1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 #include <linux/irqchip/arm-gic-v3.h>
21
22 #include <asm/arm_pmuv3.h>
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/esr.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/kvm_nested.h>
32 #include <asm/perf_event.h>
33 #include <asm/sysreg.h>
34
35 #include <trace/events/kvm.h>
36
37 #include "sys_regs.h"
38 #include "vgic/vgic.h"
39
40 #include "trace.h"
41
42 /*
43 * For AArch32, we only take care of what is being trapped. Anything
44 * that has to do with init and userspace access has to go via the
45 * 64bit interface.
46 */
47
48 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50 u64 val);
51
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)52 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53 const struct sys_reg_desc *r)
54 {
55 kvm_inject_undefined(vcpu);
56 return false;
57 }
58
bad_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r,const char * msg)59 static bool bad_trap(struct kvm_vcpu *vcpu,
60 struct sys_reg_params *params,
61 const struct sys_reg_desc *r,
62 const char *msg)
63 {
64 WARN_ONCE(1, "Unexpected %s\n", msg);
65 print_sys_reg_instr(params);
66 return undef_access(vcpu, params, r);
67 }
68
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)69 static bool read_from_write_only(struct kvm_vcpu *vcpu,
70 struct sys_reg_params *params,
71 const struct sys_reg_desc *r)
72 {
73 return bad_trap(vcpu, params, r,
74 "sys_reg read to write-only register");
75 }
76
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)77 static bool write_to_read_only(struct kvm_vcpu *vcpu,
78 struct sys_reg_params *params,
79 const struct sys_reg_desc *r)
80 {
81 return bad_trap(vcpu, params, r,
82 "sys_reg write to read-only register");
83 }
84
85 #define PURE_EL2_SYSREG(el2) \
86 case el2: { \
87 *el1r = el2; \
88 return true; \
89 }
90
91 #define MAPPED_EL2_SYSREG(el2, el1, fn) \
92 case el2: { \
93 *xlate = fn; \
94 *el1r = el1; \
95 return true; \
96 }
97
get_el2_to_el1_mapping(unsigned int reg,unsigned int * el1r,u64 (** xlate)(u64))98 static bool get_el2_to_el1_mapping(unsigned int reg,
99 unsigned int *el1r, u64 (**xlate)(u64))
100 {
101 switch (reg) {
102 PURE_EL2_SYSREG( VPIDR_EL2 );
103 PURE_EL2_SYSREG( VMPIDR_EL2 );
104 PURE_EL2_SYSREG( ACTLR_EL2 );
105 PURE_EL2_SYSREG( HCR_EL2 );
106 PURE_EL2_SYSREG( MDCR_EL2 );
107 PURE_EL2_SYSREG( HSTR_EL2 );
108 PURE_EL2_SYSREG( HACR_EL2 );
109 PURE_EL2_SYSREG( VTTBR_EL2 );
110 PURE_EL2_SYSREG( VTCR_EL2 );
111 PURE_EL2_SYSREG( TPIDR_EL2 );
112 PURE_EL2_SYSREG( HPFAR_EL2 );
113 PURE_EL2_SYSREG( HCRX_EL2 );
114 PURE_EL2_SYSREG( HFGRTR_EL2 );
115 PURE_EL2_SYSREG( HFGWTR_EL2 );
116 PURE_EL2_SYSREG( HFGITR_EL2 );
117 PURE_EL2_SYSREG( HDFGRTR_EL2 );
118 PURE_EL2_SYSREG( HDFGWTR_EL2 );
119 PURE_EL2_SYSREG( HAFGRTR_EL2 );
120 PURE_EL2_SYSREG( CNTVOFF_EL2 );
121 PURE_EL2_SYSREG( CNTHCTL_EL2 );
122 MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1,
123 translate_sctlr_el2_to_sctlr_el1 );
124 MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1,
125 translate_cptr_el2_to_cpacr_el1 );
126 MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1,
127 translate_ttbr0_el2_to_ttbr0_el1 );
128 MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL );
129 MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1,
130 translate_tcr_el2_to_tcr_el1 );
131 MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL );
132 MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL );
133 MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL );
134 MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL );
135 MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL );
136 MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL );
137 MAPPED_EL2_SYSREG(TCR2_EL2, TCR2_EL1, NULL );
138 MAPPED_EL2_SYSREG(PIR_EL2, PIR_EL1, NULL );
139 MAPPED_EL2_SYSREG(PIRE0_EL2, PIRE0_EL1, NULL );
140 MAPPED_EL2_SYSREG(POR_EL2, POR_EL1, NULL );
141 MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL );
142 MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL );
143 MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL );
144 MAPPED_EL2_SYSREG(ZCR_EL2, ZCR_EL1, NULL );
145 MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL );
146 MAPPED_EL2_SYSREG(SCTLR2_EL2, SCTLR2_EL1, NULL );
147 default:
148 return false;
149 }
150 }
151
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)152 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
153 {
154 u64 val = 0x8badf00d8badf00d;
155 u64 (*xlate)(u64) = NULL;
156 unsigned int el1r;
157
158 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
159 goto memory_read;
160
161 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
162 if (!is_hyp_ctxt(vcpu))
163 goto memory_read;
164
165 /*
166 * CNTHCTL_EL2 requires some special treatment to
167 * account for the bits that can be set via CNTKCTL_EL1.
168 */
169 switch (reg) {
170 case CNTHCTL_EL2:
171 if (vcpu_el2_e2h_is_set(vcpu)) {
172 val = read_sysreg_el1(SYS_CNTKCTL);
173 val &= CNTKCTL_VALID_BITS;
174 val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
175 return val;
176 }
177 break;
178 }
179
180 /*
181 * If this register does not have an EL1 counterpart,
182 * then read the stored EL2 version.
183 */
184 if (reg == el1r)
185 goto memory_read;
186
187 /*
188 * If we have a non-VHE guest and that the sysreg
189 * requires translation to be used at EL1, use the
190 * in-memory copy instead.
191 */
192 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
193 goto memory_read;
194
195 /* Get the current version of the EL1 counterpart. */
196 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
197 if (reg >= __SANITISED_REG_START__)
198 val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
199
200 return val;
201 }
202
203 /* EL1 register can't be on the CPU if the guest is in vEL2. */
204 if (unlikely(is_hyp_ctxt(vcpu)))
205 goto memory_read;
206
207 if (__vcpu_read_sys_reg_from_cpu(reg, &val))
208 return val;
209
210 memory_read:
211 return __vcpu_sys_reg(vcpu, reg);
212 }
213
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)214 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
215 {
216 u64 (*xlate)(u64) = NULL;
217 unsigned int el1r;
218
219 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
220 goto memory_write;
221
222 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
223 if (!is_hyp_ctxt(vcpu))
224 goto memory_write;
225
226 /*
227 * Always store a copy of the write to memory to avoid having
228 * to reverse-translate virtual EL2 system registers for a
229 * non-VHE guest hypervisor.
230 */
231 __vcpu_assign_sys_reg(vcpu, reg, val);
232
233 switch (reg) {
234 case CNTHCTL_EL2:
235 /*
236 * If E2H=0, CNHTCTL_EL2 is a pure shadow register.
237 * Otherwise, some of the bits are backed by
238 * CNTKCTL_EL1, while the rest is kept in memory.
239 * Yes, this is fun stuff.
240 */
241 if (vcpu_el2_e2h_is_set(vcpu))
242 write_sysreg_el1(val, SYS_CNTKCTL);
243 return;
244 }
245
246 /* No EL1 counterpart? We're done here.? */
247 if (reg == el1r)
248 return;
249
250 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
251 val = xlate(val);
252
253 /* Redirect this to the EL1 version of the register. */
254 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
255 return;
256 }
257
258 /* EL1 register can't be on the CPU if the guest is in vEL2. */
259 if (unlikely(is_hyp_ctxt(vcpu)))
260 goto memory_write;
261
262 if (__vcpu_write_sys_reg_to_cpu(val, reg))
263 return;
264
265 memory_write:
266 __vcpu_assign_sys_reg(vcpu, reg, val);
267 }
268
269 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
270 #define CSSELR_MAX 14
271
272 /*
273 * Returns the minimum line size for the selected cache, expressed as
274 * Log2(bytes).
275 */
get_min_cache_line_size(bool icache)276 static u8 get_min_cache_line_size(bool icache)
277 {
278 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
279 u8 field;
280
281 if (icache)
282 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
283 else
284 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
285
286 /*
287 * Cache line size is represented as Log2(words) in CTR_EL0.
288 * Log2(bytes) can be derived with the following:
289 *
290 * Log2(words) + 2 = Log2(bytes / 4) + 2
291 * = Log2(bytes) - 2 + 2
292 * = Log2(bytes)
293 */
294 return field + 2;
295 }
296
297 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)298 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
299 {
300 u8 line_size;
301
302 if (vcpu->arch.ccsidr)
303 return vcpu->arch.ccsidr[csselr];
304
305 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
306
307 /*
308 * Fabricate a CCSIDR value as the overriding value does not exist.
309 * The real CCSIDR value will not be used as it can vary by the
310 * physical CPU which the vcpu currently resides in.
311 *
312 * The line size is determined with get_min_cache_line_size(), which
313 * should be valid for all CPUs even if they have different cache
314 * configuration.
315 *
316 * The associativity bits are cleared, meaning the geometry of all data
317 * and unified caches (which are guaranteed to be PIPT and thus
318 * non-aliasing) are 1 set and 1 way.
319 * Guests should not be doing cache operations by set/way at all, and
320 * for this reason, we trap them and attempt to infer the intent, so
321 * that we can flush the entire guest's address space at the appropriate
322 * time. The exposed geometry minimizes the number of the traps.
323 * [If guests should attempt to infer aliasing properties from the
324 * geometry (which is not permitted by the architecture), they would
325 * only do so for virtually indexed caches.]
326 *
327 * We don't check if the cache level exists as it is allowed to return
328 * an UNKNOWN value if not.
329 */
330 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
331 }
332
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)333 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
334 {
335 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
336 u32 *ccsidr = vcpu->arch.ccsidr;
337 u32 i;
338
339 if ((val & CCSIDR_EL1_RES0) ||
340 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
341 return -EINVAL;
342
343 if (!ccsidr) {
344 if (val == get_ccsidr(vcpu, csselr))
345 return 0;
346
347 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
348 if (!ccsidr)
349 return -ENOMEM;
350
351 for (i = 0; i < CSSELR_MAX; i++)
352 ccsidr[i] = get_ccsidr(vcpu, i);
353
354 vcpu->arch.ccsidr = ccsidr;
355 }
356
357 ccsidr[csselr] = val;
358
359 return 0;
360 }
361
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)362 static bool access_rw(struct kvm_vcpu *vcpu,
363 struct sys_reg_params *p,
364 const struct sys_reg_desc *r)
365 {
366 if (p->is_write)
367 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
368 else
369 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
370
371 return true;
372 }
373
374 /*
375 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
376 */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)377 static bool access_dcsw(struct kvm_vcpu *vcpu,
378 struct sys_reg_params *p,
379 const struct sys_reg_desc *r)
380 {
381 if (!p->is_write)
382 return read_from_write_only(vcpu, p, r);
383
384 /*
385 * Only track S/W ops if we don't have FWB. It still indicates
386 * that the guest is a bit broken (S/W operations should only
387 * be done by firmware, knowing that there is only a single
388 * CPU left in the system, and certainly not from non-secure
389 * software).
390 */
391 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
392 kvm_set_way_flush(vcpu);
393
394 return true;
395 }
396
access_dcgsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)397 static bool access_dcgsw(struct kvm_vcpu *vcpu,
398 struct sys_reg_params *p,
399 const struct sys_reg_desc *r)
400 {
401 if (!kvm_has_mte(vcpu->kvm))
402 return undef_access(vcpu, p, r);
403
404 /* Treat MTE S/W ops as we treat the classic ones: with contempt */
405 return access_dcsw(vcpu, p, r);
406 }
407
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)408 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
409 {
410 switch (r->aarch32_map) {
411 case AA32_LO:
412 *mask = GENMASK_ULL(31, 0);
413 *shift = 0;
414 break;
415 case AA32_HI:
416 *mask = GENMASK_ULL(63, 32);
417 *shift = 32;
418 break;
419 default:
420 *mask = GENMASK_ULL(63, 0);
421 *shift = 0;
422 break;
423 }
424 }
425
426 /*
427 * Generic accessor for VM registers. Only called as long as HCR_TVM
428 * is set. If the guest enables the MMU, we stop trapping the VM
429 * sys_regs and leave it in complete control of the caches.
430 */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)431 static bool access_vm_reg(struct kvm_vcpu *vcpu,
432 struct sys_reg_params *p,
433 const struct sys_reg_desc *r)
434 {
435 bool was_enabled = vcpu_has_cache_enabled(vcpu);
436 u64 val, mask, shift;
437
438 BUG_ON(!p->is_write);
439
440 get_access_mask(r, &mask, &shift);
441
442 if (~mask) {
443 val = vcpu_read_sys_reg(vcpu, r->reg);
444 val &= ~mask;
445 } else {
446 val = 0;
447 }
448
449 val |= (p->regval & (mask >> shift)) << shift;
450 vcpu_write_sys_reg(vcpu, val, r->reg);
451
452 kvm_toggle_cache(vcpu, was_enabled);
453 return true;
454 }
455
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)456 static bool access_actlr(struct kvm_vcpu *vcpu,
457 struct sys_reg_params *p,
458 const struct sys_reg_desc *r)
459 {
460 u64 mask, shift;
461
462 if (p->is_write)
463 return ignore_write(vcpu, p);
464
465 get_access_mask(r, &mask, &shift);
466 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
467
468 return true;
469 }
470
471 /*
472 * Trap handler for the GICv3 SGI generation system register.
473 * Forward the request to the VGIC emulation.
474 * The cp15_64 code makes sure this automatically works
475 * for both AArch64 and AArch32 accesses.
476 */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)477 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
478 struct sys_reg_params *p,
479 const struct sys_reg_desc *r)
480 {
481 bool g1;
482
483 if (!kvm_has_gicv3(vcpu->kvm))
484 return undef_access(vcpu, p, r);
485
486 if (!p->is_write)
487 return read_from_write_only(vcpu, p, r);
488
489 /*
490 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
491 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
492 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
493 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
494 * group.
495 */
496 if (p->Op0 == 0) { /* AArch32 */
497 switch (p->Op1) {
498 default: /* Keep GCC quiet */
499 case 0: /* ICC_SGI1R */
500 g1 = true;
501 break;
502 case 1: /* ICC_ASGI1R */
503 case 2: /* ICC_SGI0R */
504 g1 = false;
505 break;
506 }
507 } else { /* AArch64 */
508 switch (p->Op2) {
509 default: /* Keep GCC quiet */
510 case 5: /* ICC_SGI1R_EL1 */
511 g1 = true;
512 break;
513 case 6: /* ICC_ASGI1R_EL1 */
514 case 7: /* ICC_SGI0R_EL1 */
515 g1 = false;
516 break;
517 }
518 }
519
520 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
521
522 return true;
523 }
524
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)525 static bool access_gic_sre(struct kvm_vcpu *vcpu,
526 struct sys_reg_params *p,
527 const struct sys_reg_desc *r)
528 {
529 if (!kvm_has_gicv3(vcpu->kvm))
530 return undef_access(vcpu, p, r);
531
532 if (p->is_write)
533 return ignore_write(vcpu, p);
534
535 if (p->Op1 == 4) { /* ICC_SRE_EL2 */
536 p->regval = KVM_ICC_SRE_EL2;
537 } else { /* ICC_SRE_EL1 */
538 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
539 }
540
541 return true;
542 }
543
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)544 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
545 struct sys_reg_params *p,
546 const struct sys_reg_desc *r)
547 {
548 if (p->is_write)
549 return ignore_write(vcpu, p);
550 else
551 return read_zero(vcpu, p);
552 }
553
554 /*
555 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
556 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
557 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
558 * treat it separately.
559 */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)560 static bool trap_loregion(struct kvm_vcpu *vcpu,
561 struct sys_reg_params *p,
562 const struct sys_reg_desc *r)
563 {
564 u32 sr = reg_to_encoding(r);
565
566 if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
567 return undef_access(vcpu, p, r);
568
569 if (p->is_write && sr == SYS_LORID_EL1)
570 return write_to_read_only(vcpu, p, r);
571
572 return trap_raz_wi(vcpu, p, r);
573 }
574
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)575 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
576 struct sys_reg_params *p,
577 const struct sys_reg_desc *r)
578 {
579 if (!p->is_write)
580 return read_from_write_only(vcpu, p, r);
581
582 kvm_debug_handle_oslar(vcpu, p->regval);
583 return true;
584 }
585
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)586 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
587 struct sys_reg_params *p,
588 const struct sys_reg_desc *r)
589 {
590 if (p->is_write)
591 return write_to_read_only(vcpu, p, r);
592
593 p->regval = __vcpu_sys_reg(vcpu, r->reg);
594 return true;
595 }
596
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)597 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
598 u64 val)
599 {
600 /*
601 * The only modifiable bit is the OSLK bit. Refuse the write if
602 * userspace attempts to change any other bit in the register.
603 */
604 if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
605 return -EINVAL;
606
607 __vcpu_assign_sys_reg(vcpu, rd->reg, val);
608 return 0;
609 }
610
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)611 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
612 struct sys_reg_params *p,
613 const struct sys_reg_desc *r)
614 {
615 if (p->is_write) {
616 return ignore_write(vcpu, p);
617 } else {
618 p->regval = read_sysreg(dbgauthstatus_el1);
619 return true;
620 }
621 }
622
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)623 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
624 struct sys_reg_params *p,
625 const struct sys_reg_desc *r)
626 {
627 access_rw(vcpu, p, r);
628
629 kvm_debug_set_guest_ownership(vcpu);
630 return true;
631 }
632
633 /*
634 * reg_to_dbg/dbg_to_reg
635 *
636 * A 32 bit write to a debug register leave top bits alone
637 * A 32 bit read from a debug register only returns the bottom bits
638 */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)639 static void reg_to_dbg(struct kvm_vcpu *vcpu,
640 struct sys_reg_params *p,
641 const struct sys_reg_desc *rd,
642 u64 *dbg_reg)
643 {
644 u64 mask, shift, val;
645
646 get_access_mask(rd, &mask, &shift);
647
648 val = *dbg_reg;
649 val &= ~mask;
650 val |= (p->regval & (mask >> shift)) << shift;
651 *dbg_reg = val;
652 }
653
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)654 static void dbg_to_reg(struct kvm_vcpu *vcpu,
655 struct sys_reg_params *p,
656 const struct sys_reg_desc *rd,
657 u64 *dbg_reg)
658 {
659 u64 mask, shift;
660
661 get_access_mask(rd, &mask, &shift);
662 p->regval = (*dbg_reg & mask) >> shift;
663 }
664
demux_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)665 static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
666 {
667 struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
668
669 switch (rd->Op2) {
670 case 0b100:
671 return &dbg->dbg_bvr[rd->CRm];
672 case 0b101:
673 return &dbg->dbg_bcr[rd->CRm];
674 case 0b110:
675 return &dbg->dbg_wvr[rd->CRm];
676 case 0b111:
677 return &dbg->dbg_wcr[rd->CRm];
678 default:
679 KVM_BUG_ON(1, vcpu->kvm);
680 return NULL;
681 }
682 }
683
trap_dbg_wb_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)684 static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
685 const struct sys_reg_desc *rd)
686 {
687 u64 *reg = demux_wb_reg(vcpu, rd);
688
689 if (!reg)
690 return false;
691
692 if (p->is_write)
693 reg_to_dbg(vcpu, p, rd, reg);
694 else
695 dbg_to_reg(vcpu, p, rd, reg);
696
697 kvm_debug_set_guest_ownership(vcpu);
698 return true;
699 }
700
set_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)701 static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
702 u64 val)
703 {
704 u64 *reg = demux_wb_reg(vcpu, rd);
705
706 if (!reg)
707 return -EINVAL;
708
709 *reg = val;
710 return 0;
711 }
712
get_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)713 static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
714 u64 *val)
715 {
716 u64 *reg = demux_wb_reg(vcpu, rd);
717
718 if (!reg)
719 return -EINVAL;
720
721 *val = *reg;
722 return 0;
723 }
724
reset_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)725 static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
726 {
727 u64 *reg = demux_wb_reg(vcpu, rd);
728
729 /*
730 * Bail early if we couldn't find storage for the register, the
731 * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
732 * being run.
733 */
734 if (!reg)
735 return 0;
736
737 *reg = rd->val;
738 return rd->val;
739 }
740
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)741 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
742 {
743 u64 amair = read_sysreg(amair_el1);
744 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
745 return amair;
746 }
747
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)748 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
749 {
750 u64 actlr = read_sysreg(actlr_el1);
751 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
752 return actlr;
753 }
754
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)755 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
756 {
757 u64 mpidr;
758
759 /*
760 * Map the vcpu_id into the first three affinity level fields of
761 * the MPIDR. We limit the number of VCPUs in level 0 due to a
762 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
763 * of the GICv3 to be able to address each CPU directly when
764 * sending IPIs.
765 */
766 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
767 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
768 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
769 mpidr |= (1ULL << 31);
770 vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
771
772 return mpidr;
773 }
774
hidden_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)775 static unsigned int hidden_visibility(const struct kvm_vcpu *vcpu,
776 const struct sys_reg_desc *r)
777 {
778 return REG_HIDDEN;
779 }
780
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)781 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
782 const struct sys_reg_desc *r)
783 {
784 if (kvm_vcpu_has_pmu(vcpu))
785 return 0;
786
787 return REG_HIDDEN;
788 }
789
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)790 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
791 {
792 u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
793 u8 n = vcpu->kvm->arch.nr_pmu_counters;
794
795 if (n)
796 mask |= GENMASK(n - 1, 0);
797
798 reset_unknown(vcpu, r);
799 __vcpu_rmw_sys_reg(vcpu, r->reg, &=, mask);
800
801 return __vcpu_sys_reg(vcpu, r->reg);
802 }
803
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)804 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
805 {
806 reset_unknown(vcpu, r);
807 __vcpu_rmw_sys_reg(vcpu, r->reg, &=, GENMASK(31, 0));
808
809 return __vcpu_sys_reg(vcpu, r->reg);
810 }
811
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)812 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
813 {
814 /* This thing will UNDEF, who cares about the reset value? */
815 if (!kvm_vcpu_has_pmu(vcpu))
816 return 0;
817
818 reset_unknown(vcpu, r);
819 __vcpu_rmw_sys_reg(vcpu, r->reg, &=, kvm_pmu_evtyper_mask(vcpu->kvm));
820
821 return __vcpu_sys_reg(vcpu, r->reg);
822 }
823
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)824 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
825 {
826 reset_unknown(vcpu, r);
827 __vcpu_rmw_sys_reg(vcpu, r->reg, &=, PMSELR_EL0_SEL_MASK);
828
829 return __vcpu_sys_reg(vcpu, r->reg);
830 }
831
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)832 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
833 {
834 u64 pmcr = 0;
835
836 if (!kvm_supports_32bit_el0())
837 pmcr |= ARMV8_PMU_PMCR_LC;
838
839 /*
840 * The value of PMCR.N field is included when the
841 * vCPU register is read via kvm_vcpu_read_pmcr().
842 */
843 __vcpu_assign_sys_reg(vcpu, r->reg, pmcr);
844
845 return __vcpu_sys_reg(vcpu, r->reg);
846 }
847
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)848 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
849 {
850 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
851 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
852
853 if (!enabled)
854 kvm_inject_undefined(vcpu);
855
856 return !enabled;
857 }
858
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)859 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
860 {
861 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
862 }
863
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)864 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
865 {
866 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
867 }
868
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)869 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
870 {
871 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
872 }
873
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)874 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
875 {
876 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
877 }
878
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)879 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
880 const struct sys_reg_desc *r)
881 {
882 u64 val;
883
884 if (pmu_access_el0_disabled(vcpu))
885 return false;
886
887 if (p->is_write) {
888 /*
889 * Only update writeable bits of PMCR (continuing into
890 * kvm_pmu_handle_pmcr() as well)
891 */
892 val = kvm_vcpu_read_pmcr(vcpu);
893 val &= ~ARMV8_PMU_PMCR_MASK;
894 val |= p->regval & ARMV8_PMU_PMCR_MASK;
895 if (!kvm_supports_32bit_el0())
896 val |= ARMV8_PMU_PMCR_LC;
897 kvm_pmu_handle_pmcr(vcpu, val);
898 } else {
899 /* PMCR.P & PMCR.C are RAZ */
900 val = kvm_vcpu_read_pmcr(vcpu)
901 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
902 p->regval = val;
903 }
904
905 return true;
906 }
907
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)908 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
909 const struct sys_reg_desc *r)
910 {
911 if (pmu_access_event_counter_el0_disabled(vcpu))
912 return false;
913
914 if (p->is_write)
915 __vcpu_assign_sys_reg(vcpu, PMSELR_EL0, p->regval);
916 else
917 /* return PMSELR.SEL field */
918 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
919 & PMSELR_EL0_SEL_MASK;
920
921 return true;
922 }
923
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)924 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
925 const struct sys_reg_desc *r)
926 {
927 u64 pmceid, mask, shift;
928
929 BUG_ON(p->is_write);
930
931 if (pmu_access_el0_disabled(vcpu))
932 return false;
933
934 get_access_mask(r, &mask, &shift);
935
936 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
937 pmceid &= mask;
938 pmceid >>= shift;
939
940 p->regval = pmceid;
941
942 return true;
943 }
944
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)945 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
946 {
947 u64 pmcr, val;
948
949 pmcr = kvm_vcpu_read_pmcr(vcpu);
950 val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
951 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
952 kvm_inject_undefined(vcpu);
953 return false;
954 }
955
956 return true;
957 }
958
get_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)959 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
960 u64 *val)
961 {
962 u64 idx;
963
964 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
965 /* PMCCNTR_EL0 */
966 idx = ARMV8_PMU_CYCLE_IDX;
967 else
968 /* PMEVCNTRn_EL0 */
969 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
970
971 *val = kvm_pmu_get_counter_value(vcpu, idx);
972 return 0;
973 }
974
set_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)975 static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
976 u64 val)
977 {
978 u64 idx;
979
980 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
981 /* PMCCNTR_EL0 */
982 idx = ARMV8_PMU_CYCLE_IDX;
983 else
984 /* PMEVCNTRn_EL0 */
985 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
986
987 kvm_pmu_set_counter_value_user(vcpu, idx, val);
988 return 0;
989 }
990
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)991 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
992 struct sys_reg_params *p,
993 const struct sys_reg_desc *r)
994 {
995 u64 idx = ~0UL;
996
997 if (r->CRn == 9 && r->CRm == 13) {
998 if (r->Op2 == 2) {
999 /* PMXEVCNTR_EL0 */
1000 if (pmu_access_event_counter_el0_disabled(vcpu))
1001 return false;
1002
1003 idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
1004 __vcpu_sys_reg(vcpu, PMSELR_EL0));
1005 } else if (r->Op2 == 0) {
1006 /* PMCCNTR_EL0 */
1007 if (pmu_access_cycle_counter_el0_disabled(vcpu))
1008 return false;
1009
1010 idx = ARMV8_PMU_CYCLE_IDX;
1011 }
1012 } else if (r->CRn == 0 && r->CRm == 9) {
1013 /* PMCCNTR */
1014 if (pmu_access_event_counter_el0_disabled(vcpu))
1015 return false;
1016
1017 idx = ARMV8_PMU_CYCLE_IDX;
1018 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1019 /* PMEVCNTRn_EL0 */
1020 if (pmu_access_event_counter_el0_disabled(vcpu))
1021 return false;
1022
1023 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1024 }
1025
1026 /* Catch any decoding mistake */
1027 WARN_ON(idx == ~0UL);
1028
1029 if (!pmu_counter_idx_valid(vcpu, idx))
1030 return false;
1031
1032 if (p->is_write) {
1033 if (pmu_access_el0_disabled(vcpu))
1034 return false;
1035
1036 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1037 } else {
1038 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1039 }
1040
1041 return true;
1042 }
1043
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1044 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1045 const struct sys_reg_desc *r)
1046 {
1047 u64 idx, reg;
1048
1049 if (pmu_access_el0_disabled(vcpu))
1050 return false;
1051
1052 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1053 /* PMXEVTYPER_EL0 */
1054 idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1055 reg = PMEVTYPER0_EL0 + idx;
1056 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1057 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1058 if (idx == ARMV8_PMU_CYCLE_IDX)
1059 reg = PMCCFILTR_EL0;
1060 else
1061 /* PMEVTYPERn_EL0 */
1062 reg = PMEVTYPER0_EL0 + idx;
1063 } else {
1064 BUG();
1065 }
1066
1067 if (!pmu_counter_idx_valid(vcpu, idx))
1068 return false;
1069
1070 if (p->is_write) {
1071 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1072 kvm_vcpu_pmu_restore_guest(vcpu);
1073 } else {
1074 p->regval = __vcpu_sys_reg(vcpu, reg);
1075 }
1076
1077 return true;
1078 }
1079
set_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1080 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1081 {
1082 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1083
1084 __vcpu_assign_sys_reg(vcpu, r->reg, val & mask);
1085 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1086
1087 return 0;
1088 }
1089
get_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1090 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1091 {
1092 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1093
1094 *val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1095 return 0;
1096 }
1097
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1098 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1099 const struct sys_reg_desc *r)
1100 {
1101 u64 val, mask;
1102
1103 if (pmu_access_el0_disabled(vcpu))
1104 return false;
1105
1106 mask = kvm_pmu_accessible_counter_mask(vcpu);
1107 if (p->is_write) {
1108 val = p->regval & mask;
1109 if (r->Op2 & 0x1)
1110 /* accessing PMCNTENSET_EL0 */
1111 __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, |=, val);
1112 else
1113 /* accessing PMCNTENCLR_EL0 */
1114 __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, ~val);
1115
1116 kvm_pmu_reprogram_counter_mask(vcpu, val);
1117 } else {
1118 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1119 }
1120
1121 return true;
1122 }
1123
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1124 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1125 const struct sys_reg_desc *r)
1126 {
1127 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1128
1129 if (check_pmu_access_disabled(vcpu, 0))
1130 return false;
1131
1132 if (p->is_write) {
1133 u64 val = p->regval & mask;
1134
1135 if (r->Op2 & 0x1)
1136 /* accessing PMINTENSET_EL1 */
1137 __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, |=, val);
1138 else
1139 /* accessing PMINTENCLR_EL1 */
1140 __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, ~val);
1141 } else {
1142 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1143 }
1144
1145 return true;
1146 }
1147
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1148 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1149 const struct sys_reg_desc *r)
1150 {
1151 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1152
1153 if (pmu_access_el0_disabled(vcpu))
1154 return false;
1155
1156 if (p->is_write) {
1157 if (r->CRm & 0x2)
1158 /* accessing PMOVSSET_EL0 */
1159 __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, (p->regval & mask));
1160 else
1161 /* accessing PMOVSCLR_EL0 */
1162 __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, ~(p->regval & mask));
1163 } else {
1164 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1165 }
1166
1167 return true;
1168 }
1169
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1170 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1171 const struct sys_reg_desc *r)
1172 {
1173 u64 mask;
1174
1175 if (!p->is_write)
1176 return read_from_write_only(vcpu, p, r);
1177
1178 if (pmu_write_swinc_el0_disabled(vcpu))
1179 return false;
1180
1181 mask = kvm_pmu_accessible_counter_mask(vcpu);
1182 kvm_pmu_software_increment(vcpu, p->regval & mask);
1183 return true;
1184 }
1185
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1186 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1187 const struct sys_reg_desc *r)
1188 {
1189 if (p->is_write) {
1190 if (!vcpu_mode_priv(vcpu))
1191 return undef_access(vcpu, p, r);
1192
1193 __vcpu_assign_sys_reg(vcpu, PMUSERENR_EL0,
1194 (p->regval & ARMV8_PMU_USERENR_MASK));
1195 } else {
1196 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1197 & ARMV8_PMU_USERENR_MASK;
1198 }
1199
1200 return true;
1201 }
1202
get_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1203 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1204 u64 *val)
1205 {
1206 *val = kvm_vcpu_read_pmcr(vcpu);
1207 return 0;
1208 }
1209
set_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1210 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1211 u64 val)
1212 {
1213 u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1214 struct kvm *kvm = vcpu->kvm;
1215
1216 mutex_lock(&kvm->arch.config_lock);
1217
1218 /*
1219 * The vCPU can't have more counters than the PMU hardware
1220 * implements. Ignore this error to maintain compatibility
1221 * with the existing KVM behavior.
1222 */
1223 if (!kvm_vm_has_ran_once(kvm) &&
1224 !vcpu_has_nv(vcpu) &&
1225 new_n <= kvm_arm_pmu_get_max_counters(kvm))
1226 kvm->arch.nr_pmu_counters = new_n;
1227
1228 mutex_unlock(&kvm->arch.config_lock);
1229
1230 /*
1231 * Ignore writes to RES0 bits, read only bits that are cleared on
1232 * vCPU reset, and writable bits that KVM doesn't support yet.
1233 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1234 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1235 * But, we leave the bit as it is here, as the vCPU's PMUver might
1236 * be changed later (NOTE: the bit will be cleared on first vCPU run
1237 * if necessary).
1238 */
1239 val &= ARMV8_PMU_PMCR_MASK;
1240
1241 /* The LC bit is RES1 when AArch32 is not supported */
1242 if (!kvm_supports_32bit_el0())
1243 val |= ARMV8_PMU_PMCR_LC;
1244
1245 __vcpu_assign_sys_reg(vcpu, r->reg, val);
1246 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1247
1248 return 0;
1249 }
1250
1251 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1252 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1253 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1254 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1255 get_dbg_wb_reg, set_dbg_wb_reg }, \
1256 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1257 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1258 get_dbg_wb_reg, set_dbg_wb_reg }, \
1259 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1260 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1261 get_dbg_wb_reg, set_dbg_wb_reg }, \
1262 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1263 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1264 get_dbg_wb_reg, set_dbg_wb_reg }
1265
1266 #define PMU_SYS_REG(name) \
1267 SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
1268 .visibility = pmu_visibility
1269
1270 /* Macro to expand the PMEVCNTRn_EL0 register */
1271 #define PMU_PMEVCNTR_EL0(n) \
1272 { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
1273 .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
1274 .set_user = set_pmu_evcntr, \
1275 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1276
1277 /* Macro to expand the PMEVTYPERn_EL0 register */
1278 #define PMU_PMEVTYPER_EL0(n) \
1279 { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
1280 .reset = reset_pmevtyper, \
1281 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1282
1283 /* Macro to expand the AMU counter and type registers*/
1284 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1285 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1286 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1287 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1288
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1289 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1290 const struct sys_reg_desc *rd)
1291 {
1292 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1293 }
1294
1295 /*
1296 * If we land here on a PtrAuth access, that is because we didn't
1297 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1298 * way this happens is when the guest does not have PtrAuth support
1299 * enabled.
1300 */
1301 #define __PTRAUTH_KEY(k) \
1302 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1303 .visibility = ptrauth_visibility}
1304
1305 #define PTRAUTH_KEY(k) \
1306 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1307 __PTRAUTH_KEY(k ## KEYHI_EL1)
1308
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1309 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1310 struct sys_reg_params *p,
1311 const struct sys_reg_desc *r)
1312 {
1313 enum kvm_arch_timers tmr;
1314 enum kvm_arch_timer_regs treg;
1315 u64 reg = reg_to_encoding(r);
1316
1317 switch (reg) {
1318 case SYS_CNTP_TVAL_EL0:
1319 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1320 tmr = TIMER_HPTIMER;
1321 else
1322 tmr = TIMER_PTIMER;
1323 treg = TIMER_REG_TVAL;
1324 break;
1325
1326 case SYS_CNTV_TVAL_EL0:
1327 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1328 tmr = TIMER_HVTIMER;
1329 else
1330 tmr = TIMER_VTIMER;
1331 treg = TIMER_REG_TVAL;
1332 break;
1333
1334 case SYS_AARCH32_CNTP_TVAL:
1335 case SYS_CNTP_TVAL_EL02:
1336 tmr = TIMER_PTIMER;
1337 treg = TIMER_REG_TVAL;
1338 break;
1339
1340 case SYS_CNTV_TVAL_EL02:
1341 tmr = TIMER_VTIMER;
1342 treg = TIMER_REG_TVAL;
1343 break;
1344
1345 case SYS_CNTHP_TVAL_EL2:
1346 tmr = TIMER_HPTIMER;
1347 treg = TIMER_REG_TVAL;
1348 break;
1349
1350 case SYS_CNTHV_TVAL_EL2:
1351 tmr = TIMER_HVTIMER;
1352 treg = TIMER_REG_TVAL;
1353 break;
1354
1355 case SYS_CNTP_CTL_EL0:
1356 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1357 tmr = TIMER_HPTIMER;
1358 else
1359 tmr = TIMER_PTIMER;
1360 treg = TIMER_REG_CTL;
1361 break;
1362
1363 case SYS_CNTV_CTL_EL0:
1364 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1365 tmr = TIMER_HVTIMER;
1366 else
1367 tmr = TIMER_VTIMER;
1368 treg = TIMER_REG_CTL;
1369 break;
1370
1371 case SYS_AARCH32_CNTP_CTL:
1372 case SYS_CNTP_CTL_EL02:
1373 tmr = TIMER_PTIMER;
1374 treg = TIMER_REG_CTL;
1375 break;
1376
1377 case SYS_CNTV_CTL_EL02:
1378 tmr = TIMER_VTIMER;
1379 treg = TIMER_REG_CTL;
1380 break;
1381
1382 case SYS_CNTHP_CTL_EL2:
1383 tmr = TIMER_HPTIMER;
1384 treg = TIMER_REG_CTL;
1385 break;
1386
1387 case SYS_CNTHV_CTL_EL2:
1388 tmr = TIMER_HVTIMER;
1389 treg = TIMER_REG_CTL;
1390 break;
1391
1392 case SYS_CNTP_CVAL_EL0:
1393 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1394 tmr = TIMER_HPTIMER;
1395 else
1396 tmr = TIMER_PTIMER;
1397 treg = TIMER_REG_CVAL;
1398 break;
1399
1400 case SYS_CNTV_CVAL_EL0:
1401 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1402 tmr = TIMER_HVTIMER;
1403 else
1404 tmr = TIMER_VTIMER;
1405 treg = TIMER_REG_CVAL;
1406 break;
1407
1408 case SYS_AARCH32_CNTP_CVAL:
1409 case SYS_CNTP_CVAL_EL02:
1410 tmr = TIMER_PTIMER;
1411 treg = TIMER_REG_CVAL;
1412 break;
1413
1414 case SYS_CNTV_CVAL_EL02:
1415 tmr = TIMER_VTIMER;
1416 treg = TIMER_REG_CVAL;
1417 break;
1418
1419 case SYS_CNTHP_CVAL_EL2:
1420 tmr = TIMER_HPTIMER;
1421 treg = TIMER_REG_CVAL;
1422 break;
1423
1424 case SYS_CNTHV_CVAL_EL2:
1425 tmr = TIMER_HVTIMER;
1426 treg = TIMER_REG_CVAL;
1427 break;
1428
1429 case SYS_CNTPCT_EL0:
1430 case SYS_CNTPCTSS_EL0:
1431 if (is_hyp_ctxt(vcpu))
1432 tmr = TIMER_HPTIMER;
1433 else
1434 tmr = TIMER_PTIMER;
1435 treg = TIMER_REG_CNT;
1436 break;
1437
1438 case SYS_AARCH32_CNTPCT:
1439 case SYS_AARCH32_CNTPCTSS:
1440 tmr = TIMER_PTIMER;
1441 treg = TIMER_REG_CNT;
1442 break;
1443
1444 case SYS_CNTVCT_EL0:
1445 case SYS_CNTVCTSS_EL0:
1446 if (is_hyp_ctxt(vcpu))
1447 tmr = TIMER_HVTIMER;
1448 else
1449 tmr = TIMER_VTIMER;
1450 treg = TIMER_REG_CNT;
1451 break;
1452
1453 case SYS_AARCH32_CNTVCT:
1454 case SYS_AARCH32_CNTVCTSS:
1455 tmr = TIMER_VTIMER;
1456 treg = TIMER_REG_CNT;
1457 break;
1458
1459 default:
1460 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1461 return undef_access(vcpu, p, r);
1462 }
1463
1464 if (p->is_write)
1465 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1466 else
1467 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1468
1469 return true;
1470 }
1471
access_hv_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1472 static bool access_hv_timer(struct kvm_vcpu *vcpu,
1473 struct sys_reg_params *p,
1474 const struct sys_reg_desc *r)
1475 {
1476 if (!vcpu_el2_e2h_is_set(vcpu))
1477 return undef_access(vcpu, p, r);
1478
1479 return access_arch_timer(vcpu, p, r);
1480 }
1481
kvm_arm64_ftr_safe_value(u32 id,const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)1482 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1483 s64 new, s64 cur)
1484 {
1485 struct arm64_ftr_bits kvm_ftr = *ftrp;
1486
1487 /* Some features have different safe value type in KVM than host features */
1488 switch (id) {
1489 case SYS_ID_AA64DFR0_EL1:
1490 switch (kvm_ftr.shift) {
1491 case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1492 kvm_ftr.type = FTR_LOWER_SAFE;
1493 break;
1494 case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1495 kvm_ftr.type = FTR_LOWER_SAFE;
1496 break;
1497 }
1498 break;
1499 case SYS_ID_DFR0_EL1:
1500 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1501 kvm_ftr.type = FTR_LOWER_SAFE;
1502 break;
1503 }
1504
1505 return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1506 }
1507
1508 /*
1509 * arm64_check_features() - Check if a feature register value constitutes
1510 * a subset of features indicated by the idreg's KVM sanitised limit.
1511 *
1512 * This function will check if each feature field of @val is the "safe" value
1513 * against idreg's KVM sanitised limit return from reset() callback.
1514 * If a field value in @val is the same as the one in limit, it is always
1515 * considered the safe value regardless For register fields that are not in
1516 * writable, only the value in limit is considered the safe value.
1517 *
1518 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1519 */
arm64_check_features(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1520 static int arm64_check_features(struct kvm_vcpu *vcpu,
1521 const struct sys_reg_desc *rd,
1522 u64 val)
1523 {
1524 const struct arm64_ftr_reg *ftr_reg;
1525 const struct arm64_ftr_bits *ftrp = NULL;
1526 u32 id = reg_to_encoding(rd);
1527 u64 writable_mask = rd->val;
1528 u64 limit = rd->reset(vcpu, rd);
1529 u64 mask = 0;
1530
1531 /*
1532 * Hidden and unallocated ID registers may not have a corresponding
1533 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1534 * only safe value is 0.
1535 */
1536 if (sysreg_visible_as_raz(vcpu, rd))
1537 return val ? -E2BIG : 0;
1538
1539 ftr_reg = get_arm64_ftr_reg(id);
1540 if (!ftr_reg)
1541 return -EINVAL;
1542
1543 ftrp = ftr_reg->ftr_bits;
1544
1545 for (; ftrp && ftrp->width; ftrp++) {
1546 s64 f_val, f_lim, safe_val;
1547 u64 ftr_mask;
1548
1549 ftr_mask = arm64_ftr_mask(ftrp);
1550 if ((ftr_mask & writable_mask) != ftr_mask)
1551 continue;
1552
1553 f_val = arm64_ftr_value(ftrp, val);
1554 f_lim = arm64_ftr_value(ftrp, limit);
1555 mask |= ftr_mask;
1556
1557 if (f_val == f_lim)
1558 safe_val = f_val;
1559 else
1560 safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1561
1562 if (safe_val != f_val)
1563 return -E2BIG;
1564 }
1565
1566 /* For fields that are not writable, values in limit are the safe values. */
1567 if ((val & ~mask) != (limit & ~mask))
1568 return -E2BIG;
1569
1570 return 0;
1571 }
1572
pmuver_to_perfmon(u8 pmuver)1573 static u8 pmuver_to_perfmon(u8 pmuver)
1574 {
1575 switch (pmuver) {
1576 case ID_AA64DFR0_EL1_PMUVer_IMP:
1577 return ID_DFR0_EL1_PerfMon_PMUv3;
1578 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1579 return ID_DFR0_EL1_PerfMon_IMPDEF;
1580 default:
1581 /* Anything ARMv8.1+ and NI have the same value. For now. */
1582 return pmuver;
1583 }
1584 }
1585
1586 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1587 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1588
1589 /* Read a sanitised cpufeature ID register by sys_reg_desc */
__kvm_read_sanitised_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1590 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1591 const struct sys_reg_desc *r)
1592 {
1593 u32 id = reg_to_encoding(r);
1594 u64 val;
1595
1596 if (sysreg_visible_as_raz(vcpu, r))
1597 return 0;
1598
1599 val = read_sanitised_ftr_reg(id);
1600
1601 switch (id) {
1602 case SYS_ID_AA64DFR0_EL1:
1603 val = sanitise_id_aa64dfr0_el1(vcpu, val);
1604 break;
1605 case SYS_ID_AA64PFR0_EL1:
1606 val = sanitise_id_aa64pfr0_el1(vcpu, val);
1607 break;
1608 case SYS_ID_AA64PFR1_EL1:
1609 if (!kvm_has_mte(vcpu->kvm)) {
1610 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1611 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
1612 }
1613
1614 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1615 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
1616 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
1617 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
1618 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
1619 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
1620 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
1621 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
1622 break;
1623 case SYS_ID_AA64PFR2_EL1:
1624 val &= ID_AA64PFR2_EL1_FPMR |
1625 (kvm_has_mte(vcpu->kvm) ?
1626 ID_AA64PFR2_EL1_MTEFAR | ID_AA64PFR2_EL1_MTESTOREONLY :
1627 0);
1628 break;
1629 case SYS_ID_AA64ISAR1_EL1:
1630 if (!vcpu_has_ptrauth(vcpu))
1631 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1632 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1633 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1634 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1635 break;
1636 case SYS_ID_AA64ISAR2_EL1:
1637 if (!vcpu_has_ptrauth(vcpu))
1638 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1639 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1640 if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1641 has_broken_cntvoff())
1642 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1643 break;
1644 case SYS_ID_AA64ISAR3_EL1:
1645 val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
1646 break;
1647 case SYS_ID_AA64MMFR2_EL1:
1648 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1649 val &= ~ID_AA64MMFR2_EL1_NV;
1650 break;
1651 case SYS_ID_AA64MMFR3_EL1:
1652 val &= ID_AA64MMFR3_EL1_TCRX |
1653 ID_AA64MMFR3_EL1_SCTLRX |
1654 ID_AA64MMFR3_EL1_S1POE |
1655 ID_AA64MMFR3_EL1_S1PIE;
1656 break;
1657 case SYS_ID_MMFR4_EL1:
1658 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1659 break;
1660 }
1661
1662 if (vcpu_has_nv(vcpu))
1663 val = limit_nv_id_reg(vcpu->kvm, id, val);
1664
1665 return val;
1666 }
1667
kvm_read_sanitised_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1668 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1669 const struct sys_reg_desc *r)
1670 {
1671 return __kvm_read_sanitised_id_reg(vcpu, r);
1672 }
1673
read_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1674 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1675 {
1676 return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1677 }
1678
is_feature_id_reg(u32 encoding)1679 static bool is_feature_id_reg(u32 encoding)
1680 {
1681 return (sys_reg_Op0(encoding) == 3 &&
1682 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1683 sys_reg_CRn(encoding) == 0 &&
1684 sys_reg_CRm(encoding) <= 7);
1685 }
1686
1687 /*
1688 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1689 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1690 * registers KVM maintains on a per-VM basis.
1691 *
1692 * Additionally, the implementation ID registers and CTR_EL0 are handled as
1693 * per-VM registers.
1694 */
is_vm_ftr_id_reg(u32 id)1695 static inline bool is_vm_ftr_id_reg(u32 id)
1696 {
1697 switch (id) {
1698 case SYS_CTR_EL0:
1699 case SYS_MIDR_EL1:
1700 case SYS_REVIDR_EL1:
1701 case SYS_AIDR_EL1:
1702 return true;
1703 default:
1704 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1705 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1706 sys_reg_CRm(id) < 8);
1707
1708 }
1709 }
1710
is_vcpu_ftr_id_reg(u32 id)1711 static inline bool is_vcpu_ftr_id_reg(u32 id)
1712 {
1713 return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1714 }
1715
is_aa32_id_reg(u32 id)1716 static inline bool is_aa32_id_reg(u32 id)
1717 {
1718 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1719 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1720 sys_reg_CRm(id) <= 3);
1721 }
1722
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1723 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1724 const struct sys_reg_desc *r)
1725 {
1726 u32 id = reg_to_encoding(r);
1727
1728 switch (id) {
1729 case SYS_ID_AA64ZFR0_EL1:
1730 if (!vcpu_has_sve(vcpu))
1731 return REG_RAZ;
1732 break;
1733 }
1734
1735 return 0;
1736 }
1737
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1738 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1739 const struct sys_reg_desc *r)
1740 {
1741 /*
1742 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1743 * EL. Promote to RAZ/WI in order to guarantee consistency between
1744 * systems.
1745 */
1746 if (!kvm_supports_32bit_el0())
1747 return REG_RAZ | REG_USER_WI;
1748
1749 return id_visibility(vcpu, r);
1750 }
1751
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1752 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1753 const struct sys_reg_desc *r)
1754 {
1755 return REG_RAZ;
1756 }
1757
1758 /* cpufeature ID register access trap handlers */
1759
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1760 static bool access_id_reg(struct kvm_vcpu *vcpu,
1761 struct sys_reg_params *p,
1762 const struct sys_reg_desc *r)
1763 {
1764 if (p->is_write)
1765 return write_to_read_only(vcpu, p, r);
1766
1767 p->regval = read_id_reg(vcpu, r);
1768
1769 return true;
1770 }
1771
1772 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1773 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1774 const struct sys_reg_desc *rd)
1775 {
1776 if (vcpu_has_sve(vcpu))
1777 return 0;
1778
1779 return REG_HIDDEN;
1780 }
1781
sme_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1782 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1783 const struct sys_reg_desc *rd)
1784 {
1785 if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1786 return 0;
1787
1788 return REG_HIDDEN;
1789 }
1790
fp8_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1791 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1792 const struct sys_reg_desc *rd)
1793 {
1794 if (kvm_has_fpmr(vcpu->kvm))
1795 return 0;
1796
1797 return REG_HIDDEN;
1798 }
1799
sanitise_id_aa64pfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1800 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1801 {
1802 if (!vcpu_has_sve(vcpu))
1803 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1804
1805 /*
1806 * The default is to expose CSV2 == 1 if the HW isn't affected.
1807 * Although this is a per-CPU feature, we make it global because
1808 * asymmetric systems are just a nuisance.
1809 *
1810 * Userspace can override this as long as it doesn't promise
1811 * the impossible.
1812 */
1813 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1814 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1815 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1816 }
1817 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1818 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1819 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1820 }
1821
1822 if (vgic_is_v3(vcpu->kvm)) {
1823 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1824 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1825 }
1826
1827 val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1828
1829 /*
1830 * MPAM is disabled by default as KVM also needs a set of PARTID to
1831 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1832 * older kernels let the guest see the ID bit.
1833 */
1834 val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1835
1836 return val;
1837 }
1838
sanitise_id_aa64dfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1839 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1840 {
1841 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1842
1843 /*
1844 * Only initialize the PMU version if the vCPU was configured with one.
1845 */
1846 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1847 if (kvm_vcpu_has_pmu(vcpu))
1848 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1849 kvm_arm_pmu_get_pmuver_limit());
1850
1851 /* Hide SPE from guests */
1852 val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1853
1854 /* Hide BRBE from guests */
1855 val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
1856
1857 return val;
1858 }
1859
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1860 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1861 const struct sys_reg_desc *rd,
1862 u64 val)
1863 {
1864 u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1865 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1866
1867 /*
1868 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1869 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1870 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1871 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1872 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1873 *
1874 * At minimum, we're on the hook to allow values that were given to
1875 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1876 * with a more sensible NI. The value of an ID register changing under
1877 * the nose of the guest is unfortunate, but is certainly no more
1878 * surprising than an ill-guided PMU driver poking at impdef system
1879 * registers that end in an UNDEF...
1880 */
1881 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1882 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1883
1884 /*
1885 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1886 * nonzero minimum safe value.
1887 */
1888 if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1889 return -EINVAL;
1890
1891 return set_id_reg(vcpu, rd, val);
1892 }
1893
read_sanitised_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1894 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1895 const struct sys_reg_desc *rd)
1896 {
1897 u8 perfmon;
1898 u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1899
1900 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1901 if (kvm_vcpu_has_pmu(vcpu)) {
1902 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1903 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1904 }
1905
1906 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1907
1908 return val;
1909 }
1910
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1911 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1912 const struct sys_reg_desc *rd,
1913 u64 val)
1914 {
1915 u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1916 u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1917
1918 if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1919 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1920 perfmon = 0;
1921 }
1922
1923 /*
1924 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1925 * it doesn't promise more than what the HW gives us on the
1926 * AArch64 side (as everything is emulated with that), and
1927 * that this is a PMUv3.
1928 */
1929 if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1930 return -EINVAL;
1931
1932 if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1933 return -EINVAL;
1934
1935 return set_id_reg(vcpu, rd, val);
1936 }
1937
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1938 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1939 const struct sys_reg_desc *rd, u64 user_val)
1940 {
1941 u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1942 u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
1943
1944 /*
1945 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
1946 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
1947 * guests, but didn't add trap handling. KVM doesn't support MPAM and
1948 * always returns an UNDEF for these registers. The guest must see 0
1949 * for this field.
1950 *
1951 * But KVM must also accept values from user-space that were provided
1952 * by KVM. On CPUs that support MPAM, permit user-space to write
1953 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
1954 */
1955 if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1956 user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1957
1958 /* Fail the guest's request to disable the AA64 ISA at EL{0,1,2} */
1959 if (!FIELD_GET(ID_AA64PFR0_EL1_EL0, user_val) ||
1960 !FIELD_GET(ID_AA64PFR0_EL1_EL1, user_val) ||
1961 (vcpu_has_nv(vcpu) && !FIELD_GET(ID_AA64PFR0_EL1_EL2, user_val)))
1962 return -EINVAL;
1963
1964 /*
1965 * If we are running on a GICv5 host and support FEAT_GCIE_LEGACY, then
1966 * we support GICv3. Fail attempts to do anything but set that to IMP.
1967 */
1968 if (vgic_is_v3_compat(vcpu->kvm) &&
1969 FIELD_GET(ID_AA64PFR0_EL1_GIC_MASK, user_val) != ID_AA64PFR0_EL1_GIC_IMP)
1970 return -EINVAL;
1971
1972 return set_id_reg(vcpu, rd, user_val);
1973 }
1974
set_id_aa64pfr1_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1975 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
1976 const struct sys_reg_desc *rd, u64 user_val)
1977 {
1978 u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1979 u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
1980 u8 mte = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE, hw_val);
1981 u8 user_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, user_val);
1982 u8 hw_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, hw_val);
1983
1984 /* See set_id_aa64pfr0_el1 for comment about MPAM */
1985 if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1986 user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
1987
1988 /*
1989 * Previously MTE_frac was hidden from guest. However, if the
1990 * hardware supports MTE2 but not MTE_ASYM_FAULT then a value
1991 * of 0 for this field indicates that the hardware supports
1992 * MTE_ASYNC. Whereas, 0xf indicates MTE_ASYNC is not supported.
1993 *
1994 * As KVM must accept values from KVM provided by user-space,
1995 * when ID_AA64PFR1_EL1.MTE is 2 allow user-space to set
1996 * ID_AA64PFR1_EL1.MTE_frac to 0. However, ignore it to avoid
1997 * incorrectly claiming hardware support for MTE_ASYNC in the
1998 * guest.
1999 */
2000
2001 if (mte == ID_AA64PFR1_EL1_MTE_MTE2 &&
2002 hw_mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI &&
2003 user_mte_frac == ID_AA64PFR1_EL1_MTE_frac_ASYNC) {
2004 user_val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
2005 user_val |= hw_val & ID_AA64PFR1_EL1_MTE_frac_MASK;
2006 }
2007
2008 return set_id_reg(vcpu, rd, user_val);
2009 }
2010
set_id_aa64mmfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2011 static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu,
2012 const struct sys_reg_desc *rd, u64 user_val)
2013 {
2014 u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd);
2015 u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK |
2016 ID_AA64MMFR0_EL1_TGRAN16_2_MASK |
2017 ID_AA64MMFR0_EL1_TGRAN64_2_MASK;
2018
2019 if (vcpu_has_nv(vcpu) &&
2020 ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask)))
2021 return -EINVAL;
2022
2023 return set_id_reg(vcpu, rd, user_val);
2024 }
2025
set_id_aa64mmfr2_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2026 static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu,
2027 const struct sys_reg_desc *rd, u64 user_val)
2028 {
2029 u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2030 u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK;
2031
2032 /*
2033 * We made the mistake to expose the now deprecated NV field,
2034 * so allow userspace to write it, but silently ignore it.
2035 */
2036 if ((hw_val & nv_mask) == (user_val & nv_mask))
2037 user_val &= ~nv_mask;
2038
2039 return set_id_reg(vcpu, rd, user_val);
2040 }
2041
set_ctr_el0(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)2042 static int set_ctr_el0(struct kvm_vcpu *vcpu,
2043 const struct sys_reg_desc *rd, u64 user_val)
2044 {
2045 u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
2046
2047 /*
2048 * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
2049 * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
2050 * on what hardware reports.
2051 *
2052 * Using a VIPT software model on PIPT will lead to over invalidation,
2053 * but still correct. Hence, we can allow downgrading PIPT to VIPT,
2054 * but not the other way around. This is handled via arm64_ftr_safe_value()
2055 * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
2056 * set as VIPT.
2057 */
2058 switch (user_L1Ip) {
2059 case CTR_EL0_L1Ip_RESERVED_VPIPT:
2060 case CTR_EL0_L1Ip_RESERVED_AIVIVT:
2061 return -EINVAL;
2062 case CTR_EL0_L1Ip_VIPT:
2063 case CTR_EL0_L1Ip_PIPT:
2064 return set_id_reg(vcpu, rd, user_val);
2065 default:
2066 return -ENOENT;
2067 }
2068 }
2069
2070 /*
2071 * cpufeature ID register user accessors
2072 *
2073 * For now, these registers are immutable for userspace, so no values
2074 * are stored, and for set_id_reg() we don't allow the effective value
2075 * to be changed.
2076 */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2077 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2078 u64 *val)
2079 {
2080 /*
2081 * Avoid locking if the VM has already started, as the ID registers are
2082 * guaranteed to be invariant at that point.
2083 */
2084 if (kvm_vm_has_ran_once(vcpu->kvm)) {
2085 *val = read_id_reg(vcpu, rd);
2086 return 0;
2087 }
2088
2089 mutex_lock(&vcpu->kvm->arch.config_lock);
2090 *val = read_id_reg(vcpu, rd);
2091 mutex_unlock(&vcpu->kvm->arch.config_lock);
2092
2093 return 0;
2094 }
2095
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2096 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2097 u64 val)
2098 {
2099 u32 id = reg_to_encoding(rd);
2100 int ret;
2101
2102 mutex_lock(&vcpu->kvm->arch.config_lock);
2103
2104 /*
2105 * Once the VM has started the ID registers are immutable. Reject any
2106 * write that does not match the final register value.
2107 */
2108 if (kvm_vm_has_ran_once(vcpu->kvm)) {
2109 if (val != read_id_reg(vcpu, rd))
2110 ret = -EBUSY;
2111 else
2112 ret = 0;
2113
2114 mutex_unlock(&vcpu->kvm->arch.config_lock);
2115 return ret;
2116 }
2117
2118 ret = arm64_check_features(vcpu, rd, val);
2119 if (!ret)
2120 kvm_set_vm_id_reg(vcpu->kvm, id, val);
2121
2122 mutex_unlock(&vcpu->kvm->arch.config_lock);
2123
2124 /*
2125 * arm64_check_features() returns -E2BIG to indicate the register's
2126 * feature set is a superset of the maximally-allowed register value.
2127 * While it would be nice to precisely describe this to userspace, the
2128 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2129 * writes return -EINVAL.
2130 */
2131 if (ret == -E2BIG)
2132 ret = -EINVAL;
2133 return ret;
2134 }
2135
kvm_set_vm_id_reg(struct kvm * kvm,u32 reg,u64 val)2136 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2137 {
2138 u64 *p = __vm_id_reg(&kvm->arch, reg);
2139
2140 lockdep_assert_held(&kvm->arch.config_lock);
2141
2142 if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2143 return;
2144
2145 *p = val;
2146 }
2147
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2148 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2149 u64 *val)
2150 {
2151 *val = 0;
2152 return 0;
2153 }
2154
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2155 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2156 u64 val)
2157 {
2158 return 0;
2159 }
2160
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2161 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2162 const struct sys_reg_desc *r)
2163 {
2164 if (p->is_write)
2165 return write_to_read_only(vcpu, p, r);
2166
2167 p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2168 return true;
2169 }
2170
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2171 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2172 const struct sys_reg_desc *r)
2173 {
2174 if (p->is_write)
2175 return write_to_read_only(vcpu, p, r);
2176
2177 p->regval = __vcpu_sys_reg(vcpu, r->reg);
2178 return true;
2179 }
2180
2181 /*
2182 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2183 * by the physical CPU which the vcpu currently resides in.
2184 */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2185 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2186 {
2187 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2188 u64 clidr;
2189 u8 loc;
2190
2191 if ((ctr_el0 & CTR_EL0_IDC)) {
2192 /*
2193 * Data cache clean to the PoU is not required so LoUU and LoUIS
2194 * will not be set and a unified cache, which will be marked as
2195 * LoC, will be added.
2196 *
2197 * If not DIC, let the unified cache L2 so that an instruction
2198 * cache can be added as L1 later.
2199 */
2200 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2201 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2202 } else {
2203 /*
2204 * Data cache clean to the PoU is required so let L1 have a data
2205 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2206 * it can be marked as LoC too.
2207 */
2208 loc = 1;
2209 clidr = 1 << CLIDR_LOUU_SHIFT;
2210 clidr |= 1 << CLIDR_LOUIS_SHIFT;
2211 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2212 }
2213
2214 /*
2215 * Instruction cache invalidation to the PoU is required so let L1 have
2216 * an instruction cache. If L1 already has a data cache, it will be
2217 * CACHE_TYPE_SEPARATE.
2218 */
2219 if (!(ctr_el0 & CTR_EL0_DIC))
2220 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2221
2222 clidr |= loc << CLIDR_LOC_SHIFT;
2223
2224 /*
2225 * Add tag cache unified to data cache. Allocation tags and data are
2226 * unified in a cache line so that it looks valid even if there is only
2227 * one cache line.
2228 */
2229 if (kvm_has_mte(vcpu->kvm))
2230 clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2231
2232 __vcpu_assign_sys_reg(vcpu, r->reg, clidr);
2233
2234 return __vcpu_sys_reg(vcpu, r->reg);
2235 }
2236
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2237 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2238 u64 val)
2239 {
2240 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2241 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2242
2243 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2244 return -EINVAL;
2245
2246 __vcpu_assign_sys_reg(vcpu, rd->reg, val);
2247
2248 return 0;
2249 }
2250
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2251 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2252 const struct sys_reg_desc *r)
2253 {
2254 int reg = r->reg;
2255
2256 if (p->is_write)
2257 vcpu_write_sys_reg(vcpu, p->regval, reg);
2258 else
2259 p->regval = vcpu_read_sys_reg(vcpu, reg);
2260 return true;
2261 }
2262
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2263 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2264 const struct sys_reg_desc *r)
2265 {
2266 u32 csselr;
2267
2268 if (p->is_write)
2269 return write_to_read_only(vcpu, p, r);
2270
2271 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2272 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2273 if (csselr < CSSELR_MAX)
2274 p->regval = get_ccsidr(vcpu, csselr);
2275
2276 return true;
2277 }
2278
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2279 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2280 const struct sys_reg_desc *rd)
2281 {
2282 if (kvm_has_mte(vcpu->kvm))
2283 return 0;
2284
2285 return REG_HIDDEN;
2286 }
2287
2288 #define MTE_REG(name) { \
2289 SYS_DESC(SYS_##name), \
2290 .access = undef_access, \
2291 .reset = reset_unknown, \
2292 .reg = name, \
2293 .visibility = mte_visibility, \
2294 }
2295
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2296 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2297 const struct sys_reg_desc *rd)
2298 {
2299 if (vcpu_has_nv(vcpu))
2300 return 0;
2301
2302 return REG_HIDDEN;
2303 }
2304
bad_vncr_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2305 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2306 struct sys_reg_params *p,
2307 const struct sys_reg_desc *r)
2308 {
2309 /*
2310 * We really shouldn't be here, and this is likely the result
2311 * of a misconfigured trap, as this register should target the
2312 * VNCR page, and nothing else.
2313 */
2314 return bad_trap(vcpu, p, r,
2315 "trap of VNCR-backed register");
2316 }
2317
bad_redir_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2318 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2319 struct sys_reg_params *p,
2320 const struct sys_reg_desc *r)
2321 {
2322 /*
2323 * We really shouldn't be here, and this is likely the result
2324 * of a misconfigured trap, as this register should target the
2325 * corresponding EL1, and nothing else.
2326 */
2327 return bad_trap(vcpu, p, r,
2328 "trap of EL2 register redirected to EL1");
2329 }
2330
2331 #define EL2_REG_FILTERED(name, acc, rst, v, filter) { \
2332 SYS_DESC(SYS_##name), \
2333 .access = acc, \
2334 .reset = rst, \
2335 .reg = name, \
2336 .visibility = filter, \
2337 .val = v, \
2338 }
2339
2340 #define EL2_REG(name, acc, rst, v) \
2341 EL2_REG_FILTERED(name, acc, rst, v, el2_visibility)
2342
2343 #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v)
2344 #define EL2_REG_VNCR_FILT(name, vis) \
2345 EL2_REG_FILTERED(name, bad_vncr_trap, reset_val, 0, vis)
2346 #define EL2_REG_VNCR_GICv3(name) \
2347 EL2_REG_VNCR_FILT(name, hidden_visibility)
2348 #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v)
2349
2350 /*
2351 * Since reset() callback and field val are not used for idregs, they will be
2352 * used for specific purposes for idregs.
2353 * The reset() would return KVM sanitised register value. The value would be the
2354 * same as the host kernel sanitised value if there is no KVM sanitisation.
2355 * The val would be used as a mask indicating writable fields for the idreg.
2356 * Only bits with 1 are writable from userspace. This mask might not be
2357 * necessary in the future whenever all ID registers are enabled as writable
2358 * from userspace.
2359 */
2360
2361 #define ID_DESC_DEFAULT_CALLBACKS \
2362 .access = access_id_reg, \
2363 .get_user = get_id_reg, \
2364 .set_user = set_id_reg, \
2365 .visibility = id_visibility, \
2366 .reset = kvm_read_sanitised_id_reg
2367
2368 #define ID_DESC(name) \
2369 SYS_DESC(SYS_##name), \
2370 ID_DESC_DEFAULT_CALLBACKS
2371
2372 /* sys_reg_desc initialiser for known cpufeature ID registers */
2373 #define ID_SANITISED(name) { \
2374 ID_DESC(name), \
2375 .val = 0, \
2376 }
2377
2378 /* sys_reg_desc initialiser for known cpufeature ID registers */
2379 #define AA32_ID_SANITISED(name) { \
2380 ID_DESC(name), \
2381 .visibility = aa32_id_visibility, \
2382 .val = 0, \
2383 }
2384
2385 /* sys_reg_desc initialiser for writable ID registers */
2386 #define ID_WRITABLE(name, mask) { \
2387 ID_DESC(name), \
2388 .val = mask, \
2389 }
2390
2391 /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2392 #define ID_FILTERED(sysreg, name, mask) { \
2393 ID_DESC(sysreg), \
2394 .set_user = set_##name, \
2395 .val = (mask), \
2396 }
2397
2398 /*
2399 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2400 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2401 * (1 <= crm < 8, 0 <= Op2 < 8).
2402 */
2403 #define ID_UNALLOCATED(crm, op2) { \
2404 .name = "S3_0_0_" #crm "_" #op2, \
2405 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
2406 ID_DESC_DEFAULT_CALLBACKS, \
2407 .visibility = raz_visibility, \
2408 .val = 0, \
2409 }
2410
2411 /*
2412 * sys_reg_desc initialiser for known ID registers that we hide from guests.
2413 * For now, these are exposed just like unallocated ID regs: they appear
2414 * RAZ for the guest.
2415 */
2416 #define ID_HIDDEN(name) { \
2417 ID_DESC(name), \
2418 .visibility = raz_visibility, \
2419 .val = 0, \
2420 }
2421
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2422 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2423 struct sys_reg_params *p,
2424 const struct sys_reg_desc *r)
2425 {
2426 if (p->is_write)
2427 __vcpu_assign_sys_reg(vcpu, SP_EL1, p->regval);
2428 else
2429 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2430
2431 return true;
2432 }
2433
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2434 static bool access_elr(struct kvm_vcpu *vcpu,
2435 struct sys_reg_params *p,
2436 const struct sys_reg_desc *r)
2437 {
2438 if (p->is_write)
2439 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2440 else
2441 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2442
2443 return true;
2444 }
2445
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2446 static bool access_spsr(struct kvm_vcpu *vcpu,
2447 struct sys_reg_params *p,
2448 const struct sys_reg_desc *r)
2449 {
2450 if (p->is_write)
2451 __vcpu_assign_sys_reg(vcpu, SPSR_EL1, p->regval);
2452 else
2453 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2454
2455 return true;
2456 }
2457
access_cntkctl_el12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2458 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2459 struct sys_reg_params *p,
2460 const struct sys_reg_desc *r)
2461 {
2462 if (p->is_write)
2463 __vcpu_assign_sys_reg(vcpu, CNTKCTL_EL1, p->regval);
2464 else
2465 p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2466
2467 return true;
2468 }
2469
reset_hcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2470 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2471 {
2472 u64 val = r->val;
2473
2474 if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2475 val |= HCR_E2H;
2476
2477 __vcpu_assign_sys_reg(vcpu, r->reg, val);
2478
2479 return __vcpu_sys_reg(vcpu, r->reg);
2480 }
2481
__el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,unsigned int (* fn)(const struct kvm_vcpu *,const struct sys_reg_desc *))2482 static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2483 const struct sys_reg_desc *rd,
2484 unsigned int (*fn)(const struct kvm_vcpu *,
2485 const struct sys_reg_desc *))
2486 {
2487 return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2488 }
2489
sve_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2490 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2491 const struct sys_reg_desc *rd)
2492 {
2493 return __el2_visibility(vcpu, rd, sve_visibility);
2494 }
2495
vncr_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2496 static unsigned int vncr_el2_visibility(const struct kvm_vcpu *vcpu,
2497 const struct sys_reg_desc *rd)
2498 {
2499 if (el2_visibility(vcpu, rd) == 0 &&
2500 kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
2501 return 0;
2502
2503 return REG_HIDDEN;
2504 }
2505
sctlr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2506 static unsigned int sctlr2_visibility(const struct kvm_vcpu *vcpu,
2507 const struct sys_reg_desc *rd)
2508 {
2509 if (kvm_has_sctlr2(vcpu->kvm))
2510 return 0;
2511
2512 return REG_HIDDEN;
2513 }
2514
sctlr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2515 static unsigned int sctlr2_el2_visibility(const struct kvm_vcpu *vcpu,
2516 const struct sys_reg_desc *rd)
2517 {
2518 return __el2_visibility(vcpu, rd, sctlr2_visibility);
2519 }
2520
access_zcr_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2521 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2522 struct sys_reg_params *p,
2523 const struct sys_reg_desc *r)
2524 {
2525 unsigned int vq;
2526
2527 if (guest_hyp_sve_traps_enabled(vcpu)) {
2528 kvm_inject_nested_sve_trap(vcpu);
2529 return true;
2530 }
2531
2532 if (!p->is_write) {
2533 p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2534 return true;
2535 }
2536
2537 vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2538 vq = min(vq, vcpu_sve_max_vq(vcpu));
2539 vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2540
2541 return true;
2542 }
2543
access_gic_vtr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2544 static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2545 struct sys_reg_params *p,
2546 const struct sys_reg_desc *r)
2547 {
2548 if (p->is_write)
2549 return write_to_read_only(vcpu, p, r);
2550
2551 p->regval = kvm_get_guest_vtr_el2();
2552
2553 return true;
2554 }
2555
access_gic_misr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2556 static bool access_gic_misr(struct kvm_vcpu *vcpu,
2557 struct sys_reg_params *p,
2558 const struct sys_reg_desc *r)
2559 {
2560 if (p->is_write)
2561 return write_to_read_only(vcpu, p, r);
2562
2563 p->regval = vgic_v3_get_misr(vcpu);
2564
2565 return true;
2566 }
2567
access_gic_eisr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2568 static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2569 struct sys_reg_params *p,
2570 const struct sys_reg_desc *r)
2571 {
2572 if (p->is_write)
2573 return write_to_read_only(vcpu, p, r);
2574
2575 p->regval = vgic_v3_get_eisr(vcpu);
2576
2577 return true;
2578 }
2579
access_gic_elrsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2580 static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2581 struct sys_reg_params *p,
2582 const struct sys_reg_desc *r)
2583 {
2584 if (p->is_write)
2585 return write_to_read_only(vcpu, p, r);
2586
2587 p->regval = vgic_v3_get_elrsr(vcpu);
2588
2589 return true;
2590 }
2591
s1poe_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2592 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2593 const struct sys_reg_desc *rd)
2594 {
2595 if (kvm_has_s1poe(vcpu->kvm))
2596 return 0;
2597
2598 return REG_HIDDEN;
2599 }
2600
s1poe_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2601 static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2602 const struct sys_reg_desc *rd)
2603 {
2604 return __el2_visibility(vcpu, rd, s1poe_visibility);
2605 }
2606
tcr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2607 static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2608 const struct sys_reg_desc *rd)
2609 {
2610 if (kvm_has_tcr2(vcpu->kvm))
2611 return 0;
2612
2613 return REG_HIDDEN;
2614 }
2615
tcr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2616 static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2617 const struct sys_reg_desc *rd)
2618 {
2619 return __el2_visibility(vcpu, rd, tcr2_visibility);
2620 }
2621
fgt2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2622 static unsigned int fgt2_visibility(const struct kvm_vcpu *vcpu,
2623 const struct sys_reg_desc *rd)
2624 {
2625 if (el2_visibility(vcpu, rd) == 0 &&
2626 kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, FGT, FGT2))
2627 return 0;
2628
2629 return REG_HIDDEN;
2630 }
2631
fgt_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2632 static unsigned int fgt_visibility(const struct kvm_vcpu *vcpu,
2633 const struct sys_reg_desc *rd)
2634 {
2635 if (el2_visibility(vcpu, rd) == 0 &&
2636 kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, FGT, IMP))
2637 return 0;
2638
2639 return REG_HIDDEN;
2640 }
2641
s1pie_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2642 static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2643 const struct sys_reg_desc *rd)
2644 {
2645 if (kvm_has_s1pie(vcpu->kvm))
2646 return 0;
2647
2648 return REG_HIDDEN;
2649 }
2650
s1pie_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2651 static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2652 const struct sys_reg_desc *rd)
2653 {
2654 return __el2_visibility(vcpu, rd, s1pie_visibility);
2655 }
2656
access_mdcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2657 static bool access_mdcr(struct kvm_vcpu *vcpu,
2658 struct sys_reg_params *p,
2659 const struct sys_reg_desc *r)
2660 {
2661 u64 hpmn, val, old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2662
2663 if (!p->is_write) {
2664 p->regval = old;
2665 return true;
2666 }
2667
2668 val = p->regval;
2669 hpmn = FIELD_GET(MDCR_EL2_HPMN, val);
2670
2671 /*
2672 * If HPMN is out of bounds, limit it to what we actually
2673 * support. This matches the UNKNOWN definition of the field
2674 * in that case, and keeps the emulation simple. Sort of.
2675 */
2676 if (hpmn > vcpu->kvm->arch.nr_pmu_counters) {
2677 hpmn = vcpu->kvm->arch.nr_pmu_counters;
2678 u64p_replace_bits(&val, hpmn, MDCR_EL2_HPMN);
2679 }
2680
2681 __vcpu_assign_sys_reg(vcpu, MDCR_EL2, val);
2682
2683 /*
2684 * Request a reload of the PMU to enable/disable the counters
2685 * affected by HPME.
2686 */
2687 if ((old ^ val) & MDCR_EL2_HPME)
2688 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2689
2690 return true;
2691 }
2692
access_ras(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2693 static bool access_ras(struct kvm_vcpu *vcpu,
2694 struct sys_reg_params *p,
2695 const struct sys_reg_desc *r)
2696 {
2697 struct kvm *kvm = vcpu->kvm;
2698
2699 switch(reg_to_encoding(r)) {
2700 default:
2701 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) {
2702 kvm_inject_undefined(vcpu);
2703 return false;
2704 }
2705 }
2706
2707 return trap_raz_wi(vcpu, p, r);
2708 }
2709
2710 /*
2711 * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and
2712 * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them.
2713 * The values made visible to userspace were the register values of the boot
2714 * CPU.
2715 *
2716 * At the same time, reads from these registers at EL1 previously were not
2717 * trapped, allowing the guest to read the actual hardware value. On big-little
2718 * machines, this means the VM can see different values depending on where a
2719 * given vCPU got scheduled.
2720 *
2721 * These registers are now trapped as collateral damage from SME, and what
2722 * follows attempts to give a user / guest view consistent with the existing
2723 * ABI.
2724 */
access_imp_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2725 static bool access_imp_id_reg(struct kvm_vcpu *vcpu,
2726 struct sys_reg_params *p,
2727 const struct sys_reg_desc *r)
2728 {
2729 if (p->is_write)
2730 return write_to_read_only(vcpu, p, r);
2731
2732 /*
2733 * Return the VM-scoped implementation ID register values if userspace
2734 * has made them writable.
2735 */
2736 if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags))
2737 return access_id_reg(vcpu, p, r);
2738
2739 /*
2740 * Otherwise, fall back to the old behavior of returning the value of
2741 * the current CPU.
2742 */
2743 switch (reg_to_encoding(r)) {
2744 case SYS_REVIDR_EL1:
2745 p->regval = read_sysreg(revidr_el1);
2746 break;
2747 case SYS_AIDR_EL1:
2748 p->regval = read_sysreg(aidr_el1);
2749 break;
2750 default:
2751 WARN_ON_ONCE(1);
2752 }
2753
2754 return true;
2755 }
2756
2757 static u64 __ro_after_init boot_cpu_midr_val;
2758 static u64 __ro_after_init boot_cpu_revidr_val;
2759 static u64 __ro_after_init boot_cpu_aidr_val;
2760
init_imp_id_regs(void)2761 static void init_imp_id_regs(void)
2762 {
2763 boot_cpu_midr_val = read_sysreg(midr_el1);
2764 boot_cpu_revidr_val = read_sysreg(revidr_el1);
2765 boot_cpu_aidr_val = read_sysreg(aidr_el1);
2766 }
2767
reset_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2768 static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2769 {
2770 switch (reg_to_encoding(r)) {
2771 case SYS_MIDR_EL1:
2772 return boot_cpu_midr_val;
2773 case SYS_REVIDR_EL1:
2774 return boot_cpu_revidr_val;
2775 case SYS_AIDR_EL1:
2776 return boot_cpu_aidr_val;
2777 default:
2778 KVM_BUG_ON(1, vcpu->kvm);
2779 return 0;
2780 }
2781 }
2782
set_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)2783 static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
2784 u64 val)
2785 {
2786 struct kvm *kvm = vcpu->kvm;
2787 u64 expected;
2788
2789 guard(mutex)(&kvm->arch.config_lock);
2790
2791 expected = read_id_reg(vcpu, r);
2792 if (expected == val)
2793 return 0;
2794
2795 if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags))
2796 return -EINVAL;
2797
2798 /*
2799 * Once the VM has started the ID registers are immutable. Reject the
2800 * write if userspace tries to change it.
2801 */
2802 if (kvm_vm_has_ran_once(kvm))
2803 return -EBUSY;
2804
2805 /*
2806 * Any value is allowed for the implementation ID registers so long as
2807 * it is within the writable mask.
2808 */
2809 if ((val & r->val) != val)
2810 return -EINVAL;
2811
2812 kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val);
2813 return 0;
2814 }
2815
2816 #define IMPLEMENTATION_ID(reg, mask) { \
2817 SYS_DESC(SYS_##reg), \
2818 .access = access_imp_id_reg, \
2819 .get_user = get_id_reg, \
2820 .set_user = set_imp_id_reg, \
2821 .reset = reset_imp_id_reg, \
2822 .val = mask, \
2823 }
2824
reset_mdcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2825 static u64 reset_mdcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2826 {
2827 __vcpu_assign_sys_reg(vcpu, r->reg, vcpu->kvm->arch.nr_pmu_counters);
2828 return vcpu->kvm->arch.nr_pmu_counters;
2829 }
2830
2831 /*
2832 * Architected system registers.
2833 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2834 *
2835 * Debug handling: We do trap most, if not all debug related system
2836 * registers. The implementation is good enough to ensure that a guest
2837 * can use these with minimal performance degradation. The drawback is
2838 * that we don't implement any of the external debug architecture.
2839 * This should be revisited if we ever encounter a more demanding
2840 * guest...
2841 */
2842 static const struct sys_reg_desc sys_reg_descs[] = {
2843 DBG_BCR_BVR_WCR_WVR_EL1(0),
2844 DBG_BCR_BVR_WCR_WVR_EL1(1),
2845 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2846 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2847 DBG_BCR_BVR_WCR_WVR_EL1(2),
2848 DBG_BCR_BVR_WCR_WVR_EL1(3),
2849 DBG_BCR_BVR_WCR_WVR_EL1(4),
2850 DBG_BCR_BVR_WCR_WVR_EL1(5),
2851 DBG_BCR_BVR_WCR_WVR_EL1(6),
2852 DBG_BCR_BVR_WCR_WVR_EL1(7),
2853 DBG_BCR_BVR_WCR_WVR_EL1(8),
2854 DBG_BCR_BVR_WCR_WVR_EL1(9),
2855 DBG_BCR_BVR_WCR_WVR_EL1(10),
2856 DBG_BCR_BVR_WCR_WVR_EL1(11),
2857 DBG_BCR_BVR_WCR_WVR_EL1(12),
2858 DBG_BCR_BVR_WCR_WVR_EL1(13),
2859 DBG_BCR_BVR_WCR_WVR_EL1(14),
2860 DBG_BCR_BVR_WCR_WVR_EL1(15),
2861
2862 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2863 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2864 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2865 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2866 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2867 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2868 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2869 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2870 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2871
2872 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2873 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2874 // DBGDTR[TR]X_EL0 share the same encoding
2875 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2876
2877 { SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
2878
2879 IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)),
2880 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2881 IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)),
2882
2883 /*
2884 * ID regs: all ID_SANITISED() entries here must have corresponding
2885 * entries in arm64_ftr_regs[].
2886 */
2887
2888 /* AArch64 mappings of the AArch32 ID registers */
2889 /* CRm=1 */
2890 AA32_ID_SANITISED(ID_PFR0_EL1),
2891 AA32_ID_SANITISED(ID_PFR1_EL1),
2892 { SYS_DESC(SYS_ID_DFR0_EL1),
2893 .access = access_id_reg,
2894 .get_user = get_id_reg,
2895 .set_user = set_id_dfr0_el1,
2896 .visibility = aa32_id_visibility,
2897 .reset = read_sanitised_id_dfr0_el1,
2898 .val = ID_DFR0_EL1_PerfMon_MASK |
2899 ID_DFR0_EL1_CopDbg_MASK, },
2900 ID_HIDDEN(ID_AFR0_EL1),
2901 AA32_ID_SANITISED(ID_MMFR0_EL1),
2902 AA32_ID_SANITISED(ID_MMFR1_EL1),
2903 AA32_ID_SANITISED(ID_MMFR2_EL1),
2904 AA32_ID_SANITISED(ID_MMFR3_EL1),
2905
2906 /* CRm=2 */
2907 AA32_ID_SANITISED(ID_ISAR0_EL1),
2908 AA32_ID_SANITISED(ID_ISAR1_EL1),
2909 AA32_ID_SANITISED(ID_ISAR2_EL1),
2910 AA32_ID_SANITISED(ID_ISAR3_EL1),
2911 AA32_ID_SANITISED(ID_ISAR4_EL1),
2912 AA32_ID_SANITISED(ID_ISAR5_EL1),
2913 AA32_ID_SANITISED(ID_MMFR4_EL1),
2914 AA32_ID_SANITISED(ID_ISAR6_EL1),
2915
2916 /* CRm=3 */
2917 AA32_ID_SANITISED(MVFR0_EL1),
2918 AA32_ID_SANITISED(MVFR1_EL1),
2919 AA32_ID_SANITISED(MVFR2_EL1),
2920 ID_UNALLOCATED(3,3),
2921 AA32_ID_SANITISED(ID_PFR2_EL1),
2922 ID_HIDDEN(ID_DFR1_EL1),
2923 AA32_ID_SANITISED(ID_MMFR5_EL1),
2924 ID_UNALLOCATED(3,7),
2925
2926 /* AArch64 ID registers */
2927 /* CRm=4 */
2928 ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
2929 ~(ID_AA64PFR0_EL1_AMU |
2930 ID_AA64PFR0_EL1_MPAM |
2931 ID_AA64PFR0_EL1_SVE |
2932 ID_AA64PFR0_EL1_RAS |
2933 ID_AA64PFR0_EL1_AdvSIMD |
2934 ID_AA64PFR0_EL1_FP)),
2935 ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
2936 ~(ID_AA64PFR1_EL1_PFAR |
2937 ID_AA64PFR1_EL1_MTEX |
2938 ID_AA64PFR1_EL1_THE |
2939 ID_AA64PFR1_EL1_GCS |
2940 ID_AA64PFR1_EL1_MTE_frac |
2941 ID_AA64PFR1_EL1_NMI |
2942 ID_AA64PFR1_EL1_RNDR_trap |
2943 ID_AA64PFR1_EL1_SME |
2944 ID_AA64PFR1_EL1_RES0 |
2945 ID_AA64PFR1_EL1_MPAM_frac |
2946 ID_AA64PFR1_EL1_RAS_frac |
2947 ID_AA64PFR1_EL1_MTE)),
2948 ID_WRITABLE(ID_AA64PFR2_EL1,
2949 ID_AA64PFR2_EL1_FPMR |
2950 ID_AA64PFR2_EL1_MTEFAR |
2951 ID_AA64PFR2_EL1_MTESTOREONLY),
2952 ID_UNALLOCATED(4,3),
2953 ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2954 ID_HIDDEN(ID_AA64SMFR0_EL1),
2955 ID_UNALLOCATED(4,6),
2956 ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2957
2958 /* CRm=5 */
2959 /*
2960 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
2961 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
2962 * KVM does not trap + emulate the breakpoint registers, and as such
2963 * cannot support a layout that misaligns with the underlying hardware.
2964 * While it may be possible to describe a subset that aligns with
2965 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
2966 * simplicity.
2967 *
2968 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
2969 * of breakpoints for more details.
2970 */
2971 ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
2972 ID_AA64DFR0_EL1_DoubleLock_MASK |
2973 ID_AA64DFR0_EL1_WRPs_MASK |
2974 ID_AA64DFR0_EL1_PMUVer_MASK |
2975 ID_AA64DFR0_EL1_DebugVer_MASK),
2976 ID_SANITISED(ID_AA64DFR1_EL1),
2977 ID_UNALLOCATED(5,2),
2978 ID_UNALLOCATED(5,3),
2979 ID_HIDDEN(ID_AA64AFR0_EL1),
2980 ID_HIDDEN(ID_AA64AFR1_EL1),
2981 ID_UNALLOCATED(5,6),
2982 ID_UNALLOCATED(5,7),
2983
2984 /* CRm=6 */
2985 ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2986 ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2987 ID_AA64ISAR1_EL1_GPA |
2988 ID_AA64ISAR1_EL1_API |
2989 ID_AA64ISAR1_EL1_APA)),
2990 ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2991 ID_AA64ISAR2_EL1_APA3 |
2992 ID_AA64ISAR2_EL1_GPA3)),
2993 ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
2994 ID_AA64ISAR3_EL1_FAMINMAX)),
2995 ID_UNALLOCATED(6,4),
2996 ID_UNALLOCATED(6,5),
2997 ID_UNALLOCATED(6,6),
2998 ID_UNALLOCATED(6,7),
2999
3000 /* CRm=7 */
3001 ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1,
3002 ~(ID_AA64MMFR0_EL1_RES0 |
3003 ID_AA64MMFR0_EL1_ASIDBITS)),
3004 ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
3005 ID_AA64MMFR1_EL1_HCX |
3006 ID_AA64MMFR1_EL1_TWED |
3007 ID_AA64MMFR1_EL1_XNX |
3008 ID_AA64MMFR1_EL1_VH |
3009 ID_AA64MMFR1_EL1_VMIDBits)),
3010 ID_FILTERED(ID_AA64MMFR2_EL1,
3011 id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 |
3012 ID_AA64MMFR2_EL1_EVT |
3013 ID_AA64MMFR2_EL1_FWB |
3014 ID_AA64MMFR2_EL1_IDS |
3015 ID_AA64MMFR2_EL1_NV |
3016 ID_AA64MMFR2_EL1_CCIDX)),
3017 ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX |
3018 ID_AA64MMFR3_EL1_SCTLRX |
3019 ID_AA64MMFR3_EL1_S1PIE |
3020 ID_AA64MMFR3_EL1_S1POE)),
3021 ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac),
3022 ID_UNALLOCATED(7,5),
3023 ID_UNALLOCATED(7,6),
3024 ID_UNALLOCATED(7,7),
3025
3026 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
3027 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
3028 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
3029 { SYS_DESC(SYS_SCTLR2_EL1), access_vm_reg, reset_val, SCTLR2_EL1, 0,
3030 .visibility = sctlr2_visibility },
3031
3032 MTE_REG(RGSR_EL1),
3033 MTE_REG(GCR_EL1),
3034
3035 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
3036 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
3037 { SYS_DESC(SYS_SMPRI_EL1), undef_access },
3038 { SYS_DESC(SYS_SMCR_EL1), undef_access },
3039 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
3040 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
3041 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
3042 { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
3043 .visibility = tcr2_visibility },
3044
3045 PTRAUTH_KEY(APIA),
3046 PTRAUTH_KEY(APIB),
3047 PTRAUTH_KEY(APDA),
3048 PTRAUTH_KEY(APDB),
3049 PTRAUTH_KEY(APGA),
3050
3051 { SYS_DESC(SYS_SPSR_EL1), access_spsr},
3052 { SYS_DESC(SYS_ELR_EL1), access_elr},
3053
3054 { SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
3055
3056 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
3057 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
3058 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
3059
3060 { SYS_DESC(SYS_ERRIDR_EL1), access_ras },
3061 { SYS_DESC(SYS_ERRSELR_EL1), access_ras },
3062 { SYS_DESC(SYS_ERXFR_EL1), access_ras },
3063 { SYS_DESC(SYS_ERXCTLR_EL1), access_ras },
3064 { SYS_DESC(SYS_ERXSTATUS_EL1), access_ras },
3065 { SYS_DESC(SYS_ERXADDR_EL1), access_ras },
3066 { SYS_DESC(SYS_ERXMISC0_EL1), access_ras },
3067 { SYS_DESC(SYS_ERXMISC1_EL1), access_ras },
3068
3069 MTE_REG(TFSR_EL1),
3070 MTE_REG(TFSRE0_EL1),
3071
3072 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
3073 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
3074
3075 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
3076 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
3077 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
3078 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
3079 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
3080 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
3081 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
3082 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
3083 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
3084 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
3085 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
3086 /* PMBIDR_EL1 is not trapped */
3087
3088 { PMU_SYS_REG(PMINTENSET_EL1),
3089 .access = access_pminten, .reg = PMINTENSET_EL1,
3090 .get_user = get_pmreg, .set_user = set_pmreg },
3091 { PMU_SYS_REG(PMINTENCLR_EL1),
3092 .access = access_pminten, .reg = PMINTENSET_EL1,
3093 .get_user = get_pmreg, .set_user = set_pmreg },
3094 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
3095
3096 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
3097 { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
3098 .visibility = s1pie_visibility },
3099 { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
3100 .visibility = s1pie_visibility },
3101 { SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
3102 .visibility = s1poe_visibility },
3103 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
3104
3105 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
3106 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
3107 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
3108 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
3109 { SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
3110 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
3111
3112 { SYS_DESC(SYS_MPAM1_EL1), undef_access },
3113 { SYS_DESC(SYS_MPAM0_EL1), undef_access },
3114 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
3115 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
3116
3117 { SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
3118 { SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
3119 { SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
3120 { SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
3121 { SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
3122 { SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
3123 { SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
3124 { SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
3125 { SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
3126 { SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
3127 { SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
3128 { SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
3129 { SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
3130 { SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
3131 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
3132 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
3133 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
3134 { SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3135 { SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3136 { SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3137 { SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3138 { SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3139 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3140 { SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3141 { SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3142
3143 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
3144 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
3145
3146 { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
3147
3148 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
3149
3150 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
3151
3152 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
3153 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
3154 .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
3155 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
3156 { SYS_DESC(SYS_SMIDR_EL1), undef_access },
3157 IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)),
3158 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
3159 ID_FILTERED(CTR_EL0, ctr_el0,
3160 CTR_EL0_DIC_MASK |
3161 CTR_EL0_IDC_MASK |
3162 CTR_EL0_DminLine_MASK |
3163 CTR_EL0_L1Ip_MASK |
3164 CTR_EL0_IminLine_MASK),
3165 { SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility },
3166 { SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
3167
3168 { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
3169 .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
3170 { PMU_SYS_REG(PMCNTENSET_EL0),
3171 .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3172 .get_user = get_pmreg, .set_user = set_pmreg },
3173 { PMU_SYS_REG(PMCNTENCLR_EL0),
3174 .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3175 .get_user = get_pmreg, .set_user = set_pmreg },
3176 { PMU_SYS_REG(PMOVSCLR_EL0),
3177 .access = access_pmovs, .reg = PMOVSSET_EL0,
3178 .get_user = get_pmreg, .set_user = set_pmreg },
3179 /*
3180 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
3181 * previously (and pointlessly) advertised in the past...
3182 */
3183 { PMU_SYS_REG(PMSWINC_EL0),
3184 .get_user = get_raz_reg, .set_user = set_wi_reg,
3185 .access = access_pmswinc, .reset = NULL },
3186 { PMU_SYS_REG(PMSELR_EL0),
3187 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
3188 { PMU_SYS_REG(PMCEID0_EL0),
3189 .access = access_pmceid, .reset = NULL },
3190 { PMU_SYS_REG(PMCEID1_EL0),
3191 .access = access_pmceid, .reset = NULL },
3192 { PMU_SYS_REG(PMCCNTR_EL0),
3193 .access = access_pmu_evcntr, .reset = reset_unknown,
3194 .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr,
3195 .set_user = set_pmu_evcntr },
3196 { PMU_SYS_REG(PMXEVTYPER_EL0),
3197 .access = access_pmu_evtyper, .reset = NULL },
3198 { PMU_SYS_REG(PMXEVCNTR_EL0),
3199 .access = access_pmu_evcntr, .reset = NULL },
3200 /*
3201 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
3202 * in 32bit mode. Here we choose to reset it as zero for consistency.
3203 */
3204 { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
3205 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
3206 { PMU_SYS_REG(PMOVSSET_EL0),
3207 .access = access_pmovs, .reg = PMOVSSET_EL0,
3208 .get_user = get_pmreg, .set_user = set_pmreg },
3209
3210 { SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
3211 .visibility = s1poe_visibility },
3212 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
3213 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
3214 { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
3215
3216 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
3217
3218 { SYS_DESC(SYS_AMCR_EL0), undef_access },
3219 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
3220 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
3221 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
3222 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
3223 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
3224 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
3225 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
3226 AMU_AMEVCNTR0_EL0(0),
3227 AMU_AMEVCNTR0_EL0(1),
3228 AMU_AMEVCNTR0_EL0(2),
3229 AMU_AMEVCNTR0_EL0(3),
3230 AMU_AMEVCNTR0_EL0(4),
3231 AMU_AMEVCNTR0_EL0(5),
3232 AMU_AMEVCNTR0_EL0(6),
3233 AMU_AMEVCNTR0_EL0(7),
3234 AMU_AMEVCNTR0_EL0(8),
3235 AMU_AMEVCNTR0_EL0(9),
3236 AMU_AMEVCNTR0_EL0(10),
3237 AMU_AMEVCNTR0_EL0(11),
3238 AMU_AMEVCNTR0_EL0(12),
3239 AMU_AMEVCNTR0_EL0(13),
3240 AMU_AMEVCNTR0_EL0(14),
3241 AMU_AMEVCNTR0_EL0(15),
3242 AMU_AMEVTYPER0_EL0(0),
3243 AMU_AMEVTYPER0_EL0(1),
3244 AMU_AMEVTYPER0_EL0(2),
3245 AMU_AMEVTYPER0_EL0(3),
3246 AMU_AMEVTYPER0_EL0(4),
3247 AMU_AMEVTYPER0_EL0(5),
3248 AMU_AMEVTYPER0_EL0(6),
3249 AMU_AMEVTYPER0_EL0(7),
3250 AMU_AMEVTYPER0_EL0(8),
3251 AMU_AMEVTYPER0_EL0(9),
3252 AMU_AMEVTYPER0_EL0(10),
3253 AMU_AMEVTYPER0_EL0(11),
3254 AMU_AMEVTYPER0_EL0(12),
3255 AMU_AMEVTYPER0_EL0(13),
3256 AMU_AMEVTYPER0_EL0(14),
3257 AMU_AMEVTYPER0_EL0(15),
3258 AMU_AMEVCNTR1_EL0(0),
3259 AMU_AMEVCNTR1_EL0(1),
3260 AMU_AMEVCNTR1_EL0(2),
3261 AMU_AMEVCNTR1_EL0(3),
3262 AMU_AMEVCNTR1_EL0(4),
3263 AMU_AMEVCNTR1_EL0(5),
3264 AMU_AMEVCNTR1_EL0(6),
3265 AMU_AMEVCNTR1_EL0(7),
3266 AMU_AMEVCNTR1_EL0(8),
3267 AMU_AMEVCNTR1_EL0(9),
3268 AMU_AMEVCNTR1_EL0(10),
3269 AMU_AMEVCNTR1_EL0(11),
3270 AMU_AMEVCNTR1_EL0(12),
3271 AMU_AMEVCNTR1_EL0(13),
3272 AMU_AMEVCNTR1_EL0(14),
3273 AMU_AMEVCNTR1_EL0(15),
3274 AMU_AMEVTYPER1_EL0(0),
3275 AMU_AMEVTYPER1_EL0(1),
3276 AMU_AMEVTYPER1_EL0(2),
3277 AMU_AMEVTYPER1_EL0(3),
3278 AMU_AMEVTYPER1_EL0(4),
3279 AMU_AMEVTYPER1_EL0(5),
3280 AMU_AMEVTYPER1_EL0(6),
3281 AMU_AMEVTYPER1_EL0(7),
3282 AMU_AMEVTYPER1_EL0(8),
3283 AMU_AMEVTYPER1_EL0(9),
3284 AMU_AMEVTYPER1_EL0(10),
3285 AMU_AMEVTYPER1_EL0(11),
3286 AMU_AMEVTYPER1_EL0(12),
3287 AMU_AMEVTYPER1_EL0(13),
3288 AMU_AMEVTYPER1_EL0(14),
3289 AMU_AMEVTYPER1_EL0(15),
3290
3291 { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
3292 { SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer },
3293 { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3294 { SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3295 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3296 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
3297 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
3298
3299 { SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3300 { SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer },
3301 { SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer },
3302
3303 /* PMEVCNTRn_EL0 */
3304 PMU_PMEVCNTR_EL0(0),
3305 PMU_PMEVCNTR_EL0(1),
3306 PMU_PMEVCNTR_EL0(2),
3307 PMU_PMEVCNTR_EL0(3),
3308 PMU_PMEVCNTR_EL0(4),
3309 PMU_PMEVCNTR_EL0(5),
3310 PMU_PMEVCNTR_EL0(6),
3311 PMU_PMEVCNTR_EL0(7),
3312 PMU_PMEVCNTR_EL0(8),
3313 PMU_PMEVCNTR_EL0(9),
3314 PMU_PMEVCNTR_EL0(10),
3315 PMU_PMEVCNTR_EL0(11),
3316 PMU_PMEVCNTR_EL0(12),
3317 PMU_PMEVCNTR_EL0(13),
3318 PMU_PMEVCNTR_EL0(14),
3319 PMU_PMEVCNTR_EL0(15),
3320 PMU_PMEVCNTR_EL0(16),
3321 PMU_PMEVCNTR_EL0(17),
3322 PMU_PMEVCNTR_EL0(18),
3323 PMU_PMEVCNTR_EL0(19),
3324 PMU_PMEVCNTR_EL0(20),
3325 PMU_PMEVCNTR_EL0(21),
3326 PMU_PMEVCNTR_EL0(22),
3327 PMU_PMEVCNTR_EL0(23),
3328 PMU_PMEVCNTR_EL0(24),
3329 PMU_PMEVCNTR_EL0(25),
3330 PMU_PMEVCNTR_EL0(26),
3331 PMU_PMEVCNTR_EL0(27),
3332 PMU_PMEVCNTR_EL0(28),
3333 PMU_PMEVCNTR_EL0(29),
3334 PMU_PMEVCNTR_EL0(30),
3335 /* PMEVTYPERn_EL0 */
3336 PMU_PMEVTYPER_EL0(0),
3337 PMU_PMEVTYPER_EL0(1),
3338 PMU_PMEVTYPER_EL0(2),
3339 PMU_PMEVTYPER_EL0(3),
3340 PMU_PMEVTYPER_EL0(4),
3341 PMU_PMEVTYPER_EL0(5),
3342 PMU_PMEVTYPER_EL0(6),
3343 PMU_PMEVTYPER_EL0(7),
3344 PMU_PMEVTYPER_EL0(8),
3345 PMU_PMEVTYPER_EL0(9),
3346 PMU_PMEVTYPER_EL0(10),
3347 PMU_PMEVTYPER_EL0(11),
3348 PMU_PMEVTYPER_EL0(12),
3349 PMU_PMEVTYPER_EL0(13),
3350 PMU_PMEVTYPER_EL0(14),
3351 PMU_PMEVTYPER_EL0(15),
3352 PMU_PMEVTYPER_EL0(16),
3353 PMU_PMEVTYPER_EL0(17),
3354 PMU_PMEVTYPER_EL0(18),
3355 PMU_PMEVTYPER_EL0(19),
3356 PMU_PMEVTYPER_EL0(20),
3357 PMU_PMEVTYPER_EL0(21),
3358 PMU_PMEVTYPER_EL0(22),
3359 PMU_PMEVTYPER_EL0(23),
3360 PMU_PMEVTYPER_EL0(24),
3361 PMU_PMEVTYPER_EL0(25),
3362 PMU_PMEVTYPER_EL0(26),
3363 PMU_PMEVTYPER_EL0(27),
3364 PMU_PMEVTYPER_EL0(28),
3365 PMU_PMEVTYPER_EL0(29),
3366 PMU_PMEVTYPER_EL0(30),
3367 /*
3368 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3369 * in 32bit mode. Here we choose to reset it as zero for consistency.
3370 */
3371 { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3372 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3373
3374 EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3375 EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3376 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3377 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3378 EL2_REG_FILTERED(SCTLR2_EL2, access_vm_reg, reset_val, 0,
3379 sctlr2_el2_visibility),
3380 EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3381 EL2_REG(MDCR_EL2, access_mdcr, reset_mdcr, 0),
3382 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3383 EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3384 EL2_REG_VNCR_FILT(HFGRTR_EL2, fgt_visibility),
3385 EL2_REG_VNCR_FILT(HFGWTR_EL2, fgt_visibility),
3386 EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3387 EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3388
3389 EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3390 sve_el2_visibility),
3391
3392 EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3393
3394 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3395 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3396 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3397 EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3398 tcr2_el2_visibility),
3399 EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3400 EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3401 EL2_REG_FILTERED(VNCR_EL2, bad_vncr_trap, reset_val, 0,
3402 vncr_el2_visibility),
3403
3404 { SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3405 EL2_REG_VNCR_FILT(HDFGRTR2_EL2, fgt2_visibility),
3406 EL2_REG_VNCR_FILT(HDFGWTR2_EL2, fgt2_visibility),
3407 EL2_REG_VNCR_FILT(HFGRTR2_EL2, fgt2_visibility),
3408 EL2_REG_VNCR_FILT(HFGWTR2_EL2, fgt2_visibility),
3409 EL2_REG_VNCR_FILT(HDFGRTR_EL2, fgt_visibility),
3410 EL2_REG_VNCR_FILT(HDFGWTR_EL2, fgt_visibility),
3411 EL2_REG_VNCR_FILT(HAFGRTR_EL2, fgt_visibility),
3412 EL2_REG_VNCR_FILT(HFGITR2_EL2, fgt2_visibility),
3413 EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3414 EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3415 { SYS_DESC(SYS_SP_EL1), access_sp_el1},
3416
3417 /* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3418 { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3419 { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3420 { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3421 { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3422
3423 { SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3424 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3425 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3426 EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3427 EL2_REG_VNCR(VSESR_EL2, reset_unknown, 0),
3428 { SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3429
3430 EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3431 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3432
3433 EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3434 EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3435 s1pie_el2_visibility),
3436 EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3437 s1pie_el2_visibility),
3438 EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3439 s1poe_el2_visibility),
3440 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3441 { SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3442 { SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3443 { SYS_DESC(SYS_MPAM2_EL2), undef_access },
3444 { SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3445 { SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3446 { SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3447 { SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3448 { SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3449 { SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3450 { SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3451 { SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3452
3453 EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3454 { SYS_DESC(SYS_RVBAR_EL2), undef_access },
3455 { SYS_DESC(SYS_RMR_EL2), undef_access },
3456 EL2_REG_VNCR(VDISR_EL2, reset_unknown, 0),
3457
3458 EL2_REG_VNCR_GICv3(ICH_AP0R0_EL2),
3459 EL2_REG_VNCR_GICv3(ICH_AP0R1_EL2),
3460 EL2_REG_VNCR_GICv3(ICH_AP0R2_EL2),
3461 EL2_REG_VNCR_GICv3(ICH_AP0R3_EL2),
3462 EL2_REG_VNCR_GICv3(ICH_AP1R0_EL2),
3463 EL2_REG_VNCR_GICv3(ICH_AP1R1_EL2),
3464 EL2_REG_VNCR_GICv3(ICH_AP1R2_EL2),
3465 EL2_REG_VNCR_GICv3(ICH_AP1R3_EL2),
3466
3467 { SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3468
3469 EL2_REG_VNCR_GICv3(ICH_HCR_EL2),
3470 { SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3471 { SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3472 { SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3473 { SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3474 EL2_REG_VNCR_GICv3(ICH_VMCR_EL2),
3475
3476 EL2_REG_VNCR_GICv3(ICH_LR0_EL2),
3477 EL2_REG_VNCR_GICv3(ICH_LR1_EL2),
3478 EL2_REG_VNCR_GICv3(ICH_LR2_EL2),
3479 EL2_REG_VNCR_GICv3(ICH_LR3_EL2),
3480 EL2_REG_VNCR_GICv3(ICH_LR4_EL2),
3481 EL2_REG_VNCR_GICv3(ICH_LR5_EL2),
3482 EL2_REG_VNCR_GICv3(ICH_LR6_EL2),
3483 EL2_REG_VNCR_GICv3(ICH_LR7_EL2),
3484 EL2_REG_VNCR_GICv3(ICH_LR8_EL2),
3485 EL2_REG_VNCR_GICv3(ICH_LR9_EL2),
3486 EL2_REG_VNCR_GICv3(ICH_LR10_EL2),
3487 EL2_REG_VNCR_GICv3(ICH_LR11_EL2),
3488 EL2_REG_VNCR_GICv3(ICH_LR12_EL2),
3489 EL2_REG_VNCR_GICv3(ICH_LR13_EL2),
3490 EL2_REG_VNCR_GICv3(ICH_LR14_EL2),
3491 EL2_REG_VNCR_GICv3(ICH_LR15_EL2),
3492
3493 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3494 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3495
3496 EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3497 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3498 { SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3499 EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0),
3500 EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0),
3501
3502 { SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer },
3503 EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0),
3504 EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0),
3505
3506 { SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3507
3508 { SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3509 { SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3510 { SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3511
3512 { SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3513 { SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3514 { SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3515
3516 EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3517 };
3518
handle_at_s1e01(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3519 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3520 const struct sys_reg_desc *r)
3521 {
3522 u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3523
3524 __kvm_at_s1e01(vcpu, op, p->regval);
3525
3526 return true;
3527 }
3528
handle_at_s1e2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3529 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3530 const struct sys_reg_desc *r)
3531 {
3532 u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3533
3534 /* There is no FGT associated with AT S1E2A :-( */
3535 if (op == OP_AT_S1E2A &&
3536 !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3537 kvm_inject_undefined(vcpu);
3538 return false;
3539 }
3540
3541 __kvm_at_s1e2(vcpu, op, p->regval);
3542
3543 return true;
3544 }
3545
handle_at_s12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3546 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3547 const struct sys_reg_desc *r)
3548 {
3549 u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3550
3551 __kvm_at_s12(vcpu, op, p->regval);
3552
3553 return true;
3554 }
3555
kvm_supported_tlbi_s12_op(struct kvm_vcpu * vpcu,u32 instr)3556 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3557 {
3558 struct kvm *kvm = vpcu->kvm;
3559 u8 CRm = sys_reg_CRm(instr);
3560
3561 if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3562 !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3563 return false;
3564
3565 if (CRm == TLBI_CRm_nROS &&
3566 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3567 return false;
3568
3569 return true;
3570 }
3571
handle_alle1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3572 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3573 const struct sys_reg_desc *r)
3574 {
3575 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3576
3577 if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3578 return undef_access(vcpu, p, r);
3579
3580 write_lock(&vcpu->kvm->mmu_lock);
3581
3582 /*
3583 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3584 * corresponding VMIDs.
3585 */
3586 kvm_nested_s2_unmap(vcpu->kvm, true);
3587
3588 write_unlock(&vcpu->kvm->mmu_lock);
3589
3590 return true;
3591 }
3592
kvm_supported_tlbi_ipas2_op(struct kvm_vcpu * vpcu,u32 instr)3593 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3594 {
3595 struct kvm *kvm = vpcu->kvm;
3596 u8 CRm = sys_reg_CRm(instr);
3597 u8 Op2 = sys_reg_Op2(instr);
3598
3599 if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3600 !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3601 return false;
3602
3603 if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3604 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3605 return false;
3606
3607 if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3608 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3609 return false;
3610
3611 if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3612 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3613 return false;
3614
3615 return true;
3616 }
3617
3618 /* Only defined here as this is an internal "abstraction" */
3619 union tlbi_info {
3620 struct {
3621 u64 start;
3622 u64 size;
3623 } range;
3624
3625 struct {
3626 u64 addr;
3627 } ipa;
3628
3629 struct {
3630 u64 addr;
3631 u32 encoding;
3632 } va;
3633 };
3634
s2_mmu_unmap_range(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3635 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3636 const union tlbi_info *info)
3637 {
3638 /*
3639 * The unmap operation is allowed to drop the MMU lock and block, which
3640 * means that @mmu could be used for a different context than the one
3641 * currently being invalidated.
3642 *
3643 * This behavior is still safe, as:
3644 *
3645 * 1) The vCPU(s) that recycled the MMU are responsible for invalidating
3646 * the entire MMU before reusing it, which still honors the intent
3647 * of a TLBI.
3648 *
3649 * 2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3650 * and ERET to the guest), other vCPUs are allowed to use stale
3651 * translations.
3652 *
3653 * 3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3654 * at worst may cause more aborts for shadow stage-2 fills.
3655 *
3656 * Dropping the MMU lock also implies that shadow stage-2 fills could
3657 * happen behind the back of the TLBI. This is still safe, though, as
3658 * the L1 needs to put its stage-2 in a consistent state before doing
3659 * the TLBI.
3660 */
3661 kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3662 }
3663
handle_vmalls12e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3664 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3665 const struct sys_reg_desc *r)
3666 {
3667 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3668 u64 limit, vttbr;
3669
3670 if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3671 return undef_access(vcpu, p, r);
3672
3673 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3674 limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3675
3676 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3677 &(union tlbi_info) {
3678 .range = {
3679 .start = 0,
3680 .size = limit,
3681 },
3682 },
3683 s2_mmu_unmap_range);
3684
3685 return true;
3686 }
3687
handle_ripas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3688 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3689 const struct sys_reg_desc *r)
3690 {
3691 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3692 u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3693 u64 base, range;
3694
3695 if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3696 return undef_access(vcpu, p, r);
3697
3698 /*
3699 * Because the shadow S2 structure doesn't necessarily reflect that
3700 * of the guest's S2 (different base granule size, for example), we
3701 * decide to ignore TTL and only use the described range.
3702 */
3703 base = decode_range_tlbi(p->regval, &range, NULL);
3704
3705 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3706 &(union tlbi_info) {
3707 .range = {
3708 .start = base,
3709 .size = range,
3710 },
3711 },
3712 s2_mmu_unmap_range);
3713
3714 return true;
3715 }
3716
s2_mmu_unmap_ipa(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3717 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3718 const union tlbi_info *info)
3719 {
3720 unsigned long max_size;
3721 u64 base_addr;
3722
3723 /*
3724 * We drop a number of things from the supplied value:
3725 *
3726 * - NS bit: we're non-secure only.
3727 *
3728 * - IPA[51:48]: We don't support 52bit IPA just yet...
3729 *
3730 * And of course, adjust the IPA to be on an actual address.
3731 */
3732 base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3733 max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3734 base_addr &= ~(max_size - 1);
3735
3736 /*
3737 * See comment in s2_mmu_unmap_range() for why this is allowed to
3738 * reschedule.
3739 */
3740 kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3741 }
3742
handle_ipas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3743 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3744 const struct sys_reg_desc *r)
3745 {
3746 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3747 u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3748
3749 if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3750 return undef_access(vcpu, p, r);
3751
3752 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3753 &(union tlbi_info) {
3754 .ipa = {
3755 .addr = p->regval,
3756 },
3757 },
3758 s2_mmu_unmap_ipa);
3759
3760 return true;
3761 }
3762
s2_mmu_tlbi_s1e1(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3763 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3764 const union tlbi_info *info)
3765 {
3766 WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3767 }
3768
handle_tlbi_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3769 static bool handle_tlbi_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3770 const struct sys_reg_desc *r)
3771 {
3772 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3773
3774 if (!kvm_supported_tlbi_s1e2_op(vcpu, sys_encoding))
3775 return undef_access(vcpu, p, r);
3776
3777 kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
3778 return true;
3779 }
3780
handle_tlbi_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3781 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3782 const struct sys_reg_desc *r)
3783 {
3784 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3785
3786 /*
3787 * If we're here, this is because we've trapped on a EL1 TLBI
3788 * instruction that affects the EL1 translation regime while
3789 * we're running in a context that doesn't allow us to let the
3790 * HW do its thing (aka vEL2):
3791 *
3792 * - HCR_EL2.E2H == 0 : a non-VHE guest
3793 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3794 *
3795 * Another possibility is that we are invalidating the EL2 context
3796 * using EL1 instructions, but that we landed here because we need
3797 * additional invalidation for structures that are not held in the
3798 * CPU TLBs (such as the VNCR pseudo-TLB and its EL2 mapping). In
3799 * that case, we are guaranteed that HCR_EL2.{E2H,TGE} == { 1, 1 }
3800 * as we don't allow an NV-capable L1 in a nVHE configuration.
3801 *
3802 * We don't expect these helpers to ever be called when running
3803 * in a vEL1 context.
3804 */
3805
3806 WARN_ON(!vcpu_is_el2(vcpu));
3807
3808 if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3809 return undef_access(vcpu, p, r);
3810
3811 if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) {
3812 kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval);
3813 return true;
3814 }
3815
3816 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm,
3817 get_vmid(__vcpu_sys_reg(vcpu, VTTBR_EL2)),
3818 &(union tlbi_info) {
3819 .va = {
3820 .addr = p->regval,
3821 .encoding = sys_encoding,
3822 },
3823 },
3824 s2_mmu_tlbi_s1e1);
3825
3826 return true;
3827 }
3828
3829 #define SYS_INSN(insn, access_fn) \
3830 { \
3831 SYS_DESC(OP_##insn), \
3832 .access = (access_fn), \
3833 }
3834
3835 static struct sys_reg_desc sys_insn_descs[] = {
3836 { SYS_DESC(SYS_DC_ISW), access_dcsw },
3837 { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3838 { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3839
3840 SYS_INSN(AT_S1E1R, handle_at_s1e01),
3841 SYS_INSN(AT_S1E1W, handle_at_s1e01),
3842 SYS_INSN(AT_S1E0R, handle_at_s1e01),
3843 SYS_INSN(AT_S1E0W, handle_at_s1e01),
3844 SYS_INSN(AT_S1E1RP, handle_at_s1e01),
3845 SYS_INSN(AT_S1E1WP, handle_at_s1e01),
3846
3847 { SYS_DESC(SYS_DC_CSW), access_dcsw },
3848 { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3849 { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3850 { SYS_DESC(SYS_DC_CISW), access_dcsw },
3851 { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3852 { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3853
3854 SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3855 SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3856 SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3857 SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3858 SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3859 SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3860
3861 SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3862 SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3863 SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3864 SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3865
3866 SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3867 SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3868 SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3869 SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3870 SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3871 SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3872
3873 SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3874 SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3875 SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3876 SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3877
3878 SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3879 SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3880 SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3881 SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3882
3883 SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3884 SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3885 SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3886 SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3887 SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3888 SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3889
3890 SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3891 SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3892 SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3893 SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3894 SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3895 SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3896
3897 SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3898 SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3899 SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3900 SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3901
3902 SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3903 SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3904 SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3905 SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3906 SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3907 SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3908
3909 SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3910 SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3911 SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3912 SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3913
3914 SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3915 SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3916 SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3917 SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3918
3919 SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3920 SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3921 SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3922 SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3923 SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3924 SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3925
3926 SYS_INSN(AT_S1E2R, handle_at_s1e2),
3927 SYS_INSN(AT_S1E2W, handle_at_s1e2),
3928 SYS_INSN(AT_S12E1R, handle_at_s12),
3929 SYS_INSN(AT_S12E1W, handle_at_s12),
3930 SYS_INSN(AT_S12E0R, handle_at_s12),
3931 SYS_INSN(AT_S12E0W, handle_at_s12),
3932 SYS_INSN(AT_S1E2A, handle_at_s1e2),
3933
3934 SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3935 SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3936 SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3937 SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3938
3939 SYS_INSN(TLBI_ALLE2OS, handle_tlbi_el2),
3940 SYS_INSN(TLBI_VAE2OS, handle_tlbi_el2),
3941 SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3942 SYS_INSN(TLBI_VALE2OS, handle_tlbi_el2),
3943 SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3944
3945 SYS_INSN(TLBI_RVAE2IS, handle_tlbi_el2),
3946 SYS_INSN(TLBI_RVALE2IS, handle_tlbi_el2),
3947 SYS_INSN(TLBI_ALLE2IS, handle_tlbi_el2),
3948 SYS_INSN(TLBI_VAE2IS, handle_tlbi_el2),
3949
3950 SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3951
3952 SYS_INSN(TLBI_VALE2IS, handle_tlbi_el2),
3953
3954 SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3955 SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3956 SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3957 SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3958 SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3959 SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3960 SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3961 SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3962 SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3963 SYS_INSN(TLBI_RVAE2OS, handle_tlbi_el2),
3964 SYS_INSN(TLBI_RVALE2OS, handle_tlbi_el2),
3965 SYS_INSN(TLBI_RVAE2, handle_tlbi_el2),
3966 SYS_INSN(TLBI_RVALE2, handle_tlbi_el2),
3967 SYS_INSN(TLBI_ALLE2, handle_tlbi_el2),
3968 SYS_INSN(TLBI_VAE2, handle_tlbi_el2),
3969
3970 SYS_INSN(TLBI_ALLE1, handle_alle1is),
3971
3972 SYS_INSN(TLBI_VALE2, handle_tlbi_el2),
3973
3974 SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3975
3976 SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3977 SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3978 SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3979 SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3980
3981 SYS_INSN(TLBI_ALLE2OSNXS, handle_tlbi_el2),
3982 SYS_INSN(TLBI_VAE2OSNXS, handle_tlbi_el2),
3983 SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3984 SYS_INSN(TLBI_VALE2OSNXS, handle_tlbi_el2),
3985 SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3986
3987 SYS_INSN(TLBI_RVAE2ISNXS, handle_tlbi_el2),
3988 SYS_INSN(TLBI_RVALE2ISNXS, handle_tlbi_el2),
3989 SYS_INSN(TLBI_ALLE2ISNXS, handle_tlbi_el2),
3990 SYS_INSN(TLBI_VAE2ISNXS, handle_tlbi_el2),
3991
3992 SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3993 SYS_INSN(TLBI_VALE2ISNXS, handle_tlbi_el2),
3994 SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3995 SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3996 SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3997 SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3998 SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3999 SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
4000 SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
4001 SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
4002 SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
4003 SYS_INSN(TLBI_RVAE2OSNXS, handle_tlbi_el2),
4004 SYS_INSN(TLBI_RVALE2OSNXS, handle_tlbi_el2),
4005 SYS_INSN(TLBI_RVAE2NXS, handle_tlbi_el2),
4006 SYS_INSN(TLBI_RVALE2NXS, handle_tlbi_el2),
4007 SYS_INSN(TLBI_ALLE2NXS, handle_tlbi_el2),
4008 SYS_INSN(TLBI_VAE2NXS, handle_tlbi_el2),
4009 SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
4010 SYS_INSN(TLBI_VALE2NXS, handle_tlbi_el2),
4011 SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
4012 };
4013
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)4014 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
4015 struct sys_reg_params *p,
4016 const struct sys_reg_desc *r)
4017 {
4018 if (p->is_write) {
4019 return ignore_write(vcpu, p);
4020 } else {
4021 u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
4022 u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
4023
4024 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
4025 (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
4026 (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
4027 (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
4028 (1 << 15) | (el3 << 14) | (el3 << 12));
4029 return true;
4030 }
4031 }
4032
4033 /*
4034 * AArch32 debug register mappings
4035 *
4036 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
4037 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
4038 *
4039 * None of the other registers share their location, so treat them as
4040 * if they were 64bit.
4041 */
4042 #define DBG_BCR_BVR_WCR_WVR(n) \
4043 /* DBGBVRn */ \
4044 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), \
4045 trap_dbg_wb_reg, NULL, n }, \
4046 /* DBGBCRn */ \
4047 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n }, \
4048 /* DBGWVRn */ \
4049 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n }, \
4050 /* DBGWCRn */ \
4051 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
4052
4053 #define DBGBXVR(n) \
4054 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), \
4055 trap_dbg_wb_reg, NULL, n }
4056
4057 /*
4058 * Trapped cp14 registers. We generally ignore most of the external
4059 * debug, on the principle that they don't really make sense to a
4060 * guest. Revisit this one day, would this principle change.
4061 */
4062 static const struct sys_reg_desc cp14_regs[] = {
4063 /* DBGDIDR */
4064 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
4065 /* DBGDTRRXext */
4066 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
4067
4068 DBG_BCR_BVR_WCR_WVR(0),
4069 /* DBGDSCRint */
4070 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
4071 DBG_BCR_BVR_WCR_WVR(1),
4072 /* DBGDCCINT */
4073 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
4074 /* DBGDSCRext */
4075 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
4076 DBG_BCR_BVR_WCR_WVR(2),
4077 /* DBGDTR[RT]Xint */
4078 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
4079 /* DBGDTR[RT]Xext */
4080 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
4081 DBG_BCR_BVR_WCR_WVR(3),
4082 DBG_BCR_BVR_WCR_WVR(4),
4083 DBG_BCR_BVR_WCR_WVR(5),
4084 /* DBGWFAR */
4085 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
4086 /* DBGOSECCR */
4087 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
4088 DBG_BCR_BVR_WCR_WVR(6),
4089 /* DBGVCR */
4090 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
4091 DBG_BCR_BVR_WCR_WVR(7),
4092 DBG_BCR_BVR_WCR_WVR(8),
4093 DBG_BCR_BVR_WCR_WVR(9),
4094 DBG_BCR_BVR_WCR_WVR(10),
4095 DBG_BCR_BVR_WCR_WVR(11),
4096 DBG_BCR_BVR_WCR_WVR(12),
4097 DBG_BCR_BVR_WCR_WVR(13),
4098 DBG_BCR_BVR_WCR_WVR(14),
4099 DBG_BCR_BVR_WCR_WVR(15),
4100
4101 /* DBGDRAR (32bit) */
4102 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
4103
4104 DBGBXVR(0),
4105 /* DBGOSLAR */
4106 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
4107 DBGBXVR(1),
4108 /* DBGOSLSR */
4109 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
4110 DBGBXVR(2),
4111 DBGBXVR(3),
4112 /* DBGOSDLR */
4113 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
4114 DBGBXVR(4),
4115 /* DBGPRCR */
4116 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
4117 DBGBXVR(5),
4118 DBGBXVR(6),
4119 DBGBXVR(7),
4120 DBGBXVR(8),
4121 DBGBXVR(9),
4122 DBGBXVR(10),
4123 DBGBXVR(11),
4124 DBGBXVR(12),
4125 DBGBXVR(13),
4126 DBGBXVR(14),
4127 DBGBXVR(15),
4128
4129 /* DBGDSAR (32bit) */
4130 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
4131
4132 /* DBGDEVID2 */
4133 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
4134 /* DBGDEVID1 */
4135 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
4136 /* DBGDEVID */
4137 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
4138 /* DBGCLAIMSET */
4139 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
4140 /* DBGCLAIMCLR */
4141 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
4142 /* DBGAUTHSTATUS */
4143 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
4144 };
4145
4146 /* Trapped cp14 64bit registers */
4147 static const struct sys_reg_desc cp14_64_regs[] = {
4148 /* DBGDRAR (64bit) */
4149 { Op1( 0), CRm( 1), .access = trap_raz_wi },
4150
4151 /* DBGDSAR (64bit) */
4152 { Op1( 0), CRm( 2), .access = trap_raz_wi },
4153 };
4154
4155 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
4156 AA32(_map), \
4157 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
4158 .visibility = pmu_visibility
4159
4160 /* Macro to expand the PMEVCNTRn register */
4161 #define PMU_PMEVCNTR(n) \
4162 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
4163 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
4164 .access = access_pmu_evcntr }
4165
4166 /* Macro to expand the PMEVTYPERn register */
4167 #define PMU_PMEVTYPER(n) \
4168 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
4169 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
4170 .access = access_pmu_evtyper }
4171 /*
4172 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
4173 * depending on the way they are accessed (as a 32bit or a 64bit
4174 * register).
4175 */
4176 static const struct sys_reg_desc cp15_regs[] = {
4177 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
4178 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
4179 /* ACTLR */
4180 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
4181 /* ACTLR2 */
4182 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
4183 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4184 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
4185 /* TTBCR */
4186 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
4187 /* TTBCR2 */
4188 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
4189 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
4190 { CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
4191 /* DFSR */
4192 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
4193 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
4194 /* ADFSR */
4195 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
4196 /* AIFSR */
4197 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
4198 /* DFAR */
4199 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
4200 /* IFAR */
4201 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4202
4203 /*
4204 * DC{C,I,CI}SW operations:
4205 */
4206 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
4207 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
4208 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4209
4210 /* PMU */
4211 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
4212 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
4213 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
4214 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
4215 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
4216 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
4217 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
4218 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
4219 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
4220 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
4221 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
4222 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
4223 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
4224 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
4225 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
4226 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
4227 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
4228 /* PMMIR */
4229 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4230
4231 /* PRRR/MAIR0 */
4232 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
4233 /* NMRR/MAIR1 */
4234 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
4235 /* AMAIR0 */
4236 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
4237 /* AMAIR1 */
4238 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
4239
4240 { CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
4241 { CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
4242 { CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
4243 { CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
4244 { CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
4245 { CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
4246 { CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
4247 { CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
4248 { CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
4249 { CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
4250 { CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
4251 { CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
4252 { CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
4253 { CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
4254 { CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
4255 { CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
4256 { CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
4257 { CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
4258 { CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
4259 { CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
4260 { CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
4261 { CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
4262
4263 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
4264
4265 /* Arch Tmers */
4266 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
4267 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
4268
4269 /* PMEVCNTRn */
4270 PMU_PMEVCNTR(0),
4271 PMU_PMEVCNTR(1),
4272 PMU_PMEVCNTR(2),
4273 PMU_PMEVCNTR(3),
4274 PMU_PMEVCNTR(4),
4275 PMU_PMEVCNTR(5),
4276 PMU_PMEVCNTR(6),
4277 PMU_PMEVCNTR(7),
4278 PMU_PMEVCNTR(8),
4279 PMU_PMEVCNTR(9),
4280 PMU_PMEVCNTR(10),
4281 PMU_PMEVCNTR(11),
4282 PMU_PMEVCNTR(12),
4283 PMU_PMEVCNTR(13),
4284 PMU_PMEVCNTR(14),
4285 PMU_PMEVCNTR(15),
4286 PMU_PMEVCNTR(16),
4287 PMU_PMEVCNTR(17),
4288 PMU_PMEVCNTR(18),
4289 PMU_PMEVCNTR(19),
4290 PMU_PMEVCNTR(20),
4291 PMU_PMEVCNTR(21),
4292 PMU_PMEVCNTR(22),
4293 PMU_PMEVCNTR(23),
4294 PMU_PMEVCNTR(24),
4295 PMU_PMEVCNTR(25),
4296 PMU_PMEVCNTR(26),
4297 PMU_PMEVCNTR(27),
4298 PMU_PMEVCNTR(28),
4299 PMU_PMEVCNTR(29),
4300 PMU_PMEVCNTR(30),
4301 /* PMEVTYPERn */
4302 PMU_PMEVTYPER(0),
4303 PMU_PMEVTYPER(1),
4304 PMU_PMEVTYPER(2),
4305 PMU_PMEVTYPER(3),
4306 PMU_PMEVTYPER(4),
4307 PMU_PMEVTYPER(5),
4308 PMU_PMEVTYPER(6),
4309 PMU_PMEVTYPER(7),
4310 PMU_PMEVTYPER(8),
4311 PMU_PMEVTYPER(9),
4312 PMU_PMEVTYPER(10),
4313 PMU_PMEVTYPER(11),
4314 PMU_PMEVTYPER(12),
4315 PMU_PMEVTYPER(13),
4316 PMU_PMEVTYPER(14),
4317 PMU_PMEVTYPER(15),
4318 PMU_PMEVTYPER(16),
4319 PMU_PMEVTYPER(17),
4320 PMU_PMEVTYPER(18),
4321 PMU_PMEVTYPER(19),
4322 PMU_PMEVTYPER(20),
4323 PMU_PMEVTYPER(21),
4324 PMU_PMEVTYPER(22),
4325 PMU_PMEVTYPER(23),
4326 PMU_PMEVTYPER(24),
4327 PMU_PMEVTYPER(25),
4328 PMU_PMEVTYPER(26),
4329 PMU_PMEVTYPER(27),
4330 PMU_PMEVTYPER(28),
4331 PMU_PMEVTYPER(29),
4332 PMU_PMEVTYPER(30),
4333 /* PMCCFILTR */
4334 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4335
4336 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4337 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4338
4339 /* CCSIDR2 */
4340 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
4341
4342 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4343 };
4344
4345 static const struct sys_reg_desc cp15_64_regs[] = {
4346 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4347 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4348 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4349 { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
4350 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4351 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4352 { SYS_DESC(SYS_AARCH32_CNTVCT), access_arch_timer },
4353 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4354 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
4355 { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
4356 { SYS_DESC(SYS_AARCH32_CNTVCTSS), access_arch_timer },
4357 };
4358
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool reset_check)4359 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4360 bool reset_check)
4361 {
4362 unsigned int i;
4363
4364 for (i = 0; i < n; i++) {
4365 if (reset_check && table[i].reg && !table[i].reset) {
4366 kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4367 &table[i], i, table[i].name);
4368 return false;
4369 }
4370
4371 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4372 kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4373 &table[i], i, table[i - 1].name, table[i].name);
4374 return false;
4375 }
4376 }
4377
4378 return true;
4379 }
4380
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)4381 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4382 {
4383 kvm_inject_undefined(vcpu);
4384 return 1;
4385 }
4386
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)4387 static void perform_access(struct kvm_vcpu *vcpu,
4388 struct sys_reg_params *params,
4389 const struct sys_reg_desc *r)
4390 {
4391 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4392
4393 /* Check for regs disabled by runtime config */
4394 if (sysreg_hidden(vcpu, r)) {
4395 kvm_inject_undefined(vcpu);
4396 return;
4397 }
4398
4399 /*
4400 * Not having an accessor means that we have configured a trap
4401 * that we don't know how to handle. This certainly qualifies
4402 * as a gross bug that should be fixed right away.
4403 */
4404 BUG_ON(!r->access);
4405
4406 /* Skip instruction if instructed so */
4407 if (likely(r->access(vcpu, params, r)))
4408 kvm_incr_pc(vcpu);
4409 }
4410
4411 /*
4412 * emulate_cp -- tries to match a sys_reg access in a handling table, and
4413 * call the corresponding trap handler.
4414 *
4415 * @params: pointer to the descriptor of the access
4416 * @table: array of trap descriptors
4417 * @num: size of the trap descriptor array
4418 *
4419 * Return true if the access has been handled, false if not.
4420 */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)4421 static bool emulate_cp(struct kvm_vcpu *vcpu,
4422 struct sys_reg_params *params,
4423 const struct sys_reg_desc *table,
4424 size_t num)
4425 {
4426 const struct sys_reg_desc *r;
4427
4428 if (!table)
4429 return false; /* Not handled */
4430
4431 r = find_reg(params, table, num);
4432
4433 if (r) {
4434 perform_access(vcpu, params, r);
4435 return true;
4436 }
4437
4438 /* Not handled */
4439 return false;
4440 }
4441
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4442 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4443 struct sys_reg_params *params)
4444 {
4445 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4446 int cp = -1;
4447
4448 switch (esr_ec) {
4449 case ESR_ELx_EC_CP15_32:
4450 case ESR_ELx_EC_CP15_64:
4451 cp = 15;
4452 break;
4453 case ESR_ELx_EC_CP14_MR:
4454 case ESR_ELx_EC_CP14_64:
4455 cp = 14;
4456 break;
4457 default:
4458 WARN_ON(1);
4459 }
4460
4461 print_sys_reg_msg(params,
4462 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4463 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4464 kvm_inject_undefined(vcpu);
4465 }
4466
4467 /**
4468 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4469 * @vcpu: The VCPU pointer
4470 * @global: &struct sys_reg_desc
4471 * @nr_global: size of the @global array
4472 */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)4473 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4474 const struct sys_reg_desc *global,
4475 size_t nr_global)
4476 {
4477 struct sys_reg_params params;
4478 u64 esr = kvm_vcpu_get_esr(vcpu);
4479 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4480 int Rt2 = (esr >> 10) & 0x1f;
4481
4482 params.CRm = (esr >> 1) & 0xf;
4483 params.is_write = ((esr & 1) == 0);
4484
4485 params.Op0 = 0;
4486 params.Op1 = (esr >> 16) & 0xf;
4487 params.Op2 = 0;
4488 params.CRn = 0;
4489
4490 /*
4491 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4492 * backends between AArch32 and AArch64, we get away with it.
4493 */
4494 if (params.is_write) {
4495 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4496 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4497 }
4498
4499 /*
4500 * If the table contains a handler, handle the
4501 * potential register operation in the case of a read and return
4502 * with success.
4503 */
4504 if (emulate_cp(vcpu, ¶ms, global, nr_global)) {
4505 /* Split up the value between registers for the read side */
4506 if (!params.is_write) {
4507 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4508 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4509 }
4510
4511 return 1;
4512 }
4513
4514 unhandled_cp_access(vcpu, ¶ms);
4515 return 1;
4516 }
4517
4518 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4519
4520 /*
4521 * The CP10 ID registers are architecturally mapped to AArch64 feature
4522 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4523 * from AArch32.
4524 */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)4525 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4526 {
4527 u8 reg_id = (esr >> 10) & 0xf;
4528 bool valid;
4529
4530 params->is_write = ((esr & 1) == 0);
4531 params->Op0 = 3;
4532 params->Op1 = 0;
4533 params->CRn = 0;
4534 params->CRm = 3;
4535
4536 /* CP10 ID registers are read-only */
4537 valid = !params->is_write;
4538
4539 switch (reg_id) {
4540 /* MVFR0 */
4541 case 0b0111:
4542 params->Op2 = 0;
4543 break;
4544 /* MVFR1 */
4545 case 0b0110:
4546 params->Op2 = 1;
4547 break;
4548 /* MVFR2 */
4549 case 0b0101:
4550 params->Op2 = 2;
4551 break;
4552 default:
4553 valid = false;
4554 }
4555
4556 if (valid)
4557 return true;
4558
4559 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4560 str_write_read(params->is_write), reg_id);
4561 return false;
4562 }
4563
4564 /**
4565 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4566 * VFP Register' from AArch32.
4567 * @vcpu: The vCPU pointer
4568 *
4569 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4570 * Work out the correct AArch64 system register encoding and reroute to the
4571 * AArch64 system register emulation.
4572 */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)4573 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4574 {
4575 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4576 u64 esr = kvm_vcpu_get_esr(vcpu);
4577 struct sys_reg_params params;
4578
4579 /* UNDEF on any unhandled register access */
4580 if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) {
4581 kvm_inject_undefined(vcpu);
4582 return 1;
4583 }
4584
4585 if (emulate_sys_reg(vcpu, ¶ms))
4586 vcpu_set_reg(vcpu, Rt, params.regval);
4587
4588 return 1;
4589 }
4590
4591 /**
4592 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4593 * CRn=0, which corresponds to the AArch32 feature
4594 * registers.
4595 * @vcpu: the vCPU pointer
4596 * @params: the system register access parameters.
4597 *
4598 * Our cp15 system register tables do not enumerate the AArch32 feature
4599 * registers. Conveniently, our AArch64 table does, and the AArch32 system
4600 * register encoding can be trivially remapped into the AArch64 for the feature
4601 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4602 *
4603 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4604 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4605 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4606 * treat undefined registers in this range as RAZ.
4607 */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4608 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4609 struct sys_reg_params *params)
4610 {
4611 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4612
4613 /* Treat impossible writes to RO registers as UNDEFINED */
4614 if (params->is_write) {
4615 unhandled_cp_access(vcpu, params);
4616 return 1;
4617 }
4618
4619 params->Op0 = 3;
4620
4621 /*
4622 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4623 * Avoid conflicting with future expansion of AArch64 feature registers
4624 * and simply treat them as RAZ here.
4625 */
4626 if (params->CRm > 3)
4627 params->regval = 0;
4628 else if (!emulate_sys_reg(vcpu, params))
4629 return 1;
4630
4631 vcpu_set_reg(vcpu, Rt, params->regval);
4632 return 1;
4633 }
4634
4635 /**
4636 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4637 * @vcpu: The VCPU pointer
4638 * @params: &struct sys_reg_params
4639 * @global: &struct sys_reg_desc
4640 * @nr_global: size of the @global array
4641 */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)4642 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4643 struct sys_reg_params *params,
4644 const struct sys_reg_desc *global,
4645 size_t nr_global)
4646 {
4647 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4648
4649 params->regval = vcpu_get_reg(vcpu, Rt);
4650
4651 if (emulate_cp(vcpu, params, global, nr_global)) {
4652 if (!params->is_write)
4653 vcpu_set_reg(vcpu, Rt, params->regval);
4654 return 1;
4655 }
4656
4657 unhandled_cp_access(vcpu, params);
4658 return 1;
4659 }
4660
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)4661 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4662 {
4663 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4664 }
4665
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)4666 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4667 {
4668 struct sys_reg_params params;
4669
4670 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4671
4672 /*
4673 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4674 * system register table. Registers in the ID range where CRm=0 are
4675 * excluded from this scheme as they do not trivially map into AArch64
4676 * system register encodings, except for AIDR/REVIDR.
4677 */
4678 if (params.Op1 == 0 && params.CRn == 0 &&
4679 (params.CRm || params.Op2 == 6 /* REVIDR */))
4680 return kvm_emulate_cp15_id_reg(vcpu, ¶ms);
4681 if (params.Op1 == 1 && params.CRn == 0 &&
4682 params.CRm == 0 && params.Op2 == 7 /* AIDR */)
4683 return kvm_emulate_cp15_id_reg(vcpu, ¶ms);
4684
4685 return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
4686 }
4687
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)4688 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4689 {
4690 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4691 }
4692
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)4693 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4694 {
4695 struct sys_reg_params params;
4696
4697 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4698
4699 return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs));
4700 }
4701
4702 /**
4703 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4704 * @vcpu: The VCPU pointer
4705 * @params: Decoded system register parameters
4706 *
4707 * Return: true if the system register access was successful, false otherwise.
4708 */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4709 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4710 struct sys_reg_params *params)
4711 {
4712 const struct sys_reg_desc *r;
4713
4714 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4715 if (likely(r)) {
4716 perform_access(vcpu, params, r);
4717 return true;
4718 }
4719
4720 print_sys_reg_msg(params,
4721 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4722 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4723 kvm_inject_undefined(vcpu);
4724
4725 return false;
4726 }
4727
idregs_debug_find(struct kvm * kvm,u8 pos)4728 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4729 {
4730 unsigned long i, idreg_idx = 0;
4731
4732 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4733 const struct sys_reg_desc *r = &sys_reg_descs[i];
4734
4735 if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4736 continue;
4737
4738 if (idreg_idx == pos)
4739 return r;
4740
4741 idreg_idx++;
4742 }
4743
4744 return NULL;
4745 }
4746
idregs_debug_start(struct seq_file * s,loff_t * pos)4747 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4748 {
4749 struct kvm *kvm = s->private;
4750 u8 *iter;
4751
4752 mutex_lock(&kvm->arch.config_lock);
4753
4754 iter = &kvm->arch.idreg_debugfs_iter;
4755 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4756 *iter == (u8)~0) {
4757 *iter = *pos;
4758 if (!idregs_debug_find(kvm, *iter))
4759 iter = NULL;
4760 } else {
4761 iter = ERR_PTR(-EBUSY);
4762 }
4763
4764 mutex_unlock(&kvm->arch.config_lock);
4765
4766 return iter;
4767 }
4768
idregs_debug_next(struct seq_file * s,void * v,loff_t * pos)4769 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4770 {
4771 struct kvm *kvm = s->private;
4772
4773 (*pos)++;
4774
4775 if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4776 kvm->arch.idreg_debugfs_iter++;
4777
4778 return &kvm->arch.idreg_debugfs_iter;
4779 }
4780
4781 return NULL;
4782 }
4783
idregs_debug_stop(struct seq_file * s,void * v)4784 static void idregs_debug_stop(struct seq_file *s, void *v)
4785 {
4786 struct kvm *kvm = s->private;
4787
4788 if (IS_ERR(v))
4789 return;
4790
4791 mutex_lock(&kvm->arch.config_lock);
4792
4793 kvm->arch.idreg_debugfs_iter = ~0;
4794
4795 mutex_unlock(&kvm->arch.config_lock);
4796 }
4797
idregs_debug_show(struct seq_file * s,void * v)4798 static int idregs_debug_show(struct seq_file *s, void *v)
4799 {
4800 const struct sys_reg_desc *desc;
4801 struct kvm *kvm = s->private;
4802
4803 desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4804
4805 if (!desc->name)
4806 return 0;
4807
4808 seq_printf(s, "%20s:\t%016llx\n",
4809 desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4810
4811 return 0;
4812 }
4813
4814 static const struct seq_operations idregs_debug_sops = {
4815 .start = idregs_debug_start,
4816 .next = idregs_debug_next,
4817 .stop = idregs_debug_stop,
4818 .show = idregs_debug_show,
4819 };
4820
4821 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4822
kvm_sys_regs_create_debugfs(struct kvm * kvm)4823 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4824 {
4825 kvm->arch.idreg_debugfs_iter = ~0;
4826
4827 debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4828 &idregs_debug_fops);
4829 }
4830
reset_vm_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4831 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4832 {
4833 u32 id = reg_to_encoding(reg);
4834 struct kvm *kvm = vcpu->kvm;
4835
4836 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4837 return;
4838
4839 kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4840 }
4841
reset_vcpu_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4842 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4843 const struct sys_reg_desc *reg)
4844 {
4845 if (kvm_vcpu_initialized(vcpu))
4846 return;
4847
4848 reg->reset(vcpu, reg);
4849 }
4850
4851 /**
4852 * kvm_reset_sys_regs - sets system registers to reset value
4853 * @vcpu: The VCPU pointer
4854 *
4855 * This function finds the right table above and sets the registers on the
4856 * virtual CPU struct to their architecturally defined reset values.
4857 */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)4858 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4859 {
4860 struct kvm *kvm = vcpu->kvm;
4861 unsigned long i;
4862
4863 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4864 const struct sys_reg_desc *r = &sys_reg_descs[i];
4865
4866 if (!r->reset)
4867 continue;
4868
4869 if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4870 reset_vm_ftr_id_reg(vcpu, r);
4871 else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4872 reset_vcpu_ftr_id_reg(vcpu, r);
4873 else
4874 r->reset(vcpu, r);
4875
4876 if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
4877 __vcpu_rmw_sys_reg(vcpu, r->reg, |=, 0);
4878 }
4879
4880 set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4881
4882 if (kvm_vcpu_has_pmu(vcpu))
4883 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
4884 }
4885
4886 /**
4887 * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4888 * trap on a guest execution
4889 * @vcpu: The VCPU pointer
4890 */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)4891 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4892 {
4893 const struct sys_reg_desc *desc = NULL;
4894 struct sys_reg_params params;
4895 unsigned long esr = kvm_vcpu_get_esr(vcpu);
4896 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4897 int sr_idx;
4898
4899 trace_kvm_handle_sys_reg(esr);
4900
4901 if (triage_sysreg_trap(vcpu, &sr_idx))
4902 return 1;
4903
4904 params = esr_sys64_to_params(esr);
4905 params.regval = vcpu_get_reg(vcpu, Rt);
4906
4907 /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4908 if (params.Op0 == 2 || params.Op0 == 3)
4909 desc = &sys_reg_descs[sr_idx];
4910 else
4911 desc = &sys_insn_descs[sr_idx];
4912
4913 perform_access(vcpu, ¶ms, desc);
4914
4915 /* Read from system register? */
4916 if (!params.is_write &&
4917 (params.Op0 == 2 || params.Op0 == 3))
4918 vcpu_set_reg(vcpu, Rt, params.regval);
4919
4920 return 1;
4921 }
4922
4923 /******************************************************************************
4924 * Userspace API
4925 *****************************************************************************/
4926
index_to_params(u64 id,struct sys_reg_params * params)4927 static bool index_to_params(u64 id, struct sys_reg_params *params)
4928 {
4929 switch (id & KVM_REG_SIZE_MASK) {
4930 case KVM_REG_SIZE_U64:
4931 /* Any unused index bits means it's not valid. */
4932 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4933 | KVM_REG_ARM_COPROC_MASK
4934 | KVM_REG_ARM64_SYSREG_OP0_MASK
4935 | KVM_REG_ARM64_SYSREG_OP1_MASK
4936 | KVM_REG_ARM64_SYSREG_CRN_MASK
4937 | KVM_REG_ARM64_SYSREG_CRM_MASK
4938 | KVM_REG_ARM64_SYSREG_OP2_MASK))
4939 return false;
4940 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4941 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4942 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4943 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4944 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4945 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4946 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4947 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4948 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4949 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4950 return true;
4951 default:
4952 return false;
4953 }
4954 }
4955
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)4956 const struct sys_reg_desc *get_reg_by_id(u64 id,
4957 const struct sys_reg_desc table[],
4958 unsigned int num)
4959 {
4960 struct sys_reg_params params;
4961
4962 if (!index_to_params(id, ¶ms))
4963 return NULL;
4964
4965 return find_reg(¶ms, table, num);
4966 }
4967
4968 /* Decode an index value, and find the sys_reg_desc entry. */
4969 static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)4970 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4971 const struct sys_reg_desc table[], unsigned int num)
4972
4973 {
4974 const struct sys_reg_desc *r;
4975
4976 /* We only do sys_reg for now. */
4977 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4978 return NULL;
4979
4980 r = get_reg_by_id(id, table, num);
4981
4982 /* Not saved in the sys_reg array and not otherwise accessible? */
4983 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4984 r = NULL;
4985
4986 return r;
4987 }
4988
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)4989 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4990 {
4991 u32 val;
4992 u32 __user *uval = uaddr;
4993
4994 /* Fail if we have unknown bits set. */
4995 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4996 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4997 return -ENOENT;
4998
4999 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
5000 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
5001 if (KVM_REG_SIZE(id) != 4)
5002 return -ENOENT;
5003 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
5004 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
5005 if (val >= CSSELR_MAX)
5006 return -ENOENT;
5007
5008 return put_user(get_ccsidr(vcpu, val), uval);
5009 default:
5010 return -ENOENT;
5011 }
5012 }
5013
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)5014 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
5015 {
5016 u32 val, newval;
5017 u32 __user *uval = uaddr;
5018
5019 /* Fail if we have unknown bits set. */
5020 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
5021 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
5022 return -ENOENT;
5023
5024 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
5025 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
5026 if (KVM_REG_SIZE(id) != 4)
5027 return -ENOENT;
5028 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
5029 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
5030 if (val >= CSSELR_MAX)
5031 return -ENOENT;
5032
5033 if (get_user(newval, uval))
5034 return -EFAULT;
5035
5036 return set_ccsidr(vcpu, val, newval);
5037 default:
5038 return -ENOENT;
5039 }
5040 }
5041
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)5042 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
5043 const struct sys_reg_desc table[], unsigned int num)
5044 {
5045 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
5046 const struct sys_reg_desc *r;
5047 u64 val;
5048 int ret;
5049
5050 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
5051 if (!r || sysreg_hidden(vcpu, r))
5052 return -ENOENT;
5053
5054 if (r->get_user) {
5055 ret = (r->get_user)(vcpu, r, &val);
5056 } else {
5057 val = __vcpu_sys_reg(vcpu, r->reg);
5058 ret = 0;
5059 }
5060
5061 if (!ret)
5062 ret = put_user(val, uaddr);
5063
5064 return ret;
5065 }
5066
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)5067 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
5068 {
5069 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
5070
5071 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
5072 return demux_c15_get(vcpu, reg->id, uaddr);
5073
5074 return kvm_sys_reg_get_user(vcpu, reg,
5075 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
5076 }
5077
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)5078 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
5079 const struct sys_reg_desc table[], unsigned int num)
5080 {
5081 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
5082 const struct sys_reg_desc *r;
5083 u64 val;
5084 int ret;
5085
5086 if (get_user(val, uaddr))
5087 return -EFAULT;
5088
5089 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
5090 if (!r || sysreg_hidden(vcpu, r))
5091 return -ENOENT;
5092
5093 if (sysreg_user_write_ignore(vcpu, r))
5094 return 0;
5095
5096 if (r->set_user) {
5097 ret = (r->set_user)(vcpu, r, val);
5098 } else {
5099 __vcpu_assign_sys_reg(vcpu, r->reg, val);
5100 ret = 0;
5101 }
5102
5103 return ret;
5104 }
5105
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)5106 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
5107 {
5108 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
5109
5110 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
5111 return demux_c15_set(vcpu, reg->id, uaddr);
5112
5113 return kvm_sys_reg_set_user(vcpu, reg,
5114 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
5115 }
5116
num_demux_regs(void)5117 static unsigned int num_demux_regs(void)
5118 {
5119 return CSSELR_MAX;
5120 }
5121
write_demux_regids(u64 __user * uindices)5122 static int write_demux_regids(u64 __user *uindices)
5123 {
5124 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
5125 unsigned int i;
5126
5127 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
5128 for (i = 0; i < CSSELR_MAX; i++) {
5129 if (put_user(val | i, uindices))
5130 return -EFAULT;
5131 uindices++;
5132 }
5133 return 0;
5134 }
5135
sys_reg_to_index(const struct sys_reg_desc * reg)5136 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
5137 {
5138 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
5139 KVM_REG_ARM64_SYSREG |
5140 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
5141 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
5142 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
5143 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
5144 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
5145 }
5146
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)5147 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
5148 {
5149 if (!*uind)
5150 return true;
5151
5152 if (put_user(sys_reg_to_index(reg), *uind))
5153 return false;
5154
5155 (*uind)++;
5156 return true;
5157 }
5158
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)5159 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
5160 const struct sys_reg_desc *rd,
5161 u64 __user **uind,
5162 unsigned int *total)
5163 {
5164 /*
5165 * Ignore registers we trap but don't save,
5166 * and for which no custom user accessor is provided.
5167 */
5168 if (!(rd->reg || rd->get_user))
5169 return 0;
5170
5171 if (sysreg_hidden(vcpu, rd))
5172 return 0;
5173
5174 if (!copy_reg_to_user(rd, uind))
5175 return -EFAULT;
5176
5177 (*total)++;
5178 return 0;
5179 }
5180
5181 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)5182 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
5183 {
5184 const struct sys_reg_desc *i2, *end2;
5185 unsigned int total = 0;
5186 int err;
5187
5188 i2 = sys_reg_descs;
5189 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
5190
5191 while (i2 != end2) {
5192 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
5193 if (err)
5194 return err;
5195 }
5196 return total;
5197 }
5198
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)5199 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
5200 {
5201 return num_demux_regs()
5202 + walk_sys_regs(vcpu, (u64 __user *)NULL);
5203 }
5204
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)5205 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
5206 {
5207 int err;
5208
5209 err = walk_sys_regs(vcpu, uindices);
5210 if (err < 0)
5211 return err;
5212 uindices += err;
5213
5214 return write_demux_regids(uindices);
5215 }
5216
5217 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \
5218 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \
5219 sys_reg_Op1(r), \
5220 sys_reg_CRn(r), \
5221 sys_reg_CRm(r), \
5222 sys_reg_Op2(r))
5223
kvm_vm_ioctl_get_reg_writable_masks(struct kvm * kvm,struct reg_mask_range * range)5224 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
5225 {
5226 const void *zero_page = page_to_virt(ZERO_PAGE(0));
5227 u64 __user *masks = (u64 __user *)range->addr;
5228
5229 /* Only feature id range is supported, reserved[13] must be zero. */
5230 if (range->range ||
5231 memcmp(range->reserved, zero_page, sizeof(range->reserved)))
5232 return -EINVAL;
5233
5234 /* Wipe the whole thing first */
5235 if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
5236 return -EFAULT;
5237
5238 for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5239 const struct sys_reg_desc *reg = &sys_reg_descs[i];
5240 u32 encoding = reg_to_encoding(reg);
5241 u64 val;
5242
5243 if (!is_feature_id_reg(encoding) || !reg->set_user)
5244 continue;
5245
5246 if (!reg->val ||
5247 (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5248 continue;
5249 }
5250 val = reg->val;
5251
5252 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5253 return -EFAULT;
5254 }
5255
5256 return 0;
5257 }
5258
vcpu_set_hcr(struct kvm_vcpu * vcpu)5259 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5260 {
5261 struct kvm *kvm = vcpu->kvm;
5262
5263 if (has_vhe() || has_hvhe())
5264 vcpu->arch.hcr_el2 |= HCR_E2H;
5265 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5266 /* route synchronous external abort exceptions to EL2 */
5267 vcpu->arch.hcr_el2 |= HCR_TEA;
5268 /* trap error record accesses */
5269 vcpu->arch.hcr_el2 |= HCR_TERR;
5270 }
5271
5272 if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5273 vcpu->arch.hcr_el2 |= HCR_FWB;
5274
5275 if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5276 !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5277 kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5278 vcpu->arch.hcr_el2 |= HCR_TID4;
5279 else
5280 vcpu->arch.hcr_el2 |= HCR_TID2;
5281
5282 if (vcpu_el1_is_32bit(vcpu))
5283 vcpu->arch.hcr_el2 &= ~HCR_RW;
5284
5285 if (kvm_has_mte(vcpu->kvm))
5286 vcpu->arch.hcr_el2 |= HCR_ATA;
5287
5288 /*
5289 * In the absence of FGT, we cannot independently trap TLBI
5290 * Range instructions. This isn't great, but trapping all
5291 * TLBIs would be far worse. Live with it...
5292 */
5293 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5294 vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5295 }
5296
kvm_calculate_traps(struct kvm_vcpu * vcpu)5297 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5298 {
5299 struct kvm *kvm = vcpu->kvm;
5300
5301 mutex_lock(&kvm->arch.config_lock);
5302 vcpu_set_hcr(vcpu);
5303 vcpu_set_ich_hcr(vcpu);
5304 vcpu_set_hcrx(vcpu);
5305
5306 if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5307 goto out;
5308
5309 compute_fgu(kvm, HFGRTR_GROUP);
5310 compute_fgu(kvm, HFGITR_GROUP);
5311 compute_fgu(kvm, HDFGRTR_GROUP);
5312 compute_fgu(kvm, HAFGRTR_GROUP);
5313 compute_fgu(kvm, HFGRTR2_GROUP);
5314 compute_fgu(kvm, HFGITR2_GROUP);
5315 compute_fgu(kvm, HDFGRTR2_GROUP);
5316
5317 set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5318 out:
5319 mutex_unlock(&kvm->arch.config_lock);
5320 }
5321
5322 /*
5323 * Perform last adjustments to the ID registers that are implied by the
5324 * configuration outside of the ID regs themselves, as well as any
5325 * initialisation that directly depend on these ID registers (such as
5326 * RES0/RES1 behaviours). This is not the place to configure traps though.
5327 *
5328 * Because this can be called once per CPU, changes must be idempotent.
5329 */
kvm_finalize_sys_regs(struct kvm_vcpu * vcpu)5330 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5331 {
5332 struct kvm *kvm = vcpu->kvm;
5333
5334 guard(mutex)(&kvm->arch.config_lock);
5335
5336 if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
5337 irqchip_in_kernel(kvm) &&
5338 kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
5339 kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
5340 kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
5341 }
5342
5343 if (vcpu_has_nv(vcpu)) {
5344 int ret = kvm_init_nv_sysregs(vcpu);
5345 if (ret)
5346 return ret;
5347 }
5348
5349 return 0;
5350 }
5351
kvm_sys_reg_table_init(void)5352 int __init kvm_sys_reg_table_init(void)
5353 {
5354 const struct sys_reg_desc *gicv3_regs;
5355 bool valid = true;
5356 unsigned int i, sz;
5357 int ret = 0;
5358
5359 /* Make sure tables are unique and in order. */
5360 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), true);
5361 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), false);
5362 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), false);
5363 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), false);
5364 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), false);
5365 valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5366
5367 gicv3_regs = vgic_v3_get_sysreg_table(&sz);
5368 valid &= check_sysreg_table(gicv3_regs, sz, false);
5369
5370 if (!valid)
5371 return -EINVAL;
5372
5373 init_imp_id_regs();
5374
5375 ret = populate_nv_trap_config();
5376
5377 check_feature_map();
5378
5379 for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5380 ret = populate_sysreg_config(sys_reg_descs + i, i);
5381
5382 for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5383 ret = populate_sysreg_config(sys_insn_descs + i, i);
5384
5385 return ret;
5386 }
5387