1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26
27 static size_t vcpu_mmap_sz(void);
28
__open_path_or_exit(const char * path,int flags,const char * enoent_help)29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help)
30 {
31 int fd;
32
33 fd = open(path, flags);
34 if (fd < 0)
35 goto error;
36
37 return fd;
38
39 error:
40 if (errno == EACCES || errno == ENOENT)
41 ksft_exit_skip("- Cannot open '%s': %s. %s\n",
42 path, strerror(errno),
43 errno == EACCES ? "Root required?" : enoent_help);
44 TEST_FAIL("Failed to open '%s'", path);
45 }
46
open_path_or_exit(const char * path,int flags)47 int open_path_or_exit(const char *path, int flags)
48 {
49 return __open_path_or_exit(path, flags, "");
50 }
51
52 /*
53 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
54 *
55 * Input Args:
56 * flags - The flags to pass when opening KVM_DEV_PATH.
57 *
58 * Return:
59 * The opened file descriptor of /dev/kvm.
60 */
_open_kvm_dev_path_or_exit(int flags)61 static int _open_kvm_dev_path_or_exit(int flags)
62 {
63 return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?");
64 }
65
open_kvm_dev_path_or_exit(void)66 int open_kvm_dev_path_or_exit(void)
67 {
68 return _open_kvm_dev_path_or_exit(O_RDONLY);
69 }
70
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)71 static ssize_t get_module_param(const char *module_name, const char *param,
72 void *buffer, size_t buffer_size)
73 {
74 const int path_size = 128;
75 char path[path_size];
76 ssize_t bytes_read;
77 int fd, r;
78
79 /* Verify KVM is loaded, to provide a more helpful SKIP message. */
80 close(open_kvm_dev_path_or_exit());
81
82 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
83 module_name, param);
84 TEST_ASSERT(r < path_size,
85 "Failed to construct sysfs path in %d bytes.", path_size);
86
87 fd = open_path_or_exit(path, O_RDONLY);
88
89 bytes_read = read(fd, buffer, buffer_size);
90 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
91 path, bytes_read, buffer_size);
92
93 r = close(fd);
94 TEST_ASSERT(!r, "close(%s) failed", path);
95 return bytes_read;
96 }
97
kvm_get_module_param_integer(const char * module_name,const char * param)98 int kvm_get_module_param_integer(const char *module_name, const char *param)
99 {
100 /*
101 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
102 * NUL char, and 1 byte because the kernel sucks and inserts a newline
103 * at the end.
104 */
105 char value[16 + 1 + 1];
106 ssize_t r;
107
108 memset(value, '\0', sizeof(value));
109
110 r = get_module_param(module_name, param, value, sizeof(value));
111 TEST_ASSERT(value[r - 1] == '\n',
112 "Expected trailing newline, got char '%c'", value[r - 1]);
113
114 /*
115 * Squash the newline, otherwise atoi_paranoid() will complain about
116 * trailing non-NUL characters in the string.
117 */
118 value[r - 1] = '\0';
119 return atoi_paranoid(value);
120 }
121
kvm_get_module_param_bool(const char * module_name,const char * param)122 bool kvm_get_module_param_bool(const char *module_name, const char *param)
123 {
124 char value;
125 ssize_t r;
126
127 r = get_module_param(module_name, param, &value, sizeof(value));
128 TEST_ASSERT_EQ(r, 1);
129
130 if (value == 'Y')
131 return true;
132 else if (value == 'N')
133 return false;
134
135 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
136 }
137
138 /*
139 * Capability
140 *
141 * Input Args:
142 * cap - Capability
143 *
144 * Output Args: None
145 *
146 * Return:
147 * On success, the Value corresponding to the capability (KVM_CAP_*)
148 * specified by the value of cap. On failure a TEST_ASSERT failure
149 * is produced.
150 *
151 * Looks up and returns the value corresponding to the capability
152 * (KVM_CAP_*) given by cap.
153 */
kvm_check_cap(long cap)154 unsigned int kvm_check_cap(long cap)
155 {
156 int ret;
157 int kvm_fd;
158
159 kvm_fd = open_kvm_dev_path_or_exit();
160 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
161 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
162
163 close(kvm_fd);
164
165 return (unsigned int)ret;
166 }
167
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
169 {
170 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
171 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
172 else
173 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
174 vm->dirty_ring_size = ring_size;
175 }
176
vm_open(struct kvm_vm * vm)177 static void vm_open(struct kvm_vm *vm)
178 {
179 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
180
181 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
182
183 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
184 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
185
186 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
187 vm->stats.fd = vm_get_stats_fd(vm);
188 else
189 vm->stats.fd = -1;
190 }
191
vm_guest_mode_string(uint32_t i)192 const char *vm_guest_mode_string(uint32_t i)
193 {
194 static const char * const strings[] = {
195 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
196 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages",
197 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
198 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
199 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
200 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
201 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
202 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
203 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
204 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
205 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
206 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
207 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
208 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
209 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
210 [VM_MODE_P47V47_16K] = "PA-bits:47, VA-bits:47, 16K pages",
211 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
212 };
213 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
214 "Missing new mode strings?");
215
216 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
217
218 return strings[i];
219 }
220
221 const struct vm_guest_mode_params vm_guest_mode_params[] = {
222 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
223 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 },
224 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
225 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
226 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
227 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
228 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
229 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
230 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
231 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
232 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
233 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
234 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
235 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
236 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
237 [VM_MODE_P47V47_16K] = { 47, 47, 0x4000, 14 },
238 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
239 };
240 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
241 "Missing new mode params?");
242
243 /*
244 * Initializes vm->vpages_valid to match the canonical VA space of the
245 * architecture.
246 *
247 * The default implementation is valid for architectures which split the
248 * range addressed by a single page table into a low and high region
249 * based on the MSB of the VA. On architectures with this behavior
250 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
251 */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)252 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
253 {
254 sparsebit_set_num(vm->vpages_valid,
255 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
256 sparsebit_set_num(vm->vpages_valid,
257 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
258 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
259 }
260
____vm_create(struct vm_shape shape)261 struct kvm_vm *____vm_create(struct vm_shape shape)
262 {
263 struct kvm_vm *vm;
264
265 vm = calloc(1, sizeof(*vm));
266 TEST_ASSERT(vm != NULL, "Insufficient Memory");
267
268 INIT_LIST_HEAD(&vm->vcpus);
269 vm->regions.gpa_tree = RB_ROOT;
270 vm->regions.hva_tree = RB_ROOT;
271 hash_init(vm->regions.slot_hash);
272
273 vm->mode = shape.mode;
274 vm->type = shape.type;
275
276 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
277 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
278 vm->page_size = vm_guest_mode_params[vm->mode].page_size;
279 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
280
281 /* Setup mode specific traits. */
282 switch (vm->mode) {
283 case VM_MODE_P52V48_4K:
284 vm->pgtable_levels = 4;
285 break;
286 case VM_MODE_P52V48_64K:
287 vm->pgtable_levels = 3;
288 break;
289 case VM_MODE_P48V48_4K:
290 vm->pgtable_levels = 4;
291 break;
292 case VM_MODE_P48V48_64K:
293 vm->pgtable_levels = 3;
294 break;
295 case VM_MODE_P40V48_4K:
296 case VM_MODE_P36V48_4K:
297 vm->pgtable_levels = 4;
298 break;
299 case VM_MODE_P40V48_64K:
300 case VM_MODE_P36V48_64K:
301 vm->pgtable_levels = 3;
302 break;
303 case VM_MODE_P52V48_16K:
304 case VM_MODE_P48V48_16K:
305 case VM_MODE_P40V48_16K:
306 case VM_MODE_P36V48_16K:
307 vm->pgtable_levels = 4;
308 break;
309 case VM_MODE_P47V47_16K:
310 case VM_MODE_P36V47_16K:
311 vm->pgtable_levels = 3;
312 break;
313 case VM_MODE_PXXV48_4K:
314 #ifdef __x86_64__
315 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
316 kvm_init_vm_address_properties(vm);
317 /*
318 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
319 * it doesn't take effect unless a CR4.LA57 is set, which it
320 * isn't for this mode (48-bit virtual address space).
321 */
322 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
323 "Linear address width (%d bits) not supported",
324 vm->va_bits);
325 pr_debug("Guest physical address width detected: %d\n",
326 vm->pa_bits);
327 vm->pgtable_levels = 4;
328 vm->va_bits = 48;
329 #else
330 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
331 #endif
332 break;
333 case VM_MODE_P47V64_4K:
334 vm->pgtable_levels = 5;
335 break;
336 case VM_MODE_P44V64_4K:
337 vm->pgtable_levels = 5;
338 break;
339 default:
340 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
341 }
342
343 #ifdef __aarch64__
344 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
345 if (vm->pa_bits != 40)
346 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
347 #endif
348
349 vm_open(vm);
350
351 /* Limit to VA-bit canonical virtual addresses. */
352 vm->vpages_valid = sparsebit_alloc();
353 vm_vaddr_populate_bitmap(vm);
354
355 /* Limit physical addresses to PA-bits. */
356 vm->max_gfn = vm_compute_max_gfn(vm);
357
358 /* Allocate and setup memory for guest. */
359 vm->vpages_mapped = sparsebit_alloc();
360
361 return vm;
362 }
363
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)364 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
365 uint32_t nr_runnable_vcpus,
366 uint64_t extra_mem_pages)
367 {
368 uint64_t page_size = vm_guest_mode_params[mode].page_size;
369 uint64_t nr_pages;
370
371 TEST_ASSERT(nr_runnable_vcpus,
372 "Use vm_create_barebones() for VMs that _never_ have vCPUs");
373
374 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
375 "nr_vcpus = %d too large for host, max-vcpus = %d",
376 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
377
378 /*
379 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
380 * test code and other per-VM assets that will be loaded into memslot0.
381 */
382 nr_pages = 512;
383
384 /* Account for the per-vCPU stacks on behalf of the test. */
385 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
386
387 /*
388 * Account for the number of pages needed for the page tables. The
389 * maximum page table size for a memory region will be when the
390 * smallest page size is used. Considering each page contains x page
391 * table descriptors, the total extra size for page tables (for extra
392 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
393 * than N/x*2.
394 */
395 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
396
397 /* Account for the number of pages needed by ucall. */
398 nr_pages += ucall_nr_pages_required(page_size);
399
400 return vm_adjust_num_guest_pages(mode, nr_pages);
401 }
402
kvm_set_files_rlimit(uint32_t nr_vcpus)403 void kvm_set_files_rlimit(uint32_t nr_vcpus)
404 {
405 /*
406 * Each vCPU will open two file descriptors: the vCPU itself and the
407 * vCPU's binary stats file descriptor. Add an arbitrary amount of
408 * buffer for all other files a test may open.
409 */
410 int nr_fds_wanted = nr_vcpus * 2 + 100;
411 struct rlimit rl;
412
413 /*
414 * Check that we're allowed to open nr_fds_wanted file descriptors and
415 * try raising the limits if needed.
416 */
417 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
418
419 if (rl.rlim_cur < nr_fds_wanted) {
420 rl.rlim_cur = nr_fds_wanted;
421 if (rl.rlim_max < nr_fds_wanted) {
422 int old_rlim_max = rl.rlim_max;
423
424 rl.rlim_max = nr_fds_wanted;
425 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
426 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
427 old_rlim_max, nr_fds_wanted);
428 } else {
429 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
430 }
431 }
432
433 }
434
is_guest_memfd_required(struct vm_shape shape)435 static bool is_guest_memfd_required(struct vm_shape shape)
436 {
437 #ifdef __x86_64__
438 return shape.type == KVM_X86_SNP_VM;
439 #else
440 return false;
441 #endif
442 }
443
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)444 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
445 uint64_t nr_extra_pages)
446 {
447 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
448 nr_extra_pages);
449 struct userspace_mem_region *slot0;
450 struct kvm_vm *vm;
451 int i, flags;
452
453 kvm_set_files_rlimit(nr_runnable_vcpus);
454
455 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
456 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
457
458 vm = ____vm_create(shape);
459
460 /*
461 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
462 * for CoCo VMs that require GUEST_MEMFD backed private memory.
463 */
464 flags = 0;
465 if (is_guest_memfd_required(shape))
466 flags |= KVM_MEM_GUEST_MEMFD;
467
468 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
469 for (i = 0; i < NR_MEM_REGIONS; i++)
470 vm->memslots[i] = 0;
471
472 kvm_vm_elf_load(vm, program_invocation_name);
473
474 /*
475 * TODO: Add proper defines to protect the library's memslots, and then
476 * carve out memslot1 for the ucall MMIO address. KVM treats writes to
477 * read-only memslots as MMIO, and creating a read-only memslot for the
478 * MMIO region would prevent silently clobbering the MMIO region.
479 */
480 slot0 = memslot2region(vm, 0);
481 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
482
483 if (guest_random_seed != last_guest_seed) {
484 pr_info("Random seed: 0x%x\n", guest_random_seed);
485 last_guest_seed = guest_random_seed;
486 }
487 guest_rng = new_guest_random_state(guest_random_seed);
488 sync_global_to_guest(vm, guest_rng);
489
490 kvm_arch_vm_post_create(vm, nr_runnable_vcpus);
491
492 return vm;
493 }
494
495 /*
496 * VM Create with customized parameters
497 *
498 * Input Args:
499 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
500 * nr_vcpus - VCPU count
501 * extra_mem_pages - Non-slot0 physical memory total size
502 * guest_code - Guest entry point
503 * vcpuids - VCPU IDs
504 *
505 * Output Args: None
506 *
507 * Return:
508 * Pointer to opaque structure that describes the created VM.
509 *
510 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
511 * extra_mem_pages is only used to calculate the maximum page table size,
512 * no real memory allocation for non-slot0 memory in this function.
513 */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])514 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
515 uint64_t extra_mem_pages,
516 void *guest_code, struct kvm_vcpu *vcpus[])
517 {
518 struct kvm_vm *vm;
519 int i;
520
521 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
522
523 vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
524
525 for (i = 0; i < nr_vcpus; ++i)
526 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
527
528 kvm_arch_vm_finalize_vcpus(vm);
529 return vm;
530 }
531
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)532 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
533 struct kvm_vcpu **vcpu,
534 uint64_t extra_mem_pages,
535 void *guest_code)
536 {
537 struct kvm_vcpu *vcpus[1];
538 struct kvm_vm *vm;
539
540 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
541
542 *vcpu = vcpus[0];
543 return vm;
544 }
545
546 /*
547 * VM Restart
548 *
549 * Input Args:
550 * vm - VM that has been released before
551 *
552 * Output Args: None
553 *
554 * Reopens the file descriptors associated to the VM and reinstates the
555 * global state, such as the irqchip and the memory regions that are mapped
556 * into the guest.
557 */
kvm_vm_restart(struct kvm_vm * vmp)558 void kvm_vm_restart(struct kvm_vm *vmp)
559 {
560 int ctr;
561 struct userspace_mem_region *region;
562
563 vm_open(vmp);
564 if (vmp->has_irqchip)
565 vm_create_irqchip(vmp);
566
567 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
568 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
569
570 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
571 " rc: %i errno: %i\n"
572 " slot: %u flags: 0x%x\n"
573 " guest_phys_addr: 0x%llx size: 0x%llx",
574 ret, errno, region->region.slot,
575 region->region.flags,
576 region->region.guest_phys_addr,
577 region->region.memory_size);
578 }
579 }
580
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)581 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
582 uint32_t vcpu_id)
583 {
584 return __vm_vcpu_add(vm, vcpu_id);
585 }
586
vm_recreate_with_one_vcpu(struct kvm_vm * vm)587 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
588 {
589 kvm_vm_restart(vm);
590
591 return vm_vcpu_recreate(vm, 0);
592 }
593
__pin_task_to_cpu(pthread_t task,int cpu)594 int __pin_task_to_cpu(pthread_t task, int cpu)
595 {
596 cpu_set_t cpuset;
597
598 CPU_ZERO(&cpuset);
599 CPU_SET(cpu, &cpuset);
600
601 return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset);
602 }
603
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)604 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
605 {
606 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
607
608 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
609 "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
610 return pcpu;
611 }
612
kvm_print_vcpu_pinning_help(void)613 void kvm_print_vcpu_pinning_help(void)
614 {
615 const char *name = program_invocation_name;
616
617 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n"
618 " values (target pCPU), one for each vCPU, plus an optional\n"
619 " entry for the main application task (specified via entry\n"
620 " <nr_vcpus + 1>). If used, entries must be provided for all\n"
621 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
622 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
623 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
624 " %s -v 3 -c 22,23,24,50\n\n"
625 " To leave the application task unpinned, drop the final entry:\n\n"
626 " %s -v 3 -c 22,23,24\n\n"
627 " (default: no pinning)\n", name, name);
628 }
629
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)630 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
631 int nr_vcpus)
632 {
633 cpu_set_t allowed_mask;
634 char *cpu, *cpu_list;
635 char delim[2] = ",";
636 int i, r;
637
638 cpu_list = strdup(pcpus_string);
639 TEST_ASSERT(cpu_list, "strdup() allocation failed.");
640
641 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
642 TEST_ASSERT(!r, "sched_getaffinity() failed");
643
644 cpu = strtok(cpu_list, delim);
645
646 /* 1. Get all pcpus for vcpus. */
647 for (i = 0; i < nr_vcpus; i++) {
648 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
649 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
650 cpu = strtok(NULL, delim);
651 }
652
653 /* 2. Check if the main worker needs to be pinned. */
654 if (cpu) {
655 pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask));
656 cpu = strtok(NULL, delim);
657 }
658
659 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
660 free(cpu_list);
661 }
662
663 /*
664 * Userspace Memory Region Find
665 *
666 * Input Args:
667 * vm - Virtual Machine
668 * start - Starting VM physical address
669 * end - Ending VM physical address, inclusive.
670 *
671 * Output Args: None
672 *
673 * Return:
674 * Pointer to overlapping region, NULL if no such region.
675 *
676 * Searches for a region with any physical memory that overlaps with
677 * any portion of the guest physical addresses from start to end
678 * inclusive. If multiple overlapping regions exist, a pointer to any
679 * of the regions is returned. Null is returned only when no overlapping
680 * region exists.
681 */
682 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)683 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
684 {
685 struct rb_node *node;
686
687 for (node = vm->regions.gpa_tree.rb_node; node; ) {
688 struct userspace_mem_region *region =
689 container_of(node, struct userspace_mem_region, gpa_node);
690 uint64_t existing_start = region->region.guest_phys_addr;
691 uint64_t existing_end = region->region.guest_phys_addr
692 + region->region.memory_size - 1;
693 if (start <= existing_end && end >= existing_start)
694 return region;
695
696 if (start < existing_start)
697 node = node->rb_left;
698 else
699 node = node->rb_right;
700 }
701
702 return NULL;
703 }
704
kvm_stats_release(struct kvm_binary_stats * stats)705 static void kvm_stats_release(struct kvm_binary_stats *stats)
706 {
707 int ret;
708
709 if (stats->fd < 0)
710 return;
711
712 if (stats->desc) {
713 free(stats->desc);
714 stats->desc = NULL;
715 }
716
717 ret = close(stats->fd);
718 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
719 stats->fd = -1;
720 }
721
vcpu_arch_free(struct kvm_vcpu * vcpu)722 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
723 {
724
725 }
726
727 /*
728 * VM VCPU Remove
729 *
730 * Input Args:
731 * vcpu - VCPU to remove
732 *
733 * Output Args: None
734 *
735 * Return: None, TEST_ASSERT failures for all error conditions
736 *
737 * Removes a vCPU from a VM and frees its resources.
738 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)739 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
740 {
741 int ret;
742
743 if (vcpu->dirty_gfns) {
744 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
745 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
746 vcpu->dirty_gfns = NULL;
747 }
748
749 ret = munmap(vcpu->run, vcpu_mmap_sz());
750 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
751
752 ret = close(vcpu->fd);
753 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
754
755 kvm_stats_release(&vcpu->stats);
756
757 list_del(&vcpu->list);
758
759 vcpu_arch_free(vcpu);
760 free(vcpu);
761 }
762
kvm_vm_release(struct kvm_vm * vmp)763 void kvm_vm_release(struct kvm_vm *vmp)
764 {
765 struct kvm_vcpu *vcpu, *tmp;
766 int ret;
767
768 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
769 vm_vcpu_rm(vmp, vcpu);
770
771 ret = close(vmp->fd);
772 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
773
774 ret = close(vmp->kvm_fd);
775 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
776
777 /* Free cached stats metadata and close FD */
778 kvm_stats_release(&vmp->stats);
779
780 kvm_arch_vm_release(vmp);
781 }
782
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)783 static void __vm_mem_region_delete(struct kvm_vm *vm,
784 struct userspace_mem_region *region)
785 {
786 int ret;
787
788 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
789 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
790 hash_del(®ion->slot_node);
791
792 sparsebit_free(®ion->unused_phy_pages);
793 sparsebit_free(®ion->protected_phy_pages);
794 ret = munmap(region->mmap_start, region->mmap_size);
795 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
796 if (region->fd >= 0) {
797 /* There's an extra map when using shared memory. */
798 ret = munmap(region->mmap_alias, region->mmap_size);
799 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
800 close(region->fd);
801 }
802 if (region->region.guest_memfd >= 0)
803 close(region->region.guest_memfd);
804
805 free(region);
806 }
807
808 /*
809 * Destroys and frees the VM pointed to by vmp.
810 */
kvm_vm_free(struct kvm_vm * vmp)811 void kvm_vm_free(struct kvm_vm *vmp)
812 {
813 int ctr;
814 struct hlist_node *node;
815 struct userspace_mem_region *region;
816
817 if (vmp == NULL)
818 return;
819
820 /* Free userspace_mem_regions. */
821 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
822 __vm_mem_region_delete(vmp, region);
823
824 /* Free sparsebit arrays. */
825 sparsebit_free(&vmp->vpages_valid);
826 sparsebit_free(&vmp->vpages_mapped);
827
828 kvm_vm_release(vmp);
829
830 /* Free the structure describing the VM. */
831 free(vmp);
832 }
833
kvm_memfd_alloc(size_t size,bool hugepages)834 int kvm_memfd_alloc(size_t size, bool hugepages)
835 {
836 int memfd_flags = MFD_CLOEXEC;
837 int fd, r;
838
839 if (hugepages)
840 memfd_flags |= MFD_HUGETLB;
841
842 fd = memfd_create("kvm_selftest", memfd_flags);
843 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
844
845 r = ftruncate(fd, size);
846 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
847
848 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
849 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
850
851 return fd;
852 }
853
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)854 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
855 struct userspace_mem_region *region)
856 {
857 struct rb_node **cur, *parent;
858
859 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
860 struct userspace_mem_region *cregion;
861
862 cregion = container_of(*cur, typeof(*cregion), gpa_node);
863 parent = *cur;
864 if (region->region.guest_phys_addr <
865 cregion->region.guest_phys_addr)
866 cur = &(*cur)->rb_left;
867 else {
868 TEST_ASSERT(region->region.guest_phys_addr !=
869 cregion->region.guest_phys_addr,
870 "Duplicate GPA in region tree");
871
872 cur = &(*cur)->rb_right;
873 }
874 }
875
876 rb_link_node(®ion->gpa_node, parent, cur);
877 rb_insert_color(®ion->gpa_node, gpa_tree);
878 }
879
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)880 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
881 struct userspace_mem_region *region)
882 {
883 struct rb_node **cur, *parent;
884
885 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
886 struct userspace_mem_region *cregion;
887
888 cregion = container_of(*cur, typeof(*cregion), hva_node);
889 parent = *cur;
890 if (region->host_mem < cregion->host_mem)
891 cur = &(*cur)->rb_left;
892 else {
893 TEST_ASSERT(region->host_mem !=
894 cregion->host_mem,
895 "Duplicate HVA in region tree");
896
897 cur = &(*cur)->rb_right;
898 }
899 }
900
901 rb_link_node(®ion->hva_node, parent, cur);
902 rb_insert_color(®ion->hva_node, hva_tree);
903 }
904
905
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)906 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
907 uint64_t gpa, uint64_t size, void *hva)
908 {
909 struct kvm_userspace_memory_region region = {
910 .slot = slot,
911 .flags = flags,
912 .guest_phys_addr = gpa,
913 .memory_size = size,
914 .userspace_addr = (uintptr_t)hva,
915 };
916
917 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
918 }
919
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)920 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
921 uint64_t gpa, uint64_t size, void *hva)
922 {
923 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
924
925 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
926 errno, strerror(errno));
927 }
928
929 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \
930 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \
931 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
932
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)933 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934 uint64_t gpa, uint64_t size, void *hva,
935 uint32_t guest_memfd, uint64_t guest_memfd_offset)
936 {
937 struct kvm_userspace_memory_region2 region = {
938 .slot = slot,
939 .flags = flags,
940 .guest_phys_addr = gpa,
941 .memory_size = size,
942 .userspace_addr = (uintptr_t)hva,
943 .guest_memfd = guest_memfd,
944 .guest_memfd_offset = guest_memfd_offset,
945 };
946
947 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
948
949 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion);
950 }
951
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)952 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
953 uint64_t gpa, uint64_t size, void *hva,
954 uint32_t guest_memfd, uint64_t guest_memfd_offset)
955 {
956 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
957 guest_memfd, guest_memfd_offset);
958
959 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
960 errno, strerror(errno));
961 }
962
963
964 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)965 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
966 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
967 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
968 {
969 int ret;
970 struct userspace_mem_region *region;
971 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
972 size_t mem_size = npages * vm->page_size;
973 size_t alignment;
974
975 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
976
977 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
978 "Number of guest pages is not compatible with the host. "
979 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
980
981 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
982 "address not on a page boundary.\n"
983 " guest_paddr: 0x%lx vm->page_size: 0x%x",
984 guest_paddr, vm->page_size);
985 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
986 <= vm->max_gfn, "Physical range beyond maximum "
987 "supported physical address,\n"
988 " guest_paddr: 0x%lx npages: 0x%lx\n"
989 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
990 guest_paddr, npages, vm->max_gfn, vm->page_size);
991
992 /*
993 * Confirm a mem region with an overlapping address doesn't
994 * already exist.
995 */
996 region = (struct userspace_mem_region *) userspace_mem_region_find(
997 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
998 if (region != NULL)
999 TEST_FAIL("overlapping userspace_mem_region already "
1000 "exists\n"
1001 " requested guest_paddr: 0x%lx npages: 0x%lx "
1002 "page_size: 0x%x\n"
1003 " existing guest_paddr: 0x%lx size: 0x%lx",
1004 guest_paddr, npages, vm->page_size,
1005 (uint64_t) region->region.guest_phys_addr,
1006 (uint64_t) region->region.memory_size);
1007
1008 /* Confirm no region with the requested slot already exists. */
1009 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1010 slot) {
1011 if (region->region.slot != slot)
1012 continue;
1013
1014 TEST_FAIL("A mem region with the requested slot "
1015 "already exists.\n"
1016 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1017 " existing slot: %u paddr: 0x%lx size: 0x%lx",
1018 slot, guest_paddr, npages,
1019 region->region.slot,
1020 (uint64_t) region->region.guest_phys_addr,
1021 (uint64_t) region->region.memory_size);
1022 }
1023
1024 /* Allocate and initialize new mem region structure. */
1025 region = calloc(1, sizeof(*region));
1026 TEST_ASSERT(region != NULL, "Insufficient Memory");
1027 region->mmap_size = mem_size;
1028
1029 #ifdef __s390x__
1030 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1031 alignment = 0x100000;
1032 #else
1033 alignment = 1;
1034 #endif
1035
1036 /*
1037 * When using THP mmap is not guaranteed to returned a hugepage aligned
1038 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1039 * because mmap will always return an address aligned to the HugeTLB
1040 * page size.
1041 */
1042 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1043 alignment = max(backing_src_pagesz, alignment);
1044
1045 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1046
1047 /* Add enough memory to align up if necessary */
1048 if (alignment > 1)
1049 region->mmap_size += alignment;
1050
1051 region->fd = -1;
1052 if (backing_src_is_shared(src_type))
1053 region->fd = kvm_memfd_alloc(region->mmap_size,
1054 src_type == VM_MEM_SRC_SHARED_HUGETLB);
1055
1056 region->mmap_start = mmap(NULL, region->mmap_size,
1057 PROT_READ | PROT_WRITE,
1058 vm_mem_backing_src_alias(src_type)->flag,
1059 region->fd, 0);
1060 TEST_ASSERT(region->mmap_start != MAP_FAILED,
1061 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1062
1063 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1064 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1065 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1066 region->mmap_start, backing_src_pagesz);
1067
1068 /* Align host address */
1069 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1070
1071 /* As needed perform madvise */
1072 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1073 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1074 ret = madvise(region->host_mem, mem_size,
1075 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1076 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1077 region->host_mem, mem_size,
1078 vm_mem_backing_src_alias(src_type)->name);
1079 }
1080
1081 region->backing_src_type = src_type;
1082
1083 if (flags & KVM_MEM_GUEST_MEMFD) {
1084 if (guest_memfd < 0) {
1085 uint32_t guest_memfd_flags = 0;
1086 TEST_ASSERT(!guest_memfd_offset,
1087 "Offset must be zero when creating new guest_memfd");
1088 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1089 } else {
1090 /*
1091 * Install a unique fd for each memslot so that the fd
1092 * can be closed when the region is deleted without
1093 * needing to track if the fd is owned by the framework
1094 * or by the caller.
1095 */
1096 guest_memfd = dup(guest_memfd);
1097 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1098 }
1099
1100 region->region.guest_memfd = guest_memfd;
1101 region->region.guest_memfd_offset = guest_memfd_offset;
1102 } else {
1103 region->region.guest_memfd = -1;
1104 }
1105
1106 region->unused_phy_pages = sparsebit_alloc();
1107 if (vm_arch_has_protected_memory(vm))
1108 region->protected_phy_pages = sparsebit_alloc();
1109 sparsebit_set_num(region->unused_phy_pages,
1110 guest_paddr >> vm->page_shift, npages);
1111 region->region.slot = slot;
1112 region->region.flags = flags;
1113 region->region.guest_phys_addr = guest_paddr;
1114 region->region.memory_size = npages * vm->page_size;
1115 region->region.userspace_addr = (uintptr_t) region->host_mem;
1116 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1117 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1118 " rc: %i errno: %i\n"
1119 " slot: %u flags: 0x%x\n"
1120 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1121 ret, errno, slot, flags,
1122 guest_paddr, (uint64_t) region->region.memory_size,
1123 region->region.guest_memfd);
1124
1125 /* Add to quick lookup data structures */
1126 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1127 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1128 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1129
1130 /* If shared memory, create an alias. */
1131 if (region->fd >= 0) {
1132 region->mmap_alias = mmap(NULL, region->mmap_size,
1133 PROT_READ | PROT_WRITE,
1134 vm_mem_backing_src_alias(src_type)->flag,
1135 region->fd, 0);
1136 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1137 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1138
1139 /* Align host alias address */
1140 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1141 }
1142 }
1143
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1144 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1145 enum vm_mem_backing_src_type src_type,
1146 uint64_t guest_paddr, uint32_t slot,
1147 uint64_t npages, uint32_t flags)
1148 {
1149 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1150 }
1151
1152 /*
1153 * Memslot to region
1154 *
1155 * Input Args:
1156 * vm - Virtual Machine
1157 * memslot - KVM memory slot ID
1158 *
1159 * Output Args: None
1160 *
1161 * Return:
1162 * Pointer to memory region structure that describe memory region
1163 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1164 * on error (e.g. currently no memory region using memslot as a KVM
1165 * memory slot ID).
1166 */
1167 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1168 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1169 {
1170 struct userspace_mem_region *region;
1171
1172 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1173 memslot)
1174 if (region->region.slot == memslot)
1175 return region;
1176
1177 fprintf(stderr, "No mem region with the requested slot found,\n"
1178 " requested slot: %u\n", memslot);
1179 fputs("---- vm dump ----\n", stderr);
1180 vm_dump(stderr, vm, 2);
1181 TEST_FAIL("Mem region not found");
1182 return NULL;
1183 }
1184
1185 /*
1186 * VM Memory Region Flags Set
1187 *
1188 * Input Args:
1189 * vm - Virtual Machine
1190 * flags - Starting guest physical address
1191 *
1192 * Output Args: None
1193 *
1194 * Return: None
1195 *
1196 * Sets the flags of the memory region specified by the value of slot,
1197 * to the values given by flags.
1198 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1199 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1200 {
1201 int ret;
1202 struct userspace_mem_region *region;
1203
1204 region = memslot2region(vm, slot);
1205
1206 region->region.flags = flags;
1207
1208 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1209
1210 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1211 " rc: %i errno: %i slot: %u flags: 0x%x",
1212 ret, errno, slot, flags);
1213 }
1214
1215 /*
1216 * VM Memory Region Move
1217 *
1218 * Input Args:
1219 * vm - Virtual Machine
1220 * slot - Slot of the memory region to move
1221 * new_gpa - Starting guest physical address
1222 *
1223 * Output Args: None
1224 *
1225 * Return: None
1226 *
1227 * Change the gpa of a memory region.
1228 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1229 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1230 {
1231 struct userspace_mem_region *region;
1232 int ret;
1233
1234 region = memslot2region(vm, slot);
1235
1236 region->region.guest_phys_addr = new_gpa;
1237
1238 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1239
1240 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1241 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1242 ret, errno, slot, new_gpa);
1243 }
1244
1245 /*
1246 * VM Memory Region Delete
1247 *
1248 * Input Args:
1249 * vm - Virtual Machine
1250 * slot - Slot of the memory region to delete
1251 *
1252 * Output Args: None
1253 *
1254 * Return: None
1255 *
1256 * Delete a memory region.
1257 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1258 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1259 {
1260 struct userspace_mem_region *region = memslot2region(vm, slot);
1261
1262 region->region.memory_size = 0;
1263 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1264
1265 __vm_mem_region_delete(vm, region);
1266 }
1267
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1268 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1269 bool punch_hole)
1270 {
1271 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1272 struct userspace_mem_region *region;
1273 uint64_t end = base + size;
1274 uint64_t gpa, len;
1275 off_t fd_offset;
1276 int ret;
1277
1278 for (gpa = base; gpa < end; gpa += len) {
1279 uint64_t offset;
1280
1281 region = userspace_mem_region_find(vm, gpa, gpa);
1282 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1283 "Private memory region not found for GPA 0x%lx", gpa);
1284
1285 offset = gpa - region->region.guest_phys_addr;
1286 fd_offset = region->region.guest_memfd_offset + offset;
1287 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1288
1289 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1290 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1291 punch_hole ? "punch hole" : "allocate", gpa, len,
1292 region->region.guest_memfd, mode, fd_offset);
1293 }
1294 }
1295
1296 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1297 static size_t vcpu_mmap_sz(void)
1298 {
1299 int dev_fd, ret;
1300
1301 dev_fd = open_kvm_dev_path_or_exit();
1302
1303 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1304 TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run),
1305 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1306
1307 close(dev_fd);
1308
1309 return ret;
1310 }
1311
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1312 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1313 {
1314 struct kvm_vcpu *vcpu;
1315
1316 list_for_each_entry(vcpu, &vm->vcpus, list) {
1317 if (vcpu->id == vcpu_id)
1318 return true;
1319 }
1320
1321 return false;
1322 }
1323
1324 /*
1325 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1326 * No additional vCPU setup is done. Returns the vCPU.
1327 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1328 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1329 {
1330 struct kvm_vcpu *vcpu;
1331
1332 /* Confirm a vcpu with the specified id doesn't already exist. */
1333 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1334
1335 /* Allocate and initialize new vcpu structure. */
1336 vcpu = calloc(1, sizeof(*vcpu));
1337 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1338
1339 vcpu->vm = vm;
1340 vcpu->id = vcpu_id;
1341 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1342 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1343
1344 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1345 "smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi",
1346 vcpu_mmap_sz(), sizeof(*vcpu->run));
1347 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1348 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1349 TEST_ASSERT(vcpu->run != MAP_FAILED,
1350 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1351
1352 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1353 vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1354 else
1355 vcpu->stats.fd = -1;
1356
1357 /* Add to linked-list of VCPUs. */
1358 list_add(&vcpu->list, &vm->vcpus);
1359
1360 return vcpu;
1361 }
1362
1363 /*
1364 * VM Virtual Address Unused Gap
1365 *
1366 * Input Args:
1367 * vm - Virtual Machine
1368 * sz - Size (bytes)
1369 * vaddr_min - Minimum Virtual Address
1370 *
1371 * Output Args: None
1372 *
1373 * Return:
1374 * Lowest virtual address at or below vaddr_min, with at least
1375 * sz unused bytes. TEST_ASSERT failure if no area of at least
1376 * size sz is available.
1377 *
1378 * Within the VM specified by vm, locates the lowest starting virtual
1379 * address >= vaddr_min, that has at least sz unallocated bytes. A
1380 * TEST_ASSERT failure occurs for invalid input or no area of at least
1381 * sz unallocated bytes >= vaddr_min is available.
1382 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1383 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1384 vm_vaddr_t vaddr_min)
1385 {
1386 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1387
1388 /* Determine lowest permitted virtual page index. */
1389 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1390 if ((pgidx_start * vm->page_size) < vaddr_min)
1391 goto no_va_found;
1392
1393 /* Loop over section with enough valid virtual page indexes. */
1394 if (!sparsebit_is_set_num(vm->vpages_valid,
1395 pgidx_start, pages))
1396 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1397 pgidx_start, pages);
1398 do {
1399 /*
1400 * Are there enough unused virtual pages available at
1401 * the currently proposed starting virtual page index.
1402 * If not, adjust proposed starting index to next
1403 * possible.
1404 */
1405 if (sparsebit_is_clear_num(vm->vpages_mapped,
1406 pgidx_start, pages))
1407 goto va_found;
1408 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1409 pgidx_start, pages);
1410 if (pgidx_start == 0)
1411 goto no_va_found;
1412
1413 /*
1414 * If needed, adjust proposed starting virtual address,
1415 * to next range of valid virtual addresses.
1416 */
1417 if (!sparsebit_is_set_num(vm->vpages_valid,
1418 pgidx_start, pages)) {
1419 pgidx_start = sparsebit_next_set_num(
1420 vm->vpages_valid, pgidx_start, pages);
1421 if (pgidx_start == 0)
1422 goto no_va_found;
1423 }
1424 } while (pgidx_start != 0);
1425
1426 no_va_found:
1427 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1428
1429 /* NOT REACHED */
1430 return -1;
1431
1432 va_found:
1433 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1434 pgidx_start, pages),
1435 "Unexpected, invalid virtual page index range,\n"
1436 " pgidx_start: 0x%lx\n"
1437 " pages: 0x%lx",
1438 pgidx_start, pages);
1439 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1440 pgidx_start, pages),
1441 "Unexpected, pages already mapped,\n"
1442 " pgidx_start: 0x%lx\n"
1443 " pages: 0x%lx",
1444 pgidx_start, pages);
1445
1446 return pgidx_start * vm->page_size;
1447 }
1448
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1449 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1450 vm_vaddr_t vaddr_min,
1451 enum kvm_mem_region_type type,
1452 bool protected)
1453 {
1454 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1455
1456 virt_pgd_alloc(vm);
1457 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1458 KVM_UTIL_MIN_PFN * vm->page_size,
1459 vm->memslots[type], protected);
1460
1461 /*
1462 * Find an unused range of virtual page addresses of at least
1463 * pages in length.
1464 */
1465 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1466
1467 /* Map the virtual pages. */
1468 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1469 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1470
1471 virt_pg_map(vm, vaddr, paddr);
1472
1473 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1474 }
1475
1476 return vaddr_start;
1477 }
1478
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1479 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1480 enum kvm_mem_region_type type)
1481 {
1482 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1483 vm_arch_has_protected_memory(vm));
1484 }
1485
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1486 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1487 vm_vaddr_t vaddr_min,
1488 enum kvm_mem_region_type type)
1489 {
1490 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1491 }
1492
1493 /*
1494 * VM Virtual Address Allocate
1495 *
1496 * Input Args:
1497 * vm - Virtual Machine
1498 * sz - Size in bytes
1499 * vaddr_min - Minimum starting virtual address
1500 *
1501 * Output Args: None
1502 *
1503 * Return:
1504 * Starting guest virtual address
1505 *
1506 * Allocates at least sz bytes within the virtual address space of the vm
1507 * given by vm. The allocated bytes are mapped to a virtual address >=
1508 * the address given by vaddr_min. Note that each allocation uses a
1509 * a unique set of pages, with the minimum real allocation being at least
1510 * a page. The allocated physical space comes from the TEST_DATA memory region.
1511 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1512 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1513 {
1514 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1515 }
1516
1517 /*
1518 * VM Virtual Address Allocate Pages
1519 *
1520 * Input Args:
1521 * vm - Virtual Machine
1522 *
1523 * Output Args: None
1524 *
1525 * Return:
1526 * Starting guest virtual address
1527 *
1528 * Allocates at least N system pages worth of bytes within the virtual address
1529 * space of the vm.
1530 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1531 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1532 {
1533 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1534 }
1535
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1536 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1537 {
1538 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1539 }
1540
1541 /*
1542 * VM Virtual Address Allocate Page
1543 *
1544 * Input Args:
1545 * vm - Virtual Machine
1546 *
1547 * Output Args: None
1548 *
1549 * Return:
1550 * Starting guest virtual address
1551 *
1552 * Allocates at least one system page worth of bytes within the virtual address
1553 * space of the vm.
1554 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1555 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1556 {
1557 return vm_vaddr_alloc_pages(vm, 1);
1558 }
1559
1560 /*
1561 * Map a range of VM virtual address to the VM's physical address
1562 *
1563 * Input Args:
1564 * vm - Virtual Machine
1565 * vaddr - Virtuall address to map
1566 * paddr - VM Physical Address
1567 * npages - The number of pages to map
1568 *
1569 * Output Args: None
1570 *
1571 * Return: None
1572 *
1573 * Within the VM given by @vm, creates a virtual translation for
1574 * @npages starting at @vaddr to the page range starting at @paddr.
1575 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1576 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1577 unsigned int npages)
1578 {
1579 size_t page_size = vm->page_size;
1580 size_t size = npages * page_size;
1581
1582 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1583 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1584
1585 while (npages--) {
1586 virt_pg_map(vm, vaddr, paddr);
1587 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1588
1589 vaddr += page_size;
1590 paddr += page_size;
1591 }
1592 }
1593
1594 /*
1595 * Address VM Physical to Host Virtual
1596 *
1597 * Input Args:
1598 * vm - Virtual Machine
1599 * gpa - VM physical address
1600 *
1601 * Output Args: None
1602 *
1603 * Return:
1604 * Equivalent host virtual address
1605 *
1606 * Locates the memory region containing the VM physical address given
1607 * by gpa, within the VM given by vm. When found, the host virtual
1608 * address providing the memory to the vm physical address is returned.
1609 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1610 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1611 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1612 {
1613 struct userspace_mem_region *region;
1614
1615 gpa = vm_untag_gpa(vm, gpa);
1616
1617 region = userspace_mem_region_find(vm, gpa, gpa);
1618 if (!region) {
1619 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1620 return NULL;
1621 }
1622
1623 return (void *)((uintptr_t)region->host_mem
1624 + (gpa - region->region.guest_phys_addr));
1625 }
1626
1627 /*
1628 * Address Host Virtual to VM Physical
1629 *
1630 * Input Args:
1631 * vm - Virtual Machine
1632 * hva - Host virtual address
1633 *
1634 * Output Args: None
1635 *
1636 * Return:
1637 * Equivalent VM physical address
1638 *
1639 * Locates the memory region containing the host virtual address given
1640 * by hva, within the VM given by vm. When found, the equivalent
1641 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1642 * region containing hva exists.
1643 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1644 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1645 {
1646 struct rb_node *node;
1647
1648 for (node = vm->regions.hva_tree.rb_node; node; ) {
1649 struct userspace_mem_region *region =
1650 container_of(node, struct userspace_mem_region, hva_node);
1651
1652 if (hva >= region->host_mem) {
1653 if (hva <= (region->host_mem
1654 + region->region.memory_size - 1))
1655 return (vm_paddr_t)((uintptr_t)
1656 region->region.guest_phys_addr
1657 + (hva - (uintptr_t)region->host_mem));
1658
1659 node = node->rb_right;
1660 } else
1661 node = node->rb_left;
1662 }
1663
1664 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1665 return -1;
1666 }
1667
1668 /*
1669 * Address VM physical to Host Virtual *alias*.
1670 *
1671 * Input Args:
1672 * vm - Virtual Machine
1673 * gpa - VM physical address
1674 *
1675 * Output Args: None
1676 *
1677 * Return:
1678 * Equivalent address within the host virtual *alias* area, or NULL
1679 * (without failing the test) if the guest memory is not shared (so
1680 * no alias exists).
1681 *
1682 * Create a writable, shared virtual=>physical alias for the specific GPA.
1683 * The primary use case is to allow the host selftest to manipulate guest
1684 * memory without mapping said memory in the guest's address space. And, for
1685 * userfaultfd-based demand paging, to do so without triggering userfaults.
1686 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1687 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1688 {
1689 struct userspace_mem_region *region;
1690 uintptr_t offset;
1691
1692 region = userspace_mem_region_find(vm, gpa, gpa);
1693 if (!region)
1694 return NULL;
1695
1696 if (!region->host_alias)
1697 return NULL;
1698
1699 offset = gpa - region->region.guest_phys_addr;
1700 return (void *) ((uintptr_t) region->host_alias + offset);
1701 }
1702
1703 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1704 void vm_create_irqchip(struct kvm_vm *vm)
1705 {
1706 int r;
1707
1708 /*
1709 * Allocate a fully in-kernel IRQ chip by default, but fall back to a
1710 * split model (x86 only) if that fails (KVM x86 allows compiling out
1711 * support for KVM_CREATE_IRQCHIP).
1712 */
1713 r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1714 if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP))
1715 vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24);
1716 else
1717 TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm);
1718
1719 vm->has_irqchip = true;
1720 }
1721
_vcpu_run(struct kvm_vcpu * vcpu)1722 int _vcpu_run(struct kvm_vcpu *vcpu)
1723 {
1724 int rc;
1725
1726 do {
1727 rc = __vcpu_run(vcpu);
1728 } while (rc == -1 && errno == EINTR);
1729
1730 if (!rc)
1731 assert_on_unhandled_exception(vcpu);
1732
1733 return rc;
1734 }
1735
1736 /*
1737 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1738 * Assert if the KVM returns an error (other than -EINTR).
1739 */
vcpu_run(struct kvm_vcpu * vcpu)1740 void vcpu_run(struct kvm_vcpu *vcpu)
1741 {
1742 int ret = _vcpu_run(vcpu);
1743
1744 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1745 }
1746
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1747 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1748 {
1749 int ret;
1750
1751 vcpu->run->immediate_exit = 1;
1752 ret = __vcpu_run(vcpu);
1753 vcpu->run->immediate_exit = 0;
1754
1755 TEST_ASSERT(ret == -1 && errno == EINTR,
1756 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1757 ret, errno);
1758 }
1759
1760 /*
1761 * Get the list of guest registers which are supported for
1762 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1763 * it is the caller's responsibility to free the list.
1764 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1765 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1766 {
1767 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1768 int ret;
1769
1770 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1771 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1772
1773 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1774 reg_list->n = reg_list_n.n;
1775 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1776 return reg_list;
1777 }
1778
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1779 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1780 {
1781 uint32_t page_size = getpagesize();
1782 uint32_t size = vcpu->vm->dirty_ring_size;
1783
1784 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1785
1786 if (!vcpu->dirty_gfns) {
1787 void *addr;
1788
1789 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1790 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1791 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1792
1793 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1794 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1795 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1796
1797 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1798 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1799 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1800
1801 vcpu->dirty_gfns = addr;
1802 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1803 }
1804
1805 return vcpu->dirty_gfns;
1806 }
1807
1808 /*
1809 * Device Ioctl
1810 */
1811
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1812 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1813 {
1814 struct kvm_device_attr attribute = {
1815 .group = group,
1816 .attr = attr,
1817 .flags = 0,
1818 };
1819
1820 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1821 }
1822
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1823 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1824 {
1825 struct kvm_create_device create_dev = {
1826 .type = type,
1827 .flags = KVM_CREATE_DEVICE_TEST,
1828 };
1829
1830 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1831 }
1832
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1833 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1834 {
1835 struct kvm_create_device create_dev = {
1836 .type = type,
1837 .fd = -1,
1838 .flags = 0,
1839 };
1840 int err;
1841
1842 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1843 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1844 return err ? : create_dev.fd;
1845 }
1846
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1847 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1848 {
1849 struct kvm_device_attr kvmattr = {
1850 .group = group,
1851 .attr = attr,
1852 .flags = 0,
1853 .addr = (uintptr_t)val,
1854 };
1855
1856 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1857 }
1858
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1859 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1860 {
1861 struct kvm_device_attr kvmattr = {
1862 .group = group,
1863 .attr = attr,
1864 .flags = 0,
1865 .addr = (uintptr_t)val,
1866 };
1867
1868 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1869 }
1870
1871 /*
1872 * IRQ related functions.
1873 */
1874
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1875 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1876 {
1877 struct kvm_irq_level irq_level = {
1878 .irq = irq,
1879 .level = level,
1880 };
1881
1882 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1883 }
1884
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1885 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1886 {
1887 int ret = _kvm_irq_line(vm, irq, level);
1888
1889 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1890 }
1891
kvm_gsi_routing_create(void)1892 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1893 {
1894 struct kvm_irq_routing *routing;
1895 size_t size;
1896
1897 size = sizeof(struct kvm_irq_routing);
1898 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1899 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1900 routing = calloc(1, size);
1901 assert(routing);
1902
1903 return routing;
1904 }
1905
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1906 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1907 uint32_t gsi, uint32_t pin)
1908 {
1909 int i;
1910
1911 assert(routing);
1912 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1913
1914 i = routing->nr;
1915 routing->entries[i].gsi = gsi;
1916 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1917 routing->entries[i].flags = 0;
1918 routing->entries[i].u.irqchip.irqchip = 0;
1919 routing->entries[i].u.irqchip.pin = pin;
1920 routing->nr++;
1921 }
1922
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1923 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1924 {
1925 int ret;
1926
1927 assert(routing);
1928 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1929 free(routing);
1930
1931 return ret;
1932 }
1933
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1934 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1935 {
1936 int ret;
1937
1938 ret = _kvm_gsi_routing_write(vm, routing);
1939 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1940 }
1941
1942 /*
1943 * VM Dump
1944 *
1945 * Input Args:
1946 * vm - Virtual Machine
1947 * indent - Left margin indent amount
1948 *
1949 * Output Args:
1950 * stream - Output FILE stream
1951 *
1952 * Return: None
1953 *
1954 * Dumps the current state of the VM given by vm, to the FILE stream
1955 * given by stream.
1956 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1957 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1958 {
1959 int ctr;
1960 struct userspace_mem_region *region;
1961 struct kvm_vcpu *vcpu;
1962
1963 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1964 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1965 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1966 fprintf(stream, "%*sMem Regions:\n", indent, "");
1967 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1968 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1969 "host_virt: %p\n", indent + 2, "",
1970 (uint64_t) region->region.guest_phys_addr,
1971 (uint64_t) region->region.memory_size,
1972 region->host_mem);
1973 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1974 sparsebit_dump(stream, region->unused_phy_pages, 0);
1975 if (region->protected_phy_pages) {
1976 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1977 sparsebit_dump(stream, region->protected_phy_pages, 0);
1978 }
1979 }
1980 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1981 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1982 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1983 vm->pgd_created);
1984 if (vm->pgd_created) {
1985 fprintf(stream, "%*sVirtual Translation Tables:\n",
1986 indent + 2, "");
1987 virt_dump(stream, vm, indent + 4);
1988 }
1989 fprintf(stream, "%*sVCPUs:\n", indent, "");
1990
1991 list_for_each_entry(vcpu, &vm->vcpus, list)
1992 vcpu_dump(stream, vcpu, indent + 2);
1993 }
1994
1995 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1996
1997 /* Known KVM exit reasons */
1998 static struct exit_reason {
1999 unsigned int reason;
2000 const char *name;
2001 } exit_reasons_known[] = {
2002 KVM_EXIT_STRING(UNKNOWN),
2003 KVM_EXIT_STRING(EXCEPTION),
2004 KVM_EXIT_STRING(IO),
2005 KVM_EXIT_STRING(HYPERCALL),
2006 KVM_EXIT_STRING(DEBUG),
2007 KVM_EXIT_STRING(HLT),
2008 KVM_EXIT_STRING(MMIO),
2009 KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2010 KVM_EXIT_STRING(SHUTDOWN),
2011 KVM_EXIT_STRING(FAIL_ENTRY),
2012 KVM_EXIT_STRING(INTR),
2013 KVM_EXIT_STRING(SET_TPR),
2014 KVM_EXIT_STRING(TPR_ACCESS),
2015 KVM_EXIT_STRING(S390_SIEIC),
2016 KVM_EXIT_STRING(S390_RESET),
2017 KVM_EXIT_STRING(DCR),
2018 KVM_EXIT_STRING(NMI),
2019 KVM_EXIT_STRING(INTERNAL_ERROR),
2020 KVM_EXIT_STRING(OSI),
2021 KVM_EXIT_STRING(PAPR_HCALL),
2022 KVM_EXIT_STRING(S390_UCONTROL),
2023 KVM_EXIT_STRING(WATCHDOG),
2024 KVM_EXIT_STRING(S390_TSCH),
2025 KVM_EXIT_STRING(EPR),
2026 KVM_EXIT_STRING(SYSTEM_EVENT),
2027 KVM_EXIT_STRING(S390_STSI),
2028 KVM_EXIT_STRING(IOAPIC_EOI),
2029 KVM_EXIT_STRING(HYPERV),
2030 KVM_EXIT_STRING(ARM_NISV),
2031 KVM_EXIT_STRING(X86_RDMSR),
2032 KVM_EXIT_STRING(X86_WRMSR),
2033 KVM_EXIT_STRING(DIRTY_RING_FULL),
2034 KVM_EXIT_STRING(AP_RESET_HOLD),
2035 KVM_EXIT_STRING(X86_BUS_LOCK),
2036 KVM_EXIT_STRING(XEN),
2037 KVM_EXIT_STRING(RISCV_SBI),
2038 KVM_EXIT_STRING(RISCV_CSR),
2039 KVM_EXIT_STRING(NOTIFY),
2040 KVM_EXIT_STRING(LOONGARCH_IOCSR),
2041 KVM_EXIT_STRING(MEMORY_FAULT),
2042 };
2043
2044 /*
2045 * Exit Reason String
2046 *
2047 * Input Args:
2048 * exit_reason - Exit reason
2049 *
2050 * Output Args: None
2051 *
2052 * Return:
2053 * Constant string pointer describing the exit reason.
2054 *
2055 * Locates and returns a constant string that describes the KVM exit
2056 * reason given by exit_reason. If no such string is found, a constant
2057 * string of "Unknown" is returned.
2058 */
exit_reason_str(unsigned int exit_reason)2059 const char *exit_reason_str(unsigned int exit_reason)
2060 {
2061 unsigned int n1;
2062
2063 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2064 if (exit_reason == exit_reasons_known[n1].reason)
2065 return exit_reasons_known[n1].name;
2066 }
2067
2068 return "Unknown";
2069 }
2070
2071 /*
2072 * Physical Contiguous Page Allocator
2073 *
2074 * Input Args:
2075 * vm - Virtual Machine
2076 * num - number of pages
2077 * paddr_min - Physical address minimum
2078 * memslot - Memory region to allocate page from
2079 * protected - True if the pages will be used as protected/private memory
2080 *
2081 * Output Args: None
2082 *
2083 * Return:
2084 * Starting physical address
2085 *
2086 * Within the VM specified by vm, locates a range of available physical
2087 * pages at or above paddr_min. If found, the pages are marked as in use
2088 * and their base address is returned. A TEST_ASSERT failure occurs if
2089 * not enough pages are available at or above paddr_min.
2090 */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2091 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2092 vm_paddr_t paddr_min, uint32_t memslot,
2093 bool protected)
2094 {
2095 struct userspace_mem_region *region;
2096 sparsebit_idx_t pg, base;
2097
2098 TEST_ASSERT(num > 0, "Must allocate at least one page");
2099
2100 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2101 "not divisible by page size.\n"
2102 " paddr_min: 0x%lx page_size: 0x%x",
2103 paddr_min, vm->page_size);
2104
2105 region = memslot2region(vm, memslot);
2106 TEST_ASSERT(!protected || region->protected_phy_pages,
2107 "Region doesn't support protected memory");
2108
2109 base = pg = paddr_min >> vm->page_shift;
2110 do {
2111 for (; pg < base + num; ++pg) {
2112 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2113 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2114 break;
2115 }
2116 }
2117 } while (pg && pg != base + num);
2118
2119 if (pg == 0) {
2120 fprintf(stderr, "No guest physical page available, "
2121 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2122 paddr_min, vm->page_size, memslot);
2123 fputs("---- vm dump ----\n", stderr);
2124 vm_dump(stderr, vm, 2);
2125 abort();
2126 }
2127
2128 for (pg = base; pg < base + num; ++pg) {
2129 sparsebit_clear(region->unused_phy_pages, pg);
2130 if (protected)
2131 sparsebit_set(region->protected_phy_pages, pg);
2132 }
2133
2134 return base * vm->page_size;
2135 }
2136
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2137 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2138 uint32_t memslot)
2139 {
2140 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2141 }
2142
vm_alloc_page_table(struct kvm_vm * vm)2143 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2144 {
2145 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2146 vm->memslots[MEM_REGION_PT]);
2147 }
2148
2149 /*
2150 * Address Guest Virtual to Host Virtual
2151 *
2152 * Input Args:
2153 * vm - Virtual Machine
2154 * gva - VM virtual address
2155 *
2156 * Output Args: None
2157 *
2158 * Return:
2159 * Equivalent host virtual address
2160 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2161 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2162 {
2163 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2164 }
2165
vm_compute_max_gfn(struct kvm_vm * vm)2166 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2167 {
2168 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2169 }
2170
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2171 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2172 unsigned int page_shift,
2173 unsigned int new_page_shift,
2174 bool ceil)
2175 {
2176 unsigned int n = 1 << (new_page_shift - page_shift);
2177
2178 if (page_shift >= new_page_shift)
2179 return num_pages * (1 << (page_shift - new_page_shift));
2180
2181 return num_pages / n + !!(ceil && num_pages % n);
2182 }
2183
getpageshift(void)2184 static inline int getpageshift(void)
2185 {
2186 return __builtin_ffs(getpagesize()) - 1;
2187 }
2188
2189 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2190 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2191 {
2192 return vm_calc_num_pages(num_guest_pages,
2193 vm_guest_mode_params[mode].page_shift,
2194 getpageshift(), true);
2195 }
2196
2197 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2198 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2199 {
2200 return vm_calc_num_pages(num_host_pages, getpageshift(),
2201 vm_guest_mode_params[mode].page_shift, false);
2202 }
2203
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2204 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2205 {
2206 unsigned int n;
2207 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2208 return vm_adjust_num_guest_pages(mode, n);
2209 }
2210
2211 /*
2212 * Read binary stats descriptors
2213 *
2214 * Input Args:
2215 * stats_fd - the file descriptor for the binary stats file from which to read
2216 * header - the binary stats metadata header corresponding to the given FD
2217 *
2218 * Output Args: None
2219 *
2220 * Return:
2221 * A pointer to a newly allocated series of stat descriptors.
2222 * Caller is responsible for freeing the returned kvm_stats_desc.
2223 *
2224 * Read the stats descriptors from the binary stats interface.
2225 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2226 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2227 struct kvm_stats_header *header)
2228 {
2229 struct kvm_stats_desc *stats_desc;
2230 ssize_t desc_size, total_size, ret;
2231
2232 desc_size = get_stats_descriptor_size(header);
2233 total_size = header->num_desc * desc_size;
2234
2235 stats_desc = calloc(header->num_desc, desc_size);
2236 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2237
2238 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2239 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2240
2241 return stats_desc;
2242 }
2243
2244 /*
2245 * Read stat data for a particular stat
2246 *
2247 * Input Args:
2248 * stats_fd - the file descriptor for the binary stats file from which to read
2249 * header - the binary stats metadata header corresponding to the given FD
2250 * desc - the binary stat metadata for the particular stat to be read
2251 * max_elements - the maximum number of 8-byte values to read into data
2252 *
2253 * Output Args:
2254 * data - the buffer into which stat data should be read
2255 *
2256 * Read the data values of a specified stat from the binary stats interface.
2257 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2258 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2259 struct kvm_stats_desc *desc, uint64_t *data,
2260 size_t max_elements)
2261 {
2262 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2263 size_t size = nr_elements * sizeof(*data);
2264 ssize_t ret;
2265
2266 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2267 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2268
2269 ret = pread(stats_fd, data, size,
2270 header->data_offset + desc->offset);
2271
2272 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2273 desc->name, errno, strerror(errno));
2274 TEST_ASSERT(ret == size,
2275 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2276 desc->name, size, ret);
2277 }
2278
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2279 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2280 uint64_t *data, size_t max_elements)
2281 {
2282 struct kvm_stats_desc *desc;
2283 size_t size_desc;
2284 int i;
2285
2286 if (!stats->desc) {
2287 read_stats_header(stats->fd, &stats->header);
2288 stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2289 }
2290
2291 size_desc = get_stats_descriptor_size(&stats->header);
2292
2293 for (i = 0; i < stats->header.num_desc; ++i) {
2294 desc = (void *)stats->desc + (i * size_desc);
2295
2296 if (strcmp(desc->name, name))
2297 continue;
2298
2299 read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2300 return;
2301 }
2302
2303 TEST_FAIL("Unable to find stat '%s'", name);
2304 }
2305
kvm_arch_vm_post_create(struct kvm_vm * vm,unsigned int nr_vcpus)2306 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
2307 {
2308 }
2309
kvm_arch_vm_finalize_vcpus(struct kvm_vm * vm)2310 __weak void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
2311 {
2312 }
2313
kvm_arch_vm_release(struct kvm_vm * vm)2314 __weak void kvm_arch_vm_release(struct kvm_vm *vm)
2315 {
2316 }
2317
kvm_selftest_arch_init(void)2318 __weak void kvm_selftest_arch_init(void)
2319 {
2320 }
2321
kvm_selftest_init(void)2322 void __attribute((constructor)) kvm_selftest_init(void)
2323 {
2324 /* Tell stdout not to buffer its content. */
2325 setbuf(stdout, NULL);
2326
2327 guest_random_seed = last_guest_seed = random();
2328 pr_info("Random seed: 0x%x\n", guest_random_seed);
2329
2330 kvm_selftest_arch_init();
2331 }
2332
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2333 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2334 {
2335 sparsebit_idx_t pg = 0;
2336 struct userspace_mem_region *region;
2337
2338 if (!vm_arch_has_protected_memory(vm))
2339 return false;
2340
2341 region = userspace_mem_region_find(vm, paddr, paddr);
2342 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2343
2344 pg = paddr >> vm->page_shift;
2345 return sparsebit_is_set(region->protected_phy_pages, pg);
2346 }
2347