xref: /linux/arch/x86/kvm/x86.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * derived from drivers/kvm/kvm_main.c
6   *
7   * Copyright (C) 2006 Qumranet, Inc.
8   * Copyright (C) 2008 Qumranet, Inc.
9   * Copyright IBM Corporation, 2008
10   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11   *
12   * Authors:
13   *   Avi Kivity   <avi@qumranet.com>
14   *   Yaniv Kamay  <yaniv@qumranet.com>
15   *   Amit Shah    <amit.shah@qumranet.com>
16   *   Ben-Ami Yassour <benami@il.ibm.com>
17   */
18  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19  
20  #include <linux/kvm_host.h>
21  #include "irq.h"
22  #include "ioapic.h"
23  #include "mmu.h"
24  #include "i8254.h"
25  #include "tss.h"
26  #include "kvm_cache_regs.h"
27  #include "kvm_emulate.h"
28  #include "mmu/page_track.h"
29  #include "x86.h"
30  #include "cpuid.h"
31  #include "pmu.h"
32  #include "hyperv.h"
33  #include "lapic.h"
34  #include "xen.h"
35  #include "smm.h"
36  
37  #include <linux/clocksource.h>
38  #include <linux/interrupt.h>
39  #include <linux/kvm.h>
40  #include <linux/fs.h>
41  #include <linux/vmalloc.h>
42  #include <linux/export.h>
43  #include <linux/moduleparam.h>
44  #include <linux/mman.h>
45  #include <linux/highmem.h>
46  #include <linux/iommu.h>
47  #include <linux/cpufreq.h>
48  #include <linux/user-return-notifier.h>
49  #include <linux/srcu.h>
50  #include <linux/slab.h>
51  #include <linux/perf_event.h>
52  #include <linux/uaccess.h>
53  #include <linux/hash.h>
54  #include <linux/pci.h>
55  #include <linux/timekeeper_internal.h>
56  #include <linux/pvclock_gtod.h>
57  #include <linux/kvm_irqfd.h>
58  #include <linux/irqbypass.h>
59  #include <linux/sched/stat.h>
60  #include <linux/sched/isolation.h>
61  #include <linux/mem_encrypt.h>
62  #include <linux/entry-kvm.h>
63  #include <linux/suspend.h>
64  #include <linux/smp.h>
65  
66  #include <trace/events/ipi.h>
67  #include <trace/events/kvm.h>
68  
69  #include <asm/debugreg.h>
70  #include <asm/msr.h>
71  #include <asm/desc.h>
72  #include <asm/mce.h>
73  #include <asm/pkru.h>
74  #include <linux/kernel_stat.h>
75  #include <asm/fpu/api.h>
76  #include <asm/fpu/xcr.h>
77  #include <asm/fpu/xstate.h>
78  #include <asm/pvclock.h>
79  #include <asm/div64.h>
80  #include <asm/irq_remapping.h>
81  #include <asm/mshyperv.h>
82  #include <asm/hypervisor.h>
83  #include <asm/tlbflush.h>
84  #include <asm/intel_pt.h>
85  #include <asm/emulate_prefix.h>
86  #include <asm/sgx.h>
87  #include <clocksource/hyperv_timer.h>
88  
89  #define CREATE_TRACE_POINTS
90  #include "trace.h"
91  
92  #define MAX_IO_MSRS 256
93  #define KVM_MAX_MCE_BANKS 32
94  
95  /*
96   * Note, kvm_caps fields should *never* have default values, all fields must be
97   * recomputed from scratch during vendor module load, e.g. to account for a
98   * vendor module being reloaded with different module parameters.
99   */
100  struct kvm_caps kvm_caps __read_mostly;
101  EXPORT_SYMBOL_GPL(kvm_caps);
102  
103  struct kvm_host_values kvm_host __read_mostly;
104  EXPORT_SYMBOL_GPL(kvm_host);
105  
106  #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
107  
108  #define emul_to_vcpu(ctxt) \
109  	((struct kvm_vcpu *)(ctxt)->vcpu)
110  
111  /* EFER defaults:
112   * - enable syscall per default because its emulated by KVM
113   * - enable LME and LMA per default on 64 bit KVM
114   */
115  #ifdef CONFIG_X86_64
116  static
117  u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118  #else
119  static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120  #endif
121  
122  #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123  
124  #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125  
126  #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
127                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128  
129  static void update_cr8_intercept(struct kvm_vcpu *vcpu);
130  static void process_nmi(struct kvm_vcpu *vcpu);
131  static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
132  static void store_regs(struct kvm_vcpu *vcpu);
133  static int sync_regs(struct kvm_vcpu *vcpu);
134  static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135  
136  static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137  static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138  
139  static DEFINE_MUTEX(vendor_module_lock);
140  struct kvm_x86_ops kvm_x86_ops __read_mostly;
141  
142  #define KVM_X86_OP(func)					     \
143  	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
144  				*(((struct kvm_x86_ops *)0)->func));
145  #define KVM_X86_OP_OPTIONAL KVM_X86_OP
146  #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
147  #include <asm/kvm-x86-ops.h>
148  EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
149  EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150  
151  static bool __read_mostly ignore_msrs = 0;
152  module_param(ignore_msrs, bool, 0644);
153  
154  bool __read_mostly report_ignored_msrs = true;
155  module_param(report_ignored_msrs, bool, 0644);
156  EXPORT_SYMBOL_GPL(report_ignored_msrs);
157  
158  unsigned int min_timer_period_us = 200;
159  module_param(min_timer_period_us, uint, 0644);
160  
161  static bool __read_mostly kvmclock_periodic_sync = true;
162  module_param(kvmclock_periodic_sync, bool, 0444);
163  
164  /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165  static u32 __read_mostly tsc_tolerance_ppm = 250;
166  module_param(tsc_tolerance_ppm, uint, 0644);
167  
168  static bool __read_mostly vector_hashing = true;
169  module_param(vector_hashing, bool, 0444);
170  
171  bool __read_mostly enable_vmware_backdoor = false;
172  module_param(enable_vmware_backdoor, bool, 0444);
173  EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174  
175  /*
176   * Flags to manipulate forced emulation behavior (any non-zero value will
177   * enable forced emulation).
178   */
179  #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
180  static int __read_mostly force_emulation_prefix;
181  module_param(force_emulation_prefix, int, 0644);
182  
183  int __read_mostly pi_inject_timer = -1;
184  module_param(pi_inject_timer, bint, 0644);
185  
186  /* Enable/disable PMU virtualization */
187  bool __read_mostly enable_pmu = true;
188  EXPORT_SYMBOL_GPL(enable_pmu);
189  module_param(enable_pmu, bool, 0444);
190  
191  bool __read_mostly eager_page_split = true;
192  module_param(eager_page_split, bool, 0644);
193  
194  /* Enable/disable SMT_RSB bug mitigation */
195  static bool __read_mostly mitigate_smt_rsb;
196  module_param(mitigate_smt_rsb, bool, 0444);
197  
198  /*
199   * Restoring the host value for MSRs that are only consumed when running in
200   * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201   * returns to userspace, i.e. the kernel can run with the guest's value.
202   */
203  #define KVM_MAX_NR_USER_RETURN_MSRS 16
204  
205  struct kvm_user_return_msrs {
206  	struct user_return_notifier urn;
207  	bool registered;
208  	struct kvm_user_return_msr_values {
209  		u64 host;
210  		u64 curr;
211  	} values[KVM_MAX_NR_USER_RETURN_MSRS];
212  };
213  
214  u32 __read_mostly kvm_nr_uret_msrs;
215  EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216  static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217  static struct kvm_user_return_msrs __percpu *user_return_msrs;
218  
219  #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220  				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221  				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222  				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223  
224  bool __read_mostly allow_smaller_maxphyaddr = 0;
225  EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226  
227  bool __read_mostly enable_apicv = true;
228  EXPORT_SYMBOL_GPL(enable_apicv);
229  
230  const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231  	KVM_GENERIC_VM_STATS(),
232  	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233  	STATS_DESC_COUNTER(VM, mmu_pte_write),
234  	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235  	STATS_DESC_COUNTER(VM, mmu_flooded),
236  	STATS_DESC_COUNTER(VM, mmu_recycled),
237  	STATS_DESC_COUNTER(VM, mmu_cache_miss),
238  	STATS_DESC_ICOUNTER(VM, mmu_unsync),
239  	STATS_DESC_ICOUNTER(VM, pages_4k),
240  	STATS_DESC_ICOUNTER(VM, pages_2m),
241  	STATS_DESC_ICOUNTER(VM, pages_1g),
242  	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243  	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244  	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245  };
246  
247  const struct kvm_stats_header kvm_vm_stats_header = {
248  	.name_size = KVM_STATS_NAME_SIZE,
249  	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250  	.id_offset = sizeof(struct kvm_stats_header),
251  	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252  	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253  		       sizeof(kvm_vm_stats_desc),
254  };
255  
256  const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257  	KVM_GENERIC_VCPU_STATS(),
258  	STATS_DESC_COUNTER(VCPU, pf_taken),
259  	STATS_DESC_COUNTER(VCPU, pf_fixed),
260  	STATS_DESC_COUNTER(VCPU, pf_emulate),
261  	STATS_DESC_COUNTER(VCPU, pf_spurious),
262  	STATS_DESC_COUNTER(VCPU, pf_fast),
263  	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
264  	STATS_DESC_COUNTER(VCPU, pf_guest),
265  	STATS_DESC_COUNTER(VCPU, tlb_flush),
266  	STATS_DESC_COUNTER(VCPU, invlpg),
267  	STATS_DESC_COUNTER(VCPU, exits),
268  	STATS_DESC_COUNTER(VCPU, io_exits),
269  	STATS_DESC_COUNTER(VCPU, mmio_exits),
270  	STATS_DESC_COUNTER(VCPU, signal_exits),
271  	STATS_DESC_COUNTER(VCPU, irq_window_exits),
272  	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273  	STATS_DESC_COUNTER(VCPU, l1d_flush),
274  	STATS_DESC_COUNTER(VCPU, halt_exits),
275  	STATS_DESC_COUNTER(VCPU, request_irq_exits),
276  	STATS_DESC_COUNTER(VCPU, irq_exits),
277  	STATS_DESC_COUNTER(VCPU, host_state_reload),
278  	STATS_DESC_COUNTER(VCPU, fpu_reload),
279  	STATS_DESC_COUNTER(VCPU, insn_emulation),
280  	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281  	STATS_DESC_COUNTER(VCPU, hypercalls),
282  	STATS_DESC_COUNTER(VCPU, irq_injections),
283  	STATS_DESC_COUNTER(VCPU, nmi_injections),
284  	STATS_DESC_COUNTER(VCPU, req_event),
285  	STATS_DESC_COUNTER(VCPU, nested_run),
286  	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287  	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288  	STATS_DESC_COUNTER(VCPU, preemption_reported),
289  	STATS_DESC_COUNTER(VCPU, preemption_other),
290  	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
291  	STATS_DESC_COUNTER(VCPU, notify_window_exits),
292  };
293  
294  const struct kvm_stats_header kvm_vcpu_stats_header = {
295  	.name_size = KVM_STATS_NAME_SIZE,
296  	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
297  	.id_offset = sizeof(struct kvm_stats_header),
298  	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
299  	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
300  		       sizeof(kvm_vcpu_stats_desc),
301  };
302  
303  static struct kmem_cache *x86_emulator_cache;
304  
305  /*
306   * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
307   * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
308   * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
309   * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
310   * MSRs that KVM emulates without strictly requiring host support.
311   * msr_based_features holds MSRs that enumerate features, i.e. are effectively
312   * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
313   * msrs_to_save and emulated_msrs.
314   */
315  
316  static const u32 msrs_to_save_base[] = {
317  	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
318  	MSR_STAR,
319  #ifdef CONFIG_X86_64
320  	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
321  #endif
322  	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
323  	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
324  	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
325  	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
326  	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
327  	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
328  	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
329  	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
330  	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
331  	MSR_IA32_UMWAIT_CONTROL,
332  
333  	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
334  };
335  
336  static const u32 msrs_to_save_pmu[] = {
337  	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
338  	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
339  	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
340  	MSR_CORE_PERF_GLOBAL_CTRL,
341  	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
342  
343  	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
344  	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
345  	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
346  	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
347  	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
348  	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
349  	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
350  	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
351  	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
352  
353  	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
354  	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
355  
356  	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
357  	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
358  	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
359  	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
360  	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
361  
362  	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
363  	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
364  	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
365  };
366  
367  static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
368  			ARRAY_SIZE(msrs_to_save_pmu)];
369  static unsigned num_msrs_to_save;
370  
371  static const u32 emulated_msrs_all[] = {
372  	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
373  	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
374  
375  #ifdef CONFIG_KVM_HYPERV
376  	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
377  	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
378  	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
379  	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
380  	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
381  	HV_X64_MSR_RESET,
382  	HV_X64_MSR_VP_INDEX,
383  	HV_X64_MSR_VP_RUNTIME,
384  	HV_X64_MSR_SCONTROL,
385  	HV_X64_MSR_STIMER0_CONFIG,
386  	HV_X64_MSR_VP_ASSIST_PAGE,
387  	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
388  	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
389  	HV_X64_MSR_SYNDBG_OPTIONS,
390  	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
391  	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
392  	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
393  #endif
394  
395  	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
396  	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
397  
398  	MSR_IA32_TSC_ADJUST,
399  	MSR_IA32_TSC_DEADLINE,
400  	MSR_IA32_ARCH_CAPABILITIES,
401  	MSR_IA32_PERF_CAPABILITIES,
402  	MSR_IA32_MISC_ENABLE,
403  	MSR_IA32_MCG_STATUS,
404  	MSR_IA32_MCG_CTL,
405  	MSR_IA32_MCG_EXT_CTL,
406  	MSR_IA32_SMBASE,
407  	MSR_SMI_COUNT,
408  	MSR_PLATFORM_INFO,
409  	MSR_MISC_FEATURES_ENABLES,
410  	MSR_AMD64_VIRT_SPEC_CTRL,
411  	MSR_AMD64_TSC_RATIO,
412  	MSR_IA32_POWER_CTL,
413  	MSR_IA32_UCODE_REV,
414  
415  	/*
416  	 * KVM always supports the "true" VMX control MSRs, even if the host
417  	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
418  	 * doesn't strictly require them to exist in the host (ignoring that
419  	 * KVM would refuse to load in the first place if the core set of MSRs
420  	 * aren't supported).
421  	 */
422  	MSR_IA32_VMX_BASIC,
423  	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
424  	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
425  	MSR_IA32_VMX_TRUE_EXIT_CTLS,
426  	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
427  	MSR_IA32_VMX_MISC,
428  	MSR_IA32_VMX_CR0_FIXED0,
429  	MSR_IA32_VMX_CR4_FIXED0,
430  	MSR_IA32_VMX_VMCS_ENUM,
431  	MSR_IA32_VMX_PROCBASED_CTLS2,
432  	MSR_IA32_VMX_EPT_VPID_CAP,
433  	MSR_IA32_VMX_VMFUNC,
434  
435  	MSR_K7_HWCR,
436  	MSR_KVM_POLL_CONTROL,
437  };
438  
439  static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
440  static unsigned num_emulated_msrs;
441  
442  /*
443   * List of MSRs that control the existence of MSR-based features, i.e. MSRs
444   * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
445   * feature MSRs, but are handled separately to allow expedited lookups.
446   */
447  static const u32 msr_based_features_all_except_vmx[] = {
448  	MSR_AMD64_DE_CFG,
449  	MSR_IA32_UCODE_REV,
450  	MSR_IA32_ARCH_CAPABILITIES,
451  	MSR_IA32_PERF_CAPABILITIES,
452  	MSR_PLATFORM_INFO,
453  };
454  
455  static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
456  			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
457  static unsigned int num_msr_based_features;
458  
459  /*
460   * All feature MSRs except uCode revID, which tracks the currently loaded uCode
461   * patch, are immutable once the vCPU model is defined.
462   */
kvm_is_immutable_feature_msr(u32 msr)463  static bool kvm_is_immutable_feature_msr(u32 msr)
464  {
465  	int i;
466  
467  	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
468  		return true;
469  
470  	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
471  		if (msr == msr_based_features_all_except_vmx[i])
472  			return msr != MSR_IA32_UCODE_REV;
473  	}
474  
475  	return false;
476  }
477  
kvm_is_advertised_msr(u32 msr_index)478  static bool kvm_is_advertised_msr(u32 msr_index)
479  {
480  	unsigned int i;
481  
482  	for (i = 0; i < num_msrs_to_save; i++) {
483  		if (msrs_to_save[i] == msr_index)
484  			return true;
485  	}
486  
487  	for (i = 0; i < num_emulated_msrs; i++) {
488  		if (emulated_msrs[i] == msr_index)
489  			return true;
490  	}
491  
492  	return false;
493  }
494  
495  typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
496  			    bool host_initiated);
497  
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498  static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
499  					     u64 *data, bool host_initiated,
500  					     enum kvm_msr_access rw,
501  					     msr_access_t msr_access_fn)
502  {
503  	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
504  	int ret;
505  
506  	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
507  
508  	/*
509  	 * Zero the data on read failures to avoid leaking stack data to the
510  	 * guest and/or userspace, e.g. if the failure is ignored below.
511  	 */
512  	ret = msr_access_fn(vcpu, msr, data, host_initiated);
513  	if (ret && rw == MSR_TYPE_R)
514  		*data = 0;
515  
516  	if (ret != KVM_MSR_RET_UNSUPPORTED)
517  		return ret;
518  
519  	/*
520  	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
521  	 * advertises to userspace, even if an MSR isn't fully supported.
522  	 * Simply check that @data is '0', which covers both the write '0' case
523  	 * and all reads (in which case @data is zeroed on failure; see above).
524  	 */
525  	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
526  		return 0;
527  
528  	if (!ignore_msrs) {
529  		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
530  				      op, msr, *data);
531  		return ret;
532  	}
533  
534  	if (report_ignored_msrs)
535  		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
536  
537  	return 0;
538  }
539  
kvm_alloc_emulator_cache(void)540  static struct kmem_cache *kvm_alloc_emulator_cache(void)
541  {
542  	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
543  	unsigned int size = sizeof(struct x86_emulate_ctxt);
544  
545  	return kmem_cache_create_usercopy("x86_emulator", size,
546  					  __alignof__(struct x86_emulate_ctxt),
547  					  SLAB_ACCOUNT, useroffset,
548  					  size - useroffset, NULL);
549  }
550  
551  static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
552  
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553  static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
554  {
555  	int i;
556  	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
557  		vcpu->arch.apf.gfns[i] = ~0;
558  }
559  
kvm_on_user_return(struct user_return_notifier * urn)560  static void kvm_on_user_return(struct user_return_notifier *urn)
561  {
562  	unsigned slot;
563  	struct kvm_user_return_msrs *msrs
564  		= container_of(urn, struct kvm_user_return_msrs, urn);
565  	struct kvm_user_return_msr_values *values;
566  	unsigned long flags;
567  
568  	/*
569  	 * Disabling irqs at this point since the following code could be
570  	 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
571  	 */
572  	local_irq_save(flags);
573  	if (msrs->registered) {
574  		msrs->registered = false;
575  		user_return_notifier_unregister(urn);
576  	}
577  	local_irq_restore(flags);
578  	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
579  		values = &msrs->values[slot];
580  		if (values->host != values->curr) {
581  			wrmsrl(kvm_uret_msrs_list[slot], values->host);
582  			values->curr = values->host;
583  		}
584  	}
585  }
586  
kvm_probe_user_return_msr(u32 msr)587  static int kvm_probe_user_return_msr(u32 msr)
588  {
589  	u64 val;
590  	int ret;
591  
592  	preempt_disable();
593  	ret = rdmsrl_safe(msr, &val);
594  	if (ret)
595  		goto out;
596  	ret = wrmsrl_safe(msr, val);
597  out:
598  	preempt_enable();
599  	return ret;
600  }
601  
kvm_add_user_return_msr(u32 msr)602  int kvm_add_user_return_msr(u32 msr)
603  {
604  	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
605  
606  	if (kvm_probe_user_return_msr(msr))
607  		return -1;
608  
609  	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
610  	return kvm_nr_uret_msrs++;
611  }
612  EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
613  
kvm_find_user_return_msr(u32 msr)614  int kvm_find_user_return_msr(u32 msr)
615  {
616  	int i;
617  
618  	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
619  		if (kvm_uret_msrs_list[i] == msr)
620  			return i;
621  	}
622  	return -1;
623  }
624  EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
625  
kvm_user_return_msr_cpu_online(void)626  static void kvm_user_return_msr_cpu_online(void)
627  {
628  	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
629  	u64 value;
630  	int i;
631  
632  	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
633  		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
634  		msrs->values[i].host = value;
635  		msrs->values[i].curr = value;
636  	}
637  }
638  
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639  int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
640  {
641  	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
642  	int err;
643  
644  	value = (value & mask) | (msrs->values[slot].host & ~mask);
645  	if (value == msrs->values[slot].curr)
646  		return 0;
647  	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
648  	if (err)
649  		return 1;
650  
651  	msrs->values[slot].curr = value;
652  	if (!msrs->registered) {
653  		msrs->urn.on_user_return = kvm_on_user_return;
654  		user_return_notifier_register(&msrs->urn);
655  		msrs->registered = true;
656  	}
657  	return 0;
658  }
659  EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
660  
drop_user_return_notifiers(void)661  static void drop_user_return_notifiers(void)
662  {
663  	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
664  
665  	if (msrs->registered)
666  		kvm_on_user_return(&msrs->urn);
667  }
668  
669  /*
670   * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
671   *
672   * Hardware virtualization extension instructions may fault if a reboot turns
673   * off virtualization while processes are running.  Usually after catching the
674   * fault we just panic; during reboot instead the instruction is ignored.
675   */
kvm_spurious_fault(void)676  noinstr void kvm_spurious_fault(void)
677  {
678  	/* Fault while not rebooting.  We want the trace. */
679  	BUG_ON(!kvm_rebooting);
680  }
681  EXPORT_SYMBOL_GPL(kvm_spurious_fault);
682  
683  #define EXCPT_BENIGN		0
684  #define EXCPT_CONTRIBUTORY	1
685  #define EXCPT_PF		2
686  
exception_class(int vector)687  static int exception_class(int vector)
688  {
689  	switch (vector) {
690  	case PF_VECTOR:
691  		return EXCPT_PF;
692  	case DE_VECTOR:
693  	case TS_VECTOR:
694  	case NP_VECTOR:
695  	case SS_VECTOR:
696  	case GP_VECTOR:
697  		return EXCPT_CONTRIBUTORY;
698  	default:
699  		break;
700  	}
701  	return EXCPT_BENIGN;
702  }
703  
704  #define EXCPT_FAULT		0
705  #define EXCPT_TRAP		1
706  #define EXCPT_ABORT		2
707  #define EXCPT_INTERRUPT		3
708  #define EXCPT_DB		4
709  
exception_type(int vector)710  static int exception_type(int vector)
711  {
712  	unsigned int mask;
713  
714  	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
715  		return EXCPT_INTERRUPT;
716  
717  	mask = 1 << vector;
718  
719  	/*
720  	 * #DBs can be trap-like or fault-like, the caller must check other CPU
721  	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
722  	 */
723  	if (mask & (1 << DB_VECTOR))
724  		return EXCPT_DB;
725  
726  	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
727  		return EXCPT_TRAP;
728  
729  	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
730  		return EXCPT_ABORT;
731  
732  	/* Reserved exceptions will result in fault */
733  	return EXCPT_FAULT;
734  }
735  
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736  void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
737  				   struct kvm_queued_exception *ex)
738  {
739  	if (!ex->has_payload)
740  		return;
741  
742  	switch (ex->vector) {
743  	case DB_VECTOR:
744  		/*
745  		 * "Certain debug exceptions may clear bit 0-3.  The
746  		 * remaining contents of the DR6 register are never
747  		 * cleared by the processor".
748  		 */
749  		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
750  		/*
751  		 * In order to reflect the #DB exception payload in guest
752  		 * dr6, three components need to be considered: active low
753  		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
754  		 * DR6_BS and DR6_BT)
755  		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
756  		 * In the target guest dr6:
757  		 * FIXED_1 bits should always be set.
758  		 * Active low bits should be cleared if 1-setting in payload.
759  		 * Active high bits should be set if 1-setting in payload.
760  		 *
761  		 * Note, the payload is compatible with the pending debug
762  		 * exceptions/exit qualification under VMX, that active_low bits
763  		 * are active high in payload.
764  		 * So they need to be flipped for DR6.
765  		 */
766  		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
767  		vcpu->arch.dr6 |= ex->payload;
768  		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
769  
770  		/*
771  		 * The #DB payload is defined as compatible with the 'pending
772  		 * debug exceptions' field under VMX, not DR6. While bit 12 is
773  		 * defined in the 'pending debug exceptions' field (enabled
774  		 * breakpoint), it is reserved and must be zero in DR6.
775  		 */
776  		vcpu->arch.dr6 &= ~BIT(12);
777  		break;
778  	case PF_VECTOR:
779  		vcpu->arch.cr2 = ex->payload;
780  		break;
781  	}
782  
783  	ex->has_payload = false;
784  	ex->payload = 0;
785  }
786  EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
787  
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788  static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
789  				       bool has_error_code, u32 error_code,
790  				       bool has_payload, unsigned long payload)
791  {
792  	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
793  
794  	ex->vector = vector;
795  	ex->injected = false;
796  	ex->pending = true;
797  	ex->has_error_code = has_error_code;
798  	ex->error_code = error_code;
799  	ex->has_payload = has_payload;
800  	ex->payload = payload;
801  }
802  
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)803  static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
804  				   bool has_error, u32 error_code,
805  				   bool has_payload, unsigned long payload)
806  {
807  	u32 prev_nr;
808  	int class1, class2;
809  
810  	kvm_make_request(KVM_REQ_EVENT, vcpu);
811  
812  	/*
813  	 * If the exception is destined for L2, morph it to a VM-Exit if L1
814  	 * wants to intercept the exception.
815  	 */
816  	if (is_guest_mode(vcpu) &&
817  	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
818  		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
819  					   has_payload, payload);
820  		return;
821  	}
822  
823  	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
824  	queue:
825  		vcpu->arch.exception.pending = true;
826  		vcpu->arch.exception.injected = false;
827  
828  		vcpu->arch.exception.has_error_code = has_error;
829  		vcpu->arch.exception.vector = nr;
830  		vcpu->arch.exception.error_code = error_code;
831  		vcpu->arch.exception.has_payload = has_payload;
832  		vcpu->arch.exception.payload = payload;
833  		if (!is_guest_mode(vcpu))
834  			kvm_deliver_exception_payload(vcpu,
835  						      &vcpu->arch.exception);
836  		return;
837  	}
838  
839  	/* to check exception */
840  	prev_nr = vcpu->arch.exception.vector;
841  	if (prev_nr == DF_VECTOR) {
842  		/* triple fault -> shutdown */
843  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
844  		return;
845  	}
846  	class1 = exception_class(prev_nr);
847  	class2 = exception_class(nr);
848  	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
849  	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
850  		/*
851  		 * Synthesize #DF.  Clear the previously injected or pending
852  		 * exception so as not to incorrectly trigger shutdown.
853  		 */
854  		vcpu->arch.exception.injected = false;
855  		vcpu->arch.exception.pending = false;
856  
857  		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
858  	} else {
859  		/* replace previous exception with a new one in a hope
860  		   that instruction re-execution will regenerate lost
861  		   exception */
862  		goto queue;
863  	}
864  }
865  
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)866  void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
867  {
868  	kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
869  }
870  EXPORT_SYMBOL_GPL(kvm_queue_exception);
871  
872  
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)873  void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
874  			   unsigned long payload)
875  {
876  	kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
877  }
878  EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
879  
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)880  static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
881  				    u32 error_code, unsigned long payload)
882  {
883  	kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
884  }
885  
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)886  void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
887  			   bool has_error_code, u32 error_code)
888  {
889  
890  	/*
891  	 * On VM-Entry, an exception can be pending if and only if event
892  	 * injection was blocked by nested_run_pending.  In that case, however,
893  	 * vcpu_enter_guest() requests an immediate exit, and the guest
894  	 * shouldn't proceed far enough to need reinjection.
895  	 */
896  	WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
897  
898  	/*
899  	 * Do not check for interception when injecting an event for L2, as the
900  	 * exception was checked for intercept when it was original queued, and
901  	 * re-checking is incorrect if _L1_ injected the exception, in which
902  	 * case it's exempt from interception.
903  	 */
904  	kvm_make_request(KVM_REQ_EVENT, vcpu);
905  
906  	vcpu->arch.exception.injected = true;
907  	vcpu->arch.exception.has_error_code = has_error_code;
908  	vcpu->arch.exception.vector = nr;
909  	vcpu->arch.exception.error_code = error_code;
910  	vcpu->arch.exception.has_payload = false;
911  	vcpu->arch.exception.payload = 0;
912  }
913  EXPORT_SYMBOL_GPL(kvm_requeue_exception);
914  
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)915  int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
916  {
917  	if (err)
918  		kvm_inject_gp(vcpu, 0);
919  	else
920  		return kvm_skip_emulated_instruction(vcpu);
921  
922  	return 1;
923  }
924  EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
925  
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)926  static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
927  {
928  	if (err) {
929  		kvm_inject_gp(vcpu, 0);
930  		return 1;
931  	}
932  
933  	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
934  				       EMULTYPE_COMPLETE_USER_EXIT);
935  }
936  
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)937  void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
938  {
939  	++vcpu->stat.pf_guest;
940  
941  	/*
942  	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
943  	 * whether or not L1 wants to intercept "regular" #PF.
944  	 */
945  	if (is_guest_mode(vcpu) && fault->async_page_fault)
946  		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
947  					   true, fault->error_code,
948  					   true, fault->address);
949  	else
950  		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
951  					fault->address);
952  }
953  
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)954  void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
955  				    struct x86_exception *fault)
956  {
957  	struct kvm_mmu *fault_mmu;
958  	WARN_ON_ONCE(fault->vector != PF_VECTOR);
959  
960  	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
961  					       vcpu->arch.walk_mmu;
962  
963  	/*
964  	 * Invalidate the TLB entry for the faulting address, if it exists,
965  	 * else the access will fault indefinitely (and to emulate hardware).
966  	 */
967  	if ((fault->error_code & PFERR_PRESENT_MASK) &&
968  	    !(fault->error_code & PFERR_RSVD_MASK))
969  		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
970  					KVM_MMU_ROOT_CURRENT);
971  
972  	fault_mmu->inject_page_fault(vcpu, fault);
973  }
974  EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
975  
kvm_inject_nmi(struct kvm_vcpu * vcpu)976  void kvm_inject_nmi(struct kvm_vcpu *vcpu)
977  {
978  	atomic_inc(&vcpu->arch.nmi_queued);
979  	kvm_make_request(KVM_REQ_NMI, vcpu);
980  }
981  
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)982  void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
983  {
984  	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
985  }
986  EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
987  
988  /*
989   * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
990   * a #GP and return false.
991   */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)992  bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
993  {
994  	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
995  		return true;
996  	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
997  	return false;
998  }
999  
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1000  bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1001  {
1002  	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1003  		return true;
1004  
1005  	kvm_queue_exception(vcpu, UD_VECTOR);
1006  	return false;
1007  }
1008  EXPORT_SYMBOL_GPL(kvm_require_dr);
1009  
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1010  static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1011  {
1012  	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1013  }
1014  
1015  /*
1016   * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1017   */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1018  int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1019  {
1020  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1021  	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1022  	gpa_t real_gpa;
1023  	int i;
1024  	int ret;
1025  	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1026  
1027  	/*
1028  	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1029  	 * to an L1 GPA.
1030  	 */
1031  	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1032  				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1033  	if (real_gpa == INVALID_GPA)
1034  		return 0;
1035  
1036  	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1037  	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1038  				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1039  	if (ret < 0)
1040  		return 0;
1041  
1042  	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1043  		if ((pdpte[i] & PT_PRESENT_MASK) &&
1044  		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1045  			return 0;
1046  		}
1047  	}
1048  
1049  	/*
1050  	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1051  	 * Shadow page roots need to be reconstructed instead.
1052  	 */
1053  	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1054  		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1055  
1056  	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1057  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1058  	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1059  	vcpu->arch.pdptrs_from_userspace = false;
1060  
1061  	return 1;
1062  }
1063  EXPORT_SYMBOL_GPL(load_pdptrs);
1064  
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1065  static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1066  {
1067  #ifdef CONFIG_X86_64
1068  	if (cr0 & 0xffffffff00000000UL)
1069  		return false;
1070  #endif
1071  
1072  	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1073  		return false;
1074  
1075  	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1076  		return false;
1077  
1078  	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1079  }
1080  
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1081  void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1082  {
1083  	/*
1084  	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1085  	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1086  	 * as there are no permission bits to emulate.  If TDP is enabled, the
1087  	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1088  	 * translations does the right thing, but there's no need to unload the
1089  	 * root as CR0.WP doesn't affect SPTEs.
1090  	 */
1091  	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1092  		if (!(cr0 & X86_CR0_PG))
1093  			return;
1094  
1095  		if (tdp_enabled) {
1096  			kvm_init_mmu(vcpu);
1097  			return;
1098  		}
1099  	}
1100  
1101  	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1102  		kvm_clear_async_pf_completion_queue(vcpu);
1103  		kvm_async_pf_hash_reset(vcpu);
1104  
1105  		/*
1106  		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1107  		 * perspective.
1108  		 */
1109  		if (!(cr0 & X86_CR0_PG))
1110  			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1111  	}
1112  
1113  	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1114  		kvm_mmu_reset_context(vcpu);
1115  }
1116  EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1117  
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1118  int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1119  {
1120  	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1121  
1122  	if (!kvm_is_valid_cr0(vcpu, cr0))
1123  		return 1;
1124  
1125  	cr0 |= X86_CR0_ET;
1126  
1127  	/* Write to CR0 reserved bits are ignored, even on Intel. */
1128  	cr0 &= ~CR0_RESERVED_BITS;
1129  
1130  #ifdef CONFIG_X86_64
1131  	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1132  	    (cr0 & X86_CR0_PG)) {
1133  		int cs_db, cs_l;
1134  
1135  		if (!is_pae(vcpu))
1136  			return 1;
1137  		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1138  		if (cs_l)
1139  			return 1;
1140  	}
1141  #endif
1142  	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1143  	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1144  	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1145  		return 1;
1146  
1147  	if (!(cr0 & X86_CR0_PG) &&
1148  	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1149  		return 1;
1150  
1151  	kvm_x86_call(set_cr0)(vcpu, cr0);
1152  
1153  	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1154  
1155  	return 0;
1156  }
1157  EXPORT_SYMBOL_GPL(kvm_set_cr0);
1158  
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1159  void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1160  {
1161  	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1162  }
1163  EXPORT_SYMBOL_GPL(kvm_lmsw);
1164  
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1165  void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1166  {
1167  	if (vcpu->arch.guest_state_protected)
1168  		return;
1169  
1170  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1171  
1172  		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1173  			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1174  
1175  		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1176  		    vcpu->arch.ia32_xss != kvm_host.xss)
1177  			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1178  	}
1179  
1180  	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1181  	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1182  	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1183  	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1184  		wrpkru(vcpu->arch.pkru);
1185  }
1186  EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1187  
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1188  void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1189  {
1190  	if (vcpu->arch.guest_state_protected)
1191  		return;
1192  
1193  	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1194  	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1195  	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1196  		vcpu->arch.pkru = rdpkru();
1197  		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1198  			wrpkru(vcpu->arch.host_pkru);
1199  	}
1200  
1201  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1202  
1203  		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1204  			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1205  
1206  		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1207  		    vcpu->arch.ia32_xss != kvm_host.xss)
1208  			wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1209  	}
1210  
1211  }
1212  EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1213  
1214  #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1215  static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1216  {
1217  	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1218  }
1219  #endif
1220  
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1221  static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1222  {
1223  	u64 xcr0 = xcr;
1224  	u64 old_xcr0 = vcpu->arch.xcr0;
1225  	u64 valid_bits;
1226  
1227  	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1228  	if (index != XCR_XFEATURE_ENABLED_MASK)
1229  		return 1;
1230  	if (!(xcr0 & XFEATURE_MASK_FP))
1231  		return 1;
1232  	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1233  		return 1;
1234  
1235  	/*
1236  	 * Do not allow the guest to set bits that we do not support
1237  	 * saving.  However, xcr0 bit 0 is always set, even if the
1238  	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1239  	 */
1240  	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1241  	if (xcr0 & ~valid_bits)
1242  		return 1;
1243  
1244  	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1245  	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1246  		return 1;
1247  
1248  	if (xcr0 & XFEATURE_MASK_AVX512) {
1249  		if (!(xcr0 & XFEATURE_MASK_YMM))
1250  			return 1;
1251  		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1252  			return 1;
1253  	}
1254  
1255  	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1256  	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1257  		return 1;
1258  
1259  	vcpu->arch.xcr0 = xcr0;
1260  
1261  	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1262  		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1263  	return 0;
1264  }
1265  
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1266  int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1267  {
1268  	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1269  	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1270  	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1271  		kvm_inject_gp(vcpu, 0);
1272  		return 1;
1273  	}
1274  
1275  	return kvm_skip_emulated_instruction(vcpu);
1276  }
1277  EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1278  
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1279  static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1280  {
1281  	return __kvm_is_valid_cr4(vcpu, cr4) &&
1282  	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1283  }
1284  
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1285  void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1286  {
1287  	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1288  		kvm_mmu_reset_context(vcpu);
1289  
1290  	/*
1291  	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1292  	 * according to the SDM; however, stale prev_roots could be reused
1293  	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1294  	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1295  	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1296  	 * so fall through.
1297  	 */
1298  	if (!tdp_enabled &&
1299  	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1300  		kvm_mmu_unload(vcpu);
1301  
1302  	/*
1303  	 * The TLB has to be flushed for all PCIDs if any of the following
1304  	 * (architecturally required) changes happen:
1305  	 * - CR4.PCIDE is changed from 1 to 0
1306  	 * - CR4.PGE is toggled
1307  	 *
1308  	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1309  	 */
1310  	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1311  	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1312  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1313  
1314  	/*
1315  	 * The TLB has to be flushed for the current PCID if any of the
1316  	 * following (architecturally required) changes happen:
1317  	 * - CR4.SMEP is changed from 0 to 1
1318  	 * - CR4.PAE is toggled
1319  	 */
1320  	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1321  		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1322  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1323  
1324  }
1325  EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1326  
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1327  int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1328  {
1329  	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1330  
1331  	if (!kvm_is_valid_cr4(vcpu, cr4))
1332  		return 1;
1333  
1334  	if (is_long_mode(vcpu)) {
1335  		if (!(cr4 & X86_CR4_PAE))
1336  			return 1;
1337  		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1338  			return 1;
1339  	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1340  		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1341  		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1342  		return 1;
1343  
1344  	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1345  		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1346  		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1347  			return 1;
1348  	}
1349  
1350  	kvm_x86_call(set_cr4)(vcpu, cr4);
1351  
1352  	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1353  
1354  	return 0;
1355  }
1356  EXPORT_SYMBOL_GPL(kvm_set_cr4);
1357  
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1358  static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1359  {
1360  	struct kvm_mmu *mmu = vcpu->arch.mmu;
1361  	unsigned long roots_to_free = 0;
1362  	int i;
1363  
1364  	/*
1365  	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1366  	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1367  	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1368  	 * the invalidation, but the guest's TLB entries need to be flushed as
1369  	 * the CPU may have cached entries in its TLB for the target PCID.
1370  	 */
1371  	if (unlikely(tdp_enabled)) {
1372  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1373  		return;
1374  	}
1375  
1376  	/*
1377  	 * If neither the current CR3 nor any of the prev_roots use the given
1378  	 * PCID, then nothing needs to be done here because a resync will
1379  	 * happen anyway before switching to any other CR3.
1380  	 */
1381  	if (kvm_get_active_pcid(vcpu) == pcid) {
1382  		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1383  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1384  	}
1385  
1386  	/*
1387  	 * If PCID is disabled, there is no need to free prev_roots even if the
1388  	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1389  	 * with PCIDE=0.
1390  	 */
1391  	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1392  		return;
1393  
1394  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1395  		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1396  			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1397  
1398  	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1399  }
1400  
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1401  int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1402  {
1403  	bool skip_tlb_flush = false;
1404  	unsigned long pcid = 0;
1405  #ifdef CONFIG_X86_64
1406  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1407  		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1408  		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1409  		pcid = cr3 & X86_CR3_PCID_MASK;
1410  	}
1411  #endif
1412  
1413  	/* PDPTRs are always reloaded for PAE paging. */
1414  	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1415  		goto handle_tlb_flush;
1416  
1417  	/*
1418  	 * Do not condition the GPA check on long mode, this helper is used to
1419  	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1420  	 * the current vCPU mode is accurate.
1421  	 */
1422  	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1423  		return 1;
1424  
1425  	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1426  		return 1;
1427  
1428  	if (cr3 != kvm_read_cr3(vcpu))
1429  		kvm_mmu_new_pgd(vcpu, cr3);
1430  
1431  	vcpu->arch.cr3 = cr3;
1432  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1433  	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1434  
1435  handle_tlb_flush:
1436  	/*
1437  	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1438  	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1439  	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1440  	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1441  	 * i.e. only PCID=0 can be relevant.
1442  	 */
1443  	if (!skip_tlb_flush)
1444  		kvm_invalidate_pcid(vcpu, pcid);
1445  
1446  	return 0;
1447  }
1448  EXPORT_SYMBOL_GPL(kvm_set_cr3);
1449  
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1450  int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1451  {
1452  	if (cr8 & CR8_RESERVED_BITS)
1453  		return 1;
1454  	if (lapic_in_kernel(vcpu))
1455  		kvm_lapic_set_tpr(vcpu, cr8);
1456  	else
1457  		vcpu->arch.cr8 = cr8;
1458  	return 0;
1459  }
1460  EXPORT_SYMBOL_GPL(kvm_set_cr8);
1461  
kvm_get_cr8(struct kvm_vcpu * vcpu)1462  unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1463  {
1464  	if (lapic_in_kernel(vcpu))
1465  		return kvm_lapic_get_cr8(vcpu);
1466  	else
1467  		return vcpu->arch.cr8;
1468  }
1469  EXPORT_SYMBOL_GPL(kvm_get_cr8);
1470  
kvm_update_dr0123(struct kvm_vcpu * vcpu)1471  static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1472  {
1473  	int i;
1474  
1475  	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1476  		for (i = 0; i < KVM_NR_DB_REGS; i++)
1477  			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1478  	}
1479  }
1480  
kvm_update_dr7(struct kvm_vcpu * vcpu)1481  void kvm_update_dr7(struct kvm_vcpu *vcpu)
1482  {
1483  	unsigned long dr7;
1484  
1485  	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1486  		dr7 = vcpu->arch.guest_debug_dr7;
1487  	else
1488  		dr7 = vcpu->arch.dr7;
1489  	kvm_x86_call(set_dr7)(vcpu, dr7);
1490  	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1491  	if (dr7 & DR7_BP_EN_MASK)
1492  		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1493  }
1494  EXPORT_SYMBOL_GPL(kvm_update_dr7);
1495  
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1496  static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1497  {
1498  	u64 fixed = DR6_FIXED_1;
1499  
1500  	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1501  		fixed |= DR6_RTM;
1502  
1503  	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1504  		fixed |= DR6_BUS_LOCK;
1505  	return fixed;
1506  }
1507  
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1508  int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1509  {
1510  	size_t size = ARRAY_SIZE(vcpu->arch.db);
1511  
1512  	switch (dr) {
1513  	case 0 ... 3:
1514  		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1515  		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1516  			vcpu->arch.eff_db[dr] = val;
1517  		break;
1518  	case 4:
1519  	case 6:
1520  		if (!kvm_dr6_valid(val))
1521  			return 1; /* #GP */
1522  		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1523  		break;
1524  	case 5:
1525  	default: /* 7 */
1526  		if (!kvm_dr7_valid(val))
1527  			return 1; /* #GP */
1528  		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1529  		kvm_update_dr7(vcpu);
1530  		break;
1531  	}
1532  
1533  	return 0;
1534  }
1535  EXPORT_SYMBOL_GPL(kvm_set_dr);
1536  
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1537  unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1538  {
1539  	size_t size = ARRAY_SIZE(vcpu->arch.db);
1540  
1541  	switch (dr) {
1542  	case 0 ... 3:
1543  		return vcpu->arch.db[array_index_nospec(dr, size)];
1544  	case 4:
1545  	case 6:
1546  		return vcpu->arch.dr6;
1547  	case 5:
1548  	default: /* 7 */
1549  		return vcpu->arch.dr7;
1550  	}
1551  }
1552  EXPORT_SYMBOL_GPL(kvm_get_dr);
1553  
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1554  int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1555  {
1556  	u32 ecx = kvm_rcx_read(vcpu);
1557  	u64 data;
1558  
1559  	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1560  		kvm_inject_gp(vcpu, 0);
1561  		return 1;
1562  	}
1563  
1564  	kvm_rax_write(vcpu, (u32)data);
1565  	kvm_rdx_write(vcpu, data >> 32);
1566  	return kvm_skip_emulated_instruction(vcpu);
1567  }
1568  EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1569  
1570  /*
1571   * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1572   * does not yet virtualize. These include:
1573   *   10 - MISC_PACKAGE_CTRLS
1574   *   11 - ENERGY_FILTERING_CTL
1575   *   12 - DOITM
1576   *   18 - FB_CLEAR_CTRL
1577   *   21 - XAPIC_DISABLE_STATUS
1578   *   23 - OVERCLOCKING_STATUS
1579   */
1580  
1581  #define KVM_SUPPORTED_ARCH_CAP \
1582  	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1583  	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1584  	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1585  	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1586  	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1587  	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1588  
kvm_get_arch_capabilities(void)1589  static u64 kvm_get_arch_capabilities(void)
1590  {
1591  	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1592  
1593  	/*
1594  	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1595  	 * the nested hypervisor runs with NX huge pages.  If it is not,
1596  	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1597  	 * L1 guests, so it need not worry about its own (L2) guests.
1598  	 */
1599  	data |= ARCH_CAP_PSCHANGE_MC_NO;
1600  
1601  	/*
1602  	 * If we're doing cache flushes (either "always" or "cond")
1603  	 * we will do one whenever the guest does a vmlaunch/vmresume.
1604  	 * If an outer hypervisor is doing the cache flush for us
1605  	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1606  	 * capability to the guest too, and if EPT is disabled we're not
1607  	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1608  	 * require a nested hypervisor to do a flush of its own.
1609  	 */
1610  	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1611  		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1612  
1613  	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1614  		data |= ARCH_CAP_RDCL_NO;
1615  	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1616  		data |= ARCH_CAP_SSB_NO;
1617  	if (!boot_cpu_has_bug(X86_BUG_MDS))
1618  		data |= ARCH_CAP_MDS_NO;
1619  	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1620  		data |= ARCH_CAP_RFDS_NO;
1621  
1622  	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1623  		/*
1624  		 * If RTM=0 because the kernel has disabled TSX, the host might
1625  		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1626  		 * and therefore knows that there cannot be TAA) but keep
1627  		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1628  		 * and we want to allow migrating those guests to tsx=off hosts.
1629  		 */
1630  		data &= ~ARCH_CAP_TAA_NO;
1631  	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1632  		data |= ARCH_CAP_TAA_NO;
1633  	} else {
1634  		/*
1635  		 * Nothing to do here; we emulate TSX_CTRL if present on the
1636  		 * host so the guest can choose between disabling TSX or
1637  		 * using VERW to clear CPU buffers.
1638  		 */
1639  	}
1640  
1641  	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1642  		data |= ARCH_CAP_GDS_NO;
1643  
1644  	return data;
1645  }
1646  
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1647  static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1648  			       bool host_initiated)
1649  {
1650  	WARN_ON_ONCE(!host_initiated);
1651  
1652  	switch (index) {
1653  	case MSR_IA32_ARCH_CAPABILITIES:
1654  		*data = kvm_get_arch_capabilities();
1655  		break;
1656  	case MSR_IA32_PERF_CAPABILITIES:
1657  		*data = kvm_caps.supported_perf_cap;
1658  		break;
1659  	case MSR_PLATFORM_INFO:
1660  		*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1661  		break;
1662  	case MSR_IA32_UCODE_REV:
1663  		rdmsrl_safe(index, data);
1664  		break;
1665  	default:
1666  		return kvm_x86_call(get_feature_msr)(index, data);
1667  	}
1668  	return 0;
1669  }
1670  
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1671  static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1672  {
1673  	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1674  				 kvm_get_feature_msr);
1675  }
1676  
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1677  static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1678  {
1679  	if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1680  		return false;
1681  
1682  	if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1683  		return false;
1684  
1685  	if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1686  		return false;
1687  
1688  	if (efer & (EFER_LME | EFER_LMA) &&
1689  	    !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1690  		return false;
1691  
1692  	if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1693  		return false;
1694  
1695  	return true;
1696  
1697  }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1698  bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1699  {
1700  	if (efer & efer_reserved_bits)
1701  		return false;
1702  
1703  	return __kvm_valid_efer(vcpu, efer);
1704  }
1705  EXPORT_SYMBOL_GPL(kvm_valid_efer);
1706  
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1707  static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1708  {
1709  	u64 old_efer = vcpu->arch.efer;
1710  	u64 efer = msr_info->data;
1711  	int r;
1712  
1713  	if (efer & efer_reserved_bits)
1714  		return 1;
1715  
1716  	if (!msr_info->host_initiated) {
1717  		if (!__kvm_valid_efer(vcpu, efer))
1718  			return 1;
1719  
1720  		if (is_paging(vcpu) &&
1721  		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1722  			return 1;
1723  	}
1724  
1725  	efer &= ~EFER_LMA;
1726  	efer |= vcpu->arch.efer & EFER_LMA;
1727  
1728  	r = kvm_x86_call(set_efer)(vcpu, efer);
1729  	if (r) {
1730  		WARN_ON(r > 0);
1731  		return r;
1732  	}
1733  
1734  	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1735  		kvm_mmu_reset_context(vcpu);
1736  
1737  	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1738  	    (efer & EFER_SVME))
1739  		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1740  
1741  	return 0;
1742  }
1743  
kvm_enable_efer_bits(u64 mask)1744  void kvm_enable_efer_bits(u64 mask)
1745  {
1746         efer_reserved_bits &= ~mask;
1747  }
1748  EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1749  
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1750  bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1751  {
1752  	struct kvm_x86_msr_filter *msr_filter;
1753  	struct msr_bitmap_range *ranges;
1754  	struct kvm *kvm = vcpu->kvm;
1755  	bool allowed;
1756  	int idx;
1757  	u32 i;
1758  
1759  	/* x2APIC MSRs do not support filtering. */
1760  	if (index >= 0x800 && index <= 0x8ff)
1761  		return true;
1762  
1763  	idx = srcu_read_lock(&kvm->srcu);
1764  
1765  	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1766  	if (!msr_filter) {
1767  		allowed = true;
1768  		goto out;
1769  	}
1770  
1771  	allowed = msr_filter->default_allow;
1772  	ranges = msr_filter->ranges;
1773  
1774  	for (i = 0; i < msr_filter->count; i++) {
1775  		u32 start = ranges[i].base;
1776  		u32 end = start + ranges[i].nmsrs;
1777  		u32 flags = ranges[i].flags;
1778  		unsigned long *bitmap = ranges[i].bitmap;
1779  
1780  		if ((index >= start) && (index < end) && (flags & type)) {
1781  			allowed = test_bit(index - start, bitmap);
1782  			break;
1783  		}
1784  	}
1785  
1786  out:
1787  	srcu_read_unlock(&kvm->srcu, idx);
1788  
1789  	return allowed;
1790  }
1791  EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1792  
1793  /*
1794   * Write @data into the MSR specified by @index.  Select MSR specific fault
1795   * checks are bypassed if @host_initiated is %true.
1796   * Returns 0 on success, non-0 otherwise.
1797   * Assumes vcpu_load() was already called.
1798   */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1799  static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1800  			 bool host_initiated)
1801  {
1802  	struct msr_data msr;
1803  
1804  	switch (index) {
1805  	case MSR_FS_BASE:
1806  	case MSR_GS_BASE:
1807  	case MSR_KERNEL_GS_BASE:
1808  	case MSR_CSTAR:
1809  	case MSR_LSTAR:
1810  		if (is_noncanonical_msr_address(data, vcpu))
1811  			return 1;
1812  		break;
1813  	case MSR_IA32_SYSENTER_EIP:
1814  	case MSR_IA32_SYSENTER_ESP:
1815  		/*
1816  		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1817  		 * non-canonical address is written on Intel but not on
1818  		 * AMD (which ignores the top 32-bits, because it does
1819  		 * not implement 64-bit SYSENTER).
1820  		 *
1821  		 * 64-bit code should hence be able to write a non-canonical
1822  		 * value on AMD.  Making the address canonical ensures that
1823  		 * vmentry does not fail on Intel after writing a non-canonical
1824  		 * value, and that something deterministic happens if the guest
1825  		 * invokes 64-bit SYSENTER.
1826  		 */
1827  		data = __canonical_address(data, max_host_virt_addr_bits());
1828  		break;
1829  	case MSR_TSC_AUX:
1830  		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1831  			return 1;
1832  
1833  		if (!host_initiated &&
1834  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1835  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1836  			return 1;
1837  
1838  		/*
1839  		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1840  		 * incomplete and conflicting architectural behavior.  Current
1841  		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1842  		 * reserved and always read as zeros.  Enforce Intel's reserved
1843  		 * bits check if the guest CPU is Intel compatible, otherwise
1844  		 * clear the bits.  This ensures cross-vendor migration will
1845  		 * provide consistent behavior for the guest.
1846  		 */
1847  		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1848  			return 1;
1849  
1850  		data = (u32)data;
1851  		break;
1852  	}
1853  
1854  	msr.data = data;
1855  	msr.index = index;
1856  	msr.host_initiated = host_initiated;
1857  
1858  	return kvm_x86_call(set_msr)(vcpu, &msr);
1859  }
1860  
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1861  static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1862  			bool host_initiated)
1863  {
1864  	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1865  }
1866  
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1867  static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1868  				     u32 index, u64 data, bool host_initiated)
1869  {
1870  	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1871  				 _kvm_set_msr);
1872  }
1873  
1874  /*
1875   * Read the MSR specified by @index into @data.  Select MSR specific fault
1876   * checks are bypassed if @host_initiated is %true.
1877   * Returns 0 on success, non-0 otherwise.
1878   * Assumes vcpu_load() was already called.
1879   */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1880  int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1881  		  bool host_initiated)
1882  {
1883  	struct msr_data msr;
1884  	int ret;
1885  
1886  	switch (index) {
1887  	case MSR_TSC_AUX:
1888  		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1889  			return 1;
1890  
1891  		if (!host_initiated &&
1892  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1893  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1894  			return 1;
1895  		break;
1896  	}
1897  
1898  	msr.index = index;
1899  	msr.host_initiated = host_initiated;
1900  
1901  	ret = kvm_x86_call(get_msr)(vcpu, &msr);
1902  	if (!ret)
1903  		*data = msr.data;
1904  	return ret;
1905  }
1906  
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1907  static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1908  				     u32 index, u64 *data, bool host_initiated)
1909  {
1910  	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1911  				 __kvm_get_msr);
1912  }
1913  
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1914  int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1915  {
1916  	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1917  		return KVM_MSR_RET_FILTERED;
1918  	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1919  }
1920  EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1921  
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1922  int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1923  {
1924  	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1925  		return KVM_MSR_RET_FILTERED;
1926  	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1927  }
1928  EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1929  
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1930  int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1931  {
1932  	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1933  }
1934  EXPORT_SYMBOL_GPL(kvm_get_msr);
1935  
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1936  int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1937  {
1938  	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1939  }
1940  EXPORT_SYMBOL_GPL(kvm_set_msr);
1941  
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1942  static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1943  {
1944  	if (!vcpu->run->msr.error) {
1945  		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1946  		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1947  	}
1948  }
1949  
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1950  static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1951  {
1952  	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1953  }
1954  
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1955  static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1956  {
1957  	complete_userspace_rdmsr(vcpu);
1958  	return complete_emulated_msr_access(vcpu);
1959  }
1960  
complete_fast_msr_access(struct kvm_vcpu * vcpu)1961  static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1962  {
1963  	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1964  }
1965  
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1966  static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1967  {
1968  	complete_userspace_rdmsr(vcpu);
1969  	return complete_fast_msr_access(vcpu);
1970  }
1971  
kvm_msr_reason(int r)1972  static u64 kvm_msr_reason(int r)
1973  {
1974  	switch (r) {
1975  	case KVM_MSR_RET_UNSUPPORTED:
1976  		return KVM_MSR_EXIT_REASON_UNKNOWN;
1977  	case KVM_MSR_RET_FILTERED:
1978  		return KVM_MSR_EXIT_REASON_FILTER;
1979  	default:
1980  		return KVM_MSR_EXIT_REASON_INVAL;
1981  	}
1982  }
1983  
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1984  static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1985  			      u32 exit_reason, u64 data,
1986  			      int (*completion)(struct kvm_vcpu *vcpu),
1987  			      int r)
1988  {
1989  	u64 msr_reason = kvm_msr_reason(r);
1990  
1991  	/* Check if the user wanted to know about this MSR fault */
1992  	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1993  		return 0;
1994  
1995  	vcpu->run->exit_reason = exit_reason;
1996  	vcpu->run->msr.error = 0;
1997  	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1998  	vcpu->run->msr.reason = msr_reason;
1999  	vcpu->run->msr.index = index;
2000  	vcpu->run->msr.data = data;
2001  	vcpu->arch.complete_userspace_io = completion;
2002  
2003  	return 1;
2004  }
2005  
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2006  int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2007  {
2008  	u32 ecx = kvm_rcx_read(vcpu);
2009  	u64 data;
2010  	int r;
2011  
2012  	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2013  
2014  	if (!r) {
2015  		trace_kvm_msr_read(ecx, data);
2016  
2017  		kvm_rax_write(vcpu, data & -1u);
2018  		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2019  	} else {
2020  		/* MSR read failed? See if we should ask user space */
2021  		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2022  				       complete_fast_rdmsr, r))
2023  			return 0;
2024  		trace_kvm_msr_read_ex(ecx);
2025  	}
2026  
2027  	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2028  }
2029  EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2030  
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2031  int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2032  {
2033  	u32 ecx = kvm_rcx_read(vcpu);
2034  	u64 data = kvm_read_edx_eax(vcpu);
2035  	int r;
2036  
2037  	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2038  
2039  	if (!r) {
2040  		trace_kvm_msr_write(ecx, data);
2041  	} else {
2042  		/* MSR write failed? See if we should ask user space */
2043  		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2044  				       complete_fast_msr_access, r))
2045  			return 0;
2046  		/* Signal all other negative errors to userspace */
2047  		if (r < 0)
2048  			return r;
2049  		trace_kvm_msr_write_ex(ecx, data);
2050  	}
2051  
2052  	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2053  }
2054  EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2055  
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2056  int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2057  {
2058  	return kvm_skip_emulated_instruction(vcpu);
2059  }
2060  
kvm_emulate_invd(struct kvm_vcpu * vcpu)2061  int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2062  {
2063  	/* Treat an INVD instruction as a NOP and just skip it. */
2064  	return kvm_emulate_as_nop(vcpu);
2065  }
2066  EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2067  
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2068  int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2069  {
2070  	kvm_queue_exception(vcpu, UD_VECTOR);
2071  	return 1;
2072  }
2073  EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2074  
2075  
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2076  static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2077  {
2078  	bool enabled;
2079  
2080  	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2081  		goto emulate_as_nop;
2082  
2083  	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2084  		enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2085  	else
2086  		enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2087  
2088  	if (!enabled)
2089  		return kvm_handle_invalid_op(vcpu);
2090  
2091  emulate_as_nop:
2092  	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2093  	return kvm_emulate_as_nop(vcpu);
2094  }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2095  int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2096  {
2097  	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2098  }
2099  EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2100  
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2101  int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2102  {
2103  	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2104  }
2105  EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2106  
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2107  static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2108  {
2109  	xfer_to_guest_mode_prepare();
2110  
2111  	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2112  	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2113  }
2114  
2115  /*
2116   * The fast path for frequent and performance sensitive wrmsr emulation,
2117   * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2118   * the latency of virtual IPI by avoiding the expensive bits of transitioning
2119   * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2120   * other cases which must be called after interrupts are enabled on the host.
2121   */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2122  static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2123  {
2124  	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2125  		return 1;
2126  
2127  	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2128  	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2129  	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2130  	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2131  		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2132  
2133  	return 1;
2134  }
2135  
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2136  static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2137  {
2138  	if (!kvm_can_use_hv_timer(vcpu))
2139  		return 1;
2140  
2141  	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2142  	return 0;
2143  }
2144  
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2145  fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2146  {
2147  	u32 msr = kvm_rcx_read(vcpu);
2148  	u64 data;
2149  	fastpath_t ret;
2150  	bool handled;
2151  
2152  	kvm_vcpu_srcu_read_lock(vcpu);
2153  
2154  	switch (msr) {
2155  	case APIC_BASE_MSR + (APIC_ICR >> 4):
2156  		data = kvm_read_edx_eax(vcpu);
2157  		handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2158  		break;
2159  	case MSR_IA32_TSC_DEADLINE:
2160  		data = kvm_read_edx_eax(vcpu);
2161  		handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2162  		break;
2163  	default:
2164  		handled = false;
2165  		break;
2166  	}
2167  
2168  	if (handled) {
2169  		if (!kvm_skip_emulated_instruction(vcpu))
2170  			ret = EXIT_FASTPATH_EXIT_USERSPACE;
2171  		else
2172  			ret = EXIT_FASTPATH_REENTER_GUEST;
2173  		trace_kvm_msr_write(msr, data);
2174  	} else {
2175  		ret = EXIT_FASTPATH_NONE;
2176  	}
2177  
2178  	kvm_vcpu_srcu_read_unlock(vcpu);
2179  
2180  	return ret;
2181  }
2182  EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2183  
2184  /*
2185   * Adapt set_msr() to msr_io()'s calling convention
2186   */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2187  static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2188  {
2189  	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2190  }
2191  
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2192  static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2193  {
2194  	u64 val;
2195  
2196  	/*
2197  	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2198  	 * not support modifying the guest vCPU model on the fly, e.g. changing
2199  	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2200  	 * writes of the same value, e.g. to allow userspace to blindly stuff
2201  	 * all MSRs when emulating RESET.
2202  	 */
2203  	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2204  	    (do_get_msr(vcpu, index, &val) || *data != val))
2205  		return -EINVAL;
2206  
2207  	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2208  }
2209  
2210  #ifdef CONFIG_X86_64
2211  struct pvclock_clock {
2212  	int vclock_mode;
2213  	u64 cycle_last;
2214  	u64 mask;
2215  	u32 mult;
2216  	u32 shift;
2217  	u64 base_cycles;
2218  	u64 offset;
2219  };
2220  
2221  struct pvclock_gtod_data {
2222  	seqcount_t	seq;
2223  
2224  	struct pvclock_clock clock; /* extract of a clocksource struct */
2225  	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2226  
2227  	ktime_t		offs_boot;
2228  	u64		wall_time_sec;
2229  };
2230  
2231  static struct pvclock_gtod_data pvclock_gtod_data;
2232  
update_pvclock_gtod(struct timekeeper * tk)2233  static void update_pvclock_gtod(struct timekeeper *tk)
2234  {
2235  	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2236  
2237  	write_seqcount_begin(&vdata->seq);
2238  
2239  	/* copy pvclock gtod data */
2240  	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2241  	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2242  	vdata->clock.mask		= tk->tkr_mono.mask;
2243  	vdata->clock.mult		= tk->tkr_mono.mult;
2244  	vdata->clock.shift		= tk->tkr_mono.shift;
2245  	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2246  	vdata->clock.offset		= tk->tkr_mono.base;
2247  
2248  	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2249  	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2250  	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2251  	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2252  	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2253  	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2254  	vdata->raw_clock.offset		= tk->tkr_raw.base;
2255  
2256  	vdata->wall_time_sec            = tk->xtime_sec;
2257  
2258  	vdata->offs_boot		= tk->offs_boot;
2259  
2260  	write_seqcount_end(&vdata->seq);
2261  }
2262  
get_kvmclock_base_ns(void)2263  static s64 get_kvmclock_base_ns(void)
2264  {
2265  	/* Count up from boot time, but with the frequency of the raw clock.  */
2266  	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2267  }
2268  #else
get_kvmclock_base_ns(void)2269  static s64 get_kvmclock_base_ns(void)
2270  {
2271  	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2272  	return ktime_get_boottime_ns();
2273  }
2274  #endif
2275  
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2276  static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2277  {
2278  	int version;
2279  	int r;
2280  	struct pvclock_wall_clock wc;
2281  	u32 wc_sec_hi;
2282  	u64 wall_nsec;
2283  
2284  	if (!wall_clock)
2285  		return;
2286  
2287  	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2288  	if (r)
2289  		return;
2290  
2291  	if (version & 1)
2292  		++version;  /* first time write, random junk */
2293  
2294  	++version;
2295  
2296  	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2297  		return;
2298  
2299  	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2300  
2301  	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2302  	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2303  	wc.version = version;
2304  
2305  	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2306  
2307  	if (sec_hi_ofs) {
2308  		wc_sec_hi = wall_nsec >> 32;
2309  		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2310  				&wc_sec_hi, sizeof(wc_sec_hi));
2311  	}
2312  
2313  	version++;
2314  	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2315  }
2316  
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2317  static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2318  				  bool old_msr, bool host_initiated)
2319  {
2320  	struct kvm_arch *ka = &vcpu->kvm->arch;
2321  
2322  	if (vcpu->vcpu_id == 0 && !host_initiated) {
2323  		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2324  			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2325  
2326  		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2327  	}
2328  
2329  	vcpu->arch.time = system_time;
2330  	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2331  
2332  	/* we verify if the enable bit is set... */
2333  	if (system_time & 1)
2334  		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2335  				 sizeof(struct pvclock_vcpu_time_info));
2336  	else
2337  		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2338  
2339  	return;
2340  }
2341  
div_frac(uint32_t dividend,uint32_t divisor)2342  static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2343  {
2344  	do_shl32_div32(dividend, divisor);
2345  	return dividend;
2346  }
2347  
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2348  static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2349  			       s8 *pshift, u32 *pmultiplier)
2350  {
2351  	uint64_t scaled64;
2352  	int32_t  shift = 0;
2353  	uint64_t tps64;
2354  	uint32_t tps32;
2355  
2356  	tps64 = base_hz;
2357  	scaled64 = scaled_hz;
2358  	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2359  		tps64 >>= 1;
2360  		shift--;
2361  	}
2362  
2363  	tps32 = (uint32_t)tps64;
2364  	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2365  		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2366  			scaled64 >>= 1;
2367  		else
2368  			tps32 <<= 1;
2369  		shift++;
2370  	}
2371  
2372  	*pshift = shift;
2373  	*pmultiplier = div_frac(scaled64, tps32);
2374  }
2375  
2376  #ifdef CONFIG_X86_64
2377  static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2378  #endif
2379  
2380  static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2381  static unsigned long max_tsc_khz;
2382  
adjust_tsc_khz(u32 khz,s32 ppm)2383  static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2384  {
2385  	u64 v = (u64)khz * (1000000 + ppm);
2386  	do_div(v, 1000000);
2387  	return v;
2388  }
2389  
2390  static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2391  
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2392  static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2393  {
2394  	u64 ratio;
2395  
2396  	/* Guest TSC same frequency as host TSC? */
2397  	if (!scale) {
2398  		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2399  		return 0;
2400  	}
2401  
2402  	/* TSC scaling supported? */
2403  	if (!kvm_caps.has_tsc_control) {
2404  		if (user_tsc_khz > tsc_khz) {
2405  			vcpu->arch.tsc_catchup = 1;
2406  			vcpu->arch.tsc_always_catchup = 1;
2407  			return 0;
2408  		} else {
2409  			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2410  			return -1;
2411  		}
2412  	}
2413  
2414  	/* TSC scaling required  - calculate ratio */
2415  	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2416  				user_tsc_khz, tsc_khz);
2417  
2418  	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2419  		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2420  			            user_tsc_khz);
2421  		return -1;
2422  	}
2423  
2424  	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2425  	return 0;
2426  }
2427  
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2428  static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2429  {
2430  	u32 thresh_lo, thresh_hi;
2431  	int use_scaling = 0;
2432  
2433  	/* tsc_khz can be zero if TSC calibration fails */
2434  	if (user_tsc_khz == 0) {
2435  		/* set tsc_scaling_ratio to a safe value */
2436  		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2437  		return -1;
2438  	}
2439  
2440  	/* Compute a scale to convert nanoseconds in TSC cycles */
2441  	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2442  			   &vcpu->arch.virtual_tsc_shift,
2443  			   &vcpu->arch.virtual_tsc_mult);
2444  	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2445  
2446  	/*
2447  	 * Compute the variation in TSC rate which is acceptable
2448  	 * within the range of tolerance and decide if the
2449  	 * rate being applied is within that bounds of the hardware
2450  	 * rate.  If so, no scaling or compensation need be done.
2451  	 */
2452  	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2453  	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2454  	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2455  		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2456  			 user_tsc_khz, thresh_lo, thresh_hi);
2457  		use_scaling = 1;
2458  	}
2459  	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2460  }
2461  
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2462  static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2463  {
2464  	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2465  				      vcpu->arch.virtual_tsc_mult,
2466  				      vcpu->arch.virtual_tsc_shift);
2467  	tsc += vcpu->arch.this_tsc_write;
2468  	return tsc;
2469  }
2470  
2471  #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2472  static inline bool gtod_is_based_on_tsc(int mode)
2473  {
2474  	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2475  }
2476  #endif
2477  
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2478  static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2479  {
2480  #ifdef CONFIG_X86_64
2481  	struct kvm_arch *ka = &vcpu->kvm->arch;
2482  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2483  
2484  	/*
2485  	 * To use the masterclock, the host clocksource must be based on TSC
2486  	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2487  	 * vCPUs doesn't include the reference vCPU, hence "+1".
2488  	 */
2489  	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2490  				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2491  				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2492  
2493  	/*
2494  	 * Request a masterclock update if the masterclock needs to be toggled
2495  	 * on/off, or when starting a new generation and the masterclock is
2496  	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2497  	 * taken _after_ the new generation is created).
2498  	 */
2499  	if ((ka->use_master_clock && new_generation) ||
2500  	    (ka->use_master_clock != use_master_clock))
2501  		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2502  
2503  	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2504  			    atomic_read(&vcpu->kvm->online_vcpus),
2505  		            ka->use_master_clock, gtod->clock.vclock_mode);
2506  #endif
2507  }
2508  
2509  /*
2510   * Multiply tsc by a fixed point number represented by ratio.
2511   *
2512   * The most significant 64-N bits (mult) of ratio represent the
2513   * integral part of the fixed point number; the remaining N bits
2514   * (frac) represent the fractional part, ie. ratio represents a fixed
2515   * point number (mult + frac * 2^(-N)).
2516   *
2517   * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2518   */
__scale_tsc(u64 ratio,u64 tsc)2519  static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2520  {
2521  	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2522  }
2523  
kvm_scale_tsc(u64 tsc,u64 ratio)2524  u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2525  {
2526  	u64 _tsc = tsc;
2527  
2528  	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2529  		_tsc = __scale_tsc(ratio, tsc);
2530  
2531  	return _tsc;
2532  }
2533  
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2534  static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2535  {
2536  	u64 tsc;
2537  
2538  	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2539  
2540  	return target_tsc - tsc;
2541  }
2542  
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2543  u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2544  {
2545  	return vcpu->arch.l1_tsc_offset +
2546  		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2547  }
2548  EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2549  
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2550  u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2551  {
2552  	u64 nested_offset;
2553  
2554  	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2555  		nested_offset = l1_offset;
2556  	else
2557  		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2558  						kvm_caps.tsc_scaling_ratio_frac_bits);
2559  
2560  	nested_offset += l2_offset;
2561  	return nested_offset;
2562  }
2563  EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2564  
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2565  u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2566  {
2567  	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2568  		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2569  				       kvm_caps.tsc_scaling_ratio_frac_bits);
2570  
2571  	return l1_multiplier;
2572  }
2573  EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2574  
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2575  static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2576  {
2577  	if (vcpu->arch.guest_tsc_protected)
2578  		return;
2579  
2580  	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2581  				   vcpu->arch.l1_tsc_offset,
2582  				   l1_offset);
2583  
2584  	vcpu->arch.l1_tsc_offset = l1_offset;
2585  
2586  	/*
2587  	 * If we are here because L1 chose not to trap WRMSR to TSC then
2588  	 * according to the spec this should set L1's TSC (as opposed to
2589  	 * setting L1's offset for L2).
2590  	 */
2591  	if (is_guest_mode(vcpu))
2592  		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2593  			l1_offset,
2594  			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2595  			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2596  	else
2597  		vcpu->arch.tsc_offset = l1_offset;
2598  
2599  	kvm_x86_call(write_tsc_offset)(vcpu);
2600  }
2601  
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2602  static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2603  {
2604  	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2605  
2606  	/* Userspace is changing the multiplier while L2 is active */
2607  	if (is_guest_mode(vcpu))
2608  		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2609  			l1_multiplier,
2610  			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2611  	else
2612  		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2613  
2614  	if (kvm_caps.has_tsc_control)
2615  		kvm_x86_call(write_tsc_multiplier)(vcpu);
2616  }
2617  
kvm_check_tsc_unstable(void)2618  static inline bool kvm_check_tsc_unstable(void)
2619  {
2620  #ifdef CONFIG_X86_64
2621  	/*
2622  	 * TSC is marked unstable when we're running on Hyper-V,
2623  	 * 'TSC page' clocksource is good.
2624  	 */
2625  	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2626  		return false;
2627  #endif
2628  	return check_tsc_unstable();
2629  }
2630  
2631  /*
2632   * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2633   * offset for the vcpu and tracks the TSC matching generation that the vcpu
2634   * participates in.
2635   */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2636  static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2637  				  u64 ns, bool matched, bool user_set_tsc)
2638  {
2639  	struct kvm *kvm = vcpu->kvm;
2640  
2641  	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2642  
2643  	if (vcpu->arch.guest_tsc_protected)
2644  		return;
2645  
2646  	if (user_set_tsc)
2647  		vcpu->kvm->arch.user_set_tsc = true;
2648  
2649  	/*
2650  	 * We also track th most recent recorded KHZ, write and time to
2651  	 * allow the matching interval to be extended at each write.
2652  	 */
2653  	kvm->arch.last_tsc_nsec = ns;
2654  	kvm->arch.last_tsc_write = tsc;
2655  	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2656  	kvm->arch.last_tsc_offset = offset;
2657  
2658  	vcpu->arch.last_guest_tsc = tsc;
2659  
2660  	kvm_vcpu_write_tsc_offset(vcpu, offset);
2661  
2662  	if (!matched) {
2663  		/*
2664  		 * We split periods of matched TSC writes into generations.
2665  		 * For each generation, we track the original measured
2666  		 * nanosecond time, offset, and write, so if TSCs are in
2667  		 * sync, we can match exact offset, and if not, we can match
2668  		 * exact software computation in compute_guest_tsc()
2669  		 *
2670  		 * These values are tracked in kvm->arch.cur_xxx variables.
2671  		 */
2672  		kvm->arch.cur_tsc_generation++;
2673  		kvm->arch.cur_tsc_nsec = ns;
2674  		kvm->arch.cur_tsc_write = tsc;
2675  		kvm->arch.cur_tsc_offset = offset;
2676  		kvm->arch.nr_vcpus_matched_tsc = 0;
2677  	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2678  		kvm->arch.nr_vcpus_matched_tsc++;
2679  	}
2680  
2681  	/* Keep track of which generation this VCPU has synchronized to */
2682  	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2683  	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2684  	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2685  
2686  	kvm_track_tsc_matching(vcpu, !matched);
2687  }
2688  
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2689  static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2690  {
2691  	u64 data = user_value ? *user_value : 0;
2692  	struct kvm *kvm = vcpu->kvm;
2693  	u64 offset, ns, elapsed;
2694  	unsigned long flags;
2695  	bool matched = false;
2696  	bool synchronizing = false;
2697  
2698  	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2699  	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2700  	ns = get_kvmclock_base_ns();
2701  	elapsed = ns - kvm->arch.last_tsc_nsec;
2702  
2703  	if (vcpu->arch.virtual_tsc_khz) {
2704  		if (data == 0) {
2705  			/*
2706  			 * Force synchronization when creating a vCPU, or when
2707  			 * userspace explicitly writes a zero value.
2708  			 */
2709  			synchronizing = true;
2710  		} else if (kvm->arch.user_set_tsc) {
2711  			u64 tsc_exp = kvm->arch.last_tsc_write +
2712  						nsec_to_cycles(vcpu, elapsed);
2713  			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2714  			/*
2715  			 * Here lies UAPI baggage: when a user-initiated TSC write has
2716  			 * a small delta (1 second) of virtual cycle time against the
2717  			 * previously set vCPU, we assume that they were intended to be
2718  			 * in sync and the delta was only due to the racy nature of the
2719  			 * legacy API.
2720  			 *
2721  			 * This trick falls down when restoring a guest which genuinely
2722  			 * has been running for less time than the 1 second of imprecision
2723  			 * which we allow for in the legacy API. In this case, the first
2724  			 * value written by userspace (on any vCPU) should not be subject
2725  			 * to this 'correction' to make it sync up with values that only
2726  			 * come from the kernel's default vCPU creation. Make the 1-second
2727  			 * slop hack only trigger if the user_set_tsc flag is already set.
2728  			 */
2729  			synchronizing = data < tsc_exp + tsc_hz &&
2730  					data + tsc_hz > tsc_exp;
2731  		}
2732  	}
2733  
2734  
2735  	/*
2736  	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2737  	 * TSC, we add elapsed time in this computation.  We could let the
2738  	 * compensation code attempt to catch up if we fall behind, but
2739  	 * it's better to try to match offsets from the beginning.
2740           */
2741  	if (synchronizing &&
2742  	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2743  		if (!kvm_check_tsc_unstable()) {
2744  			offset = kvm->arch.cur_tsc_offset;
2745  		} else {
2746  			u64 delta = nsec_to_cycles(vcpu, elapsed);
2747  			data += delta;
2748  			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2749  		}
2750  		matched = true;
2751  	}
2752  
2753  	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2754  	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2755  }
2756  
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2757  static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2758  					   s64 adjustment)
2759  {
2760  	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2761  	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2762  }
2763  
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2764  static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2765  {
2766  	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2767  		WARN_ON(adjustment < 0);
2768  	adjustment = kvm_scale_tsc((u64) adjustment,
2769  				   vcpu->arch.l1_tsc_scaling_ratio);
2770  	adjust_tsc_offset_guest(vcpu, adjustment);
2771  }
2772  
2773  #ifdef CONFIG_X86_64
2774  
read_tsc(void)2775  static u64 read_tsc(void)
2776  {
2777  	u64 ret = (u64)rdtsc_ordered();
2778  	u64 last = pvclock_gtod_data.clock.cycle_last;
2779  
2780  	if (likely(ret >= last))
2781  		return ret;
2782  
2783  	/*
2784  	 * GCC likes to generate cmov here, but this branch is extremely
2785  	 * predictable (it's just a function of time and the likely is
2786  	 * very likely) and there's a data dependence, so force GCC
2787  	 * to generate a branch instead.  I don't barrier() because
2788  	 * we don't actually need a barrier, and if this function
2789  	 * ever gets inlined it will generate worse code.
2790  	 */
2791  	asm volatile ("");
2792  	return last;
2793  }
2794  
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2795  static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2796  			  int *mode)
2797  {
2798  	u64 tsc_pg_val;
2799  	long v;
2800  
2801  	switch (clock->vclock_mode) {
2802  	case VDSO_CLOCKMODE_HVCLOCK:
2803  		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2804  					 tsc_timestamp, &tsc_pg_val)) {
2805  			/* TSC page valid */
2806  			*mode = VDSO_CLOCKMODE_HVCLOCK;
2807  			v = (tsc_pg_val - clock->cycle_last) &
2808  				clock->mask;
2809  		} else {
2810  			/* TSC page invalid */
2811  			*mode = VDSO_CLOCKMODE_NONE;
2812  		}
2813  		break;
2814  	case VDSO_CLOCKMODE_TSC:
2815  		*mode = VDSO_CLOCKMODE_TSC;
2816  		*tsc_timestamp = read_tsc();
2817  		v = (*tsc_timestamp - clock->cycle_last) &
2818  			clock->mask;
2819  		break;
2820  	default:
2821  		*mode = VDSO_CLOCKMODE_NONE;
2822  	}
2823  
2824  	if (*mode == VDSO_CLOCKMODE_NONE)
2825  		*tsc_timestamp = v = 0;
2826  
2827  	return v * clock->mult;
2828  }
2829  
2830  /*
2831   * As with get_kvmclock_base_ns(), this counts from boot time, at the
2832   * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2833   */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2834  static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2835  {
2836  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2837  	unsigned long seq;
2838  	int mode;
2839  	u64 ns;
2840  
2841  	do {
2842  		seq = read_seqcount_begin(&gtod->seq);
2843  		ns = gtod->raw_clock.base_cycles;
2844  		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2845  		ns >>= gtod->raw_clock.shift;
2846  		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2847  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2848  	*t = ns;
2849  
2850  	return mode;
2851  }
2852  
2853  /*
2854   * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2855   * no boot time offset.
2856   */
do_monotonic(s64 * t,u64 * tsc_timestamp)2857  static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2858  {
2859  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2860  	unsigned long seq;
2861  	int mode;
2862  	u64 ns;
2863  
2864  	do {
2865  		seq = read_seqcount_begin(&gtod->seq);
2866  		ns = gtod->clock.base_cycles;
2867  		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2868  		ns >>= gtod->clock.shift;
2869  		ns += ktime_to_ns(gtod->clock.offset);
2870  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2871  	*t = ns;
2872  
2873  	return mode;
2874  }
2875  
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2876  static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2877  {
2878  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2879  	unsigned long seq;
2880  	int mode;
2881  	u64 ns;
2882  
2883  	do {
2884  		seq = read_seqcount_begin(&gtod->seq);
2885  		ts->tv_sec = gtod->wall_time_sec;
2886  		ns = gtod->clock.base_cycles;
2887  		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2888  		ns >>= gtod->clock.shift;
2889  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2890  
2891  	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2892  	ts->tv_nsec = ns;
2893  
2894  	return mode;
2895  }
2896  
2897  /*
2898   * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2899   * reports the TSC value from which it do so. Returns true if host is
2900   * using TSC based clocksource.
2901   */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2902  static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2903  {
2904  	/* checked again under seqlock below */
2905  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2906  		return false;
2907  
2908  	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2909  						     tsc_timestamp));
2910  }
2911  
2912  /*
2913   * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2914   * so. Returns true if host is using TSC based clocksource.
2915   */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2916  bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2917  {
2918  	/* checked again under seqlock below */
2919  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2920  		return false;
2921  
2922  	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2923  						 tsc_timestamp));
2924  }
2925  
2926  /*
2927   * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2928   * so. Returns true if host is using TSC based clocksource.
2929   *
2930   * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2931   * for that.
2932   */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2933  static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2934  					   u64 *tsc_timestamp)
2935  {
2936  	/* checked again under seqlock below */
2937  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2938  		return false;
2939  
2940  	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2941  }
2942  #endif
2943  
2944  /*
2945   *
2946   * Assuming a stable TSC across physical CPUS, and a stable TSC
2947   * across virtual CPUs, the following condition is possible.
2948   * Each numbered line represents an event visible to both
2949   * CPUs at the next numbered event.
2950   *
2951   * "timespecX" represents host monotonic time. "tscX" represents
2952   * RDTSC value.
2953   *
2954   * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2955   *
2956   * 1.  read timespec0,tsc0
2957   * 2.					| timespec1 = timespec0 + N
2958   * 					| tsc1 = tsc0 + M
2959   * 3. transition to guest		| transition to guest
2960   * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2961   * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2962   * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2963   *
2964   * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2965   *
2966   * 	- ret0 < ret1
2967   *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2968   *		...
2969   *	- 0 < N - M => M < N
2970   *
2971   * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2972   * always the case (the difference between two distinct xtime instances
2973   * might be smaller then the difference between corresponding TSC reads,
2974   * when updating guest vcpus pvclock areas).
2975   *
2976   * To avoid that problem, do not allow visibility of distinct
2977   * system_timestamp/tsc_timestamp values simultaneously: use a master
2978   * copy of host monotonic time values. Update that master copy
2979   * in lockstep.
2980   *
2981   * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2982   *
2983   */
2984  
pvclock_update_vm_gtod_copy(struct kvm * kvm)2985  static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2986  {
2987  #ifdef CONFIG_X86_64
2988  	struct kvm_arch *ka = &kvm->arch;
2989  	int vclock_mode;
2990  	bool host_tsc_clocksource, vcpus_matched;
2991  
2992  	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2993  	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2994  			atomic_read(&kvm->online_vcpus));
2995  
2996  	/*
2997  	 * If the host uses TSC clock, then passthrough TSC as stable
2998  	 * to the guest.
2999  	 */
3000  	host_tsc_clocksource = kvm_get_time_and_clockread(
3001  					&ka->master_kernel_ns,
3002  					&ka->master_cycle_now);
3003  
3004  	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3005  				&& !ka->backwards_tsc_observed
3006  				&& !ka->boot_vcpu_runs_old_kvmclock;
3007  
3008  	if (ka->use_master_clock)
3009  		atomic_set(&kvm_guest_has_master_clock, 1);
3010  
3011  	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3012  	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3013  					vcpus_matched);
3014  #endif
3015  }
3016  
kvm_make_mclock_inprogress_request(struct kvm * kvm)3017  static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3018  {
3019  	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3020  }
3021  
__kvm_start_pvclock_update(struct kvm * kvm)3022  static void __kvm_start_pvclock_update(struct kvm *kvm)
3023  {
3024  	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3025  	write_seqcount_begin(&kvm->arch.pvclock_sc);
3026  }
3027  
kvm_start_pvclock_update(struct kvm * kvm)3028  static void kvm_start_pvclock_update(struct kvm *kvm)
3029  {
3030  	kvm_make_mclock_inprogress_request(kvm);
3031  
3032  	/* no guest entries from this point */
3033  	__kvm_start_pvclock_update(kvm);
3034  }
3035  
kvm_end_pvclock_update(struct kvm * kvm)3036  static void kvm_end_pvclock_update(struct kvm *kvm)
3037  {
3038  	struct kvm_arch *ka = &kvm->arch;
3039  	struct kvm_vcpu *vcpu;
3040  	unsigned long i;
3041  
3042  	write_seqcount_end(&ka->pvclock_sc);
3043  	raw_spin_unlock_irq(&ka->tsc_write_lock);
3044  	kvm_for_each_vcpu(i, vcpu, kvm)
3045  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3046  
3047  	/* guest entries allowed */
3048  	kvm_for_each_vcpu(i, vcpu, kvm)
3049  		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3050  }
3051  
kvm_update_masterclock(struct kvm * kvm)3052  static void kvm_update_masterclock(struct kvm *kvm)
3053  {
3054  	kvm_hv_request_tsc_page_update(kvm);
3055  	kvm_start_pvclock_update(kvm);
3056  	pvclock_update_vm_gtod_copy(kvm);
3057  	kvm_end_pvclock_update(kvm);
3058  }
3059  
3060  /*
3061   * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3062   * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3063   * can change during boot even if the TSC is constant, as it's possible for KVM
3064   * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3065   * notification when calibration completes, but practically speaking calibration
3066   * will complete before userspace is alive enough to create VMs.
3067   */
get_cpu_tsc_khz(void)3068  static unsigned long get_cpu_tsc_khz(void)
3069  {
3070  	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3071  		return tsc_khz;
3072  	else
3073  		return __this_cpu_read(cpu_tsc_khz);
3074  }
3075  
3076  /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3077  static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3078  {
3079  	struct kvm_arch *ka = &kvm->arch;
3080  	struct pvclock_vcpu_time_info hv_clock;
3081  
3082  	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3083  	get_cpu();
3084  
3085  	data->flags = 0;
3086  	if (ka->use_master_clock &&
3087  	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3088  #ifdef CONFIG_X86_64
3089  		struct timespec64 ts;
3090  
3091  		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3092  			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3093  			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3094  		} else
3095  #endif
3096  		data->host_tsc = rdtsc();
3097  
3098  		data->flags |= KVM_CLOCK_TSC_STABLE;
3099  		hv_clock.tsc_timestamp = ka->master_cycle_now;
3100  		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3101  		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3102  				   &hv_clock.tsc_shift,
3103  				   &hv_clock.tsc_to_system_mul);
3104  		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3105  	} else {
3106  		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3107  	}
3108  
3109  	put_cpu();
3110  }
3111  
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3112  static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3113  {
3114  	struct kvm_arch *ka = &kvm->arch;
3115  	unsigned seq;
3116  
3117  	do {
3118  		seq = read_seqcount_begin(&ka->pvclock_sc);
3119  		__get_kvmclock(kvm, data);
3120  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3121  }
3122  
get_kvmclock_ns(struct kvm * kvm)3123  u64 get_kvmclock_ns(struct kvm *kvm)
3124  {
3125  	struct kvm_clock_data data;
3126  
3127  	get_kvmclock(kvm, &data);
3128  	return data.clock;
3129  }
3130  
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3131  static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3132  				    struct kvm_vcpu *vcpu,
3133  				    struct gfn_to_pfn_cache *gpc,
3134  				    unsigned int offset)
3135  {
3136  	struct pvclock_vcpu_time_info *guest_hv_clock;
3137  	struct pvclock_vcpu_time_info hv_clock;
3138  	unsigned long flags;
3139  
3140  	memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3141  
3142  	read_lock_irqsave(&gpc->lock, flags);
3143  	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3144  		read_unlock_irqrestore(&gpc->lock, flags);
3145  
3146  		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3147  			return;
3148  
3149  		read_lock_irqsave(&gpc->lock, flags);
3150  	}
3151  
3152  	guest_hv_clock = (void *)(gpc->khva + offset);
3153  
3154  	/*
3155  	 * This VCPU is paused, but it's legal for a guest to read another
3156  	 * VCPU's kvmclock, so we really have to follow the specification where
3157  	 * it says that version is odd if data is being modified, and even after
3158  	 * it is consistent.
3159  	 */
3160  
3161  	guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3162  	smp_wmb();
3163  
3164  	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3165  	hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3166  
3167  	memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3168  
3169  	smp_wmb();
3170  
3171  	guest_hv_clock->version = ++hv_clock.version;
3172  
3173  	kvm_gpc_mark_dirty_in_slot(gpc);
3174  	read_unlock_irqrestore(&gpc->lock, flags);
3175  
3176  	trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3177  }
3178  
kvm_guest_time_update(struct kvm_vcpu * v)3179  int kvm_guest_time_update(struct kvm_vcpu *v)
3180  {
3181  	struct pvclock_vcpu_time_info hv_clock = {};
3182  	unsigned long flags, tgt_tsc_khz;
3183  	unsigned seq;
3184  	struct kvm_vcpu_arch *vcpu = &v->arch;
3185  	struct kvm_arch *ka = &v->kvm->arch;
3186  	s64 kernel_ns;
3187  	u64 tsc_timestamp, host_tsc;
3188  	bool use_master_clock;
3189  
3190  	kernel_ns = 0;
3191  	host_tsc = 0;
3192  
3193  	/*
3194  	 * If the host uses TSC clock, then passthrough TSC as stable
3195  	 * to the guest.
3196  	 */
3197  	do {
3198  		seq = read_seqcount_begin(&ka->pvclock_sc);
3199  		use_master_clock = ka->use_master_clock;
3200  		if (use_master_clock) {
3201  			host_tsc = ka->master_cycle_now;
3202  			kernel_ns = ka->master_kernel_ns;
3203  		}
3204  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3205  
3206  	/* Keep irq disabled to prevent changes to the clock */
3207  	local_irq_save(flags);
3208  	tgt_tsc_khz = get_cpu_tsc_khz();
3209  	if (unlikely(tgt_tsc_khz == 0)) {
3210  		local_irq_restore(flags);
3211  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3212  		return 1;
3213  	}
3214  	if (!use_master_clock) {
3215  		host_tsc = rdtsc();
3216  		kernel_ns = get_kvmclock_base_ns();
3217  	}
3218  
3219  	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3220  
3221  	/*
3222  	 * We may have to catch up the TSC to match elapsed wall clock
3223  	 * time for two reasons, even if kvmclock is used.
3224  	 *   1) CPU could have been running below the maximum TSC rate
3225  	 *   2) Broken TSC compensation resets the base at each VCPU
3226  	 *      entry to avoid unknown leaps of TSC even when running
3227  	 *      again on the same CPU.  This may cause apparent elapsed
3228  	 *      time to disappear, and the guest to stand still or run
3229  	 *	very slowly.
3230  	 */
3231  	if (vcpu->tsc_catchup) {
3232  		u64 tsc = compute_guest_tsc(v, kernel_ns);
3233  		if (tsc > tsc_timestamp) {
3234  			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3235  			tsc_timestamp = tsc;
3236  		}
3237  	}
3238  
3239  	local_irq_restore(flags);
3240  
3241  	/* With all the info we got, fill in the values */
3242  
3243  	if (kvm_caps.has_tsc_control)
3244  		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3245  					    v->arch.l1_tsc_scaling_ratio);
3246  
3247  	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3248  		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3249  				   &vcpu->pvclock_tsc_shift,
3250  				   &vcpu->pvclock_tsc_mul);
3251  		vcpu->hw_tsc_khz = tgt_tsc_khz;
3252  	}
3253  
3254  	hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3255  	hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3256  	hv_clock.tsc_timestamp = tsc_timestamp;
3257  	hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3258  	vcpu->last_guest_tsc = tsc_timestamp;
3259  
3260  	/* If the host uses TSC clocksource, then it is stable */
3261  	hv_clock.flags = 0;
3262  	if (use_master_clock)
3263  		hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3264  
3265  	if (vcpu->pv_time.active) {
3266  		/*
3267  		 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3268  		 * historic behavior is to only process the request if kvmclock
3269  		 * is active/enabled.
3270  		 */
3271  		if (vcpu->pvclock_set_guest_stopped_request) {
3272  			hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3273  			vcpu->pvclock_set_guest_stopped_request = false;
3274  		}
3275  		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3276  
3277  		hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3278  	}
3279  
3280  	kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3281  
3282  #ifdef CONFIG_KVM_XEN
3283  	/*
3284  	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3285  	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3286  	 * This default behaviour led to bugs in some guest kernels which cause
3287  	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3288  	 *
3289  	 * Note!  Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3290  	 */
3291  	if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3292  		hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3293  
3294  	if (vcpu->xen.vcpu_info_cache.active)
3295  		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3296  					offsetof(struct compat_vcpu_info, time));
3297  	if (vcpu->xen.vcpu_time_info_cache.active)
3298  		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3299  #endif
3300  	return 0;
3301  }
3302  
3303  /*
3304   * The pvclock_wall_clock ABI tells the guest the wall clock time at
3305   * which it started (i.e. its epoch, when its kvmclock was zero).
3306   *
3307   * In fact those clocks are subtly different; wall clock frequency is
3308   * adjusted by NTP and has leap seconds, while the kvmclock is a
3309   * simple function of the TSC without any such adjustment.
3310   *
3311   * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3312   * that and kvmclock, but even that would be subject to change over
3313   * time.
3314   *
3315   * Attempt to calculate the epoch at a given moment using the *same*
3316   * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3317   * wallclock and kvmclock times, and subtracting one from the other.
3318   *
3319   * Fall back to using their values at slightly different moments by
3320   * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3321   */
kvm_get_wall_clock_epoch(struct kvm * kvm)3322  uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3323  {
3324  #ifdef CONFIG_X86_64
3325  	struct pvclock_vcpu_time_info hv_clock;
3326  	struct kvm_arch *ka = &kvm->arch;
3327  	unsigned long seq, local_tsc_khz;
3328  	struct timespec64 ts;
3329  	uint64_t host_tsc;
3330  
3331  	do {
3332  		seq = read_seqcount_begin(&ka->pvclock_sc);
3333  
3334  		local_tsc_khz = 0;
3335  		if (!ka->use_master_clock)
3336  			break;
3337  
3338  		/*
3339  		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3340  		 * on the same CPU.
3341  		 */
3342  		get_cpu();
3343  
3344  		local_tsc_khz = get_cpu_tsc_khz();
3345  
3346  		if (local_tsc_khz &&
3347  		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3348  			local_tsc_khz = 0; /* Fall back to old method */
3349  
3350  		put_cpu();
3351  
3352  		/*
3353  		 * These values must be snapshotted within the seqcount loop.
3354  		 * After that, it's just mathematics which can happen on any
3355  		 * CPU at any time.
3356  		 */
3357  		hv_clock.tsc_timestamp = ka->master_cycle_now;
3358  		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3359  
3360  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3361  
3362  	/*
3363  	 * If the conditions were right, and obtaining the wallclock+TSC was
3364  	 * successful, calculate the KVM clock at the corresponding time and
3365  	 * subtract one from the other to get the guest's epoch in nanoseconds
3366  	 * since 1970-01-01.
3367  	 */
3368  	if (local_tsc_khz) {
3369  		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3370  				   &hv_clock.tsc_shift,
3371  				   &hv_clock.tsc_to_system_mul);
3372  		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3373  			__pvclock_read_cycles(&hv_clock, host_tsc);
3374  	}
3375  #endif
3376  	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3377  }
3378  
3379  /*
3380   * kvmclock updates which are isolated to a given vcpu, such as
3381   * vcpu->cpu migration, should not allow system_timestamp from
3382   * the rest of the vcpus to remain static. Otherwise ntp frequency
3383   * correction applies to one vcpu's system_timestamp but not
3384   * the others.
3385   *
3386   * So in those cases, request a kvmclock update for all vcpus.
3387   * We need to rate-limit these requests though, as they can
3388   * considerably slow guests that have a large number of vcpus.
3389   * The time for a remote vcpu to update its kvmclock is bound
3390   * by the delay we use to rate-limit the updates.
3391   */
3392  
3393  #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3394  
kvmclock_update_fn(struct work_struct * work)3395  static void kvmclock_update_fn(struct work_struct *work)
3396  {
3397  	unsigned long i;
3398  	struct delayed_work *dwork = to_delayed_work(work);
3399  	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3400  					   kvmclock_update_work);
3401  	struct kvm *kvm = container_of(ka, struct kvm, arch);
3402  	struct kvm_vcpu *vcpu;
3403  
3404  	kvm_for_each_vcpu(i, vcpu, kvm) {
3405  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3406  		kvm_vcpu_kick(vcpu);
3407  	}
3408  }
3409  
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3410  static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3411  {
3412  	struct kvm *kvm = v->kvm;
3413  
3414  	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3415  	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3416  					KVMCLOCK_UPDATE_DELAY);
3417  }
3418  
3419  #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3420  
kvmclock_sync_fn(struct work_struct * work)3421  static void kvmclock_sync_fn(struct work_struct *work)
3422  {
3423  	struct delayed_work *dwork = to_delayed_work(work);
3424  	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3425  					   kvmclock_sync_work);
3426  	struct kvm *kvm = container_of(ka, struct kvm, arch);
3427  
3428  	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3429  	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3430  					KVMCLOCK_SYNC_PERIOD);
3431  }
3432  
3433  /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3434  static bool is_mci_control_msr(u32 msr)
3435  {
3436  	return (msr & 3) == 0;
3437  }
is_mci_status_msr(u32 msr)3438  static bool is_mci_status_msr(u32 msr)
3439  {
3440  	return (msr & 3) == 1;
3441  }
3442  
3443  /*
3444   * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3445   */
can_set_mci_status(struct kvm_vcpu * vcpu)3446  static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3447  {
3448  	/* McStatusWrEn enabled? */
3449  	if (guest_cpuid_is_amd_compatible(vcpu))
3450  		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3451  
3452  	return false;
3453  }
3454  
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3455  static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3456  {
3457  	u64 mcg_cap = vcpu->arch.mcg_cap;
3458  	unsigned bank_num = mcg_cap & 0xff;
3459  	u32 msr = msr_info->index;
3460  	u64 data = msr_info->data;
3461  	u32 offset, last_msr;
3462  
3463  	switch (msr) {
3464  	case MSR_IA32_MCG_STATUS:
3465  		vcpu->arch.mcg_status = data;
3466  		break;
3467  	case MSR_IA32_MCG_CTL:
3468  		if (!(mcg_cap & MCG_CTL_P) &&
3469  		    (data || !msr_info->host_initiated))
3470  			return 1;
3471  		if (data != 0 && data != ~(u64)0)
3472  			return 1;
3473  		vcpu->arch.mcg_ctl = data;
3474  		break;
3475  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3476  		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3477  		if (msr > last_msr)
3478  			return 1;
3479  
3480  		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3481  			return 1;
3482  		/* An attempt to write a 1 to a reserved bit raises #GP */
3483  		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3484  			return 1;
3485  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3486  					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3487  		vcpu->arch.mci_ctl2_banks[offset] = data;
3488  		break;
3489  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3490  		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3491  		if (msr > last_msr)
3492  			return 1;
3493  
3494  		/*
3495  		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3496  		 * values are architecturally undefined.  But, some Linux
3497  		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3498  		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3499  		 * other bits in order to avoid an uncaught #GP in the guest.
3500  		 *
3501  		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3502  		 * single-bit ECC data errors.
3503  		 */
3504  		if (is_mci_control_msr(msr) &&
3505  		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3506  			return 1;
3507  
3508  		/*
3509  		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3510  		 * AMD-based CPUs allow non-zero values, but if and only if
3511  		 * HWCR[McStatusWrEn] is set.
3512  		 */
3513  		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3514  		    data != 0 && !can_set_mci_status(vcpu))
3515  			return 1;
3516  
3517  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3518  					    last_msr + 1 - MSR_IA32_MC0_CTL);
3519  		vcpu->arch.mce_banks[offset] = data;
3520  		break;
3521  	default:
3522  		return 1;
3523  	}
3524  	return 0;
3525  }
3526  
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3527  static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3528  {
3529  	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3530  
3531  	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3532  }
3533  
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3534  static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3535  {
3536  	gpa_t gpa = data & ~0x3f;
3537  
3538  	/* Bits 4:5 are reserved, Should be zero */
3539  	if (data & 0x30)
3540  		return 1;
3541  
3542  	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3543  	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3544  		return 1;
3545  
3546  	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3547  	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3548  		return 1;
3549  
3550  	if (!lapic_in_kernel(vcpu))
3551  		return data ? 1 : 0;
3552  
3553  	vcpu->arch.apf.msr_en_val = data;
3554  
3555  	if (!kvm_pv_async_pf_enabled(vcpu)) {
3556  		kvm_clear_async_pf_completion_queue(vcpu);
3557  		kvm_async_pf_hash_reset(vcpu);
3558  		return 0;
3559  	}
3560  
3561  	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3562  					sizeof(u64)))
3563  		return 1;
3564  
3565  	vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3566  	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3567  
3568  	kvm_async_pf_wakeup_all(vcpu);
3569  
3570  	return 0;
3571  }
3572  
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3573  static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3574  {
3575  	/* Bits 8-63 are reserved */
3576  	if (data >> 8)
3577  		return 1;
3578  
3579  	if (!lapic_in_kernel(vcpu))
3580  		return 1;
3581  
3582  	vcpu->arch.apf.msr_int_val = data;
3583  
3584  	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3585  
3586  	return 0;
3587  }
3588  
kvmclock_reset(struct kvm_vcpu * vcpu)3589  static void kvmclock_reset(struct kvm_vcpu *vcpu)
3590  {
3591  	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3592  	vcpu->arch.time = 0;
3593  }
3594  
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3595  static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3596  {
3597  	++vcpu->stat.tlb_flush;
3598  	kvm_x86_call(flush_tlb_all)(vcpu);
3599  
3600  	/* Flushing all ASIDs flushes the current ASID... */
3601  	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3602  }
3603  
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3604  static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3605  {
3606  	++vcpu->stat.tlb_flush;
3607  
3608  	if (!tdp_enabled) {
3609  		/*
3610  		 * A TLB flush on behalf of the guest is equivalent to
3611  		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3612  		 * a forced sync of the shadow page tables.  Ensure all the
3613  		 * roots are synced and the guest TLB in hardware is clean.
3614  		 */
3615  		kvm_mmu_sync_roots(vcpu);
3616  		kvm_mmu_sync_prev_roots(vcpu);
3617  	}
3618  
3619  	kvm_x86_call(flush_tlb_guest)(vcpu);
3620  
3621  	/*
3622  	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3623  	 * grained flushing.
3624  	 */
3625  	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3626  }
3627  
3628  
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3629  static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3630  {
3631  	++vcpu->stat.tlb_flush;
3632  	kvm_x86_call(flush_tlb_current)(vcpu);
3633  }
3634  
3635  /*
3636   * Service "local" TLB flush requests, which are specific to the current MMU
3637   * context.  In addition to the generic event handling in vcpu_enter_guest(),
3638   * TLB flushes that are targeted at an MMU context also need to be serviced
3639   * prior before nested VM-Enter/VM-Exit.
3640   */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3641  void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3642  {
3643  	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3644  		kvm_vcpu_flush_tlb_current(vcpu);
3645  
3646  	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3647  		kvm_vcpu_flush_tlb_guest(vcpu);
3648  }
3649  EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3650  
record_steal_time(struct kvm_vcpu * vcpu)3651  static void record_steal_time(struct kvm_vcpu *vcpu)
3652  {
3653  	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3654  	struct kvm_steal_time __user *st;
3655  	struct kvm_memslots *slots;
3656  	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3657  	u64 steal;
3658  	u32 version;
3659  
3660  	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3661  		kvm_xen_runstate_set_running(vcpu);
3662  		return;
3663  	}
3664  
3665  	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3666  		return;
3667  
3668  	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3669  		return;
3670  
3671  	slots = kvm_memslots(vcpu->kvm);
3672  
3673  	if (unlikely(slots->generation != ghc->generation ||
3674  		     gpa != ghc->gpa ||
3675  		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3676  		/* We rely on the fact that it fits in a single page. */
3677  		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3678  
3679  		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3680  		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3681  			return;
3682  	}
3683  
3684  	st = (struct kvm_steal_time __user *)ghc->hva;
3685  	/*
3686  	 * Doing a TLB flush here, on the guest's behalf, can avoid
3687  	 * expensive IPIs.
3688  	 */
3689  	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3690  		u8 st_preempted = 0;
3691  		int err = -EFAULT;
3692  
3693  		if (!user_access_begin(st, sizeof(*st)))
3694  			return;
3695  
3696  		asm volatile("1: xchgb %0, %2\n"
3697  			     "xor %1, %1\n"
3698  			     "2:\n"
3699  			     _ASM_EXTABLE_UA(1b, 2b)
3700  			     : "+q" (st_preempted),
3701  			       "+&r" (err),
3702  			       "+m" (st->preempted));
3703  		if (err)
3704  			goto out;
3705  
3706  		user_access_end();
3707  
3708  		vcpu->arch.st.preempted = 0;
3709  
3710  		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3711  				       st_preempted & KVM_VCPU_FLUSH_TLB);
3712  		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3713  			kvm_vcpu_flush_tlb_guest(vcpu);
3714  
3715  		if (!user_access_begin(st, sizeof(*st)))
3716  			goto dirty;
3717  	} else {
3718  		if (!user_access_begin(st, sizeof(*st)))
3719  			return;
3720  
3721  		unsafe_put_user(0, &st->preempted, out);
3722  		vcpu->arch.st.preempted = 0;
3723  	}
3724  
3725  	unsafe_get_user(version, &st->version, out);
3726  	if (version & 1)
3727  		version += 1;  /* first time write, random junk */
3728  
3729  	version += 1;
3730  	unsafe_put_user(version, &st->version, out);
3731  
3732  	smp_wmb();
3733  
3734  	unsafe_get_user(steal, &st->steal, out);
3735  	steal += current->sched_info.run_delay -
3736  		vcpu->arch.st.last_steal;
3737  	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3738  	unsafe_put_user(steal, &st->steal, out);
3739  
3740  	version += 1;
3741  	unsafe_put_user(version, &st->version, out);
3742  
3743   out:
3744  	user_access_end();
3745   dirty:
3746  	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3747  }
3748  
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3749  int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3750  {
3751  	u32 msr = msr_info->index;
3752  	u64 data = msr_info->data;
3753  
3754  	/*
3755  	 * Do not allow host-initiated writes to trigger the Xen hypercall
3756  	 * page setup; it could incur locking paths which are not expected
3757  	 * if userspace sets the MSR in an unusual location.
3758  	 */
3759  	if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3760  	    !msr_info->host_initiated)
3761  		return kvm_xen_write_hypercall_page(vcpu, data);
3762  
3763  	switch (msr) {
3764  	case MSR_AMD64_NB_CFG:
3765  	case MSR_IA32_UCODE_WRITE:
3766  	case MSR_VM_HSAVE_PA:
3767  	case MSR_AMD64_PATCH_LOADER:
3768  	case MSR_AMD64_BU_CFG2:
3769  	case MSR_AMD64_DC_CFG:
3770  	case MSR_AMD64_TW_CFG:
3771  	case MSR_F15H_EX_CFG:
3772  		break;
3773  
3774  	case MSR_IA32_UCODE_REV:
3775  		if (msr_info->host_initiated)
3776  			vcpu->arch.microcode_version = data;
3777  		break;
3778  	case MSR_IA32_ARCH_CAPABILITIES:
3779  		if (!msr_info->host_initiated ||
3780  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3781  			return KVM_MSR_RET_UNSUPPORTED;
3782  		vcpu->arch.arch_capabilities = data;
3783  		break;
3784  	case MSR_IA32_PERF_CAPABILITIES:
3785  		if (!msr_info->host_initiated ||
3786  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3787  			return KVM_MSR_RET_UNSUPPORTED;
3788  
3789  		if (data & ~kvm_caps.supported_perf_cap)
3790  			return 1;
3791  
3792  		/*
3793  		 * Note, this is not just a performance optimization!  KVM
3794  		 * disallows changing feature MSRs after the vCPU has run; PMU
3795  		 * refresh will bug the VM if called after the vCPU has run.
3796  		 */
3797  		if (vcpu->arch.perf_capabilities == data)
3798  			break;
3799  
3800  		vcpu->arch.perf_capabilities = data;
3801  		kvm_pmu_refresh(vcpu);
3802  		break;
3803  	case MSR_IA32_PRED_CMD: {
3804  		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3805  
3806  		if (!msr_info->host_initiated) {
3807  			if ((!guest_has_pred_cmd_msr(vcpu)))
3808  				return 1;
3809  
3810  			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3811  			    !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3812  				reserved_bits |= PRED_CMD_IBPB;
3813  
3814  			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3815  				reserved_bits |= PRED_CMD_SBPB;
3816  		}
3817  
3818  		if (!boot_cpu_has(X86_FEATURE_IBPB))
3819  			reserved_bits |= PRED_CMD_IBPB;
3820  
3821  		if (!boot_cpu_has(X86_FEATURE_SBPB))
3822  			reserved_bits |= PRED_CMD_SBPB;
3823  
3824  		if (data & reserved_bits)
3825  			return 1;
3826  
3827  		if (!data)
3828  			break;
3829  
3830  		wrmsrl(MSR_IA32_PRED_CMD, data);
3831  		break;
3832  	}
3833  	case MSR_IA32_FLUSH_CMD:
3834  		if (!msr_info->host_initiated &&
3835  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3836  			return 1;
3837  
3838  		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3839  			return 1;
3840  		if (!data)
3841  			break;
3842  
3843  		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3844  		break;
3845  	case MSR_EFER:
3846  		return set_efer(vcpu, msr_info);
3847  	case MSR_K7_HWCR:
3848  		data &= ~(u64)0x40;	/* ignore flush filter disable */
3849  		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3850  		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3851  
3852  		/*
3853  		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3854  		 * through at least v6.6 whine if TscFreqSel is clear,
3855  		 * depending on F/M/S.
3856  		 */
3857  		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3858  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3859  			return 1;
3860  		}
3861  		vcpu->arch.msr_hwcr = data;
3862  		break;
3863  	case MSR_FAM10H_MMIO_CONF_BASE:
3864  		if (data != 0) {
3865  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3866  			return 1;
3867  		}
3868  		break;
3869  	case MSR_IA32_CR_PAT:
3870  		if (!kvm_pat_valid(data))
3871  			return 1;
3872  
3873  		vcpu->arch.pat = data;
3874  		break;
3875  	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3876  	case MSR_MTRRdefType:
3877  		return kvm_mtrr_set_msr(vcpu, msr, data);
3878  	case MSR_IA32_APICBASE:
3879  		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3880  	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3881  		return kvm_x2apic_msr_write(vcpu, msr, data);
3882  	case MSR_IA32_TSC_DEADLINE:
3883  		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3884  		break;
3885  	case MSR_IA32_TSC_ADJUST:
3886  		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3887  			if (!msr_info->host_initiated) {
3888  				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3889  				adjust_tsc_offset_guest(vcpu, adj);
3890  				/* Before back to guest, tsc_timestamp must be adjusted
3891  				 * as well, otherwise guest's percpu pvclock time could jump.
3892  				 */
3893  				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3894  			}
3895  			vcpu->arch.ia32_tsc_adjust_msr = data;
3896  		}
3897  		break;
3898  	case MSR_IA32_MISC_ENABLE: {
3899  		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3900  
3901  		if (!msr_info->host_initiated) {
3902  			/* RO bits */
3903  			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3904  				return 1;
3905  
3906  			/* R bits, i.e. writes are ignored, but don't fault. */
3907  			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3908  			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3909  		}
3910  
3911  		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3912  		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3913  			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3914  				return 1;
3915  			vcpu->arch.ia32_misc_enable_msr = data;
3916  			vcpu->arch.cpuid_dynamic_bits_dirty = true;
3917  		} else {
3918  			vcpu->arch.ia32_misc_enable_msr = data;
3919  		}
3920  		break;
3921  	}
3922  	case MSR_IA32_SMBASE:
3923  		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3924  			return 1;
3925  		vcpu->arch.smbase = data;
3926  		break;
3927  	case MSR_IA32_POWER_CTL:
3928  		vcpu->arch.msr_ia32_power_ctl = data;
3929  		break;
3930  	case MSR_IA32_TSC:
3931  		if (msr_info->host_initiated) {
3932  			kvm_synchronize_tsc(vcpu, &data);
3933  		} else if (!vcpu->arch.guest_tsc_protected) {
3934  			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3935  			adjust_tsc_offset_guest(vcpu, adj);
3936  			vcpu->arch.ia32_tsc_adjust_msr += adj;
3937  		}
3938  		break;
3939  	case MSR_IA32_XSS:
3940  		if (!msr_info->host_initiated &&
3941  		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3942  			return 1;
3943  		/*
3944  		 * KVM supports exposing PT to the guest, but does not support
3945  		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3946  		 * XSAVES/XRSTORS to save/restore PT MSRs.
3947  		 */
3948  		if (data & ~kvm_caps.supported_xss)
3949  			return 1;
3950  		vcpu->arch.ia32_xss = data;
3951  		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3952  		break;
3953  	case MSR_SMI_COUNT:
3954  		if (!msr_info->host_initiated)
3955  			return 1;
3956  		vcpu->arch.smi_count = data;
3957  		break;
3958  	case MSR_KVM_WALL_CLOCK_NEW:
3959  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3960  			return 1;
3961  
3962  		vcpu->kvm->arch.wall_clock = data;
3963  		kvm_write_wall_clock(vcpu->kvm, data, 0);
3964  		break;
3965  	case MSR_KVM_WALL_CLOCK:
3966  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3967  			return 1;
3968  
3969  		vcpu->kvm->arch.wall_clock = data;
3970  		kvm_write_wall_clock(vcpu->kvm, data, 0);
3971  		break;
3972  	case MSR_KVM_SYSTEM_TIME_NEW:
3973  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3974  			return 1;
3975  
3976  		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3977  		break;
3978  	case MSR_KVM_SYSTEM_TIME:
3979  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3980  			return 1;
3981  
3982  		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3983  		break;
3984  	case MSR_KVM_ASYNC_PF_EN:
3985  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3986  			return 1;
3987  
3988  		if (kvm_pv_enable_async_pf(vcpu, data))
3989  			return 1;
3990  		break;
3991  	case MSR_KVM_ASYNC_PF_INT:
3992  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3993  			return 1;
3994  
3995  		if (kvm_pv_enable_async_pf_int(vcpu, data))
3996  			return 1;
3997  		break;
3998  	case MSR_KVM_ASYNC_PF_ACK:
3999  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4000  			return 1;
4001  		if (data & 0x1) {
4002  			vcpu->arch.apf.pageready_pending = false;
4003  			kvm_check_async_pf_completion(vcpu);
4004  		}
4005  		break;
4006  	case MSR_KVM_STEAL_TIME:
4007  		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4008  			return 1;
4009  
4010  		if (unlikely(!sched_info_on()))
4011  			return 1;
4012  
4013  		if (data & KVM_STEAL_RESERVED_MASK)
4014  			return 1;
4015  
4016  		vcpu->arch.st.msr_val = data;
4017  
4018  		if (!(data & KVM_MSR_ENABLED))
4019  			break;
4020  
4021  		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4022  
4023  		break;
4024  	case MSR_KVM_PV_EOI_EN:
4025  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4026  			return 1;
4027  
4028  		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4029  			return 1;
4030  		break;
4031  
4032  	case MSR_KVM_POLL_CONTROL:
4033  		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4034  			return 1;
4035  
4036  		/* only enable bit supported */
4037  		if (data & (-1ULL << 1))
4038  			return 1;
4039  
4040  		vcpu->arch.msr_kvm_poll_control = data;
4041  		break;
4042  
4043  	case MSR_IA32_MCG_CTL:
4044  	case MSR_IA32_MCG_STATUS:
4045  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4046  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4047  		return set_msr_mce(vcpu, msr_info);
4048  
4049  	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4050  	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4051  	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4052  	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4053  		if (kvm_pmu_is_valid_msr(vcpu, msr))
4054  			return kvm_pmu_set_msr(vcpu, msr_info);
4055  
4056  		if (data)
4057  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4058  		break;
4059  	case MSR_K7_CLK_CTL:
4060  		/*
4061  		 * Ignore all writes to this no longer documented MSR.
4062  		 * Writes are only relevant for old K7 processors,
4063  		 * all pre-dating SVM, but a recommended workaround from
4064  		 * AMD for these chips. It is possible to specify the
4065  		 * affected processor models on the command line, hence
4066  		 * the need to ignore the workaround.
4067  		 */
4068  		break;
4069  #ifdef CONFIG_KVM_HYPERV
4070  	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4071  	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4072  	case HV_X64_MSR_SYNDBG_OPTIONS:
4073  	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4074  	case HV_X64_MSR_CRASH_CTL:
4075  	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4076  	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4077  	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4078  	case HV_X64_MSR_TSC_EMULATION_STATUS:
4079  	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4080  		return kvm_hv_set_msr_common(vcpu, msr, data,
4081  					     msr_info->host_initiated);
4082  #endif
4083  	case MSR_IA32_BBL_CR_CTL3:
4084  		/* Drop writes to this legacy MSR -- see rdmsr
4085  		 * counterpart for further detail.
4086  		 */
4087  		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4088  		break;
4089  	case MSR_AMD64_OSVW_ID_LENGTH:
4090  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4091  			return 1;
4092  		vcpu->arch.osvw.length = data;
4093  		break;
4094  	case MSR_AMD64_OSVW_STATUS:
4095  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4096  			return 1;
4097  		vcpu->arch.osvw.status = data;
4098  		break;
4099  	case MSR_PLATFORM_INFO:
4100  		if (!msr_info->host_initiated)
4101  			return 1;
4102  		vcpu->arch.msr_platform_info = data;
4103  		break;
4104  	case MSR_MISC_FEATURES_ENABLES:
4105  		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4106  		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4107  		     !supports_cpuid_fault(vcpu)))
4108  			return 1;
4109  		vcpu->arch.msr_misc_features_enables = data;
4110  		break;
4111  #ifdef CONFIG_X86_64
4112  	case MSR_IA32_XFD:
4113  		if (!msr_info->host_initiated &&
4114  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4115  			return 1;
4116  
4117  		if (data & ~kvm_guest_supported_xfd(vcpu))
4118  			return 1;
4119  
4120  		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4121  		break;
4122  	case MSR_IA32_XFD_ERR:
4123  		if (!msr_info->host_initiated &&
4124  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4125  			return 1;
4126  
4127  		if (data & ~kvm_guest_supported_xfd(vcpu))
4128  			return 1;
4129  
4130  		vcpu->arch.guest_fpu.xfd_err = data;
4131  		break;
4132  #endif
4133  	default:
4134  		if (kvm_pmu_is_valid_msr(vcpu, msr))
4135  			return kvm_pmu_set_msr(vcpu, msr_info);
4136  
4137  		return KVM_MSR_RET_UNSUPPORTED;
4138  	}
4139  	return 0;
4140  }
4141  EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4142  
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4143  static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4144  {
4145  	u64 data;
4146  	u64 mcg_cap = vcpu->arch.mcg_cap;
4147  	unsigned bank_num = mcg_cap & 0xff;
4148  	u32 offset, last_msr;
4149  
4150  	switch (msr) {
4151  	case MSR_IA32_P5_MC_ADDR:
4152  	case MSR_IA32_P5_MC_TYPE:
4153  		data = 0;
4154  		break;
4155  	case MSR_IA32_MCG_CAP:
4156  		data = vcpu->arch.mcg_cap;
4157  		break;
4158  	case MSR_IA32_MCG_CTL:
4159  		if (!(mcg_cap & MCG_CTL_P) && !host)
4160  			return 1;
4161  		data = vcpu->arch.mcg_ctl;
4162  		break;
4163  	case MSR_IA32_MCG_STATUS:
4164  		data = vcpu->arch.mcg_status;
4165  		break;
4166  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4167  		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4168  		if (msr > last_msr)
4169  			return 1;
4170  
4171  		if (!(mcg_cap & MCG_CMCI_P) && !host)
4172  			return 1;
4173  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4174  					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4175  		data = vcpu->arch.mci_ctl2_banks[offset];
4176  		break;
4177  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4178  		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4179  		if (msr > last_msr)
4180  			return 1;
4181  
4182  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4183  					    last_msr + 1 - MSR_IA32_MC0_CTL);
4184  		data = vcpu->arch.mce_banks[offset];
4185  		break;
4186  	default:
4187  		return 1;
4188  	}
4189  	*pdata = data;
4190  	return 0;
4191  }
4192  
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4193  int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4194  {
4195  	switch (msr_info->index) {
4196  	case MSR_IA32_PLATFORM_ID:
4197  	case MSR_IA32_EBL_CR_POWERON:
4198  	case MSR_IA32_LASTBRANCHFROMIP:
4199  	case MSR_IA32_LASTBRANCHTOIP:
4200  	case MSR_IA32_LASTINTFROMIP:
4201  	case MSR_IA32_LASTINTTOIP:
4202  	case MSR_AMD64_SYSCFG:
4203  	case MSR_K8_TSEG_ADDR:
4204  	case MSR_K8_TSEG_MASK:
4205  	case MSR_VM_HSAVE_PA:
4206  	case MSR_K8_INT_PENDING_MSG:
4207  	case MSR_AMD64_NB_CFG:
4208  	case MSR_FAM10H_MMIO_CONF_BASE:
4209  	case MSR_AMD64_BU_CFG2:
4210  	case MSR_IA32_PERF_CTL:
4211  	case MSR_AMD64_DC_CFG:
4212  	case MSR_AMD64_TW_CFG:
4213  	case MSR_F15H_EX_CFG:
4214  	/*
4215  	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4216  	 * limit) MSRs. Just return 0, as we do not want to expose the host
4217  	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4218  	 * so for existing CPU-specific MSRs.
4219  	 */
4220  	case MSR_RAPL_POWER_UNIT:
4221  	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4222  	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4223  	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4224  	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4225  		msr_info->data = 0;
4226  		break;
4227  	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4228  	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4229  	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4230  	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4231  		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4232  			return kvm_pmu_get_msr(vcpu, msr_info);
4233  		msr_info->data = 0;
4234  		break;
4235  	case MSR_IA32_UCODE_REV:
4236  		msr_info->data = vcpu->arch.microcode_version;
4237  		break;
4238  	case MSR_IA32_ARCH_CAPABILITIES:
4239  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4240  			return KVM_MSR_RET_UNSUPPORTED;
4241  		msr_info->data = vcpu->arch.arch_capabilities;
4242  		break;
4243  	case MSR_IA32_PERF_CAPABILITIES:
4244  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4245  			return KVM_MSR_RET_UNSUPPORTED;
4246  		msr_info->data = vcpu->arch.perf_capabilities;
4247  		break;
4248  	case MSR_IA32_POWER_CTL:
4249  		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4250  		break;
4251  	case MSR_IA32_TSC: {
4252  		/*
4253  		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4254  		 * even when not intercepted. AMD manual doesn't explicitly
4255  		 * state this but appears to behave the same.
4256  		 *
4257  		 * On userspace reads and writes, however, we unconditionally
4258  		 * return L1's TSC value to ensure backwards-compatible
4259  		 * behavior for migration.
4260  		 */
4261  		u64 offset, ratio;
4262  
4263  		if (msr_info->host_initiated) {
4264  			offset = vcpu->arch.l1_tsc_offset;
4265  			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4266  		} else {
4267  			offset = vcpu->arch.tsc_offset;
4268  			ratio = vcpu->arch.tsc_scaling_ratio;
4269  		}
4270  
4271  		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4272  		break;
4273  	}
4274  	case MSR_IA32_CR_PAT:
4275  		msr_info->data = vcpu->arch.pat;
4276  		break;
4277  	case MSR_MTRRcap:
4278  	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4279  	case MSR_MTRRdefType:
4280  		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4281  	case 0xcd: /* fsb frequency */
4282  		msr_info->data = 3;
4283  		break;
4284  		/*
4285  		 * MSR_EBC_FREQUENCY_ID
4286  		 * Conservative value valid for even the basic CPU models.
4287  		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4288  		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4289  		 * and 266MHz for model 3, or 4. Set Core Clock
4290  		 * Frequency to System Bus Frequency Ratio to 1 (bits
4291  		 * 31:24) even though these are only valid for CPU
4292  		 * models > 2, however guests may end up dividing or
4293  		 * multiplying by zero otherwise.
4294  		 */
4295  	case MSR_EBC_FREQUENCY_ID:
4296  		msr_info->data = 1 << 24;
4297  		break;
4298  	case MSR_IA32_APICBASE:
4299  		msr_info->data = vcpu->arch.apic_base;
4300  		break;
4301  	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4302  		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4303  	case MSR_IA32_TSC_DEADLINE:
4304  		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4305  		break;
4306  	case MSR_IA32_TSC_ADJUST:
4307  		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4308  		break;
4309  	case MSR_IA32_MISC_ENABLE:
4310  		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4311  		break;
4312  	case MSR_IA32_SMBASE:
4313  		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4314  			return 1;
4315  		msr_info->data = vcpu->arch.smbase;
4316  		break;
4317  	case MSR_SMI_COUNT:
4318  		msr_info->data = vcpu->arch.smi_count;
4319  		break;
4320  	case MSR_IA32_PERF_STATUS:
4321  		/* TSC increment by tick */
4322  		msr_info->data = 1000ULL;
4323  		/* CPU multiplier */
4324  		msr_info->data |= (((uint64_t)4ULL) << 40);
4325  		break;
4326  	case MSR_EFER:
4327  		msr_info->data = vcpu->arch.efer;
4328  		break;
4329  	case MSR_KVM_WALL_CLOCK:
4330  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4331  			return 1;
4332  
4333  		msr_info->data = vcpu->kvm->arch.wall_clock;
4334  		break;
4335  	case MSR_KVM_WALL_CLOCK_NEW:
4336  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4337  			return 1;
4338  
4339  		msr_info->data = vcpu->kvm->arch.wall_clock;
4340  		break;
4341  	case MSR_KVM_SYSTEM_TIME:
4342  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4343  			return 1;
4344  
4345  		msr_info->data = vcpu->arch.time;
4346  		break;
4347  	case MSR_KVM_SYSTEM_TIME_NEW:
4348  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4349  			return 1;
4350  
4351  		msr_info->data = vcpu->arch.time;
4352  		break;
4353  	case MSR_KVM_ASYNC_PF_EN:
4354  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4355  			return 1;
4356  
4357  		msr_info->data = vcpu->arch.apf.msr_en_val;
4358  		break;
4359  	case MSR_KVM_ASYNC_PF_INT:
4360  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4361  			return 1;
4362  
4363  		msr_info->data = vcpu->arch.apf.msr_int_val;
4364  		break;
4365  	case MSR_KVM_ASYNC_PF_ACK:
4366  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4367  			return 1;
4368  
4369  		msr_info->data = 0;
4370  		break;
4371  	case MSR_KVM_STEAL_TIME:
4372  		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4373  			return 1;
4374  
4375  		msr_info->data = vcpu->arch.st.msr_val;
4376  		break;
4377  	case MSR_KVM_PV_EOI_EN:
4378  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4379  			return 1;
4380  
4381  		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4382  		break;
4383  	case MSR_KVM_POLL_CONTROL:
4384  		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4385  			return 1;
4386  
4387  		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4388  		break;
4389  	case MSR_IA32_P5_MC_ADDR:
4390  	case MSR_IA32_P5_MC_TYPE:
4391  	case MSR_IA32_MCG_CAP:
4392  	case MSR_IA32_MCG_CTL:
4393  	case MSR_IA32_MCG_STATUS:
4394  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4395  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4396  		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4397  				   msr_info->host_initiated);
4398  	case MSR_IA32_XSS:
4399  		if (!msr_info->host_initiated &&
4400  		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4401  			return 1;
4402  		msr_info->data = vcpu->arch.ia32_xss;
4403  		break;
4404  	case MSR_K7_CLK_CTL:
4405  		/*
4406  		 * Provide expected ramp-up count for K7. All other
4407  		 * are set to zero, indicating minimum divisors for
4408  		 * every field.
4409  		 *
4410  		 * This prevents guest kernels on AMD host with CPU
4411  		 * type 6, model 8 and higher from exploding due to
4412  		 * the rdmsr failing.
4413  		 */
4414  		msr_info->data = 0x20000000;
4415  		break;
4416  #ifdef CONFIG_KVM_HYPERV
4417  	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4418  	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4419  	case HV_X64_MSR_SYNDBG_OPTIONS:
4420  	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4421  	case HV_X64_MSR_CRASH_CTL:
4422  	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4423  	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4424  	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4425  	case HV_X64_MSR_TSC_EMULATION_STATUS:
4426  	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4427  		return kvm_hv_get_msr_common(vcpu,
4428  					     msr_info->index, &msr_info->data,
4429  					     msr_info->host_initiated);
4430  #endif
4431  	case MSR_IA32_BBL_CR_CTL3:
4432  		/* This legacy MSR exists but isn't fully documented in current
4433  		 * silicon.  It is however accessed by winxp in very narrow
4434  		 * scenarios where it sets bit #19, itself documented as
4435  		 * a "reserved" bit.  Best effort attempt to source coherent
4436  		 * read data here should the balance of the register be
4437  		 * interpreted by the guest:
4438  		 *
4439  		 * L2 cache control register 3: 64GB range, 256KB size,
4440  		 * enabled, latency 0x1, configured
4441  		 */
4442  		msr_info->data = 0xbe702111;
4443  		break;
4444  	case MSR_AMD64_OSVW_ID_LENGTH:
4445  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4446  			return 1;
4447  		msr_info->data = vcpu->arch.osvw.length;
4448  		break;
4449  	case MSR_AMD64_OSVW_STATUS:
4450  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4451  			return 1;
4452  		msr_info->data = vcpu->arch.osvw.status;
4453  		break;
4454  	case MSR_PLATFORM_INFO:
4455  		if (!msr_info->host_initiated &&
4456  		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4457  			return 1;
4458  		msr_info->data = vcpu->arch.msr_platform_info;
4459  		break;
4460  	case MSR_MISC_FEATURES_ENABLES:
4461  		msr_info->data = vcpu->arch.msr_misc_features_enables;
4462  		break;
4463  	case MSR_K7_HWCR:
4464  		msr_info->data = vcpu->arch.msr_hwcr;
4465  		break;
4466  #ifdef CONFIG_X86_64
4467  	case MSR_IA32_XFD:
4468  		if (!msr_info->host_initiated &&
4469  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4470  			return 1;
4471  
4472  		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4473  		break;
4474  	case MSR_IA32_XFD_ERR:
4475  		if (!msr_info->host_initiated &&
4476  		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4477  			return 1;
4478  
4479  		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4480  		break;
4481  #endif
4482  	default:
4483  		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4484  			return kvm_pmu_get_msr(vcpu, msr_info);
4485  
4486  		return KVM_MSR_RET_UNSUPPORTED;
4487  	}
4488  	return 0;
4489  }
4490  EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4491  
4492  /*
4493   * Read or write a bunch of msrs. All parameters are kernel addresses.
4494   *
4495   * @return number of msrs set successfully.
4496   */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4497  static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4498  		    struct kvm_msr_entry *entries,
4499  		    int (*do_msr)(struct kvm_vcpu *vcpu,
4500  				  unsigned index, u64 *data))
4501  {
4502  	int i;
4503  
4504  	for (i = 0; i < msrs->nmsrs; ++i)
4505  		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4506  			break;
4507  
4508  	return i;
4509  }
4510  
4511  /*
4512   * Read or write a bunch of msrs. Parameters are user addresses.
4513   *
4514   * @return number of msrs set successfully.
4515   */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4516  static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4517  		  int (*do_msr)(struct kvm_vcpu *vcpu,
4518  				unsigned index, u64 *data),
4519  		  int writeback)
4520  {
4521  	struct kvm_msrs msrs;
4522  	struct kvm_msr_entry *entries;
4523  	unsigned size;
4524  	int r;
4525  
4526  	r = -EFAULT;
4527  	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4528  		goto out;
4529  
4530  	r = -E2BIG;
4531  	if (msrs.nmsrs >= MAX_IO_MSRS)
4532  		goto out;
4533  
4534  	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4535  	entries = memdup_user(user_msrs->entries, size);
4536  	if (IS_ERR(entries)) {
4537  		r = PTR_ERR(entries);
4538  		goto out;
4539  	}
4540  
4541  	r = __msr_io(vcpu, &msrs, entries, do_msr);
4542  
4543  	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4544  		r = -EFAULT;
4545  
4546  	kfree(entries);
4547  out:
4548  	return r;
4549  }
4550  
kvm_can_mwait_in_guest(void)4551  static inline bool kvm_can_mwait_in_guest(void)
4552  {
4553  	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4554  		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4555  		boot_cpu_has(X86_FEATURE_ARAT);
4556  }
4557  
kvm_get_allowed_disable_exits(void)4558  static u64 kvm_get_allowed_disable_exits(void)
4559  {
4560  	u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4561  
4562  	if (!mitigate_smt_rsb) {
4563  		r |= KVM_X86_DISABLE_EXITS_HLT |
4564  			KVM_X86_DISABLE_EXITS_CSTATE;
4565  
4566  		if (kvm_can_mwait_in_guest())
4567  			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4568  	}
4569  	return r;
4570  }
4571  
4572  #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4573  static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4574  					    struct kvm_cpuid2 __user *cpuid_arg)
4575  {
4576  	struct kvm_cpuid2 cpuid;
4577  	int r;
4578  
4579  	r = -EFAULT;
4580  	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4581  		return r;
4582  
4583  	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4584  	if (r)
4585  		return r;
4586  
4587  	r = -EFAULT;
4588  	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4589  		return r;
4590  
4591  	return 0;
4592  }
4593  #endif
4594  
kvm_is_vm_type_supported(unsigned long type)4595  static bool kvm_is_vm_type_supported(unsigned long type)
4596  {
4597  	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4598  }
4599  
kvm_sync_valid_fields(struct kvm * kvm)4600  static inline u32 kvm_sync_valid_fields(struct kvm *kvm)
4601  {
4602  	return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4603  }
4604  
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4605  int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4606  {
4607  	int r = 0;
4608  
4609  	switch (ext) {
4610  	case KVM_CAP_IRQCHIP:
4611  	case KVM_CAP_HLT:
4612  	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4613  	case KVM_CAP_SET_TSS_ADDR:
4614  	case KVM_CAP_EXT_CPUID:
4615  	case KVM_CAP_EXT_EMUL_CPUID:
4616  	case KVM_CAP_CLOCKSOURCE:
4617  	case KVM_CAP_PIT:
4618  	case KVM_CAP_NOP_IO_DELAY:
4619  	case KVM_CAP_MP_STATE:
4620  	case KVM_CAP_SYNC_MMU:
4621  	case KVM_CAP_USER_NMI:
4622  	case KVM_CAP_REINJECT_CONTROL:
4623  	case KVM_CAP_IRQ_INJECT_STATUS:
4624  	case KVM_CAP_IOEVENTFD:
4625  	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4626  	case KVM_CAP_PIT2:
4627  	case KVM_CAP_PIT_STATE2:
4628  	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4629  	case KVM_CAP_VCPU_EVENTS:
4630  #ifdef CONFIG_KVM_HYPERV
4631  	case KVM_CAP_HYPERV:
4632  	case KVM_CAP_HYPERV_VAPIC:
4633  	case KVM_CAP_HYPERV_SPIN:
4634  	case KVM_CAP_HYPERV_TIME:
4635  	case KVM_CAP_HYPERV_SYNIC:
4636  	case KVM_CAP_HYPERV_SYNIC2:
4637  	case KVM_CAP_HYPERV_VP_INDEX:
4638  	case KVM_CAP_HYPERV_EVENTFD:
4639  	case KVM_CAP_HYPERV_TLBFLUSH:
4640  	case KVM_CAP_HYPERV_SEND_IPI:
4641  	case KVM_CAP_HYPERV_CPUID:
4642  	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4643  	case KVM_CAP_SYS_HYPERV_CPUID:
4644  #endif
4645  	case KVM_CAP_PCI_SEGMENT:
4646  	case KVM_CAP_DEBUGREGS:
4647  	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4648  	case KVM_CAP_XSAVE:
4649  	case KVM_CAP_ASYNC_PF:
4650  	case KVM_CAP_ASYNC_PF_INT:
4651  	case KVM_CAP_GET_TSC_KHZ:
4652  	case KVM_CAP_KVMCLOCK_CTRL:
4653  	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4654  	case KVM_CAP_TSC_DEADLINE_TIMER:
4655  	case KVM_CAP_DISABLE_QUIRKS:
4656  	case KVM_CAP_SET_BOOT_CPU_ID:
4657   	case KVM_CAP_SPLIT_IRQCHIP:
4658  	case KVM_CAP_IMMEDIATE_EXIT:
4659  	case KVM_CAP_PMU_EVENT_FILTER:
4660  	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4661  	case KVM_CAP_GET_MSR_FEATURES:
4662  	case KVM_CAP_MSR_PLATFORM_INFO:
4663  	case KVM_CAP_EXCEPTION_PAYLOAD:
4664  	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4665  	case KVM_CAP_SET_GUEST_DEBUG:
4666  	case KVM_CAP_LAST_CPU:
4667  	case KVM_CAP_X86_USER_SPACE_MSR:
4668  	case KVM_CAP_X86_MSR_FILTER:
4669  	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4670  #ifdef CONFIG_X86_SGX_KVM
4671  	case KVM_CAP_SGX_ATTRIBUTE:
4672  #endif
4673  	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4674  	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4675  	case KVM_CAP_SREGS2:
4676  	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4677  	case KVM_CAP_VCPU_ATTRIBUTES:
4678  	case KVM_CAP_SYS_ATTRIBUTES:
4679  	case KVM_CAP_VAPIC:
4680  	case KVM_CAP_ENABLE_CAP:
4681  	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4682  	case KVM_CAP_IRQFD_RESAMPLE:
4683  	case KVM_CAP_MEMORY_FAULT_INFO:
4684  	case KVM_CAP_X86_GUEST_MODE:
4685  		r = 1;
4686  		break;
4687  	case KVM_CAP_PRE_FAULT_MEMORY:
4688  		r = tdp_enabled;
4689  		break;
4690  	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4691  		r = APIC_BUS_CYCLE_NS_DEFAULT;
4692  		break;
4693  	case KVM_CAP_EXIT_HYPERCALL:
4694  		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4695  		break;
4696  	case KVM_CAP_SET_GUEST_DEBUG2:
4697  		return KVM_GUESTDBG_VALID_MASK;
4698  #ifdef CONFIG_KVM_XEN
4699  	case KVM_CAP_XEN_HVM:
4700  		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4701  		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4702  		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4703  		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4704  		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4705  		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4706  		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4707  		if (sched_info_on())
4708  			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4709  			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4710  		break;
4711  #endif
4712  	case KVM_CAP_SYNC_REGS:
4713  		r = kvm_sync_valid_fields(kvm);
4714  		break;
4715  	case KVM_CAP_ADJUST_CLOCK:
4716  		r = KVM_CLOCK_VALID_FLAGS;
4717  		break;
4718  	case KVM_CAP_X86_DISABLE_EXITS:
4719  		r = kvm_get_allowed_disable_exits();
4720  		break;
4721  	case KVM_CAP_X86_SMM:
4722  		if (!IS_ENABLED(CONFIG_KVM_SMM))
4723  			break;
4724  
4725  		/* SMBASE is usually relocated above 1M on modern chipsets,
4726  		 * and SMM handlers might indeed rely on 4G segment limits,
4727  		 * so do not report SMM to be available if real mode is
4728  		 * emulated via vm86 mode.  Still, do not go to great lengths
4729  		 * to avoid userspace's usage of the feature, because it is a
4730  		 * fringe case that is not enabled except via specific settings
4731  		 * of the module parameters.
4732  		 */
4733  		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4734  		break;
4735  	case KVM_CAP_NR_VCPUS:
4736  		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4737  		break;
4738  	case KVM_CAP_MAX_VCPUS:
4739  		r = KVM_MAX_VCPUS;
4740  		break;
4741  	case KVM_CAP_MAX_VCPU_ID:
4742  		r = KVM_MAX_VCPU_IDS;
4743  		break;
4744  	case KVM_CAP_PV_MMU:	/* obsolete */
4745  		r = 0;
4746  		break;
4747  	case KVM_CAP_MCE:
4748  		r = KVM_MAX_MCE_BANKS;
4749  		break;
4750  	case KVM_CAP_XCRS:
4751  		r = boot_cpu_has(X86_FEATURE_XSAVE);
4752  		break;
4753  	case KVM_CAP_TSC_CONTROL:
4754  	case KVM_CAP_VM_TSC_CONTROL:
4755  		r = kvm_caps.has_tsc_control;
4756  		break;
4757  	case KVM_CAP_X2APIC_API:
4758  		r = KVM_X2APIC_API_VALID_FLAGS;
4759  		break;
4760  	case KVM_CAP_NESTED_STATE:
4761  		r = kvm_x86_ops.nested_ops->get_state ?
4762  			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4763  		break;
4764  #ifdef CONFIG_KVM_HYPERV
4765  	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4766  		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4767  		break;
4768  	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4769  		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4770  		break;
4771  #endif
4772  	case KVM_CAP_SMALLER_MAXPHYADDR:
4773  		r = (int) allow_smaller_maxphyaddr;
4774  		break;
4775  	case KVM_CAP_STEAL_TIME:
4776  		r = sched_info_on();
4777  		break;
4778  	case KVM_CAP_X86_BUS_LOCK_EXIT:
4779  		if (kvm_caps.has_bus_lock_exit)
4780  			r = KVM_BUS_LOCK_DETECTION_OFF |
4781  			    KVM_BUS_LOCK_DETECTION_EXIT;
4782  		else
4783  			r = 0;
4784  		break;
4785  	case KVM_CAP_XSAVE2: {
4786  		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4787  		if (r < sizeof(struct kvm_xsave))
4788  			r = sizeof(struct kvm_xsave);
4789  		break;
4790  	}
4791  	case KVM_CAP_PMU_CAPABILITY:
4792  		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4793  		break;
4794  	case KVM_CAP_DISABLE_QUIRKS2:
4795  		r = KVM_X86_VALID_QUIRKS;
4796  		break;
4797  	case KVM_CAP_X86_NOTIFY_VMEXIT:
4798  		r = kvm_caps.has_notify_vmexit;
4799  		break;
4800  	case KVM_CAP_VM_TYPES:
4801  		r = kvm_caps.supported_vm_types;
4802  		break;
4803  	case KVM_CAP_READONLY_MEM:
4804  		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4805  		break;
4806  	default:
4807  		break;
4808  	}
4809  	return r;
4810  }
4811  
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4812  static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4813  {
4814  	if (attr->group) {
4815  		if (kvm_x86_ops.dev_get_attr)
4816  			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4817  		return -ENXIO;
4818  	}
4819  
4820  	switch (attr->attr) {
4821  	case KVM_X86_XCOMP_GUEST_SUPP:
4822  		*val = kvm_caps.supported_xcr0;
4823  		return 0;
4824  	default:
4825  		return -ENXIO;
4826  	}
4827  }
4828  
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4829  static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4830  {
4831  	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4832  	int r;
4833  	u64 val;
4834  
4835  	r = __kvm_x86_dev_get_attr(attr, &val);
4836  	if (r < 0)
4837  		return r;
4838  
4839  	if (put_user(val, uaddr))
4840  		return -EFAULT;
4841  
4842  	return 0;
4843  }
4844  
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4845  static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4846  {
4847  	u64 val;
4848  
4849  	return __kvm_x86_dev_get_attr(attr, &val);
4850  }
4851  
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4852  long kvm_arch_dev_ioctl(struct file *filp,
4853  			unsigned int ioctl, unsigned long arg)
4854  {
4855  	void __user *argp = (void __user *)arg;
4856  	long r;
4857  
4858  	switch (ioctl) {
4859  	case KVM_GET_MSR_INDEX_LIST: {
4860  		struct kvm_msr_list __user *user_msr_list = argp;
4861  		struct kvm_msr_list msr_list;
4862  		unsigned n;
4863  
4864  		r = -EFAULT;
4865  		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4866  			goto out;
4867  		n = msr_list.nmsrs;
4868  		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4869  		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4870  			goto out;
4871  		r = -E2BIG;
4872  		if (n < msr_list.nmsrs)
4873  			goto out;
4874  		r = -EFAULT;
4875  		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4876  				 num_msrs_to_save * sizeof(u32)))
4877  			goto out;
4878  		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4879  				 &emulated_msrs,
4880  				 num_emulated_msrs * sizeof(u32)))
4881  			goto out;
4882  		r = 0;
4883  		break;
4884  	}
4885  	case KVM_GET_SUPPORTED_CPUID:
4886  	case KVM_GET_EMULATED_CPUID: {
4887  		struct kvm_cpuid2 __user *cpuid_arg = argp;
4888  		struct kvm_cpuid2 cpuid;
4889  
4890  		r = -EFAULT;
4891  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4892  			goto out;
4893  
4894  		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4895  					    ioctl);
4896  		if (r)
4897  			goto out;
4898  
4899  		r = -EFAULT;
4900  		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4901  			goto out;
4902  		r = 0;
4903  		break;
4904  	}
4905  	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4906  		r = -EFAULT;
4907  		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4908  				 sizeof(kvm_caps.supported_mce_cap)))
4909  			goto out;
4910  		r = 0;
4911  		break;
4912  	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4913  		struct kvm_msr_list __user *user_msr_list = argp;
4914  		struct kvm_msr_list msr_list;
4915  		unsigned int n;
4916  
4917  		r = -EFAULT;
4918  		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4919  			goto out;
4920  		n = msr_list.nmsrs;
4921  		msr_list.nmsrs = num_msr_based_features;
4922  		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4923  			goto out;
4924  		r = -E2BIG;
4925  		if (n < msr_list.nmsrs)
4926  			goto out;
4927  		r = -EFAULT;
4928  		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4929  				 num_msr_based_features * sizeof(u32)))
4930  			goto out;
4931  		r = 0;
4932  		break;
4933  	}
4934  	case KVM_GET_MSRS:
4935  		r = msr_io(NULL, argp, do_get_feature_msr, 1);
4936  		break;
4937  #ifdef CONFIG_KVM_HYPERV
4938  	case KVM_GET_SUPPORTED_HV_CPUID:
4939  		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4940  		break;
4941  #endif
4942  	case KVM_GET_DEVICE_ATTR: {
4943  		struct kvm_device_attr attr;
4944  		r = -EFAULT;
4945  		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4946  			break;
4947  		r = kvm_x86_dev_get_attr(&attr);
4948  		break;
4949  	}
4950  	case KVM_HAS_DEVICE_ATTR: {
4951  		struct kvm_device_attr attr;
4952  		r = -EFAULT;
4953  		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4954  			break;
4955  		r = kvm_x86_dev_has_attr(&attr);
4956  		break;
4957  	}
4958  	default:
4959  		r = -EINVAL;
4960  		break;
4961  	}
4962  out:
4963  	return r;
4964  }
4965  
wbinvd_ipi(void * garbage)4966  static void wbinvd_ipi(void *garbage)
4967  {
4968  	wbinvd();
4969  }
4970  
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4971  static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4972  {
4973  	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4974  }
4975  
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4976  void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4977  {
4978  	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4979  
4980  	vcpu->arch.l1tf_flush_l1d = true;
4981  
4982  	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4983  		pmu->need_cleanup = true;
4984  		kvm_make_request(KVM_REQ_PMU, vcpu);
4985  	}
4986  
4987  	/* Address WBINVD may be executed by guest */
4988  	if (need_emulate_wbinvd(vcpu)) {
4989  		if (kvm_x86_call(has_wbinvd_exit)())
4990  			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4991  		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4992  			smp_call_function_single(vcpu->cpu,
4993  					wbinvd_ipi, NULL, 1);
4994  	}
4995  
4996  	kvm_x86_call(vcpu_load)(vcpu, cpu);
4997  
4998  	/* Save host pkru register if supported */
4999  	vcpu->arch.host_pkru = read_pkru();
5000  
5001  	/* Apply any externally detected TSC adjustments (due to suspend) */
5002  	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5003  		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5004  		vcpu->arch.tsc_offset_adjustment = 0;
5005  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5006  	}
5007  
5008  	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5009  		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5010  				rdtsc() - vcpu->arch.last_host_tsc;
5011  		if (tsc_delta < 0)
5012  			mark_tsc_unstable("KVM discovered backwards TSC");
5013  
5014  		if (kvm_check_tsc_unstable()) {
5015  			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5016  						vcpu->arch.last_guest_tsc);
5017  			kvm_vcpu_write_tsc_offset(vcpu, offset);
5018  			if (!vcpu->arch.guest_tsc_protected)
5019  				vcpu->arch.tsc_catchup = 1;
5020  		}
5021  
5022  		if (kvm_lapic_hv_timer_in_use(vcpu))
5023  			kvm_lapic_restart_hv_timer(vcpu);
5024  
5025  		/*
5026  		 * On a host with synchronized TSC, there is no need to update
5027  		 * kvmclock on vcpu->cpu migration
5028  		 */
5029  		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5030  			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5031  		if (vcpu->cpu != cpu)
5032  			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5033  		vcpu->cpu = cpu;
5034  	}
5035  
5036  	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5037  }
5038  
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5039  static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5040  {
5041  	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5042  	struct kvm_steal_time __user *st;
5043  	struct kvm_memslots *slots;
5044  	static const u8 preempted = KVM_VCPU_PREEMPTED;
5045  	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5046  
5047  	/*
5048  	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5049  	 * an instruction boundary and will not trigger guest emulation of any
5050  	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5051  	 * when this is true, for example allowing the vCPU to be marked
5052  	 * preempted if and only if the VM-Exit was due to a host interrupt.
5053  	 */
5054  	if (!vcpu->arch.at_instruction_boundary) {
5055  		vcpu->stat.preemption_other++;
5056  		return;
5057  	}
5058  
5059  	vcpu->stat.preemption_reported++;
5060  	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5061  		return;
5062  
5063  	if (vcpu->arch.st.preempted)
5064  		return;
5065  
5066  	/* This happens on process exit */
5067  	if (unlikely(current->mm != vcpu->kvm->mm))
5068  		return;
5069  
5070  	slots = kvm_memslots(vcpu->kvm);
5071  
5072  	if (unlikely(slots->generation != ghc->generation ||
5073  		     gpa != ghc->gpa ||
5074  		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5075  		return;
5076  
5077  	st = (struct kvm_steal_time __user *)ghc->hva;
5078  	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5079  
5080  	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5081  		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5082  
5083  	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5084  }
5085  
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5086  void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5087  {
5088  	int idx;
5089  
5090  	if (vcpu->preempted) {
5091  		/*
5092  		 * Assume protected guests are in-kernel.  Inefficient yielding
5093  		 * due to false positives is preferable to never yielding due
5094  		 * to false negatives.
5095  		 */
5096  		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5097  						 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5098  
5099  		/*
5100  		 * Take the srcu lock as memslots will be accessed to check the gfn
5101  		 * cache generation against the memslots generation.
5102  		 */
5103  		idx = srcu_read_lock(&vcpu->kvm->srcu);
5104  		if (kvm_xen_msr_enabled(vcpu->kvm))
5105  			kvm_xen_runstate_set_preempted(vcpu);
5106  		else
5107  			kvm_steal_time_set_preempted(vcpu);
5108  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5109  	}
5110  
5111  	kvm_x86_call(vcpu_put)(vcpu);
5112  	vcpu->arch.last_host_tsc = rdtsc();
5113  }
5114  
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5115  static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5116  				    struct kvm_lapic_state *s)
5117  {
5118  	kvm_x86_call(sync_pir_to_irr)(vcpu);
5119  
5120  	return kvm_apic_get_state(vcpu, s);
5121  }
5122  
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5123  static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5124  				    struct kvm_lapic_state *s)
5125  {
5126  	int r;
5127  
5128  	r = kvm_apic_set_state(vcpu, s);
5129  	if (r)
5130  		return r;
5131  	update_cr8_intercept(vcpu);
5132  
5133  	return 0;
5134  }
5135  
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5136  static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5137  {
5138  	/*
5139  	 * We can accept userspace's request for interrupt injection
5140  	 * as long as we have a place to store the interrupt number.
5141  	 * The actual injection will happen when the CPU is able to
5142  	 * deliver the interrupt.
5143  	 */
5144  	if (kvm_cpu_has_extint(vcpu))
5145  		return false;
5146  
5147  	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5148  	return (!lapic_in_kernel(vcpu) ||
5149  		kvm_apic_accept_pic_intr(vcpu));
5150  }
5151  
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5152  static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5153  {
5154  	/*
5155  	 * Do not cause an interrupt window exit if an exception
5156  	 * is pending or an event needs reinjection; userspace
5157  	 * might want to inject the interrupt manually using KVM_SET_REGS
5158  	 * or KVM_SET_SREGS.  For that to work, we must be at an
5159  	 * instruction boundary and with no events half-injected.
5160  	 */
5161  	return (kvm_arch_interrupt_allowed(vcpu) &&
5162  		kvm_cpu_accept_dm_intr(vcpu) &&
5163  		!kvm_event_needs_reinjection(vcpu) &&
5164  		!kvm_is_exception_pending(vcpu));
5165  }
5166  
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5167  static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5168  				    struct kvm_interrupt *irq)
5169  {
5170  	if (irq->irq >= KVM_NR_INTERRUPTS)
5171  		return -EINVAL;
5172  
5173  	if (!irqchip_in_kernel(vcpu->kvm)) {
5174  		kvm_queue_interrupt(vcpu, irq->irq, false);
5175  		kvm_make_request(KVM_REQ_EVENT, vcpu);
5176  		return 0;
5177  	}
5178  
5179  	/*
5180  	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5181  	 * fail for in-kernel 8259.
5182  	 */
5183  	if (pic_in_kernel(vcpu->kvm))
5184  		return -ENXIO;
5185  
5186  	if (vcpu->arch.pending_external_vector != -1)
5187  		return -EEXIST;
5188  
5189  	vcpu->arch.pending_external_vector = irq->irq;
5190  	kvm_make_request(KVM_REQ_EVENT, vcpu);
5191  	return 0;
5192  }
5193  
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5194  static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5195  {
5196  	kvm_inject_nmi(vcpu);
5197  
5198  	return 0;
5199  }
5200  
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5201  static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5202  					   struct kvm_tpr_access_ctl *tac)
5203  {
5204  	if (tac->flags)
5205  		return -EINVAL;
5206  	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5207  	return 0;
5208  }
5209  
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5210  static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5211  					u64 mcg_cap)
5212  {
5213  	int r;
5214  	unsigned bank_num = mcg_cap & 0xff, bank;
5215  
5216  	r = -EINVAL;
5217  	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5218  		goto out;
5219  	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5220  		goto out;
5221  	r = 0;
5222  	vcpu->arch.mcg_cap = mcg_cap;
5223  	/* Init IA32_MCG_CTL to all 1s */
5224  	if (mcg_cap & MCG_CTL_P)
5225  		vcpu->arch.mcg_ctl = ~(u64)0;
5226  	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5227  	for (bank = 0; bank < bank_num; bank++) {
5228  		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5229  		if (mcg_cap & MCG_CMCI_P)
5230  			vcpu->arch.mci_ctl2_banks[bank] = 0;
5231  	}
5232  
5233  	kvm_apic_after_set_mcg_cap(vcpu);
5234  
5235  	kvm_x86_call(setup_mce)(vcpu);
5236  out:
5237  	return r;
5238  }
5239  
5240  /*
5241   * Validate this is an UCNA (uncorrectable no action) error by checking the
5242   * MCG_STATUS and MCi_STATUS registers:
5243   * - none of the bits for Machine Check Exceptions are set
5244   * - both the VAL (valid) and UC (uncorrectable) bits are set
5245   * MCI_STATUS_PCC - Processor Context Corrupted
5246   * MCI_STATUS_S - Signaled as a Machine Check Exception
5247   * MCI_STATUS_AR - Software recoverable Action Required
5248   */
is_ucna(struct kvm_x86_mce * mce)5249  static bool is_ucna(struct kvm_x86_mce *mce)
5250  {
5251  	return	!mce->mcg_status &&
5252  		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5253  		(mce->status & MCI_STATUS_VAL) &&
5254  		(mce->status & MCI_STATUS_UC);
5255  }
5256  
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5257  static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5258  {
5259  	u64 mcg_cap = vcpu->arch.mcg_cap;
5260  
5261  	banks[1] = mce->status;
5262  	banks[2] = mce->addr;
5263  	banks[3] = mce->misc;
5264  	vcpu->arch.mcg_status = mce->mcg_status;
5265  
5266  	if (!(mcg_cap & MCG_CMCI_P) ||
5267  	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5268  		return 0;
5269  
5270  	if (lapic_in_kernel(vcpu))
5271  		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5272  
5273  	return 0;
5274  }
5275  
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5276  static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5277  				      struct kvm_x86_mce *mce)
5278  {
5279  	u64 mcg_cap = vcpu->arch.mcg_cap;
5280  	unsigned bank_num = mcg_cap & 0xff;
5281  	u64 *banks = vcpu->arch.mce_banks;
5282  
5283  	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5284  		return -EINVAL;
5285  
5286  	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5287  
5288  	if (is_ucna(mce))
5289  		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5290  
5291  	/*
5292  	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5293  	 * reporting is disabled
5294  	 */
5295  	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5296  	    vcpu->arch.mcg_ctl != ~(u64)0)
5297  		return 0;
5298  	/*
5299  	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5300  	 * reporting is disabled for the bank
5301  	 */
5302  	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5303  		return 0;
5304  	if (mce->status & MCI_STATUS_UC) {
5305  		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5306  		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5307  			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5308  			return 0;
5309  		}
5310  		if (banks[1] & MCI_STATUS_VAL)
5311  			mce->status |= MCI_STATUS_OVER;
5312  		banks[2] = mce->addr;
5313  		banks[3] = mce->misc;
5314  		vcpu->arch.mcg_status = mce->mcg_status;
5315  		banks[1] = mce->status;
5316  		kvm_queue_exception(vcpu, MC_VECTOR);
5317  	} else if (!(banks[1] & MCI_STATUS_VAL)
5318  		   || !(banks[1] & MCI_STATUS_UC)) {
5319  		if (banks[1] & MCI_STATUS_VAL)
5320  			mce->status |= MCI_STATUS_OVER;
5321  		banks[2] = mce->addr;
5322  		banks[3] = mce->misc;
5323  		banks[1] = mce->status;
5324  	} else
5325  		banks[1] |= MCI_STATUS_OVER;
5326  	return 0;
5327  }
5328  
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5329  static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5330  					       struct kvm_vcpu_events *events)
5331  {
5332  	struct kvm_queued_exception *ex;
5333  
5334  	process_nmi(vcpu);
5335  
5336  #ifdef CONFIG_KVM_SMM
5337  	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5338  		process_smi(vcpu);
5339  #endif
5340  
5341  	/*
5342  	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5343  	 * the only time there can be two queued exceptions is if there's a
5344  	 * non-exiting _injected_ exception, and a pending exiting exception.
5345  	 * In that case, ignore the VM-Exiting exception as it's an extension
5346  	 * of the injected exception.
5347  	 */
5348  	if (vcpu->arch.exception_vmexit.pending &&
5349  	    !vcpu->arch.exception.pending &&
5350  	    !vcpu->arch.exception.injected)
5351  		ex = &vcpu->arch.exception_vmexit;
5352  	else
5353  		ex = &vcpu->arch.exception;
5354  
5355  	/*
5356  	 * In guest mode, payload delivery should be deferred if the exception
5357  	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5358  	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5359  	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5360  	 * propagate the payload and so it cannot be safely deferred.  Deliver
5361  	 * the payload if the capability hasn't been requested.
5362  	 */
5363  	if (!vcpu->kvm->arch.exception_payload_enabled &&
5364  	    ex->pending && ex->has_payload)
5365  		kvm_deliver_exception_payload(vcpu, ex);
5366  
5367  	memset(events, 0, sizeof(*events));
5368  
5369  	/*
5370  	 * The API doesn't provide the instruction length for software
5371  	 * exceptions, so don't report them. As long as the guest RIP
5372  	 * isn't advanced, we should expect to encounter the exception
5373  	 * again.
5374  	 */
5375  	if (!kvm_exception_is_soft(ex->vector)) {
5376  		events->exception.injected = ex->injected;
5377  		events->exception.pending = ex->pending;
5378  		/*
5379  		 * For ABI compatibility, deliberately conflate
5380  		 * pending and injected exceptions when
5381  		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5382  		 */
5383  		if (!vcpu->kvm->arch.exception_payload_enabled)
5384  			events->exception.injected |= ex->pending;
5385  	}
5386  	events->exception.nr = ex->vector;
5387  	events->exception.has_error_code = ex->has_error_code;
5388  	events->exception.error_code = ex->error_code;
5389  	events->exception_has_payload = ex->has_payload;
5390  	events->exception_payload = ex->payload;
5391  
5392  	events->interrupt.injected =
5393  		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5394  	events->interrupt.nr = vcpu->arch.interrupt.nr;
5395  	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5396  
5397  	events->nmi.injected = vcpu->arch.nmi_injected;
5398  	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5399  	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5400  
5401  	/* events->sipi_vector is never valid when reporting to user space */
5402  
5403  #ifdef CONFIG_KVM_SMM
5404  	events->smi.smm = is_smm(vcpu);
5405  	events->smi.pending = vcpu->arch.smi_pending;
5406  	events->smi.smm_inside_nmi =
5407  		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5408  #endif
5409  	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5410  
5411  	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5412  			 | KVM_VCPUEVENT_VALID_SHADOW
5413  			 | KVM_VCPUEVENT_VALID_SMM);
5414  	if (vcpu->kvm->arch.exception_payload_enabled)
5415  		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5416  	if (vcpu->kvm->arch.triple_fault_event) {
5417  		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5418  		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5419  	}
5420  }
5421  
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5422  static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5423  					      struct kvm_vcpu_events *events)
5424  {
5425  	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5426  			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5427  			      | KVM_VCPUEVENT_VALID_SHADOW
5428  			      | KVM_VCPUEVENT_VALID_SMM
5429  			      | KVM_VCPUEVENT_VALID_PAYLOAD
5430  			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5431  		return -EINVAL;
5432  
5433  	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5434  		if (!vcpu->kvm->arch.exception_payload_enabled)
5435  			return -EINVAL;
5436  		if (events->exception.pending)
5437  			events->exception.injected = 0;
5438  		else
5439  			events->exception_has_payload = 0;
5440  	} else {
5441  		events->exception.pending = 0;
5442  		events->exception_has_payload = 0;
5443  	}
5444  
5445  	if ((events->exception.injected || events->exception.pending) &&
5446  	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5447  		return -EINVAL;
5448  
5449  	/* INITs are latched while in SMM */
5450  	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5451  	    (events->smi.smm || events->smi.pending) &&
5452  	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5453  		return -EINVAL;
5454  
5455  	process_nmi(vcpu);
5456  
5457  	/*
5458  	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5459  	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5460  	 * pending exceptions, already-injected exceptions are not subject to
5461  	 * intercpetion.  Note, userspace that conflates pending and injected
5462  	 * is hosed, and will incorrectly convert an injected exception into a
5463  	 * pending exception, which in turn may cause a spurious VM-Exit.
5464  	 */
5465  	vcpu->arch.exception_from_userspace = events->exception.pending;
5466  
5467  	vcpu->arch.exception_vmexit.pending = false;
5468  
5469  	vcpu->arch.exception.injected = events->exception.injected;
5470  	vcpu->arch.exception.pending = events->exception.pending;
5471  	vcpu->arch.exception.vector = events->exception.nr;
5472  	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5473  	vcpu->arch.exception.error_code = events->exception.error_code;
5474  	vcpu->arch.exception.has_payload = events->exception_has_payload;
5475  	vcpu->arch.exception.payload = events->exception_payload;
5476  
5477  	vcpu->arch.interrupt.injected = events->interrupt.injected;
5478  	vcpu->arch.interrupt.nr = events->interrupt.nr;
5479  	vcpu->arch.interrupt.soft = events->interrupt.soft;
5480  	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5481  		kvm_x86_call(set_interrupt_shadow)(vcpu,
5482  						   events->interrupt.shadow);
5483  
5484  	vcpu->arch.nmi_injected = events->nmi.injected;
5485  	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5486  		vcpu->arch.nmi_pending = 0;
5487  		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5488  		if (events->nmi.pending)
5489  			kvm_make_request(KVM_REQ_NMI, vcpu);
5490  	}
5491  	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5492  
5493  	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5494  	    lapic_in_kernel(vcpu))
5495  		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5496  
5497  	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5498  #ifdef CONFIG_KVM_SMM
5499  		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5500  			kvm_leave_nested(vcpu);
5501  			kvm_smm_changed(vcpu, events->smi.smm);
5502  		}
5503  
5504  		vcpu->arch.smi_pending = events->smi.pending;
5505  
5506  		if (events->smi.smm) {
5507  			if (events->smi.smm_inside_nmi)
5508  				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5509  			else
5510  				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5511  		}
5512  
5513  #else
5514  		if (events->smi.smm || events->smi.pending ||
5515  		    events->smi.smm_inside_nmi)
5516  			return -EINVAL;
5517  #endif
5518  
5519  		if (lapic_in_kernel(vcpu)) {
5520  			if (events->smi.latched_init)
5521  				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5522  			else
5523  				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5524  		}
5525  	}
5526  
5527  	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5528  		if (!vcpu->kvm->arch.triple_fault_event)
5529  			return -EINVAL;
5530  		if (events->triple_fault.pending)
5531  			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5532  		else
5533  			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5534  	}
5535  
5536  	kvm_make_request(KVM_REQ_EVENT, vcpu);
5537  
5538  	return 0;
5539  }
5540  
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5541  static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5542  					    struct kvm_debugregs *dbgregs)
5543  {
5544  	unsigned int i;
5545  
5546  	if (vcpu->kvm->arch.has_protected_state &&
5547  	    vcpu->arch.guest_state_protected)
5548  		return -EINVAL;
5549  
5550  	memset(dbgregs, 0, sizeof(*dbgregs));
5551  
5552  	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5553  	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5554  		dbgregs->db[i] = vcpu->arch.db[i];
5555  
5556  	dbgregs->dr6 = vcpu->arch.dr6;
5557  	dbgregs->dr7 = vcpu->arch.dr7;
5558  	return 0;
5559  }
5560  
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5561  static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5562  					    struct kvm_debugregs *dbgregs)
5563  {
5564  	unsigned int i;
5565  
5566  	if (vcpu->kvm->arch.has_protected_state &&
5567  	    vcpu->arch.guest_state_protected)
5568  		return -EINVAL;
5569  
5570  	if (dbgregs->flags)
5571  		return -EINVAL;
5572  
5573  	if (!kvm_dr6_valid(dbgregs->dr6))
5574  		return -EINVAL;
5575  	if (!kvm_dr7_valid(dbgregs->dr7))
5576  		return -EINVAL;
5577  
5578  	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5579  		vcpu->arch.db[i] = dbgregs->db[i];
5580  
5581  	kvm_update_dr0123(vcpu);
5582  	vcpu->arch.dr6 = dbgregs->dr6;
5583  	vcpu->arch.dr7 = dbgregs->dr7;
5584  	kvm_update_dr7(vcpu);
5585  
5586  	return 0;
5587  }
5588  
5589  
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5590  static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5591  					 u8 *state, unsigned int size)
5592  {
5593  	/*
5594  	 * Only copy state for features that are enabled for the guest.  The
5595  	 * state itself isn't problematic, but setting bits in the header for
5596  	 * features that are supported in *this* host but not exposed to the
5597  	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5598  	 * compatible host without the features that are NOT exposed to the
5599  	 * guest.
5600  	 *
5601  	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5602  	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5603  	 * supported by the host.
5604  	 */
5605  	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5606  			     XFEATURE_MASK_FPSSE;
5607  
5608  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5609  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5610  
5611  	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5612  				       supported_xcr0, vcpu->arch.pkru);
5613  	return 0;
5614  }
5615  
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5616  static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5617  					struct kvm_xsave *guest_xsave)
5618  {
5619  	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5620  					     sizeof(guest_xsave->region));
5621  }
5622  
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5623  static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5624  					struct kvm_xsave *guest_xsave)
5625  {
5626  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5627  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5628  
5629  	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5630  					      guest_xsave->region,
5631  					      kvm_caps.supported_xcr0,
5632  					      &vcpu->arch.pkru);
5633  }
5634  
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5635  static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5636  				       struct kvm_xcrs *guest_xcrs)
5637  {
5638  	if (vcpu->kvm->arch.has_protected_state &&
5639  	    vcpu->arch.guest_state_protected)
5640  		return -EINVAL;
5641  
5642  	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5643  		guest_xcrs->nr_xcrs = 0;
5644  		return 0;
5645  	}
5646  
5647  	guest_xcrs->nr_xcrs = 1;
5648  	guest_xcrs->flags = 0;
5649  	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5650  	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5651  	return 0;
5652  }
5653  
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5654  static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5655  				       struct kvm_xcrs *guest_xcrs)
5656  {
5657  	int i, r = 0;
5658  
5659  	if (vcpu->kvm->arch.has_protected_state &&
5660  	    vcpu->arch.guest_state_protected)
5661  		return -EINVAL;
5662  
5663  	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5664  		return -EINVAL;
5665  
5666  	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5667  		return -EINVAL;
5668  
5669  	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5670  		/* Only support XCR0 currently */
5671  		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5672  			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5673  				guest_xcrs->xcrs[i].value);
5674  			break;
5675  		}
5676  	if (r)
5677  		r = -EINVAL;
5678  	return r;
5679  }
5680  
5681  /*
5682   * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683   * stopped by the hypervisor.  This function will be called from the host only.
5684   * EINVAL is returned when the host attempts to set the flag for a guest that
5685   * does not support pv clocks.
5686   */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5687  static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5688  {
5689  	if (!vcpu->arch.pv_time.active)
5690  		return -EINVAL;
5691  	vcpu->arch.pvclock_set_guest_stopped_request = true;
5692  	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5693  	return 0;
5694  }
5695  
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5696  static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5697  				 struct kvm_device_attr *attr)
5698  {
5699  	int r;
5700  
5701  	switch (attr->attr) {
5702  	case KVM_VCPU_TSC_OFFSET:
5703  		r = 0;
5704  		break;
5705  	default:
5706  		r = -ENXIO;
5707  	}
5708  
5709  	return r;
5710  }
5711  
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5712  static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5713  				 struct kvm_device_attr *attr)
5714  {
5715  	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5716  	int r;
5717  
5718  	switch (attr->attr) {
5719  	case KVM_VCPU_TSC_OFFSET:
5720  		r = -EFAULT;
5721  		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5722  			break;
5723  		r = 0;
5724  		break;
5725  	default:
5726  		r = -ENXIO;
5727  	}
5728  
5729  	return r;
5730  }
5731  
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5732  static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5733  				 struct kvm_device_attr *attr)
5734  {
5735  	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5736  	struct kvm *kvm = vcpu->kvm;
5737  	int r;
5738  
5739  	switch (attr->attr) {
5740  	case KVM_VCPU_TSC_OFFSET: {
5741  		u64 offset, tsc, ns;
5742  		unsigned long flags;
5743  		bool matched;
5744  
5745  		r = -EFAULT;
5746  		if (get_user(offset, uaddr))
5747  			break;
5748  
5749  		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5750  
5751  		matched = (vcpu->arch.virtual_tsc_khz &&
5752  			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5753  			   kvm->arch.last_tsc_offset == offset);
5754  
5755  		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5756  		ns = get_kvmclock_base_ns();
5757  
5758  		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5759  		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5760  
5761  		r = 0;
5762  		break;
5763  	}
5764  	default:
5765  		r = -ENXIO;
5766  	}
5767  
5768  	return r;
5769  }
5770  
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5771  static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5772  				      unsigned int ioctl,
5773  				      void __user *argp)
5774  {
5775  	struct kvm_device_attr attr;
5776  	int r;
5777  
5778  	if (copy_from_user(&attr, argp, sizeof(attr)))
5779  		return -EFAULT;
5780  
5781  	if (attr.group != KVM_VCPU_TSC_CTRL)
5782  		return -ENXIO;
5783  
5784  	switch (ioctl) {
5785  	case KVM_HAS_DEVICE_ATTR:
5786  		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5787  		break;
5788  	case KVM_GET_DEVICE_ATTR:
5789  		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5790  		break;
5791  	case KVM_SET_DEVICE_ATTR:
5792  		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5793  		break;
5794  	}
5795  
5796  	return r;
5797  }
5798  
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5799  static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5800  				     struct kvm_enable_cap *cap)
5801  {
5802  	if (cap->flags)
5803  		return -EINVAL;
5804  
5805  	switch (cap->cap) {
5806  #ifdef CONFIG_KVM_HYPERV
5807  	case KVM_CAP_HYPERV_SYNIC2:
5808  		if (cap->args[0])
5809  			return -EINVAL;
5810  		fallthrough;
5811  
5812  	case KVM_CAP_HYPERV_SYNIC:
5813  		if (!irqchip_in_kernel(vcpu->kvm))
5814  			return -EINVAL;
5815  		return kvm_hv_activate_synic(vcpu, cap->cap ==
5816  					     KVM_CAP_HYPERV_SYNIC2);
5817  	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5818  		{
5819  			int r;
5820  			uint16_t vmcs_version;
5821  			void __user *user_ptr;
5822  
5823  			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5824  				return -ENOTTY;
5825  			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5826  			if (!r) {
5827  				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5828  				if (copy_to_user(user_ptr, &vmcs_version,
5829  						 sizeof(vmcs_version)))
5830  					r = -EFAULT;
5831  			}
5832  			return r;
5833  		}
5834  	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5835  		if (!kvm_x86_ops.enable_l2_tlb_flush)
5836  			return -ENOTTY;
5837  
5838  		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5839  
5840  	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5841  		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5842  #endif
5843  
5844  	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5845  		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5846  		return 0;
5847  	default:
5848  		return -EINVAL;
5849  	}
5850  }
5851  
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5852  long kvm_arch_vcpu_ioctl(struct file *filp,
5853  			 unsigned int ioctl, unsigned long arg)
5854  {
5855  	struct kvm_vcpu *vcpu = filp->private_data;
5856  	void __user *argp = (void __user *)arg;
5857  	int r;
5858  	union {
5859  		struct kvm_sregs2 *sregs2;
5860  		struct kvm_lapic_state *lapic;
5861  		struct kvm_xsave *xsave;
5862  		struct kvm_xcrs *xcrs;
5863  		void *buffer;
5864  	} u;
5865  
5866  	vcpu_load(vcpu);
5867  
5868  	u.buffer = NULL;
5869  	switch (ioctl) {
5870  	case KVM_GET_LAPIC: {
5871  		r = -EINVAL;
5872  		if (!lapic_in_kernel(vcpu))
5873  			goto out;
5874  		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5875  
5876  		r = -ENOMEM;
5877  		if (!u.lapic)
5878  			goto out;
5879  		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5880  		if (r)
5881  			goto out;
5882  		r = -EFAULT;
5883  		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5884  			goto out;
5885  		r = 0;
5886  		break;
5887  	}
5888  	case KVM_SET_LAPIC: {
5889  		r = -EINVAL;
5890  		if (!lapic_in_kernel(vcpu))
5891  			goto out;
5892  		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5893  		if (IS_ERR(u.lapic)) {
5894  			r = PTR_ERR(u.lapic);
5895  			goto out_nofree;
5896  		}
5897  
5898  		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5899  		break;
5900  	}
5901  	case KVM_INTERRUPT: {
5902  		struct kvm_interrupt irq;
5903  
5904  		r = -EFAULT;
5905  		if (copy_from_user(&irq, argp, sizeof(irq)))
5906  			goto out;
5907  		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5908  		break;
5909  	}
5910  	case KVM_NMI: {
5911  		r = kvm_vcpu_ioctl_nmi(vcpu);
5912  		break;
5913  	}
5914  	case KVM_SMI: {
5915  		r = kvm_inject_smi(vcpu);
5916  		break;
5917  	}
5918  	case KVM_SET_CPUID: {
5919  		struct kvm_cpuid __user *cpuid_arg = argp;
5920  		struct kvm_cpuid cpuid;
5921  
5922  		r = -EFAULT;
5923  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5924  			goto out;
5925  		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5926  		break;
5927  	}
5928  	case KVM_SET_CPUID2: {
5929  		struct kvm_cpuid2 __user *cpuid_arg = argp;
5930  		struct kvm_cpuid2 cpuid;
5931  
5932  		r = -EFAULT;
5933  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5934  			goto out;
5935  		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5936  					      cpuid_arg->entries);
5937  		break;
5938  	}
5939  	case KVM_GET_CPUID2: {
5940  		struct kvm_cpuid2 __user *cpuid_arg = argp;
5941  		struct kvm_cpuid2 cpuid;
5942  
5943  		r = -EFAULT;
5944  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5945  			goto out;
5946  		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5947  					      cpuid_arg->entries);
5948  		if (r)
5949  			goto out;
5950  		r = -EFAULT;
5951  		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5952  			goto out;
5953  		r = 0;
5954  		break;
5955  	}
5956  	case KVM_GET_MSRS: {
5957  		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5958  		r = msr_io(vcpu, argp, do_get_msr, 1);
5959  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5960  		break;
5961  	}
5962  	case KVM_SET_MSRS: {
5963  		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5964  		r = msr_io(vcpu, argp, do_set_msr, 0);
5965  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5966  		break;
5967  	}
5968  	case KVM_TPR_ACCESS_REPORTING: {
5969  		struct kvm_tpr_access_ctl tac;
5970  
5971  		r = -EFAULT;
5972  		if (copy_from_user(&tac, argp, sizeof(tac)))
5973  			goto out;
5974  		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5975  		if (r)
5976  			goto out;
5977  		r = -EFAULT;
5978  		if (copy_to_user(argp, &tac, sizeof(tac)))
5979  			goto out;
5980  		r = 0;
5981  		break;
5982  	};
5983  	case KVM_SET_VAPIC_ADDR: {
5984  		struct kvm_vapic_addr va;
5985  		int idx;
5986  
5987  		r = -EINVAL;
5988  		if (!lapic_in_kernel(vcpu))
5989  			goto out;
5990  		r = -EFAULT;
5991  		if (copy_from_user(&va, argp, sizeof(va)))
5992  			goto out;
5993  		idx = srcu_read_lock(&vcpu->kvm->srcu);
5994  		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5995  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5996  		break;
5997  	}
5998  	case KVM_X86_SETUP_MCE: {
5999  		u64 mcg_cap;
6000  
6001  		r = -EFAULT;
6002  		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6003  			goto out;
6004  		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6005  		break;
6006  	}
6007  	case KVM_X86_SET_MCE: {
6008  		struct kvm_x86_mce mce;
6009  
6010  		r = -EFAULT;
6011  		if (copy_from_user(&mce, argp, sizeof(mce)))
6012  			goto out;
6013  		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6014  		break;
6015  	}
6016  	case KVM_GET_VCPU_EVENTS: {
6017  		struct kvm_vcpu_events events;
6018  
6019  		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6020  
6021  		r = -EFAULT;
6022  		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6023  			break;
6024  		r = 0;
6025  		break;
6026  	}
6027  	case KVM_SET_VCPU_EVENTS: {
6028  		struct kvm_vcpu_events events;
6029  
6030  		r = -EFAULT;
6031  		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6032  			break;
6033  
6034  		kvm_vcpu_srcu_read_lock(vcpu);
6035  		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6036  		kvm_vcpu_srcu_read_unlock(vcpu);
6037  		break;
6038  	}
6039  	case KVM_GET_DEBUGREGS: {
6040  		struct kvm_debugregs dbgregs;
6041  
6042  		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6043  		if (r < 0)
6044  			break;
6045  
6046  		r = -EFAULT;
6047  		if (copy_to_user(argp, &dbgregs,
6048  				 sizeof(struct kvm_debugregs)))
6049  			break;
6050  		r = 0;
6051  		break;
6052  	}
6053  	case KVM_SET_DEBUGREGS: {
6054  		struct kvm_debugregs dbgregs;
6055  
6056  		r = -EFAULT;
6057  		if (copy_from_user(&dbgregs, argp,
6058  				   sizeof(struct kvm_debugregs)))
6059  			break;
6060  
6061  		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6062  		break;
6063  	}
6064  	case KVM_GET_XSAVE: {
6065  		r = -EINVAL;
6066  		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6067  			break;
6068  
6069  		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6070  		r = -ENOMEM;
6071  		if (!u.xsave)
6072  			break;
6073  
6074  		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6075  		if (r < 0)
6076  			break;
6077  
6078  		r = -EFAULT;
6079  		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6080  			break;
6081  		r = 0;
6082  		break;
6083  	}
6084  	case KVM_SET_XSAVE: {
6085  		int size = vcpu->arch.guest_fpu.uabi_size;
6086  
6087  		u.xsave = memdup_user(argp, size);
6088  		if (IS_ERR(u.xsave)) {
6089  			r = PTR_ERR(u.xsave);
6090  			goto out_nofree;
6091  		}
6092  
6093  		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6094  		break;
6095  	}
6096  
6097  	case KVM_GET_XSAVE2: {
6098  		int size = vcpu->arch.guest_fpu.uabi_size;
6099  
6100  		u.xsave = kzalloc(size, GFP_KERNEL);
6101  		r = -ENOMEM;
6102  		if (!u.xsave)
6103  			break;
6104  
6105  		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6106  		if (r < 0)
6107  			break;
6108  
6109  		r = -EFAULT;
6110  		if (copy_to_user(argp, u.xsave, size))
6111  			break;
6112  
6113  		r = 0;
6114  		break;
6115  	}
6116  
6117  	case KVM_GET_XCRS: {
6118  		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6119  		r = -ENOMEM;
6120  		if (!u.xcrs)
6121  			break;
6122  
6123  		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6124  		if (r < 0)
6125  			break;
6126  
6127  		r = -EFAULT;
6128  		if (copy_to_user(argp, u.xcrs,
6129  				 sizeof(struct kvm_xcrs)))
6130  			break;
6131  		r = 0;
6132  		break;
6133  	}
6134  	case KVM_SET_XCRS: {
6135  		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6136  		if (IS_ERR(u.xcrs)) {
6137  			r = PTR_ERR(u.xcrs);
6138  			goto out_nofree;
6139  		}
6140  
6141  		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6142  		break;
6143  	}
6144  	case KVM_SET_TSC_KHZ: {
6145  		u32 user_tsc_khz;
6146  
6147  		r = -EINVAL;
6148  		user_tsc_khz = (u32)arg;
6149  
6150  		if (kvm_caps.has_tsc_control &&
6151  		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6152  			goto out;
6153  
6154  		if (user_tsc_khz == 0)
6155  			user_tsc_khz = tsc_khz;
6156  
6157  		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6158  			r = 0;
6159  
6160  		goto out;
6161  	}
6162  	case KVM_GET_TSC_KHZ: {
6163  		r = vcpu->arch.virtual_tsc_khz;
6164  		goto out;
6165  	}
6166  	case KVM_KVMCLOCK_CTRL: {
6167  		r = kvm_set_guest_paused(vcpu);
6168  		goto out;
6169  	}
6170  	case KVM_ENABLE_CAP: {
6171  		struct kvm_enable_cap cap;
6172  
6173  		r = -EFAULT;
6174  		if (copy_from_user(&cap, argp, sizeof(cap)))
6175  			goto out;
6176  		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6177  		break;
6178  	}
6179  	case KVM_GET_NESTED_STATE: {
6180  		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6181  		u32 user_data_size;
6182  
6183  		r = -EINVAL;
6184  		if (!kvm_x86_ops.nested_ops->get_state)
6185  			break;
6186  
6187  		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6188  		r = -EFAULT;
6189  		if (get_user(user_data_size, &user_kvm_nested_state->size))
6190  			break;
6191  
6192  		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6193  						     user_data_size);
6194  		if (r < 0)
6195  			break;
6196  
6197  		if (r > user_data_size) {
6198  			if (put_user(r, &user_kvm_nested_state->size))
6199  				r = -EFAULT;
6200  			else
6201  				r = -E2BIG;
6202  			break;
6203  		}
6204  
6205  		r = 0;
6206  		break;
6207  	}
6208  	case KVM_SET_NESTED_STATE: {
6209  		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6210  		struct kvm_nested_state kvm_state;
6211  		int idx;
6212  
6213  		r = -EINVAL;
6214  		if (!kvm_x86_ops.nested_ops->set_state)
6215  			break;
6216  
6217  		r = -EFAULT;
6218  		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6219  			break;
6220  
6221  		r = -EINVAL;
6222  		if (kvm_state.size < sizeof(kvm_state))
6223  			break;
6224  
6225  		if (kvm_state.flags &
6226  		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6227  		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6228  		      | KVM_STATE_NESTED_GIF_SET))
6229  			break;
6230  
6231  		/* nested_run_pending implies guest_mode.  */
6232  		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6233  		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6234  			break;
6235  
6236  		idx = srcu_read_lock(&vcpu->kvm->srcu);
6237  		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6238  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6239  		break;
6240  	}
6241  #ifdef CONFIG_KVM_HYPERV
6242  	case KVM_GET_SUPPORTED_HV_CPUID:
6243  		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6244  		break;
6245  #endif
6246  #ifdef CONFIG_KVM_XEN
6247  	case KVM_XEN_VCPU_GET_ATTR: {
6248  		struct kvm_xen_vcpu_attr xva;
6249  
6250  		r = -EFAULT;
6251  		if (copy_from_user(&xva, argp, sizeof(xva)))
6252  			goto out;
6253  		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6254  		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6255  			r = -EFAULT;
6256  		break;
6257  	}
6258  	case KVM_XEN_VCPU_SET_ATTR: {
6259  		struct kvm_xen_vcpu_attr xva;
6260  
6261  		r = -EFAULT;
6262  		if (copy_from_user(&xva, argp, sizeof(xva)))
6263  			goto out;
6264  		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6265  		break;
6266  	}
6267  #endif
6268  	case KVM_GET_SREGS2: {
6269  		r = -EINVAL;
6270  		if (vcpu->kvm->arch.has_protected_state &&
6271  		    vcpu->arch.guest_state_protected)
6272  			goto out;
6273  
6274  		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6275  		r = -ENOMEM;
6276  		if (!u.sregs2)
6277  			goto out;
6278  		__get_sregs2(vcpu, u.sregs2);
6279  		r = -EFAULT;
6280  		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6281  			goto out;
6282  		r = 0;
6283  		break;
6284  	}
6285  	case KVM_SET_SREGS2: {
6286  		r = -EINVAL;
6287  		if (vcpu->kvm->arch.has_protected_state &&
6288  		    vcpu->arch.guest_state_protected)
6289  			goto out;
6290  
6291  		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6292  		if (IS_ERR(u.sregs2)) {
6293  			r = PTR_ERR(u.sregs2);
6294  			u.sregs2 = NULL;
6295  			goto out;
6296  		}
6297  		r = __set_sregs2(vcpu, u.sregs2);
6298  		break;
6299  	}
6300  	case KVM_HAS_DEVICE_ATTR:
6301  	case KVM_GET_DEVICE_ATTR:
6302  	case KVM_SET_DEVICE_ATTR:
6303  		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6304  		break;
6305  	default:
6306  		r = -EINVAL;
6307  	}
6308  out:
6309  	kfree(u.buffer);
6310  out_nofree:
6311  	vcpu_put(vcpu);
6312  	return r;
6313  }
6314  
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6315  vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6316  {
6317  	return VM_FAULT_SIGBUS;
6318  }
6319  
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6320  static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6321  {
6322  	int ret;
6323  
6324  	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6325  		return -EINVAL;
6326  	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6327  	return ret;
6328  }
6329  
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6330  static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6331  					      u64 ident_addr)
6332  {
6333  	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6334  }
6335  
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6336  static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6337  					 unsigned long kvm_nr_mmu_pages)
6338  {
6339  	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6340  		return -EINVAL;
6341  
6342  	mutex_lock(&kvm->slots_lock);
6343  
6344  	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6345  	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6346  
6347  	mutex_unlock(&kvm->slots_lock);
6348  	return 0;
6349  }
6350  
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6351  static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6352  {
6353  	struct kvm_pic *pic = kvm->arch.vpic;
6354  	int r;
6355  
6356  	r = 0;
6357  	switch (chip->chip_id) {
6358  	case KVM_IRQCHIP_PIC_MASTER:
6359  		memcpy(&chip->chip.pic, &pic->pics[0],
6360  			sizeof(struct kvm_pic_state));
6361  		break;
6362  	case KVM_IRQCHIP_PIC_SLAVE:
6363  		memcpy(&chip->chip.pic, &pic->pics[1],
6364  			sizeof(struct kvm_pic_state));
6365  		break;
6366  	case KVM_IRQCHIP_IOAPIC:
6367  		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6368  		break;
6369  	default:
6370  		r = -EINVAL;
6371  		break;
6372  	}
6373  	return r;
6374  }
6375  
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6376  static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6377  {
6378  	struct kvm_pic *pic = kvm->arch.vpic;
6379  	int r;
6380  
6381  	r = 0;
6382  	switch (chip->chip_id) {
6383  	case KVM_IRQCHIP_PIC_MASTER:
6384  		spin_lock(&pic->lock);
6385  		memcpy(&pic->pics[0], &chip->chip.pic,
6386  			sizeof(struct kvm_pic_state));
6387  		spin_unlock(&pic->lock);
6388  		break;
6389  	case KVM_IRQCHIP_PIC_SLAVE:
6390  		spin_lock(&pic->lock);
6391  		memcpy(&pic->pics[1], &chip->chip.pic,
6392  			sizeof(struct kvm_pic_state));
6393  		spin_unlock(&pic->lock);
6394  		break;
6395  	case KVM_IRQCHIP_IOAPIC:
6396  		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6397  		break;
6398  	default:
6399  		r = -EINVAL;
6400  		break;
6401  	}
6402  	kvm_pic_update_irq(pic);
6403  	return r;
6404  }
6405  
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6406  static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6407  {
6408  	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6409  
6410  	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6411  
6412  	mutex_lock(&kps->lock);
6413  	memcpy(ps, &kps->channels, sizeof(*ps));
6414  	mutex_unlock(&kps->lock);
6415  	return 0;
6416  }
6417  
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6418  static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6419  {
6420  	int i;
6421  	struct kvm_pit *pit = kvm->arch.vpit;
6422  
6423  	mutex_lock(&pit->pit_state.lock);
6424  	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6425  	for (i = 0; i < 3; i++)
6426  		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6427  	mutex_unlock(&pit->pit_state.lock);
6428  	return 0;
6429  }
6430  
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6431  static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6432  {
6433  	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6434  	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6435  		sizeof(ps->channels));
6436  	ps->flags = kvm->arch.vpit->pit_state.flags;
6437  	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6438  	memset(&ps->reserved, 0, sizeof(ps->reserved));
6439  	return 0;
6440  }
6441  
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6442  static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6443  {
6444  	int start = 0;
6445  	int i;
6446  	u32 prev_legacy, cur_legacy;
6447  	struct kvm_pit *pit = kvm->arch.vpit;
6448  
6449  	mutex_lock(&pit->pit_state.lock);
6450  	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6451  	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6452  	if (!prev_legacy && cur_legacy)
6453  		start = 1;
6454  	memcpy(&pit->pit_state.channels, &ps->channels,
6455  	       sizeof(pit->pit_state.channels));
6456  	pit->pit_state.flags = ps->flags;
6457  	for (i = 0; i < 3; i++)
6458  		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6459  				   start && i == 0);
6460  	mutex_unlock(&pit->pit_state.lock);
6461  	return 0;
6462  }
6463  
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6464  static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6465  				 struct kvm_reinject_control *control)
6466  {
6467  	struct kvm_pit *pit = kvm->arch.vpit;
6468  
6469  	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6470  	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6471  	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6472  	 */
6473  	mutex_lock(&pit->pit_state.lock);
6474  	kvm_pit_set_reinject(pit, control->pit_reinject);
6475  	mutex_unlock(&pit->pit_state.lock);
6476  
6477  	return 0;
6478  }
6479  
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6480  void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6481  {
6482  
6483  	/*
6484  	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6485  	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6486  	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6487  	 * VM-Exit.
6488  	 */
6489  	struct kvm_vcpu *vcpu;
6490  	unsigned long i;
6491  
6492  	if (!kvm_x86_ops.cpu_dirty_log_size)
6493  		return;
6494  
6495  	kvm_for_each_vcpu(i, vcpu, kvm)
6496  		kvm_vcpu_kick(vcpu);
6497  }
6498  
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6499  int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6500  			bool line_status)
6501  {
6502  	if (!irqchip_in_kernel(kvm))
6503  		return -ENXIO;
6504  
6505  	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6506  					irq_event->irq, irq_event->level,
6507  					line_status);
6508  	return 0;
6509  }
6510  
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6511  int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6512  			    struct kvm_enable_cap *cap)
6513  {
6514  	int r;
6515  
6516  	if (cap->flags)
6517  		return -EINVAL;
6518  
6519  	switch (cap->cap) {
6520  	case KVM_CAP_DISABLE_QUIRKS2:
6521  		r = -EINVAL;
6522  		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6523  			break;
6524  		fallthrough;
6525  	case KVM_CAP_DISABLE_QUIRKS:
6526  		kvm->arch.disabled_quirks = cap->args[0];
6527  		r = 0;
6528  		break;
6529  	case KVM_CAP_SPLIT_IRQCHIP: {
6530  		mutex_lock(&kvm->lock);
6531  		r = -EINVAL;
6532  		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6533  			goto split_irqchip_unlock;
6534  		r = -EEXIST;
6535  		if (irqchip_in_kernel(kvm))
6536  			goto split_irqchip_unlock;
6537  		if (kvm->created_vcpus)
6538  			goto split_irqchip_unlock;
6539  		/* Pairs with irqchip_in_kernel. */
6540  		smp_wmb();
6541  		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6542  		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6543  		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6544  		r = 0;
6545  split_irqchip_unlock:
6546  		mutex_unlock(&kvm->lock);
6547  		break;
6548  	}
6549  	case KVM_CAP_X2APIC_API:
6550  		r = -EINVAL;
6551  		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6552  			break;
6553  
6554  		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6555  			kvm->arch.x2apic_format = true;
6556  		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6557  			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6558  
6559  		r = 0;
6560  		break;
6561  	case KVM_CAP_X86_DISABLE_EXITS:
6562  		r = -EINVAL;
6563  		if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6564  			break;
6565  
6566  		mutex_lock(&kvm->lock);
6567  		if (kvm->created_vcpus)
6568  			goto disable_exits_unlock;
6569  
6570  #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6571  		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6572  
6573  		if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6574  		    cpu_smt_possible() &&
6575  		    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6576  			pr_warn_once(SMT_RSB_MSG);
6577  
6578  		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6579  			kvm->arch.pause_in_guest = true;
6580  		if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6581  			kvm->arch.mwait_in_guest = true;
6582  		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6583  			kvm->arch.hlt_in_guest = true;
6584  		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6585  			kvm->arch.cstate_in_guest = true;
6586  		r = 0;
6587  disable_exits_unlock:
6588  		mutex_unlock(&kvm->lock);
6589  		break;
6590  	case KVM_CAP_MSR_PLATFORM_INFO:
6591  		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6592  		r = 0;
6593  		break;
6594  	case KVM_CAP_EXCEPTION_PAYLOAD:
6595  		kvm->arch.exception_payload_enabled = cap->args[0];
6596  		r = 0;
6597  		break;
6598  	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6599  		kvm->arch.triple_fault_event = cap->args[0];
6600  		r = 0;
6601  		break;
6602  	case KVM_CAP_X86_USER_SPACE_MSR:
6603  		r = -EINVAL;
6604  		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6605  			break;
6606  		kvm->arch.user_space_msr_mask = cap->args[0];
6607  		r = 0;
6608  		break;
6609  	case KVM_CAP_X86_BUS_LOCK_EXIT:
6610  		r = -EINVAL;
6611  		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6612  			break;
6613  
6614  		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6615  		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6616  			break;
6617  
6618  		if (kvm_caps.has_bus_lock_exit &&
6619  		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6620  			kvm->arch.bus_lock_detection_enabled = true;
6621  		r = 0;
6622  		break;
6623  #ifdef CONFIG_X86_SGX_KVM
6624  	case KVM_CAP_SGX_ATTRIBUTE: {
6625  		unsigned long allowed_attributes = 0;
6626  
6627  		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6628  		if (r)
6629  			break;
6630  
6631  		/* KVM only supports the PROVISIONKEY privileged attribute. */
6632  		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6633  		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6634  			kvm->arch.sgx_provisioning_allowed = true;
6635  		else
6636  			r = -EINVAL;
6637  		break;
6638  	}
6639  #endif
6640  	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6641  		r = -EINVAL;
6642  		if (!kvm_x86_ops.vm_copy_enc_context_from)
6643  			break;
6644  
6645  		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6646  		break;
6647  	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6648  		r = -EINVAL;
6649  		if (!kvm_x86_ops.vm_move_enc_context_from)
6650  			break;
6651  
6652  		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6653  		break;
6654  	case KVM_CAP_EXIT_HYPERCALL:
6655  		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6656  			r = -EINVAL;
6657  			break;
6658  		}
6659  		kvm->arch.hypercall_exit_enabled = cap->args[0];
6660  		r = 0;
6661  		break;
6662  	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6663  		r = -EINVAL;
6664  		if (cap->args[0] & ~1)
6665  			break;
6666  		kvm->arch.exit_on_emulation_error = cap->args[0];
6667  		r = 0;
6668  		break;
6669  	case KVM_CAP_PMU_CAPABILITY:
6670  		r = -EINVAL;
6671  		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6672  			break;
6673  
6674  		mutex_lock(&kvm->lock);
6675  		if (!kvm->created_vcpus) {
6676  			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6677  			r = 0;
6678  		}
6679  		mutex_unlock(&kvm->lock);
6680  		break;
6681  	case KVM_CAP_MAX_VCPU_ID:
6682  		r = -EINVAL;
6683  		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6684  			break;
6685  
6686  		mutex_lock(&kvm->lock);
6687  		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6688  			;
6689  		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6690  			r = 0;
6691  		} else if (!kvm->arch.max_vcpu_ids) {
6692  			kvm->arch.max_vcpu_ids = cap->args[0];
6693  			r = 0;
6694  		}
6695  		mutex_unlock(&kvm->lock);
6696  		break;
6697  	case KVM_CAP_X86_NOTIFY_VMEXIT:
6698  		r = -EINVAL;
6699  		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6700  			break;
6701  		if (!kvm_caps.has_notify_vmexit)
6702  			break;
6703  		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6704  			break;
6705  		mutex_lock(&kvm->lock);
6706  		if (!kvm->created_vcpus) {
6707  			kvm->arch.notify_window = cap->args[0] >> 32;
6708  			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6709  			r = 0;
6710  		}
6711  		mutex_unlock(&kvm->lock);
6712  		break;
6713  	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6714  		r = -EINVAL;
6715  
6716  		/*
6717  		 * Since the risk of disabling NX hugepages is a guest crashing
6718  		 * the system, ensure the userspace process has permission to
6719  		 * reboot the system.
6720  		 *
6721  		 * Note that unlike the reboot() syscall, the process must have
6722  		 * this capability in the root namespace because exposing
6723  		 * /dev/kvm into a container does not limit the scope of the
6724  		 * iTLB multihit bug to that container. In other words,
6725  		 * this must use capable(), not ns_capable().
6726  		 */
6727  		if (!capable(CAP_SYS_BOOT)) {
6728  			r = -EPERM;
6729  			break;
6730  		}
6731  
6732  		if (cap->args[0])
6733  			break;
6734  
6735  		mutex_lock(&kvm->lock);
6736  		if (!kvm->created_vcpus) {
6737  			kvm->arch.disable_nx_huge_pages = true;
6738  			r = 0;
6739  		}
6740  		mutex_unlock(&kvm->lock);
6741  		break;
6742  	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6743  		u64 bus_cycle_ns = cap->args[0];
6744  		u64 unused;
6745  
6746  		/*
6747  		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6748  		 * divide value that can be programmed in APIC_TDCR.
6749  		 */
6750  		r = -EINVAL;
6751  		if (!bus_cycle_ns ||
6752  		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6753  			break;
6754  
6755  		r = 0;
6756  		mutex_lock(&kvm->lock);
6757  		if (!irqchip_in_kernel(kvm))
6758  			r = -ENXIO;
6759  		else if (kvm->created_vcpus)
6760  			r = -EINVAL;
6761  		else
6762  			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6763  		mutex_unlock(&kvm->lock);
6764  		break;
6765  	}
6766  	default:
6767  		r = -EINVAL;
6768  		break;
6769  	}
6770  	return r;
6771  }
6772  
kvm_alloc_msr_filter(bool default_allow)6773  static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6774  {
6775  	struct kvm_x86_msr_filter *msr_filter;
6776  
6777  	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6778  	if (!msr_filter)
6779  		return NULL;
6780  
6781  	msr_filter->default_allow = default_allow;
6782  	return msr_filter;
6783  }
6784  
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6785  static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6786  {
6787  	u32 i;
6788  
6789  	if (!msr_filter)
6790  		return;
6791  
6792  	for (i = 0; i < msr_filter->count; i++)
6793  		kfree(msr_filter->ranges[i].bitmap);
6794  
6795  	kfree(msr_filter);
6796  }
6797  
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6798  static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6799  			      struct kvm_msr_filter_range *user_range)
6800  {
6801  	unsigned long *bitmap;
6802  	size_t bitmap_size;
6803  
6804  	if (!user_range->nmsrs)
6805  		return 0;
6806  
6807  	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6808  		return -EINVAL;
6809  
6810  	if (!user_range->flags)
6811  		return -EINVAL;
6812  
6813  	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6814  	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6815  		return -EINVAL;
6816  
6817  	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6818  	if (IS_ERR(bitmap))
6819  		return PTR_ERR(bitmap);
6820  
6821  	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6822  		.flags = user_range->flags,
6823  		.base = user_range->base,
6824  		.nmsrs = user_range->nmsrs,
6825  		.bitmap = bitmap,
6826  	};
6827  
6828  	msr_filter->count++;
6829  	return 0;
6830  }
6831  
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6832  static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6833  				       struct kvm_msr_filter *filter)
6834  {
6835  	struct kvm_x86_msr_filter *new_filter, *old_filter;
6836  	bool default_allow;
6837  	bool empty = true;
6838  	int r;
6839  	u32 i;
6840  
6841  	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6842  		return -EINVAL;
6843  
6844  	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6845  		empty &= !filter->ranges[i].nmsrs;
6846  
6847  	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6848  	if (empty && !default_allow)
6849  		return -EINVAL;
6850  
6851  	new_filter = kvm_alloc_msr_filter(default_allow);
6852  	if (!new_filter)
6853  		return -ENOMEM;
6854  
6855  	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6856  		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6857  		if (r) {
6858  			kvm_free_msr_filter(new_filter);
6859  			return r;
6860  		}
6861  	}
6862  
6863  	mutex_lock(&kvm->lock);
6864  	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6865  					 mutex_is_locked(&kvm->lock));
6866  	mutex_unlock(&kvm->lock);
6867  	synchronize_srcu(&kvm->srcu);
6868  
6869  	kvm_free_msr_filter(old_filter);
6870  
6871  	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6872  
6873  	return 0;
6874  }
6875  
6876  #ifdef CONFIG_KVM_COMPAT
6877  /* for KVM_X86_SET_MSR_FILTER */
6878  struct kvm_msr_filter_range_compat {
6879  	__u32 flags;
6880  	__u32 nmsrs;
6881  	__u32 base;
6882  	__u32 bitmap;
6883  };
6884  
6885  struct kvm_msr_filter_compat {
6886  	__u32 flags;
6887  	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6888  };
6889  
6890  #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6891  
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6892  long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6893  			      unsigned long arg)
6894  {
6895  	void __user *argp = (void __user *)arg;
6896  	struct kvm *kvm = filp->private_data;
6897  	long r = -ENOTTY;
6898  
6899  	switch (ioctl) {
6900  	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6901  		struct kvm_msr_filter __user *user_msr_filter = argp;
6902  		struct kvm_msr_filter_compat filter_compat;
6903  		struct kvm_msr_filter filter;
6904  		int i;
6905  
6906  		if (copy_from_user(&filter_compat, user_msr_filter,
6907  				   sizeof(filter_compat)))
6908  			return -EFAULT;
6909  
6910  		filter.flags = filter_compat.flags;
6911  		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6912  			struct kvm_msr_filter_range_compat *cr;
6913  
6914  			cr = &filter_compat.ranges[i];
6915  			filter.ranges[i] = (struct kvm_msr_filter_range) {
6916  				.flags = cr->flags,
6917  				.nmsrs = cr->nmsrs,
6918  				.base = cr->base,
6919  				.bitmap = (__u8 *)(ulong)cr->bitmap,
6920  			};
6921  		}
6922  
6923  		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6924  		break;
6925  	}
6926  	}
6927  
6928  	return r;
6929  }
6930  #endif
6931  
6932  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6933  static int kvm_arch_suspend_notifier(struct kvm *kvm)
6934  {
6935  	struct kvm_vcpu *vcpu;
6936  	unsigned long i;
6937  
6938  	/*
6939  	 * Ignore the return, marking the guest paused only "fails" if the vCPU
6940  	 * isn't using kvmclock; continuing on is correct and desirable.
6941  	 */
6942  	kvm_for_each_vcpu(i, vcpu, kvm)
6943  		(void)kvm_set_guest_paused(vcpu);
6944  
6945  	return NOTIFY_DONE;
6946  }
6947  
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6948  int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6949  {
6950  	switch (state) {
6951  	case PM_HIBERNATION_PREPARE:
6952  	case PM_SUSPEND_PREPARE:
6953  		return kvm_arch_suspend_notifier(kvm);
6954  	}
6955  
6956  	return NOTIFY_DONE;
6957  }
6958  #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6959  
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6960  static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6961  {
6962  	struct kvm_clock_data data = { 0 };
6963  
6964  	get_kvmclock(kvm, &data);
6965  	if (copy_to_user(argp, &data, sizeof(data)))
6966  		return -EFAULT;
6967  
6968  	return 0;
6969  }
6970  
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6971  static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6972  {
6973  	struct kvm_arch *ka = &kvm->arch;
6974  	struct kvm_clock_data data;
6975  	u64 now_raw_ns;
6976  
6977  	if (copy_from_user(&data, argp, sizeof(data)))
6978  		return -EFAULT;
6979  
6980  	/*
6981  	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6982  	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6983  	 */
6984  	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6985  		return -EINVAL;
6986  
6987  	kvm_hv_request_tsc_page_update(kvm);
6988  	kvm_start_pvclock_update(kvm);
6989  	pvclock_update_vm_gtod_copy(kvm);
6990  
6991  	/*
6992  	 * This pairs with kvm_guest_time_update(): when masterclock is
6993  	 * in use, we use master_kernel_ns + kvmclock_offset to set
6994  	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6995  	 * is slightly ahead) here we risk going negative on unsigned
6996  	 * 'system_time' when 'data.clock' is very small.
6997  	 */
6998  	if (data.flags & KVM_CLOCK_REALTIME) {
6999  		u64 now_real_ns = ktime_get_real_ns();
7000  
7001  		/*
7002  		 * Avoid stepping the kvmclock backwards.
7003  		 */
7004  		if (now_real_ns > data.realtime)
7005  			data.clock += now_real_ns - data.realtime;
7006  	}
7007  
7008  	if (ka->use_master_clock)
7009  		now_raw_ns = ka->master_kernel_ns;
7010  	else
7011  		now_raw_ns = get_kvmclock_base_ns();
7012  	ka->kvmclock_offset = data.clock - now_raw_ns;
7013  	kvm_end_pvclock_update(kvm);
7014  	return 0;
7015  }
7016  
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7017  int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7018  {
7019  	struct kvm *kvm = filp->private_data;
7020  	void __user *argp = (void __user *)arg;
7021  	int r = -ENOTTY;
7022  	/*
7023  	 * This union makes it completely explicit to gcc-3.x
7024  	 * that these two variables' stack usage should be
7025  	 * combined, not added together.
7026  	 */
7027  	union {
7028  		struct kvm_pit_state ps;
7029  		struct kvm_pit_state2 ps2;
7030  		struct kvm_pit_config pit_config;
7031  	} u;
7032  
7033  	switch (ioctl) {
7034  	case KVM_SET_TSS_ADDR:
7035  		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7036  		break;
7037  	case KVM_SET_IDENTITY_MAP_ADDR: {
7038  		u64 ident_addr;
7039  
7040  		mutex_lock(&kvm->lock);
7041  		r = -EINVAL;
7042  		if (kvm->created_vcpus)
7043  			goto set_identity_unlock;
7044  		r = -EFAULT;
7045  		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7046  			goto set_identity_unlock;
7047  		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7048  set_identity_unlock:
7049  		mutex_unlock(&kvm->lock);
7050  		break;
7051  	}
7052  	case KVM_SET_NR_MMU_PAGES:
7053  		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7054  		break;
7055  	case KVM_CREATE_IRQCHIP: {
7056  		mutex_lock(&kvm->lock);
7057  
7058  		r = -EEXIST;
7059  		if (irqchip_in_kernel(kvm))
7060  			goto create_irqchip_unlock;
7061  
7062  		r = -EINVAL;
7063  		if (kvm->created_vcpus)
7064  			goto create_irqchip_unlock;
7065  
7066  		r = kvm_pic_init(kvm);
7067  		if (r)
7068  			goto create_irqchip_unlock;
7069  
7070  		r = kvm_ioapic_init(kvm);
7071  		if (r) {
7072  			kvm_pic_destroy(kvm);
7073  			goto create_irqchip_unlock;
7074  		}
7075  
7076  		r = kvm_setup_default_irq_routing(kvm);
7077  		if (r) {
7078  			kvm_ioapic_destroy(kvm);
7079  			kvm_pic_destroy(kvm);
7080  			goto create_irqchip_unlock;
7081  		}
7082  		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7083  		smp_wmb();
7084  		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7085  		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7086  	create_irqchip_unlock:
7087  		mutex_unlock(&kvm->lock);
7088  		break;
7089  	}
7090  	case KVM_CREATE_PIT:
7091  		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7092  		goto create_pit;
7093  	case KVM_CREATE_PIT2:
7094  		r = -EFAULT;
7095  		if (copy_from_user(&u.pit_config, argp,
7096  				   sizeof(struct kvm_pit_config)))
7097  			goto out;
7098  	create_pit:
7099  		mutex_lock(&kvm->lock);
7100  		r = -EEXIST;
7101  		if (kvm->arch.vpit)
7102  			goto create_pit_unlock;
7103  		r = -ENOENT;
7104  		if (!pic_in_kernel(kvm))
7105  			goto create_pit_unlock;
7106  		r = -ENOMEM;
7107  		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7108  		if (kvm->arch.vpit)
7109  			r = 0;
7110  	create_pit_unlock:
7111  		mutex_unlock(&kvm->lock);
7112  		break;
7113  	case KVM_GET_IRQCHIP: {
7114  		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7115  		struct kvm_irqchip *chip;
7116  
7117  		chip = memdup_user(argp, sizeof(*chip));
7118  		if (IS_ERR(chip)) {
7119  			r = PTR_ERR(chip);
7120  			goto out;
7121  		}
7122  
7123  		r = -ENXIO;
7124  		if (!irqchip_kernel(kvm))
7125  			goto get_irqchip_out;
7126  		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7127  		if (r)
7128  			goto get_irqchip_out;
7129  		r = -EFAULT;
7130  		if (copy_to_user(argp, chip, sizeof(*chip)))
7131  			goto get_irqchip_out;
7132  		r = 0;
7133  	get_irqchip_out:
7134  		kfree(chip);
7135  		break;
7136  	}
7137  	case KVM_SET_IRQCHIP: {
7138  		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7139  		struct kvm_irqchip *chip;
7140  
7141  		chip = memdup_user(argp, sizeof(*chip));
7142  		if (IS_ERR(chip)) {
7143  			r = PTR_ERR(chip);
7144  			goto out;
7145  		}
7146  
7147  		r = -ENXIO;
7148  		if (!irqchip_kernel(kvm))
7149  			goto set_irqchip_out;
7150  		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7151  	set_irqchip_out:
7152  		kfree(chip);
7153  		break;
7154  	}
7155  	case KVM_GET_PIT: {
7156  		r = -EFAULT;
7157  		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7158  			goto out;
7159  		r = -ENXIO;
7160  		if (!kvm->arch.vpit)
7161  			goto out;
7162  		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7163  		if (r)
7164  			goto out;
7165  		r = -EFAULT;
7166  		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7167  			goto out;
7168  		r = 0;
7169  		break;
7170  	}
7171  	case KVM_SET_PIT: {
7172  		r = -EFAULT;
7173  		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7174  			goto out;
7175  		mutex_lock(&kvm->lock);
7176  		r = -ENXIO;
7177  		if (!kvm->arch.vpit)
7178  			goto set_pit_out;
7179  		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7180  set_pit_out:
7181  		mutex_unlock(&kvm->lock);
7182  		break;
7183  	}
7184  	case KVM_GET_PIT2: {
7185  		r = -ENXIO;
7186  		if (!kvm->arch.vpit)
7187  			goto out;
7188  		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7189  		if (r)
7190  			goto out;
7191  		r = -EFAULT;
7192  		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7193  			goto out;
7194  		r = 0;
7195  		break;
7196  	}
7197  	case KVM_SET_PIT2: {
7198  		r = -EFAULT;
7199  		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7200  			goto out;
7201  		mutex_lock(&kvm->lock);
7202  		r = -ENXIO;
7203  		if (!kvm->arch.vpit)
7204  			goto set_pit2_out;
7205  		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7206  set_pit2_out:
7207  		mutex_unlock(&kvm->lock);
7208  		break;
7209  	}
7210  	case KVM_REINJECT_CONTROL: {
7211  		struct kvm_reinject_control control;
7212  		r =  -EFAULT;
7213  		if (copy_from_user(&control, argp, sizeof(control)))
7214  			goto out;
7215  		r = -ENXIO;
7216  		if (!kvm->arch.vpit)
7217  			goto out;
7218  		r = kvm_vm_ioctl_reinject(kvm, &control);
7219  		break;
7220  	}
7221  	case KVM_SET_BOOT_CPU_ID:
7222  		r = 0;
7223  		mutex_lock(&kvm->lock);
7224  		if (kvm->created_vcpus)
7225  			r = -EBUSY;
7226  		else if (arg > KVM_MAX_VCPU_IDS ||
7227  			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7228  			r = -EINVAL;
7229  		else
7230  			kvm->arch.bsp_vcpu_id = arg;
7231  		mutex_unlock(&kvm->lock);
7232  		break;
7233  #ifdef CONFIG_KVM_XEN
7234  	case KVM_XEN_HVM_CONFIG: {
7235  		struct kvm_xen_hvm_config xhc;
7236  		r = -EFAULT;
7237  		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7238  			goto out;
7239  		r = kvm_xen_hvm_config(kvm, &xhc);
7240  		break;
7241  	}
7242  	case KVM_XEN_HVM_GET_ATTR: {
7243  		struct kvm_xen_hvm_attr xha;
7244  
7245  		r = -EFAULT;
7246  		if (copy_from_user(&xha, argp, sizeof(xha)))
7247  			goto out;
7248  		r = kvm_xen_hvm_get_attr(kvm, &xha);
7249  		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7250  			r = -EFAULT;
7251  		break;
7252  	}
7253  	case KVM_XEN_HVM_SET_ATTR: {
7254  		struct kvm_xen_hvm_attr xha;
7255  
7256  		r = -EFAULT;
7257  		if (copy_from_user(&xha, argp, sizeof(xha)))
7258  			goto out;
7259  		r = kvm_xen_hvm_set_attr(kvm, &xha);
7260  		break;
7261  	}
7262  	case KVM_XEN_HVM_EVTCHN_SEND: {
7263  		struct kvm_irq_routing_xen_evtchn uxe;
7264  
7265  		r = -EFAULT;
7266  		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7267  			goto out;
7268  		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7269  		break;
7270  	}
7271  #endif
7272  	case KVM_SET_CLOCK:
7273  		r = kvm_vm_ioctl_set_clock(kvm, argp);
7274  		break;
7275  	case KVM_GET_CLOCK:
7276  		r = kvm_vm_ioctl_get_clock(kvm, argp);
7277  		break;
7278  	case KVM_SET_TSC_KHZ: {
7279  		u32 user_tsc_khz;
7280  
7281  		r = -EINVAL;
7282  		user_tsc_khz = (u32)arg;
7283  
7284  		if (kvm_caps.has_tsc_control &&
7285  		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7286  			goto out;
7287  
7288  		if (user_tsc_khz == 0)
7289  			user_tsc_khz = tsc_khz;
7290  
7291  		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7292  		r = 0;
7293  
7294  		goto out;
7295  	}
7296  	case KVM_GET_TSC_KHZ: {
7297  		r = READ_ONCE(kvm->arch.default_tsc_khz);
7298  		goto out;
7299  	}
7300  	case KVM_MEMORY_ENCRYPT_OP: {
7301  		r = -ENOTTY;
7302  		if (!kvm_x86_ops.mem_enc_ioctl)
7303  			goto out;
7304  
7305  		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7306  		break;
7307  	}
7308  	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7309  		struct kvm_enc_region region;
7310  
7311  		r = -EFAULT;
7312  		if (copy_from_user(&region, argp, sizeof(region)))
7313  			goto out;
7314  
7315  		r = -ENOTTY;
7316  		if (!kvm_x86_ops.mem_enc_register_region)
7317  			goto out;
7318  
7319  		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7320  		break;
7321  	}
7322  	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7323  		struct kvm_enc_region region;
7324  
7325  		r = -EFAULT;
7326  		if (copy_from_user(&region, argp, sizeof(region)))
7327  			goto out;
7328  
7329  		r = -ENOTTY;
7330  		if (!kvm_x86_ops.mem_enc_unregister_region)
7331  			goto out;
7332  
7333  		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7334  		break;
7335  	}
7336  #ifdef CONFIG_KVM_HYPERV
7337  	case KVM_HYPERV_EVENTFD: {
7338  		struct kvm_hyperv_eventfd hvevfd;
7339  
7340  		r = -EFAULT;
7341  		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7342  			goto out;
7343  		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7344  		break;
7345  	}
7346  #endif
7347  	case KVM_SET_PMU_EVENT_FILTER:
7348  		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7349  		break;
7350  	case KVM_X86_SET_MSR_FILTER: {
7351  		struct kvm_msr_filter __user *user_msr_filter = argp;
7352  		struct kvm_msr_filter filter;
7353  
7354  		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7355  			return -EFAULT;
7356  
7357  		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7358  		break;
7359  	}
7360  	default:
7361  		r = -ENOTTY;
7362  	}
7363  out:
7364  	return r;
7365  }
7366  
kvm_probe_feature_msr(u32 msr_index)7367  static void kvm_probe_feature_msr(u32 msr_index)
7368  {
7369  	u64 data;
7370  
7371  	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7372  		return;
7373  
7374  	msr_based_features[num_msr_based_features++] = msr_index;
7375  }
7376  
kvm_probe_msr_to_save(u32 msr_index)7377  static void kvm_probe_msr_to_save(u32 msr_index)
7378  {
7379  	u32 dummy[2];
7380  
7381  	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7382  		return;
7383  
7384  	/*
7385  	 * Even MSRs that are valid in the host may not be exposed to guests in
7386  	 * some cases.
7387  	 */
7388  	switch (msr_index) {
7389  	case MSR_IA32_BNDCFGS:
7390  		if (!kvm_mpx_supported())
7391  			return;
7392  		break;
7393  	case MSR_TSC_AUX:
7394  		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7395  		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7396  			return;
7397  		break;
7398  	case MSR_IA32_UMWAIT_CONTROL:
7399  		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7400  			return;
7401  		break;
7402  	case MSR_IA32_RTIT_CTL:
7403  	case MSR_IA32_RTIT_STATUS:
7404  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7405  			return;
7406  		break;
7407  	case MSR_IA32_RTIT_CR3_MATCH:
7408  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7409  		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7410  			return;
7411  		break;
7412  	case MSR_IA32_RTIT_OUTPUT_BASE:
7413  	case MSR_IA32_RTIT_OUTPUT_MASK:
7414  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7415  		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7416  		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7417  			return;
7418  		break;
7419  	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7420  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7421  		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7422  		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7423  			return;
7424  		break;
7425  	case MSR_ARCH_PERFMON_PERFCTR0 ...
7426  	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7427  		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7428  		    kvm_pmu_cap.num_counters_gp)
7429  			return;
7430  		break;
7431  	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7432  	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7433  		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7434  		    kvm_pmu_cap.num_counters_gp)
7435  			return;
7436  		break;
7437  	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7438  	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7439  		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7440  		    kvm_pmu_cap.num_counters_fixed)
7441  			return;
7442  		break;
7443  	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7444  	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7445  	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7446  		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7447  			return;
7448  		break;
7449  	case MSR_IA32_XFD:
7450  	case MSR_IA32_XFD_ERR:
7451  		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7452  			return;
7453  		break;
7454  	case MSR_IA32_TSX_CTRL:
7455  		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7456  			return;
7457  		break;
7458  	default:
7459  		break;
7460  	}
7461  
7462  	msrs_to_save[num_msrs_to_save++] = msr_index;
7463  }
7464  
kvm_init_msr_lists(void)7465  static void kvm_init_msr_lists(void)
7466  {
7467  	unsigned i;
7468  
7469  	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7470  			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7471  
7472  	num_msrs_to_save = 0;
7473  	num_emulated_msrs = 0;
7474  	num_msr_based_features = 0;
7475  
7476  	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7477  		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7478  
7479  	if (enable_pmu) {
7480  		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7481  			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7482  	}
7483  
7484  	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7485  		if (!kvm_x86_call(has_emulated_msr)(NULL,
7486  						    emulated_msrs_all[i]))
7487  			continue;
7488  
7489  		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7490  	}
7491  
7492  	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7493  		kvm_probe_feature_msr(i);
7494  
7495  	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7496  		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7497  }
7498  
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7499  static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7500  			   const void *v)
7501  {
7502  	int handled = 0;
7503  	int n;
7504  
7505  	do {
7506  		n = min(len, 8);
7507  		if (!(lapic_in_kernel(vcpu) &&
7508  		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7509  		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7510  			break;
7511  		handled += n;
7512  		addr += n;
7513  		len -= n;
7514  		v += n;
7515  	} while (len);
7516  
7517  	return handled;
7518  }
7519  
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7520  static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7521  {
7522  	int handled = 0;
7523  	int n;
7524  
7525  	do {
7526  		n = min(len, 8);
7527  		if (!(lapic_in_kernel(vcpu) &&
7528  		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7529  					 addr, n, v))
7530  		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7531  			break;
7532  		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7533  		handled += n;
7534  		addr += n;
7535  		len -= n;
7536  		v += n;
7537  	} while (len);
7538  
7539  	return handled;
7540  }
7541  
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7542  void kvm_set_segment(struct kvm_vcpu *vcpu,
7543  		     struct kvm_segment *var, int seg)
7544  {
7545  	kvm_x86_call(set_segment)(vcpu, var, seg);
7546  }
7547  
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7548  void kvm_get_segment(struct kvm_vcpu *vcpu,
7549  		     struct kvm_segment *var, int seg)
7550  {
7551  	kvm_x86_call(get_segment)(vcpu, var, seg);
7552  }
7553  
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7554  gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7555  			   struct x86_exception *exception)
7556  {
7557  	struct kvm_mmu *mmu = vcpu->arch.mmu;
7558  	gpa_t t_gpa;
7559  
7560  	BUG_ON(!mmu_is_nested(vcpu));
7561  
7562  	/* NPT walks are always user-walks */
7563  	access |= PFERR_USER_MASK;
7564  	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7565  
7566  	return t_gpa;
7567  }
7568  
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7569  gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7570  			      struct x86_exception *exception)
7571  {
7572  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7573  
7574  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7575  	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7576  }
7577  EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7578  
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7579  gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7580  			       struct x86_exception *exception)
7581  {
7582  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7583  
7584  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7585  	access |= PFERR_WRITE_MASK;
7586  	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7587  }
7588  EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7589  
7590  /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7591  gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7592  				struct x86_exception *exception)
7593  {
7594  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7595  
7596  	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7597  }
7598  
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7599  static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7600  				      struct kvm_vcpu *vcpu, u64 access,
7601  				      struct x86_exception *exception)
7602  {
7603  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7604  	void *data = val;
7605  	int r = X86EMUL_CONTINUE;
7606  
7607  	while (bytes) {
7608  		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7609  		unsigned offset = addr & (PAGE_SIZE-1);
7610  		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7611  		int ret;
7612  
7613  		if (gpa == INVALID_GPA)
7614  			return X86EMUL_PROPAGATE_FAULT;
7615  		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7616  					       offset, toread);
7617  		if (ret < 0) {
7618  			r = X86EMUL_IO_NEEDED;
7619  			goto out;
7620  		}
7621  
7622  		bytes -= toread;
7623  		data += toread;
7624  		addr += toread;
7625  	}
7626  out:
7627  	return r;
7628  }
7629  
7630  /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7631  static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7632  				gva_t addr, void *val, unsigned int bytes,
7633  				struct x86_exception *exception)
7634  {
7635  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7636  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7637  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7638  	unsigned offset;
7639  	int ret;
7640  
7641  	/* Inline kvm_read_guest_virt_helper for speed.  */
7642  	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7643  				    exception);
7644  	if (unlikely(gpa == INVALID_GPA))
7645  		return X86EMUL_PROPAGATE_FAULT;
7646  
7647  	offset = addr & (PAGE_SIZE-1);
7648  	if (WARN_ON(offset + bytes > PAGE_SIZE))
7649  		bytes = (unsigned)PAGE_SIZE - offset;
7650  	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7651  				       offset, bytes);
7652  	if (unlikely(ret < 0))
7653  		return X86EMUL_IO_NEEDED;
7654  
7655  	return X86EMUL_CONTINUE;
7656  }
7657  
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7658  int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7659  			       gva_t addr, void *val, unsigned int bytes,
7660  			       struct x86_exception *exception)
7661  {
7662  	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7663  
7664  	/*
7665  	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7666  	 * is returned, but our callers are not ready for that and they blindly
7667  	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7668  	 * uninitialized kernel stack memory into cr2 and error code.
7669  	 */
7670  	memset(exception, 0, sizeof(*exception));
7671  	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7672  					  exception);
7673  }
7674  EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7675  
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7676  static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7677  			     gva_t addr, void *val, unsigned int bytes,
7678  			     struct x86_exception *exception, bool system)
7679  {
7680  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7681  	u64 access = 0;
7682  
7683  	if (system)
7684  		access |= PFERR_IMPLICIT_ACCESS;
7685  	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7686  		access |= PFERR_USER_MASK;
7687  
7688  	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7689  }
7690  
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7691  static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7692  				      struct kvm_vcpu *vcpu, u64 access,
7693  				      struct x86_exception *exception)
7694  {
7695  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7696  	void *data = val;
7697  	int r = X86EMUL_CONTINUE;
7698  
7699  	while (bytes) {
7700  		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7701  		unsigned offset = addr & (PAGE_SIZE-1);
7702  		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7703  		int ret;
7704  
7705  		if (gpa == INVALID_GPA)
7706  			return X86EMUL_PROPAGATE_FAULT;
7707  		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7708  		if (ret < 0) {
7709  			r = X86EMUL_IO_NEEDED;
7710  			goto out;
7711  		}
7712  
7713  		bytes -= towrite;
7714  		data += towrite;
7715  		addr += towrite;
7716  	}
7717  out:
7718  	return r;
7719  }
7720  
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7721  static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7722  			      unsigned int bytes, struct x86_exception *exception,
7723  			      bool system)
7724  {
7725  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7726  	u64 access = PFERR_WRITE_MASK;
7727  
7728  	if (system)
7729  		access |= PFERR_IMPLICIT_ACCESS;
7730  	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7731  		access |= PFERR_USER_MASK;
7732  
7733  	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7734  					   access, exception);
7735  }
7736  
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7737  int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7738  				unsigned int bytes, struct x86_exception *exception)
7739  {
7740  	/* kvm_write_guest_virt_system can pull in tons of pages. */
7741  	vcpu->arch.l1tf_flush_l1d = true;
7742  
7743  	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7744  					   PFERR_WRITE_MASK, exception);
7745  }
7746  EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7747  
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7748  static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7749  				  void *insn, int insn_len)
7750  {
7751  	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7752  						       insn, insn_len);
7753  }
7754  
handle_ud(struct kvm_vcpu * vcpu)7755  int handle_ud(struct kvm_vcpu *vcpu)
7756  {
7757  	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7758  	int fep_flags = READ_ONCE(force_emulation_prefix);
7759  	int emul_type = EMULTYPE_TRAP_UD;
7760  	char sig[5]; /* ud2; .ascii "kvm" */
7761  	struct x86_exception e;
7762  	int r;
7763  
7764  	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7765  	if (r != X86EMUL_CONTINUE)
7766  		return 1;
7767  
7768  	if (fep_flags &&
7769  	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7770  				sig, sizeof(sig), &e) == 0 &&
7771  	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7772  		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7773  			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7774  		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7775  		emul_type = EMULTYPE_TRAP_UD_FORCED;
7776  	}
7777  
7778  	return kvm_emulate_instruction(vcpu, emul_type);
7779  }
7780  EXPORT_SYMBOL_GPL(handle_ud);
7781  
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7782  static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7783  			    gpa_t gpa, bool write)
7784  {
7785  	/* For APIC access vmexit */
7786  	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7787  		return 1;
7788  
7789  	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7790  		trace_vcpu_match_mmio(gva, gpa, write, true);
7791  		return 1;
7792  	}
7793  
7794  	return 0;
7795  }
7796  
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7797  static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7798  				gpa_t *gpa, struct x86_exception *exception,
7799  				bool write)
7800  {
7801  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7802  	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7803  		     | (write ? PFERR_WRITE_MASK : 0);
7804  
7805  	/*
7806  	 * currently PKRU is only applied to ept enabled guest so
7807  	 * there is no pkey in EPT page table for L1 guest or EPT
7808  	 * shadow page table for L2 guest.
7809  	 */
7810  	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7811  	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7812  			      vcpu->arch.mmio_access, 0, access))) {
7813  		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7814  					(gva & (PAGE_SIZE - 1));
7815  		trace_vcpu_match_mmio(gva, *gpa, write, false);
7816  		return 1;
7817  	}
7818  
7819  	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7820  
7821  	if (*gpa == INVALID_GPA)
7822  		return -1;
7823  
7824  	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7825  }
7826  
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7827  int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7828  			const void *val, int bytes)
7829  {
7830  	int ret;
7831  
7832  	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7833  	if (ret < 0)
7834  		return 0;
7835  	kvm_page_track_write(vcpu, gpa, val, bytes);
7836  	return 1;
7837  }
7838  
7839  struct read_write_emulator_ops {
7840  	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7841  				  int bytes);
7842  	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7843  				  void *val, int bytes);
7844  	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7845  			       int bytes, void *val);
7846  	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7847  				    void *val, int bytes);
7848  	bool write;
7849  };
7850  
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7851  static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7852  {
7853  	if (vcpu->mmio_read_completed) {
7854  		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7855  			       vcpu->mmio_fragments[0].gpa, val);
7856  		vcpu->mmio_read_completed = 0;
7857  		return 1;
7858  	}
7859  
7860  	return 0;
7861  }
7862  
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7863  static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7864  			void *val, int bytes)
7865  {
7866  	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7867  }
7868  
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7869  static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7870  			 void *val, int bytes)
7871  {
7872  	return emulator_write_phys(vcpu, gpa, val, bytes);
7873  }
7874  
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7875  static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7876  {
7877  	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7878  	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7879  }
7880  
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7881  static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7882  			  void *val, int bytes)
7883  {
7884  	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7885  	return X86EMUL_IO_NEEDED;
7886  }
7887  
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7888  static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7889  			   void *val, int bytes)
7890  {
7891  	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7892  
7893  	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7894  	return X86EMUL_CONTINUE;
7895  }
7896  
7897  static const struct read_write_emulator_ops read_emultor = {
7898  	.read_write_prepare = read_prepare,
7899  	.read_write_emulate = read_emulate,
7900  	.read_write_mmio = vcpu_mmio_read,
7901  	.read_write_exit_mmio = read_exit_mmio,
7902  };
7903  
7904  static const struct read_write_emulator_ops write_emultor = {
7905  	.read_write_emulate = write_emulate,
7906  	.read_write_mmio = write_mmio,
7907  	.read_write_exit_mmio = write_exit_mmio,
7908  	.write = true,
7909  };
7910  
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7911  static int emulator_read_write_onepage(unsigned long addr, void *val,
7912  				       unsigned int bytes,
7913  				       struct x86_exception *exception,
7914  				       struct kvm_vcpu *vcpu,
7915  				       const struct read_write_emulator_ops *ops)
7916  {
7917  	gpa_t gpa;
7918  	int handled, ret;
7919  	bool write = ops->write;
7920  	struct kvm_mmio_fragment *frag;
7921  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7922  
7923  	/*
7924  	 * If the exit was due to a NPF we may already have a GPA.
7925  	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7926  	 * Note, this cannot be used on string operations since string
7927  	 * operation using rep will only have the initial GPA from the NPF
7928  	 * occurred.
7929  	 */
7930  	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7931  	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7932  		gpa = ctxt->gpa_val;
7933  		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7934  	} else {
7935  		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7936  		if (ret < 0)
7937  			return X86EMUL_PROPAGATE_FAULT;
7938  	}
7939  
7940  	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7941  		return X86EMUL_CONTINUE;
7942  
7943  	/*
7944  	 * Is this MMIO handled locally?
7945  	 */
7946  	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7947  	if (handled == bytes)
7948  		return X86EMUL_CONTINUE;
7949  
7950  	gpa += handled;
7951  	bytes -= handled;
7952  	val += handled;
7953  
7954  	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7955  	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7956  	frag->gpa = gpa;
7957  	frag->data = val;
7958  	frag->len = bytes;
7959  	return X86EMUL_CONTINUE;
7960  }
7961  
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7962  static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7963  			unsigned long addr,
7964  			void *val, unsigned int bytes,
7965  			struct x86_exception *exception,
7966  			const struct read_write_emulator_ops *ops)
7967  {
7968  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7969  	gpa_t gpa;
7970  	int rc;
7971  
7972  	if (ops->read_write_prepare &&
7973  		  ops->read_write_prepare(vcpu, val, bytes))
7974  		return X86EMUL_CONTINUE;
7975  
7976  	vcpu->mmio_nr_fragments = 0;
7977  
7978  	/* Crossing a page boundary? */
7979  	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7980  		int now;
7981  
7982  		now = -addr & ~PAGE_MASK;
7983  		rc = emulator_read_write_onepage(addr, val, now, exception,
7984  						 vcpu, ops);
7985  
7986  		if (rc != X86EMUL_CONTINUE)
7987  			return rc;
7988  		addr += now;
7989  		if (ctxt->mode != X86EMUL_MODE_PROT64)
7990  			addr = (u32)addr;
7991  		val += now;
7992  		bytes -= now;
7993  	}
7994  
7995  	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7996  					 vcpu, ops);
7997  	if (rc != X86EMUL_CONTINUE)
7998  		return rc;
7999  
8000  	if (!vcpu->mmio_nr_fragments)
8001  		return rc;
8002  
8003  	gpa = vcpu->mmio_fragments[0].gpa;
8004  
8005  	vcpu->mmio_needed = 1;
8006  	vcpu->mmio_cur_fragment = 0;
8007  
8008  	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8009  	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8010  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
8011  	vcpu->run->mmio.phys_addr = gpa;
8012  
8013  	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8014  }
8015  
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8016  static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8017  				  unsigned long addr,
8018  				  void *val,
8019  				  unsigned int bytes,
8020  				  struct x86_exception *exception)
8021  {
8022  	return emulator_read_write(ctxt, addr, val, bytes,
8023  				   exception, &read_emultor);
8024  }
8025  
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8026  static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8027  			    unsigned long addr,
8028  			    const void *val,
8029  			    unsigned int bytes,
8030  			    struct x86_exception *exception)
8031  {
8032  	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8033  				   exception, &write_emultor);
8034  }
8035  
8036  #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8037  	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8038  
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8039  static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8040  				     unsigned long addr,
8041  				     const void *old,
8042  				     const void *new,
8043  				     unsigned int bytes,
8044  				     struct x86_exception *exception)
8045  {
8046  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8047  	u64 page_line_mask;
8048  	unsigned long hva;
8049  	gpa_t gpa;
8050  	int r;
8051  
8052  	/* guests cmpxchg8b have to be emulated atomically */
8053  	if (bytes > 8 || (bytes & (bytes - 1)))
8054  		goto emul_write;
8055  
8056  	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8057  
8058  	if (gpa == INVALID_GPA ||
8059  	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8060  		goto emul_write;
8061  
8062  	/*
8063  	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8064  	 * enabled in the host and the access splits a cache line.
8065  	 */
8066  	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8067  		page_line_mask = ~(cache_line_size() - 1);
8068  	else
8069  		page_line_mask = PAGE_MASK;
8070  
8071  	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8072  		goto emul_write;
8073  
8074  	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8075  	if (kvm_is_error_hva(hva))
8076  		goto emul_write;
8077  
8078  	hva += offset_in_page(gpa);
8079  
8080  	switch (bytes) {
8081  	case 1:
8082  		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8083  		break;
8084  	case 2:
8085  		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8086  		break;
8087  	case 4:
8088  		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8089  		break;
8090  	case 8:
8091  		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8092  		break;
8093  	default:
8094  		BUG();
8095  	}
8096  
8097  	if (r < 0)
8098  		return X86EMUL_UNHANDLEABLE;
8099  
8100  	/*
8101  	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8102  	 * successful, as the old value is written back on failure.  Note, for
8103  	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8104  	 * back the original value and the access is atomic, but KVM's ABI is
8105  	 * that all writes are dirty logged, regardless of the value written.
8106  	 */
8107  	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8108  
8109  	if (r)
8110  		return X86EMUL_CMPXCHG_FAILED;
8111  
8112  	kvm_page_track_write(vcpu, gpa, new, bytes);
8113  
8114  	return X86EMUL_CONTINUE;
8115  
8116  emul_write:
8117  	pr_warn_once("emulating exchange as write\n");
8118  
8119  	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8120  }
8121  
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8122  static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8123  			       unsigned short port, void *data,
8124  			       unsigned int count, bool in)
8125  {
8126  	unsigned i;
8127  	int r;
8128  
8129  	WARN_ON_ONCE(vcpu->arch.pio.count);
8130  	for (i = 0; i < count; i++) {
8131  		if (in)
8132  			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8133  		else
8134  			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8135  
8136  		if (r) {
8137  			if (i == 0)
8138  				goto userspace_io;
8139  
8140  			/*
8141  			 * Userspace must have unregistered the device while PIO
8142  			 * was running.  Drop writes / read as 0.
8143  			 */
8144  			if (in)
8145  				memset(data, 0, size * (count - i));
8146  			break;
8147  		}
8148  
8149  		data += size;
8150  	}
8151  	return 1;
8152  
8153  userspace_io:
8154  	vcpu->arch.pio.port = port;
8155  	vcpu->arch.pio.in = in;
8156  	vcpu->arch.pio.count = count;
8157  	vcpu->arch.pio.size = size;
8158  
8159  	if (in)
8160  		memset(vcpu->arch.pio_data, 0, size * count);
8161  	else
8162  		memcpy(vcpu->arch.pio_data, data, size * count);
8163  
8164  	vcpu->run->exit_reason = KVM_EXIT_IO;
8165  	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8166  	vcpu->run->io.size = size;
8167  	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8168  	vcpu->run->io.count = count;
8169  	vcpu->run->io.port = port;
8170  	return 0;
8171  }
8172  
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8173  static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8174        			   unsigned short port, void *val, unsigned int count)
8175  {
8176  	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8177  	if (r)
8178  		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8179  
8180  	return r;
8181  }
8182  
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8183  static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8184  {
8185  	int size = vcpu->arch.pio.size;
8186  	unsigned int count = vcpu->arch.pio.count;
8187  	memcpy(val, vcpu->arch.pio_data, size * count);
8188  	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8189  	vcpu->arch.pio.count = 0;
8190  }
8191  
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8192  static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8193  				    int size, unsigned short port, void *val,
8194  				    unsigned int count)
8195  {
8196  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8197  	if (vcpu->arch.pio.count) {
8198  		/*
8199  		 * Complete a previous iteration that required userspace I/O.
8200  		 * Note, @count isn't guaranteed to match pio.count as userspace
8201  		 * can modify ECX before rerunning the vCPU.  Ignore any such
8202  		 * shenanigans as KVM doesn't support modifying the rep count,
8203  		 * and the emulator ensures @count doesn't overflow the buffer.
8204  		 */
8205  		complete_emulator_pio_in(vcpu, val);
8206  		return 1;
8207  	}
8208  
8209  	return emulator_pio_in(vcpu, size, port, val, count);
8210  }
8211  
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8212  static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8213  			    unsigned short port, const void *val,
8214  			    unsigned int count)
8215  {
8216  	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8217  	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8218  }
8219  
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8220  static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8221  				     int size, unsigned short port,
8222  				     const void *val, unsigned int count)
8223  {
8224  	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8225  }
8226  
get_segment_base(struct kvm_vcpu * vcpu,int seg)8227  static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8228  {
8229  	return kvm_x86_call(get_segment_base)(vcpu, seg);
8230  }
8231  
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8232  static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8233  {
8234  	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8235  }
8236  
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8237  static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8238  {
8239  	if (!need_emulate_wbinvd(vcpu))
8240  		return X86EMUL_CONTINUE;
8241  
8242  	if (kvm_x86_call(has_wbinvd_exit)()) {
8243  		int cpu = get_cpu();
8244  
8245  		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8246  		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8247  				wbinvd_ipi, NULL, 1);
8248  		put_cpu();
8249  		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8250  	} else
8251  		wbinvd();
8252  	return X86EMUL_CONTINUE;
8253  }
8254  
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8255  int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8256  {
8257  	kvm_emulate_wbinvd_noskip(vcpu);
8258  	return kvm_skip_emulated_instruction(vcpu);
8259  }
8260  EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8261  
8262  
8263  
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8264  static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8265  {
8266  	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8267  }
8268  
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8269  static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8270  {
8271  	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8272  }
8273  
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8274  static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8275  			   unsigned long value)
8276  {
8277  
8278  	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8279  }
8280  
mk_cr_64(u64 curr_cr,u32 new_val)8281  static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8282  {
8283  	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8284  }
8285  
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8286  static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8287  {
8288  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8289  	unsigned long value;
8290  
8291  	switch (cr) {
8292  	case 0:
8293  		value = kvm_read_cr0(vcpu);
8294  		break;
8295  	case 2:
8296  		value = vcpu->arch.cr2;
8297  		break;
8298  	case 3:
8299  		value = kvm_read_cr3(vcpu);
8300  		break;
8301  	case 4:
8302  		value = kvm_read_cr4(vcpu);
8303  		break;
8304  	case 8:
8305  		value = kvm_get_cr8(vcpu);
8306  		break;
8307  	default:
8308  		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8309  		return 0;
8310  	}
8311  
8312  	return value;
8313  }
8314  
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8315  static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8316  {
8317  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8318  	int res = 0;
8319  
8320  	switch (cr) {
8321  	case 0:
8322  		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8323  		break;
8324  	case 2:
8325  		vcpu->arch.cr2 = val;
8326  		break;
8327  	case 3:
8328  		res = kvm_set_cr3(vcpu, val);
8329  		break;
8330  	case 4:
8331  		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8332  		break;
8333  	case 8:
8334  		res = kvm_set_cr8(vcpu, val);
8335  		break;
8336  	default:
8337  		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8338  		res = -1;
8339  	}
8340  
8341  	return res;
8342  }
8343  
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8344  static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8345  {
8346  	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8347  }
8348  
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8349  static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8350  {
8351  	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8352  }
8353  
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8354  static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8355  {
8356  	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8357  }
8358  
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8359  static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8360  {
8361  	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8362  }
8363  
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8364  static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8365  {
8366  	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8367  }
8368  
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8369  static unsigned long emulator_get_cached_segment_base(
8370  	struct x86_emulate_ctxt *ctxt, int seg)
8371  {
8372  	return get_segment_base(emul_to_vcpu(ctxt), seg);
8373  }
8374  
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8375  static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8376  				 struct desc_struct *desc, u32 *base3,
8377  				 int seg)
8378  {
8379  	struct kvm_segment var;
8380  
8381  	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8382  	*selector = var.selector;
8383  
8384  	if (var.unusable) {
8385  		memset(desc, 0, sizeof(*desc));
8386  		if (base3)
8387  			*base3 = 0;
8388  		return false;
8389  	}
8390  
8391  	if (var.g)
8392  		var.limit >>= 12;
8393  	set_desc_limit(desc, var.limit);
8394  	set_desc_base(desc, (unsigned long)var.base);
8395  #ifdef CONFIG_X86_64
8396  	if (base3)
8397  		*base3 = var.base >> 32;
8398  #endif
8399  	desc->type = var.type;
8400  	desc->s = var.s;
8401  	desc->dpl = var.dpl;
8402  	desc->p = var.present;
8403  	desc->avl = var.avl;
8404  	desc->l = var.l;
8405  	desc->d = var.db;
8406  	desc->g = var.g;
8407  
8408  	return true;
8409  }
8410  
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8411  static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8412  				 struct desc_struct *desc, u32 base3,
8413  				 int seg)
8414  {
8415  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8416  	struct kvm_segment var;
8417  
8418  	var.selector = selector;
8419  	var.base = get_desc_base(desc);
8420  #ifdef CONFIG_X86_64
8421  	var.base |= ((u64)base3) << 32;
8422  #endif
8423  	var.limit = get_desc_limit(desc);
8424  	if (desc->g)
8425  		var.limit = (var.limit << 12) | 0xfff;
8426  	var.type = desc->type;
8427  	var.dpl = desc->dpl;
8428  	var.db = desc->d;
8429  	var.s = desc->s;
8430  	var.l = desc->l;
8431  	var.g = desc->g;
8432  	var.avl = desc->avl;
8433  	var.present = desc->p;
8434  	var.unusable = !var.present;
8435  	var.padding = 0;
8436  
8437  	kvm_set_segment(vcpu, &var, seg);
8438  	return;
8439  }
8440  
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8441  static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8442  					u32 msr_index, u64 *pdata)
8443  {
8444  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8445  	int r;
8446  
8447  	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8448  	if (r < 0)
8449  		return X86EMUL_UNHANDLEABLE;
8450  
8451  	if (r) {
8452  		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8453  				       complete_emulated_rdmsr, r))
8454  			return X86EMUL_IO_NEEDED;
8455  
8456  		trace_kvm_msr_read_ex(msr_index);
8457  		return X86EMUL_PROPAGATE_FAULT;
8458  	}
8459  
8460  	trace_kvm_msr_read(msr_index, *pdata);
8461  	return X86EMUL_CONTINUE;
8462  }
8463  
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8464  static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8465  					u32 msr_index, u64 data)
8466  {
8467  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8468  	int r;
8469  
8470  	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8471  	if (r < 0)
8472  		return X86EMUL_UNHANDLEABLE;
8473  
8474  	if (r) {
8475  		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8476  				       complete_emulated_msr_access, r))
8477  			return X86EMUL_IO_NEEDED;
8478  
8479  		trace_kvm_msr_write_ex(msr_index, data);
8480  		return X86EMUL_PROPAGATE_FAULT;
8481  	}
8482  
8483  	trace_kvm_msr_write(msr_index, data);
8484  	return X86EMUL_CONTINUE;
8485  }
8486  
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8487  static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8488  			    u32 msr_index, u64 *pdata)
8489  {
8490  	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8491  }
8492  
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8493  static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8494  {
8495  	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8496  }
8497  
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8498  static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8499  			     u32 pmc, u64 *pdata)
8500  {
8501  	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8502  }
8503  
emulator_halt(struct x86_emulate_ctxt * ctxt)8504  static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8505  {
8506  	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8507  }
8508  
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8509  static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8510  			      struct x86_instruction_info *info,
8511  			      enum x86_intercept_stage stage)
8512  {
8513  	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8514  					     &ctxt->exception);
8515  }
8516  
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8517  static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8518  			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8519  			      bool exact_only)
8520  {
8521  	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8522  }
8523  
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8524  static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8525  {
8526  	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8527  }
8528  
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8529  static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8530  {
8531  	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8532  }
8533  
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8534  static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8535  {
8536  	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8537  }
8538  
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8539  static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8540  {
8541  	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8542  }
8543  
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8544  static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8545  {
8546  	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8547  }
8548  
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8549  static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8550  {
8551  	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8552  }
8553  
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8554  static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8555  {
8556  	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8557  }
8558  
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8559  static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8560  {
8561  	return is_smm(emul_to_vcpu(ctxt));
8562  }
8563  
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8564  static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8565  {
8566  	return is_guest_mode(emul_to_vcpu(ctxt));
8567  }
8568  
8569  #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8570  static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8571  {
8572  	WARN_ON_ONCE(1);
8573  	return X86EMUL_UNHANDLEABLE;
8574  }
8575  #endif
8576  
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8577  static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8578  {
8579  	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8580  }
8581  
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8582  static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8583  {
8584  	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8585  }
8586  
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8587  static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8588  {
8589  	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8590  
8591  	if (!kvm->vm_bugged)
8592  		kvm_vm_bugged(kvm);
8593  }
8594  
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8595  static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8596  					gva_t addr, unsigned int flags)
8597  {
8598  	if (!kvm_x86_ops.get_untagged_addr)
8599  		return addr;
8600  
8601  	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8602  					       addr, flags);
8603  }
8604  
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8605  static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8606  				       gva_t addr, unsigned int flags)
8607  {
8608  	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8609  }
8610  
8611  static const struct x86_emulate_ops emulate_ops = {
8612  	.vm_bugged           = emulator_vm_bugged,
8613  	.read_gpr            = emulator_read_gpr,
8614  	.write_gpr           = emulator_write_gpr,
8615  	.read_std            = emulator_read_std,
8616  	.write_std           = emulator_write_std,
8617  	.fetch               = kvm_fetch_guest_virt,
8618  	.read_emulated       = emulator_read_emulated,
8619  	.write_emulated      = emulator_write_emulated,
8620  	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8621  	.invlpg              = emulator_invlpg,
8622  	.pio_in_emulated     = emulator_pio_in_emulated,
8623  	.pio_out_emulated    = emulator_pio_out_emulated,
8624  	.get_segment         = emulator_get_segment,
8625  	.set_segment         = emulator_set_segment,
8626  	.get_cached_segment_base = emulator_get_cached_segment_base,
8627  	.get_gdt             = emulator_get_gdt,
8628  	.get_idt	     = emulator_get_idt,
8629  	.set_gdt             = emulator_set_gdt,
8630  	.set_idt	     = emulator_set_idt,
8631  	.get_cr              = emulator_get_cr,
8632  	.set_cr              = emulator_set_cr,
8633  	.cpl                 = emulator_get_cpl,
8634  	.get_dr              = emulator_get_dr,
8635  	.set_dr              = emulator_set_dr,
8636  	.set_msr_with_filter = emulator_set_msr_with_filter,
8637  	.get_msr_with_filter = emulator_get_msr_with_filter,
8638  	.get_msr             = emulator_get_msr,
8639  	.check_rdpmc_early   = emulator_check_rdpmc_early,
8640  	.read_pmc            = emulator_read_pmc,
8641  	.halt                = emulator_halt,
8642  	.wbinvd              = emulator_wbinvd,
8643  	.fix_hypercall       = emulator_fix_hypercall,
8644  	.intercept           = emulator_intercept,
8645  	.get_cpuid           = emulator_get_cpuid,
8646  	.guest_has_movbe     = emulator_guest_has_movbe,
8647  	.guest_has_fxsr      = emulator_guest_has_fxsr,
8648  	.guest_has_rdpid     = emulator_guest_has_rdpid,
8649  	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8650  	.set_nmi_mask        = emulator_set_nmi_mask,
8651  	.is_smm              = emulator_is_smm,
8652  	.is_guest_mode       = emulator_is_guest_mode,
8653  	.leave_smm           = emulator_leave_smm,
8654  	.triple_fault        = emulator_triple_fault,
8655  	.set_xcr             = emulator_set_xcr,
8656  	.get_untagged_addr   = emulator_get_untagged_addr,
8657  	.is_canonical_addr   = emulator_is_canonical_addr,
8658  };
8659  
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8660  static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8661  {
8662  	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8663  	/*
8664  	 * an sti; sti; sequence only disable interrupts for the first
8665  	 * instruction. So, if the last instruction, be it emulated or
8666  	 * not, left the system with the INT_STI flag enabled, it
8667  	 * means that the last instruction is an sti. We should not
8668  	 * leave the flag on in this case. The same goes for mov ss
8669  	 */
8670  	if (int_shadow & mask)
8671  		mask = 0;
8672  	if (unlikely(int_shadow || mask)) {
8673  		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8674  		if (!mask)
8675  			kvm_make_request(KVM_REQ_EVENT, vcpu);
8676  	}
8677  }
8678  
inject_emulated_exception(struct kvm_vcpu * vcpu)8679  static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8680  {
8681  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8682  
8683  	if (ctxt->exception.vector == PF_VECTOR)
8684  		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8685  	else if (ctxt->exception.error_code_valid)
8686  		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8687  				      ctxt->exception.error_code);
8688  	else
8689  		kvm_queue_exception(vcpu, ctxt->exception.vector);
8690  }
8691  
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8692  static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8693  {
8694  	struct x86_emulate_ctxt *ctxt;
8695  
8696  	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8697  	if (!ctxt) {
8698  		pr_err("failed to allocate vcpu's emulator\n");
8699  		return NULL;
8700  	}
8701  
8702  	ctxt->vcpu = vcpu;
8703  	ctxt->ops = &emulate_ops;
8704  	vcpu->arch.emulate_ctxt = ctxt;
8705  
8706  	return ctxt;
8707  }
8708  
init_emulate_ctxt(struct kvm_vcpu * vcpu)8709  static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8710  {
8711  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8712  	int cs_db, cs_l;
8713  
8714  	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8715  
8716  	ctxt->gpa_available = false;
8717  	ctxt->eflags = kvm_get_rflags(vcpu);
8718  	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8719  
8720  	ctxt->eip = kvm_rip_read(vcpu);
8721  	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8722  		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8723  		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8724  		     cs_db				? X86EMUL_MODE_PROT32 :
8725  							  X86EMUL_MODE_PROT16;
8726  	ctxt->interruptibility = 0;
8727  	ctxt->have_exception = false;
8728  	ctxt->exception.vector = -1;
8729  	ctxt->perm_ok = false;
8730  
8731  	init_decode_cache(ctxt);
8732  	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8733  }
8734  
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8735  void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8736  {
8737  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8738  	int ret;
8739  
8740  	init_emulate_ctxt(vcpu);
8741  
8742  	ctxt->op_bytes = 2;
8743  	ctxt->ad_bytes = 2;
8744  	ctxt->_eip = ctxt->eip + inc_eip;
8745  	ret = emulate_int_real(ctxt, irq);
8746  
8747  	if (ret != X86EMUL_CONTINUE) {
8748  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8749  	} else {
8750  		ctxt->eip = ctxt->_eip;
8751  		kvm_rip_write(vcpu, ctxt->eip);
8752  		kvm_set_rflags(vcpu, ctxt->eflags);
8753  	}
8754  }
8755  EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8756  
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8757  static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8758  					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8759  {
8760  	struct kvm_run *run = vcpu->run;
8761  	u64 info[5];
8762  	u8 info_start;
8763  
8764  	/*
8765  	 * Zero the whole array used to retrieve the exit info, as casting to
8766  	 * u32 for select entries will leave some chunks uninitialized.
8767  	 */
8768  	memset(&info, 0, sizeof(info));
8769  
8770  	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8771  				    (u32 *)&info[3], (u32 *)&info[4]);
8772  
8773  	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8774  	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8775  
8776  	/*
8777  	 * There's currently space for 13 entries, but 5 are used for the exit
8778  	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8779  	 * when expanding kvm_run.emulation_failure in the future.
8780  	 */
8781  	if (WARN_ON_ONCE(ndata > 4))
8782  		ndata = 4;
8783  
8784  	/* Always include the flags as a 'data' entry. */
8785  	info_start = 1;
8786  	run->emulation_failure.flags = 0;
8787  
8788  	if (insn_size) {
8789  		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8790  			      sizeof(run->emulation_failure.insn_bytes) != 16));
8791  		info_start += 2;
8792  		run->emulation_failure.flags |=
8793  			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8794  		run->emulation_failure.insn_size = insn_size;
8795  		memset(run->emulation_failure.insn_bytes, 0x90,
8796  		       sizeof(run->emulation_failure.insn_bytes));
8797  		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8798  	}
8799  
8800  	memcpy(&run->internal.data[info_start], info, sizeof(info));
8801  	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8802  	       ndata * sizeof(data[0]));
8803  
8804  	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8805  }
8806  
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8807  static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8808  {
8809  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8810  
8811  	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8812  				       ctxt->fetch.end - ctxt->fetch.data);
8813  }
8814  
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8815  void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8816  					  u8 ndata)
8817  {
8818  	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8819  }
8820  EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8821  
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8822  void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8823  {
8824  	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8825  }
8826  EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8827  
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8828  void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8829  {
8830  	u32 reason, intr_info, error_code;
8831  	struct kvm_run *run = vcpu->run;
8832  	u64 info1, info2;
8833  	int ndata = 0;
8834  
8835  	kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8836  				    &intr_info, &error_code);
8837  
8838  	run->internal.data[ndata++] = info2;
8839  	run->internal.data[ndata++] = reason;
8840  	run->internal.data[ndata++] = info1;
8841  	run->internal.data[ndata++] = gpa;
8842  	run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8843  
8844  	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8845  	run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8846  	run->internal.ndata = ndata;
8847  }
8848  EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8849  
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8850  static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8851  {
8852  	struct kvm *kvm = vcpu->kvm;
8853  
8854  	++vcpu->stat.insn_emulation_fail;
8855  	trace_kvm_emulate_insn_failed(vcpu);
8856  
8857  	if (emulation_type & EMULTYPE_VMWARE_GP) {
8858  		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8859  		return 1;
8860  	}
8861  
8862  	if (kvm->arch.exit_on_emulation_error ||
8863  	    (emulation_type & EMULTYPE_SKIP)) {
8864  		prepare_emulation_ctxt_failure_exit(vcpu);
8865  		return 0;
8866  	}
8867  
8868  	kvm_queue_exception(vcpu, UD_VECTOR);
8869  
8870  	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8871  		prepare_emulation_ctxt_failure_exit(vcpu);
8872  		return 0;
8873  	}
8874  
8875  	return 1;
8876  }
8877  
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8878  static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8879  					       gpa_t cr2_or_gpa,
8880  					       int emulation_type)
8881  {
8882  	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8883  		return false;
8884  
8885  	/*
8886  	 * If the failed instruction faulted on an access to page tables that
8887  	 * are used to translate any part of the instruction, KVM can't resolve
8888  	 * the issue by unprotecting the gfn, as zapping the shadow page will
8889  	 * result in the instruction taking a !PRESENT page fault and thus put
8890  	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8891  	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8892  	 * then zap the SPTE to unprotect the gfn, and then do it all over
8893  	 * again.  Report the error to userspace.
8894  	 */
8895  	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8896  		return false;
8897  
8898  	/*
8899  	 * If emulation may have been triggered by a write to a shadowed page
8900  	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8901  	 * guest to let the CPU re-execute the instruction in the hope that the
8902  	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8903  	 */
8904  	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8905  
8906  	/*
8907  	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8908  	 * all SPTEs were already zapped by a different task.  The alternative
8909  	 * is to report the error to userspace and likely terminate the guest,
8910  	 * and the last_retry_{eip,addr} checks will prevent retrying the page
8911  	 * fault indefinitely, i.e. there's nothing to lose by retrying.
8912  	 */
8913  	return true;
8914  }
8915  
8916  static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8917  static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8918  
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8919  static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8920  				unsigned long *db)
8921  {
8922  	u32 dr6 = 0;
8923  	int i;
8924  	u32 enable, rwlen;
8925  
8926  	enable = dr7;
8927  	rwlen = dr7 >> 16;
8928  	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8929  		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8930  			dr6 |= (1 << i);
8931  	return dr6;
8932  }
8933  
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8934  static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8935  {
8936  	struct kvm_run *kvm_run = vcpu->run;
8937  
8938  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8939  		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8940  		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8941  		kvm_run->debug.arch.exception = DB_VECTOR;
8942  		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8943  		return 0;
8944  	}
8945  	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8946  	return 1;
8947  }
8948  
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8949  int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8950  {
8951  	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8952  	int r;
8953  
8954  	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8955  	if (unlikely(!r))
8956  		return 0;
8957  
8958  	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8959  
8960  	/*
8961  	 * rflags is the old, "raw" value of the flags.  The new value has
8962  	 * not been saved yet.
8963  	 *
8964  	 * This is correct even for TF set by the guest, because "the
8965  	 * processor will not generate this exception after the instruction
8966  	 * that sets the TF flag".
8967  	 */
8968  	if (unlikely(rflags & X86_EFLAGS_TF))
8969  		r = kvm_vcpu_do_singlestep(vcpu);
8970  	return r;
8971  }
8972  EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8973  
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8974  static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8975  {
8976  	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8977  		return true;
8978  
8979  	/*
8980  	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8981  	 * active, but AMD compatible CPUs do not.
8982  	 */
8983  	if (!guest_cpuid_is_intel_compatible(vcpu))
8984  		return false;
8985  
8986  	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8987  }
8988  
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8989  static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8990  					   int emulation_type, int *r)
8991  {
8992  	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8993  
8994  	/*
8995  	 * Do not check for code breakpoints if hardware has already done the
8996  	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8997  	 * the instruction has passed all exception checks, and all intercepted
8998  	 * exceptions that trigger emulation have lower priority than code
8999  	 * breakpoints, i.e. the fact that the intercepted exception occurred
9000  	 * means any code breakpoints have already been serviced.
9001  	 *
9002  	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9003  	 * hardware has checked the RIP of the magic prefix, but not the RIP of
9004  	 * the instruction being emulated.  The intent of forced emulation is
9005  	 * to behave as if KVM intercepted the instruction without an exception
9006  	 * and without a prefix.
9007  	 */
9008  	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9009  			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9010  		return false;
9011  
9012  	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9013  	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9014  		struct kvm_run *kvm_run = vcpu->run;
9015  		unsigned long eip = kvm_get_linear_rip(vcpu);
9016  		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9017  					   vcpu->arch.guest_debug_dr7,
9018  					   vcpu->arch.eff_db);
9019  
9020  		if (dr6 != 0) {
9021  			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9022  			kvm_run->debug.arch.pc = eip;
9023  			kvm_run->debug.arch.exception = DB_VECTOR;
9024  			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9025  			*r = 0;
9026  			return true;
9027  		}
9028  	}
9029  
9030  	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9031  	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9032  		unsigned long eip = kvm_get_linear_rip(vcpu);
9033  		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9034  					   vcpu->arch.dr7,
9035  					   vcpu->arch.db);
9036  
9037  		if (dr6 != 0) {
9038  			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9039  			*r = 1;
9040  			return true;
9041  		}
9042  	}
9043  
9044  	return false;
9045  }
9046  
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9047  static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9048  {
9049  	switch (ctxt->opcode_len) {
9050  	case 1:
9051  		switch (ctxt->b) {
9052  		case 0xe4:	/* IN */
9053  		case 0xe5:
9054  		case 0xec:
9055  		case 0xed:
9056  		case 0xe6:	/* OUT */
9057  		case 0xe7:
9058  		case 0xee:
9059  		case 0xef:
9060  		case 0x6c:	/* INS */
9061  		case 0x6d:
9062  		case 0x6e:	/* OUTS */
9063  		case 0x6f:
9064  			return true;
9065  		}
9066  		break;
9067  	case 2:
9068  		switch (ctxt->b) {
9069  		case 0x33:	/* RDPMC */
9070  			return true;
9071  		}
9072  		break;
9073  	}
9074  
9075  	return false;
9076  }
9077  
9078  /*
9079   * Decode an instruction for emulation.  The caller is responsible for handling
9080   * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9081   * (and wrong) when emulating on an intercepted fault-like exception[*], as
9082   * code breakpoints have higher priority and thus have already been done by
9083   * hardware.
9084   *
9085   * [*] Except #MC, which is higher priority, but KVM should never emulate in
9086   *     response to a machine check.
9087   */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9088  int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9089  				    void *insn, int insn_len)
9090  {
9091  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9092  	int r;
9093  
9094  	init_emulate_ctxt(vcpu);
9095  
9096  	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9097  
9098  	trace_kvm_emulate_insn_start(vcpu);
9099  	++vcpu->stat.insn_emulation;
9100  
9101  	return r;
9102  }
9103  EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9104  
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9105  int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9106  			    int emulation_type, void *insn, int insn_len)
9107  {
9108  	int r;
9109  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9110  	bool writeback = true;
9111  
9112  	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9113  	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9114  	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9115  		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9116  
9117  	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9118  	if (r != X86EMUL_CONTINUE) {
9119  		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9120  			return 1;
9121  
9122  		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9123  						       emulation_type))
9124  			return 1;
9125  
9126  		if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9127  			kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9128  			return 0;
9129  		}
9130  
9131  		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9132  		return handle_emulation_failure(vcpu, emulation_type);
9133  	}
9134  
9135  	vcpu->arch.l1tf_flush_l1d = true;
9136  
9137  	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9138  		kvm_clear_exception_queue(vcpu);
9139  
9140  		/*
9141  		 * Return immediately if RIP hits a code breakpoint, such #DBs
9142  		 * are fault-like and are higher priority than any faults on
9143  		 * the code fetch itself.
9144  		 */
9145  		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9146  			return r;
9147  
9148  		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9149  						    insn, insn_len);
9150  		if (r != EMULATION_OK)  {
9151  			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9152  			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9153  				kvm_queue_exception(vcpu, UD_VECTOR);
9154  				return 1;
9155  			}
9156  			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9157  							       emulation_type))
9158  				return 1;
9159  
9160  			if (ctxt->have_exception &&
9161  			    !(emulation_type & EMULTYPE_SKIP)) {
9162  				/*
9163  				 * #UD should result in just EMULATION_FAILED, and trap-like
9164  				 * exception should not be encountered during decode.
9165  				 */
9166  				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9167  					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9168  				inject_emulated_exception(vcpu);
9169  				return 1;
9170  			}
9171  			return handle_emulation_failure(vcpu, emulation_type);
9172  		}
9173  	}
9174  
9175  	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9176  	    !is_vmware_backdoor_opcode(ctxt)) {
9177  		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9178  		return 1;
9179  	}
9180  
9181  	/*
9182  	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9183  	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9184  	 * The caller is responsible for updating interruptibility state and
9185  	 * injecting single-step #DBs.
9186  	 */
9187  	if (emulation_type & EMULTYPE_SKIP) {
9188  		if (ctxt->mode != X86EMUL_MODE_PROT64)
9189  			ctxt->eip = (u32)ctxt->_eip;
9190  		else
9191  			ctxt->eip = ctxt->_eip;
9192  
9193  		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9194  			r = 1;
9195  			goto writeback;
9196  		}
9197  
9198  		kvm_rip_write(vcpu, ctxt->eip);
9199  		if (ctxt->eflags & X86_EFLAGS_RF)
9200  			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9201  		return 1;
9202  	}
9203  
9204  	/*
9205  	 * If emulation was caused by a write-protection #PF on a non-page_table
9206  	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9207  	 * and retry the instruction, as the vCPU is likely no longer using the
9208  	 * gfn as a page table.
9209  	 */
9210  	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9211  	    !x86_page_table_writing_insn(ctxt) &&
9212  	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9213  		return 1;
9214  
9215  	/* this is needed for vmware backdoor interface to work since it
9216  	   changes registers values  during IO operation */
9217  	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9218  		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9219  		emulator_invalidate_register_cache(ctxt);
9220  	}
9221  
9222  restart:
9223  	if (emulation_type & EMULTYPE_PF) {
9224  		/* Save the faulting GPA (cr2) in the address field */
9225  		ctxt->exception.address = cr2_or_gpa;
9226  
9227  		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9228  		if (vcpu->arch.mmu->root_role.direct) {
9229  			ctxt->gpa_available = true;
9230  			ctxt->gpa_val = cr2_or_gpa;
9231  		}
9232  	} else {
9233  		/* Sanitize the address out of an abundance of paranoia. */
9234  		ctxt->exception.address = 0;
9235  	}
9236  
9237  	r = x86_emulate_insn(ctxt);
9238  
9239  	if (r == EMULATION_INTERCEPTED)
9240  		return 1;
9241  
9242  	if (r == EMULATION_FAILED) {
9243  		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9244  						       emulation_type))
9245  			return 1;
9246  
9247  		return handle_emulation_failure(vcpu, emulation_type);
9248  	}
9249  
9250  	if (ctxt->have_exception) {
9251  		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9252  		vcpu->mmio_needed = false;
9253  		r = 1;
9254  		inject_emulated_exception(vcpu);
9255  	} else if (vcpu->arch.pio.count) {
9256  		if (!vcpu->arch.pio.in) {
9257  			/* FIXME: return into emulator if single-stepping.  */
9258  			vcpu->arch.pio.count = 0;
9259  		} else {
9260  			writeback = false;
9261  			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9262  		}
9263  		r = 0;
9264  	} else if (vcpu->mmio_needed) {
9265  		++vcpu->stat.mmio_exits;
9266  
9267  		if (!vcpu->mmio_is_write)
9268  			writeback = false;
9269  		r = 0;
9270  		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9271  	} else if (vcpu->arch.complete_userspace_io) {
9272  		writeback = false;
9273  		r = 0;
9274  	} else if (r == EMULATION_RESTART)
9275  		goto restart;
9276  	else
9277  		r = 1;
9278  
9279  writeback:
9280  	if (writeback) {
9281  		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9282  		toggle_interruptibility(vcpu, ctxt->interruptibility);
9283  		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9284  
9285  		/*
9286  		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9287  		 * only supports code breakpoints and general detect #DB, both
9288  		 * of which are fault-like.
9289  		 */
9290  		if (!ctxt->have_exception ||
9291  		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9292  			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9293  			if (ctxt->is_branch)
9294  				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9295  			kvm_rip_write(vcpu, ctxt->eip);
9296  			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9297  				r = kvm_vcpu_do_singlestep(vcpu);
9298  			kvm_x86_call(update_emulated_instruction)(vcpu);
9299  			__kvm_set_rflags(vcpu, ctxt->eflags);
9300  		}
9301  
9302  		/*
9303  		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9304  		 * do nothing, and it will be requested again as soon as
9305  		 * the shadow expires.  But we still need to check here,
9306  		 * because POPF has no interrupt shadow.
9307  		 */
9308  		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9309  			kvm_make_request(KVM_REQ_EVENT, vcpu);
9310  	} else
9311  		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9312  
9313  	return r;
9314  }
9315  
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9316  int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9317  {
9318  	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9319  }
9320  EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9321  
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9322  int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9323  					void *insn, int insn_len)
9324  {
9325  	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9326  }
9327  EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9328  
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9329  static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9330  {
9331  	vcpu->arch.pio.count = 0;
9332  	return 1;
9333  }
9334  
complete_fast_pio_out(struct kvm_vcpu * vcpu)9335  static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9336  {
9337  	vcpu->arch.pio.count = 0;
9338  
9339  	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9340  		return 1;
9341  
9342  	return kvm_skip_emulated_instruction(vcpu);
9343  }
9344  
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9345  static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9346  			    unsigned short port)
9347  {
9348  	unsigned long val = kvm_rax_read(vcpu);
9349  	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9350  
9351  	if (ret)
9352  		return ret;
9353  
9354  	/*
9355  	 * Workaround userspace that relies on old KVM behavior of %rip being
9356  	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9357  	 */
9358  	if (port == 0x7e &&
9359  	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9360  		vcpu->arch.complete_userspace_io =
9361  			complete_fast_pio_out_port_0x7e;
9362  		kvm_skip_emulated_instruction(vcpu);
9363  	} else {
9364  		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9365  		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9366  	}
9367  	return 0;
9368  }
9369  
complete_fast_pio_in(struct kvm_vcpu * vcpu)9370  static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9371  {
9372  	unsigned long val;
9373  
9374  	/* We should only ever be called with arch.pio.count equal to 1 */
9375  	BUG_ON(vcpu->arch.pio.count != 1);
9376  
9377  	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9378  		vcpu->arch.pio.count = 0;
9379  		return 1;
9380  	}
9381  
9382  	/* For size less than 4 we merge, else we zero extend */
9383  	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9384  
9385  	complete_emulator_pio_in(vcpu, &val);
9386  	kvm_rax_write(vcpu, val);
9387  
9388  	return kvm_skip_emulated_instruction(vcpu);
9389  }
9390  
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9391  static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9392  			   unsigned short port)
9393  {
9394  	unsigned long val;
9395  	int ret;
9396  
9397  	/* For size less than 4 we merge, else we zero extend */
9398  	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9399  
9400  	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9401  	if (ret) {
9402  		kvm_rax_write(vcpu, val);
9403  		return ret;
9404  	}
9405  
9406  	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9407  	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9408  
9409  	return 0;
9410  }
9411  
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9412  int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9413  {
9414  	int ret;
9415  
9416  	if (in)
9417  		ret = kvm_fast_pio_in(vcpu, size, port);
9418  	else
9419  		ret = kvm_fast_pio_out(vcpu, size, port);
9420  	return ret && kvm_skip_emulated_instruction(vcpu);
9421  }
9422  EXPORT_SYMBOL_GPL(kvm_fast_pio);
9423  
kvmclock_cpu_down_prep(unsigned int cpu)9424  static int kvmclock_cpu_down_prep(unsigned int cpu)
9425  {
9426  	__this_cpu_write(cpu_tsc_khz, 0);
9427  	return 0;
9428  }
9429  
tsc_khz_changed(void * data)9430  static void tsc_khz_changed(void *data)
9431  {
9432  	struct cpufreq_freqs *freq = data;
9433  	unsigned long khz;
9434  
9435  	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9436  
9437  	if (data)
9438  		khz = freq->new;
9439  	else
9440  		khz = cpufreq_quick_get(raw_smp_processor_id());
9441  	if (!khz)
9442  		khz = tsc_khz;
9443  	__this_cpu_write(cpu_tsc_khz, khz);
9444  }
9445  
9446  #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9447  static void kvm_hyperv_tsc_notifier(void)
9448  {
9449  	struct kvm *kvm;
9450  	int cpu;
9451  
9452  	mutex_lock(&kvm_lock);
9453  	list_for_each_entry(kvm, &vm_list, vm_list)
9454  		kvm_make_mclock_inprogress_request(kvm);
9455  
9456  	/* no guest entries from this point */
9457  	hyperv_stop_tsc_emulation();
9458  
9459  	/* TSC frequency always matches when on Hyper-V */
9460  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9461  		for_each_present_cpu(cpu)
9462  			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9463  	}
9464  	kvm_caps.max_guest_tsc_khz = tsc_khz;
9465  
9466  	list_for_each_entry(kvm, &vm_list, vm_list) {
9467  		__kvm_start_pvclock_update(kvm);
9468  		pvclock_update_vm_gtod_copy(kvm);
9469  		kvm_end_pvclock_update(kvm);
9470  	}
9471  
9472  	mutex_unlock(&kvm_lock);
9473  }
9474  #endif
9475  
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9476  static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9477  {
9478  	struct kvm *kvm;
9479  	struct kvm_vcpu *vcpu;
9480  	int send_ipi = 0;
9481  	unsigned long i;
9482  
9483  	/*
9484  	 * We allow guests to temporarily run on slowing clocks,
9485  	 * provided we notify them after, or to run on accelerating
9486  	 * clocks, provided we notify them before.  Thus time never
9487  	 * goes backwards.
9488  	 *
9489  	 * However, we have a problem.  We can't atomically update
9490  	 * the frequency of a given CPU from this function; it is
9491  	 * merely a notifier, which can be called from any CPU.
9492  	 * Changing the TSC frequency at arbitrary points in time
9493  	 * requires a recomputation of local variables related to
9494  	 * the TSC for each VCPU.  We must flag these local variables
9495  	 * to be updated and be sure the update takes place with the
9496  	 * new frequency before any guests proceed.
9497  	 *
9498  	 * Unfortunately, the combination of hotplug CPU and frequency
9499  	 * change creates an intractable locking scenario; the order
9500  	 * of when these callouts happen is undefined with respect to
9501  	 * CPU hotplug, and they can race with each other.  As such,
9502  	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9503  	 * undefined; you can actually have a CPU frequency change take
9504  	 * place in between the computation of X and the setting of the
9505  	 * variable.  To protect against this problem, all updates of
9506  	 * the per_cpu tsc_khz variable are done in an interrupt
9507  	 * protected IPI, and all callers wishing to update the value
9508  	 * must wait for a synchronous IPI to complete (which is trivial
9509  	 * if the caller is on the CPU already).  This establishes the
9510  	 * necessary total order on variable updates.
9511  	 *
9512  	 * Note that because a guest time update may take place
9513  	 * anytime after the setting of the VCPU's request bit, the
9514  	 * correct TSC value must be set before the request.  However,
9515  	 * to ensure the update actually makes it to any guest which
9516  	 * starts running in hardware virtualization between the set
9517  	 * and the acquisition of the spinlock, we must also ping the
9518  	 * CPU after setting the request bit.
9519  	 *
9520  	 */
9521  
9522  	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9523  
9524  	mutex_lock(&kvm_lock);
9525  	list_for_each_entry(kvm, &vm_list, vm_list) {
9526  		kvm_for_each_vcpu(i, vcpu, kvm) {
9527  			if (vcpu->cpu != cpu)
9528  				continue;
9529  			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9530  			if (vcpu->cpu != raw_smp_processor_id())
9531  				send_ipi = 1;
9532  		}
9533  	}
9534  	mutex_unlock(&kvm_lock);
9535  
9536  	if (freq->old < freq->new && send_ipi) {
9537  		/*
9538  		 * We upscale the frequency.  Must make the guest
9539  		 * doesn't see old kvmclock values while running with
9540  		 * the new frequency, otherwise we risk the guest sees
9541  		 * time go backwards.
9542  		 *
9543  		 * In case we update the frequency for another cpu
9544  		 * (which might be in guest context) send an interrupt
9545  		 * to kick the cpu out of guest context.  Next time
9546  		 * guest context is entered kvmclock will be updated,
9547  		 * so the guest will not see stale values.
9548  		 */
9549  		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9550  	}
9551  }
9552  
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9553  static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9554  				     void *data)
9555  {
9556  	struct cpufreq_freqs *freq = data;
9557  	int cpu;
9558  
9559  	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9560  		return 0;
9561  	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9562  		return 0;
9563  
9564  	for_each_cpu(cpu, freq->policy->cpus)
9565  		__kvmclock_cpufreq_notifier(freq, cpu);
9566  
9567  	return 0;
9568  }
9569  
9570  static struct notifier_block kvmclock_cpufreq_notifier_block = {
9571  	.notifier_call  = kvmclock_cpufreq_notifier
9572  };
9573  
kvmclock_cpu_online(unsigned int cpu)9574  static int kvmclock_cpu_online(unsigned int cpu)
9575  {
9576  	tsc_khz_changed(NULL);
9577  	return 0;
9578  }
9579  
kvm_timer_init(void)9580  static void kvm_timer_init(void)
9581  {
9582  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9583  		max_tsc_khz = tsc_khz;
9584  
9585  		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9586  			struct cpufreq_policy *policy;
9587  			int cpu;
9588  
9589  			cpu = get_cpu();
9590  			policy = cpufreq_cpu_get(cpu);
9591  			if (policy) {
9592  				if (policy->cpuinfo.max_freq)
9593  					max_tsc_khz = policy->cpuinfo.max_freq;
9594  				cpufreq_cpu_put(policy);
9595  			}
9596  			put_cpu();
9597  		}
9598  		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9599  					  CPUFREQ_TRANSITION_NOTIFIER);
9600  
9601  		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9602  				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9603  	}
9604  }
9605  
9606  #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9607  static void pvclock_gtod_update_fn(struct work_struct *work)
9608  {
9609  	struct kvm *kvm;
9610  	struct kvm_vcpu *vcpu;
9611  	unsigned long i;
9612  
9613  	mutex_lock(&kvm_lock);
9614  	list_for_each_entry(kvm, &vm_list, vm_list)
9615  		kvm_for_each_vcpu(i, vcpu, kvm)
9616  			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9617  	atomic_set(&kvm_guest_has_master_clock, 0);
9618  	mutex_unlock(&kvm_lock);
9619  }
9620  
9621  static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9622  
9623  /*
9624   * Indirection to move queue_work() out of the tk_core.seq write held
9625   * region to prevent possible deadlocks against time accessors which
9626   * are invoked with work related locks held.
9627   */
pvclock_irq_work_fn(struct irq_work * w)9628  static void pvclock_irq_work_fn(struct irq_work *w)
9629  {
9630  	queue_work(system_long_wq, &pvclock_gtod_work);
9631  }
9632  
9633  static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9634  
9635  /*
9636   * Notification about pvclock gtod data update.
9637   */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9638  static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9639  			       void *priv)
9640  {
9641  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9642  	struct timekeeper *tk = priv;
9643  
9644  	update_pvclock_gtod(tk);
9645  
9646  	/*
9647  	 * Disable master clock if host does not trust, or does not use,
9648  	 * TSC based clocksource. Delegate queue_work() to irq_work as
9649  	 * this is invoked with tk_core.seq write held.
9650  	 */
9651  	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9652  	    atomic_read(&kvm_guest_has_master_clock) != 0)
9653  		irq_work_queue(&pvclock_irq_work);
9654  	return 0;
9655  }
9656  
9657  static struct notifier_block pvclock_gtod_notifier = {
9658  	.notifier_call = pvclock_gtod_notify,
9659  };
9660  #endif
9661  
kvm_ops_update(struct kvm_x86_init_ops * ops)9662  static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9663  {
9664  	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9665  
9666  #define __KVM_X86_OP(func) \
9667  	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9668  #define KVM_X86_OP(func) \
9669  	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9670  #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9671  #define KVM_X86_OP_OPTIONAL_RET0(func) \
9672  	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9673  					   (void *)__static_call_return0);
9674  #include <asm/kvm-x86-ops.h>
9675  #undef __KVM_X86_OP
9676  
9677  	kvm_pmu_ops_update(ops->pmu_ops);
9678  }
9679  
kvm_x86_check_processor_compatibility(void)9680  static int kvm_x86_check_processor_compatibility(void)
9681  {
9682  	int cpu = smp_processor_id();
9683  	struct cpuinfo_x86 *c = &cpu_data(cpu);
9684  
9685  	/*
9686  	 * Compatibility checks are done when loading KVM and when enabling
9687  	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9688  	 * compatible, i.e. KVM should never perform a compatibility check on
9689  	 * an offline CPU.
9690  	 */
9691  	WARN_ON(!cpu_online(cpu));
9692  
9693  	if (__cr4_reserved_bits(cpu_has, c) !=
9694  	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9695  		return -EIO;
9696  
9697  	return kvm_x86_call(check_processor_compatibility)();
9698  }
9699  
kvm_x86_check_cpu_compat(void * ret)9700  static void kvm_x86_check_cpu_compat(void *ret)
9701  {
9702  	*(int *)ret = kvm_x86_check_processor_compatibility();
9703  }
9704  
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9705  int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9706  {
9707  	u64 host_pat;
9708  	int r, cpu;
9709  
9710  	guard(mutex)(&vendor_module_lock);
9711  
9712  	if (kvm_x86_ops.enable_virtualization_cpu) {
9713  		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9714  		return -EEXIST;
9715  	}
9716  
9717  	/*
9718  	 * KVM explicitly assumes that the guest has an FPU and
9719  	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9720  	 * vCPU's FPU state as a fxregs_state struct.
9721  	 */
9722  	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9723  		pr_err("inadequate fpu\n");
9724  		return -EOPNOTSUPP;
9725  	}
9726  
9727  	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9728  		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9729  		return -EOPNOTSUPP;
9730  	}
9731  
9732  	/*
9733  	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9734  	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9735  	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9736  	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9737  	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9738  	 */
9739  	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9740  	    (host_pat & GENMASK(2, 0)) != 6) {
9741  		pr_err("host PAT[0] is not WB\n");
9742  		return -EIO;
9743  	}
9744  
9745  	memset(&kvm_caps, 0, sizeof(kvm_caps));
9746  
9747  	x86_emulator_cache = kvm_alloc_emulator_cache();
9748  	if (!x86_emulator_cache) {
9749  		pr_err("failed to allocate cache for x86 emulator\n");
9750  		return -ENOMEM;
9751  	}
9752  
9753  	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9754  	if (!user_return_msrs) {
9755  		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9756  		r = -ENOMEM;
9757  		goto out_free_x86_emulator_cache;
9758  	}
9759  	kvm_nr_uret_msrs = 0;
9760  
9761  	r = kvm_mmu_vendor_module_init();
9762  	if (r)
9763  		goto out_free_percpu;
9764  
9765  	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9766  	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9767  
9768  	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9769  		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9770  		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9771  	}
9772  
9773  	rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9774  
9775  	if (boot_cpu_has(X86_FEATURE_XSAVES))
9776  		rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9777  
9778  	kvm_init_pmu_capability(ops->pmu_ops);
9779  
9780  	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9781  		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9782  
9783  	r = ops->hardware_setup();
9784  	if (r != 0)
9785  		goto out_mmu_exit;
9786  
9787  	kvm_ops_update(ops);
9788  
9789  	for_each_online_cpu(cpu) {
9790  		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9791  		if (r < 0)
9792  			goto out_unwind_ops;
9793  	}
9794  
9795  	/*
9796  	 * Point of no return!  DO NOT add error paths below this point unless
9797  	 * absolutely necessary, as most operations from this point forward
9798  	 * require unwinding.
9799  	 */
9800  	kvm_timer_init();
9801  
9802  	if (pi_inject_timer == -1)
9803  		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9804  #ifdef CONFIG_X86_64
9805  	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9806  
9807  	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9808  		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9809  #endif
9810  
9811  	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9812  
9813  	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9814  		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9815  
9816  	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9817  		kvm_caps.supported_xss = 0;
9818  
9819  	if (kvm_caps.has_tsc_control) {
9820  		/*
9821  		 * Make sure the user can only configure tsc_khz values that
9822  		 * fit into a signed integer.
9823  		 * A min value is not calculated because it will always
9824  		 * be 1 on all machines.
9825  		 */
9826  		u64 max = min(0x7fffffffULL,
9827  			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9828  		kvm_caps.max_guest_tsc_khz = max;
9829  	}
9830  	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9831  	kvm_init_msr_lists();
9832  	return 0;
9833  
9834  out_unwind_ops:
9835  	kvm_x86_ops.enable_virtualization_cpu = NULL;
9836  	kvm_x86_call(hardware_unsetup)();
9837  out_mmu_exit:
9838  	kvm_mmu_vendor_module_exit();
9839  out_free_percpu:
9840  	free_percpu(user_return_msrs);
9841  out_free_x86_emulator_cache:
9842  	kmem_cache_destroy(x86_emulator_cache);
9843  	return r;
9844  }
9845  EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9846  
kvm_x86_vendor_exit(void)9847  void kvm_x86_vendor_exit(void)
9848  {
9849  	kvm_unregister_perf_callbacks();
9850  
9851  #ifdef CONFIG_X86_64
9852  	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9853  		clear_hv_tscchange_cb();
9854  #endif
9855  	kvm_lapic_exit();
9856  
9857  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9858  		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9859  					    CPUFREQ_TRANSITION_NOTIFIER);
9860  		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9861  	}
9862  #ifdef CONFIG_X86_64
9863  	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9864  	irq_work_sync(&pvclock_irq_work);
9865  	cancel_work_sync(&pvclock_gtod_work);
9866  #endif
9867  	kvm_x86_call(hardware_unsetup)();
9868  	kvm_mmu_vendor_module_exit();
9869  	free_percpu(user_return_msrs);
9870  	kmem_cache_destroy(x86_emulator_cache);
9871  #ifdef CONFIG_KVM_XEN
9872  	static_key_deferred_flush(&kvm_xen_enabled);
9873  	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9874  #endif
9875  	mutex_lock(&vendor_module_lock);
9876  	kvm_x86_ops.enable_virtualization_cpu = NULL;
9877  	mutex_unlock(&vendor_module_lock);
9878  }
9879  EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9880  
9881  #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9882  static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9883  			        unsigned long clock_type)
9884  {
9885  	struct kvm_clock_pairing clock_pairing;
9886  	struct timespec64 ts;
9887  	u64 cycle;
9888  	int ret;
9889  
9890  	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9891  		return -KVM_EOPNOTSUPP;
9892  
9893  	/*
9894  	 * When tsc is in permanent catchup mode guests won't be able to use
9895  	 * pvclock_read_retry loop to get consistent view of pvclock
9896  	 */
9897  	if (vcpu->arch.tsc_always_catchup)
9898  		return -KVM_EOPNOTSUPP;
9899  
9900  	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9901  		return -KVM_EOPNOTSUPP;
9902  
9903  	clock_pairing.sec = ts.tv_sec;
9904  	clock_pairing.nsec = ts.tv_nsec;
9905  	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9906  	clock_pairing.flags = 0;
9907  	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9908  
9909  	ret = 0;
9910  	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9911  			    sizeof(struct kvm_clock_pairing)))
9912  		ret = -KVM_EFAULT;
9913  
9914  	return ret;
9915  }
9916  #endif
9917  
9918  /*
9919   * kvm_pv_kick_cpu_op:  Kick a vcpu.
9920   *
9921   * @apicid - apicid of vcpu to be kicked.
9922   */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9923  static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9924  {
9925  	/*
9926  	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9927  	 * common code, e.g. for tracing. Defer initialization to the compiler.
9928  	 */
9929  	struct kvm_lapic_irq lapic_irq = {
9930  		.delivery_mode = APIC_DM_REMRD,
9931  		.dest_mode = APIC_DEST_PHYSICAL,
9932  		.shorthand = APIC_DEST_NOSHORT,
9933  		.dest_id = apicid,
9934  	};
9935  
9936  	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9937  }
9938  
kvm_apicv_activated(struct kvm * kvm)9939  bool kvm_apicv_activated(struct kvm *kvm)
9940  {
9941  	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9942  }
9943  EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9944  
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9945  bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9946  {
9947  	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9948  	ulong vcpu_reasons =
9949  			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9950  
9951  	return (vm_reasons | vcpu_reasons) == 0;
9952  }
9953  EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9954  
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9955  static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9956  				       enum kvm_apicv_inhibit reason, bool set)
9957  {
9958  	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9959  
9960  	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9961  
9962  	if (set)
9963  		__set_bit(reason, inhibits);
9964  	else
9965  		__clear_bit(reason, inhibits);
9966  
9967  	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9968  }
9969  
kvm_apicv_init(struct kvm * kvm)9970  static void kvm_apicv_init(struct kvm *kvm)
9971  {
9972  	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9973  						       APICV_INHIBIT_REASON_DISABLED;
9974  
9975  	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9976  
9977  	init_rwsem(&kvm->arch.apicv_update_lock);
9978  }
9979  
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9980  static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9981  {
9982  	struct kvm_vcpu *target = NULL;
9983  	struct kvm_apic_map *map;
9984  
9985  	vcpu->stat.directed_yield_attempted++;
9986  
9987  	if (single_task_running())
9988  		goto no_yield;
9989  
9990  	rcu_read_lock();
9991  	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9992  
9993  	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9994  		target = map->phys_map[dest_id]->vcpu;
9995  
9996  	rcu_read_unlock();
9997  
9998  	if (!target || !READ_ONCE(target->ready))
9999  		goto no_yield;
10000  
10001  	/* Ignore requests to yield to self */
10002  	if (vcpu == target)
10003  		goto no_yield;
10004  
10005  	if (kvm_vcpu_yield_to(target) <= 0)
10006  		goto no_yield;
10007  
10008  	vcpu->stat.directed_yield_successful++;
10009  
10010  no_yield:
10011  	return;
10012  }
10013  
complete_hypercall_exit(struct kvm_vcpu * vcpu)10014  static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10015  {
10016  	u64 ret = vcpu->run->hypercall.ret;
10017  
10018  	if (!is_64_bit_hypercall(vcpu))
10019  		ret = (u32)ret;
10020  	kvm_rax_write(vcpu, ret);
10021  	return kvm_skip_emulated_instruction(vcpu);
10022  }
10023  
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10024  int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10025  			      unsigned long a0, unsigned long a1,
10026  			      unsigned long a2, unsigned long a3,
10027  			      int op_64_bit, int cpl,
10028  			      int (*complete_hypercall)(struct kvm_vcpu *))
10029  {
10030  	unsigned long ret;
10031  
10032  	++vcpu->stat.hypercalls;
10033  
10034  	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10035  
10036  	if (!op_64_bit) {
10037  		nr &= 0xFFFFFFFF;
10038  		a0 &= 0xFFFFFFFF;
10039  		a1 &= 0xFFFFFFFF;
10040  		a2 &= 0xFFFFFFFF;
10041  		a3 &= 0xFFFFFFFF;
10042  	}
10043  
10044  	if (cpl) {
10045  		ret = -KVM_EPERM;
10046  		goto out;
10047  	}
10048  
10049  	ret = -KVM_ENOSYS;
10050  
10051  	switch (nr) {
10052  	case KVM_HC_VAPIC_POLL_IRQ:
10053  		ret = 0;
10054  		break;
10055  	case KVM_HC_KICK_CPU:
10056  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10057  			break;
10058  
10059  		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10060  		kvm_sched_yield(vcpu, a1);
10061  		ret = 0;
10062  		break;
10063  #ifdef CONFIG_X86_64
10064  	case KVM_HC_CLOCK_PAIRING:
10065  		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10066  		break;
10067  #endif
10068  	case KVM_HC_SEND_IPI:
10069  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10070  			break;
10071  
10072  		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10073  		break;
10074  	case KVM_HC_SCHED_YIELD:
10075  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10076  			break;
10077  
10078  		kvm_sched_yield(vcpu, a0);
10079  		ret = 0;
10080  		break;
10081  	case KVM_HC_MAP_GPA_RANGE: {
10082  		u64 gpa = a0, npages = a1, attrs = a2;
10083  
10084  		ret = -KVM_ENOSYS;
10085  		if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10086  			break;
10087  
10088  		if (!PAGE_ALIGNED(gpa) || !npages ||
10089  		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10090  			ret = -KVM_EINVAL;
10091  			break;
10092  		}
10093  
10094  		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10095  		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10096  		/*
10097  		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10098  		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10099  		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
10100  		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10101  		 */
10102  		vcpu->run->hypercall.ret = 0;
10103  		vcpu->run->hypercall.args[0]  = gpa;
10104  		vcpu->run->hypercall.args[1]  = npages;
10105  		vcpu->run->hypercall.args[2]  = attrs;
10106  		vcpu->run->hypercall.flags    = 0;
10107  		if (op_64_bit)
10108  			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10109  
10110  		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10111  		vcpu->arch.complete_userspace_io = complete_hypercall;
10112  		return 0;
10113  	}
10114  	default:
10115  		ret = -KVM_ENOSYS;
10116  		break;
10117  	}
10118  
10119  out:
10120  	vcpu->run->hypercall.ret = ret;
10121  	return 1;
10122  }
10123  EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10124  
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10125  int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10126  {
10127  	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10128  		return kvm_xen_hypercall(vcpu);
10129  
10130  	if (kvm_hv_hypercall_enabled(vcpu))
10131  		return kvm_hv_hypercall(vcpu);
10132  
10133  	return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi,
10134  				       is_64_bit_hypercall(vcpu),
10135  				       kvm_x86_call(get_cpl)(vcpu),
10136  				       complete_hypercall_exit);
10137  }
10138  EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10139  
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10140  static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10141  {
10142  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10143  	char instruction[3];
10144  	unsigned long rip = kvm_rip_read(vcpu);
10145  
10146  	/*
10147  	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10148  	 * the pieces.
10149  	 */
10150  	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10151  		ctxt->exception.error_code_valid = false;
10152  		ctxt->exception.vector = UD_VECTOR;
10153  		ctxt->have_exception = true;
10154  		return X86EMUL_PROPAGATE_FAULT;
10155  	}
10156  
10157  	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10158  
10159  	return emulator_write_emulated(ctxt, rip, instruction, 3,
10160  		&ctxt->exception);
10161  }
10162  
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10163  static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10164  {
10165  	return vcpu->run->request_interrupt_window &&
10166  		likely(!pic_in_kernel(vcpu->kvm));
10167  }
10168  
10169  /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)10170  static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10171  {
10172  	struct kvm_run *kvm_run = vcpu->run;
10173  
10174  	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10175  	kvm_run->cr8 = kvm_get_cr8(vcpu);
10176  	kvm_run->apic_base = vcpu->arch.apic_base;
10177  
10178  	kvm_run->ready_for_interrupt_injection =
10179  		pic_in_kernel(vcpu->kvm) ||
10180  		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10181  
10182  	if (is_smm(vcpu))
10183  		kvm_run->flags |= KVM_RUN_X86_SMM;
10184  	if (is_guest_mode(vcpu))
10185  		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10186  }
10187  
update_cr8_intercept(struct kvm_vcpu * vcpu)10188  static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10189  {
10190  	int max_irr, tpr;
10191  
10192  	if (!kvm_x86_ops.update_cr8_intercept)
10193  		return;
10194  
10195  	if (!lapic_in_kernel(vcpu))
10196  		return;
10197  
10198  	if (vcpu->arch.apic->apicv_active)
10199  		return;
10200  
10201  	if (!vcpu->arch.apic->vapic_addr)
10202  		max_irr = kvm_lapic_find_highest_irr(vcpu);
10203  	else
10204  		max_irr = -1;
10205  
10206  	if (max_irr != -1)
10207  		max_irr >>= 4;
10208  
10209  	tpr = kvm_lapic_get_cr8(vcpu);
10210  
10211  	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10212  }
10213  
10214  
kvm_check_nested_events(struct kvm_vcpu * vcpu)10215  int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10216  {
10217  	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10218  		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10219  		return 1;
10220  	}
10221  
10222  	return kvm_x86_ops.nested_ops->check_events(vcpu);
10223  }
10224  
kvm_inject_exception(struct kvm_vcpu * vcpu)10225  static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10226  {
10227  	/*
10228  	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10229  	 * exceptions don't report error codes.  The presence of an error code
10230  	 * is carried with the exception and only stripped when the exception
10231  	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10232  	 * report an error code despite the CPU being in Real Mode.
10233  	 */
10234  	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10235  
10236  	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10237  				vcpu->arch.exception.has_error_code,
10238  				vcpu->arch.exception.error_code,
10239  				vcpu->arch.exception.injected);
10240  
10241  	kvm_x86_call(inject_exception)(vcpu);
10242  }
10243  
10244  /*
10245   * Check for any event (interrupt or exception) that is ready to be injected,
10246   * and if there is at least one event, inject the event with the highest
10247   * priority.  This handles both "pending" events, i.e. events that have never
10248   * been injected into the guest, and "injected" events, i.e. events that were
10249   * injected as part of a previous VM-Enter, but weren't successfully delivered
10250   * and need to be re-injected.
10251   *
10252   * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10253   * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10254   * be able to inject exceptions in the "middle" of an instruction, and so must
10255   * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10256   * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10257   * boundaries is necessary and correct.
10258   *
10259   * For simplicity, KVM uses a single path to inject all events (except events
10260   * that are injected directly from L1 to L2) and doesn't explicitly track
10261   * instruction boundaries for asynchronous events.  However, because VM-Exits
10262   * that can occur during instruction execution typically result in KVM skipping
10263   * the instruction or injecting an exception, e.g. instruction and exception
10264   * intercepts, and because pending exceptions have higher priority than pending
10265   * interrupts, KVM still honors instruction boundaries in most scenarios.
10266   *
10267   * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10268   * the instruction or inject an exception, then KVM can incorrecty inject a new
10269   * asynchronous event if the event became pending after the CPU fetched the
10270   * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10271   * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10272   * injected on the restarted instruction instead of being deferred until the
10273   * instruction completes.
10274   *
10275   * In practice, this virtualization hole is unlikely to be observed by the
10276   * guest, and even less likely to cause functional problems.  To detect the
10277   * hole, the guest would have to trigger an event on a side effect of an early
10278   * phase of instruction execution, e.g. on the instruction fetch from memory.
10279   * And for it to be a functional problem, the guest would need to depend on the
10280   * ordering between that side effect, the instruction completing, _and_ the
10281   * delivery of the asynchronous event.
10282   */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10283  static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10284  				       bool *req_immediate_exit)
10285  {
10286  	bool can_inject;
10287  	int r;
10288  
10289  	/*
10290  	 * Process nested events first, as nested VM-Exit supersedes event
10291  	 * re-injection.  If there's an event queued for re-injection, it will
10292  	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10293  	 */
10294  	if (is_guest_mode(vcpu))
10295  		r = kvm_check_nested_events(vcpu);
10296  	else
10297  		r = 0;
10298  
10299  	/*
10300  	 * Re-inject exceptions and events *especially* if immediate entry+exit
10301  	 * to/from L2 is needed, as any event that has already been injected
10302  	 * into L2 needs to complete its lifecycle before injecting a new event.
10303  	 *
10304  	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10305  	 * This collision arises if an exception occurred while vectoring the
10306  	 * injected event, KVM intercepted said exception, and KVM ultimately
10307  	 * determined the fault belongs to the guest and queues the exception
10308  	 * for injection back into the guest.
10309  	 *
10310  	 * "Injected" interrupts can also collide with pending exceptions if
10311  	 * userspace ignores the "ready for injection" flag and blindly queues
10312  	 * an interrupt.  In that case, prioritizing the exception is correct,
10313  	 * as the exception "occurred" before the exit to userspace.  Trap-like
10314  	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10315  	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10316  	 * priority, they're only generated (pended) during instruction
10317  	 * execution, and interrupts are recognized at instruction boundaries.
10318  	 * Thus a pending fault-like exception means the fault occurred on the
10319  	 * *previous* instruction and must be serviced prior to recognizing any
10320  	 * new events in order to fully complete the previous instruction.
10321  	 */
10322  	if (vcpu->arch.exception.injected)
10323  		kvm_inject_exception(vcpu);
10324  	else if (kvm_is_exception_pending(vcpu))
10325  		; /* see above */
10326  	else if (vcpu->arch.nmi_injected)
10327  		kvm_x86_call(inject_nmi)(vcpu);
10328  	else if (vcpu->arch.interrupt.injected)
10329  		kvm_x86_call(inject_irq)(vcpu, true);
10330  
10331  	/*
10332  	 * Exceptions that morph to VM-Exits are handled above, and pending
10333  	 * exceptions on top of injected exceptions that do not VM-Exit should
10334  	 * either morph to #DF or, sadly, override the injected exception.
10335  	 */
10336  	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10337  		     vcpu->arch.exception.pending);
10338  
10339  	/*
10340  	 * Bail if immediate entry+exit to/from the guest is needed to complete
10341  	 * nested VM-Enter or event re-injection so that a different pending
10342  	 * event can be serviced (or if KVM needs to exit to userspace).
10343  	 *
10344  	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10345  	 * VM-Exit will have cleared exceptions that were meant for L2, but
10346  	 * there may now be events that can be injected into L1.
10347  	 */
10348  	if (r < 0)
10349  		goto out;
10350  
10351  	/*
10352  	 * A pending exception VM-Exit should either result in nested VM-Exit
10353  	 * or force an immediate re-entry and exit to/from L2, and exception
10354  	 * VM-Exits cannot be injected (flag should _never_ be set).
10355  	 */
10356  	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10357  		     vcpu->arch.exception_vmexit.pending);
10358  
10359  	/*
10360  	 * New events, other than exceptions, cannot be injected if KVM needs
10361  	 * to re-inject a previous event.  See above comments on re-injecting
10362  	 * for why pending exceptions get priority.
10363  	 */
10364  	can_inject = !kvm_event_needs_reinjection(vcpu);
10365  
10366  	if (vcpu->arch.exception.pending) {
10367  		/*
10368  		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10369  		 * value pushed on the stack.  Trap-like exception and all #DBs
10370  		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10371  		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10372  		 *
10373  		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10374  		 * describe the behavior of General Detect #DBs, which are
10375  		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10376  		 */
10377  		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10378  			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10379  					     X86_EFLAGS_RF);
10380  
10381  		if (vcpu->arch.exception.vector == DB_VECTOR) {
10382  			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10383  			if (vcpu->arch.dr7 & DR7_GD) {
10384  				vcpu->arch.dr7 &= ~DR7_GD;
10385  				kvm_update_dr7(vcpu);
10386  			}
10387  		}
10388  
10389  		kvm_inject_exception(vcpu);
10390  
10391  		vcpu->arch.exception.pending = false;
10392  		vcpu->arch.exception.injected = true;
10393  
10394  		can_inject = false;
10395  	}
10396  
10397  	/* Don't inject interrupts if the user asked to avoid doing so */
10398  	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10399  		return 0;
10400  
10401  	/*
10402  	 * Finally, inject interrupt events.  If an event cannot be injected
10403  	 * due to architectural conditions (e.g. IF=0) a window-open exit
10404  	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10405  	 * and can architecturally be injected, but we cannot do it right now:
10406  	 * an interrupt could have arrived just now and we have to inject it
10407  	 * as a vmexit, or there could already an event in the queue, which is
10408  	 * indicated by can_inject.  In that case we request an immediate exit
10409  	 * in order to make progress and get back here for another iteration.
10410  	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10411  	 */
10412  #ifdef CONFIG_KVM_SMM
10413  	if (vcpu->arch.smi_pending) {
10414  		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10415  				 -EBUSY;
10416  		if (r < 0)
10417  			goto out;
10418  		if (r) {
10419  			vcpu->arch.smi_pending = false;
10420  			++vcpu->arch.smi_count;
10421  			enter_smm(vcpu);
10422  			can_inject = false;
10423  		} else
10424  			kvm_x86_call(enable_smi_window)(vcpu);
10425  	}
10426  #endif
10427  
10428  	if (vcpu->arch.nmi_pending) {
10429  		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10430  				 -EBUSY;
10431  		if (r < 0)
10432  			goto out;
10433  		if (r) {
10434  			--vcpu->arch.nmi_pending;
10435  			vcpu->arch.nmi_injected = true;
10436  			kvm_x86_call(inject_nmi)(vcpu);
10437  			can_inject = false;
10438  			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10439  		}
10440  		if (vcpu->arch.nmi_pending)
10441  			kvm_x86_call(enable_nmi_window)(vcpu);
10442  	}
10443  
10444  	if (kvm_cpu_has_injectable_intr(vcpu)) {
10445  		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10446  				 -EBUSY;
10447  		if (r < 0)
10448  			goto out;
10449  		if (r) {
10450  			int irq = kvm_cpu_get_interrupt(vcpu);
10451  
10452  			if (!WARN_ON_ONCE(irq == -1)) {
10453  				kvm_queue_interrupt(vcpu, irq, false);
10454  				kvm_x86_call(inject_irq)(vcpu, false);
10455  				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10456  			}
10457  		}
10458  		if (kvm_cpu_has_injectable_intr(vcpu))
10459  			kvm_x86_call(enable_irq_window)(vcpu);
10460  	}
10461  
10462  	if (is_guest_mode(vcpu) &&
10463  	    kvm_x86_ops.nested_ops->has_events &&
10464  	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10465  		*req_immediate_exit = true;
10466  
10467  	/*
10468  	 * KVM must never queue a new exception while injecting an event; KVM
10469  	 * is done emulating and should only propagate the to-be-injected event
10470  	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10471  	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10472  	 * exception and start the cycle all over.
10473  	 *
10474  	 * Exempt triple faults as they have special handling and won't put the
10475  	 * vCPU into an infinite loop.  Triple fault can be queued when running
10476  	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10477  	 * Mode events (see kvm_inject_realmode_interrupt()).
10478  	 */
10479  	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10480  		     vcpu->arch.exception_vmexit.pending);
10481  	return 0;
10482  
10483  out:
10484  	if (r == -EBUSY) {
10485  		*req_immediate_exit = true;
10486  		r = 0;
10487  	}
10488  	return r;
10489  }
10490  
process_nmi(struct kvm_vcpu * vcpu)10491  static void process_nmi(struct kvm_vcpu *vcpu)
10492  {
10493  	unsigned int limit;
10494  
10495  	/*
10496  	 * x86 is limited to one NMI pending, but because KVM can't react to
10497  	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10498  	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10499  	 * up at the same time.  To handle this scenario, allow two NMIs to be
10500  	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10501  	 * waiting for a previous NMI injection to complete (which effectively
10502  	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10503  	 * will request an NMI window to handle the second NMI.
10504  	 */
10505  	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10506  		limit = 1;
10507  	else
10508  		limit = 2;
10509  
10510  	/*
10511  	 * Adjust the limit to account for pending virtual NMIs, which aren't
10512  	 * tracked in vcpu->arch.nmi_pending.
10513  	 */
10514  	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10515  		limit--;
10516  
10517  	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10518  	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10519  
10520  	if (vcpu->arch.nmi_pending &&
10521  	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10522  		vcpu->arch.nmi_pending--;
10523  
10524  	if (vcpu->arch.nmi_pending)
10525  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10526  }
10527  
10528  /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10529  int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10530  {
10531  	return vcpu->arch.nmi_pending +
10532  	       kvm_x86_call(is_vnmi_pending)(vcpu);
10533  }
10534  
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10535  void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10536  				       unsigned long *vcpu_bitmap)
10537  {
10538  	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10539  }
10540  
kvm_make_scan_ioapic_request(struct kvm * kvm)10541  void kvm_make_scan_ioapic_request(struct kvm *kvm)
10542  {
10543  	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10544  }
10545  
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10546  void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10547  {
10548  	struct kvm_lapic *apic = vcpu->arch.apic;
10549  	bool activate;
10550  
10551  	if (!lapic_in_kernel(vcpu))
10552  		return;
10553  
10554  	down_read(&vcpu->kvm->arch.apicv_update_lock);
10555  	preempt_disable();
10556  
10557  	/* Do not activate APICV when APIC is disabled */
10558  	activate = kvm_vcpu_apicv_activated(vcpu) &&
10559  		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10560  
10561  	if (apic->apicv_active == activate)
10562  		goto out;
10563  
10564  	apic->apicv_active = activate;
10565  	kvm_apic_update_apicv(vcpu);
10566  	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10567  
10568  	/*
10569  	 * When APICv gets disabled, we may still have injected interrupts
10570  	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10571  	 * still active when the interrupt got accepted. Make sure
10572  	 * kvm_check_and_inject_events() is called to check for that.
10573  	 */
10574  	if (!apic->apicv_active)
10575  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10576  
10577  out:
10578  	preempt_enable();
10579  	up_read(&vcpu->kvm->arch.apicv_update_lock);
10580  }
10581  EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10582  
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10583  static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10584  {
10585  	if (!lapic_in_kernel(vcpu))
10586  		return;
10587  
10588  	/*
10589  	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10590  	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10591  	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10592  	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10593  	 * this case so that KVM can use the AVIC doorbell to inject interrupts
10594  	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10595  	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10596  	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10597  	 * access page is sticky.
10598  	 */
10599  	if (apic_x2apic_mode(vcpu->arch.apic) &&
10600  	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10601  		kvm_inhibit_apic_access_page(vcpu);
10602  
10603  	__kvm_vcpu_update_apicv(vcpu);
10604  }
10605  
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10606  void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10607  				      enum kvm_apicv_inhibit reason, bool set)
10608  {
10609  	unsigned long old, new;
10610  
10611  	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10612  
10613  	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10614  		return;
10615  
10616  	old = new = kvm->arch.apicv_inhibit_reasons;
10617  
10618  	set_or_clear_apicv_inhibit(&new, reason, set);
10619  
10620  	if (!!old != !!new) {
10621  		/*
10622  		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10623  		 * false positives in the sanity check WARN in vcpu_enter_guest().
10624  		 * This task will wait for all vCPUs to ack the kick IRQ before
10625  		 * updating apicv_inhibit_reasons, and all other vCPUs will
10626  		 * block on acquiring apicv_update_lock so that vCPUs can't
10627  		 * redo vcpu_enter_guest() without seeing the new inhibit state.
10628  		 *
10629  		 * Note, holding apicv_update_lock and taking it in the read
10630  		 * side (handling the request) also prevents other vCPUs from
10631  		 * servicing the request with a stale apicv_inhibit_reasons.
10632  		 */
10633  		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10634  		kvm->arch.apicv_inhibit_reasons = new;
10635  		if (new) {
10636  			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10637  			int idx = srcu_read_lock(&kvm->srcu);
10638  
10639  			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10640  			srcu_read_unlock(&kvm->srcu, idx);
10641  		}
10642  	} else {
10643  		kvm->arch.apicv_inhibit_reasons = new;
10644  	}
10645  }
10646  
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10647  void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10648  				    enum kvm_apicv_inhibit reason, bool set)
10649  {
10650  	if (!enable_apicv)
10651  		return;
10652  
10653  	down_write(&kvm->arch.apicv_update_lock);
10654  	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10655  	up_write(&kvm->arch.apicv_update_lock);
10656  }
10657  EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10658  
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10659  static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10660  {
10661  	if (!kvm_apic_present(vcpu))
10662  		return;
10663  
10664  	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10665  
10666  	kvm_x86_call(sync_pir_to_irr)(vcpu);
10667  
10668  	if (irqchip_split(vcpu->kvm))
10669  		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10670  	else if (ioapic_in_kernel(vcpu->kvm))
10671  		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10672  
10673  	if (is_guest_mode(vcpu))
10674  		vcpu->arch.load_eoi_exitmap_pending = true;
10675  	else
10676  		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10677  }
10678  
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10679  static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10680  {
10681  	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10682  		return;
10683  
10684  #ifdef CONFIG_KVM_HYPERV
10685  	if (to_hv_vcpu(vcpu)) {
10686  		u64 eoi_exit_bitmap[4];
10687  
10688  		bitmap_or((ulong *)eoi_exit_bitmap,
10689  			  vcpu->arch.ioapic_handled_vectors,
10690  			  to_hv_synic(vcpu)->vec_bitmap, 256);
10691  		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10692  		return;
10693  	}
10694  #endif
10695  	kvm_x86_call(load_eoi_exitmap)(
10696  		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10697  }
10698  
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10699  void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10700  {
10701  	kvm_x86_call(guest_memory_reclaimed)(kvm);
10702  }
10703  
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10704  static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10705  {
10706  	if (!lapic_in_kernel(vcpu))
10707  		return;
10708  
10709  	kvm_x86_call(set_apic_access_page_addr)(vcpu);
10710  }
10711  
10712  /*
10713   * Called within kvm->srcu read side.
10714   * Returns 1 to let vcpu_run() continue the guest execution loop without
10715   * exiting to the userspace.  Otherwise, the value will be returned to the
10716   * userspace.
10717   */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10718  static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10719  {
10720  	int r;
10721  	bool req_int_win =
10722  		dm_request_for_irq_injection(vcpu) &&
10723  		kvm_cpu_accept_dm_intr(vcpu);
10724  	fastpath_t exit_fastpath;
10725  
10726  	bool req_immediate_exit = false;
10727  
10728  	if (kvm_request_pending(vcpu)) {
10729  		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10730  			r = -EIO;
10731  			goto out;
10732  		}
10733  
10734  		if (kvm_dirty_ring_check_request(vcpu)) {
10735  			r = 0;
10736  			goto out;
10737  		}
10738  
10739  		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10740  			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10741  				r = 0;
10742  				goto out;
10743  			}
10744  		}
10745  		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10746  			kvm_mmu_free_obsolete_roots(vcpu);
10747  		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10748  			__kvm_migrate_timers(vcpu);
10749  		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10750  			kvm_update_masterclock(vcpu->kvm);
10751  		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10752  			kvm_gen_kvmclock_update(vcpu);
10753  		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10754  			r = kvm_guest_time_update(vcpu);
10755  			if (unlikely(r))
10756  				goto out;
10757  		}
10758  		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10759  			kvm_mmu_sync_roots(vcpu);
10760  		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10761  			kvm_mmu_load_pgd(vcpu);
10762  
10763  		/*
10764  		 * Note, the order matters here, as flushing "all" TLB entries
10765  		 * also flushes the "current" TLB entries, i.e. servicing the
10766  		 * flush "all" will clear any request to flush "current".
10767  		 */
10768  		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10769  			kvm_vcpu_flush_tlb_all(vcpu);
10770  
10771  		kvm_service_local_tlb_flush_requests(vcpu);
10772  
10773  		/*
10774  		 * Fall back to a "full" guest flush if Hyper-V's precise
10775  		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10776  		 * the flushes are considered "remote" and not "local" because
10777  		 * the requests can be initiated from other vCPUs.
10778  		 */
10779  #ifdef CONFIG_KVM_HYPERV
10780  		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10781  		    kvm_hv_vcpu_flush_tlb(vcpu))
10782  			kvm_vcpu_flush_tlb_guest(vcpu);
10783  #endif
10784  
10785  		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10786  			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10787  			r = 0;
10788  			goto out;
10789  		}
10790  		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10791  			if (is_guest_mode(vcpu))
10792  				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10793  
10794  			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10795  				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10796  				vcpu->mmio_needed = 0;
10797  				r = 0;
10798  				goto out;
10799  			}
10800  		}
10801  		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10802  			/* Page is swapped out. Do synthetic halt */
10803  			vcpu->arch.apf.halted = true;
10804  			r = 1;
10805  			goto out;
10806  		}
10807  		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10808  			record_steal_time(vcpu);
10809  		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10810  			kvm_pmu_handle_event(vcpu);
10811  		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10812  			kvm_pmu_deliver_pmi(vcpu);
10813  #ifdef CONFIG_KVM_SMM
10814  		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10815  			process_smi(vcpu);
10816  #endif
10817  		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10818  			process_nmi(vcpu);
10819  		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10820  			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10821  			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10822  				     vcpu->arch.ioapic_handled_vectors)) {
10823  				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10824  				vcpu->run->eoi.vector =
10825  						vcpu->arch.pending_ioapic_eoi;
10826  				r = 0;
10827  				goto out;
10828  			}
10829  		}
10830  		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10831  			vcpu_scan_ioapic(vcpu);
10832  		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10833  			vcpu_load_eoi_exitmap(vcpu);
10834  		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10835  			kvm_vcpu_reload_apic_access_page(vcpu);
10836  #ifdef CONFIG_KVM_HYPERV
10837  		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10838  			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10839  			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10840  			vcpu->run->system_event.ndata = 0;
10841  			r = 0;
10842  			goto out;
10843  		}
10844  		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10845  			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10846  			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10847  			vcpu->run->system_event.ndata = 0;
10848  			r = 0;
10849  			goto out;
10850  		}
10851  		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10852  			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10853  
10854  			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10855  			vcpu->run->hyperv = hv_vcpu->exit;
10856  			r = 0;
10857  			goto out;
10858  		}
10859  
10860  		/*
10861  		 * KVM_REQ_HV_STIMER has to be processed after
10862  		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10863  		 * depend on the guest clock being up-to-date
10864  		 */
10865  		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10866  			kvm_hv_process_stimers(vcpu);
10867  #endif
10868  		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10869  			kvm_vcpu_update_apicv(vcpu);
10870  		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10871  			kvm_check_async_pf_completion(vcpu);
10872  		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10873  			kvm_x86_call(msr_filter_changed)(vcpu);
10874  
10875  		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10876  			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10877  
10878  		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10879  			kvm_vcpu_reset(vcpu, true);
10880  			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10881  				r = 1;
10882  				goto out;
10883  			}
10884  		}
10885  	}
10886  
10887  	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10888  	    kvm_xen_has_interrupt(vcpu)) {
10889  		++vcpu->stat.req_event;
10890  		r = kvm_apic_accept_events(vcpu);
10891  		if (r < 0) {
10892  			r = 0;
10893  			goto out;
10894  		}
10895  		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10896  			r = 1;
10897  			goto out;
10898  		}
10899  
10900  		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10901  		if (r < 0) {
10902  			r = 0;
10903  			goto out;
10904  		}
10905  		if (req_int_win)
10906  			kvm_x86_call(enable_irq_window)(vcpu);
10907  
10908  		if (kvm_lapic_enabled(vcpu)) {
10909  			update_cr8_intercept(vcpu);
10910  			kvm_lapic_sync_to_vapic(vcpu);
10911  		}
10912  	}
10913  
10914  	r = kvm_mmu_reload(vcpu);
10915  	if (unlikely(r)) {
10916  		goto cancel_injection;
10917  	}
10918  
10919  	preempt_disable();
10920  
10921  	kvm_x86_call(prepare_switch_to_guest)(vcpu);
10922  
10923  	/*
10924  	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10925  	 * IPI are then delayed after guest entry, which ensures that they
10926  	 * result in virtual interrupt delivery.
10927  	 */
10928  	local_irq_disable();
10929  
10930  	/* Store vcpu->apicv_active before vcpu->mode.  */
10931  	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10932  
10933  	kvm_vcpu_srcu_read_unlock(vcpu);
10934  
10935  	/*
10936  	 * 1) We should set ->mode before checking ->requests.  Please see
10937  	 * the comment in kvm_vcpu_exiting_guest_mode().
10938  	 *
10939  	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10940  	 * pairs with the memory barrier implicit in pi_test_and_set_on
10941  	 * (see vmx_deliver_posted_interrupt).
10942  	 *
10943  	 * 3) This also orders the write to mode from any reads to the page
10944  	 * tables done while the VCPU is running.  Please see the comment
10945  	 * in kvm_flush_remote_tlbs.
10946  	 */
10947  	smp_mb__after_srcu_read_unlock();
10948  
10949  	/*
10950  	 * Process pending posted interrupts to handle the case where the
10951  	 * notification IRQ arrived in the host, or was never sent (because the
10952  	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10953  	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10954  	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10955  	 */
10956  	if (kvm_lapic_enabled(vcpu))
10957  		kvm_x86_call(sync_pir_to_irr)(vcpu);
10958  
10959  	if (kvm_vcpu_exit_request(vcpu)) {
10960  		vcpu->mode = OUTSIDE_GUEST_MODE;
10961  		smp_wmb();
10962  		local_irq_enable();
10963  		preempt_enable();
10964  		kvm_vcpu_srcu_read_lock(vcpu);
10965  		r = 1;
10966  		goto cancel_injection;
10967  	}
10968  
10969  	if (req_immediate_exit)
10970  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10971  
10972  	fpregs_assert_state_consistent();
10973  	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10974  		switch_fpu_return();
10975  
10976  	if (vcpu->arch.guest_fpu.xfd_err)
10977  		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10978  
10979  	if (unlikely(vcpu->arch.switch_db_regs)) {
10980  		set_debugreg(0, 7);
10981  		set_debugreg(vcpu->arch.eff_db[0], 0);
10982  		set_debugreg(vcpu->arch.eff_db[1], 1);
10983  		set_debugreg(vcpu->arch.eff_db[2], 2);
10984  		set_debugreg(vcpu->arch.eff_db[3], 3);
10985  		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10986  		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10987  			kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
10988  	} else if (unlikely(hw_breakpoint_active())) {
10989  		set_debugreg(0, 7);
10990  	}
10991  
10992  	vcpu->arch.host_debugctl = get_debugctlmsr();
10993  
10994  	guest_timing_enter_irqoff();
10995  
10996  	for (;;) {
10997  		/*
10998  		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10999  		 * update must kick and wait for all vCPUs before toggling the
11000  		 * per-VM state, and responding vCPUs must wait for the update
11001  		 * to complete before servicing KVM_REQ_APICV_UPDATE.
11002  		 */
11003  		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11004  			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11005  
11006  		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
11007  						       req_immediate_exit);
11008  		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11009  			break;
11010  
11011  		if (kvm_lapic_enabled(vcpu))
11012  			kvm_x86_call(sync_pir_to_irr)(vcpu);
11013  
11014  		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11015  			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11016  			break;
11017  		}
11018  
11019  		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11020  		++vcpu->stat.exits;
11021  	}
11022  
11023  	/*
11024  	 * Do this here before restoring debug registers on the host.  And
11025  	 * since we do this before handling the vmexit, a DR access vmexit
11026  	 * can (a) read the correct value of the debug registers, (b) set
11027  	 * KVM_DEBUGREG_WONT_EXIT again.
11028  	 */
11029  	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11030  		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11031  		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11032  		kvm_update_dr0123(vcpu);
11033  		kvm_update_dr7(vcpu);
11034  	}
11035  
11036  	/*
11037  	 * If the guest has used debug registers, at least dr7
11038  	 * will be disabled while returning to the host.
11039  	 * If we don't have active breakpoints in the host, we don't
11040  	 * care about the messed up debug address registers. But if
11041  	 * we have some of them active, restore the old state.
11042  	 */
11043  	if (hw_breakpoint_active())
11044  		hw_breakpoint_restore();
11045  
11046  	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11047  	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11048  
11049  	vcpu->mode = OUTSIDE_GUEST_MODE;
11050  	smp_wmb();
11051  
11052  	/*
11053  	 * Sync xfd before calling handle_exit_irqoff() which may
11054  	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11055  	 * in #NM irqoff handler).
11056  	 */
11057  	if (vcpu->arch.xfd_no_write_intercept)
11058  		fpu_sync_guest_vmexit_xfd_state();
11059  
11060  	kvm_x86_call(handle_exit_irqoff)(vcpu);
11061  
11062  	if (vcpu->arch.guest_fpu.xfd_err)
11063  		wrmsrl(MSR_IA32_XFD_ERR, 0);
11064  
11065  	/*
11066  	 * Consume any pending interrupts, including the possible source of
11067  	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11068  	 * An instruction is required after local_irq_enable() to fully unblock
11069  	 * interrupts on processors that implement an interrupt shadow, the
11070  	 * stat.exits increment will do nicely.
11071  	 */
11072  	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11073  	local_irq_enable();
11074  	++vcpu->stat.exits;
11075  	local_irq_disable();
11076  	kvm_after_interrupt(vcpu);
11077  
11078  	/*
11079  	 * Wait until after servicing IRQs to account guest time so that any
11080  	 * ticks that occurred while running the guest are properly accounted
11081  	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11082  	 * of accounting via context tracking, but the loss of accuracy is
11083  	 * acceptable for all known use cases.
11084  	 */
11085  	guest_timing_exit_irqoff();
11086  
11087  	local_irq_enable();
11088  	preempt_enable();
11089  
11090  	kvm_vcpu_srcu_read_lock(vcpu);
11091  
11092  	/*
11093  	 * Call this to ensure WC buffers in guest are evicted after each VM
11094  	 * Exit, so that the evicted WC writes can be snooped across all cpus
11095  	 */
11096  	smp_mb__after_srcu_read_lock();
11097  
11098  	/*
11099  	 * Profile KVM exit RIPs:
11100  	 */
11101  	if (unlikely(prof_on == KVM_PROFILING)) {
11102  		unsigned long rip = kvm_rip_read(vcpu);
11103  		profile_hit(KVM_PROFILING, (void *)rip);
11104  	}
11105  
11106  	if (unlikely(vcpu->arch.tsc_always_catchup))
11107  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11108  
11109  	if (vcpu->arch.apic_attention)
11110  		kvm_lapic_sync_from_vapic(vcpu);
11111  
11112  	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11113  		return 0;
11114  
11115  	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11116  	return r;
11117  
11118  cancel_injection:
11119  	if (req_immediate_exit)
11120  		kvm_make_request(KVM_REQ_EVENT, vcpu);
11121  	kvm_x86_call(cancel_injection)(vcpu);
11122  	if (unlikely(vcpu->arch.apic_attention))
11123  		kvm_lapic_sync_from_vapic(vcpu);
11124  out:
11125  	return r;
11126  }
11127  
kvm_vcpu_running(struct kvm_vcpu * vcpu)11128  static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11129  {
11130  	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11131  		!vcpu->arch.apf.halted);
11132  }
11133  
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11134  static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11135  {
11136  	if (!list_empty_careful(&vcpu->async_pf.done))
11137  		return true;
11138  
11139  	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11140  	    kvm_apic_init_sipi_allowed(vcpu))
11141  		return true;
11142  
11143  	if (vcpu->arch.pv.pv_unhalted)
11144  		return true;
11145  
11146  	if (kvm_is_exception_pending(vcpu))
11147  		return true;
11148  
11149  	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11150  	    (vcpu->arch.nmi_pending &&
11151  	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11152  		return true;
11153  
11154  #ifdef CONFIG_KVM_SMM
11155  	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11156  	    (vcpu->arch.smi_pending &&
11157  	     kvm_x86_call(smi_allowed)(vcpu, false)))
11158  		return true;
11159  #endif
11160  
11161  	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11162  		return true;
11163  
11164  	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11165  		return true;
11166  
11167  	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11168  		return true;
11169  
11170  	if (kvm_hv_has_stimer_pending(vcpu))
11171  		return true;
11172  
11173  	if (is_guest_mode(vcpu) &&
11174  	    kvm_x86_ops.nested_ops->has_events &&
11175  	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11176  		return true;
11177  
11178  	if (kvm_xen_has_pending_events(vcpu))
11179  		return true;
11180  
11181  	return false;
11182  }
11183  
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11184  int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11185  {
11186  	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11187  }
11188  
11189  /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)11190  static inline int vcpu_block(struct kvm_vcpu *vcpu)
11191  {
11192  	bool hv_timer;
11193  
11194  	if (!kvm_arch_vcpu_runnable(vcpu)) {
11195  		/*
11196  		 * Switch to the software timer before halt-polling/blocking as
11197  		 * the guest's timer may be a break event for the vCPU, and the
11198  		 * hypervisor timer runs only when the CPU is in guest mode.
11199  		 * Switch before halt-polling so that KVM recognizes an expired
11200  		 * timer before blocking.
11201  		 */
11202  		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11203  		if (hv_timer)
11204  			kvm_lapic_switch_to_sw_timer(vcpu);
11205  
11206  		kvm_vcpu_srcu_read_unlock(vcpu);
11207  		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11208  			kvm_vcpu_halt(vcpu);
11209  		else
11210  			kvm_vcpu_block(vcpu);
11211  		kvm_vcpu_srcu_read_lock(vcpu);
11212  
11213  		if (hv_timer)
11214  			kvm_lapic_switch_to_hv_timer(vcpu);
11215  
11216  		/*
11217  		 * If the vCPU is not runnable, a signal or another host event
11218  		 * of some kind is pending; service it without changing the
11219  		 * vCPU's activity state.
11220  		 */
11221  		if (!kvm_arch_vcpu_runnable(vcpu))
11222  			return 1;
11223  	}
11224  
11225  	/*
11226  	 * Evaluate nested events before exiting the halted state.  This allows
11227  	 * the halt state to be recorded properly in the VMCS12's activity
11228  	 * state field (AMD does not have a similar field and a VM-Exit always
11229  	 * causes a spurious wakeup from HLT).
11230  	 */
11231  	if (is_guest_mode(vcpu)) {
11232  		int r = kvm_check_nested_events(vcpu);
11233  
11234  		WARN_ON_ONCE(r == -EBUSY);
11235  		if (r < 0)
11236  			return 0;
11237  	}
11238  
11239  	if (kvm_apic_accept_events(vcpu) < 0)
11240  		return 0;
11241  	switch(vcpu->arch.mp_state) {
11242  	case KVM_MP_STATE_HALTED:
11243  	case KVM_MP_STATE_AP_RESET_HOLD:
11244  		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11245  		fallthrough;
11246  	case KVM_MP_STATE_RUNNABLE:
11247  		vcpu->arch.apf.halted = false;
11248  		break;
11249  	case KVM_MP_STATE_INIT_RECEIVED:
11250  		break;
11251  	default:
11252  		WARN_ON_ONCE(1);
11253  		break;
11254  	}
11255  	return 1;
11256  }
11257  
11258  /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)11259  static int vcpu_run(struct kvm_vcpu *vcpu)
11260  {
11261  	int r;
11262  
11263  	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11264  
11265  	for (;;) {
11266  		/*
11267  		 * If another guest vCPU requests a PV TLB flush in the middle
11268  		 * of instruction emulation, the rest of the emulation could
11269  		 * use a stale page translation. Assume that any code after
11270  		 * this point can start executing an instruction.
11271  		 */
11272  		vcpu->arch.at_instruction_boundary = false;
11273  		if (kvm_vcpu_running(vcpu)) {
11274  			r = vcpu_enter_guest(vcpu);
11275  		} else {
11276  			r = vcpu_block(vcpu);
11277  		}
11278  
11279  		if (r <= 0)
11280  			break;
11281  
11282  		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11283  		if (kvm_xen_has_pending_events(vcpu))
11284  			kvm_xen_inject_pending_events(vcpu);
11285  
11286  		if (kvm_cpu_has_pending_timer(vcpu))
11287  			kvm_inject_pending_timer_irqs(vcpu);
11288  
11289  		if (dm_request_for_irq_injection(vcpu) &&
11290  			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11291  			r = 0;
11292  			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11293  			++vcpu->stat.request_irq_exits;
11294  			break;
11295  		}
11296  
11297  		if (__xfer_to_guest_mode_work_pending()) {
11298  			kvm_vcpu_srcu_read_unlock(vcpu);
11299  			r = xfer_to_guest_mode_handle_work(vcpu);
11300  			kvm_vcpu_srcu_read_lock(vcpu);
11301  			if (r)
11302  				return r;
11303  		}
11304  	}
11305  
11306  	return r;
11307  }
11308  
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11309  static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11310  {
11311  	/*
11312  	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11313  	 * local APIC is in-kernel, the run loop will detect the non-runnable
11314  	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11315  	 * managed by userspace, in which case userspace is responsible for
11316  	 * handling wake events.
11317  	 */
11318  	++vcpu->stat.halt_exits;
11319  	if (lapic_in_kernel(vcpu)) {
11320  		if (kvm_vcpu_has_events(vcpu))
11321  			state = KVM_MP_STATE_RUNNABLE;
11322  		kvm_set_mp_state(vcpu, state);
11323  		return 1;
11324  	} else {
11325  		vcpu->run->exit_reason = reason;
11326  		return 0;
11327  	}
11328  }
11329  
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11330  int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11331  {
11332  	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11333  }
11334  EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11335  
kvm_emulate_halt(struct kvm_vcpu * vcpu)11336  int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11337  {
11338  	int ret = kvm_skip_emulated_instruction(vcpu);
11339  	/*
11340  	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11341  	 * KVM_EXIT_DEBUG here.
11342  	 */
11343  	return kvm_emulate_halt_noskip(vcpu) && ret;
11344  }
11345  EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11346  
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11347  fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11348  {
11349  	int ret;
11350  
11351  	kvm_vcpu_srcu_read_lock(vcpu);
11352  	ret = kvm_emulate_halt(vcpu);
11353  	kvm_vcpu_srcu_read_unlock(vcpu);
11354  
11355  	if (!ret)
11356  		return EXIT_FASTPATH_EXIT_USERSPACE;
11357  
11358  	if (kvm_vcpu_running(vcpu))
11359  		return EXIT_FASTPATH_REENTER_GUEST;
11360  
11361  	return EXIT_FASTPATH_EXIT_HANDLED;
11362  }
11363  EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11364  
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11365  int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11366  {
11367  	int ret = kvm_skip_emulated_instruction(vcpu);
11368  
11369  	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11370  					KVM_EXIT_AP_RESET_HOLD) && ret;
11371  }
11372  EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11373  
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11374  bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11375  {
11376  	return kvm_vcpu_apicv_active(vcpu) &&
11377  	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11378  }
11379  
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11380  bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11381  {
11382  	return vcpu->arch.preempted_in_kernel;
11383  }
11384  
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11385  bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11386  {
11387  	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11388  		return true;
11389  
11390  	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11391  #ifdef CONFIG_KVM_SMM
11392  		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11393  #endif
11394  		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11395  		return true;
11396  
11397  	return kvm_arch_dy_has_pending_interrupt(vcpu);
11398  }
11399  
complete_emulated_io(struct kvm_vcpu * vcpu)11400  static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11401  {
11402  	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11403  }
11404  
complete_emulated_pio(struct kvm_vcpu * vcpu)11405  static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11406  {
11407  	BUG_ON(!vcpu->arch.pio.count);
11408  
11409  	return complete_emulated_io(vcpu);
11410  }
11411  
11412  /*
11413   * Implements the following, as a state machine:
11414   *
11415   * read:
11416   *   for each fragment
11417   *     for each mmio piece in the fragment
11418   *       write gpa, len
11419   *       exit
11420   *       copy data
11421   *   execute insn
11422   *
11423   * write:
11424   *   for each fragment
11425   *     for each mmio piece in the fragment
11426   *       write gpa, len
11427   *       copy data
11428   *       exit
11429   */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11430  static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11431  {
11432  	struct kvm_run *run = vcpu->run;
11433  	struct kvm_mmio_fragment *frag;
11434  	unsigned len;
11435  
11436  	BUG_ON(!vcpu->mmio_needed);
11437  
11438  	/* Complete previous fragment */
11439  	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11440  	len = min(8u, frag->len);
11441  	if (!vcpu->mmio_is_write)
11442  		memcpy(frag->data, run->mmio.data, len);
11443  
11444  	if (frag->len <= 8) {
11445  		/* Switch to the next fragment. */
11446  		frag++;
11447  		vcpu->mmio_cur_fragment++;
11448  	} else {
11449  		/* Go forward to the next mmio piece. */
11450  		frag->data += len;
11451  		frag->gpa += len;
11452  		frag->len -= len;
11453  	}
11454  
11455  	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11456  		vcpu->mmio_needed = 0;
11457  
11458  		/* FIXME: return into emulator if single-stepping.  */
11459  		if (vcpu->mmio_is_write)
11460  			return 1;
11461  		vcpu->mmio_read_completed = 1;
11462  		return complete_emulated_io(vcpu);
11463  	}
11464  
11465  	run->exit_reason = KVM_EXIT_MMIO;
11466  	run->mmio.phys_addr = frag->gpa;
11467  	if (vcpu->mmio_is_write)
11468  		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11469  	run->mmio.len = min(8u, frag->len);
11470  	run->mmio.is_write = vcpu->mmio_is_write;
11471  	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11472  	return 0;
11473  }
11474  
11475  /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11476  static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11477  {
11478  	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11479  	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11480  	trace_kvm_fpu(1);
11481  }
11482  
11483  /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11484  static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11485  {
11486  	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11487  	++vcpu->stat.fpu_reload;
11488  	trace_kvm_fpu(0);
11489  }
11490  
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11491  int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11492  {
11493  	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11494  	struct kvm_run *kvm_run = vcpu->run;
11495  	u32 sync_valid_fields;
11496  	int r;
11497  
11498  	r = kvm_mmu_post_init_vm(vcpu->kvm);
11499  	if (r)
11500  		return r;
11501  
11502  	vcpu_load(vcpu);
11503  	kvm_sigset_activate(vcpu);
11504  	kvm_run->flags = 0;
11505  	kvm_load_guest_fpu(vcpu);
11506  
11507  	kvm_vcpu_srcu_read_lock(vcpu);
11508  	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11509  		if (!vcpu->wants_to_run) {
11510  			r = -EINTR;
11511  			goto out;
11512  		}
11513  
11514  		/*
11515  		 * Don't bother switching APIC timer emulation from the
11516  		 * hypervisor timer to the software timer, the only way for the
11517  		 * APIC timer to be active is if userspace stuffed vCPU state,
11518  		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11519  		 * will transition the vCPU out of UNINITIALIZED (without more
11520  		 * state stuffing from userspace), which will reset the local
11521  		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11522  		 * already expired).
11523  		 */
11524  		kvm_vcpu_srcu_read_unlock(vcpu);
11525  		kvm_vcpu_block(vcpu);
11526  		kvm_vcpu_srcu_read_lock(vcpu);
11527  
11528  		if (kvm_apic_accept_events(vcpu) < 0) {
11529  			r = 0;
11530  			goto out;
11531  		}
11532  		r = -EAGAIN;
11533  		if (signal_pending(current)) {
11534  			r = -EINTR;
11535  			kvm_run->exit_reason = KVM_EXIT_INTR;
11536  			++vcpu->stat.signal_exits;
11537  		}
11538  		goto out;
11539  	}
11540  
11541  	sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11542  	if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11543  	    (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11544  		r = -EINVAL;
11545  		goto out;
11546  	}
11547  
11548  	if (kvm_run->kvm_dirty_regs) {
11549  		r = sync_regs(vcpu);
11550  		if (r != 0)
11551  			goto out;
11552  	}
11553  
11554  	/* re-sync apic's tpr */
11555  	if (!lapic_in_kernel(vcpu)) {
11556  		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11557  			r = -EINVAL;
11558  			goto out;
11559  		}
11560  	}
11561  
11562  	/*
11563  	 * If userspace set a pending exception and L2 is active, convert it to
11564  	 * a pending VM-Exit if L1 wants to intercept the exception.
11565  	 */
11566  	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11567  	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11568  							ex->error_code)) {
11569  		kvm_queue_exception_vmexit(vcpu, ex->vector,
11570  					   ex->has_error_code, ex->error_code,
11571  					   ex->has_payload, ex->payload);
11572  		ex->injected = false;
11573  		ex->pending = false;
11574  	}
11575  	vcpu->arch.exception_from_userspace = false;
11576  
11577  	if (unlikely(vcpu->arch.complete_userspace_io)) {
11578  		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11579  		vcpu->arch.complete_userspace_io = NULL;
11580  		r = cui(vcpu);
11581  		if (r <= 0)
11582  			goto out;
11583  	} else {
11584  		WARN_ON_ONCE(vcpu->arch.pio.count);
11585  		WARN_ON_ONCE(vcpu->mmio_needed);
11586  	}
11587  
11588  	if (!vcpu->wants_to_run) {
11589  		r = -EINTR;
11590  		goto out;
11591  	}
11592  
11593  	r = kvm_x86_call(vcpu_pre_run)(vcpu);
11594  	if (r <= 0)
11595  		goto out;
11596  
11597  	r = vcpu_run(vcpu);
11598  
11599  out:
11600  	kvm_put_guest_fpu(vcpu);
11601  	if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11602  		store_regs(vcpu);
11603  	post_kvm_run_save(vcpu);
11604  	kvm_vcpu_srcu_read_unlock(vcpu);
11605  
11606  	kvm_sigset_deactivate(vcpu);
11607  	vcpu_put(vcpu);
11608  	return r;
11609  }
11610  
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11611  static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11612  {
11613  	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11614  		/*
11615  		 * We are here if userspace calls get_regs() in the middle of
11616  		 * instruction emulation. Registers state needs to be copied
11617  		 * back from emulation context to vcpu. Userspace shouldn't do
11618  		 * that usually, but some bad designed PV devices (vmware
11619  		 * backdoor interface) need this to work
11620  		 */
11621  		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11622  		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11623  	}
11624  	regs->rax = kvm_rax_read(vcpu);
11625  	regs->rbx = kvm_rbx_read(vcpu);
11626  	regs->rcx = kvm_rcx_read(vcpu);
11627  	regs->rdx = kvm_rdx_read(vcpu);
11628  	regs->rsi = kvm_rsi_read(vcpu);
11629  	regs->rdi = kvm_rdi_read(vcpu);
11630  	regs->rsp = kvm_rsp_read(vcpu);
11631  	regs->rbp = kvm_rbp_read(vcpu);
11632  #ifdef CONFIG_X86_64
11633  	regs->r8 = kvm_r8_read(vcpu);
11634  	regs->r9 = kvm_r9_read(vcpu);
11635  	regs->r10 = kvm_r10_read(vcpu);
11636  	regs->r11 = kvm_r11_read(vcpu);
11637  	regs->r12 = kvm_r12_read(vcpu);
11638  	regs->r13 = kvm_r13_read(vcpu);
11639  	regs->r14 = kvm_r14_read(vcpu);
11640  	regs->r15 = kvm_r15_read(vcpu);
11641  #endif
11642  
11643  	regs->rip = kvm_rip_read(vcpu);
11644  	regs->rflags = kvm_get_rflags(vcpu);
11645  }
11646  
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11647  int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11648  {
11649  	if (vcpu->kvm->arch.has_protected_state &&
11650  	    vcpu->arch.guest_state_protected)
11651  		return -EINVAL;
11652  
11653  	vcpu_load(vcpu);
11654  	__get_regs(vcpu, regs);
11655  	vcpu_put(vcpu);
11656  	return 0;
11657  }
11658  
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11659  static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11660  {
11661  	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11662  	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11663  
11664  	kvm_rax_write(vcpu, regs->rax);
11665  	kvm_rbx_write(vcpu, regs->rbx);
11666  	kvm_rcx_write(vcpu, regs->rcx);
11667  	kvm_rdx_write(vcpu, regs->rdx);
11668  	kvm_rsi_write(vcpu, regs->rsi);
11669  	kvm_rdi_write(vcpu, regs->rdi);
11670  	kvm_rsp_write(vcpu, regs->rsp);
11671  	kvm_rbp_write(vcpu, regs->rbp);
11672  #ifdef CONFIG_X86_64
11673  	kvm_r8_write(vcpu, regs->r8);
11674  	kvm_r9_write(vcpu, regs->r9);
11675  	kvm_r10_write(vcpu, regs->r10);
11676  	kvm_r11_write(vcpu, regs->r11);
11677  	kvm_r12_write(vcpu, regs->r12);
11678  	kvm_r13_write(vcpu, regs->r13);
11679  	kvm_r14_write(vcpu, regs->r14);
11680  	kvm_r15_write(vcpu, regs->r15);
11681  #endif
11682  
11683  	kvm_rip_write(vcpu, regs->rip);
11684  	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11685  
11686  	vcpu->arch.exception.pending = false;
11687  	vcpu->arch.exception_vmexit.pending = false;
11688  
11689  	kvm_make_request(KVM_REQ_EVENT, vcpu);
11690  }
11691  
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11692  int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11693  {
11694  	if (vcpu->kvm->arch.has_protected_state &&
11695  	    vcpu->arch.guest_state_protected)
11696  		return -EINVAL;
11697  
11698  	vcpu_load(vcpu);
11699  	__set_regs(vcpu, regs);
11700  	vcpu_put(vcpu);
11701  	return 0;
11702  }
11703  
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11704  static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11705  {
11706  	struct desc_ptr dt;
11707  
11708  	if (vcpu->arch.guest_state_protected)
11709  		goto skip_protected_regs;
11710  
11711  	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11712  	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11713  	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11714  	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11715  	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11716  	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11717  
11718  	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11719  	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11720  
11721  	kvm_x86_call(get_idt)(vcpu, &dt);
11722  	sregs->idt.limit = dt.size;
11723  	sregs->idt.base = dt.address;
11724  	kvm_x86_call(get_gdt)(vcpu, &dt);
11725  	sregs->gdt.limit = dt.size;
11726  	sregs->gdt.base = dt.address;
11727  
11728  	sregs->cr2 = vcpu->arch.cr2;
11729  	sregs->cr3 = kvm_read_cr3(vcpu);
11730  
11731  skip_protected_regs:
11732  	sregs->cr0 = kvm_read_cr0(vcpu);
11733  	sregs->cr4 = kvm_read_cr4(vcpu);
11734  	sregs->cr8 = kvm_get_cr8(vcpu);
11735  	sregs->efer = vcpu->arch.efer;
11736  	sregs->apic_base = vcpu->arch.apic_base;
11737  }
11738  
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11739  static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11740  {
11741  	__get_sregs_common(vcpu, sregs);
11742  
11743  	if (vcpu->arch.guest_state_protected)
11744  		return;
11745  
11746  	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11747  		set_bit(vcpu->arch.interrupt.nr,
11748  			(unsigned long *)sregs->interrupt_bitmap);
11749  }
11750  
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11751  static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11752  {
11753  	int i;
11754  
11755  	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11756  
11757  	if (vcpu->arch.guest_state_protected)
11758  		return;
11759  
11760  	if (is_pae_paging(vcpu)) {
11761  		for (i = 0 ; i < 4 ; i++)
11762  			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11763  		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11764  	}
11765  }
11766  
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11767  int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11768  				  struct kvm_sregs *sregs)
11769  {
11770  	if (vcpu->kvm->arch.has_protected_state &&
11771  	    vcpu->arch.guest_state_protected)
11772  		return -EINVAL;
11773  
11774  	vcpu_load(vcpu);
11775  	__get_sregs(vcpu, sregs);
11776  	vcpu_put(vcpu);
11777  	return 0;
11778  }
11779  
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11780  int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11781  				    struct kvm_mp_state *mp_state)
11782  {
11783  	int r;
11784  
11785  	vcpu_load(vcpu);
11786  	if (kvm_mpx_supported())
11787  		kvm_load_guest_fpu(vcpu);
11788  
11789  	r = kvm_apic_accept_events(vcpu);
11790  	if (r < 0)
11791  		goto out;
11792  	r = 0;
11793  
11794  	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11795  	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11796  	    vcpu->arch.pv.pv_unhalted)
11797  		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11798  	else
11799  		mp_state->mp_state = vcpu->arch.mp_state;
11800  
11801  out:
11802  	if (kvm_mpx_supported())
11803  		kvm_put_guest_fpu(vcpu);
11804  	vcpu_put(vcpu);
11805  	return r;
11806  }
11807  
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11808  int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11809  				    struct kvm_mp_state *mp_state)
11810  {
11811  	int ret = -EINVAL;
11812  
11813  	vcpu_load(vcpu);
11814  
11815  	switch (mp_state->mp_state) {
11816  	case KVM_MP_STATE_UNINITIALIZED:
11817  	case KVM_MP_STATE_HALTED:
11818  	case KVM_MP_STATE_AP_RESET_HOLD:
11819  	case KVM_MP_STATE_INIT_RECEIVED:
11820  	case KVM_MP_STATE_SIPI_RECEIVED:
11821  		if (!lapic_in_kernel(vcpu))
11822  			goto out;
11823  		break;
11824  
11825  	case KVM_MP_STATE_RUNNABLE:
11826  		break;
11827  
11828  	default:
11829  		goto out;
11830  	}
11831  
11832  	/*
11833  	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11834  	 * forcing the guest into INIT/SIPI if those events are supposed to be
11835  	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11836  	 * if an SMI is pending as well.
11837  	 */
11838  	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11839  	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11840  	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11841  		goto out;
11842  
11843  	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11844  		kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
11845  		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11846  	} else
11847  		kvm_set_mp_state(vcpu, mp_state->mp_state);
11848  	kvm_make_request(KVM_REQ_EVENT, vcpu);
11849  
11850  	ret = 0;
11851  out:
11852  	vcpu_put(vcpu);
11853  	return ret;
11854  }
11855  
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11856  int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11857  		    int reason, bool has_error_code, u32 error_code)
11858  {
11859  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11860  	int ret;
11861  
11862  	init_emulate_ctxt(vcpu);
11863  
11864  	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11865  				   has_error_code, error_code);
11866  
11867  	/*
11868  	 * Report an error userspace if MMIO is needed, as KVM doesn't support
11869  	 * MMIO during a task switch (or any other complex operation).
11870  	 */
11871  	if (ret || vcpu->mmio_needed) {
11872  		vcpu->mmio_needed = false;
11873  		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11874  		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11875  		vcpu->run->internal.ndata = 0;
11876  		return 0;
11877  	}
11878  
11879  	kvm_rip_write(vcpu, ctxt->eip);
11880  	kvm_set_rflags(vcpu, ctxt->eflags);
11881  	return 1;
11882  }
11883  EXPORT_SYMBOL_GPL(kvm_task_switch);
11884  
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11885  static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11886  {
11887  	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11888  		/*
11889  		 * When EFER.LME and CR0.PG are set, the processor is in
11890  		 * 64-bit mode (though maybe in a 32-bit code segment).
11891  		 * CR4.PAE and EFER.LMA must be set.
11892  		 */
11893  		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11894  			return false;
11895  		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11896  			return false;
11897  	} else {
11898  		/*
11899  		 * Not in 64-bit mode: EFER.LMA is clear and the code
11900  		 * segment cannot be 64-bit.
11901  		 */
11902  		if (sregs->efer & EFER_LMA || sregs->cs.l)
11903  			return false;
11904  	}
11905  
11906  	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11907  	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11908  }
11909  
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11910  static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11911  		int *mmu_reset_needed, bool update_pdptrs)
11912  {
11913  	int idx;
11914  	struct desc_ptr dt;
11915  
11916  	if (!kvm_is_valid_sregs(vcpu, sregs))
11917  		return -EINVAL;
11918  
11919  	if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11920  		return -EINVAL;
11921  
11922  	if (vcpu->arch.guest_state_protected)
11923  		return 0;
11924  
11925  	dt.size = sregs->idt.limit;
11926  	dt.address = sregs->idt.base;
11927  	kvm_x86_call(set_idt)(vcpu, &dt);
11928  	dt.size = sregs->gdt.limit;
11929  	dt.address = sregs->gdt.base;
11930  	kvm_x86_call(set_gdt)(vcpu, &dt);
11931  
11932  	vcpu->arch.cr2 = sregs->cr2;
11933  	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11934  	vcpu->arch.cr3 = sregs->cr3;
11935  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11936  	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11937  
11938  	kvm_set_cr8(vcpu, sregs->cr8);
11939  
11940  	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11941  	kvm_x86_call(set_efer)(vcpu, sregs->efer);
11942  
11943  	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11944  	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11945  
11946  	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11947  	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11948  
11949  	if (update_pdptrs) {
11950  		idx = srcu_read_lock(&vcpu->kvm->srcu);
11951  		if (is_pae_paging(vcpu)) {
11952  			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11953  			*mmu_reset_needed = 1;
11954  		}
11955  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11956  	}
11957  
11958  	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11959  	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11960  	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11961  	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11962  	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11963  	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11964  
11965  	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11966  	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11967  
11968  	update_cr8_intercept(vcpu);
11969  
11970  	/* Older userspace won't unhalt the vcpu on reset. */
11971  	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11972  	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11973  	    !is_protmode(vcpu))
11974  		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11975  
11976  	return 0;
11977  }
11978  
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11979  static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11980  {
11981  	int pending_vec, max_bits;
11982  	int mmu_reset_needed = 0;
11983  	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11984  
11985  	if (ret)
11986  		return ret;
11987  
11988  	if (mmu_reset_needed) {
11989  		kvm_mmu_reset_context(vcpu);
11990  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11991  	}
11992  
11993  	max_bits = KVM_NR_INTERRUPTS;
11994  	pending_vec = find_first_bit(
11995  		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11996  
11997  	if (pending_vec < max_bits) {
11998  		kvm_queue_interrupt(vcpu, pending_vec, false);
11999  		pr_debug("Set back pending irq %d\n", pending_vec);
12000  		kvm_make_request(KVM_REQ_EVENT, vcpu);
12001  	}
12002  	return 0;
12003  }
12004  
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12005  static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12006  {
12007  	int mmu_reset_needed = 0;
12008  	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12009  	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12010  		!(sregs2->efer & EFER_LMA);
12011  	int i, ret;
12012  
12013  	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12014  		return -EINVAL;
12015  
12016  	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12017  		return -EINVAL;
12018  
12019  	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12020  				 &mmu_reset_needed, !valid_pdptrs);
12021  	if (ret)
12022  		return ret;
12023  
12024  	if (valid_pdptrs) {
12025  		for (i = 0; i < 4 ; i++)
12026  			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12027  
12028  		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12029  		mmu_reset_needed = 1;
12030  		vcpu->arch.pdptrs_from_userspace = true;
12031  	}
12032  	if (mmu_reset_needed) {
12033  		kvm_mmu_reset_context(vcpu);
12034  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12035  	}
12036  	return 0;
12037  }
12038  
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12039  int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12040  				  struct kvm_sregs *sregs)
12041  {
12042  	int ret;
12043  
12044  	if (vcpu->kvm->arch.has_protected_state &&
12045  	    vcpu->arch.guest_state_protected)
12046  		return -EINVAL;
12047  
12048  	vcpu_load(vcpu);
12049  	ret = __set_sregs(vcpu, sregs);
12050  	vcpu_put(vcpu);
12051  	return ret;
12052  }
12053  
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12054  static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12055  {
12056  	bool set = false;
12057  	struct kvm_vcpu *vcpu;
12058  	unsigned long i;
12059  
12060  	if (!enable_apicv)
12061  		return;
12062  
12063  	down_write(&kvm->arch.apicv_update_lock);
12064  
12065  	kvm_for_each_vcpu(i, vcpu, kvm) {
12066  		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12067  			set = true;
12068  			break;
12069  		}
12070  	}
12071  	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12072  	up_write(&kvm->arch.apicv_update_lock);
12073  }
12074  
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12075  int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12076  					struct kvm_guest_debug *dbg)
12077  {
12078  	unsigned long rflags;
12079  	int i, r;
12080  
12081  	if (vcpu->arch.guest_state_protected)
12082  		return -EINVAL;
12083  
12084  	vcpu_load(vcpu);
12085  
12086  	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12087  		r = -EBUSY;
12088  		if (kvm_is_exception_pending(vcpu))
12089  			goto out;
12090  		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12091  			kvm_queue_exception(vcpu, DB_VECTOR);
12092  		else
12093  			kvm_queue_exception(vcpu, BP_VECTOR);
12094  	}
12095  
12096  	/*
12097  	 * Read rflags as long as potentially injected trace flags are still
12098  	 * filtered out.
12099  	 */
12100  	rflags = kvm_get_rflags(vcpu);
12101  
12102  	vcpu->guest_debug = dbg->control;
12103  	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12104  		vcpu->guest_debug = 0;
12105  
12106  	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12107  		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12108  			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12109  		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12110  	} else {
12111  		for (i = 0; i < KVM_NR_DB_REGS; i++)
12112  			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12113  	}
12114  	kvm_update_dr7(vcpu);
12115  
12116  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12117  		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12118  
12119  	/*
12120  	 * Trigger an rflags update that will inject or remove the trace
12121  	 * flags.
12122  	 */
12123  	kvm_set_rflags(vcpu, rflags);
12124  
12125  	kvm_x86_call(update_exception_bitmap)(vcpu);
12126  
12127  	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12128  
12129  	r = 0;
12130  
12131  out:
12132  	vcpu_put(vcpu);
12133  	return r;
12134  }
12135  
12136  /*
12137   * Translate a guest virtual address to a guest physical address.
12138   */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12139  int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12140  				    struct kvm_translation *tr)
12141  {
12142  	unsigned long vaddr = tr->linear_address;
12143  	gpa_t gpa;
12144  	int idx;
12145  
12146  	vcpu_load(vcpu);
12147  
12148  	idx = srcu_read_lock(&vcpu->kvm->srcu);
12149  	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12150  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12151  	tr->physical_address = gpa;
12152  	tr->valid = gpa != INVALID_GPA;
12153  	tr->writeable = 1;
12154  	tr->usermode = 0;
12155  
12156  	vcpu_put(vcpu);
12157  	return 0;
12158  }
12159  
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12160  int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12161  {
12162  	struct fxregs_state *fxsave;
12163  
12164  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12165  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12166  
12167  	vcpu_load(vcpu);
12168  
12169  	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12170  	memcpy(fpu->fpr, fxsave->st_space, 128);
12171  	fpu->fcw = fxsave->cwd;
12172  	fpu->fsw = fxsave->swd;
12173  	fpu->ftwx = fxsave->twd;
12174  	fpu->last_opcode = fxsave->fop;
12175  	fpu->last_ip = fxsave->rip;
12176  	fpu->last_dp = fxsave->rdp;
12177  	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12178  
12179  	vcpu_put(vcpu);
12180  	return 0;
12181  }
12182  
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12183  int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12184  {
12185  	struct fxregs_state *fxsave;
12186  
12187  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12188  		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12189  
12190  	vcpu_load(vcpu);
12191  
12192  	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12193  
12194  	memcpy(fxsave->st_space, fpu->fpr, 128);
12195  	fxsave->cwd = fpu->fcw;
12196  	fxsave->swd = fpu->fsw;
12197  	fxsave->twd = fpu->ftwx;
12198  	fxsave->fop = fpu->last_opcode;
12199  	fxsave->rip = fpu->last_ip;
12200  	fxsave->rdp = fpu->last_dp;
12201  	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12202  
12203  	vcpu_put(vcpu);
12204  	return 0;
12205  }
12206  
store_regs(struct kvm_vcpu * vcpu)12207  static void store_regs(struct kvm_vcpu *vcpu)
12208  {
12209  	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12210  
12211  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12212  		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12213  
12214  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12215  		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12216  
12217  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12218  		kvm_vcpu_ioctl_x86_get_vcpu_events(
12219  				vcpu, &vcpu->run->s.regs.events);
12220  }
12221  
sync_regs(struct kvm_vcpu * vcpu)12222  static int sync_regs(struct kvm_vcpu *vcpu)
12223  {
12224  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12225  		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12226  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12227  	}
12228  
12229  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12230  		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12231  
12232  		if (__set_sregs(vcpu, &sregs))
12233  			return -EINVAL;
12234  
12235  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12236  	}
12237  
12238  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12239  		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12240  
12241  		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12242  			return -EINVAL;
12243  
12244  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12245  	}
12246  
12247  	return 0;
12248  }
12249  
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12250  int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12251  {
12252  	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12253  		pr_warn_once("SMP vm created on host with unstable TSC; "
12254  			     "guest TSC will not be reliable\n");
12255  
12256  	if (!kvm->arch.max_vcpu_ids)
12257  		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12258  
12259  	if (id >= kvm->arch.max_vcpu_ids)
12260  		return -EINVAL;
12261  
12262  	return kvm_x86_call(vcpu_precreate)(kvm);
12263  }
12264  
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12265  int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12266  {
12267  	struct page *page;
12268  	int r;
12269  
12270  	vcpu->arch.last_vmentry_cpu = -1;
12271  	vcpu->arch.regs_avail = ~0;
12272  	vcpu->arch.regs_dirty = ~0;
12273  
12274  	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12275  
12276  	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12277  		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12278  	else
12279  		kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12280  
12281  	r = kvm_mmu_create(vcpu);
12282  	if (r < 0)
12283  		return r;
12284  
12285  	r = kvm_create_lapic(vcpu);
12286  	if (r < 0)
12287  		goto fail_mmu_destroy;
12288  
12289  	r = -ENOMEM;
12290  
12291  	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12292  	if (!page)
12293  		goto fail_free_lapic;
12294  	vcpu->arch.pio_data = page_address(page);
12295  
12296  	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12297  				       GFP_KERNEL_ACCOUNT);
12298  	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12299  					    GFP_KERNEL_ACCOUNT);
12300  	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12301  		goto fail_free_mce_banks;
12302  	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12303  
12304  	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12305  				GFP_KERNEL_ACCOUNT))
12306  		goto fail_free_mce_banks;
12307  
12308  	if (!alloc_emulate_ctxt(vcpu))
12309  		goto free_wbinvd_dirty_mask;
12310  
12311  	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12312  		pr_err("failed to allocate vcpu's fpu\n");
12313  		goto free_emulate_ctxt;
12314  	}
12315  
12316  	kvm_async_pf_hash_reset(vcpu);
12317  
12318  	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12319  		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12320  		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12321  		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12322  	}
12323  	kvm_pmu_init(vcpu);
12324  
12325  	vcpu->arch.pending_external_vector = -1;
12326  	vcpu->arch.preempted_in_kernel = false;
12327  
12328  #if IS_ENABLED(CONFIG_HYPERV)
12329  	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12330  #endif
12331  
12332  	r = kvm_x86_call(vcpu_create)(vcpu);
12333  	if (r)
12334  		goto free_guest_fpu;
12335  
12336  	kvm_xen_init_vcpu(vcpu);
12337  	vcpu_load(vcpu);
12338  	kvm_vcpu_after_set_cpuid(vcpu);
12339  	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12340  	kvm_vcpu_reset(vcpu, false);
12341  	kvm_init_mmu(vcpu);
12342  	vcpu_put(vcpu);
12343  	return 0;
12344  
12345  free_guest_fpu:
12346  	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12347  free_emulate_ctxt:
12348  	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12349  free_wbinvd_dirty_mask:
12350  	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12351  fail_free_mce_banks:
12352  	kfree(vcpu->arch.mce_banks);
12353  	kfree(vcpu->arch.mci_ctl2_banks);
12354  	free_page((unsigned long)vcpu->arch.pio_data);
12355  fail_free_lapic:
12356  	kvm_free_lapic(vcpu);
12357  fail_mmu_destroy:
12358  	kvm_mmu_destroy(vcpu);
12359  	return r;
12360  }
12361  
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12362  void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12363  {
12364  	struct kvm *kvm = vcpu->kvm;
12365  
12366  	if (mutex_lock_killable(&vcpu->mutex))
12367  		return;
12368  	vcpu_load(vcpu);
12369  	kvm_synchronize_tsc(vcpu, NULL);
12370  	vcpu_put(vcpu);
12371  
12372  	/* poll control enabled by default */
12373  	vcpu->arch.msr_kvm_poll_control = 1;
12374  
12375  	mutex_unlock(&vcpu->mutex);
12376  
12377  	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12378  		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12379  						KVMCLOCK_SYNC_PERIOD);
12380  }
12381  
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12382  void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12383  {
12384  	int idx;
12385  
12386  	kvm_clear_async_pf_completion_queue(vcpu);
12387  	kvm_mmu_unload(vcpu);
12388  
12389  	kvmclock_reset(vcpu);
12390  
12391  	kvm_x86_call(vcpu_free)(vcpu);
12392  
12393  	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12394  	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12395  	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12396  
12397  	kvm_xen_destroy_vcpu(vcpu);
12398  	kvm_hv_vcpu_uninit(vcpu);
12399  	kvm_pmu_destroy(vcpu);
12400  	kfree(vcpu->arch.mce_banks);
12401  	kfree(vcpu->arch.mci_ctl2_banks);
12402  	kvm_free_lapic(vcpu);
12403  	idx = srcu_read_lock(&vcpu->kvm->srcu);
12404  	kvm_mmu_destroy(vcpu);
12405  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12406  	free_page((unsigned long)vcpu->arch.pio_data);
12407  	kvfree(vcpu->arch.cpuid_entries);
12408  }
12409  
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12410  void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12411  {
12412  	struct kvm_cpuid_entry2 *cpuid_0x1;
12413  	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12414  	unsigned long new_cr0;
12415  
12416  	/*
12417  	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12418  	 * to handle side effects.  RESET emulation hits those flows and relies
12419  	 * on emulated/virtualized registers, including those that are loaded
12420  	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12421  	 * to detect improper or missing initialization.
12422  	 */
12423  	WARN_ON_ONCE(!init_event &&
12424  		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12425  
12426  	/*
12427  	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12428  	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12429  	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12430  	 * bits), i.e. virtualization is disabled.
12431  	 */
12432  	if (is_guest_mode(vcpu))
12433  		kvm_leave_nested(vcpu);
12434  
12435  	kvm_lapic_reset(vcpu, init_event);
12436  
12437  	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12438  	vcpu->arch.hflags = 0;
12439  
12440  	vcpu->arch.smi_pending = 0;
12441  	vcpu->arch.smi_count = 0;
12442  	atomic_set(&vcpu->arch.nmi_queued, 0);
12443  	vcpu->arch.nmi_pending = 0;
12444  	vcpu->arch.nmi_injected = false;
12445  	kvm_clear_interrupt_queue(vcpu);
12446  	kvm_clear_exception_queue(vcpu);
12447  
12448  	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12449  	kvm_update_dr0123(vcpu);
12450  	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12451  	vcpu->arch.dr7 = DR7_FIXED_1;
12452  	kvm_update_dr7(vcpu);
12453  
12454  	vcpu->arch.cr2 = 0;
12455  
12456  	kvm_make_request(KVM_REQ_EVENT, vcpu);
12457  	vcpu->arch.apf.msr_en_val = 0;
12458  	vcpu->arch.apf.msr_int_val = 0;
12459  	vcpu->arch.st.msr_val = 0;
12460  
12461  	kvmclock_reset(vcpu);
12462  
12463  	kvm_clear_async_pf_completion_queue(vcpu);
12464  	kvm_async_pf_hash_reset(vcpu);
12465  	vcpu->arch.apf.halted = false;
12466  
12467  	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12468  		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12469  
12470  		/*
12471  		 * All paths that lead to INIT are required to load the guest's
12472  		 * FPU state (because most paths are buried in KVM_RUN).
12473  		 */
12474  		if (init_event)
12475  			kvm_put_guest_fpu(vcpu);
12476  
12477  		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12478  		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12479  
12480  		if (init_event)
12481  			kvm_load_guest_fpu(vcpu);
12482  	}
12483  
12484  	if (!init_event) {
12485  		vcpu->arch.smbase = 0x30000;
12486  
12487  		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12488  
12489  		vcpu->arch.msr_misc_features_enables = 0;
12490  		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12491  						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12492  
12493  		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12494  		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12495  	}
12496  
12497  	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12498  	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12499  	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12500  
12501  	/*
12502  	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12503  	 * if no CPUID match is found.  Note, it's impossible to get a match at
12504  	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12505  	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12506  	 * on RESET.  But, go through the motions in case that's ever remedied.
12507  	 */
12508  	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12509  	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12510  
12511  	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12512  
12513  	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12514  	kvm_rip_write(vcpu, 0xfff0);
12515  
12516  	vcpu->arch.cr3 = 0;
12517  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12518  
12519  	/*
12520  	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12521  	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12522  	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12523  	 */
12524  	new_cr0 = X86_CR0_ET;
12525  	if (init_event)
12526  		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12527  	else
12528  		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12529  
12530  	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12531  	kvm_x86_call(set_cr4)(vcpu, 0);
12532  	kvm_x86_call(set_efer)(vcpu, 0);
12533  	kvm_x86_call(update_exception_bitmap)(vcpu);
12534  
12535  	/*
12536  	 * On the standard CR0/CR4/EFER modification paths, there are several
12537  	 * complex conditions determining whether the MMU has to be reset and/or
12538  	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12539  	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12540  	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12541  	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12542  	 */
12543  	if (old_cr0 & X86_CR0_PG) {
12544  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12545  		kvm_mmu_reset_context(vcpu);
12546  	}
12547  
12548  	/*
12549  	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12550  	 * APM states the TLBs are untouched by INIT, but it also states that
12551  	 * the TLBs are flushed on "External initialization of the processor."
12552  	 * Flush the guest TLB regardless of vendor, there is no meaningful
12553  	 * benefit in relying on the guest to flush the TLB immediately after
12554  	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12555  	 * performance perspective.
12556  	 */
12557  	if (init_event)
12558  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12559  }
12560  EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12561  
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12562  void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12563  {
12564  	struct kvm_segment cs;
12565  
12566  	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12567  	cs.selector = vector << 8;
12568  	cs.base = vector << 12;
12569  	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12570  	kvm_rip_write(vcpu, 0);
12571  }
12572  EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12573  
kvm_arch_enable_virtualization(void)12574  void kvm_arch_enable_virtualization(void)
12575  {
12576  	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12577  }
12578  
kvm_arch_disable_virtualization(void)12579  void kvm_arch_disable_virtualization(void)
12580  {
12581  	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12582  }
12583  
kvm_arch_enable_virtualization_cpu(void)12584  int kvm_arch_enable_virtualization_cpu(void)
12585  {
12586  	struct kvm *kvm;
12587  	struct kvm_vcpu *vcpu;
12588  	unsigned long i;
12589  	int ret;
12590  	u64 local_tsc;
12591  	u64 max_tsc = 0;
12592  	bool stable, backwards_tsc = false;
12593  
12594  	kvm_user_return_msr_cpu_online();
12595  
12596  	ret = kvm_x86_check_processor_compatibility();
12597  	if (ret)
12598  		return ret;
12599  
12600  	ret = kvm_x86_call(enable_virtualization_cpu)();
12601  	if (ret != 0)
12602  		return ret;
12603  
12604  	local_tsc = rdtsc();
12605  	stable = !kvm_check_tsc_unstable();
12606  	list_for_each_entry(kvm, &vm_list, vm_list) {
12607  		kvm_for_each_vcpu(i, vcpu, kvm) {
12608  			if (!stable && vcpu->cpu == smp_processor_id())
12609  				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12610  			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12611  				backwards_tsc = true;
12612  				if (vcpu->arch.last_host_tsc > max_tsc)
12613  					max_tsc = vcpu->arch.last_host_tsc;
12614  			}
12615  		}
12616  	}
12617  
12618  	/*
12619  	 * Sometimes, even reliable TSCs go backwards.  This happens on
12620  	 * platforms that reset TSC during suspend or hibernate actions, but
12621  	 * maintain synchronization.  We must compensate.  Fortunately, we can
12622  	 * detect that condition here, which happens early in CPU bringup,
12623  	 * before any KVM threads can be running.  Unfortunately, we can't
12624  	 * bring the TSCs fully up to date with real time, as we aren't yet far
12625  	 * enough into CPU bringup that we know how much real time has actually
12626  	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12627  	 * variables that haven't been updated yet.
12628  	 *
12629  	 * So we simply find the maximum observed TSC above, then record the
12630  	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12631  	 * the adjustment will be applied.  Note that we accumulate
12632  	 * adjustments, in case multiple suspend cycles happen before some VCPU
12633  	 * gets a chance to run again.  In the event that no KVM threads get a
12634  	 * chance to run, we will miss the entire elapsed period, as we'll have
12635  	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12636  	 * loose cycle time.  This isn't too big a deal, since the loss will be
12637  	 * uniform across all VCPUs (not to mention the scenario is extremely
12638  	 * unlikely). It is possible that a second hibernate recovery happens
12639  	 * much faster than a first, causing the observed TSC here to be
12640  	 * smaller; this would require additional padding adjustment, which is
12641  	 * why we set last_host_tsc to the local tsc observed here.
12642  	 *
12643  	 * N.B. - this code below runs only on platforms with reliable TSC,
12644  	 * as that is the only way backwards_tsc is set above.  Also note
12645  	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12646  	 * have the same delta_cyc adjustment applied if backwards_tsc
12647  	 * is detected.  Note further, this adjustment is only done once,
12648  	 * as we reset last_host_tsc on all VCPUs to stop this from being
12649  	 * called multiple times (one for each physical CPU bringup).
12650  	 *
12651  	 * Platforms with unreliable TSCs don't have to deal with this, they
12652  	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12653  	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12654  	 * guarantee that they stay in perfect synchronization.
12655  	 */
12656  	if (backwards_tsc) {
12657  		u64 delta_cyc = max_tsc - local_tsc;
12658  		list_for_each_entry(kvm, &vm_list, vm_list) {
12659  			kvm->arch.backwards_tsc_observed = true;
12660  			kvm_for_each_vcpu(i, vcpu, kvm) {
12661  				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12662  				vcpu->arch.last_host_tsc = local_tsc;
12663  				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12664  			}
12665  
12666  			/*
12667  			 * We have to disable TSC offset matching.. if you were
12668  			 * booting a VM while issuing an S4 host suspend....
12669  			 * you may have some problem.  Solving this issue is
12670  			 * left as an exercise to the reader.
12671  			 */
12672  			kvm->arch.last_tsc_nsec = 0;
12673  			kvm->arch.last_tsc_write = 0;
12674  		}
12675  
12676  	}
12677  	return 0;
12678  }
12679  
kvm_arch_disable_virtualization_cpu(void)12680  void kvm_arch_disable_virtualization_cpu(void)
12681  {
12682  	kvm_x86_call(disable_virtualization_cpu)();
12683  	drop_user_return_notifiers();
12684  }
12685  
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12686  bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12687  {
12688  	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12689  }
12690  
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12691  bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12692  {
12693  	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12694  }
12695  
kvm_arch_free_vm(struct kvm * kvm)12696  void kvm_arch_free_vm(struct kvm *kvm)
12697  {
12698  #if IS_ENABLED(CONFIG_HYPERV)
12699  	kfree(kvm->arch.hv_pa_pg);
12700  #endif
12701  	__kvm_arch_free_vm(kvm);
12702  }
12703  
12704  
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12705  int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12706  {
12707  	int ret;
12708  	unsigned long flags;
12709  
12710  	if (!kvm_is_vm_type_supported(type))
12711  		return -EINVAL;
12712  
12713  	kvm->arch.vm_type = type;
12714  	kvm->arch.has_private_mem =
12715  		(type == KVM_X86_SW_PROTECTED_VM);
12716  	/* Decided by the vendor code for other VM types.  */
12717  	kvm->arch.pre_fault_allowed =
12718  		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12719  
12720  	ret = kvm_page_track_init(kvm);
12721  	if (ret)
12722  		goto out;
12723  
12724  	kvm_mmu_init_vm(kvm);
12725  
12726  	ret = kvm_x86_call(vm_init)(kvm);
12727  	if (ret)
12728  		goto out_uninit_mmu;
12729  
12730  	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12731  	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12732  
12733  	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12734  	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12735  	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12736  	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12737  		&kvm->arch.irq_sources_bitmap);
12738  
12739  	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12740  	mutex_init(&kvm->arch.apic_map_lock);
12741  	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12742  	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12743  
12744  	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12745  	pvclock_update_vm_gtod_copy(kvm);
12746  	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12747  
12748  	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12749  	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12750  	kvm->arch.guest_can_read_msr_platform_info = true;
12751  	kvm->arch.enable_pmu = enable_pmu;
12752  
12753  #if IS_ENABLED(CONFIG_HYPERV)
12754  	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12755  	kvm->arch.hv_root_tdp = INVALID_PAGE;
12756  #endif
12757  
12758  	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12759  	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12760  
12761  	kvm_apicv_init(kvm);
12762  	kvm_hv_init_vm(kvm);
12763  	kvm_xen_init_vm(kvm);
12764  
12765  	if (ignore_msrs && !report_ignored_msrs) {
12766  		pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12767  			     "a supported configuration.  Lying to the guest about the existence of MSRs\n"
12768  			     "may cause the guest operating system to hang or produce errors.  If a guest\n"
12769  			     "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12770  	}
12771  
12772  	once_init(&kvm->arch.nx_once);
12773  	return 0;
12774  
12775  out_uninit_mmu:
12776  	kvm_mmu_uninit_vm(kvm);
12777  	kvm_page_track_cleanup(kvm);
12778  out:
12779  	return ret;
12780  }
12781  
12782  /**
12783   * __x86_set_memory_region: Setup KVM internal memory slot
12784   *
12785   * @kvm: the kvm pointer to the VM.
12786   * @id: the slot ID to setup.
12787   * @gpa: the GPA to install the slot (unused when @size == 0).
12788   * @size: the size of the slot. Set to zero to uninstall a slot.
12789   *
12790   * This function helps to setup a KVM internal memory slot.  Specify
12791   * @size > 0 to install a new slot, while @size == 0 to uninstall a
12792   * slot.  The return code can be one of the following:
12793   *
12794   *   HVA:           on success (uninstall will return a bogus HVA)
12795   *   -errno:        on error
12796   *
12797   * The caller should always use IS_ERR() to check the return value
12798   * before use.  Note, the KVM internal memory slots are guaranteed to
12799   * remain valid and unchanged until the VM is destroyed, i.e., the
12800   * GPA->HVA translation will not change.  However, the HVA is a user
12801   * address, i.e. its accessibility is not guaranteed, and must be
12802   * accessed via __copy_{to,from}_user().
12803   */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12804  void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12805  				      u32 size)
12806  {
12807  	int i, r;
12808  	unsigned long hva, old_npages;
12809  	struct kvm_memslots *slots = kvm_memslots(kvm);
12810  	struct kvm_memory_slot *slot;
12811  
12812  	lockdep_assert_held(&kvm->slots_lock);
12813  
12814  	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12815  		return ERR_PTR_USR(-EINVAL);
12816  
12817  	slot = id_to_memslot(slots, id);
12818  	if (size) {
12819  		if (slot && slot->npages)
12820  			return ERR_PTR_USR(-EEXIST);
12821  
12822  		/*
12823  		 * MAP_SHARED to prevent internal slot pages from being moved
12824  		 * by fork()/COW.
12825  		 */
12826  		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12827  			      MAP_SHARED | MAP_ANONYMOUS, 0);
12828  		if (IS_ERR_VALUE(hva))
12829  			return (void __user *)hva;
12830  	} else {
12831  		if (!slot || !slot->npages)
12832  			return NULL;
12833  
12834  		old_npages = slot->npages;
12835  		hva = slot->userspace_addr;
12836  	}
12837  
12838  	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12839  		struct kvm_userspace_memory_region2 m;
12840  
12841  		m.slot = id | (i << 16);
12842  		m.flags = 0;
12843  		m.guest_phys_addr = gpa;
12844  		m.userspace_addr = hva;
12845  		m.memory_size = size;
12846  		r = kvm_set_internal_memslot(kvm, &m);
12847  		if (r < 0)
12848  			return ERR_PTR_USR(r);
12849  	}
12850  
12851  	if (!size)
12852  		vm_munmap(hva, old_npages * PAGE_SIZE);
12853  
12854  	return (void __user *)hva;
12855  }
12856  EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12857  
kvm_arch_pre_destroy_vm(struct kvm * kvm)12858  void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12859  {
12860  	/*
12861  	 * Stop all background workers and kthreads before destroying vCPUs, as
12862  	 * iterating over vCPUs in a different task while vCPUs are being freed
12863  	 * is unsafe, i.e. will lead to use-after-free.  The PIT also needs to
12864  	 * be stopped before IRQ routing is freed.
12865  	 */
12866  	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12867  	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12868  
12869  	kvm_free_pit(kvm);
12870  
12871  	kvm_mmu_pre_destroy_vm(kvm);
12872  }
12873  
kvm_arch_destroy_vm(struct kvm * kvm)12874  void kvm_arch_destroy_vm(struct kvm *kvm)
12875  {
12876  	if (current->mm == kvm->mm) {
12877  		/*
12878  		 * Free memory regions allocated on behalf of userspace,
12879  		 * unless the memory map has changed due to process exit
12880  		 * or fd copying.
12881  		 */
12882  		mutex_lock(&kvm->slots_lock);
12883  		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12884  					0, 0);
12885  		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12886  					0, 0);
12887  		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12888  		mutex_unlock(&kvm->slots_lock);
12889  	}
12890  	kvm_destroy_vcpus(kvm);
12891  	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12892  	kvm_pic_destroy(kvm);
12893  	kvm_ioapic_destroy(kvm);
12894  	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12895  	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12896  	kvm_mmu_uninit_vm(kvm);
12897  	kvm_page_track_cleanup(kvm);
12898  	kvm_xen_destroy_vm(kvm);
12899  	kvm_hv_destroy_vm(kvm);
12900  	kvm_x86_call(vm_destroy)(kvm);
12901  }
12902  
memslot_rmap_free(struct kvm_memory_slot * slot)12903  static void memslot_rmap_free(struct kvm_memory_slot *slot)
12904  {
12905  	int i;
12906  
12907  	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12908  		vfree(slot->arch.rmap[i]);
12909  		slot->arch.rmap[i] = NULL;
12910  	}
12911  }
12912  
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12913  void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12914  {
12915  	int i;
12916  
12917  	memslot_rmap_free(slot);
12918  
12919  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12920  		vfree(slot->arch.lpage_info[i - 1]);
12921  		slot->arch.lpage_info[i - 1] = NULL;
12922  	}
12923  
12924  	kvm_page_track_free_memslot(slot);
12925  }
12926  
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12927  int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12928  {
12929  	const int sz = sizeof(*slot->arch.rmap[0]);
12930  	int i;
12931  
12932  	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12933  		int level = i + 1;
12934  		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12935  
12936  		if (slot->arch.rmap[i])
12937  			continue;
12938  
12939  		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12940  		if (!slot->arch.rmap[i]) {
12941  			memslot_rmap_free(slot);
12942  			return -ENOMEM;
12943  		}
12944  	}
12945  
12946  	return 0;
12947  }
12948  
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12949  static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12950  				      struct kvm_memory_slot *slot)
12951  {
12952  	unsigned long npages = slot->npages;
12953  	int i, r;
12954  
12955  	/*
12956  	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12957  	 * old arrays will be freed by kvm_set_memory_region() if installing
12958  	 * the new memslot is successful.
12959  	 */
12960  	memset(&slot->arch, 0, sizeof(slot->arch));
12961  
12962  	if (kvm_memslots_have_rmaps(kvm)) {
12963  		r = memslot_rmap_alloc(slot, npages);
12964  		if (r)
12965  			return r;
12966  	}
12967  
12968  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12969  		struct kvm_lpage_info *linfo;
12970  		unsigned long ugfn;
12971  		int lpages;
12972  		int level = i + 1;
12973  
12974  		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12975  
12976  		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12977  		if (!linfo)
12978  			goto out_free;
12979  
12980  		slot->arch.lpage_info[i - 1] = linfo;
12981  
12982  		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12983  			linfo[0].disallow_lpage = 1;
12984  		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12985  			linfo[lpages - 1].disallow_lpage = 1;
12986  		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12987  		/*
12988  		 * If the gfn and userspace address are not aligned wrt each
12989  		 * other, disable large page support for this slot.
12990  		 */
12991  		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12992  			unsigned long j;
12993  
12994  			for (j = 0; j < lpages; ++j)
12995  				linfo[j].disallow_lpage = 1;
12996  		}
12997  	}
12998  
12999  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13000  	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13001  #endif
13002  
13003  	if (kvm_page_track_create_memslot(kvm, slot, npages))
13004  		goto out_free;
13005  
13006  	return 0;
13007  
13008  out_free:
13009  	memslot_rmap_free(slot);
13010  
13011  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13012  		vfree(slot->arch.lpage_info[i - 1]);
13013  		slot->arch.lpage_info[i - 1] = NULL;
13014  	}
13015  	return -ENOMEM;
13016  }
13017  
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13018  void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13019  {
13020  	struct kvm_vcpu *vcpu;
13021  	unsigned long i;
13022  
13023  	/*
13024  	 * memslots->generation has been incremented.
13025  	 * mmio generation may have reached its maximum value.
13026  	 */
13027  	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13028  
13029  	/* Force re-initialization of steal_time cache */
13030  	kvm_for_each_vcpu(i, vcpu, kvm)
13031  		kvm_vcpu_kick(vcpu);
13032  }
13033  
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13034  int kvm_arch_prepare_memory_region(struct kvm *kvm,
13035  				   const struct kvm_memory_slot *old,
13036  				   struct kvm_memory_slot *new,
13037  				   enum kvm_mr_change change)
13038  {
13039  	/*
13040  	 * KVM doesn't support moving memslots when there are external page
13041  	 * trackers attached to the VM, i.e. if KVMGT is in use.
13042  	 */
13043  	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13044  		return -EINVAL;
13045  
13046  	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13047  		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13048  			return -EINVAL;
13049  
13050  		if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13051  			return -EINVAL;
13052  
13053  		return kvm_alloc_memslot_metadata(kvm, new);
13054  	}
13055  
13056  	if (change == KVM_MR_FLAGS_ONLY)
13057  		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13058  	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13059  		return -EIO;
13060  
13061  	return 0;
13062  }
13063  
13064  
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13065  static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13066  {
13067  	int nr_slots;
13068  
13069  	if (!kvm_x86_ops.cpu_dirty_log_size)
13070  		return;
13071  
13072  	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13073  	if ((enable && nr_slots == 1) || !nr_slots)
13074  		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13075  }
13076  
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13077  static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13078  				     struct kvm_memory_slot *old,
13079  				     const struct kvm_memory_slot *new,
13080  				     enum kvm_mr_change change)
13081  {
13082  	u32 old_flags = old ? old->flags : 0;
13083  	u32 new_flags = new ? new->flags : 0;
13084  	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13085  
13086  	/*
13087  	 * Update CPU dirty logging if dirty logging is being toggled.  This
13088  	 * applies to all operations.
13089  	 */
13090  	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13091  		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13092  
13093  	/*
13094  	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13095  	 * made writable) or CREATE/MOVE/DELETE of a slot.
13096  	 *
13097  	 * For a memslot with dirty logging disabled:
13098  	 * CREATE:      No dirty mappings will already exist.
13099  	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13100  	 *		kvm_arch_flush_shadow_memslot()
13101  	 *
13102  	 * For a memslot with dirty logging enabled:
13103  	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13104  	 *		and no dirty bits to clear.
13105  	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13106  	 *		kvm_arch_flush_shadow_memslot().
13107  	 */
13108  	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13109  		return;
13110  
13111  	/*
13112  	 * READONLY and non-flags changes were filtered out above, and the only
13113  	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13114  	 * logging isn't being toggled on or off.
13115  	 */
13116  	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13117  		return;
13118  
13119  	if (!log_dirty_pages) {
13120  		/*
13121  		 * Recover huge page mappings in the slot now that dirty logging
13122  		 * is disabled, i.e. now that KVM does not have to track guest
13123  		 * writes at 4KiB granularity.
13124  		 *
13125  		 * Dirty logging might be disabled by userspace if an ongoing VM
13126  		 * live migration is cancelled and the VM must continue running
13127  		 * on the source.
13128  		 */
13129  		kvm_mmu_recover_huge_pages(kvm, new);
13130  	} else {
13131  		/*
13132  		 * Initially-all-set does not require write protecting any page,
13133  		 * because they're all assumed to be dirty.
13134  		 */
13135  		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13136  			return;
13137  
13138  		if (READ_ONCE(eager_page_split))
13139  			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13140  
13141  		if (kvm_x86_ops.cpu_dirty_log_size) {
13142  			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13143  			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13144  		} else {
13145  			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13146  		}
13147  
13148  		/*
13149  		 * Unconditionally flush the TLBs after enabling dirty logging.
13150  		 * A flush is almost always going to be necessary (see below),
13151  		 * and unconditionally flushing allows the helpers to omit
13152  		 * the subtly complex checks when removing write access.
13153  		 *
13154  		 * Do the flush outside of mmu_lock to reduce the amount of
13155  		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13156  		 * safe as KVM only needs to guarantee the slot is fully
13157  		 * write-protected before returning to userspace, i.e. before
13158  		 * userspace can consume the dirty status.
13159  		 *
13160  		 * Flushing outside of mmu_lock requires KVM to be careful when
13161  		 * making decisions based on writable status of an SPTE, e.g. a
13162  		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13163  		 *
13164  		 * Specifically, KVM also write-protects guest page tables to
13165  		 * monitor changes when using shadow paging, and must guarantee
13166  		 * no CPUs can write to those page before mmu_lock is dropped.
13167  		 * Because CPUs may have stale TLB entries at this point, a
13168  		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13169  		 *
13170  		 * KVM also allows making SPTES writable outside of mmu_lock,
13171  		 * e.g. to allow dirty logging without taking mmu_lock.
13172  		 *
13173  		 * To handle these scenarios, KVM uses a separate software-only
13174  		 * bit (MMU-writable) to track if a SPTE is !writable due to
13175  		 * a guest page table being write-protected (KVM clears the
13176  		 * MMU-writable flag when write-protecting for shadow paging).
13177  		 *
13178  		 * The use of MMU-writable is also the primary motivation for
13179  		 * the unconditional flush.  Because KVM must guarantee that a
13180  		 * CPU doesn't contain stale, writable TLB entries for a
13181  		 * !MMU-writable SPTE, KVM must flush if it encounters any
13182  		 * MMU-writable SPTE regardless of whether the actual hardware
13183  		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13184  		 * to flush, while unconditionally flushing allows the "remove
13185  		 * write access" helpers to ignore MMU-writable entirely.
13186  		 *
13187  		 * See is_writable_pte() for more details (the case involving
13188  		 * access-tracked SPTEs is particularly relevant).
13189  		 */
13190  		kvm_flush_remote_tlbs_memslot(kvm, new);
13191  	}
13192  }
13193  
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13194  void kvm_arch_commit_memory_region(struct kvm *kvm,
13195  				struct kvm_memory_slot *old,
13196  				const struct kvm_memory_slot *new,
13197  				enum kvm_mr_change change)
13198  {
13199  	if (change == KVM_MR_DELETE)
13200  		kvm_page_track_delete_slot(kvm, old);
13201  
13202  	if (!kvm->arch.n_requested_mmu_pages &&
13203  	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13204  		unsigned long nr_mmu_pages;
13205  
13206  		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13207  		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13208  		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13209  	}
13210  
13211  	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13212  
13213  	/* Free the arrays associated with the old memslot. */
13214  	if (change == KVM_MR_MOVE)
13215  		kvm_arch_free_memslot(kvm, old);
13216  }
13217  
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13218  bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13219  {
13220  	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13221  
13222  	if (vcpu->arch.guest_state_protected)
13223  		return true;
13224  
13225  	return kvm_x86_call(get_cpl)(vcpu) == 0;
13226  }
13227  
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13228  unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13229  {
13230  	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13231  
13232  	if (vcpu->arch.guest_state_protected)
13233  		return 0;
13234  
13235  	return kvm_rip_read(vcpu);
13236  }
13237  
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13238  int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13239  {
13240  	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13241  }
13242  
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13243  int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13244  {
13245  	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13246  }
13247  
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13248  unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13249  {
13250  	/* Can't read the RIP when guest state is protected, just return 0 */
13251  	if (vcpu->arch.guest_state_protected)
13252  		return 0;
13253  
13254  	if (is_64_bit_mode(vcpu))
13255  		return kvm_rip_read(vcpu);
13256  	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13257  		     kvm_rip_read(vcpu));
13258  }
13259  EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13260  
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13261  bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13262  {
13263  	return kvm_get_linear_rip(vcpu) == linear_rip;
13264  }
13265  EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13266  
kvm_get_rflags(struct kvm_vcpu * vcpu)13267  unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13268  {
13269  	unsigned long rflags;
13270  
13271  	rflags = kvm_x86_call(get_rflags)(vcpu);
13272  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13273  		rflags &= ~X86_EFLAGS_TF;
13274  	return rflags;
13275  }
13276  EXPORT_SYMBOL_GPL(kvm_get_rflags);
13277  
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13278  static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13279  {
13280  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13281  	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13282  		rflags |= X86_EFLAGS_TF;
13283  	kvm_x86_call(set_rflags)(vcpu, rflags);
13284  }
13285  
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13286  void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13287  {
13288  	__kvm_set_rflags(vcpu, rflags);
13289  	kvm_make_request(KVM_REQ_EVENT, vcpu);
13290  }
13291  EXPORT_SYMBOL_GPL(kvm_set_rflags);
13292  
kvm_async_pf_hash_fn(gfn_t gfn)13293  static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13294  {
13295  	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13296  
13297  	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13298  }
13299  
kvm_async_pf_next_probe(u32 key)13300  static inline u32 kvm_async_pf_next_probe(u32 key)
13301  {
13302  	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13303  }
13304  
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13305  static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13306  {
13307  	u32 key = kvm_async_pf_hash_fn(gfn);
13308  
13309  	while (vcpu->arch.apf.gfns[key] != ~0)
13310  		key = kvm_async_pf_next_probe(key);
13311  
13312  	vcpu->arch.apf.gfns[key] = gfn;
13313  }
13314  
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13315  static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13316  {
13317  	int i;
13318  	u32 key = kvm_async_pf_hash_fn(gfn);
13319  
13320  	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13321  		     (vcpu->arch.apf.gfns[key] != gfn &&
13322  		      vcpu->arch.apf.gfns[key] != ~0); i++)
13323  		key = kvm_async_pf_next_probe(key);
13324  
13325  	return key;
13326  }
13327  
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13328  bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13329  {
13330  	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13331  }
13332  
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13333  static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13334  {
13335  	u32 i, j, k;
13336  
13337  	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13338  
13339  	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13340  		return;
13341  
13342  	while (true) {
13343  		vcpu->arch.apf.gfns[i] = ~0;
13344  		do {
13345  			j = kvm_async_pf_next_probe(j);
13346  			if (vcpu->arch.apf.gfns[j] == ~0)
13347  				return;
13348  			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13349  			/*
13350  			 * k lies cyclically in ]i,j]
13351  			 * |    i.k.j |
13352  			 * |....j i.k.| or  |.k..j i...|
13353  			 */
13354  		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13355  		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13356  		i = j;
13357  	}
13358  }
13359  
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13360  static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13361  {
13362  	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13363  
13364  	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13365  				      sizeof(reason));
13366  }
13367  
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13368  static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13369  {
13370  	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13371  
13372  	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13373  					     &token, offset, sizeof(token));
13374  }
13375  
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13376  static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13377  {
13378  	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13379  	u32 val;
13380  
13381  	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13382  					 &val, offset, sizeof(val)))
13383  		return false;
13384  
13385  	return !val;
13386  }
13387  
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13388  static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13389  {
13390  
13391  	if (!kvm_pv_async_pf_enabled(vcpu))
13392  		return false;
13393  
13394  	if (!vcpu->arch.apf.send_always &&
13395  	    (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13396  		return false;
13397  
13398  	if (is_guest_mode(vcpu)) {
13399  		/*
13400  		 * L1 needs to opt into the special #PF vmexits that are
13401  		 * used to deliver async page faults.
13402  		 */
13403  		return vcpu->arch.apf.delivery_as_pf_vmexit;
13404  	} else {
13405  		/*
13406  		 * Play it safe in case the guest temporarily disables paging.
13407  		 * The real mode IDT in particular is unlikely to have a #PF
13408  		 * exception setup.
13409  		 */
13410  		return is_paging(vcpu);
13411  	}
13412  }
13413  
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13414  bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13415  {
13416  	if (unlikely(!lapic_in_kernel(vcpu) ||
13417  		     kvm_event_needs_reinjection(vcpu) ||
13418  		     kvm_is_exception_pending(vcpu)))
13419  		return false;
13420  
13421  	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13422  		return false;
13423  
13424  	/*
13425  	 * If interrupts are off we cannot even use an artificial
13426  	 * halt state.
13427  	 */
13428  	return kvm_arch_interrupt_allowed(vcpu);
13429  }
13430  
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13431  bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13432  				     struct kvm_async_pf *work)
13433  {
13434  	struct x86_exception fault;
13435  
13436  	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13437  	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13438  
13439  	if (kvm_can_deliver_async_pf(vcpu) &&
13440  	    !apf_put_user_notpresent(vcpu)) {
13441  		fault.vector = PF_VECTOR;
13442  		fault.error_code_valid = true;
13443  		fault.error_code = 0;
13444  		fault.nested_page_fault = false;
13445  		fault.address = work->arch.token;
13446  		fault.async_page_fault = true;
13447  		kvm_inject_page_fault(vcpu, &fault);
13448  		return true;
13449  	} else {
13450  		/*
13451  		 * It is not possible to deliver a paravirtualized asynchronous
13452  		 * page fault, but putting the guest in an artificial halt state
13453  		 * can be beneficial nevertheless: if an interrupt arrives, we
13454  		 * can deliver it timely and perhaps the guest will schedule
13455  		 * another process.  When the instruction that triggered a page
13456  		 * fault is retried, hopefully the page will be ready in the host.
13457  		 */
13458  		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13459  		return false;
13460  	}
13461  }
13462  
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13463  void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13464  				 struct kvm_async_pf *work)
13465  {
13466  	struct kvm_lapic_irq irq = {
13467  		.delivery_mode = APIC_DM_FIXED,
13468  		.vector = vcpu->arch.apf.vec
13469  	};
13470  
13471  	if (work->wakeup_all)
13472  		work->arch.token = ~0; /* broadcast wakeup */
13473  	else
13474  		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13475  	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13476  
13477  	if ((work->wakeup_all || work->notpresent_injected) &&
13478  	    kvm_pv_async_pf_enabled(vcpu) &&
13479  	    !apf_put_user_ready(vcpu, work->arch.token)) {
13480  		vcpu->arch.apf.pageready_pending = true;
13481  		kvm_apic_set_irq(vcpu, &irq, NULL);
13482  	}
13483  
13484  	vcpu->arch.apf.halted = false;
13485  	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13486  }
13487  
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13488  void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13489  {
13490  	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13491  	if (!vcpu->arch.apf.pageready_pending)
13492  		kvm_vcpu_kick(vcpu);
13493  }
13494  
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13495  bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13496  {
13497  	if (!kvm_pv_async_pf_enabled(vcpu))
13498  		return true;
13499  	else
13500  		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13501  }
13502  
kvm_arch_start_assignment(struct kvm * kvm)13503  void kvm_arch_start_assignment(struct kvm *kvm)
13504  {
13505  	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13506  		kvm_x86_call(pi_start_assignment)(kvm);
13507  }
13508  EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13509  
kvm_arch_end_assignment(struct kvm * kvm)13510  void kvm_arch_end_assignment(struct kvm *kvm)
13511  {
13512  	atomic_dec(&kvm->arch.assigned_device_count);
13513  }
13514  EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13515  
kvm_arch_has_assigned_device(struct kvm * kvm)13516  bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13517  {
13518  	return raw_atomic_read(&kvm->arch.assigned_device_count);
13519  }
13520  EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13521  
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13522  static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13523  {
13524  	/*
13525  	 * Non-coherent DMA assignment and de-assignment may affect whether or
13526  	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13527  	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13528  	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13529  	 * with the correct "ignore guest PAT" setting are created.
13530  	 */
13531  	if (kvm_mmu_may_ignore_guest_pat())
13532  		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13533  }
13534  
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13535  void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13536  {
13537  	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13538  		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13539  }
13540  EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13541  
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13542  void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13543  {
13544  	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13545  		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13546  }
13547  EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13548  
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13549  bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13550  {
13551  	return atomic_read(&kvm->arch.noncoherent_dma_count);
13552  }
13553  EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13554  
kvm_arch_has_irq_bypass(void)13555  bool kvm_arch_has_irq_bypass(void)
13556  {
13557  	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13558  }
13559  
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13560  int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13561  				      struct irq_bypass_producer *prod)
13562  {
13563  	struct kvm_kernel_irqfd *irqfd =
13564  		container_of(cons, struct kvm_kernel_irqfd, consumer);
13565  	int ret;
13566  
13567  	irqfd->producer = prod;
13568  	kvm_arch_start_assignment(irqfd->kvm);
13569  	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13570  					   prod->irq, irqfd->gsi, 1);
13571  	if (ret)
13572  		kvm_arch_end_assignment(irqfd->kvm);
13573  
13574  	return ret;
13575  }
13576  
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13577  void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13578  				      struct irq_bypass_producer *prod)
13579  {
13580  	int ret;
13581  	struct kvm_kernel_irqfd *irqfd =
13582  		container_of(cons, struct kvm_kernel_irqfd, consumer);
13583  
13584  	WARN_ON(irqfd->producer != prod);
13585  	irqfd->producer = NULL;
13586  
13587  	/*
13588  	 * When producer of consumer is unregistered, we change back to
13589  	 * remapped mode, so we can re-use the current implementation
13590  	 * when the irq is masked/disabled or the consumer side (KVM
13591  	 * int this case doesn't want to receive the interrupts.
13592  	*/
13593  	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13594  					   prod->irq, irqfd->gsi, 0);
13595  	if (ret)
13596  		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13597  		       " fails: %d\n", irqfd->consumer.token, ret);
13598  
13599  	kvm_arch_end_assignment(irqfd->kvm);
13600  }
13601  
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13602  int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13603  				   uint32_t guest_irq, bool set)
13604  {
13605  	return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13606  }
13607  
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13608  bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13609  				  struct kvm_kernel_irq_routing_entry *new)
13610  {
13611  	if (new->type != KVM_IRQ_ROUTING_MSI)
13612  		return true;
13613  
13614  	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13615  }
13616  
kvm_vector_hashing_enabled(void)13617  bool kvm_vector_hashing_enabled(void)
13618  {
13619  	return vector_hashing;
13620  }
13621  
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13622  bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13623  {
13624  	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13625  }
13626  EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13627  
13628  #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13629  int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13630  {
13631  	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13632  }
13633  #endif
13634  
13635  #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13636  void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13637  {
13638  	kvm_x86_call(gmem_invalidate)(start, end);
13639  }
13640  #endif
13641  
kvm_spec_ctrl_test_value(u64 value)13642  int kvm_spec_ctrl_test_value(u64 value)
13643  {
13644  	/*
13645  	 * test that setting IA32_SPEC_CTRL to given value
13646  	 * is allowed by the host processor
13647  	 */
13648  
13649  	u64 saved_value;
13650  	unsigned long flags;
13651  	int ret = 0;
13652  
13653  	local_irq_save(flags);
13654  
13655  	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13656  		ret = 1;
13657  	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13658  		ret = 1;
13659  	else
13660  		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13661  
13662  	local_irq_restore(flags);
13663  
13664  	return ret;
13665  }
13666  EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13667  
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13668  void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13669  {
13670  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13671  	struct x86_exception fault;
13672  	u64 access = error_code &
13673  		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13674  
13675  	if (!(error_code & PFERR_PRESENT_MASK) ||
13676  	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13677  		/*
13678  		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13679  		 * tables probably do not match the TLB.  Just proceed
13680  		 * with the error code that the processor gave.
13681  		 */
13682  		fault.vector = PF_VECTOR;
13683  		fault.error_code_valid = true;
13684  		fault.error_code = error_code;
13685  		fault.nested_page_fault = false;
13686  		fault.address = gva;
13687  		fault.async_page_fault = false;
13688  	}
13689  	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13690  }
13691  EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13692  
13693  /*
13694   * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13695   * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13696   * indicates whether exit to userspace is needed.
13697   */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13698  int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13699  			      struct x86_exception *e)
13700  {
13701  	if (r == X86EMUL_PROPAGATE_FAULT) {
13702  		if (KVM_BUG_ON(!e, vcpu->kvm))
13703  			return -EIO;
13704  
13705  		kvm_inject_emulated_page_fault(vcpu, e);
13706  		return 1;
13707  	}
13708  
13709  	/*
13710  	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13711  	 * while handling a VMX instruction KVM could've handled the request
13712  	 * correctly by exiting to userspace and performing I/O but there
13713  	 * doesn't seem to be a real use-case behind such requests, just return
13714  	 * KVM_EXIT_INTERNAL_ERROR for now.
13715  	 */
13716  	kvm_prepare_emulation_failure_exit(vcpu);
13717  
13718  	return 0;
13719  }
13720  EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13721  
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13722  int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13723  {
13724  	bool pcid_enabled;
13725  	struct x86_exception e;
13726  	struct {
13727  		u64 pcid;
13728  		u64 gla;
13729  	} operand;
13730  	int r;
13731  
13732  	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13733  	if (r != X86EMUL_CONTINUE)
13734  		return kvm_handle_memory_failure(vcpu, r, &e);
13735  
13736  	if (operand.pcid >> 12 != 0) {
13737  		kvm_inject_gp(vcpu, 0);
13738  		return 1;
13739  	}
13740  
13741  	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13742  
13743  	switch (type) {
13744  	case INVPCID_TYPE_INDIV_ADDR:
13745  		/*
13746  		 * LAM doesn't apply to addresses that are inputs to TLB
13747  		 * invalidation.
13748  		 */
13749  		if ((!pcid_enabled && (operand.pcid != 0)) ||
13750  		    is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13751  			kvm_inject_gp(vcpu, 0);
13752  			return 1;
13753  		}
13754  		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13755  		return kvm_skip_emulated_instruction(vcpu);
13756  
13757  	case INVPCID_TYPE_SINGLE_CTXT:
13758  		if (!pcid_enabled && (operand.pcid != 0)) {
13759  			kvm_inject_gp(vcpu, 0);
13760  			return 1;
13761  		}
13762  
13763  		kvm_invalidate_pcid(vcpu, operand.pcid);
13764  		return kvm_skip_emulated_instruction(vcpu);
13765  
13766  	case INVPCID_TYPE_ALL_NON_GLOBAL:
13767  		/*
13768  		 * Currently, KVM doesn't mark global entries in the shadow
13769  		 * page tables, so a non-global flush just degenerates to a
13770  		 * global flush. If needed, we could optimize this later by
13771  		 * keeping track of global entries in shadow page tables.
13772  		 */
13773  
13774  		fallthrough;
13775  	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13776  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13777  		return kvm_skip_emulated_instruction(vcpu);
13778  
13779  	default:
13780  		kvm_inject_gp(vcpu, 0);
13781  		return 1;
13782  	}
13783  }
13784  EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13785  
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13786  static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13787  {
13788  	struct kvm_run *run = vcpu->run;
13789  	struct kvm_mmio_fragment *frag;
13790  	unsigned int len;
13791  
13792  	BUG_ON(!vcpu->mmio_needed);
13793  
13794  	/* Complete previous fragment */
13795  	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13796  	len = min(8u, frag->len);
13797  	if (!vcpu->mmio_is_write)
13798  		memcpy(frag->data, run->mmio.data, len);
13799  
13800  	if (frag->len <= 8) {
13801  		/* Switch to the next fragment. */
13802  		frag++;
13803  		vcpu->mmio_cur_fragment++;
13804  	} else {
13805  		/* Go forward to the next mmio piece. */
13806  		frag->data += len;
13807  		frag->gpa += len;
13808  		frag->len -= len;
13809  	}
13810  
13811  	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13812  		vcpu->mmio_needed = 0;
13813  
13814  		// VMG change, at this point, we're always done
13815  		// RIP has already been advanced
13816  		return 1;
13817  	}
13818  
13819  	// More MMIO is needed
13820  	run->mmio.phys_addr = frag->gpa;
13821  	run->mmio.len = min(8u, frag->len);
13822  	run->mmio.is_write = vcpu->mmio_is_write;
13823  	if (run->mmio.is_write)
13824  		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13825  	run->exit_reason = KVM_EXIT_MMIO;
13826  
13827  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13828  
13829  	return 0;
13830  }
13831  
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13832  int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13833  			  void *data)
13834  {
13835  	int handled;
13836  	struct kvm_mmio_fragment *frag;
13837  
13838  	if (!data)
13839  		return -EINVAL;
13840  
13841  	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13842  	if (handled == bytes)
13843  		return 1;
13844  
13845  	bytes -= handled;
13846  	gpa += handled;
13847  	data += handled;
13848  
13849  	/*TODO: Check if need to increment number of frags */
13850  	frag = vcpu->mmio_fragments;
13851  	vcpu->mmio_nr_fragments = 1;
13852  	frag->len = bytes;
13853  	frag->gpa = gpa;
13854  	frag->data = data;
13855  
13856  	vcpu->mmio_needed = 1;
13857  	vcpu->mmio_cur_fragment = 0;
13858  
13859  	vcpu->run->mmio.phys_addr = gpa;
13860  	vcpu->run->mmio.len = min(8u, frag->len);
13861  	vcpu->run->mmio.is_write = 1;
13862  	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13863  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13864  
13865  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13866  
13867  	return 0;
13868  }
13869  EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13870  
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13871  int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13872  			 void *data)
13873  {
13874  	int handled;
13875  	struct kvm_mmio_fragment *frag;
13876  
13877  	if (!data)
13878  		return -EINVAL;
13879  
13880  	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13881  	if (handled == bytes)
13882  		return 1;
13883  
13884  	bytes -= handled;
13885  	gpa += handled;
13886  	data += handled;
13887  
13888  	/*TODO: Check if need to increment number of frags */
13889  	frag = vcpu->mmio_fragments;
13890  	vcpu->mmio_nr_fragments = 1;
13891  	frag->len = bytes;
13892  	frag->gpa = gpa;
13893  	frag->data = data;
13894  
13895  	vcpu->mmio_needed = 1;
13896  	vcpu->mmio_cur_fragment = 0;
13897  
13898  	vcpu->run->mmio.phys_addr = gpa;
13899  	vcpu->run->mmio.len = min(8u, frag->len);
13900  	vcpu->run->mmio.is_write = 0;
13901  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13902  
13903  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13904  
13905  	return 0;
13906  }
13907  EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13908  
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13909  static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13910  {
13911  	vcpu->arch.sev_pio_count -= count;
13912  	vcpu->arch.sev_pio_data += count * size;
13913  }
13914  
13915  static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13916  			   unsigned int port);
13917  
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13918  static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13919  {
13920  	int size = vcpu->arch.pio.size;
13921  	int port = vcpu->arch.pio.port;
13922  
13923  	vcpu->arch.pio.count = 0;
13924  	if (vcpu->arch.sev_pio_count)
13925  		return kvm_sev_es_outs(vcpu, size, port);
13926  	return 1;
13927  }
13928  
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13929  static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13930  			   unsigned int port)
13931  {
13932  	for (;;) {
13933  		unsigned int count =
13934  			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13935  		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13936  
13937  		/* memcpy done already by emulator_pio_out.  */
13938  		advance_sev_es_emulated_pio(vcpu, count, size);
13939  		if (!ret)
13940  			break;
13941  
13942  		/* Emulation done by the kernel.  */
13943  		if (!vcpu->arch.sev_pio_count)
13944  			return 1;
13945  	}
13946  
13947  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13948  	return 0;
13949  }
13950  
13951  static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13952  			  unsigned int port);
13953  
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13954  static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13955  {
13956  	unsigned count = vcpu->arch.pio.count;
13957  	int size = vcpu->arch.pio.size;
13958  	int port = vcpu->arch.pio.port;
13959  
13960  	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13961  	advance_sev_es_emulated_pio(vcpu, count, size);
13962  	if (vcpu->arch.sev_pio_count)
13963  		return kvm_sev_es_ins(vcpu, size, port);
13964  	return 1;
13965  }
13966  
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13967  static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13968  			  unsigned int port)
13969  {
13970  	for (;;) {
13971  		unsigned int count =
13972  			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13973  		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13974  			break;
13975  
13976  		/* Emulation done by the kernel.  */
13977  		advance_sev_es_emulated_pio(vcpu, count, size);
13978  		if (!vcpu->arch.sev_pio_count)
13979  			return 1;
13980  	}
13981  
13982  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13983  	return 0;
13984  }
13985  
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13986  int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13987  			 unsigned int port, void *data,  unsigned int count,
13988  			 int in)
13989  {
13990  	vcpu->arch.sev_pio_data = data;
13991  	vcpu->arch.sev_pio_count = count;
13992  	return in ? kvm_sev_es_ins(vcpu, size, port)
13993  		  : kvm_sev_es_outs(vcpu, size, port);
13994  }
13995  EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13996  
13997  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13998  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13999  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14000  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14001  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14002  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14003  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14004  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14005  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14006  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14007  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14008  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14009  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14010  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14011  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14012  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14013  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14014  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14015  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14016  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14017  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14018  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14019  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14020  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14021  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14022  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14023  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14024  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14025  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14026  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14027  
kvm_x86_init(void)14028  static int __init kvm_x86_init(void)
14029  {
14030  	kvm_init_xstate_sizes();
14031  
14032  	kvm_mmu_x86_module_init();
14033  	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14034  	return 0;
14035  }
14036  module_init(kvm_x86_init);
14037  
kvm_x86_exit(void)14038  static void __exit kvm_x86_exit(void)
14039  {
14040  	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14041  }
14042  module_exit(kvm_x86_exit);
14043