xref: /linux/arch/arm64/kvm/handle_exit.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/handle_exit.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/ubsan.h>
14 
15 #include <asm/esr.h>
16 #include <asm/exception.h>
17 #include <asm/kvm_asm.h>
18 #include <asm/kvm_emulate.h>
19 #include <asm/kvm_mmu.h>
20 #include <asm/kvm_nested.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/stacktrace/nvhe.h>
23 #include <asm/traps.h>
24 
25 #include <kvm/arm_hypercalls.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace_handle_exit.h"
29 
30 typedef int (*exit_handle_fn)(struct kvm_vcpu *);
31 
kvm_handle_guest_serror(struct kvm_vcpu * vcpu,u64 esr)32 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
33 {
34 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
35 		kvm_inject_vabt(vcpu);
36 }
37 
handle_hvc(struct kvm_vcpu * vcpu)38 static int handle_hvc(struct kvm_vcpu *vcpu)
39 {
40 	trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
41 			    kvm_vcpu_hvc_get_imm(vcpu));
42 	vcpu->stat.hvc_exit_stat++;
43 
44 	/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
45 	if (vcpu_has_nv(vcpu)) {
46 		if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
47 			kvm_inject_undefined(vcpu);
48 		else
49 			kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
50 
51 		return 1;
52 	}
53 
54 	return kvm_smccc_call_handler(vcpu);
55 }
56 
handle_smc(struct kvm_vcpu * vcpu)57 static int handle_smc(struct kvm_vcpu *vcpu)
58 {
59 	/*
60 	 * Forward this trapped smc instruction to the virtual EL2 if
61 	 * the guest has asked for it.
62 	 */
63 	if (forward_smc_trap(vcpu))
64 		return 1;
65 
66 	/*
67 	 * "If an SMC instruction executed at Non-secure EL1 is
68 	 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
69 	 * Trap exception, not a Secure Monitor Call exception [...]"
70 	 *
71 	 * We need to advance the PC after the trap, as it would
72 	 * otherwise return to the same address. Furthermore, pre-incrementing
73 	 * the PC before potentially exiting to userspace maintains the same
74 	 * abstraction for both SMCs and HVCs.
75 	 */
76 	kvm_incr_pc(vcpu);
77 
78 	/*
79 	 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
80 	 * "SMC and HVC immediate value".
81 	 */
82 	if (kvm_vcpu_hvc_get_imm(vcpu)) {
83 		vcpu_set_reg(vcpu, 0, ~0UL);
84 		return 1;
85 	}
86 
87 	/*
88 	 * If imm is zero then it is likely an SMCCC call.
89 	 *
90 	 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
91 	 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
92 	 * being treated as UNDEFINED.
93 	 */
94 	return kvm_smccc_call_handler(vcpu);
95 }
96 
97 /*
98  * This handles the cases where the system does not support FP/ASIMD or when
99  * we are running nested virtualization and the guest hypervisor is trapping
100  * FP/ASIMD accesses by its guest guest.
101  *
102  * All other handling of guest vs. host FP/ASIMD register state is handled in
103  * fixup_guest_exit().
104  */
kvm_handle_fpasimd(struct kvm_vcpu * vcpu)105 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
106 {
107 	if (guest_hyp_fpsimd_traps_enabled(vcpu))
108 		return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
109 
110 	/* This is the case when the system doesn't support FP/ASIMD. */
111 	kvm_inject_undefined(vcpu);
112 	return 1;
113 }
114 
115 /**
116  * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
117  *		    instruction executed by a guest
118  *
119  * @vcpu:	the vcpu pointer
120  *
121  * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
122  * decides to.
123  * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
124  * world-switches and schedule other host processes until there is an
125  * incoming IRQ or FIQ to the VM.
126  * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
127  *
128  * WF{I,E}T can immediately return if the deadline has already expired.
129  */
kvm_handle_wfx(struct kvm_vcpu * vcpu)130 static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
131 {
132 	u64 esr = kvm_vcpu_get_esr(vcpu);
133 	bool is_wfe = !!(esr & ESR_ELx_WFx_ISS_WFE);
134 
135 	if (guest_hyp_wfx_traps_enabled(vcpu))
136 		return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
137 
138 	if (is_wfe) {
139 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
140 		vcpu->stat.wfe_exit_stat++;
141 	} else {
142 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
143 		vcpu->stat.wfi_exit_stat++;
144 	}
145 
146 	if (esr & ESR_ELx_WFx_ISS_WFxT) {
147 		if (esr & ESR_ELx_WFx_ISS_RV) {
148 			u64 val, now;
149 
150 			now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
151 			val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
152 
153 			if (now >= val)
154 				goto out;
155 		} else {
156 			/* Treat WFxT as WFx if RN is invalid */
157 			esr &= ~ESR_ELx_WFx_ISS_WFxT;
158 		}
159 	}
160 
161 	if (esr & ESR_ELx_WFx_ISS_WFE) {
162 		kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
163 	} else {
164 		if (esr & ESR_ELx_WFx_ISS_WFxT)
165 			vcpu_set_flag(vcpu, IN_WFIT);
166 
167 		kvm_vcpu_wfi(vcpu);
168 	}
169 out:
170 	kvm_incr_pc(vcpu);
171 
172 	return 1;
173 }
174 
175 /**
176  * kvm_handle_guest_debug - handle a debug exception instruction
177  *
178  * @vcpu:	the vcpu pointer
179  *
180  * We route all debug exceptions through the same handler. If both the
181  * guest and host are using the same debug facilities it will be up to
182  * userspace to re-inject the correct exception for guest delivery.
183  *
184  * @return: 0 (while setting vcpu->run->exit_reason)
185  */
kvm_handle_guest_debug(struct kvm_vcpu * vcpu)186 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
187 {
188 	struct kvm_run *run = vcpu->run;
189 	u64 esr = kvm_vcpu_get_esr(vcpu);
190 
191 	if (!vcpu->guest_debug && forward_debug_exception(vcpu))
192 		return 1;
193 
194 	run->exit_reason = KVM_EXIT_DEBUG;
195 	run->debug.arch.hsr = lower_32_bits(esr);
196 	run->debug.arch.hsr_high = upper_32_bits(esr);
197 	run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
198 
199 	switch (ESR_ELx_EC(esr)) {
200 	case ESR_ELx_EC_WATCHPT_LOW:
201 		run->debug.arch.far = vcpu->arch.fault.far_el2;
202 		break;
203 	case ESR_ELx_EC_SOFTSTP_LOW:
204 		*vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
205 		break;
206 	}
207 
208 	return 0;
209 }
210 
kvm_handle_unknown_ec(struct kvm_vcpu * vcpu)211 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
212 {
213 	u64 esr = kvm_vcpu_get_esr(vcpu);
214 
215 	kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
216 		      esr, esr_get_class_string(esr));
217 
218 	kvm_inject_undefined(vcpu);
219 	return 1;
220 }
221 
222 /*
223  * Guest access to SVE registers should be routed to this handler only
224  * when the system doesn't support SVE.
225  */
handle_sve(struct kvm_vcpu * vcpu)226 static int handle_sve(struct kvm_vcpu *vcpu)
227 {
228 	if (guest_hyp_sve_traps_enabled(vcpu))
229 		return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
230 
231 	kvm_inject_undefined(vcpu);
232 	return 1;
233 }
234 
235 /*
236  * Two possibilities to handle a trapping ptrauth instruction:
237  *
238  * - Guest usage of a ptrauth instruction (which the guest EL1 did not
239  *   turn into a NOP). If we get here, it is because we didn't enable
240  *   ptrauth for the guest. This results in an UNDEF, as it isn't
241  *   supposed to use ptrauth without being told it could.
242  *
243  * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
244  *   which we reinject the exception into L1.
245  *
246  * Anything else is an emulation bug (hence the WARN_ON + UNDEF).
247  */
kvm_handle_ptrauth(struct kvm_vcpu * vcpu)248 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
249 {
250 	if (!vcpu_has_ptrauth(vcpu)) {
251 		kvm_inject_undefined(vcpu);
252 		return 1;
253 	}
254 
255 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
256 		kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
257 		return 1;
258 	}
259 
260 	/* Really shouldn't be here! */
261 	WARN_ON_ONCE(1);
262 	kvm_inject_undefined(vcpu);
263 	return 1;
264 }
265 
kvm_handle_eret(struct kvm_vcpu * vcpu)266 static int kvm_handle_eret(struct kvm_vcpu *vcpu)
267 {
268 	if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
269 	    !vcpu_has_ptrauth(vcpu))
270 		return kvm_handle_ptrauth(vcpu);
271 
272 	/*
273 	 * If we got here, two possibilities:
274 	 *
275 	 * - the guest is in EL2, and we need to fully emulate ERET
276 	 *
277 	 * - the guest is in EL1, and we need to reinject the
278          *   exception into the L1 hypervisor.
279 	 *
280 	 * If KVM ever traps ERET for its own use, we'll have to
281 	 * revisit this.
282 	 */
283 	if (is_hyp_ctxt(vcpu))
284 		kvm_emulate_nested_eret(vcpu);
285 	else
286 		kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
287 
288 	return 1;
289 }
290 
handle_svc(struct kvm_vcpu * vcpu)291 static int handle_svc(struct kvm_vcpu *vcpu)
292 {
293 	/*
294 	 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
295 	 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
296 	 * we should only have to deal with a 64 bit exception.
297 	 */
298 	kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
299 	return 1;
300 }
301 
kvm_handle_gcs(struct kvm_vcpu * vcpu)302 static int kvm_handle_gcs(struct kvm_vcpu *vcpu)
303 {
304 	/* We don't expect GCS, so treat it with contempt */
305 	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, GCS, IMP))
306 		WARN_ON_ONCE(1);
307 
308 	kvm_inject_undefined(vcpu);
309 	return 1;
310 }
311 
handle_other(struct kvm_vcpu * vcpu)312 static int handle_other(struct kvm_vcpu *vcpu)
313 {
314 	bool is_l2 = vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu);
315 	u64 hcrx = __vcpu_sys_reg(vcpu, HCRX_EL2);
316 	u64 esr = kvm_vcpu_get_esr(vcpu);
317 	u64 iss = ESR_ELx_ISS(esr);
318 	struct kvm *kvm = vcpu->kvm;
319 	bool allowed, fwd = false;
320 
321 	/*
322 	 * We only trap for two reasons:
323 	 *
324 	 * - the feature is disabled, and the only outcome is to
325 	 *   generate an UNDEF.
326 	 *
327 	 * - the feature is enabled, but a NV guest wants to trap the
328 	 *   feature used by its L2 guest. We forward the exception in
329 	 *   this case.
330 	 *
331 	 * What we don't expect is to end-up here if the guest is
332 	 * expected be be able to directly use the feature, hence the
333 	 * WARN_ON below.
334 	 */
335 	switch (iss) {
336 	case ESR_ELx_ISS_OTHER_ST64BV:
337 		allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V);
338 		if (is_l2)
339 			fwd = !(hcrx & HCRX_EL2_EnASR);
340 		break;
341 	case ESR_ELx_ISS_OTHER_ST64BV0:
342 		allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA);
343 		if (is_l2)
344 			fwd = !(hcrx & HCRX_EL2_EnAS0);
345 		break;
346 	case ESR_ELx_ISS_OTHER_LDST64B:
347 		allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64);
348 		if (is_l2)
349 			fwd = !(hcrx & HCRX_EL2_EnALS);
350 		break;
351 	case ESR_ELx_ISS_OTHER_TSBCSYNC:
352 		allowed = kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, TRBE_V1P1);
353 		if (is_l2)
354 			fwd = (__vcpu_sys_reg(vcpu, HFGITR2_EL2) & HFGITR2_EL2_TSBCSYNC);
355 		break;
356 	case ESR_ELx_ISS_OTHER_PSBCSYNC:
357 		allowed = kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P5);
358 		if (is_l2)
359 			fwd = (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_PSBCSYNC);
360 		break;
361 	default:
362 		/* Clearly, we're missing something. */
363 		WARN_ON_ONCE(1);
364 		allowed = false;
365 	}
366 
367 	WARN_ON_ONCE(allowed && !fwd);
368 
369 	if (allowed && fwd)
370 		kvm_inject_nested_sync(vcpu, esr);
371 	else
372 		kvm_inject_undefined(vcpu);
373 
374 	return 1;
375 }
376 
377 static exit_handle_fn arm_exit_handlers[] = {
378 	[0 ... ESR_ELx_EC_MAX]	= kvm_handle_unknown_ec,
379 	[ESR_ELx_EC_WFx]	= kvm_handle_wfx,
380 	[ESR_ELx_EC_CP15_32]	= kvm_handle_cp15_32,
381 	[ESR_ELx_EC_CP15_64]	= kvm_handle_cp15_64,
382 	[ESR_ELx_EC_CP14_MR]	= kvm_handle_cp14_32,
383 	[ESR_ELx_EC_CP14_LS]	= kvm_handle_cp14_load_store,
384 	[ESR_ELx_EC_CP10_ID]	= kvm_handle_cp10_id,
385 	[ESR_ELx_EC_CP14_64]	= kvm_handle_cp14_64,
386 	[ESR_ELx_EC_OTHER]	= handle_other,
387 	[ESR_ELx_EC_HVC32]	= handle_hvc,
388 	[ESR_ELx_EC_SMC32]	= handle_smc,
389 	[ESR_ELx_EC_HVC64]	= handle_hvc,
390 	[ESR_ELx_EC_SMC64]	= handle_smc,
391 	[ESR_ELx_EC_SVC64]	= handle_svc,
392 	[ESR_ELx_EC_SYS64]	= kvm_handle_sys_reg,
393 	[ESR_ELx_EC_SVE]	= handle_sve,
394 	[ESR_ELx_EC_ERET]	= kvm_handle_eret,
395 	[ESR_ELx_EC_IABT_LOW]	= kvm_handle_guest_abort,
396 	[ESR_ELx_EC_DABT_LOW]	= kvm_handle_guest_abort,
397 	[ESR_ELx_EC_DABT_CUR]	= kvm_handle_vncr_abort,
398 	[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
399 	[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
400 	[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
401 	[ESR_ELx_EC_BKPT32]	= kvm_handle_guest_debug,
402 	[ESR_ELx_EC_BRK64]	= kvm_handle_guest_debug,
403 	[ESR_ELx_EC_FP_ASIMD]	= kvm_handle_fpasimd,
404 	[ESR_ELx_EC_PAC]	= kvm_handle_ptrauth,
405 	[ESR_ELx_EC_GCS]	= kvm_handle_gcs,
406 };
407 
kvm_get_exit_handler(struct kvm_vcpu * vcpu)408 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
409 {
410 	u64 esr = kvm_vcpu_get_esr(vcpu);
411 	u8 esr_ec = ESR_ELx_EC(esr);
412 
413 	return arm_exit_handlers[esr_ec];
414 }
415 
416 /*
417  * We may be single-stepping an emulated instruction. If the emulation
418  * has been completed in the kernel, we can return to userspace with a
419  * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
420  * emulation first.
421  */
handle_trap_exceptions(struct kvm_vcpu * vcpu)422 static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
423 {
424 	int handled;
425 
426 	/*
427 	 * See ARM ARM B1.14.1: "Hyp traps on instructions
428 	 * that fail their condition code check"
429 	 */
430 	if (!kvm_condition_valid(vcpu)) {
431 		kvm_incr_pc(vcpu);
432 		handled = 1;
433 	} else {
434 		exit_handle_fn exit_handler;
435 
436 		exit_handler = kvm_get_exit_handler(vcpu);
437 		handled = exit_handler(vcpu);
438 	}
439 
440 	return handled;
441 }
442 
443 /*
444  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
445  * proper exit to userspace.
446  */
handle_exit(struct kvm_vcpu * vcpu,int exception_index)447 int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
448 {
449 	struct kvm_run *run = vcpu->run;
450 
451 	if (ARM_SERROR_PENDING(exception_index)) {
452 		/*
453 		 * The SError is handled by handle_exit_early(). If the guest
454 		 * survives it will re-execute the original instruction.
455 		 */
456 		return 1;
457 	}
458 
459 	exception_index = ARM_EXCEPTION_CODE(exception_index);
460 
461 	switch (exception_index) {
462 	case ARM_EXCEPTION_IRQ:
463 		return 1;
464 	case ARM_EXCEPTION_EL1_SERROR:
465 		return 1;
466 	case ARM_EXCEPTION_TRAP:
467 		return handle_trap_exceptions(vcpu);
468 	case ARM_EXCEPTION_HYP_GONE:
469 		/*
470 		 * EL2 has been reset to the hyp-stub. This happens when a guest
471 		 * is pre-emptied by kvm_reboot()'s shutdown call.
472 		 */
473 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
474 		return 0;
475 	case ARM_EXCEPTION_IL:
476 		/*
477 		 * We attempted an illegal exception return.  Guest state must
478 		 * have been corrupted somehow.  Give up.
479 		 */
480 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
481 		return -EINVAL;
482 	default:
483 		kvm_pr_unimpl("Unsupported exception type: %d",
484 			      exception_index);
485 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
486 		return 0;
487 	}
488 }
489 
490 /* For exit types that need handling before we can be preempted */
handle_exit_early(struct kvm_vcpu * vcpu,int exception_index)491 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
492 {
493 	if (ARM_SERROR_PENDING(exception_index)) {
494 		if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
495 			u64 disr = kvm_vcpu_get_disr(vcpu);
496 
497 			kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
498 		} else {
499 			kvm_inject_vabt(vcpu);
500 		}
501 
502 		return;
503 	}
504 
505 	exception_index = ARM_EXCEPTION_CODE(exception_index);
506 
507 	if (exception_index == ARM_EXCEPTION_EL1_SERROR)
508 		kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
509 }
510 
print_nvhe_hyp_panic(const char * name,u64 panic_addr)511 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
512 {
513 	kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
514 		(void *)(panic_addr + kaslr_offset()));
515 }
516 
kvm_nvhe_report_cfi_failure(u64 panic_addr)517 static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
518 {
519 	print_nvhe_hyp_panic("CFI failure", panic_addr);
520 
521 	if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
522 		kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
523 }
524 
nvhe_hyp_panic_handler(u64 esr,u64 spsr,u64 elr_virt,u64 elr_phys,u64 par,uintptr_t vcpu,u64 far,u64 hpfar)525 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
526 					      u64 elr_virt, u64 elr_phys,
527 					      u64 par, uintptr_t vcpu,
528 					      u64 far, u64 hpfar) {
529 	u64 elr_in_kimg = __phys_to_kimg(elr_phys);
530 	u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
531 	u64 mode = spsr & PSR_MODE_MASK;
532 	u64 panic_addr = elr_virt + hyp_offset;
533 
534 	if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
535 		kvm_err("Invalid host exception to nVHE hyp!\n");
536 	} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
537 		   esr_brk_comment(esr) == BUG_BRK_IMM) {
538 		const char *file = NULL;
539 		unsigned int line = 0;
540 
541 		/* All hyp bugs, including warnings, are treated as fatal. */
542 		if (!is_protected_kvm_enabled() ||
543 		    IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
544 			struct bug_entry *bug = find_bug(elr_in_kimg);
545 
546 			if (bug)
547 				bug_get_file_line(bug, &file, &line);
548 		}
549 
550 		if (file)
551 			kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
552 		else
553 			print_nvhe_hyp_panic("BUG", panic_addr);
554 	} else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) {
555 		kvm_nvhe_report_cfi_failure(panic_addr);
556 	} else if (IS_ENABLED(CONFIG_UBSAN_KVM_EL2) &&
557 		   ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
558 		   esr_is_ubsan_brk(esr)) {
559 		print_nvhe_hyp_panic(report_ubsan_failure(esr & UBSAN_BRK_MASK),
560 				     panic_addr);
561 	} else {
562 		print_nvhe_hyp_panic("panic", panic_addr);
563 	}
564 
565 	/* Dump the nVHE hypervisor backtrace */
566 	kvm_nvhe_dump_backtrace(hyp_offset);
567 
568 	/*
569 	 * Hyp has panicked and we're going to handle that by panicking the
570 	 * kernel. The kernel offset will be revealed in the panic so we're
571 	 * also safe to reveal the hyp offset as a debugging aid for translating
572 	 * hyp VAs to vmlinux addresses.
573 	 */
574 	kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
575 
576 	panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
577 	      spsr, elr_virt, esr, far, hpfar, par, vcpu);
578 }
579