xref: /linux/arch/arm64/kvm/sys_regs.c (revision 11e7861d680c3757eab18ec0a474ff680e007dc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 #include <linux/irqchip/arm-gic-v3.h>
21 
22 #include <asm/arm_pmuv3.h>
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/esr.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/kvm_nested.h>
32 #include <asm/perf_event.h>
33 #include <asm/sysreg.h>
34 
35 #include <trace/events/kvm.h>
36 
37 #include "sys_regs.h"
38 #include "vgic/vgic.h"
39 
40 #include "trace.h"
41 
42 /*
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47 
48 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50 		      u64 val);
51 
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)52 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53 			 const struct sys_reg_desc *r)
54 {
55 	kvm_inject_undefined(vcpu);
56 	return false;
57 }
58 
bad_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r,const char * msg)59 static bool bad_trap(struct kvm_vcpu *vcpu,
60 		     struct sys_reg_params *params,
61 		     const struct sys_reg_desc *r,
62 		     const char *msg)
63 {
64 	WARN_ONCE(1, "Unexpected %s\n", msg);
65 	print_sys_reg_instr(params);
66 	return undef_access(vcpu, params, r);
67 }
68 
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)69 static bool read_from_write_only(struct kvm_vcpu *vcpu,
70 				 struct sys_reg_params *params,
71 				 const struct sys_reg_desc *r)
72 {
73 	return bad_trap(vcpu, params, r,
74 			"sys_reg read to write-only register");
75 }
76 
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)77 static bool write_to_read_only(struct kvm_vcpu *vcpu,
78 			       struct sys_reg_params *params,
79 			       const struct sys_reg_desc *r)
80 {
81 	return bad_trap(vcpu, params, r,
82 			"sys_reg write to read-only register");
83 }
84 
85 enum sr_loc_attr {
86 	SR_LOC_MEMORY	= 0,	  /* Register definitely in memory */
87 	SR_LOC_LOADED	= BIT(0), /* Register on CPU, unless it cannot */
88 	SR_LOC_MAPPED	= BIT(1), /* Register in a different CPU register */
89 	SR_LOC_XLATED	= BIT(2), /* Register translated to fit another reg */
90 	SR_LOC_SPECIAL	= BIT(3), /* Demanding register, implies loaded */
91 };
92 
93 struct sr_loc {
94 	enum sr_loc_attr loc;
95 	enum vcpu_sysreg map_reg;
96 	u64		 (*xlate)(u64);
97 };
98 
locate_direct_register(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg)99 static enum sr_loc_attr locate_direct_register(const struct kvm_vcpu *vcpu,
100 					       enum vcpu_sysreg reg)
101 {
102 	switch (reg) {
103 	case SCTLR_EL1:
104 	case CPACR_EL1:
105 	case TTBR0_EL1:
106 	case TTBR1_EL1:
107 	case TCR_EL1:
108 	case TCR2_EL1:
109 	case PIR_EL1:
110 	case PIRE0_EL1:
111 	case POR_EL1:
112 	case ESR_EL1:
113 	case AFSR0_EL1:
114 	case AFSR1_EL1:
115 	case FAR_EL1:
116 	case MAIR_EL1:
117 	case VBAR_EL1:
118 	case CONTEXTIDR_EL1:
119 	case AMAIR_EL1:
120 	case CNTKCTL_EL1:
121 	case ELR_EL1:
122 	case SPSR_EL1:
123 	case ZCR_EL1:
124 	case SCTLR2_EL1:
125 		/*
126 		 * EL1 registers which have an ELx2 mapping are loaded if
127 		 * we're not in hypervisor context.
128 		 */
129 		return is_hyp_ctxt(vcpu) ? SR_LOC_MEMORY : SR_LOC_LOADED;
130 
131 	case TPIDR_EL0:
132 	case TPIDRRO_EL0:
133 	case TPIDR_EL1:
134 	case PAR_EL1:
135 	case DACR32_EL2:
136 	case IFSR32_EL2:
137 	case DBGVCR32_EL2:
138 		/* These registers are always loaded, no matter what */
139 		return SR_LOC_LOADED;
140 
141 	default:
142 		/* Non-mapped EL2 registers are by definition in memory. */
143 		return SR_LOC_MEMORY;
144 	}
145 }
146 
locate_mapped_el2_register(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg,enum vcpu_sysreg map_reg,u64 (* xlate)(u64),struct sr_loc * loc)147 static void locate_mapped_el2_register(const struct kvm_vcpu *vcpu,
148 				       enum vcpu_sysreg reg,
149 				       enum vcpu_sysreg map_reg,
150 				       u64 (*xlate)(u64),
151 				       struct sr_loc *loc)
152 {
153 	if (!is_hyp_ctxt(vcpu)) {
154 		loc->loc = SR_LOC_MEMORY;
155 		return;
156 	}
157 
158 	loc->loc = SR_LOC_LOADED | SR_LOC_MAPPED;
159 	loc->map_reg = map_reg;
160 
161 	WARN_ON(locate_direct_register(vcpu, map_reg) != SR_LOC_MEMORY);
162 
163 	if (xlate != NULL && !vcpu_el2_e2h_is_set(vcpu)) {
164 		loc->loc |= SR_LOC_XLATED;
165 		loc->xlate = xlate;
166 	}
167 }
168 
169 #define MAPPED_EL2_SYSREG(r, m, t)					\
170 	case r:	{							\
171 		locate_mapped_el2_register(vcpu, r, m, t, loc);		\
172 		break;							\
173 	}
174 
locate_register(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg,struct sr_loc * loc)175 static void locate_register(const struct kvm_vcpu *vcpu, enum vcpu_sysreg reg,
176 			    struct sr_loc *loc)
177 {
178 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) {
179 		loc->loc = SR_LOC_MEMORY;
180 		return;
181 	}
182 
183 	switch (reg) {
184 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
185 				  translate_sctlr_el2_to_sctlr_el1	     );
186 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
187 				  translate_cptr_el2_to_cpacr_el1	     );
188 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
189 				  translate_ttbr0_el2_to_ttbr0_el1	     );
190 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
191 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
192 				  translate_tcr_el2_to_tcr_el1		     );
193 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
194 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
195 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
196 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
197 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
198 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
199 		MAPPED_EL2_SYSREG(TCR2_EL2,    TCR2_EL1,    NULL	     );
200 		MAPPED_EL2_SYSREG(PIR_EL2,     PIR_EL1,     NULL	     );
201 		MAPPED_EL2_SYSREG(PIRE0_EL2,   PIRE0_EL1,   NULL	     );
202 		MAPPED_EL2_SYSREG(POR_EL2,     POR_EL1,     NULL	     );
203 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
204 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
205 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
206 		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
207 		MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL	     );
208 		MAPPED_EL2_SYSREG(SCTLR2_EL2,  SCTLR2_EL1,  NULL	     );
209 	case CNTHCTL_EL2:
210 		/* CNTHCTL_EL2 is super special, until we support NV2.1 */
211 		loc->loc = ((is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) ?
212 			    SR_LOC_SPECIAL : SR_LOC_MEMORY);
213 		break;
214 	default:
215 		loc->loc = locate_direct_register(vcpu, reg);
216 	}
217 }
218 
read_sr_from_cpu(enum vcpu_sysreg reg)219 static u64 read_sr_from_cpu(enum vcpu_sysreg reg)
220 {
221 	u64 val = 0x8badf00d8badf00d;
222 
223 	switch (reg) {
224 	case SCTLR_EL1:		val = read_sysreg_s(SYS_SCTLR_EL12);	break;
225 	case CPACR_EL1:		val = read_sysreg_s(SYS_CPACR_EL12);	break;
226 	case TTBR0_EL1:		val = read_sysreg_s(SYS_TTBR0_EL12);	break;
227 	case TTBR1_EL1:		val = read_sysreg_s(SYS_TTBR1_EL12);	break;
228 	case TCR_EL1:		val = read_sysreg_s(SYS_TCR_EL12);	break;
229 	case TCR2_EL1:		val = read_sysreg_s(SYS_TCR2_EL12);	break;
230 	case PIR_EL1:		val = read_sysreg_s(SYS_PIR_EL12);	break;
231 	case PIRE0_EL1:		val = read_sysreg_s(SYS_PIRE0_EL12);	break;
232 	case POR_EL1:		val = read_sysreg_s(SYS_POR_EL12);	break;
233 	case ESR_EL1:		val = read_sysreg_s(SYS_ESR_EL12);	break;
234 	case AFSR0_EL1:		val = read_sysreg_s(SYS_AFSR0_EL12);	break;
235 	case AFSR1_EL1:		val = read_sysreg_s(SYS_AFSR1_EL12);	break;
236 	case FAR_EL1:		val = read_sysreg_s(SYS_FAR_EL12);	break;
237 	case MAIR_EL1:		val = read_sysreg_s(SYS_MAIR_EL12);	break;
238 	case VBAR_EL1:		val = read_sysreg_s(SYS_VBAR_EL12);	break;
239 	case CONTEXTIDR_EL1:	val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
240 	case AMAIR_EL1:		val = read_sysreg_s(SYS_AMAIR_EL12);	break;
241 	case CNTKCTL_EL1:	val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
242 	case ELR_EL1:		val = read_sysreg_s(SYS_ELR_EL12);	break;
243 	case SPSR_EL1:		val = read_sysreg_s(SYS_SPSR_EL12);	break;
244 	case ZCR_EL1:		val = read_sysreg_s(SYS_ZCR_EL12);	break;
245 	case SCTLR2_EL1:	val = read_sysreg_s(SYS_SCTLR2_EL12);	break;
246 	case TPIDR_EL0:		val = read_sysreg_s(SYS_TPIDR_EL0);	break;
247 	case TPIDRRO_EL0:	val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
248 	case TPIDR_EL1:		val = read_sysreg_s(SYS_TPIDR_EL1);	break;
249 	case PAR_EL1:		val = read_sysreg_par();		break;
250 	case DACR32_EL2:	val = read_sysreg_s(SYS_DACR32_EL2);	break;
251 	case IFSR32_EL2:	val = read_sysreg_s(SYS_IFSR32_EL2);	break;
252 	case DBGVCR32_EL2:	val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
253 	default:		WARN_ON_ONCE(1);
254 	}
255 
256 	return val;
257 }
258 
write_sr_to_cpu(enum vcpu_sysreg reg,u64 val)259 static void write_sr_to_cpu(enum vcpu_sysreg reg, u64 val)
260 {
261 	switch (reg) {
262 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
263 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
264 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
265 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
266 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
267 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
268 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
269 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
270 	case POR_EL1:		write_sysreg_s(val, SYS_POR_EL12);	break;
271 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
272 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
273 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
274 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
275 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
276 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
277 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
278 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
279 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
280 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
281 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
282 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
283 	case SCTLR2_EL1:	write_sysreg_s(val, SYS_SCTLR2_EL12);	break;
284 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
285 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
286 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
287 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
288 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
289 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
290 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
291 	default:		WARN_ON_ONCE(1);
292 	}
293 }
294 
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,enum vcpu_sysreg reg)295 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg reg)
296 {
297 	struct sr_loc loc = {};
298 
299 	locate_register(vcpu, reg, &loc);
300 
301 	WARN_ON_ONCE(!has_vhe() && loc.loc != SR_LOC_MEMORY);
302 
303 	if (loc.loc & SR_LOC_SPECIAL) {
304 		u64 val;
305 
306 		WARN_ON_ONCE(loc.loc & ~SR_LOC_SPECIAL);
307 
308 		/*
309 		 * CNTHCTL_EL2 requires some special treatment to account
310 		 * for the bits that can be set via CNTKCTL_EL1 when E2H==1.
311 		 */
312 		switch (reg) {
313 		case CNTHCTL_EL2:
314 			val = read_sysreg_el1(SYS_CNTKCTL);
315 			val &= CNTKCTL_VALID_BITS;
316 			val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
317 			return val;
318 		default:
319 			WARN_ON_ONCE(1);
320 		}
321 	}
322 
323 	if (loc.loc & SR_LOC_LOADED) {
324 		enum vcpu_sysreg map_reg = reg;
325 
326 		if (loc.loc & SR_LOC_MAPPED)
327 			map_reg = loc.map_reg;
328 
329 		if (!(loc.loc & SR_LOC_XLATED)) {
330 			u64 val = read_sr_from_cpu(map_reg);
331 
332 			if (reg >= __SANITISED_REG_START__)
333 				val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
334 
335 			return val;
336 		}
337 	}
338 
339 	return __vcpu_sys_reg(vcpu, reg);
340 }
341 
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,enum vcpu_sysreg reg)342 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, enum vcpu_sysreg reg)
343 {
344 	struct sr_loc loc = {};
345 
346 	locate_register(vcpu, reg, &loc);
347 
348 	WARN_ON_ONCE(!has_vhe() && loc.loc != SR_LOC_MEMORY);
349 
350 	if (loc.loc & SR_LOC_SPECIAL) {
351 
352 		WARN_ON_ONCE(loc.loc & ~SR_LOC_SPECIAL);
353 
354 		switch (reg) {
355 		case CNTHCTL_EL2:
356 			/*
357 			 * If E2H=1, some of the bits are backed by
358 			 * CNTKCTL_EL1, while the rest is kept in memory.
359 			 * Yes, this is fun stuff.
360 			 */
361 			write_sysreg_el1(val, SYS_CNTKCTL);
362 			break;
363 		default:
364 			WARN_ON_ONCE(1);
365 		}
366 	}
367 
368 	if (loc.loc & SR_LOC_LOADED) {
369 		enum vcpu_sysreg map_reg = reg;
370 		u64 xlated_val;
371 
372 		if (reg >= __SANITISED_REG_START__)
373 			val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
374 
375 		if (loc.loc & SR_LOC_MAPPED)
376 			map_reg = loc.map_reg;
377 
378 		if (loc.loc & SR_LOC_XLATED)
379 			xlated_val = loc.xlate(val);
380 		else
381 			xlated_val = val;
382 
383 		write_sr_to_cpu(map_reg, xlated_val);
384 
385 		/*
386 		 * Fall through to write the backing store anyway, which
387 		 * allows translated registers to be directly read without a
388 		 * reverse translation.
389 		 */
390 	}
391 
392 	__vcpu_assign_sys_reg(vcpu, reg, val);
393 }
394 
395 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
396 #define CSSELR_MAX 14
397 
398 /*
399  * Returns the minimum line size for the selected cache, expressed as
400  * Log2(bytes).
401  */
get_min_cache_line_size(bool icache)402 static u8 get_min_cache_line_size(bool icache)
403 {
404 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
405 	u8 field;
406 
407 	if (icache)
408 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
409 	else
410 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
411 
412 	/*
413 	 * Cache line size is represented as Log2(words) in CTR_EL0.
414 	 * Log2(bytes) can be derived with the following:
415 	 *
416 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
417 	 * 		   = Log2(bytes) - 2 + 2
418 	 * 		   = Log2(bytes)
419 	 */
420 	return field + 2;
421 }
422 
423 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)424 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
425 {
426 	u8 line_size;
427 
428 	if (vcpu->arch.ccsidr)
429 		return vcpu->arch.ccsidr[csselr];
430 
431 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
432 
433 	/*
434 	 * Fabricate a CCSIDR value as the overriding value does not exist.
435 	 * The real CCSIDR value will not be used as it can vary by the
436 	 * physical CPU which the vcpu currently resides in.
437 	 *
438 	 * The line size is determined with get_min_cache_line_size(), which
439 	 * should be valid for all CPUs even if they have different cache
440 	 * configuration.
441 	 *
442 	 * The associativity bits are cleared, meaning the geometry of all data
443 	 * and unified caches (which are guaranteed to be PIPT and thus
444 	 * non-aliasing) are 1 set and 1 way.
445 	 * Guests should not be doing cache operations by set/way at all, and
446 	 * for this reason, we trap them and attempt to infer the intent, so
447 	 * that we can flush the entire guest's address space at the appropriate
448 	 * time. The exposed geometry minimizes the number of the traps.
449 	 * [If guests should attempt to infer aliasing properties from the
450 	 * geometry (which is not permitted by the architecture), they would
451 	 * only do so for virtually indexed caches.]
452 	 *
453 	 * We don't check if the cache level exists as it is allowed to return
454 	 * an UNKNOWN value if not.
455 	 */
456 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
457 }
458 
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)459 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
460 {
461 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
462 	u32 *ccsidr = vcpu->arch.ccsidr;
463 	u32 i;
464 
465 	if ((val & CCSIDR_EL1_RES0) ||
466 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
467 		return -EINVAL;
468 
469 	if (!ccsidr) {
470 		if (val == get_ccsidr(vcpu, csselr))
471 			return 0;
472 
473 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
474 		if (!ccsidr)
475 			return -ENOMEM;
476 
477 		for (i = 0; i < CSSELR_MAX; i++)
478 			ccsidr[i] = get_ccsidr(vcpu, i);
479 
480 		vcpu->arch.ccsidr = ccsidr;
481 	}
482 
483 	ccsidr[csselr] = val;
484 
485 	return 0;
486 }
487 
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)488 static bool access_rw(struct kvm_vcpu *vcpu,
489 		      struct sys_reg_params *p,
490 		      const struct sys_reg_desc *r)
491 {
492 	if (p->is_write)
493 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
494 	else
495 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
496 
497 	return true;
498 }
499 
500 /*
501  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
502  */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)503 static bool access_dcsw(struct kvm_vcpu *vcpu,
504 			struct sys_reg_params *p,
505 			const struct sys_reg_desc *r)
506 {
507 	if (!p->is_write)
508 		return read_from_write_only(vcpu, p, r);
509 
510 	/*
511 	 * Only track S/W ops if we don't have FWB. It still indicates
512 	 * that the guest is a bit broken (S/W operations should only
513 	 * be done by firmware, knowing that there is only a single
514 	 * CPU left in the system, and certainly not from non-secure
515 	 * software).
516 	 */
517 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
518 		kvm_set_way_flush(vcpu);
519 
520 	return true;
521 }
522 
access_dcgsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)523 static bool access_dcgsw(struct kvm_vcpu *vcpu,
524 			 struct sys_reg_params *p,
525 			 const struct sys_reg_desc *r)
526 {
527 	if (!kvm_has_mte(vcpu->kvm))
528 		return undef_access(vcpu, p, r);
529 
530 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
531 	return access_dcsw(vcpu, p, r);
532 }
533 
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)534 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
535 {
536 	switch (r->aarch32_map) {
537 	case AA32_LO:
538 		*mask = GENMASK_ULL(31, 0);
539 		*shift = 0;
540 		break;
541 	case AA32_HI:
542 		*mask = GENMASK_ULL(63, 32);
543 		*shift = 32;
544 		break;
545 	default:
546 		*mask = GENMASK_ULL(63, 0);
547 		*shift = 0;
548 		break;
549 	}
550 }
551 
552 /*
553  * Generic accessor for VM registers. Only called as long as HCR_TVM
554  * is set. If the guest enables the MMU, we stop trapping the VM
555  * sys_regs and leave it in complete control of the caches.
556  */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)557 static bool access_vm_reg(struct kvm_vcpu *vcpu,
558 			  struct sys_reg_params *p,
559 			  const struct sys_reg_desc *r)
560 {
561 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
562 	u64 val, mask, shift;
563 
564 	BUG_ON(!p->is_write);
565 
566 	get_access_mask(r, &mask, &shift);
567 
568 	if (~mask) {
569 		val = vcpu_read_sys_reg(vcpu, r->reg);
570 		val &= ~mask;
571 	} else {
572 		val = 0;
573 	}
574 
575 	val |= (p->regval & (mask >> shift)) << shift;
576 	vcpu_write_sys_reg(vcpu, val, r->reg);
577 
578 	kvm_toggle_cache(vcpu, was_enabled);
579 	return true;
580 }
581 
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)582 static bool access_actlr(struct kvm_vcpu *vcpu,
583 			 struct sys_reg_params *p,
584 			 const struct sys_reg_desc *r)
585 {
586 	u64 mask, shift;
587 
588 	if (p->is_write)
589 		return ignore_write(vcpu, p);
590 
591 	get_access_mask(r, &mask, &shift);
592 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
593 
594 	return true;
595 }
596 
597 /*
598  * Trap handler for the GICv3 SGI generation system register.
599  * Forward the request to the VGIC emulation.
600  * The cp15_64 code makes sure this automatically works
601  * for both AArch64 and AArch32 accesses.
602  */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)603 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
604 			   struct sys_reg_params *p,
605 			   const struct sys_reg_desc *r)
606 {
607 	bool g1;
608 
609 	if (!kvm_has_gicv3(vcpu->kvm))
610 		return undef_access(vcpu, p, r);
611 
612 	if (!p->is_write)
613 		return read_from_write_only(vcpu, p, r);
614 
615 	/*
616 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
617 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
618 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
619 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
620 	 * group.
621 	 */
622 	if (p->Op0 == 0) {		/* AArch32 */
623 		switch (p->Op1) {
624 		default:		/* Keep GCC quiet */
625 		case 0:			/* ICC_SGI1R */
626 			g1 = true;
627 			break;
628 		case 1:			/* ICC_ASGI1R */
629 		case 2:			/* ICC_SGI0R */
630 			g1 = false;
631 			break;
632 		}
633 	} else {			/* AArch64 */
634 		switch (p->Op2) {
635 		default:		/* Keep GCC quiet */
636 		case 5:			/* ICC_SGI1R_EL1 */
637 			g1 = true;
638 			break;
639 		case 6:			/* ICC_ASGI1R_EL1 */
640 		case 7:			/* ICC_SGI0R_EL1 */
641 			g1 = false;
642 			break;
643 		}
644 	}
645 
646 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
647 
648 	return true;
649 }
650 
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)651 static bool access_gic_sre(struct kvm_vcpu *vcpu,
652 			   struct sys_reg_params *p,
653 			   const struct sys_reg_desc *r)
654 {
655 	if (!kvm_has_gicv3(vcpu->kvm))
656 		return undef_access(vcpu, p, r);
657 
658 	if (p->is_write)
659 		return ignore_write(vcpu, p);
660 
661 	if (p->Op1 == 4) {	/* ICC_SRE_EL2 */
662 		p->regval = KVM_ICC_SRE_EL2;
663 	} else {		/* ICC_SRE_EL1 */
664 		p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
665 	}
666 
667 	return true;
668 }
669 
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)670 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
671 			struct sys_reg_params *p,
672 			const struct sys_reg_desc *r)
673 {
674 	if (p->is_write)
675 		return ignore_write(vcpu, p);
676 	else
677 		return read_zero(vcpu, p);
678 }
679 
680 /*
681  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
682  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
683  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
684  * treat it separately.
685  */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)686 static bool trap_loregion(struct kvm_vcpu *vcpu,
687 			  struct sys_reg_params *p,
688 			  const struct sys_reg_desc *r)
689 {
690 	u32 sr = reg_to_encoding(r);
691 
692 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
693 		return undef_access(vcpu, p, r);
694 
695 	if (p->is_write && sr == SYS_LORID_EL1)
696 		return write_to_read_only(vcpu, p, r);
697 
698 	return trap_raz_wi(vcpu, p, r);
699 }
700 
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)701 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
702 			   struct sys_reg_params *p,
703 			   const struct sys_reg_desc *r)
704 {
705 	if (!p->is_write)
706 		return read_from_write_only(vcpu, p, r);
707 
708 	kvm_debug_handle_oslar(vcpu, p->regval);
709 	return true;
710 }
711 
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)712 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
713 			   struct sys_reg_params *p,
714 			   const struct sys_reg_desc *r)
715 {
716 	if (p->is_write)
717 		return write_to_read_only(vcpu, p, r);
718 
719 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
720 	return true;
721 }
722 
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)723 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
724 			 u64 val)
725 {
726 	/*
727 	 * The only modifiable bit is the OSLK bit. Refuse the write if
728 	 * userspace attempts to change any other bit in the register.
729 	 */
730 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
731 		return -EINVAL;
732 
733 	__vcpu_assign_sys_reg(vcpu, rd->reg, val);
734 	return 0;
735 }
736 
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)737 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
738 				   struct sys_reg_params *p,
739 				   const struct sys_reg_desc *r)
740 {
741 	if (p->is_write) {
742 		return ignore_write(vcpu, p);
743 	} else {
744 		p->regval = read_sysreg(dbgauthstatus_el1);
745 		return true;
746 	}
747 }
748 
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)749 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
750 			    struct sys_reg_params *p,
751 			    const struct sys_reg_desc *r)
752 {
753 	access_rw(vcpu, p, r);
754 
755 	kvm_debug_set_guest_ownership(vcpu);
756 	return true;
757 }
758 
759 /*
760  * reg_to_dbg/dbg_to_reg
761  *
762  * A 32 bit write to a debug register leave top bits alone
763  * A 32 bit read from a debug register only returns the bottom bits
764  */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)765 static void reg_to_dbg(struct kvm_vcpu *vcpu,
766 		       struct sys_reg_params *p,
767 		       const struct sys_reg_desc *rd,
768 		       u64 *dbg_reg)
769 {
770 	u64 mask, shift, val;
771 
772 	get_access_mask(rd, &mask, &shift);
773 
774 	val = *dbg_reg;
775 	val &= ~mask;
776 	val |= (p->regval & (mask >> shift)) << shift;
777 	*dbg_reg = val;
778 }
779 
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)780 static void dbg_to_reg(struct kvm_vcpu *vcpu,
781 		       struct sys_reg_params *p,
782 		       const struct sys_reg_desc *rd,
783 		       u64 *dbg_reg)
784 {
785 	u64 mask, shift;
786 
787 	get_access_mask(rd, &mask, &shift);
788 	p->regval = (*dbg_reg & mask) >> shift;
789 }
790 
demux_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)791 static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
792 {
793 	struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
794 
795 	switch (rd->Op2) {
796 	case 0b100:
797 		return &dbg->dbg_bvr[rd->CRm];
798 	case 0b101:
799 		return &dbg->dbg_bcr[rd->CRm];
800 	case 0b110:
801 		return &dbg->dbg_wvr[rd->CRm];
802 	case 0b111:
803 		return &dbg->dbg_wcr[rd->CRm];
804 	default:
805 		KVM_BUG_ON(1, vcpu->kvm);
806 		return NULL;
807 	}
808 }
809 
trap_dbg_wb_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)810 static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
811 			    const struct sys_reg_desc *rd)
812 {
813 	u64 *reg = demux_wb_reg(vcpu, rd);
814 
815 	if (!reg)
816 		return false;
817 
818 	if (p->is_write)
819 		reg_to_dbg(vcpu, p, rd, reg);
820 	else
821 		dbg_to_reg(vcpu, p, rd, reg);
822 
823 	kvm_debug_set_guest_ownership(vcpu);
824 	return true;
825 }
826 
set_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)827 static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
828 			  u64 val)
829 {
830 	u64 *reg = demux_wb_reg(vcpu, rd);
831 
832 	if (!reg)
833 		return -EINVAL;
834 
835 	*reg = val;
836 	return 0;
837 }
838 
get_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)839 static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
840 			  u64 *val)
841 {
842 	u64 *reg = demux_wb_reg(vcpu, rd);
843 
844 	if (!reg)
845 		return -EINVAL;
846 
847 	*val = *reg;
848 	return 0;
849 }
850 
reset_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)851 static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
852 {
853 	u64 *reg = demux_wb_reg(vcpu, rd);
854 
855 	/*
856 	 * Bail early if we couldn't find storage for the register, the
857 	 * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
858 	 * being run.
859 	 */
860 	if (!reg)
861 		return 0;
862 
863 	*reg = rd->val;
864 	return rd->val;
865 }
866 
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)867 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
868 {
869 	u64 amair = read_sysreg(amair_el1);
870 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
871 	return amair;
872 }
873 
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)874 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
875 {
876 	u64 actlr = read_sysreg(actlr_el1);
877 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
878 	return actlr;
879 }
880 
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)881 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
882 {
883 	u64 mpidr;
884 
885 	/*
886 	 * Map the vcpu_id into the first three affinity level fields of
887 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
888 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
889 	 * of the GICv3 to be able to address each CPU directly when
890 	 * sending IPIs.
891 	 */
892 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
893 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
894 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
895 	mpidr |= (1ULL << 31);
896 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
897 
898 	return mpidr;
899 }
900 
hidden_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)901 static unsigned int hidden_visibility(const struct kvm_vcpu *vcpu,
902 				      const struct sys_reg_desc *r)
903 {
904 	return REG_HIDDEN;
905 }
906 
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)907 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
908 				   const struct sys_reg_desc *r)
909 {
910 	if (kvm_vcpu_has_pmu(vcpu))
911 		return 0;
912 
913 	return REG_HIDDEN;
914 }
915 
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)916 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
917 {
918 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
919 	u8 n = vcpu->kvm->arch.nr_pmu_counters;
920 
921 	if (n)
922 		mask |= GENMASK(n - 1, 0);
923 
924 	reset_unknown(vcpu, r);
925 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, mask);
926 
927 	return __vcpu_sys_reg(vcpu, r->reg);
928 }
929 
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)930 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
931 {
932 	reset_unknown(vcpu, r);
933 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, GENMASK(31, 0));
934 
935 	return __vcpu_sys_reg(vcpu, r->reg);
936 }
937 
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)938 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
939 {
940 	/* This thing will UNDEF, who cares about the reset value? */
941 	if (!kvm_vcpu_has_pmu(vcpu))
942 		return 0;
943 
944 	reset_unknown(vcpu, r);
945 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, kvm_pmu_evtyper_mask(vcpu->kvm));
946 
947 	return __vcpu_sys_reg(vcpu, r->reg);
948 }
949 
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)950 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
951 {
952 	reset_unknown(vcpu, r);
953 	__vcpu_rmw_sys_reg(vcpu, r->reg, &=, PMSELR_EL0_SEL_MASK);
954 
955 	return __vcpu_sys_reg(vcpu, r->reg);
956 }
957 
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)958 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
959 {
960 	u64 pmcr = 0;
961 
962 	if (!kvm_supports_32bit_el0())
963 		pmcr |= ARMV8_PMU_PMCR_LC;
964 
965 	/*
966 	 * The value of PMCR.N field is included when the
967 	 * vCPU register is read via kvm_vcpu_read_pmcr().
968 	 */
969 	__vcpu_assign_sys_reg(vcpu, r->reg, pmcr);
970 
971 	return __vcpu_sys_reg(vcpu, r->reg);
972 }
973 
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)974 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
975 {
976 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
977 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
978 
979 	if (!enabled)
980 		kvm_inject_undefined(vcpu);
981 
982 	return !enabled;
983 }
984 
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)985 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
986 {
987 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
988 }
989 
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)990 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
991 {
992 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
993 }
994 
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)995 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
996 {
997 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
998 }
999 
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)1000 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
1001 {
1002 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
1003 }
1004 
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1005 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1006 			const struct sys_reg_desc *r)
1007 {
1008 	u64 val;
1009 
1010 	if (pmu_access_el0_disabled(vcpu))
1011 		return false;
1012 
1013 	if (p->is_write) {
1014 		/*
1015 		 * Only update writeable bits of PMCR (continuing into
1016 		 * kvm_pmu_handle_pmcr() as well)
1017 		 */
1018 		val = kvm_vcpu_read_pmcr(vcpu);
1019 		val &= ~ARMV8_PMU_PMCR_MASK;
1020 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
1021 		if (!kvm_supports_32bit_el0())
1022 			val |= ARMV8_PMU_PMCR_LC;
1023 		kvm_pmu_handle_pmcr(vcpu, val);
1024 	} else {
1025 		/* PMCR.P & PMCR.C are RAZ */
1026 		val = kvm_vcpu_read_pmcr(vcpu)
1027 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
1028 		p->regval = val;
1029 	}
1030 
1031 	return true;
1032 }
1033 
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1034 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1035 			  const struct sys_reg_desc *r)
1036 {
1037 	if (pmu_access_event_counter_el0_disabled(vcpu))
1038 		return false;
1039 
1040 	if (p->is_write)
1041 		__vcpu_assign_sys_reg(vcpu, PMSELR_EL0, p->regval);
1042 	else
1043 		/* return PMSELR.SEL field */
1044 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1045 			    & PMSELR_EL0_SEL_MASK;
1046 
1047 	return true;
1048 }
1049 
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1050 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1051 			  const struct sys_reg_desc *r)
1052 {
1053 	u64 pmceid, mask, shift;
1054 
1055 	BUG_ON(p->is_write);
1056 
1057 	if (pmu_access_el0_disabled(vcpu))
1058 		return false;
1059 
1060 	get_access_mask(r, &mask, &shift);
1061 
1062 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
1063 	pmceid &= mask;
1064 	pmceid >>= shift;
1065 
1066 	p->regval = pmceid;
1067 
1068 	return true;
1069 }
1070 
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)1071 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1072 {
1073 	u64 pmcr, val;
1074 
1075 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1076 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1077 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1078 		kvm_inject_undefined(vcpu);
1079 		return false;
1080 	}
1081 
1082 	return true;
1083 }
1084 
get_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1085 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1086 			  u64 *val)
1087 {
1088 	u64 idx;
1089 
1090 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1091 		/* PMCCNTR_EL0 */
1092 		idx = ARMV8_PMU_CYCLE_IDX;
1093 	else
1094 		/* PMEVCNTRn_EL0 */
1095 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1096 
1097 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1098 	return 0;
1099 }
1100 
set_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1101 static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1102 			  u64 val)
1103 {
1104 	u64 idx;
1105 
1106 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1107 		/* PMCCNTR_EL0 */
1108 		idx = ARMV8_PMU_CYCLE_IDX;
1109 	else
1110 		/* PMEVCNTRn_EL0 */
1111 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1112 
1113 	kvm_pmu_set_counter_value_user(vcpu, idx, val);
1114 	return 0;
1115 }
1116 
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1117 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1118 			      struct sys_reg_params *p,
1119 			      const struct sys_reg_desc *r)
1120 {
1121 	u64 idx = ~0UL;
1122 
1123 	if (r->CRn == 9 && r->CRm == 13) {
1124 		if (r->Op2 == 2) {
1125 			/* PMXEVCNTR_EL0 */
1126 			if (pmu_access_event_counter_el0_disabled(vcpu))
1127 				return false;
1128 
1129 			idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
1130 					    __vcpu_sys_reg(vcpu, PMSELR_EL0));
1131 		} else if (r->Op2 == 0) {
1132 			/* PMCCNTR_EL0 */
1133 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1134 				return false;
1135 
1136 			idx = ARMV8_PMU_CYCLE_IDX;
1137 		}
1138 	} else if (r->CRn == 0 && r->CRm == 9) {
1139 		/* PMCCNTR */
1140 		if (pmu_access_event_counter_el0_disabled(vcpu))
1141 			return false;
1142 
1143 		idx = ARMV8_PMU_CYCLE_IDX;
1144 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1145 		/* PMEVCNTRn_EL0 */
1146 		if (pmu_access_event_counter_el0_disabled(vcpu))
1147 			return false;
1148 
1149 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1150 	}
1151 
1152 	/* Catch any decoding mistake */
1153 	WARN_ON(idx == ~0UL);
1154 
1155 	if (!pmu_counter_idx_valid(vcpu, idx))
1156 		return false;
1157 
1158 	if (p->is_write) {
1159 		if (pmu_access_el0_disabled(vcpu))
1160 			return false;
1161 
1162 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1163 	} else {
1164 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1165 	}
1166 
1167 	return true;
1168 }
1169 
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1170 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1171 			       const struct sys_reg_desc *r)
1172 {
1173 	u64 idx, reg;
1174 
1175 	if (pmu_access_el0_disabled(vcpu))
1176 		return false;
1177 
1178 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1179 		/* PMXEVTYPER_EL0 */
1180 		idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1181 		reg = PMEVTYPER0_EL0 + idx;
1182 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1183 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1184 		if (idx == ARMV8_PMU_CYCLE_IDX)
1185 			reg = PMCCFILTR_EL0;
1186 		else
1187 			/* PMEVTYPERn_EL0 */
1188 			reg = PMEVTYPER0_EL0 + idx;
1189 	} else {
1190 		BUG();
1191 	}
1192 
1193 	if (!pmu_counter_idx_valid(vcpu, idx))
1194 		return false;
1195 
1196 	if (p->is_write) {
1197 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1198 		kvm_vcpu_pmu_restore_guest(vcpu);
1199 	} else {
1200 		p->regval = __vcpu_sys_reg(vcpu, reg);
1201 	}
1202 
1203 	return true;
1204 }
1205 
set_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1206 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1207 {
1208 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1209 
1210 	__vcpu_assign_sys_reg(vcpu, r->reg, val & mask);
1211 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1212 
1213 	return 0;
1214 }
1215 
get_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1216 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1217 {
1218 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1219 
1220 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1221 	return 0;
1222 }
1223 
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1224 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1225 			   const struct sys_reg_desc *r)
1226 {
1227 	u64 val, mask;
1228 
1229 	if (pmu_access_el0_disabled(vcpu))
1230 		return false;
1231 
1232 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1233 	if (p->is_write) {
1234 		val = p->regval & mask;
1235 		if (r->Op2 & 0x1)
1236 			/* accessing PMCNTENSET_EL0 */
1237 			__vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, |=, val);
1238 		else
1239 			/* accessing PMCNTENCLR_EL0 */
1240 			__vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, ~val);
1241 
1242 		kvm_pmu_reprogram_counter_mask(vcpu, val);
1243 	} else {
1244 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1245 	}
1246 
1247 	return true;
1248 }
1249 
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1250 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1251 			   const struct sys_reg_desc *r)
1252 {
1253 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1254 
1255 	if (check_pmu_access_disabled(vcpu, 0))
1256 		return false;
1257 
1258 	if (p->is_write) {
1259 		u64 val = p->regval & mask;
1260 
1261 		if (r->Op2 & 0x1)
1262 			/* accessing PMINTENSET_EL1 */
1263 			__vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, |=, val);
1264 		else
1265 			/* accessing PMINTENCLR_EL1 */
1266 			__vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, ~val);
1267 	} else {
1268 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1269 	}
1270 
1271 	return true;
1272 }
1273 
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1274 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1275 			 const struct sys_reg_desc *r)
1276 {
1277 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1278 
1279 	if (pmu_access_el0_disabled(vcpu))
1280 		return false;
1281 
1282 	if (p->is_write) {
1283 		if (r->CRm & 0x2)
1284 			/* accessing PMOVSSET_EL0 */
1285 			__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, (p->regval & mask));
1286 		else
1287 			/* accessing PMOVSCLR_EL0 */
1288 			__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, ~(p->regval & mask));
1289 	} else {
1290 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1291 	}
1292 
1293 	return true;
1294 }
1295 
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1296 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1297 			   const struct sys_reg_desc *r)
1298 {
1299 	u64 mask;
1300 
1301 	if (!p->is_write)
1302 		return read_from_write_only(vcpu, p, r);
1303 
1304 	if (pmu_write_swinc_el0_disabled(vcpu))
1305 		return false;
1306 
1307 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1308 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1309 	return true;
1310 }
1311 
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1312 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1313 			     const struct sys_reg_desc *r)
1314 {
1315 	if (p->is_write) {
1316 		if (!vcpu_mode_priv(vcpu))
1317 			return undef_access(vcpu, p, r);
1318 
1319 		__vcpu_assign_sys_reg(vcpu, PMUSERENR_EL0,
1320 				      (p->regval & ARMV8_PMU_USERENR_MASK));
1321 	} else {
1322 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1323 			    & ARMV8_PMU_USERENR_MASK;
1324 	}
1325 
1326 	return true;
1327 }
1328 
get_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1329 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1330 		    u64 *val)
1331 {
1332 	*val = kvm_vcpu_read_pmcr(vcpu);
1333 	return 0;
1334 }
1335 
set_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1336 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1337 		    u64 val)
1338 {
1339 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1340 	struct kvm *kvm = vcpu->kvm;
1341 
1342 	mutex_lock(&kvm->arch.config_lock);
1343 
1344 	/*
1345 	 * The vCPU can't have more counters than the PMU hardware
1346 	 * implements. Ignore this error to maintain compatibility
1347 	 * with the existing KVM behavior.
1348 	 */
1349 	if (!kvm_vm_has_ran_once(kvm) &&
1350 	    !vcpu_has_nv(vcpu)	      &&
1351 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1352 		kvm->arch.nr_pmu_counters = new_n;
1353 
1354 	mutex_unlock(&kvm->arch.config_lock);
1355 
1356 	/*
1357 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1358 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1359 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1360 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1361 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1362 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1363 	 * if necessary).
1364 	 */
1365 	val &= ARMV8_PMU_PMCR_MASK;
1366 
1367 	/* The LC bit is RES1 when AArch32 is not supported */
1368 	if (!kvm_supports_32bit_el0())
1369 		val |= ARMV8_PMU_PMCR_LC;
1370 
1371 	__vcpu_assign_sys_reg(vcpu, r->reg, val);
1372 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1373 
1374 	return 0;
1375 }
1376 
1377 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1378 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1379 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1380 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1381 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1382 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1383 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1384 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1385 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1386 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1387 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1388 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1389 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1390 	  get_dbg_wb_reg, set_dbg_wb_reg }
1391 
1392 #define PMU_SYS_REG(name)						\
1393 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1394 	.visibility = pmu_visibility
1395 
1396 /* Macro to expand the PMEVCNTRn_EL0 register */
1397 #define PMU_PMEVCNTR_EL0(n)						\
1398 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1399 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1400 	  .set_user = set_pmu_evcntr,					\
1401 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1402 
1403 /* Macro to expand the PMEVTYPERn_EL0 register */
1404 #define PMU_PMEVTYPER_EL0(n)						\
1405 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1406 	  .reset = reset_pmevtyper,					\
1407 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1408 
1409 /* Macro to expand the AMU counter and type registers*/
1410 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1411 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1412 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1413 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1414 
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1415 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1416 			const struct sys_reg_desc *rd)
1417 {
1418 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1419 }
1420 
1421 /*
1422  * If we land here on a PtrAuth access, that is because we didn't
1423  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1424  * way this happens is when the guest does not have PtrAuth support
1425  * enabled.
1426  */
1427 #define __PTRAUTH_KEY(k)						\
1428 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1429 	.visibility = ptrauth_visibility}
1430 
1431 #define PTRAUTH_KEY(k)							\
1432 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1433 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1434 
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1435 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1436 			      struct sys_reg_params *p,
1437 			      const struct sys_reg_desc *r)
1438 {
1439 	enum kvm_arch_timers tmr;
1440 	enum kvm_arch_timer_regs treg;
1441 	u64 reg = reg_to_encoding(r);
1442 
1443 	switch (reg) {
1444 	case SYS_CNTP_TVAL_EL0:
1445 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1446 			tmr = TIMER_HPTIMER;
1447 		else
1448 			tmr = TIMER_PTIMER;
1449 		treg = TIMER_REG_TVAL;
1450 		break;
1451 
1452 	case SYS_CNTV_TVAL_EL0:
1453 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1454 			tmr = TIMER_HVTIMER;
1455 		else
1456 			tmr = TIMER_VTIMER;
1457 		treg = TIMER_REG_TVAL;
1458 		break;
1459 
1460 	case SYS_AARCH32_CNTP_TVAL:
1461 	case SYS_CNTP_TVAL_EL02:
1462 		tmr = TIMER_PTIMER;
1463 		treg = TIMER_REG_TVAL;
1464 		break;
1465 
1466 	case SYS_CNTV_TVAL_EL02:
1467 		tmr = TIMER_VTIMER;
1468 		treg = TIMER_REG_TVAL;
1469 		break;
1470 
1471 	case SYS_CNTHP_TVAL_EL2:
1472 		tmr = TIMER_HPTIMER;
1473 		treg = TIMER_REG_TVAL;
1474 		break;
1475 
1476 	case SYS_CNTHV_TVAL_EL2:
1477 		tmr = TIMER_HVTIMER;
1478 		treg = TIMER_REG_TVAL;
1479 		break;
1480 
1481 	case SYS_CNTP_CTL_EL0:
1482 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1483 			tmr = TIMER_HPTIMER;
1484 		else
1485 			tmr = TIMER_PTIMER;
1486 		treg = TIMER_REG_CTL;
1487 		break;
1488 
1489 	case SYS_CNTV_CTL_EL0:
1490 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1491 			tmr = TIMER_HVTIMER;
1492 		else
1493 			tmr = TIMER_VTIMER;
1494 		treg = TIMER_REG_CTL;
1495 		break;
1496 
1497 	case SYS_AARCH32_CNTP_CTL:
1498 	case SYS_CNTP_CTL_EL02:
1499 		tmr = TIMER_PTIMER;
1500 		treg = TIMER_REG_CTL;
1501 		break;
1502 
1503 	case SYS_CNTV_CTL_EL02:
1504 		tmr = TIMER_VTIMER;
1505 		treg = TIMER_REG_CTL;
1506 		break;
1507 
1508 	case SYS_CNTHP_CTL_EL2:
1509 		tmr = TIMER_HPTIMER;
1510 		treg = TIMER_REG_CTL;
1511 		break;
1512 
1513 	case SYS_CNTHV_CTL_EL2:
1514 		tmr = TIMER_HVTIMER;
1515 		treg = TIMER_REG_CTL;
1516 		break;
1517 
1518 	case SYS_CNTP_CVAL_EL0:
1519 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1520 			tmr = TIMER_HPTIMER;
1521 		else
1522 			tmr = TIMER_PTIMER;
1523 		treg = TIMER_REG_CVAL;
1524 		break;
1525 
1526 	case SYS_CNTV_CVAL_EL0:
1527 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1528 			tmr = TIMER_HVTIMER;
1529 		else
1530 			tmr = TIMER_VTIMER;
1531 		treg = TIMER_REG_CVAL;
1532 		break;
1533 
1534 	case SYS_AARCH32_CNTP_CVAL:
1535 	case SYS_CNTP_CVAL_EL02:
1536 		tmr = TIMER_PTIMER;
1537 		treg = TIMER_REG_CVAL;
1538 		break;
1539 
1540 	case SYS_CNTV_CVAL_EL02:
1541 		tmr = TIMER_VTIMER;
1542 		treg = TIMER_REG_CVAL;
1543 		break;
1544 
1545 	case SYS_CNTHP_CVAL_EL2:
1546 		tmr = TIMER_HPTIMER;
1547 		treg = TIMER_REG_CVAL;
1548 		break;
1549 
1550 	case SYS_CNTHV_CVAL_EL2:
1551 		tmr = TIMER_HVTIMER;
1552 		treg = TIMER_REG_CVAL;
1553 		break;
1554 
1555 	case SYS_CNTPCT_EL0:
1556 	case SYS_CNTPCTSS_EL0:
1557 		if (is_hyp_ctxt(vcpu))
1558 			tmr = TIMER_HPTIMER;
1559 		else
1560 			tmr = TIMER_PTIMER;
1561 		treg = TIMER_REG_CNT;
1562 		break;
1563 
1564 	case SYS_AARCH32_CNTPCT:
1565 	case SYS_AARCH32_CNTPCTSS:
1566 		tmr = TIMER_PTIMER;
1567 		treg = TIMER_REG_CNT;
1568 		break;
1569 
1570 	case SYS_CNTVCT_EL0:
1571 	case SYS_CNTVCTSS_EL0:
1572 		if (is_hyp_ctxt(vcpu))
1573 			tmr = TIMER_HVTIMER;
1574 		else
1575 			tmr = TIMER_VTIMER;
1576 		treg = TIMER_REG_CNT;
1577 		break;
1578 
1579 	case SYS_AARCH32_CNTVCT:
1580 	case SYS_AARCH32_CNTVCTSS:
1581 		tmr = TIMER_VTIMER;
1582 		treg = TIMER_REG_CNT;
1583 		break;
1584 
1585 	default:
1586 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1587 		return undef_access(vcpu, p, r);
1588 	}
1589 
1590 	if (p->is_write)
1591 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1592 	else
1593 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1594 
1595 	return true;
1596 }
1597 
access_hv_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1598 static bool access_hv_timer(struct kvm_vcpu *vcpu,
1599 			    struct sys_reg_params *p,
1600 			    const struct sys_reg_desc *r)
1601 {
1602 	if (!vcpu_el2_e2h_is_set(vcpu))
1603 		return undef_access(vcpu, p, r);
1604 
1605 	return access_arch_timer(vcpu, p, r);
1606 }
1607 
kvm_arm64_ftr_safe_value(u32 id,const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)1608 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1609 				    s64 new, s64 cur)
1610 {
1611 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1612 
1613 	/* Some features have different safe value type in KVM than host features */
1614 	switch (id) {
1615 	case SYS_ID_AA64DFR0_EL1:
1616 		switch (kvm_ftr.shift) {
1617 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1618 			kvm_ftr.type = FTR_LOWER_SAFE;
1619 			break;
1620 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1621 			kvm_ftr.type = FTR_LOWER_SAFE;
1622 			break;
1623 		}
1624 		break;
1625 	case SYS_ID_DFR0_EL1:
1626 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1627 			kvm_ftr.type = FTR_LOWER_SAFE;
1628 		break;
1629 	}
1630 
1631 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1632 }
1633 
1634 /*
1635  * arm64_check_features() - Check if a feature register value constitutes
1636  * a subset of features indicated by the idreg's KVM sanitised limit.
1637  *
1638  * This function will check if each feature field of @val is the "safe" value
1639  * against idreg's KVM sanitised limit return from reset() callback.
1640  * If a field value in @val is the same as the one in limit, it is always
1641  * considered the safe value regardless For register fields that are not in
1642  * writable, only the value in limit is considered the safe value.
1643  *
1644  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1645  */
arm64_check_features(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1646 static int arm64_check_features(struct kvm_vcpu *vcpu,
1647 				const struct sys_reg_desc *rd,
1648 				u64 val)
1649 {
1650 	const struct arm64_ftr_reg *ftr_reg;
1651 	const struct arm64_ftr_bits *ftrp = NULL;
1652 	u32 id = reg_to_encoding(rd);
1653 	u64 writable_mask = rd->val;
1654 	u64 limit = rd->reset(vcpu, rd);
1655 	u64 mask = 0;
1656 
1657 	/*
1658 	 * Hidden and unallocated ID registers may not have a corresponding
1659 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1660 	 * only safe value is 0.
1661 	 */
1662 	if (sysreg_visible_as_raz(vcpu, rd))
1663 		return val ? -E2BIG : 0;
1664 
1665 	ftr_reg = get_arm64_ftr_reg(id);
1666 	if (!ftr_reg)
1667 		return -EINVAL;
1668 
1669 	ftrp = ftr_reg->ftr_bits;
1670 
1671 	for (; ftrp && ftrp->width; ftrp++) {
1672 		s64 f_val, f_lim, safe_val;
1673 		u64 ftr_mask;
1674 
1675 		ftr_mask = arm64_ftr_mask(ftrp);
1676 		if ((ftr_mask & writable_mask) != ftr_mask)
1677 			continue;
1678 
1679 		f_val = arm64_ftr_value(ftrp, val);
1680 		f_lim = arm64_ftr_value(ftrp, limit);
1681 		mask |= ftr_mask;
1682 
1683 		if (f_val == f_lim)
1684 			safe_val = f_val;
1685 		else
1686 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1687 
1688 		if (safe_val != f_val)
1689 			return -E2BIG;
1690 	}
1691 
1692 	/* For fields that are not writable, values in limit are the safe values. */
1693 	if ((val & ~mask) != (limit & ~mask))
1694 		return -E2BIG;
1695 
1696 	return 0;
1697 }
1698 
pmuver_to_perfmon(u8 pmuver)1699 static u8 pmuver_to_perfmon(u8 pmuver)
1700 {
1701 	switch (pmuver) {
1702 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1703 		return ID_DFR0_EL1_PerfMon_PMUv3;
1704 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1705 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1706 	default:
1707 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1708 		return pmuver;
1709 	}
1710 }
1711 
1712 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1713 static u64 sanitise_id_aa64pfr1_el1(const struct kvm_vcpu *vcpu, u64 val);
1714 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1715 
1716 /* Read a sanitised cpufeature ID register by sys_reg_desc */
__kvm_read_sanitised_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1717 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1718 				       const struct sys_reg_desc *r)
1719 {
1720 	u32 id = reg_to_encoding(r);
1721 	u64 val;
1722 
1723 	if (sysreg_visible_as_raz(vcpu, r))
1724 		return 0;
1725 
1726 	val = read_sanitised_ftr_reg(id);
1727 
1728 	switch (id) {
1729 	case SYS_ID_AA64DFR0_EL1:
1730 		val = sanitise_id_aa64dfr0_el1(vcpu, val);
1731 		break;
1732 	case SYS_ID_AA64PFR0_EL1:
1733 		val = sanitise_id_aa64pfr0_el1(vcpu, val);
1734 		break;
1735 	case SYS_ID_AA64PFR1_EL1:
1736 		val = sanitise_id_aa64pfr1_el1(vcpu, val);
1737 		break;
1738 	case SYS_ID_AA64PFR2_EL1:
1739 		val &= ID_AA64PFR2_EL1_FPMR |
1740 			(kvm_has_mte(vcpu->kvm) ?
1741 			 ID_AA64PFR2_EL1_MTEFAR | ID_AA64PFR2_EL1_MTESTOREONLY :
1742 			 0);
1743 		break;
1744 	case SYS_ID_AA64ISAR1_EL1:
1745 		if (!vcpu_has_ptrauth(vcpu))
1746 			val &= ~(ID_AA64ISAR1_EL1_APA |
1747 				 ID_AA64ISAR1_EL1_API |
1748 				 ID_AA64ISAR1_EL1_GPA |
1749 				 ID_AA64ISAR1_EL1_GPI);
1750 		break;
1751 	case SYS_ID_AA64ISAR2_EL1:
1752 		if (!vcpu_has_ptrauth(vcpu))
1753 			val &= ~(ID_AA64ISAR2_EL1_APA3 |
1754 				 ID_AA64ISAR2_EL1_GPA3);
1755 		if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1756 		    has_broken_cntvoff())
1757 			val &= ~ID_AA64ISAR2_EL1_WFxT;
1758 		break;
1759 	case SYS_ID_AA64ISAR3_EL1:
1760 		val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
1761 		break;
1762 	case SYS_ID_AA64MMFR2_EL1:
1763 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1764 		val &= ~ID_AA64MMFR2_EL1_NV;
1765 		break;
1766 	case SYS_ID_AA64MMFR3_EL1:
1767 		val &= ID_AA64MMFR3_EL1_TCRX |
1768 		       ID_AA64MMFR3_EL1_SCTLRX |
1769 		       ID_AA64MMFR3_EL1_S1POE |
1770 		       ID_AA64MMFR3_EL1_S1PIE;
1771 		break;
1772 	case SYS_ID_MMFR4_EL1:
1773 		val &= ~ID_MMFR4_EL1_CCIDX;
1774 		break;
1775 	}
1776 
1777 	if (vcpu_has_nv(vcpu))
1778 		val = limit_nv_id_reg(vcpu->kvm, id, val);
1779 
1780 	return val;
1781 }
1782 
kvm_read_sanitised_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1783 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1784 				     const struct sys_reg_desc *r)
1785 {
1786 	return __kvm_read_sanitised_id_reg(vcpu, r);
1787 }
1788 
read_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1789 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1790 {
1791 	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1792 }
1793 
is_feature_id_reg(u32 encoding)1794 static bool is_feature_id_reg(u32 encoding)
1795 {
1796 	return (sys_reg_Op0(encoding) == 3 &&
1797 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1798 		sys_reg_CRn(encoding) == 0 &&
1799 		sys_reg_CRm(encoding) <= 7);
1800 }
1801 
1802 /*
1803  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1804  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1805  * registers KVM maintains on a per-VM basis.
1806  *
1807  * Additionally, the implementation ID registers and CTR_EL0 are handled as
1808  * per-VM registers.
1809  */
is_vm_ftr_id_reg(u32 id)1810 static inline bool is_vm_ftr_id_reg(u32 id)
1811 {
1812 	switch (id) {
1813 	case SYS_CTR_EL0:
1814 	case SYS_MIDR_EL1:
1815 	case SYS_REVIDR_EL1:
1816 	case SYS_AIDR_EL1:
1817 		return true;
1818 	default:
1819 		return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1820 			sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1821 			sys_reg_CRm(id) < 8);
1822 
1823 	}
1824 }
1825 
is_vcpu_ftr_id_reg(u32 id)1826 static inline bool is_vcpu_ftr_id_reg(u32 id)
1827 {
1828 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1829 }
1830 
is_aa32_id_reg(u32 id)1831 static inline bool is_aa32_id_reg(u32 id)
1832 {
1833 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1834 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1835 		sys_reg_CRm(id) <= 3);
1836 }
1837 
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1838 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1839 				  const struct sys_reg_desc *r)
1840 {
1841 	u32 id = reg_to_encoding(r);
1842 
1843 	switch (id) {
1844 	case SYS_ID_AA64ZFR0_EL1:
1845 		if (!vcpu_has_sve(vcpu))
1846 			return REG_RAZ;
1847 		break;
1848 	}
1849 
1850 	return 0;
1851 }
1852 
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1853 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1854 				       const struct sys_reg_desc *r)
1855 {
1856 	/*
1857 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1858 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1859 	 * systems.
1860 	 */
1861 	if (!kvm_supports_32bit_el0())
1862 		return REG_RAZ | REG_USER_WI;
1863 
1864 	return id_visibility(vcpu, r);
1865 }
1866 
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1867 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1868 				   const struct sys_reg_desc *r)
1869 {
1870 	return REG_RAZ;
1871 }
1872 
1873 /* cpufeature ID register access trap handlers */
1874 
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1875 static bool access_id_reg(struct kvm_vcpu *vcpu,
1876 			  struct sys_reg_params *p,
1877 			  const struct sys_reg_desc *r)
1878 {
1879 	if (p->is_write)
1880 		return write_to_read_only(vcpu, p, r);
1881 
1882 	p->regval = read_id_reg(vcpu, r);
1883 
1884 	return true;
1885 }
1886 
1887 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1888 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1889 				   const struct sys_reg_desc *rd)
1890 {
1891 	if (vcpu_has_sve(vcpu))
1892 		return 0;
1893 
1894 	return REG_HIDDEN;
1895 }
1896 
sme_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1897 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1898 				   const struct sys_reg_desc *rd)
1899 {
1900 	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1901 		return 0;
1902 
1903 	return REG_HIDDEN;
1904 }
1905 
fp8_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1906 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1907 				   const struct sys_reg_desc *rd)
1908 {
1909 	if (kvm_has_fpmr(vcpu->kvm))
1910 		return 0;
1911 
1912 	return REG_HIDDEN;
1913 }
1914 
sanitise_id_aa64pfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1915 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1916 {
1917 	if (!vcpu_has_sve(vcpu))
1918 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1919 
1920 	/*
1921 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1922 	 * Although this is a per-CPU feature, we make it global because
1923 	 * asymmetric systems are just a nuisance.
1924 	 *
1925 	 * Userspace can override this as long as it doesn't promise
1926 	 * the impossible.
1927 	 */
1928 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1929 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1930 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1931 	}
1932 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1933 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1934 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1935 	}
1936 
1937 	if (vgic_is_v3(vcpu->kvm)) {
1938 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1939 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1940 	}
1941 
1942 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1943 
1944 	/*
1945 	 * MPAM is disabled by default as KVM also needs a set of PARTID to
1946 	 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1947 	 * older kernels let the guest see the ID bit.
1948 	 */
1949 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1950 
1951 	return val;
1952 }
1953 
sanitise_id_aa64pfr1_el1(const struct kvm_vcpu * vcpu,u64 val)1954 static u64 sanitise_id_aa64pfr1_el1(const struct kvm_vcpu *vcpu, u64 val)
1955 {
1956 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1957 
1958 	if (!kvm_has_mte(vcpu->kvm)) {
1959 		val &= ~ID_AA64PFR1_EL1_MTE;
1960 		val &= ~ID_AA64PFR1_EL1_MTE_frac;
1961 	}
1962 
1963 	if (!(cpus_have_final_cap(ARM64_HAS_RASV1P1_EXTN) &&
1964 	      SYS_FIELD_GET(ID_AA64PFR0_EL1, RAS, pfr0) == ID_AA64PFR0_EL1_RAS_IMP))
1965 		val &= ~ID_AA64PFR1_EL1_RAS_frac;
1966 
1967 	val &= ~ID_AA64PFR1_EL1_SME;
1968 	val &= ~ID_AA64PFR1_EL1_RNDR_trap;
1969 	val &= ~ID_AA64PFR1_EL1_NMI;
1970 	val &= ~ID_AA64PFR1_EL1_GCS;
1971 	val &= ~ID_AA64PFR1_EL1_THE;
1972 	val &= ~ID_AA64PFR1_EL1_MTEX;
1973 	val &= ~ID_AA64PFR1_EL1_PFAR;
1974 	val &= ~ID_AA64PFR1_EL1_MPAM_frac;
1975 
1976 	return val;
1977 }
1978 
sanitise_id_aa64dfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1979 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1980 {
1981 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1982 
1983 	/*
1984 	 * Only initialize the PMU version if the vCPU was configured with one.
1985 	 */
1986 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1987 	if (kvm_vcpu_has_pmu(vcpu))
1988 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1989 				      kvm_arm_pmu_get_pmuver_limit());
1990 
1991 	/* Hide SPE from guests */
1992 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1993 
1994 	/* Hide BRBE from guests */
1995 	val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
1996 
1997 	return val;
1998 }
1999 
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2000 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
2001 			       const struct sys_reg_desc *rd,
2002 			       u64 val)
2003 {
2004 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
2005 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
2006 
2007 	/*
2008 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
2009 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
2010 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
2011 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
2012 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
2013 	 *
2014 	 * At minimum, we're on the hook to allow values that were given to
2015 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
2016 	 * with a more sensible NI. The value of an ID register changing under
2017 	 * the nose of the guest is unfortunate, but is certainly no more
2018 	 * surprising than an ill-guided PMU driver poking at impdef system
2019 	 * registers that end in an UNDEF...
2020 	 */
2021 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
2022 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
2023 
2024 	/*
2025 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
2026 	 * nonzero minimum safe value.
2027 	 */
2028 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
2029 		return -EINVAL;
2030 
2031 	return set_id_reg(vcpu, rd, val);
2032 }
2033 
read_sanitised_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2034 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
2035 				      const struct sys_reg_desc *rd)
2036 {
2037 	u8 perfmon;
2038 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
2039 
2040 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
2041 	if (kvm_vcpu_has_pmu(vcpu)) {
2042 		perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
2043 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
2044 	}
2045 
2046 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
2047 
2048 	return val;
2049 }
2050 
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2051 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
2052 			   const struct sys_reg_desc *rd,
2053 			   u64 val)
2054 {
2055 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
2056 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
2057 
2058 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
2059 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
2060 		perfmon = 0;
2061 	}
2062 
2063 	/*
2064 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
2065 	 * it doesn't promise more than what the HW gives us on the
2066 	 * AArch64 side (as everything is emulated with that), and
2067 	 * that this is a PMUv3.
2068 	 */
2069 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
2070 		return -EINVAL;
2071 
2072 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
2073 		return -EINVAL;
2074 
2075 	return set_id_reg(vcpu, rd, val);
2076 }
2077 
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2078 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
2079 			       const struct sys_reg_desc *rd, u64 user_val)
2080 {
2081 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2082 	u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
2083 
2084 	/*
2085 	 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
2086 	 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
2087 	 * guests, but didn't add trap handling. KVM doesn't support MPAM and
2088 	 * always returns an UNDEF for these registers. The guest must see 0
2089 	 * for this field.
2090 	 *
2091 	 * But KVM must also accept values from user-space that were provided
2092 	 * by KVM. On CPUs that support MPAM, permit user-space to write
2093 	 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
2094 	 */
2095 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
2096 		user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
2097 
2098 	/* Fail the guest's request to disable the AA64 ISA at EL{0,1,2} */
2099 	if (!FIELD_GET(ID_AA64PFR0_EL1_EL0, user_val) ||
2100 	    !FIELD_GET(ID_AA64PFR0_EL1_EL1, user_val) ||
2101 	    (vcpu_has_nv(vcpu) && !FIELD_GET(ID_AA64PFR0_EL1_EL2, user_val)))
2102 		return -EINVAL;
2103 
2104 	/*
2105 	 * If we are running on a GICv5 host and support FEAT_GCIE_LEGACY, then
2106 	 * we support GICv3. Fail attempts to do anything but set that to IMP.
2107 	 */
2108 	if (vgic_is_v3_compat(vcpu->kvm) &&
2109 	    FIELD_GET(ID_AA64PFR0_EL1_GIC_MASK, user_val) != ID_AA64PFR0_EL1_GIC_IMP)
2110 		return -EINVAL;
2111 
2112 	return set_id_reg(vcpu, rd, user_val);
2113 }
2114 
set_id_aa64pfr1_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2115 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
2116 			       const struct sys_reg_desc *rd, u64 user_val)
2117 {
2118 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2119 	u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
2120 	u8 mte = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE, hw_val);
2121 	u8 user_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, user_val);
2122 	u8 hw_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, hw_val);
2123 
2124 	/* See set_id_aa64pfr0_el1 for comment about MPAM */
2125 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
2126 		user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
2127 
2128 	/*
2129 	 * Previously MTE_frac was hidden from guest. However, if the
2130 	 * hardware supports MTE2 but not MTE_ASYM_FAULT then a value
2131 	 * of 0 for this field indicates that the hardware supports
2132 	 * MTE_ASYNC. Whereas, 0xf indicates MTE_ASYNC is not supported.
2133 	 *
2134 	 * As KVM must accept values from KVM provided by user-space,
2135 	 * when ID_AA64PFR1_EL1.MTE is 2 allow user-space to set
2136 	 * ID_AA64PFR1_EL1.MTE_frac to 0. However, ignore it to avoid
2137 	 * incorrectly claiming hardware support for MTE_ASYNC in the
2138 	 * guest.
2139 	 */
2140 
2141 	if (mte == ID_AA64PFR1_EL1_MTE_MTE2 &&
2142 	    hw_mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI &&
2143 	    user_mte_frac == ID_AA64PFR1_EL1_MTE_frac_ASYNC) {
2144 		user_val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
2145 		user_val |= hw_val & ID_AA64PFR1_EL1_MTE_frac_MASK;
2146 	}
2147 
2148 	return set_id_reg(vcpu, rd, user_val);
2149 }
2150 
set_id_aa64mmfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2151 static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu,
2152 				const struct sys_reg_desc *rd, u64 user_val)
2153 {
2154 	u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd);
2155 	u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK |
2156 			  ID_AA64MMFR0_EL1_TGRAN16_2_MASK |
2157 			  ID_AA64MMFR0_EL1_TGRAN64_2_MASK;
2158 
2159 	if (vcpu_has_nv(vcpu) &&
2160 	    ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask)))
2161 		return -EINVAL;
2162 
2163 	return set_id_reg(vcpu, rd, user_val);
2164 }
2165 
set_id_aa64mmfr2_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2166 static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu,
2167 				const struct sys_reg_desc *rd, u64 user_val)
2168 {
2169 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2170 	u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK;
2171 
2172 	/*
2173 	 * We made the mistake to expose the now deprecated NV field,
2174 	 * so allow userspace to write it, but silently ignore it.
2175 	 */
2176 	if ((hw_val & nv_mask) == (user_val & nv_mask))
2177 		user_val &= ~nv_mask;
2178 
2179 	return set_id_reg(vcpu, rd, user_val);
2180 }
2181 
set_ctr_el0(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2182 static int set_ctr_el0(struct kvm_vcpu *vcpu,
2183 		       const struct sys_reg_desc *rd, u64 user_val)
2184 {
2185 	u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
2186 
2187 	/*
2188 	 * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
2189 	 * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
2190 	 * on what hardware reports.
2191 	 *
2192 	 * Using a VIPT software model on PIPT will lead to over invalidation,
2193 	 * but still correct. Hence, we can allow downgrading PIPT to VIPT,
2194 	 * but not the other way around. This is handled via arm64_ftr_safe_value()
2195 	 * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
2196 	 * set as VIPT.
2197 	 */
2198 	switch (user_L1Ip) {
2199 	case CTR_EL0_L1Ip_RESERVED_VPIPT:
2200 	case CTR_EL0_L1Ip_RESERVED_AIVIVT:
2201 		return -EINVAL;
2202 	case CTR_EL0_L1Ip_VIPT:
2203 	case CTR_EL0_L1Ip_PIPT:
2204 		return set_id_reg(vcpu, rd, user_val);
2205 	default:
2206 		return -ENOENT;
2207 	}
2208 }
2209 
2210 /*
2211  * cpufeature ID register user accessors
2212  *
2213  * For now, these registers are immutable for userspace, so no values
2214  * are stored, and for set_id_reg() we don't allow the effective value
2215  * to be changed.
2216  */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2217 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2218 		      u64 *val)
2219 {
2220 	/*
2221 	 * Avoid locking if the VM has already started, as the ID registers are
2222 	 * guaranteed to be invariant at that point.
2223 	 */
2224 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2225 		*val = read_id_reg(vcpu, rd);
2226 		return 0;
2227 	}
2228 
2229 	mutex_lock(&vcpu->kvm->arch.config_lock);
2230 	*val = read_id_reg(vcpu, rd);
2231 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2232 
2233 	return 0;
2234 }
2235 
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2236 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2237 		      u64 val)
2238 {
2239 	u32 id = reg_to_encoding(rd);
2240 	int ret;
2241 
2242 	mutex_lock(&vcpu->kvm->arch.config_lock);
2243 
2244 	/*
2245 	 * Once the VM has started the ID registers are immutable. Reject any
2246 	 * write that does not match the final register value.
2247 	 */
2248 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2249 		if (val != read_id_reg(vcpu, rd))
2250 			ret = -EBUSY;
2251 		else
2252 			ret = 0;
2253 
2254 		mutex_unlock(&vcpu->kvm->arch.config_lock);
2255 		return ret;
2256 	}
2257 
2258 	ret = arm64_check_features(vcpu, rd, val);
2259 	if (!ret)
2260 		kvm_set_vm_id_reg(vcpu->kvm, id, val);
2261 
2262 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2263 
2264 	/*
2265 	 * arm64_check_features() returns -E2BIG to indicate the register's
2266 	 * feature set is a superset of the maximally-allowed register value.
2267 	 * While it would be nice to precisely describe this to userspace, the
2268 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2269 	 * writes return -EINVAL.
2270 	 */
2271 	if (ret == -E2BIG)
2272 		ret = -EINVAL;
2273 	return ret;
2274 }
2275 
kvm_set_vm_id_reg(struct kvm * kvm,u32 reg,u64 val)2276 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2277 {
2278 	u64 *p = __vm_id_reg(&kvm->arch, reg);
2279 
2280 	lockdep_assert_held(&kvm->arch.config_lock);
2281 
2282 	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2283 		return;
2284 
2285 	*p = val;
2286 }
2287 
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2288 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2289 		       u64 *val)
2290 {
2291 	*val = 0;
2292 	return 0;
2293 }
2294 
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2295 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2296 		      u64 val)
2297 {
2298 	return 0;
2299 }
2300 
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2301 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2302 		       const struct sys_reg_desc *r)
2303 {
2304 	if (p->is_write)
2305 		return write_to_read_only(vcpu, p, r);
2306 
2307 	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2308 	return true;
2309 }
2310 
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2311 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2312 			 const struct sys_reg_desc *r)
2313 {
2314 	if (p->is_write)
2315 		return write_to_read_only(vcpu, p, r);
2316 
2317 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
2318 	return true;
2319 }
2320 
2321 /*
2322  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2323  * by the physical CPU which the vcpu currently resides in.
2324  */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2325 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2326 {
2327 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2328 	u64 clidr;
2329 	u8 loc;
2330 
2331 	if ((ctr_el0 & CTR_EL0_IDC)) {
2332 		/*
2333 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
2334 		 * will not be set and a unified cache, which will be marked as
2335 		 * LoC, will be added.
2336 		 *
2337 		 * If not DIC, let the unified cache L2 so that an instruction
2338 		 * cache can be added as L1 later.
2339 		 */
2340 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2341 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2342 	} else {
2343 		/*
2344 		 * Data cache clean to the PoU is required so let L1 have a data
2345 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2346 		 * it can be marked as LoC too.
2347 		 */
2348 		loc = 1;
2349 		clidr = 1 << CLIDR_LOUU_SHIFT;
2350 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
2351 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2352 	}
2353 
2354 	/*
2355 	 * Instruction cache invalidation to the PoU is required so let L1 have
2356 	 * an instruction cache. If L1 already has a data cache, it will be
2357 	 * CACHE_TYPE_SEPARATE.
2358 	 */
2359 	if (!(ctr_el0 & CTR_EL0_DIC))
2360 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2361 
2362 	clidr |= loc << CLIDR_LOC_SHIFT;
2363 
2364 	/*
2365 	 * Add tag cache unified to data cache. Allocation tags and data are
2366 	 * unified in a cache line so that it looks valid even if there is only
2367 	 * one cache line.
2368 	 */
2369 	if (kvm_has_mte(vcpu->kvm))
2370 		clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2371 
2372 	__vcpu_assign_sys_reg(vcpu, r->reg, clidr);
2373 
2374 	return __vcpu_sys_reg(vcpu, r->reg);
2375 }
2376 
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2377 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2378 		      u64 val)
2379 {
2380 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2381 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2382 
2383 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2384 		return -EINVAL;
2385 
2386 	__vcpu_assign_sys_reg(vcpu, rd->reg, val);
2387 
2388 	return 0;
2389 }
2390 
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2391 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2392 			  const struct sys_reg_desc *r)
2393 {
2394 	int reg = r->reg;
2395 
2396 	if (p->is_write)
2397 		vcpu_write_sys_reg(vcpu, p->regval, reg);
2398 	else
2399 		p->regval = vcpu_read_sys_reg(vcpu, reg);
2400 	return true;
2401 }
2402 
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2403 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2404 			  const struct sys_reg_desc *r)
2405 {
2406 	u32 csselr;
2407 
2408 	if (p->is_write)
2409 		return write_to_read_only(vcpu, p, r);
2410 
2411 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2412 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2413 	if (csselr < CSSELR_MAX)
2414 		p->regval = get_ccsidr(vcpu, csselr);
2415 
2416 	return true;
2417 }
2418 
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2419 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2420 				   const struct sys_reg_desc *rd)
2421 {
2422 	if (kvm_has_mte(vcpu->kvm))
2423 		return 0;
2424 
2425 	return REG_HIDDEN;
2426 }
2427 
2428 #define MTE_REG(name) {				\
2429 	SYS_DESC(SYS_##name),			\
2430 	.access = undef_access,			\
2431 	.reset = reset_unknown,			\
2432 	.reg = name,				\
2433 	.visibility = mte_visibility,		\
2434 }
2435 
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2436 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2437 				   const struct sys_reg_desc *rd)
2438 {
2439 	if (vcpu_has_nv(vcpu))
2440 		return 0;
2441 
2442 	return REG_HIDDEN;
2443 }
2444 
bad_vncr_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2445 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2446 			  struct sys_reg_params *p,
2447 			  const struct sys_reg_desc *r)
2448 {
2449 	/*
2450 	 * We really shouldn't be here, and this is likely the result
2451 	 * of a misconfigured trap, as this register should target the
2452 	 * VNCR page, and nothing else.
2453 	 */
2454 	return bad_trap(vcpu, p, r,
2455 			"trap of VNCR-backed register");
2456 }
2457 
bad_redir_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2458 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2459 			   struct sys_reg_params *p,
2460 			   const struct sys_reg_desc *r)
2461 {
2462 	/*
2463 	 * We really shouldn't be here, and this is likely the result
2464 	 * of a misconfigured trap, as this register should target the
2465 	 * corresponding EL1, and nothing else.
2466 	 */
2467 	return bad_trap(vcpu, p, r,
2468 			"trap of EL2 register redirected to EL1");
2469 }
2470 
2471 #define EL2_REG_FILTERED(name, acc, rst, v, filter) {	\
2472 	SYS_DESC(SYS_##name),			\
2473 	.access = acc,				\
2474 	.reset = rst,				\
2475 	.reg = name,				\
2476 	.visibility = filter,			\
2477 	.val = v,				\
2478 }
2479 
2480 #define EL2_REG(name, acc, rst, v)			\
2481 	EL2_REG_FILTERED(name, acc, rst, v, el2_visibility)
2482 
2483 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2484 #define EL2_REG_VNCR_FILT(name, vis)			\
2485 	EL2_REG_FILTERED(name, bad_vncr_trap, reset_val, 0, vis)
2486 #define EL2_REG_VNCR_GICv3(name)			\
2487 	EL2_REG_VNCR_FILT(name, hidden_visibility)
2488 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2489 
2490 /*
2491  * Since reset() callback and field val are not used for idregs, they will be
2492  * used for specific purposes for idregs.
2493  * The reset() would return KVM sanitised register value. The value would be the
2494  * same as the host kernel sanitised value if there is no KVM sanitisation.
2495  * The val would be used as a mask indicating writable fields for the idreg.
2496  * Only bits with 1 are writable from userspace. This mask might not be
2497  * necessary in the future whenever all ID registers are enabled as writable
2498  * from userspace.
2499  */
2500 
2501 #define ID_DESC_DEFAULT_CALLBACKS		\
2502 	.access	= access_id_reg,		\
2503 	.get_user = get_id_reg,			\
2504 	.set_user = set_id_reg,			\
2505 	.visibility = id_visibility,		\
2506 	.reset = kvm_read_sanitised_id_reg
2507 
2508 #define ID_DESC(name)				\
2509 	SYS_DESC(SYS_##name),			\
2510 	ID_DESC_DEFAULT_CALLBACKS
2511 
2512 /* sys_reg_desc initialiser for known cpufeature ID registers */
2513 #define ID_SANITISED(name) {			\
2514 	ID_DESC(name),				\
2515 	.val = 0,				\
2516 }
2517 
2518 /* sys_reg_desc initialiser for known cpufeature ID registers */
2519 #define AA32_ID_SANITISED(name) {		\
2520 	ID_DESC(name),				\
2521 	.visibility = aa32_id_visibility,	\
2522 	.val = 0,				\
2523 }
2524 
2525 /* sys_reg_desc initialiser for writable ID registers */
2526 #define ID_WRITABLE(name, mask) {		\
2527 	ID_DESC(name),				\
2528 	.val = mask,				\
2529 }
2530 
2531 /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2532 #define ID_FILTERED(sysreg, name, mask) {	\
2533 	ID_DESC(sysreg),				\
2534 	.set_user = set_##name,				\
2535 	.val = (mask),					\
2536 }
2537 
2538 /*
2539  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2540  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2541  * (1 <= crm < 8, 0 <= Op2 < 8).
2542  */
2543 #define ID_UNALLOCATED(crm, op2) {			\
2544 	.name = "S3_0_0_" #crm "_" #op2,		\
2545 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2546 	ID_DESC_DEFAULT_CALLBACKS,			\
2547 	.visibility = raz_visibility,			\
2548 	.val = 0,					\
2549 }
2550 
2551 /*
2552  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2553  * For now, these are exposed just like unallocated ID regs: they appear
2554  * RAZ for the guest.
2555  */
2556 #define ID_HIDDEN(name) {			\
2557 	ID_DESC(name),				\
2558 	.visibility = raz_visibility,		\
2559 	.val = 0,				\
2560 }
2561 
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2562 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2563 			  struct sys_reg_params *p,
2564 			  const struct sys_reg_desc *r)
2565 {
2566 	if (p->is_write)
2567 		__vcpu_assign_sys_reg(vcpu, SP_EL1, p->regval);
2568 	else
2569 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2570 
2571 	return true;
2572 }
2573 
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2574 static bool access_elr(struct kvm_vcpu *vcpu,
2575 		       struct sys_reg_params *p,
2576 		       const struct sys_reg_desc *r)
2577 {
2578 	if (p->is_write)
2579 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2580 	else
2581 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2582 
2583 	return true;
2584 }
2585 
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2586 static bool access_spsr(struct kvm_vcpu *vcpu,
2587 			struct sys_reg_params *p,
2588 			const struct sys_reg_desc *r)
2589 {
2590 	if (p->is_write)
2591 		__vcpu_assign_sys_reg(vcpu, SPSR_EL1, p->regval);
2592 	else
2593 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2594 
2595 	return true;
2596 }
2597 
access_cntkctl_el12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2598 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2599 				struct sys_reg_params *p,
2600 				const struct sys_reg_desc *r)
2601 {
2602 	if (p->is_write)
2603 		__vcpu_assign_sys_reg(vcpu, CNTKCTL_EL1, p->regval);
2604 	else
2605 		p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2606 
2607 	return true;
2608 }
2609 
reset_hcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2610 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2611 {
2612 	u64 val = r->val;
2613 
2614 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2615 		val |= HCR_E2H;
2616 
2617 	__vcpu_assign_sys_reg(vcpu, r->reg, val);
2618 
2619 	return __vcpu_sys_reg(vcpu, r->reg);
2620 }
2621 
__el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,unsigned int (* fn)(const struct kvm_vcpu *,const struct sys_reg_desc *))2622 static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2623 				     const struct sys_reg_desc *rd,
2624 				     unsigned int (*fn)(const struct kvm_vcpu *,
2625 							const struct sys_reg_desc *))
2626 {
2627 	return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2628 }
2629 
sve_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2630 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2631 				       const struct sys_reg_desc *rd)
2632 {
2633 	return __el2_visibility(vcpu, rd, sve_visibility);
2634 }
2635 
vncr_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2636 static unsigned int vncr_el2_visibility(const struct kvm_vcpu *vcpu,
2637 					const struct sys_reg_desc *rd)
2638 {
2639 	if (el2_visibility(vcpu, rd) == 0 &&
2640 	    kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
2641 		return 0;
2642 
2643 	return REG_HIDDEN;
2644 }
2645 
sctlr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2646 static unsigned int sctlr2_visibility(const struct kvm_vcpu *vcpu,
2647 				      const struct sys_reg_desc *rd)
2648 {
2649 	if (kvm_has_sctlr2(vcpu->kvm))
2650 		return 0;
2651 
2652 	return REG_HIDDEN;
2653 }
2654 
sctlr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2655 static unsigned int sctlr2_el2_visibility(const struct kvm_vcpu *vcpu,
2656 					  const struct sys_reg_desc *rd)
2657 {
2658 	return __el2_visibility(vcpu, rd, sctlr2_visibility);
2659 }
2660 
access_zcr_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2661 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2662 			   struct sys_reg_params *p,
2663 			   const struct sys_reg_desc *r)
2664 {
2665 	unsigned int vq;
2666 
2667 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2668 		kvm_inject_nested_sve_trap(vcpu);
2669 		return true;
2670 	}
2671 
2672 	if (!p->is_write) {
2673 		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2674 		return true;
2675 	}
2676 
2677 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2678 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2679 	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2680 
2681 	return true;
2682 }
2683 
access_gic_vtr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2684 static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2685 			   struct sys_reg_params *p,
2686 			   const struct sys_reg_desc *r)
2687 {
2688 	if (p->is_write)
2689 		return write_to_read_only(vcpu, p, r);
2690 
2691 	p->regval = kvm_get_guest_vtr_el2();
2692 
2693 	return true;
2694 }
2695 
access_gic_misr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2696 static bool access_gic_misr(struct kvm_vcpu *vcpu,
2697 			    struct sys_reg_params *p,
2698 			    const struct sys_reg_desc *r)
2699 {
2700 	if (p->is_write)
2701 		return write_to_read_only(vcpu, p, r);
2702 
2703 	p->regval = vgic_v3_get_misr(vcpu);
2704 
2705 	return true;
2706 }
2707 
access_gic_eisr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2708 static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2709 			    struct sys_reg_params *p,
2710 			    const struct sys_reg_desc *r)
2711 {
2712 	if (p->is_write)
2713 		return write_to_read_only(vcpu, p, r);
2714 
2715 	p->regval = vgic_v3_get_eisr(vcpu);
2716 
2717 	return true;
2718 }
2719 
access_gic_elrsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2720 static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2721 			     struct sys_reg_params *p,
2722 			     const struct sys_reg_desc *r)
2723 {
2724 	if (p->is_write)
2725 		return write_to_read_only(vcpu, p, r);
2726 
2727 	p->regval = vgic_v3_get_elrsr(vcpu);
2728 
2729 	return true;
2730 }
2731 
s1poe_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2732 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2733 				     const struct sys_reg_desc *rd)
2734 {
2735 	if (kvm_has_s1poe(vcpu->kvm))
2736 		return 0;
2737 
2738 	return REG_HIDDEN;
2739 }
2740 
s1poe_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2741 static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2742 					 const struct sys_reg_desc *rd)
2743 {
2744 	return __el2_visibility(vcpu, rd, s1poe_visibility);
2745 }
2746 
tcr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2747 static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2748 				    const struct sys_reg_desc *rd)
2749 {
2750 	if (kvm_has_tcr2(vcpu->kvm))
2751 		return 0;
2752 
2753 	return REG_HIDDEN;
2754 }
2755 
tcr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2756 static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2757 				    const struct sys_reg_desc *rd)
2758 {
2759 	return __el2_visibility(vcpu, rd, tcr2_visibility);
2760 }
2761 
fgt2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2762 static unsigned int fgt2_visibility(const struct kvm_vcpu *vcpu,
2763 				    const struct sys_reg_desc *rd)
2764 {
2765 	if (el2_visibility(vcpu, rd) == 0 &&
2766 	    kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, FGT, FGT2))
2767 		return 0;
2768 
2769 	return REG_HIDDEN;
2770 }
2771 
fgt_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2772 static unsigned int fgt_visibility(const struct kvm_vcpu *vcpu,
2773 				   const struct sys_reg_desc *rd)
2774 {
2775 	if (el2_visibility(vcpu, rd) == 0 &&
2776 	    kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, FGT, IMP))
2777 		return 0;
2778 
2779 	return REG_HIDDEN;
2780 }
2781 
s1pie_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2782 static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2783 				     const struct sys_reg_desc *rd)
2784 {
2785 	if (kvm_has_s1pie(vcpu->kvm))
2786 		return 0;
2787 
2788 	return REG_HIDDEN;
2789 }
2790 
s1pie_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2791 static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2792 					 const struct sys_reg_desc *rd)
2793 {
2794 	return __el2_visibility(vcpu, rd, s1pie_visibility);
2795 }
2796 
access_mdcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2797 static bool access_mdcr(struct kvm_vcpu *vcpu,
2798 			struct sys_reg_params *p,
2799 			const struct sys_reg_desc *r)
2800 {
2801 	u64 hpmn, val, old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2802 
2803 	if (!p->is_write) {
2804 		p->regval = old;
2805 		return true;
2806 	}
2807 
2808 	val = p->regval;
2809 	hpmn = FIELD_GET(MDCR_EL2_HPMN, val);
2810 
2811 	/*
2812 	 * If HPMN is out of bounds, limit it to what we actually
2813 	 * support. This matches the UNKNOWN definition of the field
2814 	 * in that case, and keeps the emulation simple. Sort of.
2815 	 */
2816 	if (hpmn > vcpu->kvm->arch.nr_pmu_counters) {
2817 		hpmn = vcpu->kvm->arch.nr_pmu_counters;
2818 		u64p_replace_bits(&val, hpmn, MDCR_EL2_HPMN);
2819 	}
2820 
2821 	__vcpu_assign_sys_reg(vcpu, MDCR_EL2, val);
2822 
2823 	/*
2824 	 * Request a reload of the PMU to enable/disable the counters
2825 	 * affected by HPME.
2826 	 */
2827 	if ((old ^ val) & MDCR_EL2_HPME)
2828 		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2829 
2830 	return true;
2831 }
2832 
access_ras(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2833 static bool access_ras(struct kvm_vcpu *vcpu,
2834 		       struct sys_reg_params *p,
2835 		       const struct sys_reg_desc *r)
2836 {
2837 	struct kvm *kvm = vcpu->kvm;
2838 
2839 	switch(reg_to_encoding(r)) {
2840 	case SYS_ERXPFGCDN_EL1:
2841 	case SYS_ERXPFGCTL_EL1:
2842 	case SYS_ERXPFGF_EL1:
2843 	case SYS_ERXMISC2_EL1:
2844 	case SYS_ERXMISC3_EL1:
2845 		if (!(kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1) ||
2846 		      (kvm_has_feat_enum(kvm, ID_AA64PFR0_EL1, RAS, IMP) &&
2847 		       kvm_has_feat(kvm, ID_AA64PFR1_EL1, RAS_frac, RASv1p1)))) {
2848 			kvm_inject_undefined(vcpu);
2849 			return false;
2850 		}
2851 		break;
2852 	default:
2853 		if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) {
2854 			kvm_inject_undefined(vcpu);
2855 			return false;
2856 		}
2857 	}
2858 
2859 	return trap_raz_wi(vcpu, p, r);
2860 }
2861 
2862 /*
2863  * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and
2864  * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them.
2865  * The values made visible to userspace were the register values of the boot
2866  * CPU.
2867  *
2868  * At the same time, reads from these registers at EL1 previously were not
2869  * trapped, allowing the guest to read the actual hardware value. On big-little
2870  * machines, this means the VM can see different values depending on where a
2871  * given vCPU got scheduled.
2872  *
2873  * These registers are now trapped as collateral damage from SME, and what
2874  * follows attempts to give a user / guest view consistent with the existing
2875  * ABI.
2876  */
access_imp_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2877 static bool access_imp_id_reg(struct kvm_vcpu *vcpu,
2878 			      struct sys_reg_params *p,
2879 			      const struct sys_reg_desc *r)
2880 {
2881 	if (p->is_write)
2882 		return write_to_read_only(vcpu, p, r);
2883 
2884 	/*
2885 	 * Return the VM-scoped implementation ID register values if userspace
2886 	 * has made them writable.
2887 	 */
2888 	if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags))
2889 		return access_id_reg(vcpu, p, r);
2890 
2891 	/*
2892 	 * Otherwise, fall back to the old behavior of returning the value of
2893 	 * the current CPU.
2894 	 */
2895 	switch (reg_to_encoding(r)) {
2896 	case SYS_REVIDR_EL1:
2897 		p->regval = read_sysreg(revidr_el1);
2898 		break;
2899 	case SYS_AIDR_EL1:
2900 		p->regval = read_sysreg(aidr_el1);
2901 		break;
2902 	default:
2903 		WARN_ON_ONCE(1);
2904 	}
2905 
2906 	return true;
2907 }
2908 
2909 static u64 __ro_after_init boot_cpu_midr_val;
2910 static u64 __ro_after_init boot_cpu_revidr_val;
2911 static u64 __ro_after_init boot_cpu_aidr_val;
2912 
init_imp_id_regs(void)2913 static void init_imp_id_regs(void)
2914 {
2915 	boot_cpu_midr_val = read_sysreg(midr_el1);
2916 	boot_cpu_revidr_val = read_sysreg(revidr_el1);
2917 	boot_cpu_aidr_val = read_sysreg(aidr_el1);
2918 }
2919 
reset_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2920 static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2921 {
2922 	switch (reg_to_encoding(r)) {
2923 	case SYS_MIDR_EL1:
2924 		return boot_cpu_midr_val;
2925 	case SYS_REVIDR_EL1:
2926 		return boot_cpu_revidr_val;
2927 	case SYS_AIDR_EL1:
2928 		return boot_cpu_aidr_val;
2929 	default:
2930 		KVM_BUG_ON(1, vcpu->kvm);
2931 		return 0;
2932 	}
2933 }
2934 
set_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)2935 static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
2936 			  u64 val)
2937 {
2938 	struct kvm *kvm = vcpu->kvm;
2939 	u64 expected;
2940 
2941 	guard(mutex)(&kvm->arch.config_lock);
2942 
2943 	expected = read_id_reg(vcpu, r);
2944 	if (expected == val)
2945 		return 0;
2946 
2947 	if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags))
2948 		return -EINVAL;
2949 
2950 	/*
2951 	 * Once the VM has started the ID registers are immutable. Reject the
2952 	 * write if userspace tries to change it.
2953 	 */
2954 	if (kvm_vm_has_ran_once(kvm))
2955 		return -EBUSY;
2956 
2957 	/*
2958 	 * Any value is allowed for the implementation ID registers so long as
2959 	 * it is within the writable mask.
2960 	 */
2961 	if ((val & r->val) != val)
2962 		return -EINVAL;
2963 
2964 	kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val);
2965 	return 0;
2966 }
2967 
2968 #define IMPLEMENTATION_ID(reg, mask) {			\
2969 	SYS_DESC(SYS_##reg),				\
2970 	.access = access_imp_id_reg,			\
2971 	.get_user = get_id_reg,				\
2972 	.set_user = set_imp_id_reg,			\
2973 	.reset = reset_imp_id_reg,			\
2974 	.val = mask,					\
2975 	}
2976 
reset_mdcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2977 static u64 reset_mdcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2978 {
2979 	__vcpu_assign_sys_reg(vcpu, r->reg, vcpu->kvm->arch.nr_pmu_counters);
2980 	return vcpu->kvm->arch.nr_pmu_counters;
2981 }
2982 
2983 /*
2984  * Architected system registers.
2985  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2986  *
2987  * Debug handling: We do trap most, if not all debug related system
2988  * registers. The implementation is good enough to ensure that a guest
2989  * can use these with minimal performance degradation. The drawback is
2990  * that we don't implement any of the external debug architecture.
2991  * This should be revisited if we ever encounter a more demanding
2992  * guest...
2993  */
2994 static const struct sys_reg_desc sys_reg_descs[] = {
2995 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2996 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2997 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2998 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2999 	DBG_BCR_BVR_WCR_WVR_EL1(2),
3000 	DBG_BCR_BVR_WCR_WVR_EL1(3),
3001 	DBG_BCR_BVR_WCR_WVR_EL1(4),
3002 	DBG_BCR_BVR_WCR_WVR_EL1(5),
3003 	DBG_BCR_BVR_WCR_WVR_EL1(6),
3004 	DBG_BCR_BVR_WCR_WVR_EL1(7),
3005 	DBG_BCR_BVR_WCR_WVR_EL1(8),
3006 	DBG_BCR_BVR_WCR_WVR_EL1(9),
3007 	DBG_BCR_BVR_WCR_WVR_EL1(10),
3008 	DBG_BCR_BVR_WCR_WVR_EL1(11),
3009 	DBG_BCR_BVR_WCR_WVR_EL1(12),
3010 	DBG_BCR_BVR_WCR_WVR_EL1(13),
3011 	DBG_BCR_BVR_WCR_WVR_EL1(14),
3012 	DBG_BCR_BVR_WCR_WVR_EL1(15),
3013 
3014 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
3015 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
3016 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
3017 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
3018 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
3019 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
3020 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
3021 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
3022 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
3023 
3024 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
3025 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
3026 	// DBGDTR[TR]X_EL0 share the same encoding
3027 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
3028 
3029 	{ SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
3030 
3031 	IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)),
3032 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
3033 	IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)),
3034 
3035 	/*
3036 	 * ID regs: all ID_SANITISED() entries here must have corresponding
3037 	 * entries in arm64_ftr_regs[].
3038 	 */
3039 
3040 	/* AArch64 mappings of the AArch32 ID registers */
3041 	/* CRm=1 */
3042 	AA32_ID_SANITISED(ID_PFR0_EL1),
3043 	AA32_ID_SANITISED(ID_PFR1_EL1),
3044 	{ SYS_DESC(SYS_ID_DFR0_EL1),
3045 	  .access = access_id_reg,
3046 	  .get_user = get_id_reg,
3047 	  .set_user = set_id_dfr0_el1,
3048 	  .visibility = aa32_id_visibility,
3049 	  .reset = read_sanitised_id_dfr0_el1,
3050 	  .val = ID_DFR0_EL1_PerfMon_MASK |
3051 		 ID_DFR0_EL1_CopDbg_MASK, },
3052 	ID_HIDDEN(ID_AFR0_EL1),
3053 	AA32_ID_SANITISED(ID_MMFR0_EL1),
3054 	AA32_ID_SANITISED(ID_MMFR1_EL1),
3055 	AA32_ID_SANITISED(ID_MMFR2_EL1),
3056 	AA32_ID_SANITISED(ID_MMFR3_EL1),
3057 
3058 	/* CRm=2 */
3059 	AA32_ID_SANITISED(ID_ISAR0_EL1),
3060 	AA32_ID_SANITISED(ID_ISAR1_EL1),
3061 	AA32_ID_SANITISED(ID_ISAR2_EL1),
3062 	AA32_ID_SANITISED(ID_ISAR3_EL1),
3063 	AA32_ID_SANITISED(ID_ISAR4_EL1),
3064 	AA32_ID_SANITISED(ID_ISAR5_EL1),
3065 	AA32_ID_SANITISED(ID_MMFR4_EL1),
3066 	AA32_ID_SANITISED(ID_ISAR6_EL1),
3067 
3068 	/* CRm=3 */
3069 	AA32_ID_SANITISED(MVFR0_EL1),
3070 	AA32_ID_SANITISED(MVFR1_EL1),
3071 	AA32_ID_SANITISED(MVFR2_EL1),
3072 	ID_UNALLOCATED(3,3),
3073 	AA32_ID_SANITISED(ID_PFR2_EL1),
3074 	ID_HIDDEN(ID_DFR1_EL1),
3075 	AA32_ID_SANITISED(ID_MMFR5_EL1),
3076 	ID_UNALLOCATED(3,7),
3077 
3078 	/* AArch64 ID registers */
3079 	/* CRm=4 */
3080 	ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
3081 		    ~(ID_AA64PFR0_EL1_AMU |
3082 		      ID_AA64PFR0_EL1_MPAM |
3083 		      ID_AA64PFR0_EL1_SVE |
3084 		      ID_AA64PFR0_EL1_AdvSIMD |
3085 		      ID_AA64PFR0_EL1_FP)),
3086 	ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
3087 				     ~(ID_AA64PFR1_EL1_PFAR |
3088 				       ID_AA64PFR1_EL1_MTEX |
3089 				       ID_AA64PFR1_EL1_THE |
3090 				       ID_AA64PFR1_EL1_GCS |
3091 				       ID_AA64PFR1_EL1_MTE_frac |
3092 				       ID_AA64PFR1_EL1_NMI |
3093 				       ID_AA64PFR1_EL1_RNDR_trap |
3094 				       ID_AA64PFR1_EL1_SME |
3095 				       ID_AA64PFR1_EL1_RES0 |
3096 				       ID_AA64PFR1_EL1_MPAM_frac |
3097 				       ID_AA64PFR1_EL1_MTE)),
3098 	ID_WRITABLE(ID_AA64PFR2_EL1,
3099 		    ID_AA64PFR2_EL1_FPMR |
3100 		    ID_AA64PFR2_EL1_MTEFAR |
3101 		    ID_AA64PFR2_EL1_MTESTOREONLY),
3102 	ID_UNALLOCATED(4,3),
3103 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
3104 	ID_HIDDEN(ID_AA64SMFR0_EL1),
3105 	ID_UNALLOCATED(4,6),
3106 	ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
3107 
3108 	/* CRm=5 */
3109 	/*
3110 	 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
3111 	 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
3112 	 * KVM does not trap + emulate the breakpoint registers, and as such
3113 	 * cannot support a layout that misaligns with the underlying hardware.
3114 	 * While it may be possible to describe a subset that aligns with
3115 	 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
3116 	 * simplicity.
3117 	 *
3118 	 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
3119 	 * of breakpoints for more details.
3120 	 */
3121 	ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
3122 		    ID_AA64DFR0_EL1_DoubleLock_MASK |
3123 		    ID_AA64DFR0_EL1_WRPs_MASK |
3124 		    ID_AA64DFR0_EL1_PMUVer_MASK |
3125 		    ID_AA64DFR0_EL1_DebugVer_MASK),
3126 	ID_SANITISED(ID_AA64DFR1_EL1),
3127 	ID_UNALLOCATED(5,2),
3128 	ID_UNALLOCATED(5,3),
3129 	ID_HIDDEN(ID_AA64AFR0_EL1),
3130 	ID_HIDDEN(ID_AA64AFR1_EL1),
3131 	ID_UNALLOCATED(5,6),
3132 	ID_UNALLOCATED(5,7),
3133 
3134 	/* CRm=6 */
3135 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
3136 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
3137 					ID_AA64ISAR1_EL1_GPA |
3138 					ID_AA64ISAR1_EL1_API |
3139 					ID_AA64ISAR1_EL1_APA)),
3140 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
3141 					ID_AA64ISAR2_EL1_APA3 |
3142 					ID_AA64ISAR2_EL1_GPA3)),
3143 	ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
3144 				       ID_AA64ISAR3_EL1_FAMINMAX)),
3145 	ID_UNALLOCATED(6,4),
3146 	ID_UNALLOCATED(6,5),
3147 	ID_UNALLOCATED(6,6),
3148 	ID_UNALLOCATED(6,7),
3149 
3150 	/* CRm=7 */
3151 	ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1,
3152 				      ~(ID_AA64MMFR0_EL1_RES0 |
3153 					ID_AA64MMFR0_EL1_ASIDBITS)),
3154 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
3155 					ID_AA64MMFR1_EL1_HCX |
3156 					ID_AA64MMFR1_EL1_TWED |
3157 					ID_AA64MMFR1_EL1_XNX |
3158 					ID_AA64MMFR1_EL1_VH |
3159 					ID_AA64MMFR1_EL1_VMIDBits)),
3160 	ID_FILTERED(ID_AA64MMFR2_EL1,
3161 		    id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 |
3162 					ID_AA64MMFR2_EL1_EVT |
3163 					ID_AA64MMFR2_EL1_FWB |
3164 					ID_AA64MMFR2_EL1_IDS |
3165 					ID_AA64MMFR2_EL1_NV |
3166 					ID_AA64MMFR2_EL1_CCIDX)),
3167 	ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX	|
3168 				       ID_AA64MMFR3_EL1_SCTLRX	|
3169 				       ID_AA64MMFR3_EL1_S1PIE   |
3170 				       ID_AA64MMFR3_EL1_S1POE)),
3171 	ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac),
3172 	ID_UNALLOCATED(7,5),
3173 	ID_UNALLOCATED(7,6),
3174 	ID_UNALLOCATED(7,7),
3175 
3176 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
3177 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
3178 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
3179 	{ SYS_DESC(SYS_SCTLR2_EL1), access_vm_reg, reset_val, SCTLR2_EL1, 0,
3180 	  .visibility = sctlr2_visibility },
3181 
3182 	MTE_REG(RGSR_EL1),
3183 	MTE_REG(GCR_EL1),
3184 
3185 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
3186 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
3187 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
3188 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
3189 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
3190 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
3191 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
3192 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
3193 	  .visibility = tcr2_visibility },
3194 
3195 	PTRAUTH_KEY(APIA),
3196 	PTRAUTH_KEY(APIB),
3197 	PTRAUTH_KEY(APDA),
3198 	PTRAUTH_KEY(APDB),
3199 	PTRAUTH_KEY(APGA),
3200 
3201 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
3202 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
3203 
3204 	{ SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
3205 
3206 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
3207 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
3208 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
3209 
3210 	{ SYS_DESC(SYS_ERRIDR_EL1), access_ras },
3211 	{ SYS_DESC(SYS_ERRSELR_EL1), access_ras },
3212 	{ SYS_DESC(SYS_ERXFR_EL1), access_ras },
3213 	{ SYS_DESC(SYS_ERXCTLR_EL1), access_ras },
3214 	{ SYS_DESC(SYS_ERXSTATUS_EL1), access_ras },
3215 	{ SYS_DESC(SYS_ERXADDR_EL1), access_ras },
3216 	{ SYS_DESC(SYS_ERXPFGF_EL1), access_ras },
3217 	{ SYS_DESC(SYS_ERXPFGCTL_EL1), access_ras },
3218 	{ SYS_DESC(SYS_ERXPFGCDN_EL1), access_ras },
3219 	{ SYS_DESC(SYS_ERXMISC0_EL1), access_ras },
3220 	{ SYS_DESC(SYS_ERXMISC1_EL1), access_ras },
3221 	{ SYS_DESC(SYS_ERXMISC2_EL1), access_ras },
3222 	{ SYS_DESC(SYS_ERXMISC3_EL1), access_ras },
3223 
3224 	MTE_REG(TFSR_EL1),
3225 	MTE_REG(TFSRE0_EL1),
3226 
3227 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
3228 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
3229 
3230 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
3231 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
3232 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
3233 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
3234 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
3235 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
3236 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
3237 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
3238 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
3239 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
3240 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
3241 	/* PMBIDR_EL1 is not trapped */
3242 
3243 	{ PMU_SYS_REG(PMINTENSET_EL1),
3244 	  .access = access_pminten, .reg = PMINTENSET_EL1,
3245 	  .get_user = get_pmreg, .set_user = set_pmreg },
3246 	{ PMU_SYS_REG(PMINTENCLR_EL1),
3247 	  .access = access_pminten, .reg = PMINTENSET_EL1,
3248 	  .get_user = get_pmreg, .set_user = set_pmreg },
3249 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
3250 
3251 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
3252 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
3253 	  .visibility = s1pie_visibility },
3254 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
3255 	  .visibility = s1pie_visibility },
3256 	{ SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
3257 	  .visibility = s1poe_visibility },
3258 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
3259 
3260 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
3261 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
3262 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
3263 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
3264 	{ SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
3265 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
3266 
3267 	{ SYS_DESC(SYS_MPAM1_EL1), undef_access },
3268 	{ SYS_DESC(SYS_MPAM0_EL1), undef_access },
3269 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
3270 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
3271 
3272 	{ SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
3273 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
3274 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
3275 	{ SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
3276 	{ SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
3277 	{ SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
3278 	{ SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
3279 	{ SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
3280 	{ SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
3281 	{ SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
3282 	{ SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
3283 	{ SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
3284 	{ SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
3285 	{ SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
3286 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
3287 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
3288 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
3289 	{ SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3290 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3291 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3292 	{ SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3293 	{ SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3294 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3295 	{ SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3296 	{ SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3297 
3298 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
3299 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
3300 
3301 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
3302 
3303 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
3304 
3305 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
3306 
3307 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
3308 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
3309 	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
3310 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
3311 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
3312 	IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)),
3313 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
3314 	ID_FILTERED(CTR_EL0, ctr_el0,
3315 		    CTR_EL0_DIC_MASK |
3316 		    CTR_EL0_IDC_MASK |
3317 		    CTR_EL0_DminLine_MASK |
3318 		    CTR_EL0_L1Ip_MASK |
3319 		    CTR_EL0_IminLine_MASK),
3320 	{ SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
3321 	{ SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
3322 
3323 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
3324 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
3325 	{ PMU_SYS_REG(PMCNTENSET_EL0),
3326 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3327 	  .get_user = get_pmreg, .set_user = set_pmreg },
3328 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
3329 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3330 	  .get_user = get_pmreg, .set_user = set_pmreg },
3331 	{ PMU_SYS_REG(PMOVSCLR_EL0),
3332 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3333 	  .get_user = get_pmreg, .set_user = set_pmreg },
3334 	/*
3335 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
3336 	 * previously (and pointlessly) advertised in the past...
3337 	 */
3338 	{ PMU_SYS_REG(PMSWINC_EL0),
3339 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
3340 	  .access = access_pmswinc, .reset = NULL },
3341 	{ PMU_SYS_REG(PMSELR_EL0),
3342 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
3343 	{ PMU_SYS_REG(PMCEID0_EL0),
3344 	  .access = access_pmceid, .reset = NULL },
3345 	{ PMU_SYS_REG(PMCEID1_EL0),
3346 	  .access = access_pmceid, .reset = NULL },
3347 	{ PMU_SYS_REG(PMCCNTR_EL0),
3348 	  .access = access_pmu_evcntr, .reset = reset_unknown,
3349 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr,
3350 	  .set_user = set_pmu_evcntr },
3351 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
3352 	  .access = access_pmu_evtyper, .reset = NULL },
3353 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
3354 	  .access = access_pmu_evcntr, .reset = NULL },
3355 	/*
3356 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
3357 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3358 	 */
3359 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
3360 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
3361 	{ PMU_SYS_REG(PMOVSSET_EL0),
3362 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3363 	  .get_user = get_pmreg, .set_user = set_pmreg },
3364 
3365 	{ SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
3366 	  .visibility = s1poe_visibility },
3367 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
3368 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
3369 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
3370 
3371 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
3372 
3373 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
3374 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
3375 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
3376 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
3377 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
3378 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
3379 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
3380 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
3381 	AMU_AMEVCNTR0_EL0(0),
3382 	AMU_AMEVCNTR0_EL0(1),
3383 	AMU_AMEVCNTR0_EL0(2),
3384 	AMU_AMEVCNTR0_EL0(3),
3385 	AMU_AMEVCNTR0_EL0(4),
3386 	AMU_AMEVCNTR0_EL0(5),
3387 	AMU_AMEVCNTR0_EL0(6),
3388 	AMU_AMEVCNTR0_EL0(7),
3389 	AMU_AMEVCNTR0_EL0(8),
3390 	AMU_AMEVCNTR0_EL0(9),
3391 	AMU_AMEVCNTR0_EL0(10),
3392 	AMU_AMEVCNTR0_EL0(11),
3393 	AMU_AMEVCNTR0_EL0(12),
3394 	AMU_AMEVCNTR0_EL0(13),
3395 	AMU_AMEVCNTR0_EL0(14),
3396 	AMU_AMEVCNTR0_EL0(15),
3397 	AMU_AMEVTYPER0_EL0(0),
3398 	AMU_AMEVTYPER0_EL0(1),
3399 	AMU_AMEVTYPER0_EL0(2),
3400 	AMU_AMEVTYPER0_EL0(3),
3401 	AMU_AMEVTYPER0_EL0(4),
3402 	AMU_AMEVTYPER0_EL0(5),
3403 	AMU_AMEVTYPER0_EL0(6),
3404 	AMU_AMEVTYPER0_EL0(7),
3405 	AMU_AMEVTYPER0_EL0(8),
3406 	AMU_AMEVTYPER0_EL0(9),
3407 	AMU_AMEVTYPER0_EL0(10),
3408 	AMU_AMEVTYPER0_EL0(11),
3409 	AMU_AMEVTYPER0_EL0(12),
3410 	AMU_AMEVTYPER0_EL0(13),
3411 	AMU_AMEVTYPER0_EL0(14),
3412 	AMU_AMEVTYPER0_EL0(15),
3413 	AMU_AMEVCNTR1_EL0(0),
3414 	AMU_AMEVCNTR1_EL0(1),
3415 	AMU_AMEVCNTR1_EL0(2),
3416 	AMU_AMEVCNTR1_EL0(3),
3417 	AMU_AMEVCNTR1_EL0(4),
3418 	AMU_AMEVCNTR1_EL0(5),
3419 	AMU_AMEVCNTR1_EL0(6),
3420 	AMU_AMEVCNTR1_EL0(7),
3421 	AMU_AMEVCNTR1_EL0(8),
3422 	AMU_AMEVCNTR1_EL0(9),
3423 	AMU_AMEVCNTR1_EL0(10),
3424 	AMU_AMEVCNTR1_EL0(11),
3425 	AMU_AMEVCNTR1_EL0(12),
3426 	AMU_AMEVCNTR1_EL0(13),
3427 	AMU_AMEVCNTR1_EL0(14),
3428 	AMU_AMEVCNTR1_EL0(15),
3429 	AMU_AMEVTYPER1_EL0(0),
3430 	AMU_AMEVTYPER1_EL0(1),
3431 	AMU_AMEVTYPER1_EL0(2),
3432 	AMU_AMEVTYPER1_EL0(3),
3433 	AMU_AMEVTYPER1_EL0(4),
3434 	AMU_AMEVTYPER1_EL0(5),
3435 	AMU_AMEVTYPER1_EL0(6),
3436 	AMU_AMEVTYPER1_EL0(7),
3437 	AMU_AMEVTYPER1_EL0(8),
3438 	AMU_AMEVTYPER1_EL0(9),
3439 	AMU_AMEVTYPER1_EL0(10),
3440 	AMU_AMEVTYPER1_EL0(11),
3441 	AMU_AMEVTYPER1_EL0(12),
3442 	AMU_AMEVTYPER1_EL0(13),
3443 	AMU_AMEVTYPER1_EL0(14),
3444 	AMU_AMEVTYPER1_EL0(15),
3445 
3446 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
3447 	{ SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer },
3448 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3449 	{ SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3450 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3451 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
3452 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
3453 
3454 	{ SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3455 	{ SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer },
3456 	{ SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer },
3457 
3458 	/* PMEVCNTRn_EL0 */
3459 	PMU_PMEVCNTR_EL0(0),
3460 	PMU_PMEVCNTR_EL0(1),
3461 	PMU_PMEVCNTR_EL0(2),
3462 	PMU_PMEVCNTR_EL0(3),
3463 	PMU_PMEVCNTR_EL0(4),
3464 	PMU_PMEVCNTR_EL0(5),
3465 	PMU_PMEVCNTR_EL0(6),
3466 	PMU_PMEVCNTR_EL0(7),
3467 	PMU_PMEVCNTR_EL0(8),
3468 	PMU_PMEVCNTR_EL0(9),
3469 	PMU_PMEVCNTR_EL0(10),
3470 	PMU_PMEVCNTR_EL0(11),
3471 	PMU_PMEVCNTR_EL0(12),
3472 	PMU_PMEVCNTR_EL0(13),
3473 	PMU_PMEVCNTR_EL0(14),
3474 	PMU_PMEVCNTR_EL0(15),
3475 	PMU_PMEVCNTR_EL0(16),
3476 	PMU_PMEVCNTR_EL0(17),
3477 	PMU_PMEVCNTR_EL0(18),
3478 	PMU_PMEVCNTR_EL0(19),
3479 	PMU_PMEVCNTR_EL0(20),
3480 	PMU_PMEVCNTR_EL0(21),
3481 	PMU_PMEVCNTR_EL0(22),
3482 	PMU_PMEVCNTR_EL0(23),
3483 	PMU_PMEVCNTR_EL0(24),
3484 	PMU_PMEVCNTR_EL0(25),
3485 	PMU_PMEVCNTR_EL0(26),
3486 	PMU_PMEVCNTR_EL0(27),
3487 	PMU_PMEVCNTR_EL0(28),
3488 	PMU_PMEVCNTR_EL0(29),
3489 	PMU_PMEVCNTR_EL0(30),
3490 	/* PMEVTYPERn_EL0 */
3491 	PMU_PMEVTYPER_EL0(0),
3492 	PMU_PMEVTYPER_EL0(1),
3493 	PMU_PMEVTYPER_EL0(2),
3494 	PMU_PMEVTYPER_EL0(3),
3495 	PMU_PMEVTYPER_EL0(4),
3496 	PMU_PMEVTYPER_EL0(5),
3497 	PMU_PMEVTYPER_EL0(6),
3498 	PMU_PMEVTYPER_EL0(7),
3499 	PMU_PMEVTYPER_EL0(8),
3500 	PMU_PMEVTYPER_EL0(9),
3501 	PMU_PMEVTYPER_EL0(10),
3502 	PMU_PMEVTYPER_EL0(11),
3503 	PMU_PMEVTYPER_EL0(12),
3504 	PMU_PMEVTYPER_EL0(13),
3505 	PMU_PMEVTYPER_EL0(14),
3506 	PMU_PMEVTYPER_EL0(15),
3507 	PMU_PMEVTYPER_EL0(16),
3508 	PMU_PMEVTYPER_EL0(17),
3509 	PMU_PMEVTYPER_EL0(18),
3510 	PMU_PMEVTYPER_EL0(19),
3511 	PMU_PMEVTYPER_EL0(20),
3512 	PMU_PMEVTYPER_EL0(21),
3513 	PMU_PMEVTYPER_EL0(22),
3514 	PMU_PMEVTYPER_EL0(23),
3515 	PMU_PMEVTYPER_EL0(24),
3516 	PMU_PMEVTYPER_EL0(25),
3517 	PMU_PMEVTYPER_EL0(26),
3518 	PMU_PMEVTYPER_EL0(27),
3519 	PMU_PMEVTYPER_EL0(28),
3520 	PMU_PMEVTYPER_EL0(29),
3521 	PMU_PMEVTYPER_EL0(30),
3522 	/*
3523 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3524 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3525 	 */
3526 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3527 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3528 
3529 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3530 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3531 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3532 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3533 	EL2_REG_FILTERED(SCTLR2_EL2, access_vm_reg, reset_val, 0,
3534 			 sctlr2_el2_visibility),
3535 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3536 	EL2_REG(MDCR_EL2, access_mdcr, reset_mdcr, 0),
3537 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3538 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3539 	EL2_REG_VNCR_FILT(HFGRTR_EL2, fgt_visibility),
3540 	EL2_REG_VNCR_FILT(HFGWTR_EL2, fgt_visibility),
3541 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3542 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3543 
3544 	EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3545 			 sve_el2_visibility),
3546 
3547 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3548 
3549 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3550 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3551 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3552 	EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3553 			 tcr2_el2_visibility),
3554 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3555 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3556 	EL2_REG_FILTERED(VNCR_EL2, bad_vncr_trap, reset_val, 0,
3557 			 vncr_el2_visibility),
3558 
3559 	{ SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3560 	EL2_REG_VNCR_FILT(HDFGRTR2_EL2, fgt2_visibility),
3561 	EL2_REG_VNCR_FILT(HDFGWTR2_EL2, fgt2_visibility),
3562 	EL2_REG_VNCR_FILT(HFGRTR2_EL2, fgt2_visibility),
3563 	EL2_REG_VNCR_FILT(HFGWTR2_EL2, fgt2_visibility),
3564 	EL2_REG_VNCR_FILT(HDFGRTR_EL2, fgt_visibility),
3565 	EL2_REG_VNCR_FILT(HDFGWTR_EL2, fgt_visibility),
3566 	EL2_REG_VNCR_FILT(HAFGRTR_EL2, fgt_visibility),
3567 	EL2_REG_VNCR_FILT(HFGITR2_EL2, fgt2_visibility),
3568 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3569 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3570 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
3571 
3572 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3573 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3574 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3575 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3576 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3577 
3578 	{ SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3579 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3580 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3581 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3582 	EL2_REG_VNCR(VSESR_EL2, reset_unknown, 0),
3583 	{ SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3584 
3585 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3586 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3587 
3588 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3589 	EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3590 			 s1pie_el2_visibility),
3591 	EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3592 			 s1pie_el2_visibility),
3593 	EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3594 			 s1poe_el2_visibility),
3595 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3596 	{ SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3597 	{ SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3598 	{ SYS_DESC(SYS_MPAM2_EL2), undef_access },
3599 	{ SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3600 	{ SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3601 	{ SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3602 	{ SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3603 	{ SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3604 	{ SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3605 	{ SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3606 	{ SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3607 
3608 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3609 	{ SYS_DESC(SYS_RVBAR_EL2), undef_access },
3610 	{ SYS_DESC(SYS_RMR_EL2), undef_access },
3611 	EL2_REG_VNCR(VDISR_EL2, reset_unknown, 0),
3612 
3613 	EL2_REG_VNCR_GICv3(ICH_AP0R0_EL2),
3614 	EL2_REG_VNCR_GICv3(ICH_AP0R1_EL2),
3615 	EL2_REG_VNCR_GICv3(ICH_AP0R2_EL2),
3616 	EL2_REG_VNCR_GICv3(ICH_AP0R3_EL2),
3617 	EL2_REG_VNCR_GICv3(ICH_AP1R0_EL2),
3618 	EL2_REG_VNCR_GICv3(ICH_AP1R1_EL2),
3619 	EL2_REG_VNCR_GICv3(ICH_AP1R2_EL2),
3620 	EL2_REG_VNCR_GICv3(ICH_AP1R3_EL2),
3621 
3622 	{ SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3623 
3624 	EL2_REG_VNCR_GICv3(ICH_HCR_EL2),
3625 	{ SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3626 	{ SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3627 	{ SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3628 	{ SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3629 	EL2_REG_VNCR_GICv3(ICH_VMCR_EL2),
3630 
3631 	EL2_REG_VNCR_GICv3(ICH_LR0_EL2),
3632 	EL2_REG_VNCR_GICv3(ICH_LR1_EL2),
3633 	EL2_REG_VNCR_GICv3(ICH_LR2_EL2),
3634 	EL2_REG_VNCR_GICv3(ICH_LR3_EL2),
3635 	EL2_REG_VNCR_GICv3(ICH_LR4_EL2),
3636 	EL2_REG_VNCR_GICv3(ICH_LR5_EL2),
3637 	EL2_REG_VNCR_GICv3(ICH_LR6_EL2),
3638 	EL2_REG_VNCR_GICv3(ICH_LR7_EL2),
3639 	EL2_REG_VNCR_GICv3(ICH_LR8_EL2),
3640 	EL2_REG_VNCR_GICv3(ICH_LR9_EL2),
3641 	EL2_REG_VNCR_GICv3(ICH_LR10_EL2),
3642 	EL2_REG_VNCR_GICv3(ICH_LR11_EL2),
3643 	EL2_REG_VNCR_GICv3(ICH_LR12_EL2),
3644 	EL2_REG_VNCR_GICv3(ICH_LR13_EL2),
3645 	EL2_REG_VNCR_GICv3(ICH_LR14_EL2),
3646 	EL2_REG_VNCR_GICv3(ICH_LR15_EL2),
3647 
3648 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3649 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3650 
3651 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3652 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3653 	{ SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3654 	EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0),
3655 	EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0),
3656 
3657 	{ SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer },
3658 	EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0),
3659 	EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0),
3660 
3661 	{ SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3662 
3663 	{ SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3664 	{ SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3665 	{ SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3666 
3667 	{ SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3668 	{ SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3669 	{ SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3670 
3671 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3672 };
3673 
handle_at_s1e01(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3674 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3675 			    const struct sys_reg_desc *r)
3676 {
3677 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3678 
3679 	__kvm_at_s1e01(vcpu, op, p->regval);
3680 
3681 	return true;
3682 }
3683 
handle_at_s1e2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3684 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3685 			   const struct sys_reg_desc *r)
3686 {
3687 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3688 
3689 	/* There is no FGT associated with AT S1E2A :-( */
3690 	if (op == OP_AT_S1E2A &&
3691 	    !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3692 		kvm_inject_undefined(vcpu);
3693 		return false;
3694 	}
3695 
3696 	__kvm_at_s1e2(vcpu, op, p->regval);
3697 
3698 	return true;
3699 }
3700 
handle_at_s12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3701 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3702 			  const struct sys_reg_desc *r)
3703 {
3704 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3705 
3706 	__kvm_at_s12(vcpu, op, p->regval);
3707 
3708 	return true;
3709 }
3710 
kvm_supported_tlbi_s12_op(struct kvm_vcpu * vpcu,u32 instr)3711 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3712 {
3713 	struct kvm *kvm = vpcu->kvm;
3714 	u8 CRm = sys_reg_CRm(instr);
3715 
3716 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3717 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3718 		return false;
3719 
3720 	if (CRm == TLBI_CRm_nROS &&
3721 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3722 		return false;
3723 
3724 	return true;
3725 }
3726 
handle_alle1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3727 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3728 			   const struct sys_reg_desc *r)
3729 {
3730 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3731 
3732 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3733 		return undef_access(vcpu, p, r);
3734 
3735 	write_lock(&vcpu->kvm->mmu_lock);
3736 
3737 	/*
3738 	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3739 	 * corresponding VMIDs.
3740 	 */
3741 	kvm_nested_s2_unmap(vcpu->kvm, true);
3742 
3743 	write_unlock(&vcpu->kvm->mmu_lock);
3744 
3745 	return true;
3746 }
3747 
kvm_supported_tlbi_ipas2_op(struct kvm_vcpu * vpcu,u32 instr)3748 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3749 {
3750 	struct kvm *kvm = vpcu->kvm;
3751 	u8 CRm = sys_reg_CRm(instr);
3752 	u8 Op2 = sys_reg_Op2(instr);
3753 
3754 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3755 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3756 		return false;
3757 
3758 	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3759 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3760 		return false;
3761 
3762 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3763 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3764 		return false;
3765 
3766 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3767 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3768 		return false;
3769 
3770 	return true;
3771 }
3772 
3773 /* Only defined here as this is an internal "abstraction" */
3774 union tlbi_info {
3775 	struct {
3776 		u64	start;
3777 		u64	size;
3778 	} range;
3779 
3780 	struct {
3781 		u64	addr;
3782 	} ipa;
3783 
3784 	struct {
3785 		u64	addr;
3786 		u32	encoding;
3787 	} va;
3788 };
3789 
s2_mmu_unmap_range(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3790 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3791 			       const union tlbi_info *info)
3792 {
3793 	/*
3794 	 * The unmap operation is allowed to drop the MMU lock and block, which
3795 	 * means that @mmu could be used for a different context than the one
3796 	 * currently being invalidated.
3797 	 *
3798 	 * This behavior is still safe, as:
3799 	 *
3800 	 *  1) The vCPU(s) that recycled the MMU are responsible for invalidating
3801 	 *     the entire MMU before reusing it, which still honors the intent
3802 	 *     of a TLBI.
3803 	 *
3804 	 *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3805 	 *     and ERET to the guest), other vCPUs are allowed to use stale
3806 	 *     translations.
3807 	 *
3808 	 *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3809 	 *     at worst may cause more aborts for shadow stage-2 fills.
3810 	 *
3811 	 * Dropping the MMU lock also implies that shadow stage-2 fills could
3812 	 * happen behind the back of the TLBI. This is still safe, though, as
3813 	 * the L1 needs to put its stage-2 in a consistent state before doing
3814 	 * the TLBI.
3815 	 */
3816 	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3817 }
3818 
handle_vmalls12e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3819 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3820 				const struct sys_reg_desc *r)
3821 {
3822 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3823 	u64 limit, vttbr;
3824 
3825 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3826 		return undef_access(vcpu, p, r);
3827 
3828 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3829 	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3830 
3831 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3832 				   &(union tlbi_info) {
3833 					   .range = {
3834 						   .start = 0,
3835 						   .size = limit,
3836 					   },
3837 				   },
3838 				   s2_mmu_unmap_range);
3839 
3840 	return true;
3841 }
3842 
handle_ripas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3843 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3844 			      const struct sys_reg_desc *r)
3845 {
3846 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3847 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3848 	u64 base, range;
3849 
3850 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3851 		return undef_access(vcpu, p, r);
3852 
3853 	/*
3854 	 * Because the shadow S2 structure doesn't necessarily reflect that
3855 	 * of the guest's S2 (different base granule size, for example), we
3856 	 * decide to ignore TTL and only use the described range.
3857 	 */
3858 	base = decode_range_tlbi(p->regval, &range, NULL);
3859 
3860 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3861 				   &(union tlbi_info) {
3862 					   .range = {
3863 						   .start = base,
3864 						   .size = range,
3865 					   },
3866 				   },
3867 				   s2_mmu_unmap_range);
3868 
3869 	return true;
3870 }
3871 
s2_mmu_unmap_ipa(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3872 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3873 			     const union tlbi_info *info)
3874 {
3875 	unsigned long max_size;
3876 	u64 base_addr;
3877 
3878 	/*
3879 	 * We drop a number of things from the supplied value:
3880 	 *
3881 	 * - NS bit: we're non-secure only.
3882 	 *
3883 	 * - IPA[51:48]: We don't support 52bit IPA just yet...
3884 	 *
3885 	 * And of course, adjust the IPA to be on an actual address.
3886 	 */
3887 	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3888 	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3889 	base_addr &= ~(max_size - 1);
3890 
3891 	/*
3892 	 * See comment in s2_mmu_unmap_range() for why this is allowed to
3893 	 * reschedule.
3894 	 */
3895 	kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3896 }
3897 
handle_ipas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3898 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3899 			     const struct sys_reg_desc *r)
3900 {
3901 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3902 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3903 
3904 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3905 		return undef_access(vcpu, p, r);
3906 
3907 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3908 				   &(union tlbi_info) {
3909 					   .ipa = {
3910 						   .addr = p->regval,
3911 					   },
3912 				   },
3913 				   s2_mmu_unmap_ipa);
3914 
3915 	return true;
3916 }
3917 
s2_mmu_tlbi_s1e1(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3918 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3919 			     const union tlbi_info *info)
3920 {
3921 	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3922 }
3923 
handle_tlbi_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3924 static bool handle_tlbi_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3925 			    const struct sys_reg_desc *r)
3926 {
3927 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3928 
3929 	if (!kvm_supported_tlbi_s1e2_op(vcpu, sys_encoding))
3930 		return undef_access(vcpu, p, r);
3931 
3932 	kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
3933 	return true;
3934 }
3935 
handle_tlbi_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3936 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3937 			    const struct sys_reg_desc *r)
3938 {
3939 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3940 
3941 	/*
3942 	 * If we're here, this is because we've trapped on a EL1 TLBI
3943 	 * instruction that affects the EL1 translation regime while
3944 	 * we're running in a context that doesn't allow us to let the
3945 	 * HW do its thing (aka vEL2):
3946 	 *
3947 	 * - HCR_EL2.E2H == 0 : a non-VHE guest
3948 	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3949 	 *
3950 	 * Another possibility is that we are invalidating the EL2 context
3951 	 * using EL1 instructions, but that we landed here because we need
3952 	 * additional invalidation for structures that are not held in the
3953 	 * CPU TLBs (such as the VNCR pseudo-TLB and its EL2 mapping). In
3954 	 * that case, we are guaranteed that HCR_EL2.{E2H,TGE} == { 1, 1 }
3955 	 * as we don't allow an NV-capable L1 in a nVHE configuration.
3956 	 *
3957 	 * We don't expect these helpers to ever be called when running
3958 	 * in a vEL1 context.
3959 	 */
3960 
3961 	WARN_ON(!vcpu_is_el2(vcpu));
3962 
3963 	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3964 		return undef_access(vcpu, p, r);
3965 
3966 	if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) {
3967 		kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
3968 		return true;
3969 	}
3970 
3971 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm,
3972 				   get_vmid(__vcpu_sys_reg(vcpu, VTTBR_EL2)),
3973 				   &(union tlbi_info) {
3974 					   .va = {
3975 						   .addr = p->regval,
3976 						   .encoding = sys_encoding,
3977 					   },
3978 				   },
3979 				   s2_mmu_tlbi_s1e1);
3980 
3981 	return true;
3982 }
3983 
3984 #define SYS_INSN(insn, access_fn)					\
3985 	{								\
3986 		SYS_DESC(OP_##insn),					\
3987 		.access = (access_fn),					\
3988 	}
3989 
3990 static struct sys_reg_desc sys_insn_descs[] = {
3991 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
3992 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3993 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3994 
3995 	SYS_INSN(AT_S1E1R, handle_at_s1e01),
3996 	SYS_INSN(AT_S1E1W, handle_at_s1e01),
3997 	SYS_INSN(AT_S1E0R, handle_at_s1e01),
3998 	SYS_INSN(AT_S1E0W, handle_at_s1e01),
3999 	SYS_INSN(AT_S1E1RP, handle_at_s1e01),
4000 	SYS_INSN(AT_S1E1WP, handle_at_s1e01),
4001 
4002 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
4003 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
4004 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
4005 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
4006 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
4007 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
4008 
4009 	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
4010 	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
4011 	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
4012 	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
4013 	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
4014 	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
4015 
4016 	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
4017 	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
4018 	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
4019 	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
4020 
4021 	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
4022 	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
4023 	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
4024 	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
4025 	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
4026 	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
4027 
4028 	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
4029 	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
4030 	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
4031 	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
4032 
4033 	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
4034 	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
4035 	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
4036 	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
4037 
4038 	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
4039 	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
4040 	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
4041 	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
4042 	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
4043 	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
4044 
4045 	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
4046 	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
4047 	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
4048 	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
4049 	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
4050 	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
4051 
4052 	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
4053 	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
4054 	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
4055 	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
4056 
4057 	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
4058 	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
4059 	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
4060 	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
4061 	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
4062 	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
4063 
4064 	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
4065 	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
4066 	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
4067 	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
4068 
4069 	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
4070 	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
4071 	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
4072 	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
4073 
4074 	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
4075 	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
4076 	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
4077 	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
4078 	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
4079 	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
4080 
4081 	SYS_INSN(AT_S1E2R, handle_at_s1e2),
4082 	SYS_INSN(AT_S1E2W, handle_at_s1e2),
4083 	SYS_INSN(AT_S12E1R, handle_at_s12),
4084 	SYS_INSN(AT_S12E1W, handle_at_s12),
4085 	SYS_INSN(AT_S12E0R, handle_at_s12),
4086 	SYS_INSN(AT_S12E0W, handle_at_s12),
4087 	SYS_INSN(AT_S1E2A, handle_at_s1e2),
4088 
4089 	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
4090 	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
4091 	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
4092 	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
4093 
4094 	SYS_INSN(TLBI_ALLE2OS, handle_tlbi_el2),
4095 	SYS_INSN(TLBI_VAE2OS, handle_tlbi_el2),
4096 	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
4097 	SYS_INSN(TLBI_VALE2OS, handle_tlbi_el2),
4098 	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
4099 
4100 	SYS_INSN(TLBI_RVAE2IS, handle_tlbi_el2),
4101 	SYS_INSN(TLBI_RVALE2IS, handle_tlbi_el2),
4102 	SYS_INSN(TLBI_ALLE2IS, handle_tlbi_el2),
4103 	SYS_INSN(TLBI_VAE2IS, handle_tlbi_el2),
4104 
4105 	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
4106 
4107 	SYS_INSN(TLBI_VALE2IS, handle_tlbi_el2),
4108 
4109 	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
4110 	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
4111 	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
4112 	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
4113 	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
4114 	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
4115 	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
4116 	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
4117 	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
4118 	SYS_INSN(TLBI_RVAE2OS, handle_tlbi_el2),
4119 	SYS_INSN(TLBI_RVALE2OS, handle_tlbi_el2),
4120 	SYS_INSN(TLBI_RVAE2, handle_tlbi_el2),
4121 	SYS_INSN(TLBI_RVALE2, handle_tlbi_el2),
4122 	SYS_INSN(TLBI_ALLE2, handle_tlbi_el2),
4123 	SYS_INSN(TLBI_VAE2, handle_tlbi_el2),
4124 
4125 	SYS_INSN(TLBI_ALLE1, handle_alle1is),
4126 
4127 	SYS_INSN(TLBI_VALE2, handle_tlbi_el2),
4128 
4129 	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
4130 
4131 	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
4132 	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
4133 	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
4134 	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
4135 
4136 	SYS_INSN(TLBI_ALLE2OSNXS, handle_tlbi_el2),
4137 	SYS_INSN(TLBI_VAE2OSNXS, handle_tlbi_el2),
4138 	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
4139 	SYS_INSN(TLBI_VALE2OSNXS, handle_tlbi_el2),
4140 	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
4141 
4142 	SYS_INSN(TLBI_RVAE2ISNXS, handle_tlbi_el2),
4143 	SYS_INSN(TLBI_RVALE2ISNXS, handle_tlbi_el2),
4144 	SYS_INSN(TLBI_ALLE2ISNXS, handle_tlbi_el2),
4145 	SYS_INSN(TLBI_VAE2ISNXS, handle_tlbi_el2),
4146 
4147 	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
4148 	SYS_INSN(TLBI_VALE2ISNXS, handle_tlbi_el2),
4149 	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
4150 	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
4151 	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
4152 	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
4153 	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
4154 	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
4155 	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
4156 	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
4157 	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
4158 	SYS_INSN(TLBI_RVAE2OSNXS, handle_tlbi_el2),
4159 	SYS_INSN(TLBI_RVALE2OSNXS, handle_tlbi_el2),
4160 	SYS_INSN(TLBI_RVAE2NXS, handle_tlbi_el2),
4161 	SYS_INSN(TLBI_RVALE2NXS, handle_tlbi_el2),
4162 	SYS_INSN(TLBI_ALLE2NXS, handle_tlbi_el2),
4163 	SYS_INSN(TLBI_VAE2NXS, handle_tlbi_el2),
4164 	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
4165 	SYS_INSN(TLBI_VALE2NXS, handle_tlbi_el2),
4166 	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
4167 };
4168 
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)4169 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
4170 			struct sys_reg_params *p,
4171 			const struct sys_reg_desc *r)
4172 {
4173 	if (p->is_write) {
4174 		return ignore_write(vcpu, p);
4175 	} else {
4176 		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
4177 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
4178 
4179 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
4180 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
4181 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
4182 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
4183 			     (1 << 15) | (el3 << 14) | (el3 << 12));
4184 		return true;
4185 	}
4186 }
4187 
4188 /*
4189  * AArch32 debug register mappings
4190  *
4191  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
4192  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
4193  *
4194  * None of the other registers share their location, so treat them as
4195  * if they were 64bit.
4196  */
4197 #define DBG_BCR_BVR_WCR_WVR(n)							\
4198 	/* DBGBVRn */								\
4199 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4),			\
4200 	  trap_dbg_wb_reg, NULL, n },						\
4201 	/* DBGBCRn */								\
4202 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n },	\
4203 	/* DBGWVRn */								\
4204 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n },	\
4205 	/* DBGWCRn */								\
4206 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
4207 
4208 #define DBGBXVR(n)								\
4209 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1),			\
4210 	  trap_dbg_wb_reg, NULL, n }
4211 
4212 /*
4213  * Trapped cp14 registers. We generally ignore most of the external
4214  * debug, on the principle that they don't really make sense to a
4215  * guest. Revisit this one day, would this principle change.
4216  */
4217 static const struct sys_reg_desc cp14_regs[] = {
4218 	/* DBGDIDR */
4219 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
4220 	/* DBGDTRRXext */
4221 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
4222 
4223 	DBG_BCR_BVR_WCR_WVR(0),
4224 	/* DBGDSCRint */
4225 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
4226 	DBG_BCR_BVR_WCR_WVR(1),
4227 	/* DBGDCCINT */
4228 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
4229 	/* DBGDSCRext */
4230 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
4231 	DBG_BCR_BVR_WCR_WVR(2),
4232 	/* DBGDTR[RT]Xint */
4233 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
4234 	/* DBGDTR[RT]Xext */
4235 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
4236 	DBG_BCR_BVR_WCR_WVR(3),
4237 	DBG_BCR_BVR_WCR_WVR(4),
4238 	DBG_BCR_BVR_WCR_WVR(5),
4239 	/* DBGWFAR */
4240 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
4241 	/* DBGOSECCR */
4242 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
4243 	DBG_BCR_BVR_WCR_WVR(6),
4244 	/* DBGVCR */
4245 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
4246 	DBG_BCR_BVR_WCR_WVR(7),
4247 	DBG_BCR_BVR_WCR_WVR(8),
4248 	DBG_BCR_BVR_WCR_WVR(9),
4249 	DBG_BCR_BVR_WCR_WVR(10),
4250 	DBG_BCR_BVR_WCR_WVR(11),
4251 	DBG_BCR_BVR_WCR_WVR(12),
4252 	DBG_BCR_BVR_WCR_WVR(13),
4253 	DBG_BCR_BVR_WCR_WVR(14),
4254 	DBG_BCR_BVR_WCR_WVR(15),
4255 
4256 	/* DBGDRAR (32bit) */
4257 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
4258 
4259 	DBGBXVR(0),
4260 	/* DBGOSLAR */
4261 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
4262 	DBGBXVR(1),
4263 	/* DBGOSLSR */
4264 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
4265 	DBGBXVR(2),
4266 	DBGBXVR(3),
4267 	/* DBGOSDLR */
4268 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
4269 	DBGBXVR(4),
4270 	/* DBGPRCR */
4271 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
4272 	DBGBXVR(5),
4273 	DBGBXVR(6),
4274 	DBGBXVR(7),
4275 	DBGBXVR(8),
4276 	DBGBXVR(9),
4277 	DBGBXVR(10),
4278 	DBGBXVR(11),
4279 	DBGBXVR(12),
4280 	DBGBXVR(13),
4281 	DBGBXVR(14),
4282 	DBGBXVR(15),
4283 
4284 	/* DBGDSAR (32bit) */
4285 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
4286 
4287 	/* DBGDEVID2 */
4288 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
4289 	/* DBGDEVID1 */
4290 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
4291 	/* DBGDEVID */
4292 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
4293 	/* DBGCLAIMSET */
4294 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
4295 	/* DBGCLAIMCLR */
4296 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
4297 	/* DBGAUTHSTATUS */
4298 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
4299 };
4300 
4301 /* Trapped cp14 64bit registers */
4302 static const struct sys_reg_desc cp14_64_regs[] = {
4303 	/* DBGDRAR (64bit) */
4304 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
4305 
4306 	/* DBGDSAR (64bit) */
4307 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
4308 };
4309 
4310 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
4311 	AA32(_map),							\
4312 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
4313 	.visibility = pmu_visibility
4314 
4315 /* Macro to expand the PMEVCNTRn register */
4316 #define PMU_PMEVCNTR(n)							\
4317 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4318 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4319 	  .access = access_pmu_evcntr }
4320 
4321 /* Macro to expand the PMEVTYPERn register */
4322 #define PMU_PMEVTYPER(n)						\
4323 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4324 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4325 	  .access = access_pmu_evtyper }
4326 /*
4327  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
4328  * depending on the way they are accessed (as a 32bit or a 64bit
4329  * register).
4330  */
4331 static const struct sys_reg_desc cp15_regs[] = {
4332 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
4333 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
4334 	/* ACTLR */
4335 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
4336 	/* ACTLR2 */
4337 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
4338 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4339 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
4340 	/* TTBCR */
4341 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
4342 	/* TTBCR2 */
4343 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
4344 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
4345 	{ CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
4346 	/* DFSR */
4347 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
4348 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
4349 	/* ADFSR */
4350 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
4351 	/* AIFSR */
4352 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
4353 	/* DFAR */
4354 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
4355 	/* IFAR */
4356 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4357 
4358 	/*
4359 	 * DC{C,I,CI}SW operations:
4360 	 */
4361 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
4362 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
4363 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4364 
4365 	/* PMU */
4366 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
4367 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
4368 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
4369 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
4370 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
4371 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
4372 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
4373 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
4374 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
4375 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
4376 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
4377 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
4378 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
4379 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
4380 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
4381 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
4382 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
4383 	/* PMMIR */
4384 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4385 
4386 	/* PRRR/MAIR0 */
4387 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
4388 	/* NMRR/MAIR1 */
4389 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
4390 	/* AMAIR0 */
4391 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
4392 	/* AMAIR1 */
4393 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
4394 
4395 	{ CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
4396 	{ CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
4397 	{ CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
4398 	{ CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
4399 	{ CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
4400 	{ CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
4401 	{ CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
4402 	{ CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
4403 	{ CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
4404 	{ CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
4405 	{ CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
4406 	{ CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
4407 	{ CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
4408 	{ CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
4409 	{ CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
4410 	{ CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
4411 	{ CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
4412 	{ CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
4413 	{ CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
4414 	{ CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
4415 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
4416 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
4417 
4418 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
4419 
4420 	/* Arch Tmers */
4421 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
4422 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
4423 
4424 	/* PMEVCNTRn */
4425 	PMU_PMEVCNTR(0),
4426 	PMU_PMEVCNTR(1),
4427 	PMU_PMEVCNTR(2),
4428 	PMU_PMEVCNTR(3),
4429 	PMU_PMEVCNTR(4),
4430 	PMU_PMEVCNTR(5),
4431 	PMU_PMEVCNTR(6),
4432 	PMU_PMEVCNTR(7),
4433 	PMU_PMEVCNTR(8),
4434 	PMU_PMEVCNTR(9),
4435 	PMU_PMEVCNTR(10),
4436 	PMU_PMEVCNTR(11),
4437 	PMU_PMEVCNTR(12),
4438 	PMU_PMEVCNTR(13),
4439 	PMU_PMEVCNTR(14),
4440 	PMU_PMEVCNTR(15),
4441 	PMU_PMEVCNTR(16),
4442 	PMU_PMEVCNTR(17),
4443 	PMU_PMEVCNTR(18),
4444 	PMU_PMEVCNTR(19),
4445 	PMU_PMEVCNTR(20),
4446 	PMU_PMEVCNTR(21),
4447 	PMU_PMEVCNTR(22),
4448 	PMU_PMEVCNTR(23),
4449 	PMU_PMEVCNTR(24),
4450 	PMU_PMEVCNTR(25),
4451 	PMU_PMEVCNTR(26),
4452 	PMU_PMEVCNTR(27),
4453 	PMU_PMEVCNTR(28),
4454 	PMU_PMEVCNTR(29),
4455 	PMU_PMEVCNTR(30),
4456 	/* PMEVTYPERn */
4457 	PMU_PMEVTYPER(0),
4458 	PMU_PMEVTYPER(1),
4459 	PMU_PMEVTYPER(2),
4460 	PMU_PMEVTYPER(3),
4461 	PMU_PMEVTYPER(4),
4462 	PMU_PMEVTYPER(5),
4463 	PMU_PMEVTYPER(6),
4464 	PMU_PMEVTYPER(7),
4465 	PMU_PMEVTYPER(8),
4466 	PMU_PMEVTYPER(9),
4467 	PMU_PMEVTYPER(10),
4468 	PMU_PMEVTYPER(11),
4469 	PMU_PMEVTYPER(12),
4470 	PMU_PMEVTYPER(13),
4471 	PMU_PMEVTYPER(14),
4472 	PMU_PMEVTYPER(15),
4473 	PMU_PMEVTYPER(16),
4474 	PMU_PMEVTYPER(17),
4475 	PMU_PMEVTYPER(18),
4476 	PMU_PMEVTYPER(19),
4477 	PMU_PMEVTYPER(20),
4478 	PMU_PMEVTYPER(21),
4479 	PMU_PMEVTYPER(22),
4480 	PMU_PMEVTYPER(23),
4481 	PMU_PMEVTYPER(24),
4482 	PMU_PMEVTYPER(25),
4483 	PMU_PMEVTYPER(26),
4484 	PMU_PMEVTYPER(27),
4485 	PMU_PMEVTYPER(28),
4486 	PMU_PMEVTYPER(29),
4487 	PMU_PMEVTYPER(30),
4488 	/* PMCCFILTR */
4489 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4490 
4491 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4492 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4493 
4494 	/* CCSIDR2 */
4495 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
4496 
4497 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4498 };
4499 
4500 static const struct sys_reg_desc cp15_64_regs[] = {
4501 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4502 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4503 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4504 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
4505 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4506 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4507 	{ SYS_DESC(SYS_AARCH32_CNTVCT),	      access_arch_timer },
4508 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4509 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
4510 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
4511 	{ SYS_DESC(SYS_AARCH32_CNTVCTSS),     access_arch_timer },
4512 };
4513 
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool reset_check)4514 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4515 			       bool reset_check)
4516 {
4517 	unsigned int i;
4518 
4519 	for (i = 0; i < n; i++) {
4520 		if (reset_check && table[i].reg && !table[i].reset) {
4521 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4522 				&table[i], i, table[i].name);
4523 			return false;
4524 		}
4525 
4526 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4527 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4528 				&table[i], i, table[i - 1].name, table[i].name);
4529 			return false;
4530 		}
4531 	}
4532 
4533 	return true;
4534 }
4535 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)4536 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4537 {
4538 	kvm_inject_undefined(vcpu);
4539 	return 1;
4540 }
4541 
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)4542 static void perform_access(struct kvm_vcpu *vcpu,
4543 			   struct sys_reg_params *params,
4544 			   const struct sys_reg_desc *r)
4545 {
4546 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4547 
4548 	/* Check for regs disabled by runtime config */
4549 	if (sysreg_hidden(vcpu, r)) {
4550 		kvm_inject_undefined(vcpu);
4551 		return;
4552 	}
4553 
4554 	/*
4555 	 * Not having an accessor means that we have configured a trap
4556 	 * that we don't know how to handle. This certainly qualifies
4557 	 * as a gross bug that should be fixed right away.
4558 	 */
4559 	BUG_ON(!r->access);
4560 
4561 	/* Skip instruction if instructed so */
4562 	if (likely(r->access(vcpu, params, r)))
4563 		kvm_incr_pc(vcpu);
4564 }
4565 
4566 /*
4567  * emulate_cp --  tries to match a sys_reg access in a handling table, and
4568  *                call the corresponding trap handler.
4569  *
4570  * @params: pointer to the descriptor of the access
4571  * @table: array of trap descriptors
4572  * @num: size of the trap descriptor array
4573  *
4574  * Return true if the access has been handled, false if not.
4575  */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)4576 static bool emulate_cp(struct kvm_vcpu *vcpu,
4577 		       struct sys_reg_params *params,
4578 		       const struct sys_reg_desc *table,
4579 		       size_t num)
4580 {
4581 	const struct sys_reg_desc *r;
4582 
4583 	if (!table)
4584 		return false;	/* Not handled */
4585 
4586 	r = find_reg(params, table, num);
4587 
4588 	if (r) {
4589 		perform_access(vcpu, params, r);
4590 		return true;
4591 	}
4592 
4593 	/* Not handled */
4594 	return false;
4595 }
4596 
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4597 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4598 				struct sys_reg_params *params)
4599 {
4600 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4601 	int cp = -1;
4602 
4603 	switch (esr_ec) {
4604 	case ESR_ELx_EC_CP15_32:
4605 	case ESR_ELx_EC_CP15_64:
4606 		cp = 15;
4607 		break;
4608 	case ESR_ELx_EC_CP14_MR:
4609 	case ESR_ELx_EC_CP14_64:
4610 		cp = 14;
4611 		break;
4612 	default:
4613 		WARN_ON(1);
4614 	}
4615 
4616 	print_sys_reg_msg(params,
4617 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4618 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4619 	kvm_inject_undefined(vcpu);
4620 }
4621 
4622 /**
4623  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4624  * @vcpu: The VCPU pointer
4625  * @global: &struct sys_reg_desc
4626  * @nr_global: size of the @global array
4627  */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)4628 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4629 			    const struct sys_reg_desc *global,
4630 			    size_t nr_global)
4631 {
4632 	struct sys_reg_params params;
4633 	u64 esr = kvm_vcpu_get_esr(vcpu);
4634 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4635 	int Rt2 = (esr >> 10) & 0x1f;
4636 
4637 	params.CRm = (esr >> 1) & 0xf;
4638 	params.is_write = ((esr & 1) == 0);
4639 
4640 	params.Op0 = 0;
4641 	params.Op1 = (esr >> 16) & 0xf;
4642 	params.Op2 = 0;
4643 	params.CRn = 0;
4644 
4645 	/*
4646 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4647 	 * backends between AArch32 and AArch64, we get away with it.
4648 	 */
4649 	if (params.is_write) {
4650 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4651 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4652 	}
4653 
4654 	/*
4655 	 * If the table contains a handler, handle the
4656 	 * potential register operation in the case of a read and return
4657 	 * with success.
4658 	 */
4659 	if (emulate_cp(vcpu, &params, global, nr_global)) {
4660 		/* Split up the value between registers for the read side */
4661 		if (!params.is_write) {
4662 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4663 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4664 		}
4665 
4666 		return 1;
4667 	}
4668 
4669 	unhandled_cp_access(vcpu, &params);
4670 	return 1;
4671 }
4672 
4673 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4674 
4675 /*
4676  * The CP10 ID registers are architecturally mapped to AArch64 feature
4677  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4678  * from AArch32.
4679  */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)4680 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4681 {
4682 	u8 reg_id = (esr >> 10) & 0xf;
4683 	bool valid;
4684 
4685 	params->is_write = ((esr & 1) == 0);
4686 	params->Op0 = 3;
4687 	params->Op1 = 0;
4688 	params->CRn = 0;
4689 	params->CRm = 3;
4690 
4691 	/* CP10 ID registers are read-only */
4692 	valid = !params->is_write;
4693 
4694 	switch (reg_id) {
4695 	/* MVFR0 */
4696 	case 0b0111:
4697 		params->Op2 = 0;
4698 		break;
4699 	/* MVFR1 */
4700 	case 0b0110:
4701 		params->Op2 = 1;
4702 		break;
4703 	/* MVFR2 */
4704 	case 0b0101:
4705 		params->Op2 = 2;
4706 		break;
4707 	default:
4708 		valid = false;
4709 	}
4710 
4711 	if (valid)
4712 		return true;
4713 
4714 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4715 		      str_write_read(params->is_write), reg_id);
4716 	return false;
4717 }
4718 
4719 /**
4720  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4721  *			  VFP Register' from AArch32.
4722  * @vcpu: The vCPU pointer
4723  *
4724  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4725  * Work out the correct AArch64 system register encoding and reroute to the
4726  * AArch64 system register emulation.
4727  */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)4728 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4729 {
4730 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4731 	u64 esr = kvm_vcpu_get_esr(vcpu);
4732 	struct sys_reg_params params;
4733 
4734 	/* UNDEF on any unhandled register access */
4735 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
4736 		kvm_inject_undefined(vcpu);
4737 		return 1;
4738 	}
4739 
4740 	if (emulate_sys_reg(vcpu, &params))
4741 		vcpu_set_reg(vcpu, Rt, params.regval);
4742 
4743 	return 1;
4744 }
4745 
4746 /**
4747  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4748  *			       CRn=0, which corresponds to the AArch32 feature
4749  *			       registers.
4750  * @vcpu: the vCPU pointer
4751  * @params: the system register access parameters.
4752  *
4753  * Our cp15 system register tables do not enumerate the AArch32 feature
4754  * registers. Conveniently, our AArch64 table does, and the AArch32 system
4755  * register encoding can be trivially remapped into the AArch64 for the feature
4756  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4757  *
4758  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4759  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4760  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4761  * treat undefined registers in this range as RAZ.
4762  */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4763 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4764 				   struct sys_reg_params *params)
4765 {
4766 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4767 
4768 	/* Treat impossible writes to RO registers as UNDEFINED */
4769 	if (params->is_write) {
4770 		unhandled_cp_access(vcpu, params);
4771 		return 1;
4772 	}
4773 
4774 	params->Op0 = 3;
4775 
4776 	/*
4777 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4778 	 * Avoid conflicting with future expansion of AArch64 feature registers
4779 	 * and simply treat them as RAZ here.
4780 	 */
4781 	if (params->CRm > 3)
4782 		params->regval = 0;
4783 	else if (!emulate_sys_reg(vcpu, params))
4784 		return 1;
4785 
4786 	vcpu_set_reg(vcpu, Rt, params->regval);
4787 	return 1;
4788 }
4789 
4790 /**
4791  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4792  * @vcpu: The VCPU pointer
4793  * @params: &struct sys_reg_params
4794  * @global: &struct sys_reg_desc
4795  * @nr_global: size of the @global array
4796  */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)4797 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4798 			    struct sys_reg_params *params,
4799 			    const struct sys_reg_desc *global,
4800 			    size_t nr_global)
4801 {
4802 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
4803 
4804 	params->regval = vcpu_get_reg(vcpu, Rt);
4805 
4806 	if (emulate_cp(vcpu, params, global, nr_global)) {
4807 		if (!params->is_write)
4808 			vcpu_set_reg(vcpu, Rt, params->regval);
4809 		return 1;
4810 	}
4811 
4812 	unhandled_cp_access(vcpu, params);
4813 	return 1;
4814 }
4815 
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)4816 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4817 {
4818 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4819 }
4820 
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)4821 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4822 {
4823 	struct sys_reg_params params;
4824 
4825 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4826 
4827 	/*
4828 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4829 	 * system register table. Registers in the ID range where CRm=0 are
4830 	 * excluded from this scheme as they do not trivially map into AArch64
4831 	 * system register encodings, except for AIDR/REVIDR.
4832 	 */
4833 	if (params.Op1 == 0 && params.CRn == 0 &&
4834 	    (params.CRm || params.Op2 == 6 /* REVIDR */))
4835 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4836 	if (params.Op1 == 1 && params.CRn == 0 &&
4837 	    params.CRm == 0 && params.Op2 == 7 /* AIDR */)
4838 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4839 
4840 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
4841 }
4842 
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)4843 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4844 {
4845 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4846 }
4847 
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)4848 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4849 {
4850 	struct sys_reg_params params;
4851 
4852 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4853 
4854 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
4855 }
4856 
4857 /**
4858  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4859  * @vcpu: The VCPU pointer
4860  * @params: Decoded system register parameters
4861  *
4862  * Return: true if the system register access was successful, false otherwise.
4863  */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4864 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4865 			    struct sys_reg_params *params)
4866 {
4867 	const struct sys_reg_desc *r;
4868 
4869 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4870 	if (likely(r)) {
4871 		perform_access(vcpu, params, r);
4872 		return true;
4873 	}
4874 
4875 	print_sys_reg_msg(params,
4876 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4877 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4878 	kvm_inject_undefined(vcpu);
4879 
4880 	return false;
4881 }
4882 
idregs_debug_find(struct kvm * kvm,u8 pos)4883 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4884 {
4885 	unsigned long i, idreg_idx = 0;
4886 
4887 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4888 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4889 
4890 		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4891 			continue;
4892 
4893 		if (idreg_idx == pos)
4894 			return r;
4895 
4896 		idreg_idx++;
4897 	}
4898 
4899 	return NULL;
4900 }
4901 
idregs_debug_start(struct seq_file * s,loff_t * pos)4902 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4903 {
4904 	struct kvm *kvm = s->private;
4905 	u8 *iter;
4906 
4907 	mutex_lock(&kvm->arch.config_lock);
4908 
4909 	iter = &kvm->arch.idreg_debugfs_iter;
4910 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4911 	    *iter == (u8)~0) {
4912 		*iter = *pos;
4913 		if (!idregs_debug_find(kvm, *iter))
4914 			iter = NULL;
4915 	} else {
4916 		iter = ERR_PTR(-EBUSY);
4917 	}
4918 
4919 	mutex_unlock(&kvm->arch.config_lock);
4920 
4921 	return iter;
4922 }
4923 
idregs_debug_next(struct seq_file * s,void * v,loff_t * pos)4924 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4925 {
4926 	struct kvm *kvm = s->private;
4927 
4928 	(*pos)++;
4929 
4930 	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4931 		kvm->arch.idreg_debugfs_iter++;
4932 
4933 		return &kvm->arch.idreg_debugfs_iter;
4934 	}
4935 
4936 	return NULL;
4937 }
4938 
idregs_debug_stop(struct seq_file * s,void * v)4939 static void idregs_debug_stop(struct seq_file *s, void *v)
4940 {
4941 	struct kvm *kvm = s->private;
4942 
4943 	if (IS_ERR(v))
4944 		return;
4945 
4946 	mutex_lock(&kvm->arch.config_lock);
4947 
4948 	kvm->arch.idreg_debugfs_iter = ~0;
4949 
4950 	mutex_unlock(&kvm->arch.config_lock);
4951 }
4952 
idregs_debug_show(struct seq_file * s,void * v)4953 static int idregs_debug_show(struct seq_file *s, void *v)
4954 {
4955 	const struct sys_reg_desc *desc;
4956 	struct kvm *kvm = s->private;
4957 
4958 	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4959 
4960 	if (!desc->name)
4961 		return 0;
4962 
4963 	seq_printf(s, "%20s:\t%016llx\n",
4964 		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4965 
4966 	return 0;
4967 }
4968 
4969 static const struct seq_operations idregs_debug_sops = {
4970 	.start	= idregs_debug_start,
4971 	.next	= idregs_debug_next,
4972 	.stop	= idregs_debug_stop,
4973 	.show	= idregs_debug_show,
4974 };
4975 
4976 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4977 
kvm_sys_regs_create_debugfs(struct kvm * kvm)4978 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4979 {
4980 	kvm->arch.idreg_debugfs_iter = ~0;
4981 
4982 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4983 			    &idregs_debug_fops);
4984 }
4985 
reset_vm_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4986 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4987 {
4988 	u32 id = reg_to_encoding(reg);
4989 	struct kvm *kvm = vcpu->kvm;
4990 
4991 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4992 		return;
4993 
4994 	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4995 }
4996 
reset_vcpu_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4997 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4998 				  const struct sys_reg_desc *reg)
4999 {
5000 	if (kvm_vcpu_initialized(vcpu))
5001 		return;
5002 
5003 	reg->reset(vcpu, reg);
5004 }
5005 
5006 /**
5007  * kvm_reset_sys_regs - sets system registers to reset value
5008  * @vcpu: The VCPU pointer
5009  *
5010  * This function finds the right table above and sets the registers on the
5011  * virtual CPU struct to their architecturally defined reset values.
5012  */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)5013 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
5014 {
5015 	struct kvm *kvm = vcpu->kvm;
5016 	unsigned long i;
5017 
5018 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5019 		const struct sys_reg_desc *r = &sys_reg_descs[i];
5020 
5021 		if (!r->reset)
5022 			continue;
5023 
5024 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
5025 			reset_vm_ftr_id_reg(vcpu, r);
5026 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
5027 			reset_vcpu_ftr_id_reg(vcpu, r);
5028 		else
5029 			r->reset(vcpu, r);
5030 
5031 		if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
5032 			__vcpu_rmw_sys_reg(vcpu, r->reg, |=, 0);
5033 	}
5034 
5035 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
5036 
5037 	if (kvm_vcpu_has_pmu(vcpu))
5038 		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
5039 }
5040 
5041 /**
5042  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
5043  *			 trap on a guest execution
5044  * @vcpu: The VCPU pointer
5045  */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)5046 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
5047 {
5048 	const struct sys_reg_desc *desc = NULL;
5049 	struct sys_reg_params params;
5050 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
5051 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
5052 	int sr_idx;
5053 
5054 	trace_kvm_handle_sys_reg(esr);
5055 
5056 	if (triage_sysreg_trap(vcpu, &sr_idx))
5057 		return 1;
5058 
5059 	params = esr_sys64_to_params(esr);
5060 	params.regval = vcpu_get_reg(vcpu, Rt);
5061 
5062 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
5063 	if (params.Op0 == 2 || params.Op0 == 3)
5064 		desc = &sys_reg_descs[sr_idx];
5065 	else
5066 		desc = &sys_insn_descs[sr_idx];
5067 
5068 	perform_access(vcpu, &params, desc);
5069 
5070 	/* Read from system register? */
5071 	if (!params.is_write &&
5072 	    (params.Op0 == 2 || params.Op0 == 3))
5073 		vcpu_set_reg(vcpu, Rt, params.regval);
5074 
5075 	return 1;
5076 }
5077 
5078 /******************************************************************************
5079  * Userspace API
5080  *****************************************************************************/
5081 
index_to_params(u64 id,struct sys_reg_params * params)5082 static bool index_to_params(u64 id, struct sys_reg_params *params)
5083 {
5084 	switch (id & KVM_REG_SIZE_MASK) {
5085 	case KVM_REG_SIZE_U64:
5086 		/* Any unused index bits means it's not valid. */
5087 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
5088 			      | KVM_REG_ARM_COPROC_MASK
5089 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
5090 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
5091 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
5092 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
5093 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
5094 			return false;
5095 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
5096 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
5097 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
5098 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
5099 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
5100 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
5101 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
5102 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
5103 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
5104 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
5105 		return true;
5106 	default:
5107 		return false;
5108 	}
5109 }
5110 
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)5111 const struct sys_reg_desc *get_reg_by_id(u64 id,
5112 					 const struct sys_reg_desc table[],
5113 					 unsigned int num)
5114 {
5115 	struct sys_reg_params params;
5116 
5117 	if (!index_to_params(id, &params))
5118 		return NULL;
5119 
5120 	return find_reg(&params, table, num);
5121 }
5122 
5123 /* Decode an index value, and find the sys_reg_desc entry. */
5124 static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)5125 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
5126 		   const struct sys_reg_desc table[], unsigned int num)
5127 
5128 {
5129 	const struct sys_reg_desc *r;
5130 
5131 	/* We only do sys_reg for now. */
5132 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
5133 		return NULL;
5134 
5135 	r = get_reg_by_id(id, table, num);
5136 
5137 	/* Not saved in the sys_reg array and not otherwise accessible? */
5138 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
5139 		r = NULL;
5140 
5141 	return r;
5142 }
5143 
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)5144 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
5145 {
5146 	u32 val;
5147 	u32 __user *uval = uaddr;
5148 
5149 	/* Fail if we have unknown bits set. */
5150 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
5151 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
5152 		return -ENOENT;
5153 
5154 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
5155 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
5156 		if (KVM_REG_SIZE(id) != 4)
5157 			return -ENOENT;
5158 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
5159 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
5160 		if (val >= CSSELR_MAX)
5161 			return -ENOENT;
5162 
5163 		return put_user(get_ccsidr(vcpu, val), uval);
5164 	default:
5165 		return -ENOENT;
5166 	}
5167 }
5168 
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)5169 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
5170 {
5171 	u32 val, newval;
5172 	u32 __user *uval = uaddr;
5173 
5174 	/* Fail if we have unknown bits set. */
5175 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
5176 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
5177 		return -ENOENT;
5178 
5179 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
5180 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
5181 		if (KVM_REG_SIZE(id) != 4)
5182 			return -ENOENT;
5183 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
5184 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
5185 		if (val >= CSSELR_MAX)
5186 			return -ENOENT;
5187 
5188 		if (get_user(newval, uval))
5189 			return -EFAULT;
5190 
5191 		return set_ccsidr(vcpu, val, newval);
5192 	default:
5193 		return -ENOENT;
5194 	}
5195 }
5196 
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)5197 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
5198 			 const struct sys_reg_desc table[], unsigned int num)
5199 {
5200 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
5201 	const struct sys_reg_desc *r;
5202 	u64 val;
5203 	int ret;
5204 
5205 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
5206 	if (!r || sysreg_hidden(vcpu, r))
5207 		return -ENOENT;
5208 
5209 	if (r->get_user) {
5210 		ret = (r->get_user)(vcpu, r, &val);
5211 	} else {
5212 		val = __vcpu_sys_reg(vcpu, r->reg);
5213 		ret = 0;
5214 	}
5215 
5216 	if (!ret)
5217 		ret = put_user(val, uaddr);
5218 
5219 	return ret;
5220 }
5221 
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)5222 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
5223 {
5224 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
5225 
5226 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
5227 		return demux_c15_get(vcpu, reg->id, uaddr);
5228 
5229 	return kvm_sys_reg_get_user(vcpu, reg,
5230 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
5231 }
5232 
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)5233 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
5234 			 const struct sys_reg_desc table[], unsigned int num)
5235 {
5236 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
5237 	const struct sys_reg_desc *r;
5238 	u64 val;
5239 	int ret;
5240 
5241 	if (get_user(val, uaddr))
5242 		return -EFAULT;
5243 
5244 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
5245 	if (!r || sysreg_hidden(vcpu, r))
5246 		return -ENOENT;
5247 
5248 	if (sysreg_user_write_ignore(vcpu, r))
5249 		return 0;
5250 
5251 	if (r->set_user) {
5252 		ret = (r->set_user)(vcpu, r, val);
5253 	} else {
5254 		__vcpu_assign_sys_reg(vcpu, r->reg, val);
5255 		ret = 0;
5256 	}
5257 
5258 	return ret;
5259 }
5260 
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)5261 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
5262 {
5263 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
5264 
5265 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
5266 		return demux_c15_set(vcpu, reg->id, uaddr);
5267 
5268 	return kvm_sys_reg_set_user(vcpu, reg,
5269 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
5270 }
5271 
num_demux_regs(void)5272 static unsigned int num_demux_regs(void)
5273 {
5274 	return CSSELR_MAX;
5275 }
5276 
write_demux_regids(u64 __user * uindices)5277 static int write_demux_regids(u64 __user *uindices)
5278 {
5279 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
5280 	unsigned int i;
5281 
5282 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
5283 	for (i = 0; i < CSSELR_MAX; i++) {
5284 		if (put_user(val | i, uindices))
5285 			return -EFAULT;
5286 		uindices++;
5287 	}
5288 	return 0;
5289 }
5290 
sys_reg_to_index(const struct sys_reg_desc * reg)5291 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
5292 {
5293 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
5294 		KVM_REG_ARM64_SYSREG |
5295 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
5296 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
5297 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
5298 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
5299 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
5300 }
5301 
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)5302 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
5303 {
5304 	if (!*uind)
5305 		return true;
5306 
5307 	if (put_user(sys_reg_to_index(reg), *uind))
5308 		return false;
5309 
5310 	(*uind)++;
5311 	return true;
5312 }
5313 
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)5314 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
5315 			    const struct sys_reg_desc *rd,
5316 			    u64 __user **uind,
5317 			    unsigned int *total)
5318 {
5319 	/*
5320 	 * Ignore registers we trap but don't save,
5321 	 * and for which no custom user accessor is provided.
5322 	 */
5323 	if (!(rd->reg || rd->get_user))
5324 		return 0;
5325 
5326 	if (sysreg_hidden(vcpu, rd))
5327 		return 0;
5328 
5329 	if (!copy_reg_to_user(rd, uind))
5330 		return -EFAULT;
5331 
5332 	(*total)++;
5333 	return 0;
5334 }
5335 
5336 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)5337 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
5338 {
5339 	const struct sys_reg_desc *i2, *end2;
5340 	unsigned int total = 0;
5341 	int err;
5342 
5343 	i2 = sys_reg_descs;
5344 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
5345 
5346 	while (i2 != end2) {
5347 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
5348 		if (err)
5349 			return err;
5350 	}
5351 	return total;
5352 }
5353 
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)5354 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
5355 {
5356 	return num_demux_regs()
5357 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
5358 }
5359 
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)5360 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
5361 {
5362 	int err;
5363 
5364 	err = walk_sys_regs(vcpu, uindices);
5365 	if (err < 0)
5366 		return err;
5367 	uindices += err;
5368 
5369 	return write_demux_regids(uindices);
5370 }
5371 
5372 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
5373 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
5374 		sys_reg_Op1(r),					\
5375 		sys_reg_CRn(r),					\
5376 		sys_reg_CRm(r),					\
5377 		sys_reg_Op2(r))
5378 
kvm_vm_ioctl_get_reg_writable_masks(struct kvm * kvm,struct reg_mask_range * range)5379 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
5380 {
5381 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
5382 	u64 __user *masks = (u64 __user *)range->addr;
5383 
5384 	/* Only feature id range is supported, reserved[13] must be zero. */
5385 	if (range->range ||
5386 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
5387 		return -EINVAL;
5388 
5389 	/* Wipe the whole thing first */
5390 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
5391 		return -EFAULT;
5392 
5393 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5394 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
5395 		u32 encoding = reg_to_encoding(reg);
5396 		u64 val;
5397 
5398 		if (!is_feature_id_reg(encoding) || !reg->set_user)
5399 			continue;
5400 
5401 		if (!reg->val ||
5402 		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5403 			continue;
5404 		}
5405 		val = reg->val;
5406 
5407 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5408 			return -EFAULT;
5409 	}
5410 
5411 	return 0;
5412 }
5413 
vcpu_set_hcr(struct kvm_vcpu * vcpu)5414 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5415 {
5416 	struct kvm *kvm = vcpu->kvm;
5417 
5418 	if (has_vhe() || has_hvhe())
5419 		vcpu->arch.hcr_el2 |= HCR_E2H;
5420 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5421 		/* route synchronous external abort exceptions to EL2 */
5422 		vcpu->arch.hcr_el2 |= HCR_TEA;
5423 		/* trap error record accesses */
5424 		vcpu->arch.hcr_el2 |= HCR_TERR;
5425 	}
5426 
5427 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5428 		vcpu->arch.hcr_el2 |= HCR_FWB;
5429 
5430 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5431 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5432 	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5433 		vcpu->arch.hcr_el2 |= HCR_TID4;
5434 	else
5435 		vcpu->arch.hcr_el2 |= HCR_TID2;
5436 
5437 	if (vcpu_el1_is_32bit(vcpu))
5438 		vcpu->arch.hcr_el2 &= ~HCR_RW;
5439 
5440 	if (kvm_has_mte(vcpu->kvm))
5441 		vcpu->arch.hcr_el2 |= HCR_ATA;
5442 
5443 	/*
5444 	 * In the absence of FGT, we cannot independently trap TLBI
5445 	 * Range instructions. This isn't great, but trapping all
5446 	 * TLBIs would be far worse. Live with it...
5447 	 */
5448 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5449 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5450 }
5451 
kvm_calculate_traps(struct kvm_vcpu * vcpu)5452 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5453 {
5454 	struct kvm *kvm = vcpu->kvm;
5455 
5456 	mutex_lock(&kvm->arch.config_lock);
5457 	vcpu_set_hcr(vcpu);
5458 	vcpu_set_ich_hcr(vcpu);
5459 	vcpu_set_hcrx(vcpu);
5460 
5461 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5462 		goto out;
5463 
5464 	compute_fgu(kvm, HFGRTR_GROUP);
5465 	compute_fgu(kvm, HFGITR_GROUP);
5466 	compute_fgu(kvm, HDFGRTR_GROUP);
5467 	compute_fgu(kvm, HAFGRTR_GROUP);
5468 	compute_fgu(kvm, HFGRTR2_GROUP);
5469 	compute_fgu(kvm, HFGITR2_GROUP);
5470 	compute_fgu(kvm, HDFGRTR2_GROUP);
5471 
5472 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5473 out:
5474 	mutex_unlock(&kvm->arch.config_lock);
5475 }
5476 
5477 /*
5478  * Perform last adjustments to the ID registers that are implied by the
5479  * configuration outside of the ID regs themselves, as well as any
5480  * initialisation that directly depend on these ID registers (such as
5481  * RES0/RES1 behaviours). This is not the place to configure traps though.
5482  *
5483  * Because this can be called once per CPU, changes must be idempotent.
5484  */
kvm_finalize_sys_regs(struct kvm_vcpu * vcpu)5485 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5486 {
5487 	struct kvm *kvm = vcpu->kvm;
5488 
5489 	guard(mutex)(&kvm->arch.config_lock);
5490 
5491 	if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
5492 	      irqchip_in_kernel(kvm) &&
5493 	      kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
5494 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
5495 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
5496 	}
5497 
5498 	if (vcpu_has_nv(vcpu)) {
5499 		int ret = kvm_init_nv_sysregs(vcpu);
5500 		if (ret)
5501 			return ret;
5502 	}
5503 
5504 	return 0;
5505 }
5506 
kvm_sys_reg_table_init(void)5507 int __init kvm_sys_reg_table_init(void)
5508 {
5509 	const struct sys_reg_desc *gicv3_regs;
5510 	bool valid = true;
5511 	unsigned int i, sz;
5512 	int ret = 0;
5513 
5514 	/* Make sure tables are unique and in order. */
5515 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), true);
5516 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), false);
5517 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), false);
5518 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), false);
5519 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), false);
5520 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5521 
5522 	gicv3_regs = vgic_v3_get_sysreg_table(&sz);
5523 	valid &= check_sysreg_table(gicv3_regs, sz, false);
5524 
5525 	if (!valid)
5526 		return -EINVAL;
5527 
5528 	init_imp_id_regs();
5529 
5530 	ret = populate_nv_trap_config();
5531 
5532 	check_feature_map();
5533 
5534 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5535 		ret = populate_sysreg_config(sys_reg_descs + i, i);
5536 
5537 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5538 		ret = populate_sysreg_config(sys_insn_descs + i, i);
5539 
5540 	return ret;
5541 }
5542