lower-power notifier
2368 	 */
2369 	hyp_cpu_pm_init();
2370 
2371 	/*
2372 	 * Init HYP view of VGIC
2373 	 */
2374 	err = kvm_vgic_hyp_init();
2375 	switch (err) {
2376 	case 0:
2377 		vgic_present = true;
2378 		break;
2379 	case -ENODEV:
2380 	case -ENXIO:
2381 		/*
2382 		 * No VGIC? No pKVM for you.
2383 		 *
2384 		 * Protected mode assumes that VGICv3 is present, so no point
2385 		 * in trying to hobble along if vgic initialization fails.
2386 		 */
2387 		if (is_protected_kvm_enabled())
2388 			goto out;
2389 
2390 		/*
2391 		 * Otherwise, userspace could choose to implement a GIC for its
2392 		 * guest on non-cooperative hardware.
2393 		 */
2394 		vgic_present = false;
2395 		err = 0;
2396 		break;
2397 	default:
2398 		goto out;
2399 	}
2400 
2401 	if (kvm_mode == KVM_MODE_NV &&
2402 		!(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 ||
2403 				   kvm_vgic_global_state.has_gcie_v3_compat))) {
2404 		kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n");
2405 		err = -EINVAL;
2406 		goto out;
2407 	}
2408 
2409 	/*
2410 	 * Init HYP architected timer support
2411 	 */
2412 	err = kvm_timer_hyp_init(vgic_present);
2413 	if (err)
2414 		goto out;
2415 
2416 	kvm_register_perf_callbacks();
2417 
2418 out:
2419 	if (err)
2420 		hyp_cpu_pm_exit();
2421 
2422 	if (err || !is_protected_kvm_enabled())
2423 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2424 
2425 	return err;
2426 }
2427 
2428 static void __init teardown_subsystems(void)
2429 {
2430 	kvm_unregister_perf_callbacks();
2431 	hyp_cpu_pm_exit();
2432 }
2433 
2434 static void __init teardown_hyp_mode(void)
2435 {
2436 	bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2437 	int cpu;
2438 
2439 	free_hyp_pgds();
2440 	for_each_possible_cpu(cpu) {
2441 		if (per_cpu(kvm_hyp_initialized, cpu))
2442 			continue;
2443 
2444 		free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2445 
2446 		if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2447 			continue;
2448 
2449 		if (free_sve) {
2450 			struct cpu_sve_state *sve_state;
2451 
2452 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2453 			free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2454 		}
2455 
2456 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2457 
2458 	}
2459 }
2460 
2461 static int __init do_pkvm_init(u32 hyp_va_bits)
2462 {
2463 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2464 	int ret;
2465 
2466 	preempt_disable();
2467 	cpu_hyp_init_context();
2468 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2469 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2470 				hyp_va_bits);
2471 	cpu_hyp_init_features();
2472 
2473 	/*
2474 	 * The stub hypercalls are now disabled, so set our local flag to
2475 	 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2476 	 */
2477 	__this_cpu_write(kvm_hyp_initialized, 1);
2478 	preempt_enable();
2479 
2480 	return ret;
2481 }
2482 
2483 static u64 get_hyp_id_aa64pfr0_el1(void)
2484 {
2485 	/*
2486 	 * Track whether the system isn't affected by spectre/meltdown in the
2487 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2488 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2489 	 * to have to worry about vcpu migration.
2490 	 *
2491 	 * Unlike for non-protected VMs, userspace cannot override this for
2492 	 * protected VMs.
2493 	 */
2494 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2495 
2496 	val &= ~(ID_AA64PFR0_EL1_CSV2 |
2497 		 ID_AA64PFR0_EL1_CSV3);
2498 
2499 	val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2,
2500 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2501 	val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3,
2502 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2503 
2504 	return val;
2505 }
2506 
2507 static void kvm_hyp_init_symbols(void)
2508 {
2509 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2510 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2511 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2512 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2513 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2514 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2515 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2516 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2517 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2518 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2519 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2520 
2521 	/* Propagate the FGT state to the nVHE side */
2522 	kvm_nvhe_sym(hfgrtr_masks)  = hfgrtr_masks;
2523 	kvm_nvhe_sym(hfgwtr_masks)  = hfgwtr_masks;
2524 	kvm_nvhe_sym(hfgitr_masks)  = hfgitr_masks;
2525 	kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2526 	kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2527 	kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2528 	kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2529 	kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2530 	kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2531 	kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2532 	kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2533 
2534 	/*
2535 	 * Flush entire BSS since part of its data containing init symbols is read
2536 	 * while the MMU is off.
2537 	 */
2538 	kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2539 				kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2540 }
2541 
2542 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2543 {
2544 	void *addr = phys_to_virt(hyp_mem_base);
2545 	int ret;
2546 
2547 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2548 	if (ret)
2549 		return ret;
2550 
2551 	ret = do_pkvm_init(hyp_va_bits);
2552 	if (ret)
2553 		return ret;
2554 
2555 	free_hyp_pgds();
2556 
2557 	return 0;
2558 }
2559 
2560 static int init_pkvm_host_sve_state(void)
2561 {
2562 	int cpu;
2563 
2564 	if (!system_supports_sve())
2565 		return 0;
2566 
2567 	/* Allocate pages for host sve state in protected mode. */
2568 	for_each_possible_cpu(cpu) {
2569 		struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2570 
2571 		if (!page)
2572 			return -ENOMEM;
2573 
2574 		per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2575 	}
2576 
2577 	/*
2578 	 * Don't map the pages in hyp since these are only used in protected
2579 	 * mode, which will (re)create its own mapping when initialized.
2580 	 */
2581 
2582 	return 0;
2583 }
2584 
2585 /*
2586  * Finalizes the initialization of hyp mode, once everything else is initialized
2587  * and the initialziation process cannot fail.
2588  */
2589 static void finalize_init_hyp_mode(void)
2590 {
2591 	int cpu;
2592 
2593 	if (system_supports_sve() && is_protected_kvm_enabled()) {
2594 		for_each_possible_cpu(cpu) {
2595 			struct cpu_sve_state *sve_state;
2596 
2597 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2598 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2599 				kern_hyp_va(sve_state);
2600 		}
2601 	}
2602 }
2603 
2604 static void pkvm_hyp_init_ptrauth(void)
2605 {
2606 	struct kvm_cpu_context *hyp_ctxt;
2607 	int cpu;
2608 
2609 	for_each_possible_cpu(cpu) {
2610 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2611 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2612 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2613 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2614 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2615 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2616 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2617 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2618 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2619 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2620 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2621 	}
2622 }
2623 
2624 /* Inits Hyp-mode on all online CPUs */
2625 static int __init init_hyp_mode(void)
2626 {
2627 	u32 hyp_va_bits = kvm_hyp_va_bits();
2628 	int cpu;
2629 	int err = -ENOMEM;
2630 
2631 	/*
2632 	 * The protected Hyp-mode cannot be initialized if the memory pool
2633 	 * allocation has failed.
2634 	 */
2635 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2636 		goto out_err;
2637 
2638 	/*
2639 	 * Allocate Hyp PGD and setup Hyp identity mapping
2640 	 */
2641 	err = kvm_mmu_init(hyp_va_bits);
2642 	if (err)
2643 		goto out_err;
2644 
2645 	/*
2646 	 * Allocate stack pages for Hypervisor-mode
2647 	 */
2648 	for_each_possible_cpu(cpu) {
2649 		unsigned long stack_base;
2650 
2651 		stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2652 		if (!stack_base) {
2653 			err = -ENOMEM;
2654 			goto out_err;
2655 		}
2656 
2657 		per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2658 	}
2659 
2660 	/*
2661 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2662 	 */
2663 	for_each_possible_cpu(cpu) {
2664 		struct page *page;
2665 		void *page_addr;
2666 
2667 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2668 		if (!page) {
2669 			err = -ENOMEM;
2670 			goto out_err;
2671 		}
2672 
2673 		page_addr = page_address(page);
2674 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2675 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2676 	}
2677 
2678 	/*
2679 	 * Map the Hyp-code called directly from the host
2680 	 */
2681 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2682 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2683 	if (err) {
2684 		kvm_err("Cannot map world-switch code\n");
2685 		goto out_err;
2686 	}
2687 
2688 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2689 				  kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2690 	if (err) {
2691 		kvm_err("Cannot map .hyp.data section\n");
2692 		goto out_err;
2693 	}
2694 
2695 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2696 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2697 	if (err) {
2698 		kvm_err("Cannot map .hyp.rodata section\n");
2699 		goto out_err;
2700 	}
2701 
2702 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2703 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2704 	if (err) {
2705 		kvm_err("Cannot map rodata section\n");
2706 		goto out_err;
2707 	}
2708 
2709 	/*
2710 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2711 	 * section thanks to an assertion in the linker script. Map it RW and
2712 	 * the rest of .bss RO.
2713 	 */
2714 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2715 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2716 	if (err) {
2717 		kvm_err("Cannot map hyp bss section: %d\n", err);
2718 		goto out_err;
2719 	}
2720 
2721 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2722 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2723 	if (err) {
2724 		kvm_err("Cannot map bss section\n");
2725 		goto out_err;
2726 	}
2727 
2728 	/*
2729 	 * Map the Hyp stack pages
2730 	 */
2731 	for_each_possible_cpu(cpu) {
2732 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2733 		char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2734 
2735 		err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2736 		if (err) {
2737 			kvm_err("Cannot map hyp stack\n");
2738 			goto out_err;
2739 		}
2740 
2741 		/*
2742 		 * Save the stack PA in nvhe_init_params. This will be needed
2743 		 * to recreate the stack mapping in protected nVHE mode.
2744 		 * __hyp_pa() won't do the right thing there, since the stack
2745 		 * has been mapped in the flexible private VA space.
2746 		 */
2747 		params->stack_pa = __pa(stack_base);
2748 	}
2749 
2750 	for_each_possible_cpu(cpu) {
2751 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2752 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2753 
2754 		/* Map Hyp percpu pages */
2755 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2756 		if (err) {
2757 			kvm_err("Cannot map hyp percpu region\n");
2758 			goto out_err;
2759 		}
2760 
2761 		/* Prepare the CPU initialization parameters */
2762 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2763 	}
2764 
2765 	kvm_hyp_init_symbols();
2766 
2767 	if (is_protected_kvm_enabled()) {
2768 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2769 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2770 			pkvm_hyp_init_ptrauth();
2771 
2772 		init_cpu_logical_map();
2773 
2774 		if (!init_psci_relay()) {
2775 			err = -ENODEV;
2776 			goto out_err;
2777 		}
2778 
2779 		err = init_pkvm_host_sve_state();
2780 		if (err)
2781 			goto out_err;
2782 
2783 		err = kvm_hyp_init_protection(hyp_va_bits);
2784 		if (err) {
2785 			kvm_err("Failed to init hyp memory protection\n");
2786 			goto out_err;
2787 		}
2788 	}
2789 
2790 	return 0;
2791 
2792 out_err:
2793 	teardown_hyp_mode();
2794 	kvm_err("error initializing Hyp mode: %d\n", err);
2795 	return err;
2796 }
2797 
2798 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2799 {
2800 	struct kvm_vcpu *vcpu = NULL;
2801 	struct kvm_mpidr_data *data;
2802 	unsigned long i;
2803 
2804 	mpidr &= MPIDR_HWID_BITMASK;
2805 
2806 	rcu_read_lock();
2807 	data = rcu_dereference(kvm->arch.mpidr_data);
2808 
2809 	if (data) {
2810 		u16 idx = kvm_mpidr_index(data, mpidr);
2811 
2812 		vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2813 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2814 			vcpu = NULL;
2815 	}
2816 
2817 	rcu_read_unlock();
2818 
2819 	if (vcpu)
2820 		return vcpu;
2821 
2822 	kvm_for_each_vcpu(i, vcpu, kvm) {
2823 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2824 			return vcpu;
2825 	}
2826 	return NULL;
2827 }
2828 
2829 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2830 {
2831 	return irqchip_in_kernel(kvm);
2832 }
2833 
2834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2835 				      struct irq_bypass_producer *prod)
2836 {
2837 	struct kvm_kernel_irqfd *irqfd =
2838 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2839 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2840 
2841 	/*
2842 	 * The only thing we have a chance of directly-injecting is LPIs. Maybe
2843 	 * one day...
2844 	 */
2845 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2846 		return 0;
2847 
2848 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2849 					  &irqfd->irq_entry);
2850 }
2851 
2852 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2853 				      struct irq_bypass_producer *prod)
2854 {
2855 	struct kvm_kernel_irqfd *irqfd =
2856 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2857 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2858 
2859 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2860 		return;
2861 
2862 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2863 }
2864 
2865 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2866 				   struct kvm_kernel_irq_routing_entry *old,
2867 				   struct kvm_kernel_irq_routing_entry *new)
2868 {
2869 	if (old->type == KVM_IRQ_ROUTING_MSI &&
2870 	    new->type == KVM_IRQ_ROUTING_MSI &&
2871 	    !memcmp(&old->msi, &new->msi, sizeof(new->msi)))
2872 		return;
2873 
2874 	/*
2875 	 * Remapping the vLPI requires taking the its_lock mutex to resolve
2876 	 * the new translation. We're in spinlock land at this point, so no
2877 	 * chance of resolving the translation.
2878 	 *
2879 	 * Unmap the vLPI and fall back to software LPI injection.
2880 	 */
2881 	return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq);
2882 }
2883 
2884 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2885 {
2886 	struct kvm_kernel_irqfd *irqfd =
2887 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2888 
2889 	kvm_arm_halt_guest(irqfd->kvm);
2890 }
2891 
2892 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2893 {
2894 	struct kvm_kernel_irqfd *irqfd =
2895 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2896 
2897 	kvm_arm_resume_guest(irqfd->kvm);
2898 }
2899 
2900 /* Initialize Hyp-mode and memory mappings on all CPUs */
2901 static __init int kvm_arm_init(void)
2902 {
2903 	int err;
2904 	bool in_hyp_mode;
2905 
2906 	if (!is_hyp_mode_available()) {
2907 		kvm_info("HYP mode not available\n");
2908 		return -ENODEV;
2909 	}
2910 
2911 	if (kvm_get_mode() == KVM_MODE_NONE) {
2912 		kvm_info("KVM disabled from command line\n");
2913 		return -ENODEV;
2914 	}
2915 
2916 	err = kvm_sys_reg_table_init();
2917 	if (err) {
2918 		kvm_info("Error initializing system register tables");
2919 		return err;
2920 	}
2921 
2922 	in_hyp_mode = is_kernel_in_hyp_mode();
2923 
2924 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2925 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2926 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2927 			 "Only trusted guests should be used on this system.\n");
2928 
2929 	err = kvm_set_ipa_limit();
2930 	if (err)
2931 		return err;
2932 
2933 	err = kvm_arm_init_sve();
2934 	if (err)
2935 		return err;
2936 
2937 	err = kvm_arm_vmid_alloc_init();
2938 	if (err) {
2939 		kvm_err("Failed to initialize VMID allocator.\n");
2940 		return err;
2941 	}
2942 
2943 	if (!in_hyp_mode) {
2944 		err = init_hyp_mode();
2945 		if (err)
2946 			goto out_err;
2947 	}
2948 
2949 	err = kvm_init_vector_slots();
2950 	if (err) {
2951 		kvm_err("Cannot initialise vector slots\n");
2952 		goto out_hyp;
2953 	}
2954 
2955 	err = init_subsystems();
2956 	if (err)
2957 		goto out_hyp;
2958 
2959 	kvm_info("%s%sVHE%s mode initialized successfully\n",
2960 		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2961 				     "Protected " : "Hyp "),
2962 		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2963 				     "h" : "n"),
2964 		 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2965 
2966 	/*
2967 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2968 	 * hypervisor protection is finalized.
2969 	 */
2970 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2971 	if (err)
2972 		goto out_subs;
2973 
2974 	/*
2975 	 * This should be called after initialization is done and failure isn't
2976 	 * possible anymore.
2977 	 */
2978 	if (!in_hyp_mode)
2979 		finalize_init_hyp_mode();
2980 
2981 	kvm_arm_initialised = true;
2982 
2983 	return 0;
2984 
2985 out_subs:
2986 	teardown_subsystems();
2987 out_hyp:
2988 	if (!in_hyp_mode)
2989 		teardown_hyp_mode();
2990 out_err:
2991 	kvm_arm_vmid_alloc_free();
2992 	return err;
2993 }
2994 
2995 static int __init early_kvm_mode_cfg(char *arg)
2996 {
2997 	if (!arg)
2998 		return -EINVAL;
2999 
3000 	if (strcmp(arg, "none") == 0) {
3001 		kvm_mode = KVM_MODE_NONE;
3002 		return 0;
3003 	}
3004 
3005 	if (!is_hyp_mode_available()) {
3006 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
3007 		return 0;
3008 	}
3009 
3010 	if (strcmp(arg, "protected") == 0) {
3011 		if (!is_kernel_in_hyp_mode())
3012 			kvm_mode = KVM_MODE_PROTECTED;
3013 		else
3014 			pr_warn_once("Protected KVM not available with VHE\n");
3015 
3016 		return 0;
3017 	}
3018 
3019 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
3020 		kvm_mode = KVM_MODE_DEFAULT;
3021 		return 0;
3022 	}
3023 
3024 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
3025 		kvm_mode = KVM_MODE_NV;
3026 		return 0;
3027 	}
3028 
3029 	return -EINVAL;
3030 }
3031 early_param("kvm-arm.mode", early_kvm_mode_cfg);
3032 
3033 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
3034 {
3035 	if (!arg)
3036 		return -EINVAL;
3037 
3038 	if (strcmp(arg, "trap") == 0) {
3039 		*p = KVM_WFX_TRAP;
3040 		return 0;
3041 	}
3042 
3043 	if (strcmp(arg, "notrap") == 0) {
3044 		*p = KVM_WFX_NOTRAP;
3045 		return 0;
3046 	}
3047 
3048 	return -EINVAL;
3049 }
3050 
3051 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
3052 {
3053 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
3054 }
3055 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
3056 
3057 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
3058 {
3059 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
3060 }
3061 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
3062 
3063 enum kvm_mode kvm_get_mode(void)
3064 {
3065 	return kvm_mode;
3066 }
3067 
3068 module_init(kvm_arm_init);
3069