xref: /linux/include/linux/kvm_host.h (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 #include <linux/entry-virt.h>
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/uapi/linux/kvm.h.
56  */
57 #define KVM_MEMSLOT_INVALID			(1UL << 16)
58 #define KVM_MEMSLOT_GMEM_ONLY			(1UL << 17)
59 
60 /*
61  * Bit 63 of the memslot generation number is an "update in-progress flag",
62  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
63  * This flag effectively creates a unique generation number that is used to
64  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
65  * i.e. may (or may not) have come from the previous memslots generation.
66  *
67  * This is necessary because the actual memslots update is not atomic with
68  * respect to the generation number update.  Updating the generation number
69  * first would allow a vCPU to cache a spte from the old memslots using the
70  * new generation number, and updating the generation number after switching
71  * to the new memslots would allow cache hits using the old generation number
72  * to reference the defunct memslots.
73  *
74  * This mechanism is used to prevent getting hits in KVM's caches while a
75  * memslot update is in-progress, and to prevent cache hits *after* updating
76  * the actual generation number against accesses that were inserted into the
77  * cache *before* the memslots were updated.
78  */
79 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
80 
81 /* Two fragments for cross MMIO pages. */
82 #define KVM_MAX_MMIO_FRAGMENTS	2
83 
84 #ifndef KVM_MAX_NR_ADDRESS_SPACES
85 #define KVM_MAX_NR_ADDRESS_SPACES	1
86 #endif
87 
88 /*
89  * For the normal pfn, the highest 12 bits should be zero,
90  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
91  * mask bit 63 to indicate the noslot pfn.
92  */
93 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
94 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
95 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
96 
97 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
98 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
99 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
100 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
101 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
102 
103 /*
104  * error pfns indicate that the gfn is in slot but faild to
105  * translate it to pfn on host.
106  */
is_error_pfn(kvm_pfn_t pfn)107 static inline bool is_error_pfn(kvm_pfn_t pfn)
108 {
109 	return !!(pfn & KVM_PFN_ERR_MASK);
110 }
111 
112 /*
113  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
114  * by a pending signal.  Note, the signal may or may not be fatal.
115  */
is_sigpending_pfn(kvm_pfn_t pfn)116 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
117 {
118 	return pfn == KVM_PFN_ERR_SIGPENDING;
119 }
120 
121 /*
122  * error_noslot pfns indicate that the gfn can not be
123  * translated to pfn - it is not in slot or failed to
124  * translate it to pfn.
125  */
is_error_noslot_pfn(kvm_pfn_t pfn)126 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
127 {
128 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
129 }
130 
131 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)132 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
133 {
134 	return pfn == KVM_PFN_NOSLOT;
135 }
136 
137 /*
138  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
139  * provide own defines and kvm_is_error_hva
140  */
141 #ifndef KVM_HVA_ERR_BAD
142 
143 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
144 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
145 
kvm_is_error_hva(unsigned long addr)146 static inline bool kvm_is_error_hva(unsigned long addr)
147 {
148 	return addr >= PAGE_OFFSET;
149 }
150 
151 #endif
152 
kvm_is_error_gpa(gpa_t gpa)153 static inline bool kvm_is_error_gpa(gpa_t gpa)
154 {
155 	return gpa == INVALID_GPA;
156 }
157 
158 #define KVM_REQUEST_MASK           GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
160 #define KVM_REQUEST_WAIT           BIT(9)
161 #define KVM_REQUEST_NO_ACTION      BIT(10)
162 /*
163  * Architecture-independent vcpu->requests bit members
164  * Bits 3-7 are reserved for more arch-independent bits.
165  */
166 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK			2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
170 #define KVM_REQUEST_ARCH_BASE		8
171 
172 /*
173  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
177  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178  * guarantee the vCPU received an IPI and has actually exited guest mode.
179  */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181 
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
187 
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 				 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 
192 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
193 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
194 #define KVM_PIT_IRQ_SOURCE_ID			2
195 
196 extern struct mutex kvm_lock;
197 extern struct list_head vm_list;
198 
199 struct kvm_io_range {
200 	gpa_t addr;
201 	int len;
202 	struct kvm_io_device *dev;
203 };
204 
205 #define NR_IOBUS_DEVS 1000
206 
207 struct kvm_io_bus {
208 	int dev_count;
209 	int ioeventfd_count;
210 	struct rcu_head rcu;
211 	struct kvm_io_range range[];
212 };
213 
214 enum kvm_bus {
215 	KVM_MMIO_BUS,
216 	KVM_PIO_BUS,
217 	KVM_VIRTIO_CCW_NOTIFY_BUS,
218 	KVM_FAST_MMIO_BUS,
219 	KVM_IOCSR_BUS,
220 	KVM_NR_BUSES
221 };
222 
223 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
224 		     int len, const void *val);
225 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
226 			    gpa_t addr, int len, const void *val, long cookie);
227 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
228 		    int len, void *val);
229 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
230 			    int len, struct kvm_io_device *dev);
231 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
232 			      struct kvm_io_device *dev);
233 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 					 gpa_t addr);
235 
236 #ifdef CONFIG_KVM_ASYNC_PF
237 struct kvm_async_pf {
238 	struct work_struct work;
239 	struct list_head link;
240 	struct list_head queue;
241 	struct kvm_vcpu *vcpu;
242 	gpa_t cr2_or_gpa;
243 	unsigned long addr;
244 	struct kvm_arch_async_pf arch;
245 	bool   wakeup_all;
246 	bool notpresent_injected;
247 };
248 
249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
252 			unsigned long hva, struct kvm_arch_async_pf *arch);
253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
254 #endif
255 
256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
257 union kvm_mmu_notifier_arg {
258 	unsigned long attributes;
259 };
260 
261 enum kvm_gfn_range_filter {
262 	KVM_FILTER_SHARED		= BIT(0),
263 	KVM_FILTER_PRIVATE		= BIT(1),
264 };
265 
266 struct kvm_gfn_range {
267 	struct kvm_memory_slot *slot;
268 	gfn_t start;
269 	gfn_t end;
270 	union kvm_mmu_notifier_arg arg;
271 	enum kvm_gfn_range_filter attr_filter;
272 	bool may_block;
273 	bool lockless;
274 };
275 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
276 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
277 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
278 #endif
279 
280 enum {
281 	OUTSIDE_GUEST_MODE,
282 	IN_GUEST_MODE,
283 	EXITING_GUEST_MODE,
284 	READING_SHADOW_PAGE_TABLES,
285 };
286 
287 struct kvm_host_map {
288 	/*
289 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
290 	 * a 'struct page' for it. When using mem= kernel parameter some memory
291 	 * can be used as guest memory but they are not managed by host
292 	 * kernel).
293 	 */
294 	struct page *pinned_page;
295 	struct page *page;
296 	void *hva;
297 	kvm_pfn_t pfn;
298 	kvm_pfn_t gfn;
299 	bool writable;
300 };
301 
302 /*
303  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
304  * directly to check for that.
305  */
kvm_vcpu_mapped(struct kvm_host_map * map)306 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
307 {
308 	return !!map->hva;
309 }
310 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)311 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
312 {
313 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
314 }
315 
316 /*
317  * Sometimes a large or cross-page mmio needs to be broken up into separate
318  * exits for userspace servicing.
319  */
320 struct kvm_mmio_fragment {
321 	gpa_t gpa;
322 	void *data;
323 	unsigned len;
324 };
325 
326 struct kvm_vcpu {
327 	struct kvm *kvm;
328 #ifdef CONFIG_PREEMPT_NOTIFIERS
329 	struct preempt_notifier preempt_notifier;
330 #endif
331 	int cpu;
332 	int vcpu_id; /* id given by userspace at creation */
333 	int vcpu_idx; /* index into kvm->vcpu_array */
334 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
335 #ifdef CONFIG_PROVE_RCU
336 	int srcu_depth;
337 #endif
338 	int mode;
339 	u64 requests;
340 	unsigned long guest_debug;
341 
342 	struct mutex mutex;
343 	struct kvm_run *run;
344 
345 #ifndef __KVM_HAVE_ARCH_WQP
346 	struct rcuwait wait;
347 #endif
348 	struct pid *pid;
349 	rwlock_t pid_lock;
350 	int sigset_active;
351 	sigset_t sigset;
352 	unsigned int halt_poll_ns;
353 	bool valid_wakeup;
354 
355 #ifdef CONFIG_HAS_IOMEM
356 	int mmio_needed;
357 	int mmio_read_completed;
358 	int mmio_is_write;
359 	int mmio_cur_fragment;
360 	int mmio_nr_fragments;
361 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
362 #endif
363 
364 #ifdef CONFIG_KVM_ASYNC_PF
365 	struct {
366 		u32 queued;
367 		struct list_head queue;
368 		struct list_head done;
369 		spinlock_t lock;
370 	} async_pf;
371 #endif
372 
373 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
374 	/*
375 	 * Cpu relax intercept or pause loop exit optimization
376 	 * in_spin_loop: set when a vcpu does a pause loop exit
377 	 *  or cpu relax intercepted.
378 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
379 	 */
380 	struct {
381 		bool in_spin_loop;
382 		bool dy_eligible;
383 	} spin_loop;
384 #endif
385 	bool wants_to_run;
386 	bool preempted;
387 	bool ready;
388 	bool scheduled_out;
389 	struct kvm_vcpu_arch arch;
390 	struct kvm_vcpu_stat stat;
391 	char stats_id[KVM_STATS_NAME_SIZE];
392 	struct kvm_dirty_ring dirty_ring;
393 
394 	/*
395 	 * The most recently used memslot by this vCPU and the slots generation
396 	 * for which it is valid.
397 	 * No wraparound protection is needed since generations won't overflow in
398 	 * thousands of years, even assuming 1M memslot operations per second.
399 	 */
400 	struct kvm_memory_slot *last_used_slot;
401 	u64 last_used_slot_gen;
402 };
403 
404 /*
405  * Start accounting time towards a guest.
406  * Must be called before entering guest context.
407  */
guest_timing_enter_irqoff(void)408 static __always_inline void guest_timing_enter_irqoff(void)
409 {
410 	/*
411 	 * This is running in ioctl context so its safe to assume that it's the
412 	 * stime pending cputime to flush.
413 	 */
414 	instrumentation_begin();
415 	vtime_account_guest_enter();
416 	instrumentation_end();
417 }
418 
419 /*
420  * Enter guest context and enter an RCU extended quiescent state.
421  *
422  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
423  * unsafe to use any code which may directly or indirectly use RCU, tracing
424  * (including IRQ flag tracing), or lockdep. All code in this period must be
425  * non-instrumentable.
426  */
guest_context_enter_irqoff(void)427 static __always_inline void guest_context_enter_irqoff(void)
428 {
429 	/*
430 	 * KVM does not hold any references to rcu protected data when it
431 	 * switches CPU into a guest mode. In fact switching to a guest mode
432 	 * is very similar to exiting to userspace from rcu point of view. In
433 	 * addition CPU may stay in a guest mode for quite a long time (up to
434 	 * one time slice). Lets treat guest mode as quiescent state, just like
435 	 * we do with user-mode execution.
436 	 */
437 	if (!context_tracking_guest_enter()) {
438 		instrumentation_begin();
439 		rcu_virt_note_context_switch();
440 		instrumentation_end();
441 	}
442 }
443 
444 /*
445  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
446  * guest_state_enter_irqoff().
447  */
guest_enter_irqoff(void)448 static __always_inline void guest_enter_irqoff(void)
449 {
450 	guest_timing_enter_irqoff();
451 	guest_context_enter_irqoff();
452 }
453 
454 /**
455  * guest_state_enter_irqoff - Fixup state when entering a guest
456  *
457  * Entry to a guest will enable interrupts, but the kernel state is interrupts
458  * disabled when this is invoked. Also tell RCU about it.
459  *
460  * 1) Trace interrupts on state
461  * 2) Invoke context tracking if enabled to adjust RCU state
462  * 3) Tell lockdep that interrupts are enabled
463  *
464  * Invoked from architecture specific code before entering a guest.
465  * Must be called with interrupts disabled and the caller must be
466  * non-instrumentable.
467  * The caller has to invoke guest_timing_enter_irqoff() before this.
468  *
469  * Note: this is analogous to exit_to_user_mode().
470  */
guest_state_enter_irqoff(void)471 static __always_inline void guest_state_enter_irqoff(void)
472 {
473 	instrumentation_begin();
474 	trace_hardirqs_on_prepare();
475 	lockdep_hardirqs_on_prepare();
476 	instrumentation_end();
477 
478 	guest_context_enter_irqoff();
479 	lockdep_hardirqs_on(CALLER_ADDR0);
480 }
481 
482 /*
483  * Exit guest context and exit an RCU extended quiescent state.
484  *
485  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
486  * unsafe to use any code which may directly or indirectly use RCU, tracing
487  * (including IRQ flag tracing), or lockdep. All code in this period must be
488  * non-instrumentable.
489  */
guest_context_exit_irqoff(void)490 static __always_inline void guest_context_exit_irqoff(void)
491 {
492 	/*
493 	 * Guest mode is treated as a quiescent state, see
494 	 * guest_context_enter_irqoff() for more details.
495 	 */
496 	if (!context_tracking_guest_exit()) {
497 		instrumentation_begin();
498 		rcu_virt_note_context_switch();
499 		instrumentation_end();
500 	}
501 }
502 
503 /*
504  * Stop accounting time towards a guest.
505  * Must be called after exiting guest context.
506  */
guest_timing_exit_irqoff(void)507 static __always_inline void guest_timing_exit_irqoff(void)
508 {
509 	instrumentation_begin();
510 	/* Flush the guest cputime we spent on the guest */
511 	vtime_account_guest_exit();
512 	instrumentation_end();
513 }
514 
515 /*
516  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
517  * guest_timing_exit_irqoff().
518  */
guest_exit_irqoff(void)519 static __always_inline void guest_exit_irqoff(void)
520 {
521 	guest_context_exit_irqoff();
522 	guest_timing_exit_irqoff();
523 }
524 
guest_exit(void)525 static inline void guest_exit(void)
526 {
527 	unsigned long flags;
528 
529 	local_irq_save(flags);
530 	guest_exit_irqoff();
531 	local_irq_restore(flags);
532 }
533 
534 /**
535  * guest_state_exit_irqoff - Establish state when returning from guest mode
536  *
537  * Entry from a guest disables interrupts, but guest mode is traced as
538  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
539  *
540  * 1) Tell lockdep that interrupts are disabled
541  * 2) Invoke context tracking if enabled to reactivate RCU
542  * 3) Trace interrupts off state
543  *
544  * Invoked from architecture specific code after exiting a guest.
545  * Must be invoked with interrupts disabled and the caller must be
546  * non-instrumentable.
547  * The caller has to invoke guest_timing_exit_irqoff() after this.
548  *
549  * Note: this is analogous to enter_from_user_mode().
550  */
guest_state_exit_irqoff(void)551 static __always_inline void guest_state_exit_irqoff(void)
552 {
553 	lockdep_hardirqs_off(CALLER_ADDR0);
554 	guest_context_exit_irqoff();
555 
556 	instrumentation_begin();
557 	trace_hardirqs_off_finish();
558 	instrumentation_end();
559 }
560 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)561 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
562 {
563 	/*
564 	 * The memory barrier ensures a previous write to vcpu->requests cannot
565 	 * be reordered with the read of vcpu->mode.  It pairs with the general
566 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
567 	 */
568 	smp_mb__before_atomic();
569 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
570 }
571 
572 /*
573  * Some of the bitops functions do not support too long bitmaps.
574  * This number must be determined not to exceed such limits.
575  */
576 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
577 
578 /*
579  * Since at idle each memslot belongs to two memslot sets it has to contain
580  * two embedded nodes for each data structure that it forms a part of.
581  *
582  * Two memslot sets (one active and one inactive) are necessary so the VM
583  * continues to run on one memslot set while the other is being modified.
584  *
585  * These two memslot sets normally point to the same set of memslots.
586  * They can, however, be desynchronized when performing a memslot management
587  * operation by replacing the memslot to be modified by its copy.
588  * After the operation is complete, both memslot sets once again point to
589  * the same, common set of memslot data.
590  *
591  * The memslots themselves are independent of each other so they can be
592  * individually added or deleted.
593  */
594 struct kvm_memory_slot {
595 	struct hlist_node id_node[2];
596 	struct interval_tree_node hva_node[2];
597 	struct rb_node gfn_node[2];
598 	gfn_t base_gfn;
599 	unsigned long npages;
600 	unsigned long *dirty_bitmap;
601 	struct kvm_arch_memory_slot arch;
602 	unsigned long userspace_addr;
603 	u32 flags;
604 	short id;
605 	u16 as_id;
606 
607 #ifdef CONFIG_KVM_GUEST_MEMFD
608 	struct {
609 		/*
610 		 * Writes protected by kvm->slots_lock.  Acquiring a
611 		 * reference via kvm_gmem_get_file() is protected by
612 		 * either kvm->slots_lock or kvm->srcu.
613 		 */
614 		struct file *file;
615 		pgoff_t pgoff;
616 	} gmem;
617 #endif
618 };
619 
kvm_slot_has_gmem(const struct kvm_memory_slot * slot)620 static inline bool kvm_slot_has_gmem(const struct kvm_memory_slot *slot)
621 {
622 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
623 }
624 
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)625 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
626 {
627 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
628 }
629 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)630 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
631 {
632 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
633 }
634 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)635 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
638 
639 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
640 }
641 
642 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
643 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
644 #endif
645 
646 struct kvm_s390_adapter_int {
647 	u64 ind_addr;
648 	u64 summary_addr;
649 	u64 ind_offset;
650 	u32 summary_offset;
651 	u32 adapter_id;
652 };
653 
654 struct kvm_hv_sint {
655 	u32 vcpu;
656 	u32 sint;
657 };
658 
659 struct kvm_xen_evtchn {
660 	u32 port;
661 	u32 vcpu_id;
662 	int vcpu_idx;
663 	u32 priority;
664 };
665 
666 struct kvm_kernel_irq_routing_entry {
667 	u32 gsi;
668 	u32 type;
669 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
670 		   struct kvm *kvm, int irq_source_id, int level,
671 		   bool line_status);
672 	union {
673 		struct {
674 			unsigned irqchip;
675 			unsigned pin;
676 		} irqchip;
677 		struct {
678 			u32 address_lo;
679 			u32 address_hi;
680 			u32 data;
681 			u32 flags;
682 			u32 devid;
683 		} msi;
684 		struct kvm_s390_adapter_int adapter;
685 		struct kvm_hv_sint hv_sint;
686 		struct kvm_xen_evtchn xen_evtchn;
687 	};
688 	struct hlist_node link;
689 };
690 
691 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
692 struct kvm_irq_routing_table {
693 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
694 	u32 nr_rt_entries;
695 	/*
696 	 * Array indexed by gsi. Each entry contains list of irq chips
697 	 * the gsi is connected to.
698 	 */
699 	struct hlist_head map[] __counted_by(nr_rt_entries);
700 };
701 #endif
702 
703 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
704 
705 #ifndef KVM_INTERNAL_MEM_SLOTS
706 #define KVM_INTERNAL_MEM_SLOTS 0
707 #endif
708 
709 #define KVM_MEM_SLOTS_NUM SHRT_MAX
710 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
711 
712 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)713 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
714 {
715 	return KVM_MAX_NR_ADDRESS_SPACES;
716 }
717 
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)718 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
719 {
720 	return 0;
721 }
722 #endif
723 
724 #ifndef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_arch_has_private_mem(struct kvm * kvm)725 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
726 {
727 	return false;
728 }
729 #endif
730 
731 #ifdef CONFIG_KVM_GUEST_MEMFD
732 bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm);
733 
kvm_gmem_get_supported_flags(struct kvm * kvm)734 static inline u64 kvm_gmem_get_supported_flags(struct kvm *kvm)
735 {
736 	u64 flags = GUEST_MEMFD_FLAG_MMAP;
737 
738 	if (!kvm || kvm_arch_supports_gmem_init_shared(kvm))
739 		flags |= GUEST_MEMFD_FLAG_INIT_SHARED;
740 
741 	return flags;
742 }
743 #endif
744 
745 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)746 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
747 {
748 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
749 }
750 #endif
751 
752 struct kvm_memslots {
753 	u64 generation;
754 	atomic_long_t last_used_slot;
755 	struct rb_root_cached hva_tree;
756 	struct rb_root gfn_tree;
757 	/*
758 	 * The mapping table from slot id to memslot.
759 	 *
760 	 * 7-bit bucket count matches the size of the old id to index array for
761 	 * 512 slots, while giving good performance with this slot count.
762 	 * Higher bucket counts bring only small performance improvements but
763 	 * always result in higher memory usage (even for lower memslot counts).
764 	 */
765 	DECLARE_HASHTABLE(id_hash, 7);
766 	int node_idx;
767 };
768 
769 struct kvm {
770 #ifdef KVM_HAVE_MMU_RWLOCK
771 	rwlock_t mmu_lock;
772 #else
773 	spinlock_t mmu_lock;
774 #endif /* KVM_HAVE_MMU_RWLOCK */
775 
776 	struct mutex slots_lock;
777 
778 	/*
779 	 * Protects the arch-specific fields of struct kvm_memory_slots in
780 	 * use by the VM. To be used under the slots_lock (above) or in a
781 	 * kvm->srcu critical section where acquiring the slots_lock would
782 	 * lead to deadlock with the synchronize_srcu in
783 	 * kvm_swap_active_memslots().
784 	 */
785 	struct mutex slots_arch_lock;
786 	struct mm_struct *mm; /* userspace tied to this vm */
787 	unsigned long nr_memslot_pages;
788 	/* The two memslot sets - active and inactive (per address space) */
789 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
790 	/* The current active memslot set for each address space */
791 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
792 	struct xarray vcpu_array;
793 	/*
794 	 * Protected by slots_lock, but can be read outside if an
795 	 * incorrect answer is acceptable.
796 	 */
797 	atomic_t nr_memslots_dirty_logging;
798 
799 	/* Used to wait for completion of MMU notifiers.  */
800 	spinlock_t mn_invalidate_lock;
801 	unsigned long mn_active_invalidate_count;
802 	struct rcuwait mn_memslots_update_rcuwait;
803 
804 	/* For management / invalidation of gfn_to_pfn_caches */
805 	spinlock_t gpc_lock;
806 	struct list_head gpc_list;
807 
808 	/*
809 	 * created_vcpus is protected by kvm->lock, and is incremented
810 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
811 	 * incremented after storing the kvm_vcpu pointer in vcpus,
812 	 * and is accessed atomically.
813 	 */
814 	atomic_t online_vcpus;
815 	int max_vcpus;
816 	int created_vcpus;
817 	int last_boosted_vcpu;
818 	struct list_head vm_list;
819 	struct mutex lock;
820 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
821 #ifdef CONFIG_HAVE_KVM_IRQCHIP
822 	struct {
823 		spinlock_t        lock;
824 		struct list_head  items;
825 		/* resampler_list update side is protected by resampler_lock. */
826 		struct list_head  resampler_list;
827 		struct mutex      resampler_lock;
828 	} irqfds;
829 #endif
830 	struct list_head ioeventfds;
831 	struct kvm_vm_stat stat;
832 	struct kvm_arch arch;
833 	refcount_t users_count;
834 #ifdef CONFIG_KVM_MMIO
835 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
836 	spinlock_t ring_lock;
837 	struct list_head coalesced_zones;
838 #endif
839 
840 	struct mutex irq_lock;
841 #ifdef CONFIG_HAVE_KVM_IRQCHIP
842 	/*
843 	 * Update side is protected by irq_lock.
844 	 */
845 	struct kvm_irq_routing_table __rcu *irq_routing;
846 
847 	struct hlist_head irq_ack_notifier_list;
848 #endif
849 
850 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
851 	struct mmu_notifier mmu_notifier;
852 	unsigned long mmu_invalidate_seq;
853 	long mmu_invalidate_in_progress;
854 	gfn_t mmu_invalidate_range_start;
855 	gfn_t mmu_invalidate_range_end;
856 #endif
857 	struct list_head devices;
858 	u64 manual_dirty_log_protect;
859 	struct dentry *debugfs_dentry;
860 	struct kvm_stat_data **debugfs_stat_data;
861 	struct srcu_struct srcu;
862 	struct srcu_struct irq_srcu;
863 	pid_t userspace_pid;
864 	bool override_halt_poll_ns;
865 	unsigned int max_halt_poll_ns;
866 	u32 dirty_ring_size;
867 	bool dirty_ring_with_bitmap;
868 	bool vm_bugged;
869 	bool vm_dead;
870 
871 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
872 	struct notifier_block pm_notifier;
873 #endif
874 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
875 	/* Protected by slots_lock (for writes) and RCU (for reads) */
876 	struct xarray mem_attr_array;
877 #endif
878 	char stats_id[KVM_STATS_NAME_SIZE];
879 };
880 
881 #define kvm_err(fmt, ...) \
882 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
883 #define kvm_info(fmt, ...) \
884 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
885 #define kvm_debug(fmt, ...) \
886 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
887 #define kvm_debug_ratelimited(fmt, ...) \
888 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
889 			     ## __VA_ARGS__)
890 #define kvm_pr_unimpl(fmt, ...) \
891 	pr_err_ratelimited("kvm [%i]: " fmt, \
892 			   task_tgid_nr(current), ## __VA_ARGS__)
893 
894 /* The guest did something we don't support. */
895 #define vcpu_unimpl(vcpu, fmt, ...)					\
896 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
897 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
898 
899 #define vcpu_debug(vcpu, fmt, ...)					\
900 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
901 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
902 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
903 			      ## __VA_ARGS__)
904 #define vcpu_err(vcpu, fmt, ...)					\
905 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
906 
kvm_vm_dead(struct kvm * kvm)907 static inline void kvm_vm_dead(struct kvm *kvm)
908 {
909 	kvm->vm_dead = true;
910 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
911 }
912 
kvm_vm_bugged(struct kvm * kvm)913 static inline void kvm_vm_bugged(struct kvm *kvm)
914 {
915 	kvm->vm_bugged = true;
916 	kvm_vm_dead(kvm);
917 }
918 
919 
920 #define KVM_BUG(cond, kvm, fmt...)				\
921 ({								\
922 	bool __ret = !!(cond);					\
923 								\
924 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
925 		kvm_vm_bugged(kvm);				\
926 	unlikely(__ret);					\
927 })
928 
929 #define KVM_BUG_ON(cond, kvm)					\
930 ({								\
931 	bool __ret = !!(cond);					\
932 								\
933 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
934 		kvm_vm_bugged(kvm);				\
935 	unlikely(__ret);					\
936 })
937 
938 /*
939  * Note, "data corruption" refers to corruption of host kernel data structures,
940  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
941  * and contained to a single VM should *never* BUG() and potentially panic the
942  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
943  * is corrupted and that corruption can have a cascading effect to other parts
944  * of the hosts and/or to other VMs.
945  */
946 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
947 ({								\
948 	bool __ret = !!(cond);					\
949 								\
950 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
951 		BUG_ON(__ret);					\
952 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
953 		kvm_vm_bugged(kvm);				\
954 	unlikely(__ret);					\
955 })
956 
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)957 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
958 {
959 #ifdef CONFIG_PROVE_RCU
960 	WARN_ONCE(vcpu->srcu_depth++,
961 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
962 #endif
963 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
964 }
965 
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)966 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
967 {
968 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
969 
970 #ifdef CONFIG_PROVE_RCU
971 	WARN_ONCE(--vcpu->srcu_depth,
972 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
973 #endif
974 }
975 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)976 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
977 {
978 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
979 }
980 
981 /*
982  * Get a bus reference under the update-side lock. No long-term SRCU reader
983  * references are permitted, to avoid stale reads vs concurrent IO
984  * registrations.
985  */
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)986 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
987 {
988 	return rcu_dereference_protected(kvm->buses[idx],
989 					 lockdep_is_held(&kvm->slots_lock));
990 }
991 
kvm_get_vcpu(struct kvm * kvm,int i)992 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
993 {
994 	int num_vcpus = atomic_read(&kvm->online_vcpus);
995 
996 	/*
997 	 * Explicitly verify the target vCPU is online, as the anti-speculation
998 	 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
999 	 * index, clamping the index to 0 would return vCPU0, not NULL.
1000 	 */
1001 	if (i >= num_vcpus)
1002 		return NULL;
1003 
1004 	i = array_index_nospec(i, num_vcpus);
1005 
1006 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
1007 	smp_rmb();
1008 	return xa_load(&kvm->vcpu_array, i);
1009 }
1010 
1011 #define kvm_for_each_vcpu(idx, vcpup, kvm)				\
1012 	if (atomic_read(&kvm->online_vcpus))				\
1013 		xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0,	\
1014 				  (atomic_read(&kvm->online_vcpus) - 1))
1015 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)1016 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1017 {
1018 	struct kvm_vcpu *vcpu = NULL;
1019 	unsigned long i;
1020 
1021 	if (id < 0)
1022 		return NULL;
1023 	if (id < KVM_MAX_VCPUS)
1024 		vcpu = kvm_get_vcpu(kvm, id);
1025 	if (vcpu && vcpu->vcpu_id == id)
1026 		return vcpu;
1027 	kvm_for_each_vcpu(i, vcpu, kvm)
1028 		if (vcpu->vcpu_id == id)
1029 			return vcpu;
1030 	return NULL;
1031 }
1032 
1033 void kvm_destroy_vcpus(struct kvm *kvm);
1034 
1035 int kvm_trylock_all_vcpus(struct kvm *kvm);
1036 int kvm_lock_all_vcpus(struct kvm *kvm);
1037 void kvm_unlock_all_vcpus(struct kvm *kvm);
1038 
1039 void vcpu_load(struct kvm_vcpu *vcpu);
1040 void vcpu_put(struct kvm_vcpu *vcpu);
1041 
1042 #ifdef CONFIG_KVM_IOAPIC
1043 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1044 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1045 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1046 {
1047 }
1048 #endif
1049 
1050 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1051 int kvm_irqfd_init(void);
1052 void kvm_irqfd_exit(void);
1053 #else
kvm_irqfd_init(void)1054 static inline int kvm_irqfd_init(void)
1055 {
1056 	return 0;
1057 }
1058 
kvm_irqfd_exit(void)1059 static inline void kvm_irqfd_exit(void)
1060 {
1061 }
1062 #endif
1063 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1064 void kvm_exit(void);
1065 
1066 void kvm_get_kvm(struct kvm *kvm);
1067 bool kvm_get_kvm_safe(struct kvm *kvm);
1068 void kvm_put_kvm(struct kvm *kvm);
1069 bool file_is_kvm(struct file *file);
1070 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1071 
__kvm_memslots(struct kvm * kvm,int as_id)1072 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1073 {
1074 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1075 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1076 			lockdep_is_held(&kvm->slots_lock) ||
1077 			!refcount_read(&kvm->users_count));
1078 }
1079 
kvm_memslots(struct kvm * kvm)1080 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1081 {
1082 	return __kvm_memslots(kvm, 0);
1083 }
1084 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1085 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1086 {
1087 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1088 
1089 	return __kvm_memslots(vcpu->kvm, as_id);
1090 }
1091 
kvm_memslots_empty(struct kvm_memslots * slots)1092 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1093 {
1094 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1095 }
1096 
1097 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1098 
1099 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1100 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1101 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1102 		} else
1103 
1104 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1105 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1106 {
1107 	struct kvm_memory_slot *slot;
1108 	int idx = slots->node_idx;
1109 
1110 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1111 		if (slot->id == id)
1112 			return slot;
1113 	}
1114 
1115 	return NULL;
1116 }
1117 
1118 /* Iterator used for walking memslots that overlap a gfn range. */
1119 struct kvm_memslot_iter {
1120 	struct kvm_memslots *slots;
1121 	struct rb_node *node;
1122 	struct kvm_memory_slot *slot;
1123 };
1124 
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1125 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1126 {
1127 	iter->node = rb_next(iter->node);
1128 	if (!iter->node)
1129 		return;
1130 
1131 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1132 }
1133 
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1134 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1135 					  struct kvm_memslots *slots,
1136 					  gfn_t start)
1137 {
1138 	int idx = slots->node_idx;
1139 	struct rb_node *tmp;
1140 	struct kvm_memory_slot *slot;
1141 
1142 	iter->slots = slots;
1143 
1144 	/*
1145 	 * Find the so called "upper bound" of a key - the first node that has
1146 	 * its key strictly greater than the searched one (the start gfn in our case).
1147 	 */
1148 	iter->node = NULL;
1149 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1150 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1151 		if (start < slot->base_gfn) {
1152 			iter->node = tmp;
1153 			tmp = tmp->rb_left;
1154 		} else {
1155 			tmp = tmp->rb_right;
1156 		}
1157 	}
1158 
1159 	/*
1160 	 * Find the slot with the lowest gfn that can possibly intersect with
1161 	 * the range, so we'll ideally have slot start <= range start
1162 	 */
1163 	if (iter->node) {
1164 		/*
1165 		 * A NULL previous node means that the very first slot
1166 		 * already has a higher start gfn.
1167 		 * In this case slot start > range start.
1168 		 */
1169 		tmp = rb_prev(iter->node);
1170 		if (tmp)
1171 			iter->node = tmp;
1172 	} else {
1173 		/* a NULL node below means no slots */
1174 		iter->node = rb_last(&slots->gfn_tree);
1175 	}
1176 
1177 	if (iter->node) {
1178 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1179 
1180 		/*
1181 		 * It is possible in the slot start < range start case that the
1182 		 * found slot ends before or at range start (slot end <= range start)
1183 		 * and so it does not overlap the requested range.
1184 		 *
1185 		 * In such non-overlapping case the next slot (if it exists) will
1186 		 * already have slot start > range start, otherwise the logic above
1187 		 * would have found it instead of the current slot.
1188 		 */
1189 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1190 			kvm_memslot_iter_next(iter);
1191 	}
1192 }
1193 
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1194 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1195 {
1196 	if (!iter->node)
1197 		return false;
1198 
1199 	/*
1200 	 * If this slot starts beyond or at the end of the range so does
1201 	 * every next one
1202 	 */
1203 	return iter->slot->base_gfn < end;
1204 }
1205 
1206 /* Iterate over each memslot at least partially intersecting [start, end) range */
1207 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1208 	for (kvm_memslot_iter_start(iter, slots, start);		\
1209 	     kvm_memslot_iter_is_valid(iter, end);			\
1210 	     kvm_memslot_iter_next(iter))
1211 
1212 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1213 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1214 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1215 
1216 /*
1217  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1218  * - create a new memory slot
1219  * - delete an existing memory slot
1220  * - modify an existing memory slot
1221  *   -- move it in the guest physical memory space
1222  *   -- just change its flags
1223  *
1224  * Since flags can be changed by some of these operations, the following
1225  * differentiation is the best we can do for kvm_set_memory_region():
1226  */
1227 enum kvm_mr_change {
1228 	KVM_MR_CREATE,
1229 	KVM_MR_DELETE,
1230 	KVM_MR_MOVE,
1231 	KVM_MR_FLAGS_ONLY,
1232 };
1233 
1234 int kvm_set_internal_memslot(struct kvm *kvm,
1235 			     const struct kvm_userspace_memory_region2 *mem);
1236 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1237 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1238 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1239 				const struct kvm_memory_slot *old,
1240 				struct kvm_memory_slot *new,
1241 				enum kvm_mr_change change);
1242 void kvm_arch_commit_memory_region(struct kvm *kvm,
1243 				struct kvm_memory_slot *old,
1244 				const struct kvm_memory_slot *new,
1245 				enum kvm_mr_change change);
1246 /* flush all memory translations */
1247 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1248 /* flush memory translations pointing to 'slot' */
1249 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1250 				   struct kvm_memory_slot *slot);
1251 
1252 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1253 		       struct page **pages, int nr_pages);
1254 
1255 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
gfn_to_page(struct kvm * kvm,gfn_t gfn)1256 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1257 {
1258 	return __gfn_to_page(kvm, gfn, true);
1259 }
1260 
1261 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1262 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1263 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1264 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1265 				      bool *writable);
1266 
kvm_release_page_unused(struct page * page)1267 static inline void kvm_release_page_unused(struct page *page)
1268 {
1269 	if (!page)
1270 		return;
1271 
1272 	put_page(page);
1273 }
1274 
1275 void kvm_release_page_clean(struct page *page);
1276 void kvm_release_page_dirty(struct page *page);
1277 
kvm_release_faultin_page(struct kvm * kvm,struct page * page,bool unused,bool dirty)1278 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1279 					    bool unused, bool dirty)
1280 {
1281 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1282 
1283 	if (!page)
1284 		return;
1285 
1286 	/*
1287 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1288 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1289 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1290 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1291 	 * outside of mmu_lock as doing so could race with writeback on the
1292 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1293 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1294 	 * folio dirty if KVM could locklessly make the SPTE writable.
1295 	 */
1296 	if (unused)
1297 		kvm_release_page_unused(page);
1298 	else if (dirty)
1299 		kvm_release_page_dirty(page);
1300 	else
1301 		kvm_release_page_clean(page);
1302 }
1303 
1304 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1305 			    unsigned int foll, bool *writable,
1306 			    struct page **refcounted_page);
1307 
kvm_faultin_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool write,bool * writable,struct page ** refcounted_page)1308 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1309 					bool write, bool *writable,
1310 					struct page **refcounted_page)
1311 {
1312 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1313 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1314 }
1315 
1316 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1317 			int len);
1318 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1319 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1320 			   void *data, unsigned long len);
1321 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1322 				 void *data, unsigned int offset,
1323 				 unsigned long len);
1324 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1325 			 int offset, int len);
1326 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1327 		    unsigned long len);
1328 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1329 			   void *data, unsigned long len);
1330 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1331 				  void *data, unsigned int offset,
1332 				  unsigned long len);
1333 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1334 			      gpa_t gpa, unsigned long len);
1335 
1336 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1337 ({									\
1338 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1339 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1340 	int __ret = -EFAULT;						\
1341 									\
1342 	if (!kvm_is_error_hva(__addr))					\
1343 		__ret = get_user(v, __uaddr);				\
1344 	__ret;								\
1345 })
1346 
1347 #define kvm_get_guest(kvm, gpa, v)					\
1348 ({									\
1349 	gpa_t __gpa = gpa;						\
1350 	struct kvm *__kvm = kvm;					\
1351 									\
1352 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1353 			offset_in_page(__gpa), v);			\
1354 })
1355 
1356 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1357 ({									\
1358 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1359 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1360 	int __ret = -EFAULT;						\
1361 									\
1362 	if (!kvm_is_error_hva(__addr))					\
1363 		__ret = put_user(v, __uaddr);				\
1364 	if (!__ret)							\
1365 		mark_page_dirty(kvm, gfn);				\
1366 	__ret;								\
1367 })
1368 
1369 #define kvm_put_guest(kvm, gpa, v)					\
1370 ({									\
1371 	gpa_t __gpa = gpa;						\
1372 	struct kvm *__kvm = kvm;					\
1373 									\
1374 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1375 			offset_in_page(__gpa), v);			\
1376 })
1377 
1378 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1379 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1380 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1381 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1382 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1383 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1384 
1385 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1386 		   bool writable);
1387 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1388 
kvm_vcpu_map(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1389 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1390 			       struct kvm_host_map *map)
1391 {
1392 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1393 }
1394 
kvm_vcpu_map_readonly(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1395 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1396 					struct kvm_host_map *map)
1397 {
1398 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1399 }
1400 
1401 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1402 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1403 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1404 			     int len);
1405 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1406 			       unsigned long len);
1407 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1408 			unsigned long len);
1409 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1410 			      int offset, int len);
1411 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1412 			 unsigned long len);
1413 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1414 
1415 /**
1416  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1417  *
1418  * @gpc:	   struct gfn_to_pfn_cache object.
1419  * @kvm:	   pointer to kvm instance.
1420  *
1421  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1422  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1423  * the caller before init).
1424  */
1425 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1426 
1427 /**
1428  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1429  *                    physical address.
1430  *
1431  * @gpc:	   struct gfn_to_pfn_cache object.
1432  * @gpa:	   guest physical address to map.
1433  * @len:	   sanity check; the range being access must fit a single page.
1434  *
1435  * @return:	   0 for success.
1436  *		   -EINVAL for a mapping which would cross a page boundary.
1437  *		   -EFAULT for an untranslatable guest physical address.
1438  *
1439  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1440  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1441  * to ensure that the cache is valid before accessing the target page.
1442  */
1443 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1444 
1445 /**
1446  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1447  *
1448  * @gpc:          struct gfn_to_pfn_cache object.
1449  * @hva:          userspace virtual address to map.
1450  * @len:          sanity check; the range being access must fit a single page.
1451  *
1452  * @return:       0 for success.
1453  *                -EINVAL for a mapping which would cross a page boundary.
1454  *                -EFAULT for an untranslatable guest physical address.
1455  *
1456  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1457  * merely bypasses a layer of address translation.
1458  */
1459 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1460 
1461 /**
1462  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1463  *
1464  * @gpc:	   struct gfn_to_pfn_cache object.
1465  * @len:	   sanity check; the range being access must fit a single page.
1466  *
1467  * @return:	   %true if the cache is still valid and the address matches.
1468  *		   %false if the cache is not valid.
1469  *
1470  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1471  * while calling this function, and then continue to hold the lock until the
1472  * access is complete.
1473  *
1474  * Callers in IN_GUEST_MODE may do so without locking, although they should
1475  * still hold a read lock on kvm->scru for the memslot checks.
1476  */
1477 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1478 
1479 /**
1480  * kvm_gpc_refresh - update a previously initialized cache.
1481  *
1482  * @gpc:	   struct gfn_to_pfn_cache object.
1483  * @len:	   sanity check; the range being access must fit a single page.
1484  *
1485  * @return:	   0 for success.
1486  *		   -EINVAL for a mapping which would cross a page boundary.
1487  *		   -EFAULT for an untranslatable guest physical address.
1488  *
1489  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1490  * return from this function does not mean the page can be immediately
1491  * accessed because it may have raced with an invalidation. Callers must
1492  * still lock and check the cache status, as this function does not return
1493  * with the lock still held to permit access.
1494  */
1495 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1496 
1497 /**
1498  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1499  *
1500  * @gpc:	   struct gfn_to_pfn_cache object.
1501  *
1502  * This removes a cache from the VM's list to be processed on MMU notifier
1503  * invocation.
1504  */
1505 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1506 
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1507 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1508 {
1509 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1510 }
1511 
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1512 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1513 {
1514 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1515 }
1516 
1517 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1518 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1519 
1520 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1521 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1522 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1523 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1524 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1525 
1526 #ifndef CONFIG_S390
1527 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1528 
kvm_vcpu_kick(struct kvm_vcpu * vcpu)1529 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1530 {
1531 	__kvm_vcpu_kick(vcpu, false);
1532 }
1533 #endif
1534 
1535 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1536 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1537 
1538 void kvm_flush_remote_tlbs(struct kvm *kvm);
1539 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1540 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1541 				   const struct kvm_memory_slot *memslot);
1542 
1543 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1544 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1545 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1546 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1547 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1548 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1549 #endif
1550 
1551 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1552 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1553 void kvm_mmu_invalidate_end(struct kvm *kvm);
1554 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1555 
1556 long kvm_arch_dev_ioctl(struct file *filp,
1557 			unsigned int ioctl, unsigned long arg);
1558 long kvm_arch_vcpu_ioctl(struct file *filp,
1559 			 unsigned int ioctl, unsigned long arg);
1560 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp,
1561 				  unsigned int ioctl, unsigned long arg);
1562 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1563 
1564 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1565 
1566 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1567 					struct kvm_memory_slot *slot,
1568 					gfn_t gfn_offset,
1569 					unsigned long mask);
1570 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1571 
1572 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1573 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1574 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1575 		      int *is_dirty, struct kvm_memory_slot **memslot);
1576 #endif
1577 
1578 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1579 			bool line_status);
1580 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1581 			    struct kvm_enable_cap *cap);
1582 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1583 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1584 			      unsigned long arg);
1585 
1586 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1587 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1588 
1589 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1590 				    struct kvm_translation *tr);
1591 
1592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1593 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1594 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1595 				  struct kvm_sregs *sregs);
1596 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1597 				  struct kvm_sregs *sregs);
1598 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1599 				    struct kvm_mp_state *mp_state);
1600 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1601 				    struct kvm_mp_state *mp_state);
1602 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1603 					struct kvm_guest_debug *dbg);
1604 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1605 
1606 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1607 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1608 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1609 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1610 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1611 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1612 
1613 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1614 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1615 #endif
1616 
1617 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1618 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1619 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1620 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1621 #endif
1622 
1623 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1624 /*
1625  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1626  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1627  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1628  * sequence, and at the end of the generic hardware disabling sequence.
1629  */
1630 void kvm_arch_enable_virtualization(void);
1631 void kvm_arch_disable_virtualization(void);
1632 /*
1633  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1634  * do the actual twiddling of hardware bits.  The hooks are called on all
1635  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1636  * when that CPU is onlined/offlined (including for Resume/Suspend).
1637  */
1638 int kvm_arch_enable_virtualization_cpu(void);
1639 void kvm_arch_disable_virtualization_cpu(void);
1640 #endif
1641 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1642 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1643 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1644 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1645 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1646 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1647 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1648 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1649 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1650 
1651 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1652 /*
1653  * All architectures that want to use vzalloc currently also
1654  * need their own kvm_arch_alloc_vm implementation.
1655  */
kvm_arch_alloc_vm(void)1656 static inline struct kvm *kvm_arch_alloc_vm(void)
1657 {
1658 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1659 }
1660 #endif
1661 
__kvm_arch_free_vm(struct kvm * kvm)1662 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1663 {
1664 	kvfree(kvm);
1665 }
1666 
1667 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1668 static inline void kvm_arch_free_vm(struct kvm *kvm)
1669 {
1670 	__kvm_arch_free_vm(kvm);
1671 }
1672 #endif
1673 
1674 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1675 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1676 {
1677 	return -ENOTSUPP;
1678 }
1679 #else
1680 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1681 #endif
1682 
1683 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1684 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1685 						    gfn_t gfn, u64 nr_pages)
1686 {
1687 	return -EOPNOTSUPP;
1688 }
1689 #else
1690 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1691 #endif
1692 
1693 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1694 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1695 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1696 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1697 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1698 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1699 {
1700 }
1701 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1702 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1703 {
1704 }
1705 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1706 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1707 {
1708 	return false;
1709 }
1710 #endif
1711 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1712 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1713 {
1714 #ifdef __KVM_HAVE_ARCH_WQP
1715 	return vcpu->arch.waitp;
1716 #else
1717 	return &vcpu->wait;
1718 #endif
1719 }
1720 
1721 /*
1722  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1723  * true if the vCPU was blocking and was awakened, false otherwise.
1724  */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1725 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1726 {
1727 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1728 }
1729 
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1730 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1731 {
1732 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1733 }
1734 
1735 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1736 /*
1737  * returns true if the virtual interrupt controller is initialized and
1738  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1739  * controller is dynamically instantiated and this is not always true.
1740  */
1741 bool kvm_arch_intc_initialized(struct kvm *kvm);
1742 #else
kvm_arch_intc_initialized(struct kvm * kvm)1743 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1744 {
1745 	return true;
1746 }
1747 #endif
1748 
1749 #ifdef CONFIG_GUEST_PERF_EVENTS
1750 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1751 
1752 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1753 void kvm_unregister_perf_callbacks(void);
1754 #else
kvm_register_perf_callbacks(void * ign)1755 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1756 static inline void kvm_unregister_perf_callbacks(void) {}
1757 #endif /* CONFIG_GUEST_PERF_EVENTS */
1758 
1759 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1760 void kvm_arch_destroy_vm(struct kvm *kvm);
1761 
1762 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1763 
1764 struct kvm_irq_ack_notifier {
1765 	struct hlist_node link;
1766 	unsigned gsi;
1767 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1768 };
1769 
1770 int kvm_irq_map_gsi(struct kvm *kvm,
1771 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1772 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1773 
1774 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1775 		bool line_status);
1776 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1777 		int irq_source_id, int level, bool line_status);
1778 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1779 			       struct kvm *kvm, int irq_source_id,
1780 			       int level, bool line_status);
1781 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1782 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1783 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1784 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1785 				   struct kvm_irq_ack_notifier *kian);
1786 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1787 				   struct kvm_irq_ack_notifier *kian);
1788 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1789 
1790 /*
1791  * Returns a pointer to the memslot if it contains gfn.
1792  * Otherwise returns NULL.
1793  */
1794 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1795 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1796 {
1797 	if (!slot)
1798 		return NULL;
1799 
1800 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1801 		return slot;
1802 	else
1803 		return NULL;
1804 }
1805 
1806 /*
1807  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1808  *
1809  * With "approx" set returns the memslot also when the address falls
1810  * in a hole. In that case one of the memslots bordering the hole is
1811  * returned.
1812  */
1813 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1814 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1815 {
1816 	struct kvm_memory_slot *slot;
1817 	struct rb_node *node;
1818 	int idx = slots->node_idx;
1819 
1820 	slot = NULL;
1821 	for (node = slots->gfn_tree.rb_node; node; ) {
1822 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1823 		if (gfn >= slot->base_gfn) {
1824 			if (gfn < slot->base_gfn + slot->npages)
1825 				return slot;
1826 			node = node->rb_right;
1827 		} else
1828 			node = node->rb_left;
1829 	}
1830 
1831 	return approx ? slot : NULL;
1832 }
1833 
1834 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1835 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1836 {
1837 	struct kvm_memory_slot *slot;
1838 
1839 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1840 	slot = try_get_memslot(slot, gfn);
1841 	if (slot)
1842 		return slot;
1843 
1844 	slot = search_memslots(slots, gfn, approx);
1845 	if (slot) {
1846 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1847 		return slot;
1848 	}
1849 
1850 	return NULL;
1851 }
1852 
1853 /*
1854  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1855  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1856  * because that would bloat other code too much.
1857  */
1858 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1859 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1860 {
1861 	return ____gfn_to_memslot(slots, gfn, false);
1862 }
1863 
1864 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1865 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1866 {
1867 	/*
1868 	 * The index was checked originally in search_memslots.  To avoid
1869 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1870 	 * table walks, do not let the processor speculate loads outside
1871 	 * the guest's registered memslots.
1872 	 */
1873 	unsigned long offset = gfn - slot->base_gfn;
1874 	offset = array_index_nospec(offset, slot->npages);
1875 	return slot->userspace_addr + offset * PAGE_SIZE;
1876 }
1877 
memslot_id(struct kvm * kvm,gfn_t gfn)1878 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1879 {
1880 	return gfn_to_memslot(kvm, gfn)->id;
1881 }
1882 
1883 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1884 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1885 {
1886 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1887 
1888 	return slot->base_gfn + gfn_offset;
1889 }
1890 
gfn_to_gpa(gfn_t gfn)1891 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1892 {
1893 	return (gpa_t)gfn << PAGE_SHIFT;
1894 }
1895 
gpa_to_gfn(gpa_t gpa)1896 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1897 {
1898 	return (gfn_t)(gpa >> PAGE_SHIFT);
1899 }
1900 
pfn_to_hpa(kvm_pfn_t pfn)1901 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1902 {
1903 	return (hpa_t)pfn << PAGE_SHIFT;
1904 }
1905 
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1906 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1907 {
1908 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1909 
1910 	return !kvm_is_error_hva(hva);
1911 }
1912 
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1913 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1914 {
1915 	lockdep_assert_held(&gpc->lock);
1916 
1917 	if (!gpc->memslot)
1918 		return;
1919 
1920 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1921 }
1922 
1923 enum kvm_stat_kind {
1924 	KVM_STAT_VM,
1925 	KVM_STAT_VCPU,
1926 };
1927 
1928 struct kvm_stat_data {
1929 	struct kvm *kvm;
1930 	const struct _kvm_stats_desc *desc;
1931 	enum kvm_stat_kind kind;
1932 };
1933 
1934 struct _kvm_stats_desc {
1935 	struct kvm_stats_desc desc;
1936 	char name[KVM_STATS_NAME_SIZE];
1937 };
1938 
1939 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1940 	.flags = type | unit | base |					       \
1941 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1942 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1943 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1944 	.exponent = exp,						       \
1945 	.size = sz,							       \
1946 	.bucket_size = bsz
1947 
1948 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1949 	{								       \
1950 		{							       \
1951 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1952 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1953 		},							       \
1954 		.name = #stat,						       \
1955 	}
1956 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1957 	{								       \
1958 		{							       \
1959 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1960 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1961 		},							       \
1962 		.name = #stat,						       \
1963 	}
1964 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1965 	{								       \
1966 		{							       \
1967 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1968 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1969 		},							       \
1970 		.name = #stat,						       \
1971 	}
1972 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1973 	{								       \
1974 		{							       \
1975 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1976 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1977 		},							       \
1978 		.name = #stat,						       \
1979 	}
1980 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1981 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1982 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1983 
1984 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1985 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1986 		unit, base, exponent, 1, 0)
1987 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1988 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1989 		unit, base, exponent, 1, 0)
1990 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1991 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1992 		unit, base, exponent, 1, 0)
1993 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1994 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1995 		unit, base, exponent, sz, bsz)
1996 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1997 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1998 		unit, base, exponent, sz, 0)
1999 
2000 /* Cumulative counter, read/write */
2001 #define STATS_DESC_COUNTER(SCOPE, name)					       \
2002 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2003 		KVM_STATS_BASE_POW10, 0)
2004 /* Instantaneous counter, read only */
2005 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
2006 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2007 		KVM_STATS_BASE_POW10, 0)
2008 /* Peak counter, read/write */
2009 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
2010 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2011 		KVM_STATS_BASE_POW10, 0)
2012 
2013 /* Instantaneous boolean value, read only */
2014 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
2015 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2016 		KVM_STATS_BASE_POW10, 0)
2017 /* Peak (sticky) boolean value, read/write */
2018 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
2019 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2020 		KVM_STATS_BASE_POW10, 0)
2021 
2022 /* Cumulative time in nanosecond */
2023 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
2024 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2025 		KVM_STATS_BASE_POW10, -9)
2026 /* Linear histogram for time in nanosecond */
2027 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2028 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2029 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2030 /* Logarithmic histogram for time in nanosecond */
2031 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2032 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2033 		KVM_STATS_BASE_POW10, -9, sz)
2034 
2035 #define KVM_GENERIC_VM_STATS()						       \
2036 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2037 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2038 
2039 #define KVM_GENERIC_VCPU_STATS()					       \
2040 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2041 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2042 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2043 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2044 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2045 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2046 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2047 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2048 			HALT_POLL_HIST_COUNT),				       \
2049 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2050 			HALT_POLL_HIST_COUNT),				       \
2051 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2052 			HALT_POLL_HIST_COUNT),				       \
2053 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2054 
2055 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2056 		       const struct _kvm_stats_desc *desc,
2057 		       void *stats, size_t size_stats,
2058 		       char __user *user_buffer, size_t size, loff_t *offset);
2059 
2060 /**
2061  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2062  * statistics data.
2063  *
2064  * @data: start address of the stats data
2065  * @size: the number of bucket of the stats data
2066  * @value: the new value used to update the linear histogram's bucket
2067  * @bucket_size: the size (width) of a bucket
2068  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2069 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2070 						u64 value, size_t bucket_size)
2071 {
2072 	size_t index = div64_u64(value, bucket_size);
2073 
2074 	index = min(index, size - 1);
2075 	++data[index];
2076 }
2077 
2078 /**
2079  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2080  * statistics data.
2081  *
2082  * @data: start address of the stats data
2083  * @size: the number of bucket of the stats data
2084  * @value: the new value used to update the logarithmic histogram's bucket
2085  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2086 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2087 {
2088 	size_t index = fls64(value);
2089 
2090 	index = min(index, size - 1);
2091 	++data[index];
2092 }
2093 
2094 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2095 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2096 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2097 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2098 
2099 
2100 extern const struct kvm_stats_header kvm_vm_stats_header;
2101 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2102 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2103 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2104 
2105 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2106 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2107 {
2108 	if (unlikely(kvm->mmu_invalidate_in_progress))
2109 		return 1;
2110 	/*
2111 	 * Ensure the read of mmu_invalidate_in_progress happens before
2112 	 * the read of mmu_invalidate_seq.  This interacts with the
2113 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2114 	 * that the caller either sees the old (non-zero) value of
2115 	 * mmu_invalidate_in_progress or the new (incremented) value of
2116 	 * mmu_invalidate_seq.
2117 	 *
2118 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2119 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2120 	 * kvm->mmu_lock to keep things ordered.
2121 	 */
2122 	smp_rmb();
2123 	if (kvm->mmu_invalidate_seq != mmu_seq)
2124 		return 1;
2125 	return 0;
2126 }
2127 
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2128 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2129 					   unsigned long mmu_seq,
2130 					   gfn_t gfn)
2131 {
2132 	lockdep_assert_held(&kvm->mmu_lock);
2133 	/*
2134 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2135 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2136 	 * that might be being invalidated. Note that it may include some false
2137 	 * positives, due to shortcuts when handing concurrent invalidations.
2138 	 */
2139 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2140 		/*
2141 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2142 		 * but before updating the range is a KVM bug.
2143 		 */
2144 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2145 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2146 			return 1;
2147 
2148 		if (gfn >= kvm->mmu_invalidate_range_start &&
2149 		    gfn < kvm->mmu_invalidate_range_end)
2150 			return 1;
2151 	}
2152 
2153 	if (kvm->mmu_invalidate_seq != mmu_seq)
2154 		return 1;
2155 	return 0;
2156 }
2157 
2158 /*
2159  * This lockless version of the range-based retry check *must* be paired with a
2160  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2161  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2162  * get false negatives and false positives.
2163  */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2164 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2165 						   unsigned long mmu_seq,
2166 						   gfn_t gfn)
2167 {
2168 	/*
2169 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2170 	 * are always read from memory, e.g. so that checking for retry in a
2171 	 * loop won't result in an infinite retry loop.  Don't force loads for
2172 	 * start+end, as the key to avoiding infinite retry loops is observing
2173 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2174 	 * due to stale start+end values is acceptable.
2175 	 */
2176 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2177 	    gfn >= kvm->mmu_invalidate_range_start &&
2178 	    gfn < kvm->mmu_invalidate_range_end)
2179 		return true;
2180 
2181 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2182 }
2183 #endif
2184 
2185 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2186 
2187 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2188 
2189 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2190 int kvm_set_irq_routing(struct kvm *kvm,
2191 			const struct kvm_irq_routing_entry *entries,
2192 			unsigned nr,
2193 			unsigned flags);
2194 int kvm_init_irq_routing(struct kvm *kvm);
2195 int kvm_set_routing_entry(struct kvm *kvm,
2196 			  struct kvm_kernel_irq_routing_entry *e,
2197 			  const struct kvm_irq_routing_entry *ue);
2198 void kvm_free_irq_routing(struct kvm *kvm);
2199 
2200 #else
2201 
kvm_free_irq_routing(struct kvm * kvm)2202 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2203 
kvm_init_irq_routing(struct kvm * kvm)2204 static inline int kvm_init_irq_routing(struct kvm *kvm)
2205 {
2206 	return 0;
2207 }
2208 
2209 #endif
2210 
2211 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2212 
2213 void kvm_eventfd_init(struct kvm *kvm);
2214 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2215 
2216 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2217 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2218 void kvm_irqfd_release(struct kvm *kvm);
2219 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2220 				unsigned int irqchip,
2221 				unsigned int pin);
2222 void kvm_irq_routing_update(struct kvm *);
2223 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2224 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2225 {
2226 	return -EINVAL;
2227 }
2228 
kvm_irqfd_release(struct kvm * kvm)2229 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2230 
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2231 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2232 					      unsigned int irqchip,
2233 					      unsigned int pin)
2234 {
2235 	return false;
2236 }
2237 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2238 
2239 void kvm_arch_irq_routing_update(struct kvm *kvm);
2240 
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2241 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2242 {
2243 	/*
2244 	 * Ensure the rest of the request is published to kvm_check_request's
2245 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2246 	 */
2247 	smp_wmb();
2248 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2249 }
2250 
kvm_make_request(int req,struct kvm_vcpu * vcpu)2251 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2252 {
2253 	/*
2254 	 * Request that don't require vCPU action should never be logged in
2255 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2256 	 * logged indefinitely and prevent the vCPU from entering the guest.
2257 	 */
2258 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2259 		     (req & KVM_REQUEST_NO_ACTION));
2260 
2261 	__kvm_make_request(req, vcpu);
2262 }
2263 
2264 #ifndef CONFIG_S390
kvm_make_request_and_kick(int req,struct kvm_vcpu * vcpu)2265 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2266 {
2267 	kvm_make_request(req, vcpu);
2268 	__kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2269 }
2270 #endif
2271 
kvm_request_pending(struct kvm_vcpu * vcpu)2272 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2273 {
2274 	return READ_ONCE(vcpu->requests);
2275 }
2276 
kvm_test_request(int req,struct kvm_vcpu * vcpu)2277 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2278 {
2279 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2280 }
2281 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2282 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2283 {
2284 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2285 }
2286 
kvm_check_request(int req,struct kvm_vcpu * vcpu)2287 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2288 {
2289 	if (kvm_test_request(req, vcpu)) {
2290 		kvm_clear_request(req, vcpu);
2291 
2292 		/*
2293 		 * Ensure the rest of the request is visible to kvm_check_request's
2294 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2295 		 */
2296 		smp_mb__after_atomic();
2297 		return true;
2298 	} else {
2299 		return false;
2300 	}
2301 }
2302 
2303 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2304 extern bool enable_virt_at_load;
2305 extern bool kvm_rebooting;
2306 #endif
2307 
2308 extern unsigned int halt_poll_ns;
2309 extern unsigned int halt_poll_ns_grow;
2310 extern unsigned int halt_poll_ns_grow_start;
2311 extern unsigned int halt_poll_ns_shrink;
2312 
2313 struct kvm_device {
2314 	const struct kvm_device_ops *ops;
2315 	struct kvm *kvm;
2316 	void *private;
2317 	struct list_head vm_node;
2318 };
2319 
2320 /* create, destroy, and name are mandatory */
2321 struct kvm_device_ops {
2322 	const char *name;
2323 
2324 	/*
2325 	 * create is called holding kvm->lock and any operations not suitable
2326 	 * to do while holding the lock should be deferred to init (see
2327 	 * below).
2328 	 */
2329 	int (*create)(struct kvm_device *dev, u32 type);
2330 
2331 	/*
2332 	 * init is called after create if create is successful and is called
2333 	 * outside of holding kvm->lock.
2334 	 */
2335 	void (*init)(struct kvm_device *dev);
2336 
2337 	/*
2338 	 * Destroy is responsible for freeing dev.
2339 	 *
2340 	 * Destroy may be called before or after destructors are called
2341 	 * on emulated I/O regions, depending on whether a reference is
2342 	 * held by a vcpu or other kvm component that gets destroyed
2343 	 * after the emulated I/O.
2344 	 */
2345 	void (*destroy)(struct kvm_device *dev);
2346 
2347 	/*
2348 	 * Release is an alternative method to free the device. It is
2349 	 * called when the device file descriptor is closed. Once
2350 	 * release is called, the destroy method will not be called
2351 	 * anymore as the device is removed from the device list of
2352 	 * the VM. kvm->lock is held.
2353 	 */
2354 	void (*release)(struct kvm_device *dev);
2355 
2356 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2357 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2358 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2359 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2360 		      unsigned long arg);
2361 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2362 };
2363 
2364 struct kvm_device *kvm_device_from_filp(struct file *filp);
2365 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2366 void kvm_unregister_device_ops(u32 type);
2367 
2368 extern struct kvm_device_ops kvm_mpic_ops;
2369 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2370 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2371 
2372 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2373 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2374 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2375 {
2376 	vcpu->spin_loop.in_spin_loop = val;
2377 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2378 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2379 {
2380 	vcpu->spin_loop.dy_eligible = val;
2381 }
2382 
2383 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2384 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2385 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2386 {
2387 }
2388 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2389 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2390 {
2391 }
2392 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2393 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2394 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2395 {
2396 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2397 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2398 }
2399 
2400 struct kvm_vcpu *kvm_get_running_vcpu(void);
2401 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2402 
2403 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2404 struct kvm_kernel_irqfd;
2405 
2406 bool kvm_arch_has_irq_bypass(void);
2407 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2408 			   struct irq_bypass_producer *);
2409 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2410 			   struct irq_bypass_producer *);
2411 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2412 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2413 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2414 				   struct kvm_kernel_irq_routing_entry *old,
2415 				   struct kvm_kernel_irq_routing_entry *new);
2416 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2417 
2418 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2419 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2420 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2421 {
2422 	return vcpu->valid_wakeup;
2423 }
2424 
2425 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2426 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2427 {
2428 	return true;
2429 }
2430 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2431 
2432 #ifdef CONFIG_HAVE_KVM_NO_POLL
2433 /* Callback that tells if we must not poll */
2434 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2435 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2436 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2437 {
2438 	return false;
2439 }
2440 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2441 
2442 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2443 
2444 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2445 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2446 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2447 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2448 {
2449 	return 0;
2450 }
2451 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2452 
2453 #ifdef CONFIG_VIRT_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2454 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2455 {
2456 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2457 	vcpu->stat.signal_exits++;
2458 }
2459 
kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu * vcpu)2460 static inline int kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu *vcpu)
2461 {
2462 	int r = xfer_to_guest_mode_handle_work();
2463 
2464 	if (r) {
2465 		WARN_ON_ONCE(r != -EINTR);
2466 		kvm_handle_signal_exit(vcpu);
2467 	}
2468 	return r;
2469 }
2470 #endif /* CONFIG_VIRT_XFER_TO_GUEST_WORK */
2471 
2472 /*
2473  * If more than one page is being (un)accounted, @virt must be the address of
2474  * the first page of a block of pages what were allocated together (i.e
2475  * accounted together).
2476  *
2477  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2478  * is thread-safe.
2479  */
kvm_account_pgtable_pages(void * virt,int nr)2480 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2481 {
2482 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2483 }
2484 
2485 /*
2486  * This defines how many reserved entries we want to keep before we
2487  * kick the vcpu to the userspace to avoid dirty ring full.  This
2488  * value can be tuned to higher if e.g. PML is enabled on the host.
2489  */
2490 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2491 
2492 /* Max number of entries allowed for each kvm dirty ring */
2493 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2494 
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2495 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2496 						 gpa_t gpa, gpa_t size,
2497 						 bool is_write, bool is_exec,
2498 						 bool is_private)
2499 {
2500 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2501 	vcpu->run->memory_fault.gpa = gpa;
2502 	vcpu->run->memory_fault.size = size;
2503 
2504 	/* RWX flags are not (yet) defined or communicated to userspace. */
2505 	vcpu->run->memory_fault.flags = 0;
2506 	if (is_private)
2507 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2508 }
2509 
kvm_memslot_is_gmem_only(const struct kvm_memory_slot * slot)2510 static inline bool kvm_memslot_is_gmem_only(const struct kvm_memory_slot *slot)
2511 {
2512 	if (!IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
2513 		return false;
2514 
2515 	return slot->flags & KVM_MEMSLOT_GMEM_ONLY;
2516 }
2517 
2518 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2519 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2520 {
2521 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2522 }
2523 
2524 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2525 				     unsigned long mask, unsigned long attrs);
2526 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2527 					struct kvm_gfn_range *range);
2528 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2529 					 struct kvm_gfn_range *range);
2530 
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2531 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2532 {
2533 	return kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2534 }
2535 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2536 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2537 {
2538 	return false;
2539 }
2540 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2541 
2542 #ifdef CONFIG_KVM_GUEST_MEMFD
2543 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2544 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2545 		     int *max_order);
2546 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,struct page ** page,int * max_order)2547 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2548 				   struct kvm_memory_slot *slot, gfn_t gfn,
2549 				   kvm_pfn_t *pfn, struct page **page,
2550 				   int *max_order)
2551 {
2552 	KVM_BUG_ON(1, kvm);
2553 	return -EIO;
2554 }
2555 #endif /* CONFIG_KVM_GUEST_MEMFD */
2556 
2557 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2558 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2559 #endif
2560 
2561 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_POPULATE
2562 /**
2563  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2564  *
2565  * @kvm: KVM instance
2566  * @gfn: starting GFN to be populated
2567  * @src: userspace-provided buffer containing data to copy into GFN range
2568  *       (passed to @post_populate, and incremented on each iteration
2569  *       if not NULL)
2570  * @npages: number of pages to copy from userspace-buffer
2571  * @post_populate: callback to issue for each gmem page that backs the GPA
2572  *                 range
2573  * @opaque: opaque data to pass to @post_populate callback
2574  *
2575  * This is primarily intended for cases where a gmem-backed GPA range needs
2576  * to be initialized with userspace-provided data prior to being mapped into
2577  * the guest as a private page. This should be called with the slots->lock
2578  * held so that caller-enforced invariants regarding the expected memory
2579  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2580  *
2581  * Returns the number of pages that were populated.
2582  */
2583 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2584 				    void __user *src, int order, void *opaque);
2585 
2586 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2587 		       kvm_gmem_populate_cb post_populate, void *opaque);
2588 #endif
2589 
2590 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2591 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2592 #endif
2593 
2594 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2595 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2596 				    struct kvm_pre_fault_memory *range);
2597 #endif
2598 
2599 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2600 int kvm_enable_virtualization(void);
2601 void kvm_disable_virtualization(void);
2602 #else
kvm_enable_virtualization(void)2603 static inline int kvm_enable_virtualization(void) { return 0; }
kvm_disable_virtualization(void)2604 static inline void kvm_disable_virtualization(void) { }
2605 #endif
2606 
2607 #endif
2608