1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 struct kvm_host_values kvm_host __read_mostly; 104 EXPORT_SYMBOL_GPL(kvm_host); 105 106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 107 108 #define emul_to_vcpu(ctxt) \ 109 ((struct kvm_vcpu *)(ctxt)->vcpu) 110 111 /* EFER defaults: 112 * - enable syscall per default because its emulated by KVM 113 * - enable LME and LMA per default on 64 bit KVM 114 */ 115 #ifdef CONFIG_X86_64 116 static 117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 118 #else 119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 120 #endif 121 122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 123 124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 125 126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 127 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 128 129 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 130 static void process_nmi(struct kvm_vcpu *vcpu); 131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 132 static void store_regs(struct kvm_vcpu *vcpu); 133 static int sync_regs(struct kvm_vcpu *vcpu); 134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 135 136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 138 139 static DEFINE_MUTEX(vendor_module_lock); 140 struct kvm_x86_ops kvm_x86_ops __read_mostly; 141 142 #define KVM_X86_OP(func) \ 143 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 144 *(((struct kvm_x86_ops *)0)->func)); 145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 147 #include <asm/kvm-x86-ops.h> 148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 150 151 static bool __read_mostly ignore_msrs = 0; 152 module_param(ignore_msrs, bool, 0644); 153 154 bool __read_mostly report_ignored_msrs = true; 155 module_param(report_ignored_msrs, bool, 0644); 156 EXPORT_SYMBOL_GPL(report_ignored_msrs); 157 158 unsigned int min_timer_period_us = 200; 159 module_param(min_timer_period_us, uint, 0644); 160 161 static bool __read_mostly kvmclock_periodic_sync = true; 162 module_param(kvmclock_periodic_sync, bool, 0444); 163 164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 165 static u32 __read_mostly tsc_tolerance_ppm = 250; 166 module_param(tsc_tolerance_ppm, uint, 0644); 167 168 static bool __read_mostly vector_hashing = true; 169 module_param(vector_hashing, bool, 0444); 170 171 bool __read_mostly enable_vmware_backdoor = false; 172 module_param(enable_vmware_backdoor, bool, 0444); 173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 174 175 /* 176 * Flags to manipulate forced emulation behavior (any non-zero value will 177 * enable forced emulation). 178 */ 179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 180 static int __read_mostly force_emulation_prefix; 181 module_param(force_emulation_prefix, int, 0644); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, 0644); 185 186 /* Enable/disable PMU virtualization */ 187 bool __read_mostly enable_pmu = true; 188 EXPORT_SYMBOL_GPL(enable_pmu); 189 module_param(enable_pmu, bool, 0444); 190 191 bool __read_mostly eager_page_split = true; 192 module_param(eager_page_split, bool, 0644); 193 194 /* Enable/disable SMT_RSB bug mitigation */ 195 static bool __read_mostly mitigate_smt_rsb; 196 module_param(mitigate_smt_rsb, bool, 0444); 197 198 /* 199 * Restoring the host value for MSRs that are only consumed when running in 200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 201 * returns to userspace, i.e. the kernel can run with the guest's value. 202 */ 203 #define KVM_MAX_NR_USER_RETURN_MSRS 16 204 205 struct kvm_user_return_msrs { 206 struct user_return_notifier urn; 207 bool registered; 208 struct kvm_user_return_msr_values { 209 u64 host; 210 u64 curr; 211 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 212 }; 213 214 u32 __read_mostly kvm_nr_uret_msrs; 215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 217 static struct kvm_user_return_msrs __percpu *user_return_msrs; 218 219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 223 224 bool __read_mostly allow_smaller_maxphyaddr = 0; 225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 226 227 bool __read_mostly enable_apicv = true; 228 EXPORT_SYMBOL_GPL(enable_apicv); 229 230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 231 KVM_GENERIC_VM_STATS(), 232 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 233 STATS_DESC_COUNTER(VM, mmu_pte_write), 234 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 235 STATS_DESC_COUNTER(VM, mmu_flooded), 236 STATS_DESC_COUNTER(VM, mmu_recycled), 237 STATS_DESC_COUNTER(VM, mmu_cache_miss), 238 STATS_DESC_ICOUNTER(VM, mmu_unsync), 239 STATS_DESC_ICOUNTER(VM, pages_4k), 240 STATS_DESC_ICOUNTER(VM, pages_2m), 241 STATS_DESC_ICOUNTER(VM, pages_1g), 242 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 243 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 244 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 245 }; 246 247 const struct kvm_stats_header kvm_vm_stats_header = { 248 .name_size = KVM_STATS_NAME_SIZE, 249 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 250 .id_offset = sizeof(struct kvm_stats_header), 251 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 252 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 253 sizeof(kvm_vm_stats_desc), 254 }; 255 256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 257 KVM_GENERIC_VCPU_STATS(), 258 STATS_DESC_COUNTER(VCPU, pf_taken), 259 STATS_DESC_COUNTER(VCPU, pf_fixed), 260 STATS_DESC_COUNTER(VCPU, pf_emulate), 261 STATS_DESC_COUNTER(VCPU, pf_spurious), 262 STATS_DESC_COUNTER(VCPU, pf_fast), 263 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 264 STATS_DESC_COUNTER(VCPU, pf_guest), 265 STATS_DESC_COUNTER(VCPU, tlb_flush), 266 STATS_DESC_COUNTER(VCPU, invlpg), 267 STATS_DESC_COUNTER(VCPU, exits), 268 STATS_DESC_COUNTER(VCPU, io_exits), 269 STATS_DESC_COUNTER(VCPU, mmio_exits), 270 STATS_DESC_COUNTER(VCPU, signal_exits), 271 STATS_DESC_COUNTER(VCPU, irq_window_exits), 272 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 273 STATS_DESC_COUNTER(VCPU, l1d_flush), 274 STATS_DESC_COUNTER(VCPU, halt_exits), 275 STATS_DESC_COUNTER(VCPU, request_irq_exits), 276 STATS_DESC_COUNTER(VCPU, irq_exits), 277 STATS_DESC_COUNTER(VCPU, host_state_reload), 278 STATS_DESC_COUNTER(VCPU, fpu_reload), 279 STATS_DESC_COUNTER(VCPU, insn_emulation), 280 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 281 STATS_DESC_COUNTER(VCPU, hypercalls), 282 STATS_DESC_COUNTER(VCPU, irq_injections), 283 STATS_DESC_COUNTER(VCPU, nmi_injections), 284 STATS_DESC_COUNTER(VCPU, req_event), 285 STATS_DESC_COUNTER(VCPU, nested_run), 286 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 287 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 288 STATS_DESC_COUNTER(VCPU, preemption_reported), 289 STATS_DESC_COUNTER(VCPU, preemption_other), 290 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 291 STATS_DESC_COUNTER(VCPU, notify_window_exits), 292 }; 293 294 const struct kvm_stats_header kvm_vcpu_stats_header = { 295 .name_size = KVM_STATS_NAME_SIZE, 296 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 297 .id_offset = sizeof(struct kvm_stats_header), 298 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 299 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 300 sizeof(kvm_vcpu_stats_desc), 301 }; 302 303 static struct kmem_cache *x86_emulator_cache; 304 305 /* 306 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 307 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 308 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 309 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 310 * MSRs that KVM emulates without strictly requiring host support. 311 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 312 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 313 * msrs_to_save and emulated_msrs. 314 */ 315 316 static const u32 msrs_to_save_base[] = { 317 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 318 MSR_STAR, 319 #ifdef CONFIG_X86_64 320 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 321 #endif 322 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 323 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 324 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 325 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 326 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 327 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 328 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 329 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 330 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 331 MSR_IA32_UMWAIT_CONTROL, 332 333 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 334 }; 335 336 static const u32 msrs_to_save_pmu[] = { 337 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 338 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 339 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 340 MSR_CORE_PERF_GLOBAL_CTRL, 341 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 342 343 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 344 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 345 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 346 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 347 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 348 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 349 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 350 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 351 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 352 353 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 354 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 355 356 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 357 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 358 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 359 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 360 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 361 362 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 363 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 364 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 365 }; 366 367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 368 ARRAY_SIZE(msrs_to_save_pmu)]; 369 static unsigned num_msrs_to_save; 370 371 static const u32 emulated_msrs_all[] = { 372 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 373 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 374 375 #ifdef CONFIG_KVM_HYPERV 376 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 377 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 378 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 379 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 380 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 381 HV_X64_MSR_RESET, 382 HV_X64_MSR_VP_INDEX, 383 HV_X64_MSR_VP_RUNTIME, 384 HV_X64_MSR_SCONTROL, 385 HV_X64_MSR_STIMER0_CONFIG, 386 HV_X64_MSR_VP_ASSIST_PAGE, 387 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 388 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 389 HV_X64_MSR_SYNDBG_OPTIONS, 390 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 391 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 392 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 393 #endif 394 395 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 396 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 397 398 MSR_IA32_TSC_ADJUST, 399 MSR_IA32_TSC_DEADLINE, 400 MSR_IA32_ARCH_CAPABILITIES, 401 MSR_IA32_PERF_CAPABILITIES, 402 MSR_IA32_MISC_ENABLE, 403 MSR_IA32_MCG_STATUS, 404 MSR_IA32_MCG_CTL, 405 MSR_IA32_MCG_EXT_CTL, 406 MSR_IA32_SMBASE, 407 MSR_SMI_COUNT, 408 MSR_PLATFORM_INFO, 409 MSR_MISC_FEATURES_ENABLES, 410 MSR_AMD64_VIRT_SPEC_CTRL, 411 MSR_AMD64_TSC_RATIO, 412 MSR_IA32_POWER_CTL, 413 MSR_IA32_UCODE_REV, 414 415 /* 416 * KVM always supports the "true" VMX control MSRs, even if the host 417 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 418 * doesn't strictly require them to exist in the host (ignoring that 419 * KVM would refuse to load in the first place if the core set of MSRs 420 * aren't supported). 421 */ 422 MSR_IA32_VMX_BASIC, 423 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 424 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 425 MSR_IA32_VMX_TRUE_EXIT_CTLS, 426 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 427 MSR_IA32_VMX_MISC, 428 MSR_IA32_VMX_CR0_FIXED0, 429 MSR_IA32_VMX_CR4_FIXED0, 430 MSR_IA32_VMX_VMCS_ENUM, 431 MSR_IA32_VMX_PROCBASED_CTLS2, 432 MSR_IA32_VMX_EPT_VPID_CAP, 433 MSR_IA32_VMX_VMFUNC, 434 435 MSR_K7_HWCR, 436 MSR_KVM_POLL_CONTROL, 437 }; 438 439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 440 static unsigned num_emulated_msrs; 441 442 /* 443 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 444 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 445 * feature MSRs, but are handled separately to allow expedited lookups. 446 */ 447 static const u32 msr_based_features_all_except_vmx[] = { 448 MSR_AMD64_DE_CFG, 449 MSR_IA32_UCODE_REV, 450 MSR_IA32_ARCH_CAPABILITIES, 451 MSR_IA32_PERF_CAPABILITIES, 452 MSR_PLATFORM_INFO, 453 }; 454 455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 456 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 457 static unsigned int num_msr_based_features; 458 459 /* 460 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 461 * patch, are immutable once the vCPU model is defined. 462 */ kvm_is_immutable_feature_msr(u32 msr)463 static bool kvm_is_immutable_feature_msr(u32 msr) 464 { 465 int i; 466 467 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 468 return true; 469 470 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 471 if (msr == msr_based_features_all_except_vmx[i]) 472 return msr != MSR_IA32_UCODE_REV; 473 } 474 475 return false; 476 } 477 kvm_is_advertised_msr(u32 msr_index)478 static bool kvm_is_advertised_msr(u32 msr_index) 479 { 480 unsigned int i; 481 482 for (i = 0; i < num_msrs_to_save; i++) { 483 if (msrs_to_save[i] == msr_index) 484 return true; 485 } 486 487 for (i = 0; i < num_emulated_msrs; i++) { 488 if (emulated_msrs[i] == msr_index) 489 return true; 490 } 491 492 return false; 493 } 494 495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 496 bool host_initiated); 497 kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 499 u64 *data, bool host_initiated, 500 enum kvm_msr_access rw, 501 msr_access_t msr_access_fn) 502 { 503 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 504 int ret; 505 506 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 507 508 /* 509 * Zero the data on read failures to avoid leaking stack data to the 510 * guest and/or userspace, e.g. if the failure is ignored below. 511 */ 512 ret = msr_access_fn(vcpu, msr, data, host_initiated); 513 if (ret && rw == MSR_TYPE_R) 514 *data = 0; 515 516 if (ret != KVM_MSR_RET_UNSUPPORTED) 517 return ret; 518 519 /* 520 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 521 * advertises to userspace, even if an MSR isn't fully supported. 522 * Simply check that @data is '0', which covers both the write '0' case 523 * and all reads (in which case @data is zeroed on failure; see above). 524 */ 525 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 526 return 0; 527 528 if (!ignore_msrs) { 529 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 530 op, msr, *data); 531 return ret; 532 } 533 534 if (report_ignored_msrs) 535 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 536 537 return 0; 538 } 539 kvm_alloc_emulator_cache(void)540 static struct kmem_cache *kvm_alloc_emulator_cache(void) 541 { 542 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 543 unsigned int size = sizeof(struct x86_emulate_ctxt); 544 545 return kmem_cache_create_usercopy("x86_emulator", size, 546 __alignof__(struct x86_emulate_ctxt), 547 SLAB_ACCOUNT, useroffset, 548 size - useroffset, NULL); 549 } 550 551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 552 kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 554 { 555 int i; 556 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 557 vcpu->arch.apf.gfns[i] = ~0; 558 } 559 kvm_on_user_return(struct user_return_notifier * urn)560 static void kvm_on_user_return(struct user_return_notifier *urn) 561 { 562 unsigned slot; 563 struct kvm_user_return_msrs *msrs 564 = container_of(urn, struct kvm_user_return_msrs, urn); 565 struct kvm_user_return_msr_values *values; 566 unsigned long flags; 567 568 /* 569 * Disabling irqs at this point since the following code could be 570 * interrupted and executed through kvm_arch_disable_virtualization_cpu() 571 */ 572 local_irq_save(flags); 573 if (msrs->registered) { 574 msrs->registered = false; 575 user_return_notifier_unregister(urn); 576 } 577 local_irq_restore(flags); 578 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 579 values = &msrs->values[slot]; 580 if (values->host != values->curr) { 581 wrmsrl(kvm_uret_msrs_list[slot], values->host); 582 values->curr = values->host; 583 } 584 } 585 } 586 kvm_probe_user_return_msr(u32 msr)587 static int kvm_probe_user_return_msr(u32 msr) 588 { 589 u64 val; 590 int ret; 591 592 preempt_disable(); 593 ret = rdmsrl_safe(msr, &val); 594 if (ret) 595 goto out; 596 ret = wrmsrl_safe(msr, val); 597 out: 598 preempt_enable(); 599 return ret; 600 } 601 kvm_add_user_return_msr(u32 msr)602 int kvm_add_user_return_msr(u32 msr) 603 { 604 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 605 606 if (kvm_probe_user_return_msr(msr)) 607 return -1; 608 609 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 610 return kvm_nr_uret_msrs++; 611 } 612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 613 kvm_find_user_return_msr(u32 msr)614 int kvm_find_user_return_msr(u32 msr) 615 { 616 int i; 617 618 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 619 if (kvm_uret_msrs_list[i] == msr) 620 return i; 621 } 622 return -1; 623 } 624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 625 kvm_user_return_msr_cpu_online(void)626 static void kvm_user_return_msr_cpu_online(void) 627 { 628 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 629 u64 value; 630 int i; 631 632 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 633 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 634 msrs->values[i].host = value; 635 msrs->values[i].curr = value; 636 } 637 } 638 kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 640 { 641 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 642 int err; 643 644 value = (value & mask) | (msrs->values[slot].host & ~mask); 645 if (value == msrs->values[slot].curr) 646 return 0; 647 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 648 if (err) 649 return 1; 650 651 msrs->values[slot].curr = value; 652 if (!msrs->registered) { 653 msrs->urn.on_user_return = kvm_on_user_return; 654 user_return_notifier_register(&msrs->urn); 655 msrs->registered = true; 656 } 657 return 0; 658 } 659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 660 drop_user_return_notifiers(void)661 static void drop_user_return_notifiers(void) 662 { 663 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 664 665 if (msrs->registered) 666 kvm_on_user_return(&msrs->urn); 667 } 668 669 /* 670 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 671 * 672 * Hardware virtualization extension instructions may fault if a reboot turns 673 * off virtualization while processes are running. Usually after catching the 674 * fault we just panic; during reboot instead the instruction is ignored. 675 */ kvm_spurious_fault(void)676 noinstr void kvm_spurious_fault(void) 677 { 678 /* Fault while not rebooting. We want the trace. */ 679 BUG_ON(!kvm_rebooting); 680 } 681 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 682 683 #define EXCPT_BENIGN 0 684 #define EXCPT_CONTRIBUTORY 1 685 #define EXCPT_PF 2 686 exception_class(int vector)687 static int exception_class(int vector) 688 { 689 switch (vector) { 690 case PF_VECTOR: 691 return EXCPT_PF; 692 case DE_VECTOR: 693 case TS_VECTOR: 694 case NP_VECTOR: 695 case SS_VECTOR: 696 case GP_VECTOR: 697 return EXCPT_CONTRIBUTORY; 698 default: 699 break; 700 } 701 return EXCPT_BENIGN; 702 } 703 704 #define EXCPT_FAULT 0 705 #define EXCPT_TRAP 1 706 #define EXCPT_ABORT 2 707 #define EXCPT_INTERRUPT 3 708 #define EXCPT_DB 4 709 exception_type(int vector)710 static int exception_type(int vector) 711 { 712 unsigned int mask; 713 714 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 715 return EXCPT_INTERRUPT; 716 717 mask = 1 << vector; 718 719 /* 720 * #DBs can be trap-like or fault-like, the caller must check other CPU 721 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 722 */ 723 if (mask & (1 << DB_VECTOR)) 724 return EXCPT_DB; 725 726 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 727 return EXCPT_TRAP; 728 729 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 730 return EXCPT_ABORT; 731 732 /* Reserved exceptions will result in fault */ 733 return EXCPT_FAULT; 734 } 735 kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 737 struct kvm_queued_exception *ex) 738 { 739 if (!ex->has_payload) 740 return; 741 742 switch (ex->vector) { 743 case DB_VECTOR: 744 /* 745 * "Certain debug exceptions may clear bit 0-3. The 746 * remaining contents of the DR6 register are never 747 * cleared by the processor". 748 */ 749 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 750 /* 751 * In order to reflect the #DB exception payload in guest 752 * dr6, three components need to be considered: active low 753 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 754 * DR6_BS and DR6_BT) 755 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 756 * In the target guest dr6: 757 * FIXED_1 bits should always be set. 758 * Active low bits should be cleared if 1-setting in payload. 759 * Active high bits should be set if 1-setting in payload. 760 * 761 * Note, the payload is compatible with the pending debug 762 * exceptions/exit qualification under VMX, that active_low bits 763 * are active high in payload. 764 * So they need to be flipped for DR6. 765 */ 766 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 767 vcpu->arch.dr6 |= ex->payload; 768 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 769 770 /* 771 * The #DB payload is defined as compatible with the 'pending 772 * debug exceptions' field under VMX, not DR6. While bit 12 is 773 * defined in the 'pending debug exceptions' field (enabled 774 * breakpoint), it is reserved and must be zero in DR6. 775 */ 776 vcpu->arch.dr6 &= ~BIT(12); 777 break; 778 case PF_VECTOR: 779 vcpu->arch.cr2 = ex->payload; 780 break; 781 } 782 783 ex->has_payload = false; 784 ex->payload = 0; 785 } 786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 787 kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 789 bool has_error_code, u32 error_code, 790 bool has_payload, unsigned long payload) 791 { 792 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 793 794 ex->vector = vector; 795 ex->injected = false; 796 ex->pending = true; 797 ex->has_error_code = has_error_code; 798 ex->error_code = error_code; 799 ex->has_payload = has_payload; 800 ex->payload = payload; 801 } 802 kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr, 804 bool has_error, u32 error_code, 805 bool has_payload, unsigned long payload) 806 { 807 u32 prev_nr; 808 int class1, class2; 809 810 kvm_make_request(KVM_REQ_EVENT, vcpu); 811 812 /* 813 * If the exception is destined for L2, morph it to a VM-Exit if L1 814 * wants to intercept the exception. 815 */ 816 if (is_guest_mode(vcpu) && 817 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 818 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 819 has_payload, payload); 820 return; 821 } 822 823 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 824 queue: 825 vcpu->arch.exception.pending = true; 826 vcpu->arch.exception.injected = false; 827 828 vcpu->arch.exception.has_error_code = has_error; 829 vcpu->arch.exception.vector = nr; 830 vcpu->arch.exception.error_code = error_code; 831 vcpu->arch.exception.has_payload = has_payload; 832 vcpu->arch.exception.payload = payload; 833 if (!is_guest_mode(vcpu)) 834 kvm_deliver_exception_payload(vcpu, 835 &vcpu->arch.exception); 836 return; 837 } 838 839 /* to check exception */ 840 prev_nr = vcpu->arch.exception.vector; 841 if (prev_nr == DF_VECTOR) { 842 /* triple fault -> shutdown */ 843 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 844 return; 845 } 846 class1 = exception_class(prev_nr); 847 class2 = exception_class(nr); 848 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 849 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 850 /* 851 * Synthesize #DF. Clear the previously injected or pending 852 * exception so as not to incorrectly trigger shutdown. 853 */ 854 vcpu->arch.exception.injected = false; 855 vcpu->arch.exception.pending = false; 856 857 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 858 } else { 859 /* replace previous exception with a new one in a hope 860 that instruction re-execution will regenerate lost 861 exception */ 862 goto queue; 863 } 864 } 865 kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)866 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 867 { 868 kvm_multiple_exception(vcpu, nr, false, 0, false, 0); 869 } 870 EXPORT_SYMBOL_GPL(kvm_queue_exception); 871 872 kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)873 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 874 unsigned long payload) 875 { 876 kvm_multiple_exception(vcpu, nr, false, 0, true, payload); 877 } 878 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 879 kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)880 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 881 u32 error_code, unsigned long payload) 882 { 883 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload); 884 } 885 kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)886 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 887 bool has_error_code, u32 error_code) 888 { 889 890 /* 891 * On VM-Entry, an exception can be pending if and only if event 892 * injection was blocked by nested_run_pending. In that case, however, 893 * vcpu_enter_guest() requests an immediate exit, and the guest 894 * shouldn't proceed far enough to need reinjection. 895 */ 896 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 897 898 /* 899 * Do not check for interception when injecting an event for L2, as the 900 * exception was checked for intercept when it was original queued, and 901 * re-checking is incorrect if _L1_ injected the exception, in which 902 * case it's exempt from interception. 903 */ 904 kvm_make_request(KVM_REQ_EVENT, vcpu); 905 906 vcpu->arch.exception.injected = true; 907 vcpu->arch.exception.has_error_code = has_error_code; 908 vcpu->arch.exception.vector = nr; 909 vcpu->arch.exception.error_code = error_code; 910 vcpu->arch.exception.has_payload = false; 911 vcpu->arch.exception.payload = 0; 912 } 913 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 914 kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)915 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 916 { 917 if (err) 918 kvm_inject_gp(vcpu, 0); 919 else 920 return kvm_skip_emulated_instruction(vcpu); 921 922 return 1; 923 } 924 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 925 complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)926 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 927 { 928 if (err) { 929 kvm_inject_gp(vcpu, 0); 930 return 1; 931 } 932 933 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 934 EMULTYPE_COMPLETE_USER_EXIT); 935 } 936 kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)937 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 938 { 939 ++vcpu->stat.pf_guest; 940 941 /* 942 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 943 * whether or not L1 wants to intercept "regular" #PF. 944 */ 945 if (is_guest_mode(vcpu) && fault->async_page_fault) 946 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 947 true, fault->error_code, 948 true, fault->address); 949 else 950 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 951 fault->address); 952 } 953 kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)954 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 955 struct x86_exception *fault) 956 { 957 struct kvm_mmu *fault_mmu; 958 WARN_ON_ONCE(fault->vector != PF_VECTOR); 959 960 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 961 vcpu->arch.walk_mmu; 962 963 /* 964 * Invalidate the TLB entry for the faulting address, if it exists, 965 * else the access will fault indefinitely (and to emulate hardware). 966 */ 967 if ((fault->error_code & PFERR_PRESENT_MASK) && 968 !(fault->error_code & PFERR_RSVD_MASK)) 969 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 970 KVM_MMU_ROOT_CURRENT); 971 972 fault_mmu->inject_page_fault(vcpu, fault); 973 } 974 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 975 kvm_inject_nmi(struct kvm_vcpu * vcpu)976 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 977 { 978 atomic_inc(&vcpu->arch.nmi_queued); 979 kvm_make_request(KVM_REQ_NMI, vcpu); 980 } 981 kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)982 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 983 { 984 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0); 985 } 986 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 987 988 /* 989 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 990 * a #GP and return false. 991 */ kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)992 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 993 { 994 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 995 return true; 996 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 997 return false; 998 } 999 kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1000 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1001 { 1002 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1003 return true; 1004 1005 kvm_queue_exception(vcpu, UD_VECTOR); 1006 return false; 1007 } 1008 EXPORT_SYMBOL_GPL(kvm_require_dr); 1009 pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1010 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1011 { 1012 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1013 } 1014 1015 /* 1016 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1017 */ load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1018 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1019 { 1020 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1021 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1022 gpa_t real_gpa; 1023 int i; 1024 int ret; 1025 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1026 1027 /* 1028 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1029 * to an L1 GPA. 1030 */ 1031 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1032 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1033 if (real_gpa == INVALID_GPA) 1034 return 0; 1035 1036 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1037 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1038 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1039 if (ret < 0) 1040 return 0; 1041 1042 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1043 if ((pdpte[i] & PT_PRESENT_MASK) && 1044 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1045 return 0; 1046 } 1047 } 1048 1049 /* 1050 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1051 * Shadow page roots need to be reconstructed instead. 1052 */ 1053 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1054 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1055 1056 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1057 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1058 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1059 vcpu->arch.pdptrs_from_userspace = false; 1060 1061 return 1; 1062 } 1063 EXPORT_SYMBOL_GPL(load_pdptrs); 1064 kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1065 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1066 { 1067 #ifdef CONFIG_X86_64 1068 if (cr0 & 0xffffffff00000000UL) 1069 return false; 1070 #endif 1071 1072 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1073 return false; 1074 1075 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1076 return false; 1077 1078 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1079 } 1080 kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1081 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1082 { 1083 /* 1084 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1085 * indirect shadow MMUs. If paging is disabled, no updates are needed 1086 * as there are no permission bits to emulate. If TDP is enabled, the 1087 * MMU's metadata needs to be updated, e.g. so that emulating guest 1088 * translations does the right thing, but there's no need to unload the 1089 * root as CR0.WP doesn't affect SPTEs. 1090 */ 1091 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1092 if (!(cr0 & X86_CR0_PG)) 1093 return; 1094 1095 if (tdp_enabled) { 1096 kvm_init_mmu(vcpu); 1097 return; 1098 } 1099 } 1100 1101 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1102 kvm_clear_async_pf_completion_queue(vcpu); 1103 kvm_async_pf_hash_reset(vcpu); 1104 1105 /* 1106 * Clearing CR0.PG is defined to flush the TLB from the guest's 1107 * perspective. 1108 */ 1109 if (!(cr0 & X86_CR0_PG)) 1110 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1111 } 1112 1113 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1114 kvm_mmu_reset_context(vcpu); 1115 } 1116 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 1117 kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1118 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1119 { 1120 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1121 1122 if (!kvm_is_valid_cr0(vcpu, cr0)) 1123 return 1; 1124 1125 cr0 |= X86_CR0_ET; 1126 1127 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1128 cr0 &= ~CR0_RESERVED_BITS; 1129 1130 #ifdef CONFIG_X86_64 1131 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1132 (cr0 & X86_CR0_PG)) { 1133 int cs_db, cs_l; 1134 1135 if (!is_pae(vcpu)) 1136 return 1; 1137 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1138 if (cs_l) 1139 return 1; 1140 } 1141 #endif 1142 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1143 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1144 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1145 return 1; 1146 1147 if (!(cr0 & X86_CR0_PG) && 1148 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1149 return 1; 1150 1151 kvm_x86_call(set_cr0)(vcpu, cr0); 1152 1153 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1154 1155 return 0; 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1158 kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1159 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1160 { 1161 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1162 } 1163 EXPORT_SYMBOL_GPL(kvm_lmsw); 1164 kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1165 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1166 { 1167 if (vcpu->arch.guest_state_protected) 1168 return; 1169 1170 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1171 1172 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1173 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1174 1175 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1176 vcpu->arch.ia32_xss != kvm_host.xss) 1177 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1178 } 1179 1180 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1181 vcpu->arch.pkru != vcpu->arch.host_pkru && 1182 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1183 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1184 wrpkru(vcpu->arch.pkru); 1185 } 1186 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1187 kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1188 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1189 { 1190 if (vcpu->arch.guest_state_protected) 1191 return; 1192 1193 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1194 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1195 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1196 vcpu->arch.pkru = rdpkru(); 1197 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1198 wrpkru(vcpu->arch.host_pkru); 1199 } 1200 1201 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1202 1203 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1204 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1205 1206 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1207 vcpu->arch.ia32_xss != kvm_host.xss) 1208 wrmsrl(MSR_IA32_XSS, kvm_host.xss); 1209 } 1210 1211 } 1212 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1213 1214 #ifdef CONFIG_X86_64 kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1215 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1216 { 1217 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1218 } 1219 #endif 1220 __kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1221 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1222 { 1223 u64 xcr0 = xcr; 1224 u64 old_xcr0 = vcpu->arch.xcr0; 1225 u64 valid_bits; 1226 1227 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1228 if (index != XCR_XFEATURE_ENABLED_MASK) 1229 return 1; 1230 if (!(xcr0 & XFEATURE_MASK_FP)) 1231 return 1; 1232 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1233 return 1; 1234 1235 /* 1236 * Do not allow the guest to set bits that we do not support 1237 * saving. However, xcr0 bit 0 is always set, even if the 1238 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1239 */ 1240 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1241 if (xcr0 & ~valid_bits) 1242 return 1; 1243 1244 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1245 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1246 return 1; 1247 1248 if (xcr0 & XFEATURE_MASK_AVX512) { 1249 if (!(xcr0 & XFEATURE_MASK_YMM)) 1250 return 1; 1251 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1252 return 1; 1253 } 1254 1255 if ((xcr0 & XFEATURE_MASK_XTILE) && 1256 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1257 return 1; 1258 1259 vcpu->arch.xcr0 = xcr0; 1260 1261 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1262 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1263 return 0; 1264 } 1265 kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1266 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1267 { 1268 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1269 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1270 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1271 kvm_inject_gp(vcpu, 0); 1272 return 1; 1273 } 1274 1275 return kvm_skip_emulated_instruction(vcpu); 1276 } 1277 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1278 kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1279 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1280 { 1281 return __kvm_is_valid_cr4(vcpu, cr4) && 1282 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1283 } 1284 kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1285 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1286 { 1287 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1288 kvm_mmu_reset_context(vcpu); 1289 1290 /* 1291 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1292 * according to the SDM; however, stale prev_roots could be reused 1293 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1294 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1295 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1296 * so fall through. 1297 */ 1298 if (!tdp_enabled && 1299 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1300 kvm_mmu_unload(vcpu); 1301 1302 /* 1303 * The TLB has to be flushed for all PCIDs if any of the following 1304 * (architecturally required) changes happen: 1305 * - CR4.PCIDE is changed from 1 to 0 1306 * - CR4.PGE is toggled 1307 * 1308 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1309 */ 1310 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1311 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1312 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1313 1314 /* 1315 * The TLB has to be flushed for the current PCID if any of the 1316 * following (architecturally required) changes happen: 1317 * - CR4.SMEP is changed from 0 to 1 1318 * - CR4.PAE is toggled 1319 */ 1320 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1321 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1322 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1323 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1326 kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1327 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1328 { 1329 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1330 1331 if (!kvm_is_valid_cr4(vcpu, cr4)) 1332 return 1; 1333 1334 if (is_long_mode(vcpu)) { 1335 if (!(cr4 & X86_CR4_PAE)) 1336 return 1; 1337 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1338 return 1; 1339 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1340 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1341 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1342 return 1; 1343 1344 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1345 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1346 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1347 return 1; 1348 } 1349 1350 kvm_x86_call(set_cr4)(vcpu, cr4); 1351 1352 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1353 1354 return 0; 1355 } 1356 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1357 kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1358 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1359 { 1360 struct kvm_mmu *mmu = vcpu->arch.mmu; 1361 unsigned long roots_to_free = 0; 1362 int i; 1363 1364 /* 1365 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1366 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1367 * also via the emulator. KVM's TDP page tables are not in the scope of 1368 * the invalidation, but the guest's TLB entries need to be flushed as 1369 * the CPU may have cached entries in its TLB for the target PCID. 1370 */ 1371 if (unlikely(tdp_enabled)) { 1372 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1373 return; 1374 } 1375 1376 /* 1377 * If neither the current CR3 nor any of the prev_roots use the given 1378 * PCID, then nothing needs to be done here because a resync will 1379 * happen anyway before switching to any other CR3. 1380 */ 1381 if (kvm_get_active_pcid(vcpu) == pcid) { 1382 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1383 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1384 } 1385 1386 /* 1387 * If PCID is disabled, there is no need to free prev_roots even if the 1388 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1389 * with PCIDE=0. 1390 */ 1391 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1392 return; 1393 1394 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1395 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1396 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1397 1398 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1399 } 1400 kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1401 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1402 { 1403 bool skip_tlb_flush = false; 1404 unsigned long pcid = 0; 1405 #ifdef CONFIG_X86_64 1406 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1407 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1408 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1409 pcid = cr3 & X86_CR3_PCID_MASK; 1410 } 1411 #endif 1412 1413 /* PDPTRs are always reloaded for PAE paging. */ 1414 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1415 goto handle_tlb_flush; 1416 1417 /* 1418 * Do not condition the GPA check on long mode, this helper is used to 1419 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1420 * the current vCPU mode is accurate. 1421 */ 1422 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1423 return 1; 1424 1425 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1426 return 1; 1427 1428 if (cr3 != kvm_read_cr3(vcpu)) 1429 kvm_mmu_new_pgd(vcpu, cr3); 1430 1431 vcpu->arch.cr3 = cr3; 1432 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1433 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1434 1435 handle_tlb_flush: 1436 /* 1437 * A load of CR3 that flushes the TLB flushes only the current PCID, 1438 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1439 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1440 * and it's impossible to use a non-zero PCID when PCID is disabled, 1441 * i.e. only PCID=0 can be relevant. 1442 */ 1443 if (!skip_tlb_flush) 1444 kvm_invalidate_pcid(vcpu, pcid); 1445 1446 return 0; 1447 } 1448 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1449 kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1450 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1451 { 1452 if (cr8 & CR8_RESERVED_BITS) 1453 return 1; 1454 if (lapic_in_kernel(vcpu)) 1455 kvm_lapic_set_tpr(vcpu, cr8); 1456 else 1457 vcpu->arch.cr8 = cr8; 1458 return 0; 1459 } 1460 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1461 kvm_get_cr8(struct kvm_vcpu * vcpu)1462 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1463 { 1464 if (lapic_in_kernel(vcpu)) 1465 return kvm_lapic_get_cr8(vcpu); 1466 else 1467 return vcpu->arch.cr8; 1468 } 1469 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1470 kvm_update_dr0123(struct kvm_vcpu * vcpu)1471 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1472 { 1473 int i; 1474 1475 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1476 for (i = 0; i < KVM_NR_DB_REGS; i++) 1477 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1478 } 1479 } 1480 kvm_update_dr7(struct kvm_vcpu * vcpu)1481 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1482 { 1483 unsigned long dr7; 1484 1485 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1486 dr7 = vcpu->arch.guest_debug_dr7; 1487 else 1488 dr7 = vcpu->arch.dr7; 1489 kvm_x86_call(set_dr7)(vcpu, dr7); 1490 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1491 if (dr7 & DR7_BP_EN_MASK) 1492 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1493 } 1494 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1495 kvm_dr6_fixed(struct kvm_vcpu * vcpu)1496 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1497 { 1498 u64 fixed = DR6_FIXED_1; 1499 1500 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)) 1501 fixed |= DR6_RTM; 1502 1503 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1504 fixed |= DR6_BUS_LOCK; 1505 return fixed; 1506 } 1507 kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1508 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1509 { 1510 size_t size = ARRAY_SIZE(vcpu->arch.db); 1511 1512 switch (dr) { 1513 case 0 ... 3: 1514 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1515 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1516 vcpu->arch.eff_db[dr] = val; 1517 break; 1518 case 4: 1519 case 6: 1520 if (!kvm_dr6_valid(val)) 1521 return 1; /* #GP */ 1522 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1523 break; 1524 case 5: 1525 default: /* 7 */ 1526 if (!kvm_dr7_valid(val)) 1527 return 1; /* #GP */ 1528 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1529 kvm_update_dr7(vcpu); 1530 break; 1531 } 1532 1533 return 0; 1534 } 1535 EXPORT_SYMBOL_GPL(kvm_set_dr); 1536 kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1537 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1538 { 1539 size_t size = ARRAY_SIZE(vcpu->arch.db); 1540 1541 switch (dr) { 1542 case 0 ... 3: 1543 return vcpu->arch.db[array_index_nospec(dr, size)]; 1544 case 4: 1545 case 6: 1546 return vcpu->arch.dr6; 1547 case 5: 1548 default: /* 7 */ 1549 return vcpu->arch.dr7; 1550 } 1551 } 1552 EXPORT_SYMBOL_GPL(kvm_get_dr); 1553 kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1554 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1555 { 1556 u32 ecx = kvm_rcx_read(vcpu); 1557 u64 data; 1558 1559 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1560 kvm_inject_gp(vcpu, 0); 1561 return 1; 1562 } 1563 1564 kvm_rax_write(vcpu, (u32)data); 1565 kvm_rdx_write(vcpu, data >> 32); 1566 return kvm_skip_emulated_instruction(vcpu); 1567 } 1568 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1569 1570 /* 1571 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1572 * does not yet virtualize. These include: 1573 * 10 - MISC_PACKAGE_CTRLS 1574 * 11 - ENERGY_FILTERING_CTL 1575 * 12 - DOITM 1576 * 18 - FB_CLEAR_CTRL 1577 * 21 - XAPIC_DISABLE_STATUS 1578 * 23 - OVERCLOCKING_STATUS 1579 */ 1580 1581 #define KVM_SUPPORTED_ARCH_CAP \ 1582 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1583 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1584 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1585 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1586 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1587 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1588 kvm_get_arch_capabilities(void)1589 static u64 kvm_get_arch_capabilities(void) 1590 { 1591 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1592 1593 /* 1594 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1595 * the nested hypervisor runs with NX huge pages. If it is not, 1596 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1597 * L1 guests, so it need not worry about its own (L2) guests. 1598 */ 1599 data |= ARCH_CAP_PSCHANGE_MC_NO; 1600 1601 /* 1602 * If we're doing cache flushes (either "always" or "cond") 1603 * we will do one whenever the guest does a vmlaunch/vmresume. 1604 * If an outer hypervisor is doing the cache flush for us 1605 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1606 * capability to the guest too, and if EPT is disabled we're not 1607 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1608 * require a nested hypervisor to do a flush of its own. 1609 */ 1610 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1611 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1612 1613 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1614 data |= ARCH_CAP_RDCL_NO; 1615 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1616 data |= ARCH_CAP_SSB_NO; 1617 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1618 data |= ARCH_CAP_MDS_NO; 1619 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1620 data |= ARCH_CAP_RFDS_NO; 1621 1622 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1623 /* 1624 * If RTM=0 because the kernel has disabled TSX, the host might 1625 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1626 * and therefore knows that there cannot be TAA) but keep 1627 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1628 * and we want to allow migrating those guests to tsx=off hosts. 1629 */ 1630 data &= ~ARCH_CAP_TAA_NO; 1631 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1632 data |= ARCH_CAP_TAA_NO; 1633 } else { 1634 /* 1635 * Nothing to do here; we emulate TSX_CTRL if present on the 1636 * host so the guest can choose between disabling TSX or 1637 * using VERW to clear CPU buffers. 1638 */ 1639 } 1640 1641 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1642 data |= ARCH_CAP_GDS_NO; 1643 1644 return data; 1645 } 1646 kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1647 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1648 bool host_initiated) 1649 { 1650 WARN_ON_ONCE(!host_initiated); 1651 1652 switch (index) { 1653 case MSR_IA32_ARCH_CAPABILITIES: 1654 *data = kvm_get_arch_capabilities(); 1655 break; 1656 case MSR_IA32_PERF_CAPABILITIES: 1657 *data = kvm_caps.supported_perf_cap; 1658 break; 1659 case MSR_PLATFORM_INFO: 1660 *data = MSR_PLATFORM_INFO_CPUID_FAULT; 1661 break; 1662 case MSR_IA32_UCODE_REV: 1663 rdmsrl_safe(index, data); 1664 break; 1665 default: 1666 return kvm_x86_call(get_feature_msr)(index, data); 1667 } 1668 return 0; 1669 } 1670 do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1671 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1672 { 1673 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1674 kvm_get_feature_msr); 1675 } 1676 __kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1677 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1678 { 1679 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS)) 1680 return false; 1681 1682 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT)) 1683 return false; 1684 1685 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 1686 return false; 1687 1688 if (efer & (EFER_LME | EFER_LMA) && 1689 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 1690 return false; 1691 1692 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX)) 1693 return false; 1694 1695 return true; 1696 1697 } kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1698 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1699 { 1700 if (efer & efer_reserved_bits) 1701 return false; 1702 1703 return __kvm_valid_efer(vcpu, efer); 1704 } 1705 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1706 set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1707 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1708 { 1709 u64 old_efer = vcpu->arch.efer; 1710 u64 efer = msr_info->data; 1711 int r; 1712 1713 if (efer & efer_reserved_bits) 1714 return 1; 1715 1716 if (!msr_info->host_initiated) { 1717 if (!__kvm_valid_efer(vcpu, efer)) 1718 return 1; 1719 1720 if (is_paging(vcpu) && 1721 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1722 return 1; 1723 } 1724 1725 efer &= ~EFER_LMA; 1726 efer |= vcpu->arch.efer & EFER_LMA; 1727 1728 r = kvm_x86_call(set_efer)(vcpu, efer); 1729 if (r) { 1730 WARN_ON(r > 0); 1731 return r; 1732 } 1733 1734 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1735 kvm_mmu_reset_context(vcpu); 1736 1737 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1738 (efer & EFER_SVME)) 1739 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1740 1741 return 0; 1742 } 1743 kvm_enable_efer_bits(u64 mask)1744 void kvm_enable_efer_bits(u64 mask) 1745 { 1746 efer_reserved_bits &= ~mask; 1747 } 1748 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1749 kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1750 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1751 { 1752 struct kvm_x86_msr_filter *msr_filter; 1753 struct msr_bitmap_range *ranges; 1754 struct kvm *kvm = vcpu->kvm; 1755 bool allowed; 1756 int idx; 1757 u32 i; 1758 1759 /* x2APIC MSRs do not support filtering. */ 1760 if (index >= 0x800 && index <= 0x8ff) 1761 return true; 1762 1763 idx = srcu_read_lock(&kvm->srcu); 1764 1765 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1766 if (!msr_filter) { 1767 allowed = true; 1768 goto out; 1769 } 1770 1771 allowed = msr_filter->default_allow; 1772 ranges = msr_filter->ranges; 1773 1774 for (i = 0; i < msr_filter->count; i++) { 1775 u32 start = ranges[i].base; 1776 u32 end = start + ranges[i].nmsrs; 1777 u32 flags = ranges[i].flags; 1778 unsigned long *bitmap = ranges[i].bitmap; 1779 1780 if ((index >= start) && (index < end) && (flags & type)) { 1781 allowed = test_bit(index - start, bitmap); 1782 break; 1783 } 1784 } 1785 1786 out: 1787 srcu_read_unlock(&kvm->srcu, idx); 1788 1789 return allowed; 1790 } 1791 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1792 1793 /* 1794 * Write @data into the MSR specified by @index. Select MSR specific fault 1795 * checks are bypassed if @host_initiated is %true. 1796 * Returns 0 on success, non-0 otherwise. 1797 * Assumes vcpu_load() was already called. 1798 */ __kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1799 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1800 bool host_initiated) 1801 { 1802 struct msr_data msr; 1803 1804 switch (index) { 1805 case MSR_FS_BASE: 1806 case MSR_GS_BASE: 1807 case MSR_KERNEL_GS_BASE: 1808 case MSR_CSTAR: 1809 case MSR_LSTAR: 1810 if (is_noncanonical_msr_address(data, vcpu)) 1811 return 1; 1812 break; 1813 case MSR_IA32_SYSENTER_EIP: 1814 case MSR_IA32_SYSENTER_ESP: 1815 /* 1816 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1817 * non-canonical address is written on Intel but not on 1818 * AMD (which ignores the top 32-bits, because it does 1819 * not implement 64-bit SYSENTER). 1820 * 1821 * 64-bit code should hence be able to write a non-canonical 1822 * value on AMD. Making the address canonical ensures that 1823 * vmentry does not fail on Intel after writing a non-canonical 1824 * value, and that something deterministic happens if the guest 1825 * invokes 64-bit SYSENTER. 1826 */ 1827 data = __canonical_address(data, max_host_virt_addr_bits()); 1828 break; 1829 case MSR_TSC_AUX: 1830 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1831 return 1; 1832 1833 if (!host_initiated && 1834 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1835 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1836 return 1; 1837 1838 /* 1839 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1840 * incomplete and conflicting architectural behavior. Current 1841 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1842 * reserved and always read as zeros. Enforce Intel's reserved 1843 * bits check if the guest CPU is Intel compatible, otherwise 1844 * clear the bits. This ensures cross-vendor migration will 1845 * provide consistent behavior for the guest. 1846 */ 1847 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1848 return 1; 1849 1850 data = (u32)data; 1851 break; 1852 } 1853 1854 msr.data = data; 1855 msr.index = index; 1856 msr.host_initiated = host_initiated; 1857 1858 return kvm_x86_call(set_msr)(vcpu, &msr); 1859 } 1860 _kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1861 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1862 bool host_initiated) 1863 { 1864 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1865 } 1866 kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1867 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1868 u32 index, u64 data, bool host_initiated) 1869 { 1870 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1871 _kvm_set_msr); 1872 } 1873 1874 /* 1875 * Read the MSR specified by @index into @data. Select MSR specific fault 1876 * checks are bypassed if @host_initiated is %true. 1877 * Returns 0 on success, non-0 otherwise. 1878 * Assumes vcpu_load() was already called. 1879 */ __kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1880 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1881 bool host_initiated) 1882 { 1883 struct msr_data msr; 1884 int ret; 1885 1886 switch (index) { 1887 case MSR_TSC_AUX: 1888 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1889 return 1; 1890 1891 if (!host_initiated && 1892 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1893 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1894 return 1; 1895 break; 1896 } 1897 1898 msr.index = index; 1899 msr.host_initiated = host_initiated; 1900 1901 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1902 if (!ret) 1903 *data = msr.data; 1904 return ret; 1905 } 1906 kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1907 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1908 u32 index, u64 *data, bool host_initiated) 1909 { 1910 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 1911 __kvm_get_msr); 1912 } 1913 kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1914 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1915 { 1916 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1917 return KVM_MSR_RET_FILTERED; 1918 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1919 } 1920 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); 1921 kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1922 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1923 { 1924 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1925 return KVM_MSR_RET_FILTERED; 1926 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1927 } 1928 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); 1929 kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1930 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1931 { 1932 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1933 } 1934 EXPORT_SYMBOL_GPL(kvm_get_msr); 1935 kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1936 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1937 { 1938 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1939 } 1940 EXPORT_SYMBOL_GPL(kvm_set_msr); 1941 complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1942 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1943 { 1944 if (!vcpu->run->msr.error) { 1945 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1946 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1947 } 1948 } 1949 complete_emulated_msr_access(struct kvm_vcpu * vcpu)1950 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1951 { 1952 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1953 } 1954 complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1955 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1956 { 1957 complete_userspace_rdmsr(vcpu); 1958 return complete_emulated_msr_access(vcpu); 1959 } 1960 complete_fast_msr_access(struct kvm_vcpu * vcpu)1961 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1962 { 1963 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1964 } 1965 complete_fast_rdmsr(struct kvm_vcpu * vcpu)1966 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1967 { 1968 complete_userspace_rdmsr(vcpu); 1969 return complete_fast_msr_access(vcpu); 1970 } 1971 kvm_msr_reason(int r)1972 static u64 kvm_msr_reason(int r) 1973 { 1974 switch (r) { 1975 case KVM_MSR_RET_UNSUPPORTED: 1976 return KVM_MSR_EXIT_REASON_UNKNOWN; 1977 case KVM_MSR_RET_FILTERED: 1978 return KVM_MSR_EXIT_REASON_FILTER; 1979 default: 1980 return KVM_MSR_EXIT_REASON_INVAL; 1981 } 1982 } 1983 kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1984 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1985 u32 exit_reason, u64 data, 1986 int (*completion)(struct kvm_vcpu *vcpu), 1987 int r) 1988 { 1989 u64 msr_reason = kvm_msr_reason(r); 1990 1991 /* Check if the user wanted to know about this MSR fault */ 1992 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1993 return 0; 1994 1995 vcpu->run->exit_reason = exit_reason; 1996 vcpu->run->msr.error = 0; 1997 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1998 vcpu->run->msr.reason = msr_reason; 1999 vcpu->run->msr.index = index; 2000 vcpu->run->msr.data = data; 2001 vcpu->arch.complete_userspace_io = completion; 2002 2003 return 1; 2004 } 2005 kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2006 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2007 { 2008 u32 ecx = kvm_rcx_read(vcpu); 2009 u64 data; 2010 int r; 2011 2012 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2013 2014 if (!r) { 2015 trace_kvm_msr_read(ecx, data); 2016 2017 kvm_rax_write(vcpu, data & -1u); 2018 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2019 } else { 2020 /* MSR read failed? See if we should ask user space */ 2021 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2022 complete_fast_rdmsr, r)) 2023 return 0; 2024 trace_kvm_msr_read_ex(ecx); 2025 } 2026 2027 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2028 } 2029 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2030 kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2031 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2032 { 2033 u32 ecx = kvm_rcx_read(vcpu); 2034 u64 data = kvm_read_edx_eax(vcpu); 2035 int r; 2036 2037 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2038 2039 if (!r) { 2040 trace_kvm_msr_write(ecx, data); 2041 } else { 2042 /* MSR write failed? See if we should ask user space */ 2043 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2044 complete_fast_msr_access, r)) 2045 return 0; 2046 /* Signal all other negative errors to userspace */ 2047 if (r < 0) 2048 return r; 2049 trace_kvm_msr_write_ex(ecx, data); 2050 } 2051 2052 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2053 } 2054 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2055 kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2056 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2057 { 2058 return kvm_skip_emulated_instruction(vcpu); 2059 } 2060 kvm_emulate_invd(struct kvm_vcpu * vcpu)2061 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2062 { 2063 /* Treat an INVD instruction as a NOP and just skip it. */ 2064 return kvm_emulate_as_nop(vcpu); 2065 } 2066 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2067 kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2068 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2069 { 2070 kvm_queue_exception(vcpu, UD_VECTOR); 2071 return 1; 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2074 2075 kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2076 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2077 { 2078 bool enabled; 2079 2080 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)) 2081 goto emulate_as_nop; 2082 2083 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) 2084 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT); 2085 else 2086 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT; 2087 2088 if (!enabled) 2089 return kvm_handle_invalid_op(vcpu); 2090 2091 emulate_as_nop: 2092 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2093 return kvm_emulate_as_nop(vcpu); 2094 } kvm_emulate_mwait(struct kvm_vcpu * vcpu)2095 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2096 { 2097 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2098 } 2099 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2100 kvm_emulate_monitor(struct kvm_vcpu * vcpu)2101 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2102 { 2103 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2104 } 2105 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2106 kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2107 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2108 { 2109 xfer_to_guest_mode_prepare(); 2110 2111 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || 2112 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); 2113 } 2114 2115 /* 2116 * The fast path for frequent and performance sensitive wrmsr emulation, 2117 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2118 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2119 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2120 * other cases which must be called after interrupts are enabled on the host. 2121 */ handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2122 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2123 { 2124 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2125 return 1; 2126 2127 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2128 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2129 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2130 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2131 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2132 2133 return 1; 2134 } 2135 handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2136 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2137 { 2138 if (!kvm_can_use_hv_timer(vcpu)) 2139 return 1; 2140 2141 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2142 return 0; 2143 } 2144 handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2145 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2146 { 2147 u32 msr = kvm_rcx_read(vcpu); 2148 u64 data; 2149 fastpath_t ret; 2150 bool handled; 2151 2152 kvm_vcpu_srcu_read_lock(vcpu); 2153 2154 switch (msr) { 2155 case APIC_BASE_MSR + (APIC_ICR >> 4): 2156 data = kvm_read_edx_eax(vcpu); 2157 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 2158 break; 2159 case MSR_IA32_TSC_DEADLINE: 2160 data = kvm_read_edx_eax(vcpu); 2161 handled = !handle_fastpath_set_tscdeadline(vcpu, data); 2162 break; 2163 default: 2164 handled = false; 2165 break; 2166 } 2167 2168 if (handled) { 2169 if (!kvm_skip_emulated_instruction(vcpu)) 2170 ret = EXIT_FASTPATH_EXIT_USERSPACE; 2171 else 2172 ret = EXIT_FASTPATH_REENTER_GUEST; 2173 trace_kvm_msr_write(msr, data); 2174 } else { 2175 ret = EXIT_FASTPATH_NONE; 2176 } 2177 2178 kvm_vcpu_srcu_read_unlock(vcpu); 2179 2180 return ret; 2181 } 2182 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2183 2184 /* 2185 * Adapt set_msr() to msr_io()'s calling convention 2186 */ do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2187 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2188 { 2189 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2190 } 2191 do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2192 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2193 { 2194 u64 val; 2195 2196 /* 2197 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2198 * not support modifying the guest vCPU model on the fly, e.g. changing 2199 * the nVMX capabilities while L2 is running is nonsensical. Allow 2200 * writes of the same value, e.g. to allow userspace to blindly stuff 2201 * all MSRs when emulating RESET. 2202 */ 2203 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2204 (do_get_msr(vcpu, index, &val) || *data != val)) 2205 return -EINVAL; 2206 2207 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2208 } 2209 2210 #ifdef CONFIG_X86_64 2211 struct pvclock_clock { 2212 int vclock_mode; 2213 u64 cycle_last; 2214 u64 mask; 2215 u32 mult; 2216 u32 shift; 2217 u64 base_cycles; 2218 u64 offset; 2219 }; 2220 2221 struct pvclock_gtod_data { 2222 seqcount_t seq; 2223 2224 struct pvclock_clock clock; /* extract of a clocksource struct */ 2225 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2226 2227 ktime_t offs_boot; 2228 u64 wall_time_sec; 2229 }; 2230 2231 static struct pvclock_gtod_data pvclock_gtod_data; 2232 update_pvclock_gtod(struct timekeeper * tk)2233 static void update_pvclock_gtod(struct timekeeper *tk) 2234 { 2235 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2236 2237 write_seqcount_begin(&vdata->seq); 2238 2239 /* copy pvclock gtod data */ 2240 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2241 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2242 vdata->clock.mask = tk->tkr_mono.mask; 2243 vdata->clock.mult = tk->tkr_mono.mult; 2244 vdata->clock.shift = tk->tkr_mono.shift; 2245 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2246 vdata->clock.offset = tk->tkr_mono.base; 2247 2248 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2249 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2250 vdata->raw_clock.mask = tk->tkr_raw.mask; 2251 vdata->raw_clock.mult = tk->tkr_raw.mult; 2252 vdata->raw_clock.shift = tk->tkr_raw.shift; 2253 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2254 vdata->raw_clock.offset = tk->tkr_raw.base; 2255 2256 vdata->wall_time_sec = tk->xtime_sec; 2257 2258 vdata->offs_boot = tk->offs_boot; 2259 2260 write_seqcount_end(&vdata->seq); 2261 } 2262 get_kvmclock_base_ns(void)2263 static s64 get_kvmclock_base_ns(void) 2264 { 2265 /* Count up from boot time, but with the frequency of the raw clock. */ 2266 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2267 } 2268 #else get_kvmclock_base_ns(void)2269 static s64 get_kvmclock_base_ns(void) 2270 { 2271 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2272 return ktime_get_boottime_ns(); 2273 } 2274 #endif 2275 kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2276 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2277 { 2278 int version; 2279 int r; 2280 struct pvclock_wall_clock wc; 2281 u32 wc_sec_hi; 2282 u64 wall_nsec; 2283 2284 if (!wall_clock) 2285 return; 2286 2287 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2288 if (r) 2289 return; 2290 2291 if (version & 1) 2292 ++version; /* first time write, random junk */ 2293 2294 ++version; 2295 2296 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2297 return; 2298 2299 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2300 2301 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2302 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2303 wc.version = version; 2304 2305 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2306 2307 if (sec_hi_ofs) { 2308 wc_sec_hi = wall_nsec >> 32; 2309 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2310 &wc_sec_hi, sizeof(wc_sec_hi)); 2311 } 2312 2313 version++; 2314 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2315 } 2316 kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2317 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2318 bool old_msr, bool host_initiated) 2319 { 2320 struct kvm_arch *ka = &vcpu->kvm->arch; 2321 2322 if (vcpu->vcpu_id == 0 && !host_initiated) { 2323 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2324 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2325 2326 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2327 } 2328 2329 vcpu->arch.time = system_time; 2330 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2331 2332 /* we verify if the enable bit is set... */ 2333 if (system_time & 1) 2334 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2335 sizeof(struct pvclock_vcpu_time_info)); 2336 else 2337 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2338 2339 return; 2340 } 2341 div_frac(uint32_t dividend,uint32_t divisor)2342 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2343 { 2344 do_shl32_div32(dividend, divisor); 2345 return dividend; 2346 } 2347 kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2348 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2349 s8 *pshift, u32 *pmultiplier) 2350 { 2351 uint64_t scaled64; 2352 int32_t shift = 0; 2353 uint64_t tps64; 2354 uint32_t tps32; 2355 2356 tps64 = base_hz; 2357 scaled64 = scaled_hz; 2358 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2359 tps64 >>= 1; 2360 shift--; 2361 } 2362 2363 tps32 = (uint32_t)tps64; 2364 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2365 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2366 scaled64 >>= 1; 2367 else 2368 tps32 <<= 1; 2369 shift++; 2370 } 2371 2372 *pshift = shift; 2373 *pmultiplier = div_frac(scaled64, tps32); 2374 } 2375 2376 #ifdef CONFIG_X86_64 2377 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2378 #endif 2379 2380 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2381 static unsigned long max_tsc_khz; 2382 adjust_tsc_khz(u32 khz,s32 ppm)2383 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2384 { 2385 u64 v = (u64)khz * (1000000 + ppm); 2386 do_div(v, 1000000); 2387 return v; 2388 } 2389 2390 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2391 set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2392 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2393 { 2394 u64 ratio; 2395 2396 /* Guest TSC same frequency as host TSC? */ 2397 if (!scale) { 2398 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2399 return 0; 2400 } 2401 2402 /* TSC scaling supported? */ 2403 if (!kvm_caps.has_tsc_control) { 2404 if (user_tsc_khz > tsc_khz) { 2405 vcpu->arch.tsc_catchup = 1; 2406 vcpu->arch.tsc_always_catchup = 1; 2407 return 0; 2408 } else { 2409 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2410 return -1; 2411 } 2412 } 2413 2414 /* TSC scaling required - calculate ratio */ 2415 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2416 user_tsc_khz, tsc_khz); 2417 2418 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2419 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2420 user_tsc_khz); 2421 return -1; 2422 } 2423 2424 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2425 return 0; 2426 } 2427 kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2428 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2429 { 2430 u32 thresh_lo, thresh_hi; 2431 int use_scaling = 0; 2432 2433 /* tsc_khz can be zero if TSC calibration fails */ 2434 if (user_tsc_khz == 0) { 2435 /* set tsc_scaling_ratio to a safe value */ 2436 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2437 return -1; 2438 } 2439 2440 /* Compute a scale to convert nanoseconds in TSC cycles */ 2441 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2442 &vcpu->arch.virtual_tsc_shift, 2443 &vcpu->arch.virtual_tsc_mult); 2444 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2445 2446 /* 2447 * Compute the variation in TSC rate which is acceptable 2448 * within the range of tolerance and decide if the 2449 * rate being applied is within that bounds of the hardware 2450 * rate. If so, no scaling or compensation need be done. 2451 */ 2452 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2453 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2454 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2455 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2456 user_tsc_khz, thresh_lo, thresh_hi); 2457 use_scaling = 1; 2458 } 2459 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2460 } 2461 compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2462 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2463 { 2464 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2465 vcpu->arch.virtual_tsc_mult, 2466 vcpu->arch.virtual_tsc_shift); 2467 tsc += vcpu->arch.this_tsc_write; 2468 return tsc; 2469 } 2470 2471 #ifdef CONFIG_X86_64 gtod_is_based_on_tsc(int mode)2472 static inline bool gtod_is_based_on_tsc(int mode) 2473 { 2474 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2475 } 2476 #endif 2477 kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2478 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2479 { 2480 #ifdef CONFIG_X86_64 2481 struct kvm_arch *ka = &vcpu->kvm->arch; 2482 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2483 2484 /* 2485 * To use the masterclock, the host clocksource must be based on TSC 2486 * and all vCPUs must have matching TSCs. Note, the count for matching 2487 * vCPUs doesn't include the reference vCPU, hence "+1". 2488 */ 2489 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2490 atomic_read(&vcpu->kvm->online_vcpus)) && 2491 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2492 2493 /* 2494 * Request a masterclock update if the masterclock needs to be toggled 2495 * on/off, or when starting a new generation and the masterclock is 2496 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2497 * taken _after_ the new generation is created). 2498 */ 2499 if ((ka->use_master_clock && new_generation) || 2500 (ka->use_master_clock != use_master_clock)) 2501 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2502 2503 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2504 atomic_read(&vcpu->kvm->online_vcpus), 2505 ka->use_master_clock, gtod->clock.vclock_mode); 2506 #endif 2507 } 2508 2509 /* 2510 * Multiply tsc by a fixed point number represented by ratio. 2511 * 2512 * The most significant 64-N bits (mult) of ratio represent the 2513 * integral part of the fixed point number; the remaining N bits 2514 * (frac) represent the fractional part, ie. ratio represents a fixed 2515 * point number (mult + frac * 2^(-N)). 2516 * 2517 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2518 */ __scale_tsc(u64 ratio,u64 tsc)2519 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2520 { 2521 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2522 } 2523 kvm_scale_tsc(u64 tsc,u64 ratio)2524 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2525 { 2526 u64 _tsc = tsc; 2527 2528 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2529 _tsc = __scale_tsc(ratio, tsc); 2530 2531 return _tsc; 2532 } 2533 kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2534 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2535 { 2536 u64 tsc; 2537 2538 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2539 2540 return target_tsc - tsc; 2541 } 2542 kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2543 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2544 { 2545 return vcpu->arch.l1_tsc_offset + 2546 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2547 } 2548 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2549 kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2550 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2551 { 2552 u64 nested_offset; 2553 2554 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2555 nested_offset = l1_offset; 2556 else 2557 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2558 kvm_caps.tsc_scaling_ratio_frac_bits); 2559 2560 nested_offset += l2_offset; 2561 return nested_offset; 2562 } 2563 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2564 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2565 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2566 { 2567 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2568 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2569 kvm_caps.tsc_scaling_ratio_frac_bits); 2570 2571 return l1_multiplier; 2572 } 2573 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2574 kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2575 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2576 { 2577 if (vcpu->arch.guest_tsc_protected) 2578 return; 2579 2580 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2581 vcpu->arch.l1_tsc_offset, 2582 l1_offset); 2583 2584 vcpu->arch.l1_tsc_offset = l1_offset; 2585 2586 /* 2587 * If we are here because L1 chose not to trap WRMSR to TSC then 2588 * according to the spec this should set L1's TSC (as opposed to 2589 * setting L1's offset for L2). 2590 */ 2591 if (is_guest_mode(vcpu)) 2592 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2593 l1_offset, 2594 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2595 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2596 else 2597 vcpu->arch.tsc_offset = l1_offset; 2598 2599 kvm_x86_call(write_tsc_offset)(vcpu); 2600 } 2601 kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2602 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2603 { 2604 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2605 2606 /* Userspace is changing the multiplier while L2 is active */ 2607 if (is_guest_mode(vcpu)) 2608 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2609 l1_multiplier, 2610 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2611 else 2612 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2613 2614 if (kvm_caps.has_tsc_control) 2615 kvm_x86_call(write_tsc_multiplier)(vcpu); 2616 } 2617 kvm_check_tsc_unstable(void)2618 static inline bool kvm_check_tsc_unstable(void) 2619 { 2620 #ifdef CONFIG_X86_64 2621 /* 2622 * TSC is marked unstable when we're running on Hyper-V, 2623 * 'TSC page' clocksource is good. 2624 */ 2625 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2626 return false; 2627 #endif 2628 return check_tsc_unstable(); 2629 } 2630 2631 /* 2632 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2633 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2634 * participates in. 2635 */ __kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2636 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2637 u64 ns, bool matched, bool user_set_tsc) 2638 { 2639 struct kvm *kvm = vcpu->kvm; 2640 2641 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2642 2643 if (vcpu->arch.guest_tsc_protected) 2644 return; 2645 2646 if (user_set_tsc) 2647 vcpu->kvm->arch.user_set_tsc = true; 2648 2649 /* 2650 * We also track th most recent recorded KHZ, write and time to 2651 * allow the matching interval to be extended at each write. 2652 */ 2653 kvm->arch.last_tsc_nsec = ns; 2654 kvm->arch.last_tsc_write = tsc; 2655 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2656 kvm->arch.last_tsc_offset = offset; 2657 2658 vcpu->arch.last_guest_tsc = tsc; 2659 2660 kvm_vcpu_write_tsc_offset(vcpu, offset); 2661 2662 if (!matched) { 2663 /* 2664 * We split periods of matched TSC writes into generations. 2665 * For each generation, we track the original measured 2666 * nanosecond time, offset, and write, so if TSCs are in 2667 * sync, we can match exact offset, and if not, we can match 2668 * exact software computation in compute_guest_tsc() 2669 * 2670 * These values are tracked in kvm->arch.cur_xxx variables. 2671 */ 2672 kvm->arch.cur_tsc_generation++; 2673 kvm->arch.cur_tsc_nsec = ns; 2674 kvm->arch.cur_tsc_write = tsc; 2675 kvm->arch.cur_tsc_offset = offset; 2676 kvm->arch.nr_vcpus_matched_tsc = 0; 2677 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2678 kvm->arch.nr_vcpus_matched_tsc++; 2679 } 2680 2681 /* Keep track of which generation this VCPU has synchronized to */ 2682 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2683 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2684 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2685 2686 kvm_track_tsc_matching(vcpu, !matched); 2687 } 2688 kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2689 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2690 { 2691 u64 data = user_value ? *user_value : 0; 2692 struct kvm *kvm = vcpu->kvm; 2693 u64 offset, ns, elapsed; 2694 unsigned long flags; 2695 bool matched = false; 2696 bool synchronizing = false; 2697 2698 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2699 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2700 ns = get_kvmclock_base_ns(); 2701 elapsed = ns - kvm->arch.last_tsc_nsec; 2702 2703 if (vcpu->arch.virtual_tsc_khz) { 2704 if (data == 0) { 2705 /* 2706 * Force synchronization when creating a vCPU, or when 2707 * userspace explicitly writes a zero value. 2708 */ 2709 synchronizing = true; 2710 } else if (kvm->arch.user_set_tsc) { 2711 u64 tsc_exp = kvm->arch.last_tsc_write + 2712 nsec_to_cycles(vcpu, elapsed); 2713 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2714 /* 2715 * Here lies UAPI baggage: when a user-initiated TSC write has 2716 * a small delta (1 second) of virtual cycle time against the 2717 * previously set vCPU, we assume that they were intended to be 2718 * in sync and the delta was only due to the racy nature of the 2719 * legacy API. 2720 * 2721 * This trick falls down when restoring a guest which genuinely 2722 * has been running for less time than the 1 second of imprecision 2723 * which we allow for in the legacy API. In this case, the first 2724 * value written by userspace (on any vCPU) should not be subject 2725 * to this 'correction' to make it sync up with values that only 2726 * come from the kernel's default vCPU creation. Make the 1-second 2727 * slop hack only trigger if the user_set_tsc flag is already set. 2728 */ 2729 synchronizing = data < tsc_exp + tsc_hz && 2730 data + tsc_hz > tsc_exp; 2731 } 2732 } 2733 2734 2735 /* 2736 * For a reliable TSC, we can match TSC offsets, and for an unstable 2737 * TSC, we add elapsed time in this computation. We could let the 2738 * compensation code attempt to catch up if we fall behind, but 2739 * it's better to try to match offsets from the beginning. 2740 */ 2741 if (synchronizing && 2742 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2743 if (!kvm_check_tsc_unstable()) { 2744 offset = kvm->arch.cur_tsc_offset; 2745 } else { 2746 u64 delta = nsec_to_cycles(vcpu, elapsed); 2747 data += delta; 2748 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2749 } 2750 matched = true; 2751 } 2752 2753 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value); 2754 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2755 } 2756 adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2757 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2758 s64 adjustment) 2759 { 2760 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2761 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2762 } 2763 adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2764 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2765 { 2766 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2767 WARN_ON(adjustment < 0); 2768 adjustment = kvm_scale_tsc((u64) adjustment, 2769 vcpu->arch.l1_tsc_scaling_ratio); 2770 adjust_tsc_offset_guest(vcpu, adjustment); 2771 } 2772 2773 #ifdef CONFIG_X86_64 2774 read_tsc(void)2775 static u64 read_tsc(void) 2776 { 2777 u64 ret = (u64)rdtsc_ordered(); 2778 u64 last = pvclock_gtod_data.clock.cycle_last; 2779 2780 if (likely(ret >= last)) 2781 return ret; 2782 2783 /* 2784 * GCC likes to generate cmov here, but this branch is extremely 2785 * predictable (it's just a function of time and the likely is 2786 * very likely) and there's a data dependence, so force GCC 2787 * to generate a branch instead. I don't barrier() because 2788 * we don't actually need a barrier, and if this function 2789 * ever gets inlined it will generate worse code. 2790 */ 2791 asm volatile (""); 2792 return last; 2793 } 2794 vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2795 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2796 int *mode) 2797 { 2798 u64 tsc_pg_val; 2799 long v; 2800 2801 switch (clock->vclock_mode) { 2802 case VDSO_CLOCKMODE_HVCLOCK: 2803 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2804 tsc_timestamp, &tsc_pg_val)) { 2805 /* TSC page valid */ 2806 *mode = VDSO_CLOCKMODE_HVCLOCK; 2807 v = (tsc_pg_val - clock->cycle_last) & 2808 clock->mask; 2809 } else { 2810 /* TSC page invalid */ 2811 *mode = VDSO_CLOCKMODE_NONE; 2812 } 2813 break; 2814 case VDSO_CLOCKMODE_TSC: 2815 *mode = VDSO_CLOCKMODE_TSC; 2816 *tsc_timestamp = read_tsc(); 2817 v = (*tsc_timestamp - clock->cycle_last) & 2818 clock->mask; 2819 break; 2820 default: 2821 *mode = VDSO_CLOCKMODE_NONE; 2822 } 2823 2824 if (*mode == VDSO_CLOCKMODE_NONE) 2825 *tsc_timestamp = v = 0; 2826 2827 return v * clock->mult; 2828 } 2829 2830 /* 2831 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2832 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2833 */ do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2834 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2835 { 2836 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2837 unsigned long seq; 2838 int mode; 2839 u64 ns; 2840 2841 do { 2842 seq = read_seqcount_begin(>od->seq); 2843 ns = gtod->raw_clock.base_cycles; 2844 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2845 ns >>= gtod->raw_clock.shift; 2846 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2847 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2848 *t = ns; 2849 2850 return mode; 2851 } 2852 2853 /* 2854 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2855 * no boot time offset. 2856 */ do_monotonic(s64 * t,u64 * tsc_timestamp)2857 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2858 { 2859 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2860 unsigned long seq; 2861 int mode; 2862 u64 ns; 2863 2864 do { 2865 seq = read_seqcount_begin(>od->seq); 2866 ns = gtod->clock.base_cycles; 2867 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2868 ns >>= gtod->clock.shift; 2869 ns += ktime_to_ns(gtod->clock.offset); 2870 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2871 *t = ns; 2872 2873 return mode; 2874 } 2875 do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2876 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2877 { 2878 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2879 unsigned long seq; 2880 int mode; 2881 u64 ns; 2882 2883 do { 2884 seq = read_seqcount_begin(>od->seq); 2885 ts->tv_sec = gtod->wall_time_sec; 2886 ns = gtod->clock.base_cycles; 2887 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2888 ns >>= gtod->clock.shift; 2889 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2890 2891 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2892 ts->tv_nsec = ns; 2893 2894 return mode; 2895 } 2896 2897 /* 2898 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2899 * reports the TSC value from which it do so. Returns true if host is 2900 * using TSC based clocksource. 2901 */ kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2902 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2903 { 2904 /* checked again under seqlock below */ 2905 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2906 return false; 2907 2908 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2909 tsc_timestamp)); 2910 } 2911 2912 /* 2913 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2914 * so. Returns true if host is using TSC based clocksource. 2915 */ kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2916 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2917 { 2918 /* checked again under seqlock below */ 2919 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2920 return false; 2921 2922 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2923 tsc_timestamp)); 2924 } 2925 2926 /* 2927 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2928 * so. Returns true if host is using TSC based clocksource. 2929 * 2930 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2931 * for that. 2932 */ kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2933 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2934 u64 *tsc_timestamp) 2935 { 2936 /* checked again under seqlock below */ 2937 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2938 return false; 2939 2940 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2941 } 2942 #endif 2943 2944 /* 2945 * 2946 * Assuming a stable TSC across physical CPUS, and a stable TSC 2947 * across virtual CPUs, the following condition is possible. 2948 * Each numbered line represents an event visible to both 2949 * CPUs at the next numbered event. 2950 * 2951 * "timespecX" represents host monotonic time. "tscX" represents 2952 * RDTSC value. 2953 * 2954 * VCPU0 on CPU0 | VCPU1 on CPU1 2955 * 2956 * 1. read timespec0,tsc0 2957 * 2. | timespec1 = timespec0 + N 2958 * | tsc1 = tsc0 + M 2959 * 3. transition to guest | transition to guest 2960 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2961 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2962 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2963 * 2964 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2965 * 2966 * - ret0 < ret1 2967 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2968 * ... 2969 * - 0 < N - M => M < N 2970 * 2971 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2972 * always the case (the difference between two distinct xtime instances 2973 * might be smaller then the difference between corresponding TSC reads, 2974 * when updating guest vcpus pvclock areas). 2975 * 2976 * To avoid that problem, do not allow visibility of distinct 2977 * system_timestamp/tsc_timestamp values simultaneously: use a master 2978 * copy of host monotonic time values. Update that master copy 2979 * in lockstep. 2980 * 2981 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2982 * 2983 */ 2984 pvclock_update_vm_gtod_copy(struct kvm * kvm)2985 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2986 { 2987 #ifdef CONFIG_X86_64 2988 struct kvm_arch *ka = &kvm->arch; 2989 int vclock_mode; 2990 bool host_tsc_clocksource, vcpus_matched; 2991 2992 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2993 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2994 atomic_read(&kvm->online_vcpus)); 2995 2996 /* 2997 * If the host uses TSC clock, then passthrough TSC as stable 2998 * to the guest. 2999 */ 3000 host_tsc_clocksource = kvm_get_time_and_clockread( 3001 &ka->master_kernel_ns, 3002 &ka->master_cycle_now); 3003 3004 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3005 && !ka->backwards_tsc_observed 3006 && !ka->boot_vcpu_runs_old_kvmclock; 3007 3008 if (ka->use_master_clock) 3009 atomic_set(&kvm_guest_has_master_clock, 1); 3010 3011 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3012 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3013 vcpus_matched); 3014 #endif 3015 } 3016 kvm_make_mclock_inprogress_request(struct kvm * kvm)3017 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3018 { 3019 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3020 } 3021 __kvm_start_pvclock_update(struct kvm * kvm)3022 static void __kvm_start_pvclock_update(struct kvm *kvm) 3023 { 3024 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3025 write_seqcount_begin(&kvm->arch.pvclock_sc); 3026 } 3027 kvm_start_pvclock_update(struct kvm * kvm)3028 static void kvm_start_pvclock_update(struct kvm *kvm) 3029 { 3030 kvm_make_mclock_inprogress_request(kvm); 3031 3032 /* no guest entries from this point */ 3033 __kvm_start_pvclock_update(kvm); 3034 } 3035 kvm_end_pvclock_update(struct kvm * kvm)3036 static void kvm_end_pvclock_update(struct kvm *kvm) 3037 { 3038 struct kvm_arch *ka = &kvm->arch; 3039 struct kvm_vcpu *vcpu; 3040 unsigned long i; 3041 3042 write_seqcount_end(&ka->pvclock_sc); 3043 raw_spin_unlock_irq(&ka->tsc_write_lock); 3044 kvm_for_each_vcpu(i, vcpu, kvm) 3045 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3046 3047 /* guest entries allowed */ 3048 kvm_for_each_vcpu(i, vcpu, kvm) 3049 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3050 } 3051 kvm_update_masterclock(struct kvm * kvm)3052 static void kvm_update_masterclock(struct kvm *kvm) 3053 { 3054 kvm_hv_request_tsc_page_update(kvm); 3055 kvm_start_pvclock_update(kvm); 3056 pvclock_update_vm_gtod_copy(kvm); 3057 kvm_end_pvclock_update(kvm); 3058 } 3059 3060 /* 3061 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3062 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3063 * can change during boot even if the TSC is constant, as it's possible for KVM 3064 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3065 * notification when calibration completes, but practically speaking calibration 3066 * will complete before userspace is alive enough to create VMs. 3067 */ get_cpu_tsc_khz(void)3068 static unsigned long get_cpu_tsc_khz(void) 3069 { 3070 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3071 return tsc_khz; 3072 else 3073 return __this_cpu_read(cpu_tsc_khz); 3074 } 3075 3076 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ __get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3077 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3078 { 3079 struct kvm_arch *ka = &kvm->arch; 3080 struct pvclock_vcpu_time_info hv_clock; 3081 3082 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3083 get_cpu(); 3084 3085 data->flags = 0; 3086 if (ka->use_master_clock && 3087 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3088 #ifdef CONFIG_X86_64 3089 struct timespec64 ts; 3090 3091 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3092 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3093 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3094 } else 3095 #endif 3096 data->host_tsc = rdtsc(); 3097 3098 data->flags |= KVM_CLOCK_TSC_STABLE; 3099 hv_clock.tsc_timestamp = ka->master_cycle_now; 3100 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3101 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3102 &hv_clock.tsc_shift, 3103 &hv_clock.tsc_to_system_mul); 3104 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3105 } else { 3106 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3107 } 3108 3109 put_cpu(); 3110 } 3111 get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3112 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3113 { 3114 struct kvm_arch *ka = &kvm->arch; 3115 unsigned seq; 3116 3117 do { 3118 seq = read_seqcount_begin(&ka->pvclock_sc); 3119 __get_kvmclock(kvm, data); 3120 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3121 } 3122 get_kvmclock_ns(struct kvm * kvm)3123 u64 get_kvmclock_ns(struct kvm *kvm) 3124 { 3125 struct kvm_clock_data data; 3126 3127 get_kvmclock(kvm, &data); 3128 return data.clock; 3129 } 3130 kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3131 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock, 3132 struct kvm_vcpu *vcpu, 3133 struct gfn_to_pfn_cache *gpc, 3134 unsigned int offset) 3135 { 3136 struct pvclock_vcpu_time_info *guest_hv_clock; 3137 struct pvclock_vcpu_time_info hv_clock; 3138 unsigned long flags; 3139 3140 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock)); 3141 3142 read_lock_irqsave(&gpc->lock, flags); 3143 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3144 read_unlock_irqrestore(&gpc->lock, flags); 3145 3146 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3147 return; 3148 3149 read_lock_irqsave(&gpc->lock, flags); 3150 } 3151 3152 guest_hv_clock = (void *)(gpc->khva + offset); 3153 3154 /* 3155 * This VCPU is paused, but it's legal for a guest to read another 3156 * VCPU's kvmclock, so we really have to follow the specification where 3157 * it says that version is odd if data is being modified, and even after 3158 * it is consistent. 3159 */ 3160 3161 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1; 3162 smp_wmb(); 3163 3164 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3165 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3166 3167 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock)); 3168 3169 smp_wmb(); 3170 3171 guest_hv_clock->version = ++hv_clock.version; 3172 3173 kvm_gpc_mark_dirty_in_slot(gpc); 3174 read_unlock_irqrestore(&gpc->lock, flags); 3175 3176 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock); 3177 } 3178 kvm_guest_time_update(struct kvm_vcpu * v)3179 int kvm_guest_time_update(struct kvm_vcpu *v) 3180 { 3181 struct pvclock_vcpu_time_info hv_clock = {}; 3182 unsigned long flags, tgt_tsc_khz; 3183 unsigned seq; 3184 struct kvm_vcpu_arch *vcpu = &v->arch; 3185 struct kvm_arch *ka = &v->kvm->arch; 3186 s64 kernel_ns; 3187 u64 tsc_timestamp, host_tsc; 3188 bool use_master_clock; 3189 3190 kernel_ns = 0; 3191 host_tsc = 0; 3192 3193 /* 3194 * If the host uses TSC clock, then passthrough TSC as stable 3195 * to the guest. 3196 */ 3197 do { 3198 seq = read_seqcount_begin(&ka->pvclock_sc); 3199 use_master_clock = ka->use_master_clock; 3200 if (use_master_clock) { 3201 host_tsc = ka->master_cycle_now; 3202 kernel_ns = ka->master_kernel_ns; 3203 } 3204 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3205 3206 /* Keep irq disabled to prevent changes to the clock */ 3207 local_irq_save(flags); 3208 tgt_tsc_khz = get_cpu_tsc_khz(); 3209 if (unlikely(tgt_tsc_khz == 0)) { 3210 local_irq_restore(flags); 3211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3212 return 1; 3213 } 3214 if (!use_master_clock) { 3215 host_tsc = rdtsc(); 3216 kernel_ns = get_kvmclock_base_ns(); 3217 } 3218 3219 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3220 3221 /* 3222 * We may have to catch up the TSC to match elapsed wall clock 3223 * time for two reasons, even if kvmclock is used. 3224 * 1) CPU could have been running below the maximum TSC rate 3225 * 2) Broken TSC compensation resets the base at each VCPU 3226 * entry to avoid unknown leaps of TSC even when running 3227 * again on the same CPU. This may cause apparent elapsed 3228 * time to disappear, and the guest to stand still or run 3229 * very slowly. 3230 */ 3231 if (vcpu->tsc_catchup) { 3232 u64 tsc = compute_guest_tsc(v, kernel_ns); 3233 if (tsc > tsc_timestamp) { 3234 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3235 tsc_timestamp = tsc; 3236 } 3237 } 3238 3239 local_irq_restore(flags); 3240 3241 /* With all the info we got, fill in the values */ 3242 3243 if (kvm_caps.has_tsc_control) 3244 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3245 v->arch.l1_tsc_scaling_ratio); 3246 3247 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3248 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3249 &vcpu->pvclock_tsc_shift, 3250 &vcpu->pvclock_tsc_mul); 3251 vcpu->hw_tsc_khz = tgt_tsc_khz; 3252 } 3253 3254 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift; 3255 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul; 3256 hv_clock.tsc_timestamp = tsc_timestamp; 3257 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3258 vcpu->last_guest_tsc = tsc_timestamp; 3259 3260 /* If the host uses TSC clocksource, then it is stable */ 3261 hv_clock.flags = 0; 3262 if (use_master_clock) 3263 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT; 3264 3265 if (vcpu->pv_time.active) { 3266 /* 3267 * GUEST_STOPPED is only supported by kvmclock, and KVM's 3268 * historic behavior is to only process the request if kvmclock 3269 * is active/enabled. 3270 */ 3271 if (vcpu->pvclock_set_guest_stopped_request) { 3272 hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3273 vcpu->pvclock_set_guest_stopped_request = false; 3274 } 3275 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0); 3276 3277 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED; 3278 } 3279 3280 kvm_hv_setup_tsc_page(v->kvm, &hv_clock); 3281 3282 #ifdef CONFIG_KVM_XEN 3283 /* 3284 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3285 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3286 * This default behaviour led to bugs in some guest kernels which cause 3287 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3288 * 3289 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters! 3290 */ 3291 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 3292 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT; 3293 3294 if (vcpu->xen.vcpu_info_cache.active) 3295 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache, 3296 offsetof(struct compat_vcpu_info, time)); 3297 if (vcpu->xen.vcpu_time_info_cache.active) 3298 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0); 3299 #endif 3300 return 0; 3301 } 3302 3303 /* 3304 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3305 * which it started (i.e. its epoch, when its kvmclock was zero). 3306 * 3307 * In fact those clocks are subtly different; wall clock frequency is 3308 * adjusted by NTP and has leap seconds, while the kvmclock is a 3309 * simple function of the TSC without any such adjustment. 3310 * 3311 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3312 * that and kvmclock, but even that would be subject to change over 3313 * time. 3314 * 3315 * Attempt to calculate the epoch at a given moment using the *same* 3316 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3317 * wallclock and kvmclock times, and subtracting one from the other. 3318 * 3319 * Fall back to using their values at slightly different moments by 3320 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3321 */ kvm_get_wall_clock_epoch(struct kvm * kvm)3322 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3323 { 3324 #ifdef CONFIG_X86_64 3325 struct pvclock_vcpu_time_info hv_clock; 3326 struct kvm_arch *ka = &kvm->arch; 3327 unsigned long seq, local_tsc_khz; 3328 struct timespec64 ts; 3329 uint64_t host_tsc; 3330 3331 do { 3332 seq = read_seqcount_begin(&ka->pvclock_sc); 3333 3334 local_tsc_khz = 0; 3335 if (!ka->use_master_clock) 3336 break; 3337 3338 /* 3339 * The TSC read and the call to get_cpu_tsc_khz() must happen 3340 * on the same CPU. 3341 */ 3342 get_cpu(); 3343 3344 local_tsc_khz = get_cpu_tsc_khz(); 3345 3346 if (local_tsc_khz && 3347 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3348 local_tsc_khz = 0; /* Fall back to old method */ 3349 3350 put_cpu(); 3351 3352 /* 3353 * These values must be snapshotted within the seqcount loop. 3354 * After that, it's just mathematics which can happen on any 3355 * CPU at any time. 3356 */ 3357 hv_clock.tsc_timestamp = ka->master_cycle_now; 3358 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3359 3360 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3361 3362 /* 3363 * If the conditions were right, and obtaining the wallclock+TSC was 3364 * successful, calculate the KVM clock at the corresponding time and 3365 * subtract one from the other to get the guest's epoch in nanoseconds 3366 * since 1970-01-01. 3367 */ 3368 if (local_tsc_khz) { 3369 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3370 &hv_clock.tsc_shift, 3371 &hv_clock.tsc_to_system_mul); 3372 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3373 __pvclock_read_cycles(&hv_clock, host_tsc); 3374 } 3375 #endif 3376 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3377 } 3378 3379 /* 3380 * kvmclock updates which are isolated to a given vcpu, such as 3381 * vcpu->cpu migration, should not allow system_timestamp from 3382 * the rest of the vcpus to remain static. Otherwise ntp frequency 3383 * correction applies to one vcpu's system_timestamp but not 3384 * the others. 3385 * 3386 * So in those cases, request a kvmclock update for all vcpus. 3387 * We need to rate-limit these requests though, as they can 3388 * considerably slow guests that have a large number of vcpus. 3389 * The time for a remote vcpu to update its kvmclock is bound 3390 * by the delay we use to rate-limit the updates. 3391 */ 3392 3393 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3394 kvmclock_update_fn(struct work_struct * work)3395 static void kvmclock_update_fn(struct work_struct *work) 3396 { 3397 unsigned long i; 3398 struct delayed_work *dwork = to_delayed_work(work); 3399 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3400 kvmclock_update_work); 3401 struct kvm *kvm = container_of(ka, struct kvm, arch); 3402 struct kvm_vcpu *vcpu; 3403 3404 kvm_for_each_vcpu(i, vcpu, kvm) { 3405 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3406 kvm_vcpu_kick(vcpu); 3407 } 3408 } 3409 kvm_gen_kvmclock_update(struct kvm_vcpu * v)3410 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3411 { 3412 struct kvm *kvm = v->kvm; 3413 3414 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3415 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3416 KVMCLOCK_UPDATE_DELAY); 3417 } 3418 3419 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3420 kvmclock_sync_fn(struct work_struct * work)3421 static void kvmclock_sync_fn(struct work_struct *work) 3422 { 3423 struct delayed_work *dwork = to_delayed_work(work); 3424 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3425 kvmclock_sync_work); 3426 struct kvm *kvm = container_of(ka, struct kvm, arch); 3427 3428 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3429 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3430 KVMCLOCK_SYNC_PERIOD); 3431 } 3432 3433 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ is_mci_control_msr(u32 msr)3434 static bool is_mci_control_msr(u32 msr) 3435 { 3436 return (msr & 3) == 0; 3437 } is_mci_status_msr(u32 msr)3438 static bool is_mci_status_msr(u32 msr) 3439 { 3440 return (msr & 3) == 1; 3441 } 3442 3443 /* 3444 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3445 */ can_set_mci_status(struct kvm_vcpu * vcpu)3446 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3447 { 3448 /* McStatusWrEn enabled? */ 3449 if (guest_cpuid_is_amd_compatible(vcpu)) 3450 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3451 3452 return false; 3453 } 3454 set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3455 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3456 { 3457 u64 mcg_cap = vcpu->arch.mcg_cap; 3458 unsigned bank_num = mcg_cap & 0xff; 3459 u32 msr = msr_info->index; 3460 u64 data = msr_info->data; 3461 u32 offset, last_msr; 3462 3463 switch (msr) { 3464 case MSR_IA32_MCG_STATUS: 3465 vcpu->arch.mcg_status = data; 3466 break; 3467 case MSR_IA32_MCG_CTL: 3468 if (!(mcg_cap & MCG_CTL_P) && 3469 (data || !msr_info->host_initiated)) 3470 return 1; 3471 if (data != 0 && data != ~(u64)0) 3472 return 1; 3473 vcpu->arch.mcg_ctl = data; 3474 break; 3475 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3476 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3477 if (msr > last_msr) 3478 return 1; 3479 3480 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3481 return 1; 3482 /* An attempt to write a 1 to a reserved bit raises #GP */ 3483 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3484 return 1; 3485 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3486 last_msr + 1 - MSR_IA32_MC0_CTL2); 3487 vcpu->arch.mci_ctl2_banks[offset] = data; 3488 break; 3489 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3490 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3491 if (msr > last_msr) 3492 return 1; 3493 3494 /* 3495 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3496 * values are architecturally undefined. But, some Linux 3497 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3498 * issue on AMD K8s, allow bit 10 to be clear when setting all 3499 * other bits in order to avoid an uncaught #GP in the guest. 3500 * 3501 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3502 * single-bit ECC data errors. 3503 */ 3504 if (is_mci_control_msr(msr) && 3505 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3506 return 1; 3507 3508 /* 3509 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3510 * AMD-based CPUs allow non-zero values, but if and only if 3511 * HWCR[McStatusWrEn] is set. 3512 */ 3513 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3514 data != 0 && !can_set_mci_status(vcpu)) 3515 return 1; 3516 3517 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3518 last_msr + 1 - MSR_IA32_MC0_CTL); 3519 vcpu->arch.mce_banks[offset] = data; 3520 break; 3521 default: 3522 return 1; 3523 } 3524 return 0; 3525 } 3526 kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3527 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3528 { 3529 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3530 3531 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3532 } 3533 kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3534 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3535 { 3536 gpa_t gpa = data & ~0x3f; 3537 3538 /* Bits 4:5 are reserved, Should be zero */ 3539 if (data & 0x30) 3540 return 1; 3541 3542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3543 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3544 return 1; 3545 3546 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3547 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3548 return 1; 3549 3550 if (!lapic_in_kernel(vcpu)) 3551 return data ? 1 : 0; 3552 3553 vcpu->arch.apf.msr_en_val = data; 3554 3555 if (!kvm_pv_async_pf_enabled(vcpu)) { 3556 kvm_clear_async_pf_completion_queue(vcpu); 3557 kvm_async_pf_hash_reset(vcpu); 3558 return 0; 3559 } 3560 3561 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3562 sizeof(u64))) 3563 return 1; 3564 3565 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS); 3566 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3567 3568 kvm_async_pf_wakeup_all(vcpu); 3569 3570 return 0; 3571 } 3572 kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3573 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3574 { 3575 /* Bits 8-63 are reserved */ 3576 if (data >> 8) 3577 return 1; 3578 3579 if (!lapic_in_kernel(vcpu)) 3580 return 1; 3581 3582 vcpu->arch.apf.msr_int_val = data; 3583 3584 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3585 3586 return 0; 3587 } 3588 kvmclock_reset(struct kvm_vcpu * vcpu)3589 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3590 { 3591 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3592 vcpu->arch.time = 0; 3593 } 3594 kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3595 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3596 { 3597 ++vcpu->stat.tlb_flush; 3598 kvm_x86_call(flush_tlb_all)(vcpu); 3599 3600 /* Flushing all ASIDs flushes the current ASID... */ 3601 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3602 } 3603 kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3604 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3605 { 3606 ++vcpu->stat.tlb_flush; 3607 3608 if (!tdp_enabled) { 3609 /* 3610 * A TLB flush on behalf of the guest is equivalent to 3611 * INVPCID(all), toggling CR4.PGE, etc., which requires 3612 * a forced sync of the shadow page tables. Ensure all the 3613 * roots are synced and the guest TLB in hardware is clean. 3614 */ 3615 kvm_mmu_sync_roots(vcpu); 3616 kvm_mmu_sync_prev_roots(vcpu); 3617 } 3618 3619 kvm_x86_call(flush_tlb_guest)(vcpu); 3620 3621 /* 3622 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3623 * grained flushing. 3624 */ 3625 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3626 } 3627 3628 kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3629 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3630 { 3631 ++vcpu->stat.tlb_flush; 3632 kvm_x86_call(flush_tlb_current)(vcpu); 3633 } 3634 3635 /* 3636 * Service "local" TLB flush requests, which are specific to the current MMU 3637 * context. In addition to the generic event handling in vcpu_enter_guest(), 3638 * TLB flushes that are targeted at an MMU context also need to be serviced 3639 * prior before nested VM-Enter/VM-Exit. 3640 */ kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3641 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3642 { 3643 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3644 kvm_vcpu_flush_tlb_current(vcpu); 3645 3646 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3647 kvm_vcpu_flush_tlb_guest(vcpu); 3648 } 3649 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3650 record_steal_time(struct kvm_vcpu * vcpu)3651 static void record_steal_time(struct kvm_vcpu *vcpu) 3652 { 3653 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3654 struct kvm_steal_time __user *st; 3655 struct kvm_memslots *slots; 3656 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3657 u64 steal; 3658 u32 version; 3659 3660 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3661 kvm_xen_runstate_set_running(vcpu); 3662 return; 3663 } 3664 3665 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3666 return; 3667 3668 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3669 return; 3670 3671 slots = kvm_memslots(vcpu->kvm); 3672 3673 if (unlikely(slots->generation != ghc->generation || 3674 gpa != ghc->gpa || 3675 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3676 /* We rely on the fact that it fits in a single page. */ 3677 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3678 3679 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3680 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3681 return; 3682 } 3683 3684 st = (struct kvm_steal_time __user *)ghc->hva; 3685 /* 3686 * Doing a TLB flush here, on the guest's behalf, can avoid 3687 * expensive IPIs. 3688 */ 3689 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3690 u8 st_preempted = 0; 3691 int err = -EFAULT; 3692 3693 if (!user_access_begin(st, sizeof(*st))) 3694 return; 3695 3696 asm volatile("1: xchgb %0, %2\n" 3697 "xor %1, %1\n" 3698 "2:\n" 3699 _ASM_EXTABLE_UA(1b, 2b) 3700 : "+q" (st_preempted), 3701 "+&r" (err), 3702 "+m" (st->preempted)); 3703 if (err) 3704 goto out; 3705 3706 user_access_end(); 3707 3708 vcpu->arch.st.preempted = 0; 3709 3710 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3711 st_preempted & KVM_VCPU_FLUSH_TLB); 3712 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3713 kvm_vcpu_flush_tlb_guest(vcpu); 3714 3715 if (!user_access_begin(st, sizeof(*st))) 3716 goto dirty; 3717 } else { 3718 if (!user_access_begin(st, sizeof(*st))) 3719 return; 3720 3721 unsafe_put_user(0, &st->preempted, out); 3722 vcpu->arch.st.preempted = 0; 3723 } 3724 3725 unsafe_get_user(version, &st->version, out); 3726 if (version & 1) 3727 version += 1; /* first time write, random junk */ 3728 3729 version += 1; 3730 unsafe_put_user(version, &st->version, out); 3731 3732 smp_wmb(); 3733 3734 unsafe_get_user(steal, &st->steal, out); 3735 steal += current->sched_info.run_delay - 3736 vcpu->arch.st.last_steal; 3737 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3738 unsafe_put_user(steal, &st->steal, out); 3739 3740 version += 1; 3741 unsafe_put_user(version, &st->version, out); 3742 3743 out: 3744 user_access_end(); 3745 dirty: 3746 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3747 } 3748 kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3749 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3750 { 3751 u32 msr = msr_info->index; 3752 u64 data = msr_info->data; 3753 3754 /* 3755 * Do not allow host-initiated writes to trigger the Xen hypercall 3756 * page setup; it could incur locking paths which are not expected 3757 * if userspace sets the MSR in an unusual location. 3758 */ 3759 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) && 3760 !msr_info->host_initiated) 3761 return kvm_xen_write_hypercall_page(vcpu, data); 3762 3763 switch (msr) { 3764 case MSR_AMD64_NB_CFG: 3765 case MSR_IA32_UCODE_WRITE: 3766 case MSR_VM_HSAVE_PA: 3767 case MSR_AMD64_PATCH_LOADER: 3768 case MSR_AMD64_BU_CFG2: 3769 case MSR_AMD64_DC_CFG: 3770 case MSR_AMD64_TW_CFG: 3771 case MSR_F15H_EX_CFG: 3772 break; 3773 3774 case MSR_IA32_UCODE_REV: 3775 if (msr_info->host_initiated) 3776 vcpu->arch.microcode_version = data; 3777 break; 3778 case MSR_IA32_ARCH_CAPABILITIES: 3779 if (!msr_info->host_initiated || 3780 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3781 return KVM_MSR_RET_UNSUPPORTED; 3782 vcpu->arch.arch_capabilities = data; 3783 break; 3784 case MSR_IA32_PERF_CAPABILITIES: 3785 if (!msr_info->host_initiated || 3786 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 3787 return KVM_MSR_RET_UNSUPPORTED; 3788 3789 if (data & ~kvm_caps.supported_perf_cap) 3790 return 1; 3791 3792 /* 3793 * Note, this is not just a performance optimization! KVM 3794 * disallows changing feature MSRs after the vCPU has run; PMU 3795 * refresh will bug the VM if called after the vCPU has run. 3796 */ 3797 if (vcpu->arch.perf_capabilities == data) 3798 break; 3799 3800 vcpu->arch.perf_capabilities = data; 3801 kvm_pmu_refresh(vcpu); 3802 break; 3803 case MSR_IA32_PRED_CMD: { 3804 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3805 3806 if (!msr_info->host_initiated) { 3807 if ((!guest_has_pred_cmd_msr(vcpu))) 3808 return 1; 3809 3810 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3811 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB)) 3812 reserved_bits |= PRED_CMD_IBPB; 3813 3814 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)) 3815 reserved_bits |= PRED_CMD_SBPB; 3816 } 3817 3818 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3819 reserved_bits |= PRED_CMD_IBPB; 3820 3821 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3822 reserved_bits |= PRED_CMD_SBPB; 3823 3824 if (data & reserved_bits) 3825 return 1; 3826 3827 if (!data) 3828 break; 3829 3830 wrmsrl(MSR_IA32_PRED_CMD, data); 3831 break; 3832 } 3833 case MSR_IA32_FLUSH_CMD: 3834 if (!msr_info->host_initiated && 3835 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3836 return 1; 3837 3838 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3839 return 1; 3840 if (!data) 3841 break; 3842 3843 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3844 break; 3845 case MSR_EFER: 3846 return set_efer(vcpu, msr_info); 3847 case MSR_K7_HWCR: 3848 data &= ~(u64)0x40; /* ignore flush filter disable */ 3849 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3850 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3851 3852 /* 3853 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3854 * through at least v6.6 whine if TscFreqSel is clear, 3855 * depending on F/M/S. 3856 */ 3857 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3858 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3859 return 1; 3860 } 3861 vcpu->arch.msr_hwcr = data; 3862 break; 3863 case MSR_FAM10H_MMIO_CONF_BASE: 3864 if (data != 0) { 3865 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3866 return 1; 3867 } 3868 break; 3869 case MSR_IA32_CR_PAT: 3870 if (!kvm_pat_valid(data)) 3871 return 1; 3872 3873 vcpu->arch.pat = data; 3874 break; 3875 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3876 case MSR_MTRRdefType: 3877 return kvm_mtrr_set_msr(vcpu, msr, data); 3878 case MSR_IA32_APICBASE: 3879 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); 3880 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3881 return kvm_x2apic_msr_write(vcpu, msr, data); 3882 case MSR_IA32_TSC_DEADLINE: 3883 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3884 break; 3885 case MSR_IA32_TSC_ADJUST: 3886 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3887 if (!msr_info->host_initiated) { 3888 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3889 adjust_tsc_offset_guest(vcpu, adj); 3890 /* Before back to guest, tsc_timestamp must be adjusted 3891 * as well, otherwise guest's percpu pvclock time could jump. 3892 */ 3893 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3894 } 3895 vcpu->arch.ia32_tsc_adjust_msr = data; 3896 } 3897 break; 3898 case MSR_IA32_MISC_ENABLE: { 3899 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3900 3901 if (!msr_info->host_initiated) { 3902 /* RO bits */ 3903 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3904 return 1; 3905 3906 /* R bits, i.e. writes are ignored, but don't fault. */ 3907 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3908 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3909 } 3910 3911 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3912 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3913 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3)) 3914 return 1; 3915 vcpu->arch.ia32_misc_enable_msr = data; 3916 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3917 } else { 3918 vcpu->arch.ia32_misc_enable_msr = data; 3919 } 3920 break; 3921 } 3922 case MSR_IA32_SMBASE: 3923 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3924 return 1; 3925 vcpu->arch.smbase = data; 3926 break; 3927 case MSR_IA32_POWER_CTL: 3928 vcpu->arch.msr_ia32_power_ctl = data; 3929 break; 3930 case MSR_IA32_TSC: 3931 if (msr_info->host_initiated) { 3932 kvm_synchronize_tsc(vcpu, &data); 3933 } else if (!vcpu->arch.guest_tsc_protected) { 3934 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3935 adjust_tsc_offset_guest(vcpu, adj); 3936 vcpu->arch.ia32_tsc_adjust_msr += adj; 3937 } 3938 break; 3939 case MSR_IA32_XSS: 3940 if (!msr_info->host_initiated && 3941 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3942 return 1; 3943 /* 3944 * KVM supports exposing PT to the guest, but does not support 3945 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3946 * XSAVES/XRSTORS to save/restore PT MSRs. 3947 */ 3948 if (data & ~kvm_caps.supported_xss) 3949 return 1; 3950 vcpu->arch.ia32_xss = data; 3951 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3952 break; 3953 case MSR_SMI_COUNT: 3954 if (!msr_info->host_initiated) 3955 return 1; 3956 vcpu->arch.smi_count = data; 3957 break; 3958 case MSR_KVM_WALL_CLOCK_NEW: 3959 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3960 return 1; 3961 3962 vcpu->kvm->arch.wall_clock = data; 3963 kvm_write_wall_clock(vcpu->kvm, data, 0); 3964 break; 3965 case MSR_KVM_WALL_CLOCK: 3966 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3967 return 1; 3968 3969 vcpu->kvm->arch.wall_clock = data; 3970 kvm_write_wall_clock(vcpu->kvm, data, 0); 3971 break; 3972 case MSR_KVM_SYSTEM_TIME_NEW: 3973 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3974 return 1; 3975 3976 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3977 break; 3978 case MSR_KVM_SYSTEM_TIME: 3979 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3980 return 1; 3981 3982 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3983 break; 3984 case MSR_KVM_ASYNC_PF_EN: 3985 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3986 return 1; 3987 3988 if (kvm_pv_enable_async_pf(vcpu, data)) 3989 return 1; 3990 break; 3991 case MSR_KVM_ASYNC_PF_INT: 3992 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3993 return 1; 3994 3995 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3996 return 1; 3997 break; 3998 case MSR_KVM_ASYNC_PF_ACK: 3999 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4000 return 1; 4001 if (data & 0x1) { 4002 vcpu->arch.apf.pageready_pending = false; 4003 kvm_check_async_pf_completion(vcpu); 4004 } 4005 break; 4006 case MSR_KVM_STEAL_TIME: 4007 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4008 return 1; 4009 4010 if (unlikely(!sched_info_on())) 4011 return 1; 4012 4013 if (data & KVM_STEAL_RESERVED_MASK) 4014 return 1; 4015 4016 vcpu->arch.st.msr_val = data; 4017 4018 if (!(data & KVM_MSR_ENABLED)) 4019 break; 4020 4021 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4022 4023 break; 4024 case MSR_KVM_PV_EOI_EN: 4025 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4026 return 1; 4027 4028 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4029 return 1; 4030 break; 4031 4032 case MSR_KVM_POLL_CONTROL: 4033 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4034 return 1; 4035 4036 /* only enable bit supported */ 4037 if (data & (-1ULL << 1)) 4038 return 1; 4039 4040 vcpu->arch.msr_kvm_poll_control = data; 4041 break; 4042 4043 case MSR_IA32_MCG_CTL: 4044 case MSR_IA32_MCG_STATUS: 4045 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4046 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4047 return set_msr_mce(vcpu, msr_info); 4048 4049 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4050 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4051 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4052 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4053 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4054 return kvm_pmu_set_msr(vcpu, msr_info); 4055 4056 if (data) 4057 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4058 break; 4059 case MSR_K7_CLK_CTL: 4060 /* 4061 * Ignore all writes to this no longer documented MSR. 4062 * Writes are only relevant for old K7 processors, 4063 * all pre-dating SVM, but a recommended workaround from 4064 * AMD for these chips. It is possible to specify the 4065 * affected processor models on the command line, hence 4066 * the need to ignore the workaround. 4067 */ 4068 break; 4069 #ifdef CONFIG_KVM_HYPERV 4070 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4071 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4072 case HV_X64_MSR_SYNDBG_OPTIONS: 4073 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4074 case HV_X64_MSR_CRASH_CTL: 4075 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4076 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4077 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4078 case HV_X64_MSR_TSC_EMULATION_STATUS: 4079 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4080 return kvm_hv_set_msr_common(vcpu, msr, data, 4081 msr_info->host_initiated); 4082 #endif 4083 case MSR_IA32_BBL_CR_CTL3: 4084 /* Drop writes to this legacy MSR -- see rdmsr 4085 * counterpart for further detail. 4086 */ 4087 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4088 break; 4089 case MSR_AMD64_OSVW_ID_LENGTH: 4090 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4091 return 1; 4092 vcpu->arch.osvw.length = data; 4093 break; 4094 case MSR_AMD64_OSVW_STATUS: 4095 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4096 return 1; 4097 vcpu->arch.osvw.status = data; 4098 break; 4099 case MSR_PLATFORM_INFO: 4100 if (!msr_info->host_initiated) 4101 return 1; 4102 vcpu->arch.msr_platform_info = data; 4103 break; 4104 case MSR_MISC_FEATURES_ENABLES: 4105 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4106 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4107 !supports_cpuid_fault(vcpu))) 4108 return 1; 4109 vcpu->arch.msr_misc_features_enables = data; 4110 break; 4111 #ifdef CONFIG_X86_64 4112 case MSR_IA32_XFD: 4113 if (!msr_info->host_initiated && 4114 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4115 return 1; 4116 4117 if (data & ~kvm_guest_supported_xfd(vcpu)) 4118 return 1; 4119 4120 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4121 break; 4122 case MSR_IA32_XFD_ERR: 4123 if (!msr_info->host_initiated && 4124 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4125 return 1; 4126 4127 if (data & ~kvm_guest_supported_xfd(vcpu)) 4128 return 1; 4129 4130 vcpu->arch.guest_fpu.xfd_err = data; 4131 break; 4132 #endif 4133 default: 4134 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4135 return kvm_pmu_set_msr(vcpu, msr_info); 4136 4137 return KVM_MSR_RET_UNSUPPORTED; 4138 } 4139 return 0; 4140 } 4141 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4142 get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4143 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4144 { 4145 u64 data; 4146 u64 mcg_cap = vcpu->arch.mcg_cap; 4147 unsigned bank_num = mcg_cap & 0xff; 4148 u32 offset, last_msr; 4149 4150 switch (msr) { 4151 case MSR_IA32_P5_MC_ADDR: 4152 case MSR_IA32_P5_MC_TYPE: 4153 data = 0; 4154 break; 4155 case MSR_IA32_MCG_CAP: 4156 data = vcpu->arch.mcg_cap; 4157 break; 4158 case MSR_IA32_MCG_CTL: 4159 if (!(mcg_cap & MCG_CTL_P) && !host) 4160 return 1; 4161 data = vcpu->arch.mcg_ctl; 4162 break; 4163 case MSR_IA32_MCG_STATUS: 4164 data = vcpu->arch.mcg_status; 4165 break; 4166 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4167 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4168 if (msr > last_msr) 4169 return 1; 4170 4171 if (!(mcg_cap & MCG_CMCI_P) && !host) 4172 return 1; 4173 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4174 last_msr + 1 - MSR_IA32_MC0_CTL2); 4175 data = vcpu->arch.mci_ctl2_banks[offset]; 4176 break; 4177 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4178 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4179 if (msr > last_msr) 4180 return 1; 4181 4182 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4183 last_msr + 1 - MSR_IA32_MC0_CTL); 4184 data = vcpu->arch.mce_banks[offset]; 4185 break; 4186 default: 4187 return 1; 4188 } 4189 *pdata = data; 4190 return 0; 4191 } 4192 kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4193 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4194 { 4195 switch (msr_info->index) { 4196 case MSR_IA32_PLATFORM_ID: 4197 case MSR_IA32_EBL_CR_POWERON: 4198 case MSR_IA32_LASTBRANCHFROMIP: 4199 case MSR_IA32_LASTBRANCHTOIP: 4200 case MSR_IA32_LASTINTFROMIP: 4201 case MSR_IA32_LASTINTTOIP: 4202 case MSR_AMD64_SYSCFG: 4203 case MSR_K8_TSEG_ADDR: 4204 case MSR_K8_TSEG_MASK: 4205 case MSR_VM_HSAVE_PA: 4206 case MSR_K8_INT_PENDING_MSG: 4207 case MSR_AMD64_NB_CFG: 4208 case MSR_FAM10H_MMIO_CONF_BASE: 4209 case MSR_AMD64_BU_CFG2: 4210 case MSR_IA32_PERF_CTL: 4211 case MSR_AMD64_DC_CFG: 4212 case MSR_AMD64_TW_CFG: 4213 case MSR_F15H_EX_CFG: 4214 /* 4215 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4216 * limit) MSRs. Just return 0, as we do not want to expose the host 4217 * data here. Do not conditionalize this on CPUID, as KVM does not do 4218 * so for existing CPU-specific MSRs. 4219 */ 4220 case MSR_RAPL_POWER_UNIT: 4221 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4222 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4223 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4224 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4225 msr_info->data = 0; 4226 break; 4227 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4228 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4229 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4230 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4231 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4232 return kvm_pmu_get_msr(vcpu, msr_info); 4233 msr_info->data = 0; 4234 break; 4235 case MSR_IA32_UCODE_REV: 4236 msr_info->data = vcpu->arch.microcode_version; 4237 break; 4238 case MSR_IA32_ARCH_CAPABILITIES: 4239 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4240 return KVM_MSR_RET_UNSUPPORTED; 4241 msr_info->data = vcpu->arch.arch_capabilities; 4242 break; 4243 case MSR_IA32_PERF_CAPABILITIES: 4244 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 4245 return KVM_MSR_RET_UNSUPPORTED; 4246 msr_info->data = vcpu->arch.perf_capabilities; 4247 break; 4248 case MSR_IA32_POWER_CTL: 4249 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4250 break; 4251 case MSR_IA32_TSC: { 4252 /* 4253 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4254 * even when not intercepted. AMD manual doesn't explicitly 4255 * state this but appears to behave the same. 4256 * 4257 * On userspace reads and writes, however, we unconditionally 4258 * return L1's TSC value to ensure backwards-compatible 4259 * behavior for migration. 4260 */ 4261 u64 offset, ratio; 4262 4263 if (msr_info->host_initiated) { 4264 offset = vcpu->arch.l1_tsc_offset; 4265 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4266 } else { 4267 offset = vcpu->arch.tsc_offset; 4268 ratio = vcpu->arch.tsc_scaling_ratio; 4269 } 4270 4271 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4272 break; 4273 } 4274 case MSR_IA32_CR_PAT: 4275 msr_info->data = vcpu->arch.pat; 4276 break; 4277 case MSR_MTRRcap: 4278 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4279 case MSR_MTRRdefType: 4280 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4281 case 0xcd: /* fsb frequency */ 4282 msr_info->data = 3; 4283 break; 4284 /* 4285 * MSR_EBC_FREQUENCY_ID 4286 * Conservative value valid for even the basic CPU models. 4287 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4288 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4289 * and 266MHz for model 3, or 4. Set Core Clock 4290 * Frequency to System Bus Frequency Ratio to 1 (bits 4291 * 31:24) even though these are only valid for CPU 4292 * models > 2, however guests may end up dividing or 4293 * multiplying by zero otherwise. 4294 */ 4295 case MSR_EBC_FREQUENCY_ID: 4296 msr_info->data = 1 << 24; 4297 break; 4298 case MSR_IA32_APICBASE: 4299 msr_info->data = vcpu->arch.apic_base; 4300 break; 4301 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4302 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4303 case MSR_IA32_TSC_DEADLINE: 4304 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4305 break; 4306 case MSR_IA32_TSC_ADJUST: 4307 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4308 break; 4309 case MSR_IA32_MISC_ENABLE: 4310 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4311 break; 4312 case MSR_IA32_SMBASE: 4313 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4314 return 1; 4315 msr_info->data = vcpu->arch.smbase; 4316 break; 4317 case MSR_SMI_COUNT: 4318 msr_info->data = vcpu->arch.smi_count; 4319 break; 4320 case MSR_IA32_PERF_STATUS: 4321 /* TSC increment by tick */ 4322 msr_info->data = 1000ULL; 4323 /* CPU multiplier */ 4324 msr_info->data |= (((uint64_t)4ULL) << 40); 4325 break; 4326 case MSR_EFER: 4327 msr_info->data = vcpu->arch.efer; 4328 break; 4329 case MSR_KVM_WALL_CLOCK: 4330 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4331 return 1; 4332 4333 msr_info->data = vcpu->kvm->arch.wall_clock; 4334 break; 4335 case MSR_KVM_WALL_CLOCK_NEW: 4336 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4337 return 1; 4338 4339 msr_info->data = vcpu->kvm->arch.wall_clock; 4340 break; 4341 case MSR_KVM_SYSTEM_TIME: 4342 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4343 return 1; 4344 4345 msr_info->data = vcpu->arch.time; 4346 break; 4347 case MSR_KVM_SYSTEM_TIME_NEW: 4348 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4349 return 1; 4350 4351 msr_info->data = vcpu->arch.time; 4352 break; 4353 case MSR_KVM_ASYNC_PF_EN: 4354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4355 return 1; 4356 4357 msr_info->data = vcpu->arch.apf.msr_en_val; 4358 break; 4359 case MSR_KVM_ASYNC_PF_INT: 4360 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4361 return 1; 4362 4363 msr_info->data = vcpu->arch.apf.msr_int_val; 4364 break; 4365 case MSR_KVM_ASYNC_PF_ACK: 4366 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4367 return 1; 4368 4369 msr_info->data = 0; 4370 break; 4371 case MSR_KVM_STEAL_TIME: 4372 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4373 return 1; 4374 4375 msr_info->data = vcpu->arch.st.msr_val; 4376 break; 4377 case MSR_KVM_PV_EOI_EN: 4378 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4379 return 1; 4380 4381 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4382 break; 4383 case MSR_KVM_POLL_CONTROL: 4384 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4385 return 1; 4386 4387 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4388 break; 4389 case MSR_IA32_P5_MC_ADDR: 4390 case MSR_IA32_P5_MC_TYPE: 4391 case MSR_IA32_MCG_CAP: 4392 case MSR_IA32_MCG_CTL: 4393 case MSR_IA32_MCG_STATUS: 4394 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4395 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4396 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4397 msr_info->host_initiated); 4398 case MSR_IA32_XSS: 4399 if (!msr_info->host_initiated && 4400 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4401 return 1; 4402 msr_info->data = vcpu->arch.ia32_xss; 4403 break; 4404 case MSR_K7_CLK_CTL: 4405 /* 4406 * Provide expected ramp-up count for K7. All other 4407 * are set to zero, indicating minimum divisors for 4408 * every field. 4409 * 4410 * This prevents guest kernels on AMD host with CPU 4411 * type 6, model 8 and higher from exploding due to 4412 * the rdmsr failing. 4413 */ 4414 msr_info->data = 0x20000000; 4415 break; 4416 #ifdef CONFIG_KVM_HYPERV 4417 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4418 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4419 case HV_X64_MSR_SYNDBG_OPTIONS: 4420 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4421 case HV_X64_MSR_CRASH_CTL: 4422 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4423 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4424 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4425 case HV_X64_MSR_TSC_EMULATION_STATUS: 4426 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4427 return kvm_hv_get_msr_common(vcpu, 4428 msr_info->index, &msr_info->data, 4429 msr_info->host_initiated); 4430 #endif 4431 case MSR_IA32_BBL_CR_CTL3: 4432 /* This legacy MSR exists but isn't fully documented in current 4433 * silicon. It is however accessed by winxp in very narrow 4434 * scenarios where it sets bit #19, itself documented as 4435 * a "reserved" bit. Best effort attempt to source coherent 4436 * read data here should the balance of the register be 4437 * interpreted by the guest: 4438 * 4439 * L2 cache control register 3: 64GB range, 256KB size, 4440 * enabled, latency 0x1, configured 4441 */ 4442 msr_info->data = 0xbe702111; 4443 break; 4444 case MSR_AMD64_OSVW_ID_LENGTH: 4445 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4446 return 1; 4447 msr_info->data = vcpu->arch.osvw.length; 4448 break; 4449 case MSR_AMD64_OSVW_STATUS: 4450 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4451 return 1; 4452 msr_info->data = vcpu->arch.osvw.status; 4453 break; 4454 case MSR_PLATFORM_INFO: 4455 if (!msr_info->host_initiated && 4456 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4457 return 1; 4458 msr_info->data = vcpu->arch.msr_platform_info; 4459 break; 4460 case MSR_MISC_FEATURES_ENABLES: 4461 msr_info->data = vcpu->arch.msr_misc_features_enables; 4462 break; 4463 case MSR_K7_HWCR: 4464 msr_info->data = vcpu->arch.msr_hwcr; 4465 break; 4466 #ifdef CONFIG_X86_64 4467 case MSR_IA32_XFD: 4468 if (!msr_info->host_initiated && 4469 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4470 return 1; 4471 4472 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4473 break; 4474 case MSR_IA32_XFD_ERR: 4475 if (!msr_info->host_initiated && 4476 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4477 return 1; 4478 4479 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4480 break; 4481 #endif 4482 default: 4483 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4484 return kvm_pmu_get_msr(vcpu, msr_info); 4485 4486 return KVM_MSR_RET_UNSUPPORTED; 4487 } 4488 return 0; 4489 } 4490 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4491 4492 /* 4493 * Read or write a bunch of msrs. All parameters are kernel addresses. 4494 * 4495 * @return number of msrs set successfully. 4496 */ __msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4497 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4498 struct kvm_msr_entry *entries, 4499 int (*do_msr)(struct kvm_vcpu *vcpu, 4500 unsigned index, u64 *data)) 4501 { 4502 int i; 4503 4504 for (i = 0; i < msrs->nmsrs; ++i) 4505 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4506 break; 4507 4508 return i; 4509 } 4510 4511 /* 4512 * Read or write a bunch of msrs. Parameters are user addresses. 4513 * 4514 * @return number of msrs set successfully. 4515 */ msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4516 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4517 int (*do_msr)(struct kvm_vcpu *vcpu, 4518 unsigned index, u64 *data), 4519 int writeback) 4520 { 4521 struct kvm_msrs msrs; 4522 struct kvm_msr_entry *entries; 4523 unsigned size; 4524 int r; 4525 4526 r = -EFAULT; 4527 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4528 goto out; 4529 4530 r = -E2BIG; 4531 if (msrs.nmsrs >= MAX_IO_MSRS) 4532 goto out; 4533 4534 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4535 entries = memdup_user(user_msrs->entries, size); 4536 if (IS_ERR(entries)) { 4537 r = PTR_ERR(entries); 4538 goto out; 4539 } 4540 4541 r = __msr_io(vcpu, &msrs, entries, do_msr); 4542 4543 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4544 r = -EFAULT; 4545 4546 kfree(entries); 4547 out: 4548 return r; 4549 } 4550 kvm_can_mwait_in_guest(void)4551 static inline bool kvm_can_mwait_in_guest(void) 4552 { 4553 return boot_cpu_has(X86_FEATURE_MWAIT) && 4554 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4555 boot_cpu_has(X86_FEATURE_ARAT); 4556 } 4557 kvm_get_allowed_disable_exits(void)4558 static u64 kvm_get_allowed_disable_exits(void) 4559 { 4560 u64 r = KVM_X86_DISABLE_EXITS_PAUSE; 4561 4562 if (!mitigate_smt_rsb) { 4563 r |= KVM_X86_DISABLE_EXITS_HLT | 4564 KVM_X86_DISABLE_EXITS_CSTATE; 4565 4566 if (kvm_can_mwait_in_guest()) 4567 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4568 } 4569 return r; 4570 } 4571 4572 #ifdef CONFIG_KVM_HYPERV kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4573 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4574 struct kvm_cpuid2 __user *cpuid_arg) 4575 { 4576 struct kvm_cpuid2 cpuid; 4577 int r; 4578 4579 r = -EFAULT; 4580 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4581 return r; 4582 4583 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4584 if (r) 4585 return r; 4586 4587 r = -EFAULT; 4588 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4589 return r; 4590 4591 return 0; 4592 } 4593 #endif 4594 kvm_is_vm_type_supported(unsigned long type)4595 static bool kvm_is_vm_type_supported(unsigned long type) 4596 { 4597 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4598 } 4599 kvm_sync_valid_fields(struct kvm * kvm)4600 static inline u32 kvm_sync_valid_fields(struct kvm *kvm) 4601 { 4602 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS; 4603 } 4604 kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4605 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4606 { 4607 int r = 0; 4608 4609 switch (ext) { 4610 case KVM_CAP_IRQCHIP: 4611 case KVM_CAP_HLT: 4612 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4613 case KVM_CAP_SET_TSS_ADDR: 4614 case KVM_CAP_EXT_CPUID: 4615 case KVM_CAP_EXT_EMUL_CPUID: 4616 case KVM_CAP_CLOCKSOURCE: 4617 case KVM_CAP_PIT: 4618 case KVM_CAP_NOP_IO_DELAY: 4619 case KVM_CAP_MP_STATE: 4620 case KVM_CAP_SYNC_MMU: 4621 case KVM_CAP_USER_NMI: 4622 case KVM_CAP_REINJECT_CONTROL: 4623 case KVM_CAP_IRQ_INJECT_STATUS: 4624 case KVM_CAP_IOEVENTFD: 4625 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4626 case KVM_CAP_PIT2: 4627 case KVM_CAP_PIT_STATE2: 4628 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4629 case KVM_CAP_VCPU_EVENTS: 4630 #ifdef CONFIG_KVM_HYPERV 4631 case KVM_CAP_HYPERV: 4632 case KVM_CAP_HYPERV_VAPIC: 4633 case KVM_CAP_HYPERV_SPIN: 4634 case KVM_CAP_HYPERV_TIME: 4635 case KVM_CAP_HYPERV_SYNIC: 4636 case KVM_CAP_HYPERV_SYNIC2: 4637 case KVM_CAP_HYPERV_VP_INDEX: 4638 case KVM_CAP_HYPERV_EVENTFD: 4639 case KVM_CAP_HYPERV_TLBFLUSH: 4640 case KVM_CAP_HYPERV_SEND_IPI: 4641 case KVM_CAP_HYPERV_CPUID: 4642 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4643 case KVM_CAP_SYS_HYPERV_CPUID: 4644 #endif 4645 case KVM_CAP_PCI_SEGMENT: 4646 case KVM_CAP_DEBUGREGS: 4647 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4648 case KVM_CAP_XSAVE: 4649 case KVM_CAP_ASYNC_PF: 4650 case KVM_CAP_ASYNC_PF_INT: 4651 case KVM_CAP_GET_TSC_KHZ: 4652 case KVM_CAP_KVMCLOCK_CTRL: 4653 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4654 case KVM_CAP_TSC_DEADLINE_TIMER: 4655 case KVM_CAP_DISABLE_QUIRKS: 4656 case KVM_CAP_SET_BOOT_CPU_ID: 4657 case KVM_CAP_SPLIT_IRQCHIP: 4658 case KVM_CAP_IMMEDIATE_EXIT: 4659 case KVM_CAP_PMU_EVENT_FILTER: 4660 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4661 case KVM_CAP_GET_MSR_FEATURES: 4662 case KVM_CAP_MSR_PLATFORM_INFO: 4663 case KVM_CAP_EXCEPTION_PAYLOAD: 4664 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4665 case KVM_CAP_SET_GUEST_DEBUG: 4666 case KVM_CAP_LAST_CPU: 4667 case KVM_CAP_X86_USER_SPACE_MSR: 4668 case KVM_CAP_X86_MSR_FILTER: 4669 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4670 #ifdef CONFIG_X86_SGX_KVM 4671 case KVM_CAP_SGX_ATTRIBUTE: 4672 #endif 4673 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4674 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4675 case KVM_CAP_SREGS2: 4676 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4677 case KVM_CAP_VCPU_ATTRIBUTES: 4678 case KVM_CAP_SYS_ATTRIBUTES: 4679 case KVM_CAP_VAPIC: 4680 case KVM_CAP_ENABLE_CAP: 4681 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4682 case KVM_CAP_IRQFD_RESAMPLE: 4683 case KVM_CAP_MEMORY_FAULT_INFO: 4684 case KVM_CAP_X86_GUEST_MODE: 4685 r = 1; 4686 break; 4687 case KVM_CAP_PRE_FAULT_MEMORY: 4688 r = tdp_enabled; 4689 break; 4690 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4691 r = APIC_BUS_CYCLE_NS_DEFAULT; 4692 break; 4693 case KVM_CAP_EXIT_HYPERCALL: 4694 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4695 break; 4696 case KVM_CAP_SET_GUEST_DEBUG2: 4697 return KVM_GUESTDBG_VALID_MASK; 4698 #ifdef CONFIG_KVM_XEN 4699 case KVM_CAP_XEN_HVM: 4700 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4701 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4702 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4703 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4704 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4705 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4706 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4707 if (sched_info_on()) 4708 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4709 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4710 break; 4711 #endif 4712 case KVM_CAP_SYNC_REGS: 4713 r = kvm_sync_valid_fields(kvm); 4714 break; 4715 case KVM_CAP_ADJUST_CLOCK: 4716 r = KVM_CLOCK_VALID_FLAGS; 4717 break; 4718 case KVM_CAP_X86_DISABLE_EXITS: 4719 r = kvm_get_allowed_disable_exits(); 4720 break; 4721 case KVM_CAP_X86_SMM: 4722 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4723 break; 4724 4725 /* SMBASE is usually relocated above 1M on modern chipsets, 4726 * and SMM handlers might indeed rely on 4G segment limits, 4727 * so do not report SMM to be available if real mode is 4728 * emulated via vm86 mode. Still, do not go to great lengths 4729 * to avoid userspace's usage of the feature, because it is a 4730 * fringe case that is not enabled except via specific settings 4731 * of the module parameters. 4732 */ 4733 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4734 break; 4735 case KVM_CAP_NR_VCPUS: 4736 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4737 break; 4738 case KVM_CAP_MAX_VCPUS: 4739 r = KVM_MAX_VCPUS; 4740 break; 4741 case KVM_CAP_MAX_VCPU_ID: 4742 r = KVM_MAX_VCPU_IDS; 4743 break; 4744 case KVM_CAP_PV_MMU: /* obsolete */ 4745 r = 0; 4746 break; 4747 case KVM_CAP_MCE: 4748 r = KVM_MAX_MCE_BANKS; 4749 break; 4750 case KVM_CAP_XCRS: 4751 r = boot_cpu_has(X86_FEATURE_XSAVE); 4752 break; 4753 case KVM_CAP_TSC_CONTROL: 4754 case KVM_CAP_VM_TSC_CONTROL: 4755 r = kvm_caps.has_tsc_control; 4756 break; 4757 case KVM_CAP_X2APIC_API: 4758 r = KVM_X2APIC_API_VALID_FLAGS; 4759 break; 4760 case KVM_CAP_NESTED_STATE: 4761 r = kvm_x86_ops.nested_ops->get_state ? 4762 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4763 break; 4764 #ifdef CONFIG_KVM_HYPERV 4765 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4766 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4767 break; 4768 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4769 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4770 break; 4771 #endif 4772 case KVM_CAP_SMALLER_MAXPHYADDR: 4773 r = (int) allow_smaller_maxphyaddr; 4774 break; 4775 case KVM_CAP_STEAL_TIME: 4776 r = sched_info_on(); 4777 break; 4778 case KVM_CAP_X86_BUS_LOCK_EXIT: 4779 if (kvm_caps.has_bus_lock_exit) 4780 r = KVM_BUS_LOCK_DETECTION_OFF | 4781 KVM_BUS_LOCK_DETECTION_EXIT; 4782 else 4783 r = 0; 4784 break; 4785 case KVM_CAP_XSAVE2: { 4786 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4787 if (r < sizeof(struct kvm_xsave)) 4788 r = sizeof(struct kvm_xsave); 4789 break; 4790 } 4791 case KVM_CAP_PMU_CAPABILITY: 4792 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4793 break; 4794 case KVM_CAP_DISABLE_QUIRKS2: 4795 r = KVM_X86_VALID_QUIRKS; 4796 break; 4797 case KVM_CAP_X86_NOTIFY_VMEXIT: 4798 r = kvm_caps.has_notify_vmexit; 4799 break; 4800 case KVM_CAP_VM_TYPES: 4801 r = kvm_caps.supported_vm_types; 4802 break; 4803 case KVM_CAP_READONLY_MEM: 4804 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 4805 break; 4806 default: 4807 break; 4808 } 4809 return r; 4810 } 4811 __kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4812 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4813 { 4814 if (attr->group) { 4815 if (kvm_x86_ops.dev_get_attr) 4816 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4817 return -ENXIO; 4818 } 4819 4820 switch (attr->attr) { 4821 case KVM_X86_XCOMP_GUEST_SUPP: 4822 *val = kvm_caps.supported_xcr0; 4823 return 0; 4824 default: 4825 return -ENXIO; 4826 } 4827 } 4828 kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4829 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4830 { 4831 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4832 int r; 4833 u64 val; 4834 4835 r = __kvm_x86_dev_get_attr(attr, &val); 4836 if (r < 0) 4837 return r; 4838 4839 if (put_user(val, uaddr)) 4840 return -EFAULT; 4841 4842 return 0; 4843 } 4844 kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4845 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4846 { 4847 u64 val; 4848 4849 return __kvm_x86_dev_get_attr(attr, &val); 4850 } 4851 kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4852 long kvm_arch_dev_ioctl(struct file *filp, 4853 unsigned int ioctl, unsigned long arg) 4854 { 4855 void __user *argp = (void __user *)arg; 4856 long r; 4857 4858 switch (ioctl) { 4859 case KVM_GET_MSR_INDEX_LIST: { 4860 struct kvm_msr_list __user *user_msr_list = argp; 4861 struct kvm_msr_list msr_list; 4862 unsigned n; 4863 4864 r = -EFAULT; 4865 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4866 goto out; 4867 n = msr_list.nmsrs; 4868 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4869 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4870 goto out; 4871 r = -E2BIG; 4872 if (n < msr_list.nmsrs) 4873 goto out; 4874 r = -EFAULT; 4875 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4876 num_msrs_to_save * sizeof(u32))) 4877 goto out; 4878 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4879 &emulated_msrs, 4880 num_emulated_msrs * sizeof(u32))) 4881 goto out; 4882 r = 0; 4883 break; 4884 } 4885 case KVM_GET_SUPPORTED_CPUID: 4886 case KVM_GET_EMULATED_CPUID: { 4887 struct kvm_cpuid2 __user *cpuid_arg = argp; 4888 struct kvm_cpuid2 cpuid; 4889 4890 r = -EFAULT; 4891 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4892 goto out; 4893 4894 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4895 ioctl); 4896 if (r) 4897 goto out; 4898 4899 r = -EFAULT; 4900 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4901 goto out; 4902 r = 0; 4903 break; 4904 } 4905 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4906 r = -EFAULT; 4907 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4908 sizeof(kvm_caps.supported_mce_cap))) 4909 goto out; 4910 r = 0; 4911 break; 4912 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4913 struct kvm_msr_list __user *user_msr_list = argp; 4914 struct kvm_msr_list msr_list; 4915 unsigned int n; 4916 4917 r = -EFAULT; 4918 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4919 goto out; 4920 n = msr_list.nmsrs; 4921 msr_list.nmsrs = num_msr_based_features; 4922 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4923 goto out; 4924 r = -E2BIG; 4925 if (n < msr_list.nmsrs) 4926 goto out; 4927 r = -EFAULT; 4928 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4929 num_msr_based_features * sizeof(u32))) 4930 goto out; 4931 r = 0; 4932 break; 4933 } 4934 case KVM_GET_MSRS: 4935 r = msr_io(NULL, argp, do_get_feature_msr, 1); 4936 break; 4937 #ifdef CONFIG_KVM_HYPERV 4938 case KVM_GET_SUPPORTED_HV_CPUID: 4939 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4940 break; 4941 #endif 4942 case KVM_GET_DEVICE_ATTR: { 4943 struct kvm_device_attr attr; 4944 r = -EFAULT; 4945 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4946 break; 4947 r = kvm_x86_dev_get_attr(&attr); 4948 break; 4949 } 4950 case KVM_HAS_DEVICE_ATTR: { 4951 struct kvm_device_attr attr; 4952 r = -EFAULT; 4953 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4954 break; 4955 r = kvm_x86_dev_has_attr(&attr); 4956 break; 4957 } 4958 default: 4959 r = -EINVAL; 4960 break; 4961 } 4962 out: 4963 return r; 4964 } 4965 wbinvd_ipi(void * garbage)4966 static void wbinvd_ipi(void *garbage) 4967 { 4968 wbinvd(); 4969 } 4970 need_emulate_wbinvd(struct kvm_vcpu * vcpu)4971 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4972 { 4973 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4974 } 4975 kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4976 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4977 { 4978 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 4979 4980 vcpu->arch.l1tf_flush_l1d = true; 4981 4982 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 4983 pmu->need_cleanup = true; 4984 kvm_make_request(KVM_REQ_PMU, vcpu); 4985 } 4986 4987 /* Address WBINVD may be executed by guest */ 4988 if (need_emulate_wbinvd(vcpu)) { 4989 if (kvm_x86_call(has_wbinvd_exit)()) 4990 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4991 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4992 smp_call_function_single(vcpu->cpu, 4993 wbinvd_ipi, NULL, 1); 4994 } 4995 4996 kvm_x86_call(vcpu_load)(vcpu, cpu); 4997 4998 /* Save host pkru register if supported */ 4999 vcpu->arch.host_pkru = read_pkru(); 5000 5001 /* Apply any externally detected TSC adjustments (due to suspend) */ 5002 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5003 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5004 vcpu->arch.tsc_offset_adjustment = 0; 5005 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5006 } 5007 5008 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5009 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5010 rdtsc() - vcpu->arch.last_host_tsc; 5011 if (tsc_delta < 0) 5012 mark_tsc_unstable("KVM discovered backwards TSC"); 5013 5014 if (kvm_check_tsc_unstable()) { 5015 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5016 vcpu->arch.last_guest_tsc); 5017 kvm_vcpu_write_tsc_offset(vcpu, offset); 5018 if (!vcpu->arch.guest_tsc_protected) 5019 vcpu->arch.tsc_catchup = 1; 5020 } 5021 5022 if (kvm_lapic_hv_timer_in_use(vcpu)) 5023 kvm_lapic_restart_hv_timer(vcpu); 5024 5025 /* 5026 * On a host with synchronized TSC, there is no need to update 5027 * kvmclock on vcpu->cpu migration 5028 */ 5029 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5030 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5031 if (vcpu->cpu != cpu) 5032 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5033 vcpu->cpu = cpu; 5034 } 5035 5036 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5037 } 5038 kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5039 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5040 { 5041 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5042 struct kvm_steal_time __user *st; 5043 struct kvm_memslots *slots; 5044 static const u8 preempted = KVM_VCPU_PREEMPTED; 5045 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5046 5047 /* 5048 * The vCPU can be marked preempted if and only if the VM-Exit was on 5049 * an instruction boundary and will not trigger guest emulation of any 5050 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5051 * when this is true, for example allowing the vCPU to be marked 5052 * preempted if and only if the VM-Exit was due to a host interrupt. 5053 */ 5054 if (!vcpu->arch.at_instruction_boundary) { 5055 vcpu->stat.preemption_other++; 5056 return; 5057 } 5058 5059 vcpu->stat.preemption_reported++; 5060 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5061 return; 5062 5063 if (vcpu->arch.st.preempted) 5064 return; 5065 5066 /* This happens on process exit */ 5067 if (unlikely(current->mm != vcpu->kvm->mm)) 5068 return; 5069 5070 slots = kvm_memslots(vcpu->kvm); 5071 5072 if (unlikely(slots->generation != ghc->generation || 5073 gpa != ghc->gpa || 5074 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5075 return; 5076 5077 st = (struct kvm_steal_time __user *)ghc->hva; 5078 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5079 5080 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5081 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5082 5083 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5084 } 5085 kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5086 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5087 { 5088 int idx; 5089 5090 if (vcpu->preempted) { 5091 /* 5092 * Assume protected guests are in-kernel. Inefficient yielding 5093 * due to false positives is preferable to never yielding due 5094 * to false negatives. 5095 */ 5096 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || 5097 !kvm_x86_call(get_cpl_no_cache)(vcpu); 5098 5099 /* 5100 * Take the srcu lock as memslots will be accessed to check the gfn 5101 * cache generation against the memslots generation. 5102 */ 5103 idx = srcu_read_lock(&vcpu->kvm->srcu); 5104 if (kvm_xen_msr_enabled(vcpu->kvm)) 5105 kvm_xen_runstate_set_preempted(vcpu); 5106 else 5107 kvm_steal_time_set_preempted(vcpu); 5108 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5109 } 5110 5111 kvm_x86_call(vcpu_put)(vcpu); 5112 vcpu->arch.last_host_tsc = rdtsc(); 5113 } 5114 kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5115 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5116 struct kvm_lapic_state *s) 5117 { 5118 kvm_x86_call(sync_pir_to_irr)(vcpu); 5119 5120 return kvm_apic_get_state(vcpu, s); 5121 } 5122 kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5123 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5124 struct kvm_lapic_state *s) 5125 { 5126 int r; 5127 5128 r = kvm_apic_set_state(vcpu, s); 5129 if (r) 5130 return r; 5131 update_cr8_intercept(vcpu); 5132 5133 return 0; 5134 } 5135 kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5136 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5137 { 5138 /* 5139 * We can accept userspace's request for interrupt injection 5140 * as long as we have a place to store the interrupt number. 5141 * The actual injection will happen when the CPU is able to 5142 * deliver the interrupt. 5143 */ 5144 if (kvm_cpu_has_extint(vcpu)) 5145 return false; 5146 5147 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5148 return (!lapic_in_kernel(vcpu) || 5149 kvm_apic_accept_pic_intr(vcpu)); 5150 } 5151 kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5152 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5153 { 5154 /* 5155 * Do not cause an interrupt window exit if an exception 5156 * is pending or an event needs reinjection; userspace 5157 * might want to inject the interrupt manually using KVM_SET_REGS 5158 * or KVM_SET_SREGS. For that to work, we must be at an 5159 * instruction boundary and with no events half-injected. 5160 */ 5161 return (kvm_arch_interrupt_allowed(vcpu) && 5162 kvm_cpu_accept_dm_intr(vcpu) && 5163 !kvm_event_needs_reinjection(vcpu) && 5164 !kvm_is_exception_pending(vcpu)); 5165 } 5166 kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5167 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5168 struct kvm_interrupt *irq) 5169 { 5170 if (irq->irq >= KVM_NR_INTERRUPTS) 5171 return -EINVAL; 5172 5173 if (!irqchip_in_kernel(vcpu->kvm)) { 5174 kvm_queue_interrupt(vcpu, irq->irq, false); 5175 kvm_make_request(KVM_REQ_EVENT, vcpu); 5176 return 0; 5177 } 5178 5179 /* 5180 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5181 * fail for in-kernel 8259. 5182 */ 5183 if (pic_in_kernel(vcpu->kvm)) 5184 return -ENXIO; 5185 5186 if (vcpu->arch.pending_external_vector != -1) 5187 return -EEXIST; 5188 5189 vcpu->arch.pending_external_vector = irq->irq; 5190 kvm_make_request(KVM_REQ_EVENT, vcpu); 5191 return 0; 5192 } 5193 kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5194 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5195 { 5196 kvm_inject_nmi(vcpu); 5197 5198 return 0; 5199 } 5200 vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5201 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5202 struct kvm_tpr_access_ctl *tac) 5203 { 5204 if (tac->flags) 5205 return -EINVAL; 5206 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5207 return 0; 5208 } 5209 kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5210 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5211 u64 mcg_cap) 5212 { 5213 int r; 5214 unsigned bank_num = mcg_cap & 0xff, bank; 5215 5216 r = -EINVAL; 5217 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5218 goto out; 5219 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5220 goto out; 5221 r = 0; 5222 vcpu->arch.mcg_cap = mcg_cap; 5223 /* Init IA32_MCG_CTL to all 1s */ 5224 if (mcg_cap & MCG_CTL_P) 5225 vcpu->arch.mcg_ctl = ~(u64)0; 5226 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5227 for (bank = 0; bank < bank_num; bank++) { 5228 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5229 if (mcg_cap & MCG_CMCI_P) 5230 vcpu->arch.mci_ctl2_banks[bank] = 0; 5231 } 5232 5233 kvm_apic_after_set_mcg_cap(vcpu); 5234 5235 kvm_x86_call(setup_mce)(vcpu); 5236 out: 5237 return r; 5238 } 5239 5240 /* 5241 * Validate this is an UCNA (uncorrectable no action) error by checking the 5242 * MCG_STATUS and MCi_STATUS registers: 5243 * - none of the bits for Machine Check Exceptions are set 5244 * - both the VAL (valid) and UC (uncorrectable) bits are set 5245 * MCI_STATUS_PCC - Processor Context Corrupted 5246 * MCI_STATUS_S - Signaled as a Machine Check Exception 5247 * MCI_STATUS_AR - Software recoverable Action Required 5248 */ is_ucna(struct kvm_x86_mce * mce)5249 static bool is_ucna(struct kvm_x86_mce *mce) 5250 { 5251 return !mce->mcg_status && 5252 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5253 (mce->status & MCI_STATUS_VAL) && 5254 (mce->status & MCI_STATUS_UC); 5255 } 5256 kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5257 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5258 { 5259 u64 mcg_cap = vcpu->arch.mcg_cap; 5260 5261 banks[1] = mce->status; 5262 banks[2] = mce->addr; 5263 banks[3] = mce->misc; 5264 vcpu->arch.mcg_status = mce->mcg_status; 5265 5266 if (!(mcg_cap & MCG_CMCI_P) || 5267 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5268 return 0; 5269 5270 if (lapic_in_kernel(vcpu)) 5271 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5272 5273 return 0; 5274 } 5275 kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5276 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5277 struct kvm_x86_mce *mce) 5278 { 5279 u64 mcg_cap = vcpu->arch.mcg_cap; 5280 unsigned bank_num = mcg_cap & 0xff; 5281 u64 *banks = vcpu->arch.mce_banks; 5282 5283 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5284 return -EINVAL; 5285 5286 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5287 5288 if (is_ucna(mce)) 5289 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5290 5291 /* 5292 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5293 * reporting is disabled 5294 */ 5295 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5296 vcpu->arch.mcg_ctl != ~(u64)0) 5297 return 0; 5298 /* 5299 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5300 * reporting is disabled for the bank 5301 */ 5302 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5303 return 0; 5304 if (mce->status & MCI_STATUS_UC) { 5305 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5306 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5308 return 0; 5309 } 5310 if (banks[1] & MCI_STATUS_VAL) 5311 mce->status |= MCI_STATUS_OVER; 5312 banks[2] = mce->addr; 5313 banks[3] = mce->misc; 5314 vcpu->arch.mcg_status = mce->mcg_status; 5315 banks[1] = mce->status; 5316 kvm_queue_exception(vcpu, MC_VECTOR); 5317 } else if (!(banks[1] & MCI_STATUS_VAL) 5318 || !(banks[1] & MCI_STATUS_UC)) { 5319 if (banks[1] & MCI_STATUS_VAL) 5320 mce->status |= MCI_STATUS_OVER; 5321 banks[2] = mce->addr; 5322 banks[3] = mce->misc; 5323 banks[1] = mce->status; 5324 } else 5325 banks[1] |= MCI_STATUS_OVER; 5326 return 0; 5327 } 5328 kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5329 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5330 struct kvm_vcpu_events *events) 5331 { 5332 struct kvm_queued_exception *ex; 5333 5334 process_nmi(vcpu); 5335 5336 #ifdef CONFIG_KVM_SMM 5337 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5338 process_smi(vcpu); 5339 #endif 5340 5341 /* 5342 * KVM's ABI only allows for one exception to be migrated. Luckily, 5343 * the only time there can be two queued exceptions is if there's a 5344 * non-exiting _injected_ exception, and a pending exiting exception. 5345 * In that case, ignore the VM-Exiting exception as it's an extension 5346 * of the injected exception. 5347 */ 5348 if (vcpu->arch.exception_vmexit.pending && 5349 !vcpu->arch.exception.pending && 5350 !vcpu->arch.exception.injected) 5351 ex = &vcpu->arch.exception_vmexit; 5352 else 5353 ex = &vcpu->arch.exception; 5354 5355 /* 5356 * In guest mode, payload delivery should be deferred if the exception 5357 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5358 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5359 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5360 * propagate the payload and so it cannot be safely deferred. Deliver 5361 * the payload if the capability hasn't been requested. 5362 */ 5363 if (!vcpu->kvm->arch.exception_payload_enabled && 5364 ex->pending && ex->has_payload) 5365 kvm_deliver_exception_payload(vcpu, ex); 5366 5367 memset(events, 0, sizeof(*events)); 5368 5369 /* 5370 * The API doesn't provide the instruction length for software 5371 * exceptions, so don't report them. As long as the guest RIP 5372 * isn't advanced, we should expect to encounter the exception 5373 * again. 5374 */ 5375 if (!kvm_exception_is_soft(ex->vector)) { 5376 events->exception.injected = ex->injected; 5377 events->exception.pending = ex->pending; 5378 /* 5379 * For ABI compatibility, deliberately conflate 5380 * pending and injected exceptions when 5381 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5382 */ 5383 if (!vcpu->kvm->arch.exception_payload_enabled) 5384 events->exception.injected |= ex->pending; 5385 } 5386 events->exception.nr = ex->vector; 5387 events->exception.has_error_code = ex->has_error_code; 5388 events->exception.error_code = ex->error_code; 5389 events->exception_has_payload = ex->has_payload; 5390 events->exception_payload = ex->payload; 5391 5392 events->interrupt.injected = 5393 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5394 events->interrupt.nr = vcpu->arch.interrupt.nr; 5395 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5396 5397 events->nmi.injected = vcpu->arch.nmi_injected; 5398 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5399 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5400 5401 /* events->sipi_vector is never valid when reporting to user space */ 5402 5403 #ifdef CONFIG_KVM_SMM 5404 events->smi.smm = is_smm(vcpu); 5405 events->smi.pending = vcpu->arch.smi_pending; 5406 events->smi.smm_inside_nmi = 5407 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5408 #endif 5409 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5410 5411 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5412 | KVM_VCPUEVENT_VALID_SHADOW 5413 | KVM_VCPUEVENT_VALID_SMM); 5414 if (vcpu->kvm->arch.exception_payload_enabled) 5415 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5416 if (vcpu->kvm->arch.triple_fault_event) { 5417 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5418 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5419 } 5420 } 5421 kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5422 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5423 struct kvm_vcpu_events *events) 5424 { 5425 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5426 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5427 | KVM_VCPUEVENT_VALID_SHADOW 5428 | KVM_VCPUEVENT_VALID_SMM 5429 | KVM_VCPUEVENT_VALID_PAYLOAD 5430 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5431 return -EINVAL; 5432 5433 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5434 if (!vcpu->kvm->arch.exception_payload_enabled) 5435 return -EINVAL; 5436 if (events->exception.pending) 5437 events->exception.injected = 0; 5438 else 5439 events->exception_has_payload = 0; 5440 } else { 5441 events->exception.pending = 0; 5442 events->exception_has_payload = 0; 5443 } 5444 5445 if ((events->exception.injected || events->exception.pending) && 5446 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5447 return -EINVAL; 5448 5449 /* INITs are latched while in SMM */ 5450 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5451 (events->smi.smm || events->smi.pending) && 5452 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5453 return -EINVAL; 5454 5455 process_nmi(vcpu); 5456 5457 /* 5458 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5459 * morph the exception to a VM-Exit if appropriate. Do this only for 5460 * pending exceptions, already-injected exceptions are not subject to 5461 * intercpetion. Note, userspace that conflates pending and injected 5462 * is hosed, and will incorrectly convert an injected exception into a 5463 * pending exception, which in turn may cause a spurious VM-Exit. 5464 */ 5465 vcpu->arch.exception_from_userspace = events->exception.pending; 5466 5467 vcpu->arch.exception_vmexit.pending = false; 5468 5469 vcpu->arch.exception.injected = events->exception.injected; 5470 vcpu->arch.exception.pending = events->exception.pending; 5471 vcpu->arch.exception.vector = events->exception.nr; 5472 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5473 vcpu->arch.exception.error_code = events->exception.error_code; 5474 vcpu->arch.exception.has_payload = events->exception_has_payload; 5475 vcpu->arch.exception.payload = events->exception_payload; 5476 5477 vcpu->arch.interrupt.injected = events->interrupt.injected; 5478 vcpu->arch.interrupt.nr = events->interrupt.nr; 5479 vcpu->arch.interrupt.soft = events->interrupt.soft; 5480 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5481 kvm_x86_call(set_interrupt_shadow)(vcpu, 5482 events->interrupt.shadow); 5483 5484 vcpu->arch.nmi_injected = events->nmi.injected; 5485 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5486 vcpu->arch.nmi_pending = 0; 5487 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5488 if (events->nmi.pending) 5489 kvm_make_request(KVM_REQ_NMI, vcpu); 5490 } 5491 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5492 5493 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5494 lapic_in_kernel(vcpu)) 5495 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5496 5497 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5498 #ifdef CONFIG_KVM_SMM 5499 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5500 kvm_leave_nested(vcpu); 5501 kvm_smm_changed(vcpu, events->smi.smm); 5502 } 5503 5504 vcpu->arch.smi_pending = events->smi.pending; 5505 5506 if (events->smi.smm) { 5507 if (events->smi.smm_inside_nmi) 5508 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5509 else 5510 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5511 } 5512 5513 #else 5514 if (events->smi.smm || events->smi.pending || 5515 events->smi.smm_inside_nmi) 5516 return -EINVAL; 5517 #endif 5518 5519 if (lapic_in_kernel(vcpu)) { 5520 if (events->smi.latched_init) 5521 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5522 else 5523 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5524 } 5525 } 5526 5527 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5528 if (!vcpu->kvm->arch.triple_fault_event) 5529 return -EINVAL; 5530 if (events->triple_fault.pending) 5531 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5532 else 5533 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5534 } 5535 5536 kvm_make_request(KVM_REQ_EVENT, vcpu); 5537 5538 return 0; 5539 } 5540 kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5541 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5542 struct kvm_debugregs *dbgregs) 5543 { 5544 unsigned int i; 5545 5546 if (vcpu->kvm->arch.has_protected_state && 5547 vcpu->arch.guest_state_protected) 5548 return -EINVAL; 5549 5550 memset(dbgregs, 0, sizeof(*dbgregs)); 5551 5552 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5553 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5554 dbgregs->db[i] = vcpu->arch.db[i]; 5555 5556 dbgregs->dr6 = vcpu->arch.dr6; 5557 dbgregs->dr7 = vcpu->arch.dr7; 5558 return 0; 5559 } 5560 kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5561 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5562 struct kvm_debugregs *dbgregs) 5563 { 5564 unsigned int i; 5565 5566 if (vcpu->kvm->arch.has_protected_state && 5567 vcpu->arch.guest_state_protected) 5568 return -EINVAL; 5569 5570 if (dbgregs->flags) 5571 return -EINVAL; 5572 5573 if (!kvm_dr6_valid(dbgregs->dr6)) 5574 return -EINVAL; 5575 if (!kvm_dr7_valid(dbgregs->dr7)) 5576 return -EINVAL; 5577 5578 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5579 vcpu->arch.db[i] = dbgregs->db[i]; 5580 5581 kvm_update_dr0123(vcpu); 5582 vcpu->arch.dr6 = dbgregs->dr6; 5583 vcpu->arch.dr7 = dbgregs->dr7; 5584 kvm_update_dr7(vcpu); 5585 5586 return 0; 5587 } 5588 5589 kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5590 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5591 u8 *state, unsigned int size) 5592 { 5593 /* 5594 * Only copy state for features that are enabled for the guest. The 5595 * state itself isn't problematic, but setting bits in the header for 5596 * features that are supported in *this* host but not exposed to the 5597 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5598 * compatible host without the features that are NOT exposed to the 5599 * guest. 5600 * 5601 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5602 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5603 * supported by the host. 5604 */ 5605 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5606 XFEATURE_MASK_FPSSE; 5607 5608 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5609 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5610 5611 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5612 supported_xcr0, vcpu->arch.pkru); 5613 return 0; 5614 } 5615 kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5616 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5617 struct kvm_xsave *guest_xsave) 5618 { 5619 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5620 sizeof(guest_xsave->region)); 5621 } 5622 kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5623 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5624 struct kvm_xsave *guest_xsave) 5625 { 5626 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5627 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5628 5629 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5630 guest_xsave->region, 5631 kvm_caps.supported_xcr0, 5632 &vcpu->arch.pkru); 5633 } 5634 kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5635 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5636 struct kvm_xcrs *guest_xcrs) 5637 { 5638 if (vcpu->kvm->arch.has_protected_state && 5639 vcpu->arch.guest_state_protected) 5640 return -EINVAL; 5641 5642 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5643 guest_xcrs->nr_xcrs = 0; 5644 return 0; 5645 } 5646 5647 guest_xcrs->nr_xcrs = 1; 5648 guest_xcrs->flags = 0; 5649 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5650 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5651 return 0; 5652 } 5653 kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5654 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5655 struct kvm_xcrs *guest_xcrs) 5656 { 5657 int i, r = 0; 5658 5659 if (vcpu->kvm->arch.has_protected_state && 5660 vcpu->arch.guest_state_protected) 5661 return -EINVAL; 5662 5663 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5664 return -EINVAL; 5665 5666 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5667 return -EINVAL; 5668 5669 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5670 /* Only support XCR0 currently */ 5671 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5672 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5673 guest_xcrs->xcrs[i].value); 5674 break; 5675 } 5676 if (r) 5677 r = -EINVAL; 5678 return r; 5679 } 5680 5681 /* 5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5683 * stopped by the hypervisor. This function will be called from the host only. 5684 * EINVAL is returned when the host attempts to set the flag for a guest that 5685 * does not support pv clocks. 5686 */ kvm_set_guest_paused(struct kvm_vcpu * vcpu)5687 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5688 { 5689 if (!vcpu->arch.pv_time.active) 5690 return -EINVAL; 5691 vcpu->arch.pvclock_set_guest_stopped_request = true; 5692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5693 return 0; 5694 } 5695 kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5696 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5697 struct kvm_device_attr *attr) 5698 { 5699 int r; 5700 5701 switch (attr->attr) { 5702 case KVM_VCPU_TSC_OFFSET: 5703 r = 0; 5704 break; 5705 default: 5706 r = -ENXIO; 5707 } 5708 5709 return r; 5710 } 5711 kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5712 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5713 struct kvm_device_attr *attr) 5714 { 5715 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5716 int r; 5717 5718 switch (attr->attr) { 5719 case KVM_VCPU_TSC_OFFSET: 5720 r = -EFAULT; 5721 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5722 break; 5723 r = 0; 5724 break; 5725 default: 5726 r = -ENXIO; 5727 } 5728 5729 return r; 5730 } 5731 kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5732 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5733 struct kvm_device_attr *attr) 5734 { 5735 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5736 struct kvm *kvm = vcpu->kvm; 5737 int r; 5738 5739 switch (attr->attr) { 5740 case KVM_VCPU_TSC_OFFSET: { 5741 u64 offset, tsc, ns; 5742 unsigned long flags; 5743 bool matched; 5744 5745 r = -EFAULT; 5746 if (get_user(offset, uaddr)) 5747 break; 5748 5749 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5750 5751 matched = (vcpu->arch.virtual_tsc_khz && 5752 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5753 kvm->arch.last_tsc_offset == offset); 5754 5755 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5756 ns = get_kvmclock_base_ns(); 5757 5758 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true); 5759 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5760 5761 r = 0; 5762 break; 5763 } 5764 default: 5765 r = -ENXIO; 5766 } 5767 5768 return r; 5769 } 5770 kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5771 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5772 unsigned int ioctl, 5773 void __user *argp) 5774 { 5775 struct kvm_device_attr attr; 5776 int r; 5777 5778 if (copy_from_user(&attr, argp, sizeof(attr))) 5779 return -EFAULT; 5780 5781 if (attr.group != KVM_VCPU_TSC_CTRL) 5782 return -ENXIO; 5783 5784 switch (ioctl) { 5785 case KVM_HAS_DEVICE_ATTR: 5786 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5787 break; 5788 case KVM_GET_DEVICE_ATTR: 5789 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5790 break; 5791 case KVM_SET_DEVICE_ATTR: 5792 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5793 break; 5794 } 5795 5796 return r; 5797 } 5798 kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5799 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5800 struct kvm_enable_cap *cap) 5801 { 5802 if (cap->flags) 5803 return -EINVAL; 5804 5805 switch (cap->cap) { 5806 #ifdef CONFIG_KVM_HYPERV 5807 case KVM_CAP_HYPERV_SYNIC2: 5808 if (cap->args[0]) 5809 return -EINVAL; 5810 fallthrough; 5811 5812 case KVM_CAP_HYPERV_SYNIC: 5813 if (!irqchip_in_kernel(vcpu->kvm)) 5814 return -EINVAL; 5815 return kvm_hv_activate_synic(vcpu, cap->cap == 5816 KVM_CAP_HYPERV_SYNIC2); 5817 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5818 { 5819 int r; 5820 uint16_t vmcs_version; 5821 void __user *user_ptr; 5822 5823 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5824 return -ENOTTY; 5825 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5826 if (!r) { 5827 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5828 if (copy_to_user(user_ptr, &vmcs_version, 5829 sizeof(vmcs_version))) 5830 r = -EFAULT; 5831 } 5832 return r; 5833 } 5834 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5835 if (!kvm_x86_ops.enable_l2_tlb_flush) 5836 return -ENOTTY; 5837 5838 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5839 5840 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5841 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5842 #endif 5843 5844 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5845 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5846 return 0; 5847 default: 5848 return -EINVAL; 5849 } 5850 } 5851 kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5852 long kvm_arch_vcpu_ioctl(struct file *filp, 5853 unsigned int ioctl, unsigned long arg) 5854 { 5855 struct kvm_vcpu *vcpu = filp->private_data; 5856 void __user *argp = (void __user *)arg; 5857 int r; 5858 union { 5859 struct kvm_sregs2 *sregs2; 5860 struct kvm_lapic_state *lapic; 5861 struct kvm_xsave *xsave; 5862 struct kvm_xcrs *xcrs; 5863 void *buffer; 5864 } u; 5865 5866 vcpu_load(vcpu); 5867 5868 u.buffer = NULL; 5869 switch (ioctl) { 5870 case KVM_GET_LAPIC: { 5871 r = -EINVAL; 5872 if (!lapic_in_kernel(vcpu)) 5873 goto out; 5874 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5875 5876 r = -ENOMEM; 5877 if (!u.lapic) 5878 goto out; 5879 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5880 if (r) 5881 goto out; 5882 r = -EFAULT; 5883 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5884 goto out; 5885 r = 0; 5886 break; 5887 } 5888 case KVM_SET_LAPIC: { 5889 r = -EINVAL; 5890 if (!lapic_in_kernel(vcpu)) 5891 goto out; 5892 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5893 if (IS_ERR(u.lapic)) { 5894 r = PTR_ERR(u.lapic); 5895 goto out_nofree; 5896 } 5897 5898 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5899 break; 5900 } 5901 case KVM_INTERRUPT: { 5902 struct kvm_interrupt irq; 5903 5904 r = -EFAULT; 5905 if (copy_from_user(&irq, argp, sizeof(irq))) 5906 goto out; 5907 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5908 break; 5909 } 5910 case KVM_NMI: { 5911 r = kvm_vcpu_ioctl_nmi(vcpu); 5912 break; 5913 } 5914 case KVM_SMI: { 5915 r = kvm_inject_smi(vcpu); 5916 break; 5917 } 5918 case KVM_SET_CPUID: { 5919 struct kvm_cpuid __user *cpuid_arg = argp; 5920 struct kvm_cpuid cpuid; 5921 5922 r = -EFAULT; 5923 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5924 goto out; 5925 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5926 break; 5927 } 5928 case KVM_SET_CPUID2: { 5929 struct kvm_cpuid2 __user *cpuid_arg = argp; 5930 struct kvm_cpuid2 cpuid; 5931 5932 r = -EFAULT; 5933 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5934 goto out; 5935 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5936 cpuid_arg->entries); 5937 break; 5938 } 5939 case KVM_GET_CPUID2: { 5940 struct kvm_cpuid2 __user *cpuid_arg = argp; 5941 struct kvm_cpuid2 cpuid; 5942 5943 r = -EFAULT; 5944 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5945 goto out; 5946 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5947 cpuid_arg->entries); 5948 if (r) 5949 goto out; 5950 r = -EFAULT; 5951 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5952 goto out; 5953 r = 0; 5954 break; 5955 } 5956 case KVM_GET_MSRS: { 5957 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5958 r = msr_io(vcpu, argp, do_get_msr, 1); 5959 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5960 break; 5961 } 5962 case KVM_SET_MSRS: { 5963 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5964 r = msr_io(vcpu, argp, do_set_msr, 0); 5965 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5966 break; 5967 } 5968 case KVM_TPR_ACCESS_REPORTING: { 5969 struct kvm_tpr_access_ctl tac; 5970 5971 r = -EFAULT; 5972 if (copy_from_user(&tac, argp, sizeof(tac))) 5973 goto out; 5974 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5975 if (r) 5976 goto out; 5977 r = -EFAULT; 5978 if (copy_to_user(argp, &tac, sizeof(tac))) 5979 goto out; 5980 r = 0; 5981 break; 5982 }; 5983 case KVM_SET_VAPIC_ADDR: { 5984 struct kvm_vapic_addr va; 5985 int idx; 5986 5987 r = -EINVAL; 5988 if (!lapic_in_kernel(vcpu)) 5989 goto out; 5990 r = -EFAULT; 5991 if (copy_from_user(&va, argp, sizeof(va))) 5992 goto out; 5993 idx = srcu_read_lock(&vcpu->kvm->srcu); 5994 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5995 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5996 break; 5997 } 5998 case KVM_X86_SETUP_MCE: { 5999 u64 mcg_cap; 6000 6001 r = -EFAULT; 6002 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6003 goto out; 6004 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6005 break; 6006 } 6007 case KVM_X86_SET_MCE: { 6008 struct kvm_x86_mce mce; 6009 6010 r = -EFAULT; 6011 if (copy_from_user(&mce, argp, sizeof(mce))) 6012 goto out; 6013 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6014 break; 6015 } 6016 case KVM_GET_VCPU_EVENTS: { 6017 struct kvm_vcpu_events events; 6018 6019 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6020 6021 r = -EFAULT; 6022 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6023 break; 6024 r = 0; 6025 break; 6026 } 6027 case KVM_SET_VCPU_EVENTS: { 6028 struct kvm_vcpu_events events; 6029 6030 r = -EFAULT; 6031 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6032 break; 6033 6034 kvm_vcpu_srcu_read_lock(vcpu); 6035 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6036 kvm_vcpu_srcu_read_unlock(vcpu); 6037 break; 6038 } 6039 case KVM_GET_DEBUGREGS: { 6040 struct kvm_debugregs dbgregs; 6041 6042 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6043 if (r < 0) 6044 break; 6045 6046 r = -EFAULT; 6047 if (copy_to_user(argp, &dbgregs, 6048 sizeof(struct kvm_debugregs))) 6049 break; 6050 r = 0; 6051 break; 6052 } 6053 case KVM_SET_DEBUGREGS: { 6054 struct kvm_debugregs dbgregs; 6055 6056 r = -EFAULT; 6057 if (copy_from_user(&dbgregs, argp, 6058 sizeof(struct kvm_debugregs))) 6059 break; 6060 6061 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6062 break; 6063 } 6064 case KVM_GET_XSAVE: { 6065 r = -EINVAL; 6066 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6067 break; 6068 6069 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6070 r = -ENOMEM; 6071 if (!u.xsave) 6072 break; 6073 6074 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6075 if (r < 0) 6076 break; 6077 6078 r = -EFAULT; 6079 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6080 break; 6081 r = 0; 6082 break; 6083 } 6084 case KVM_SET_XSAVE: { 6085 int size = vcpu->arch.guest_fpu.uabi_size; 6086 6087 u.xsave = memdup_user(argp, size); 6088 if (IS_ERR(u.xsave)) { 6089 r = PTR_ERR(u.xsave); 6090 goto out_nofree; 6091 } 6092 6093 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6094 break; 6095 } 6096 6097 case KVM_GET_XSAVE2: { 6098 int size = vcpu->arch.guest_fpu.uabi_size; 6099 6100 u.xsave = kzalloc(size, GFP_KERNEL); 6101 r = -ENOMEM; 6102 if (!u.xsave) 6103 break; 6104 6105 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6106 if (r < 0) 6107 break; 6108 6109 r = -EFAULT; 6110 if (copy_to_user(argp, u.xsave, size)) 6111 break; 6112 6113 r = 0; 6114 break; 6115 } 6116 6117 case KVM_GET_XCRS: { 6118 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6119 r = -ENOMEM; 6120 if (!u.xcrs) 6121 break; 6122 6123 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6124 if (r < 0) 6125 break; 6126 6127 r = -EFAULT; 6128 if (copy_to_user(argp, u.xcrs, 6129 sizeof(struct kvm_xcrs))) 6130 break; 6131 r = 0; 6132 break; 6133 } 6134 case KVM_SET_XCRS: { 6135 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6136 if (IS_ERR(u.xcrs)) { 6137 r = PTR_ERR(u.xcrs); 6138 goto out_nofree; 6139 } 6140 6141 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6142 break; 6143 } 6144 case KVM_SET_TSC_KHZ: { 6145 u32 user_tsc_khz; 6146 6147 r = -EINVAL; 6148 user_tsc_khz = (u32)arg; 6149 6150 if (kvm_caps.has_tsc_control && 6151 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6152 goto out; 6153 6154 if (user_tsc_khz == 0) 6155 user_tsc_khz = tsc_khz; 6156 6157 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6158 r = 0; 6159 6160 goto out; 6161 } 6162 case KVM_GET_TSC_KHZ: { 6163 r = vcpu->arch.virtual_tsc_khz; 6164 goto out; 6165 } 6166 case KVM_KVMCLOCK_CTRL: { 6167 r = kvm_set_guest_paused(vcpu); 6168 goto out; 6169 } 6170 case KVM_ENABLE_CAP: { 6171 struct kvm_enable_cap cap; 6172 6173 r = -EFAULT; 6174 if (copy_from_user(&cap, argp, sizeof(cap))) 6175 goto out; 6176 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6177 break; 6178 } 6179 case KVM_GET_NESTED_STATE: { 6180 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6181 u32 user_data_size; 6182 6183 r = -EINVAL; 6184 if (!kvm_x86_ops.nested_ops->get_state) 6185 break; 6186 6187 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6188 r = -EFAULT; 6189 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6190 break; 6191 6192 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6193 user_data_size); 6194 if (r < 0) 6195 break; 6196 6197 if (r > user_data_size) { 6198 if (put_user(r, &user_kvm_nested_state->size)) 6199 r = -EFAULT; 6200 else 6201 r = -E2BIG; 6202 break; 6203 } 6204 6205 r = 0; 6206 break; 6207 } 6208 case KVM_SET_NESTED_STATE: { 6209 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6210 struct kvm_nested_state kvm_state; 6211 int idx; 6212 6213 r = -EINVAL; 6214 if (!kvm_x86_ops.nested_ops->set_state) 6215 break; 6216 6217 r = -EFAULT; 6218 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6219 break; 6220 6221 r = -EINVAL; 6222 if (kvm_state.size < sizeof(kvm_state)) 6223 break; 6224 6225 if (kvm_state.flags & 6226 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6227 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6228 | KVM_STATE_NESTED_GIF_SET)) 6229 break; 6230 6231 /* nested_run_pending implies guest_mode. */ 6232 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6233 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6234 break; 6235 6236 idx = srcu_read_lock(&vcpu->kvm->srcu); 6237 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6238 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6239 break; 6240 } 6241 #ifdef CONFIG_KVM_HYPERV 6242 case KVM_GET_SUPPORTED_HV_CPUID: 6243 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6244 break; 6245 #endif 6246 #ifdef CONFIG_KVM_XEN 6247 case KVM_XEN_VCPU_GET_ATTR: { 6248 struct kvm_xen_vcpu_attr xva; 6249 6250 r = -EFAULT; 6251 if (copy_from_user(&xva, argp, sizeof(xva))) 6252 goto out; 6253 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6254 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6255 r = -EFAULT; 6256 break; 6257 } 6258 case KVM_XEN_VCPU_SET_ATTR: { 6259 struct kvm_xen_vcpu_attr xva; 6260 6261 r = -EFAULT; 6262 if (copy_from_user(&xva, argp, sizeof(xva))) 6263 goto out; 6264 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6265 break; 6266 } 6267 #endif 6268 case KVM_GET_SREGS2: { 6269 r = -EINVAL; 6270 if (vcpu->kvm->arch.has_protected_state && 6271 vcpu->arch.guest_state_protected) 6272 goto out; 6273 6274 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6275 r = -ENOMEM; 6276 if (!u.sregs2) 6277 goto out; 6278 __get_sregs2(vcpu, u.sregs2); 6279 r = -EFAULT; 6280 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6281 goto out; 6282 r = 0; 6283 break; 6284 } 6285 case KVM_SET_SREGS2: { 6286 r = -EINVAL; 6287 if (vcpu->kvm->arch.has_protected_state && 6288 vcpu->arch.guest_state_protected) 6289 goto out; 6290 6291 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6292 if (IS_ERR(u.sregs2)) { 6293 r = PTR_ERR(u.sregs2); 6294 u.sregs2 = NULL; 6295 goto out; 6296 } 6297 r = __set_sregs2(vcpu, u.sregs2); 6298 break; 6299 } 6300 case KVM_HAS_DEVICE_ATTR: 6301 case KVM_GET_DEVICE_ATTR: 6302 case KVM_SET_DEVICE_ATTR: 6303 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6304 break; 6305 default: 6306 r = -EINVAL; 6307 } 6308 out: 6309 kfree(u.buffer); 6310 out_nofree: 6311 vcpu_put(vcpu); 6312 return r; 6313 } 6314 kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6315 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6316 { 6317 return VM_FAULT_SIGBUS; 6318 } 6319 kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6320 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6321 { 6322 int ret; 6323 6324 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6325 return -EINVAL; 6326 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6327 return ret; 6328 } 6329 kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6330 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6331 u64 ident_addr) 6332 { 6333 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6334 } 6335 kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6336 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6337 unsigned long kvm_nr_mmu_pages) 6338 { 6339 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6340 return -EINVAL; 6341 6342 mutex_lock(&kvm->slots_lock); 6343 6344 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6345 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6346 6347 mutex_unlock(&kvm->slots_lock); 6348 return 0; 6349 } 6350 kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6351 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6352 { 6353 struct kvm_pic *pic = kvm->arch.vpic; 6354 int r; 6355 6356 r = 0; 6357 switch (chip->chip_id) { 6358 case KVM_IRQCHIP_PIC_MASTER: 6359 memcpy(&chip->chip.pic, &pic->pics[0], 6360 sizeof(struct kvm_pic_state)); 6361 break; 6362 case KVM_IRQCHIP_PIC_SLAVE: 6363 memcpy(&chip->chip.pic, &pic->pics[1], 6364 sizeof(struct kvm_pic_state)); 6365 break; 6366 case KVM_IRQCHIP_IOAPIC: 6367 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6368 break; 6369 default: 6370 r = -EINVAL; 6371 break; 6372 } 6373 return r; 6374 } 6375 kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6376 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6377 { 6378 struct kvm_pic *pic = kvm->arch.vpic; 6379 int r; 6380 6381 r = 0; 6382 switch (chip->chip_id) { 6383 case KVM_IRQCHIP_PIC_MASTER: 6384 spin_lock(&pic->lock); 6385 memcpy(&pic->pics[0], &chip->chip.pic, 6386 sizeof(struct kvm_pic_state)); 6387 spin_unlock(&pic->lock); 6388 break; 6389 case KVM_IRQCHIP_PIC_SLAVE: 6390 spin_lock(&pic->lock); 6391 memcpy(&pic->pics[1], &chip->chip.pic, 6392 sizeof(struct kvm_pic_state)); 6393 spin_unlock(&pic->lock); 6394 break; 6395 case KVM_IRQCHIP_IOAPIC: 6396 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6397 break; 6398 default: 6399 r = -EINVAL; 6400 break; 6401 } 6402 kvm_pic_update_irq(pic); 6403 return r; 6404 } 6405 kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6406 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6407 { 6408 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6409 6410 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6411 6412 mutex_lock(&kps->lock); 6413 memcpy(ps, &kps->channels, sizeof(*ps)); 6414 mutex_unlock(&kps->lock); 6415 return 0; 6416 } 6417 kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6418 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6419 { 6420 int i; 6421 struct kvm_pit *pit = kvm->arch.vpit; 6422 6423 mutex_lock(&pit->pit_state.lock); 6424 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6425 for (i = 0; i < 3; i++) 6426 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6427 mutex_unlock(&pit->pit_state.lock); 6428 return 0; 6429 } 6430 kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6431 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6432 { 6433 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6434 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6435 sizeof(ps->channels)); 6436 ps->flags = kvm->arch.vpit->pit_state.flags; 6437 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6438 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6439 return 0; 6440 } 6441 kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6442 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6443 { 6444 int start = 0; 6445 int i; 6446 u32 prev_legacy, cur_legacy; 6447 struct kvm_pit *pit = kvm->arch.vpit; 6448 6449 mutex_lock(&pit->pit_state.lock); 6450 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6451 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6452 if (!prev_legacy && cur_legacy) 6453 start = 1; 6454 memcpy(&pit->pit_state.channels, &ps->channels, 6455 sizeof(pit->pit_state.channels)); 6456 pit->pit_state.flags = ps->flags; 6457 for (i = 0; i < 3; i++) 6458 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6459 start && i == 0); 6460 mutex_unlock(&pit->pit_state.lock); 6461 return 0; 6462 } 6463 kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6464 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6465 struct kvm_reinject_control *control) 6466 { 6467 struct kvm_pit *pit = kvm->arch.vpit; 6468 6469 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6470 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6471 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6472 */ 6473 mutex_lock(&pit->pit_state.lock); 6474 kvm_pit_set_reinject(pit, control->pit_reinject); 6475 mutex_unlock(&pit->pit_state.lock); 6476 6477 return 0; 6478 } 6479 kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6480 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6481 { 6482 6483 /* 6484 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6485 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6486 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6487 * VM-Exit. 6488 */ 6489 struct kvm_vcpu *vcpu; 6490 unsigned long i; 6491 6492 if (!kvm_x86_ops.cpu_dirty_log_size) 6493 return; 6494 6495 kvm_for_each_vcpu(i, vcpu, kvm) 6496 kvm_vcpu_kick(vcpu); 6497 } 6498 kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6499 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6500 bool line_status) 6501 { 6502 if (!irqchip_in_kernel(kvm)) 6503 return -ENXIO; 6504 6505 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6506 irq_event->irq, irq_event->level, 6507 line_status); 6508 return 0; 6509 } 6510 kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6511 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6512 struct kvm_enable_cap *cap) 6513 { 6514 int r; 6515 6516 if (cap->flags) 6517 return -EINVAL; 6518 6519 switch (cap->cap) { 6520 case KVM_CAP_DISABLE_QUIRKS2: 6521 r = -EINVAL; 6522 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6523 break; 6524 fallthrough; 6525 case KVM_CAP_DISABLE_QUIRKS: 6526 kvm->arch.disabled_quirks = cap->args[0]; 6527 r = 0; 6528 break; 6529 case KVM_CAP_SPLIT_IRQCHIP: { 6530 mutex_lock(&kvm->lock); 6531 r = -EINVAL; 6532 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6533 goto split_irqchip_unlock; 6534 r = -EEXIST; 6535 if (irqchip_in_kernel(kvm)) 6536 goto split_irqchip_unlock; 6537 if (kvm->created_vcpus) 6538 goto split_irqchip_unlock; 6539 /* Pairs with irqchip_in_kernel. */ 6540 smp_wmb(); 6541 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6542 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6543 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6544 r = 0; 6545 split_irqchip_unlock: 6546 mutex_unlock(&kvm->lock); 6547 break; 6548 } 6549 case KVM_CAP_X2APIC_API: 6550 r = -EINVAL; 6551 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6552 break; 6553 6554 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6555 kvm->arch.x2apic_format = true; 6556 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6557 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6558 6559 r = 0; 6560 break; 6561 case KVM_CAP_X86_DISABLE_EXITS: 6562 r = -EINVAL; 6563 if (cap->args[0] & ~kvm_get_allowed_disable_exits()) 6564 break; 6565 6566 mutex_lock(&kvm->lock); 6567 if (kvm->created_vcpus) 6568 goto disable_exits_unlock; 6569 6570 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6571 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6572 6573 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) && 6574 cpu_smt_possible() && 6575 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6576 pr_warn_once(SMT_RSB_MSG); 6577 6578 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6579 kvm->arch.pause_in_guest = true; 6580 if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) 6581 kvm->arch.mwait_in_guest = true; 6582 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6583 kvm->arch.hlt_in_guest = true; 6584 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6585 kvm->arch.cstate_in_guest = true; 6586 r = 0; 6587 disable_exits_unlock: 6588 mutex_unlock(&kvm->lock); 6589 break; 6590 case KVM_CAP_MSR_PLATFORM_INFO: 6591 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6592 r = 0; 6593 break; 6594 case KVM_CAP_EXCEPTION_PAYLOAD: 6595 kvm->arch.exception_payload_enabled = cap->args[0]; 6596 r = 0; 6597 break; 6598 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6599 kvm->arch.triple_fault_event = cap->args[0]; 6600 r = 0; 6601 break; 6602 case KVM_CAP_X86_USER_SPACE_MSR: 6603 r = -EINVAL; 6604 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6605 break; 6606 kvm->arch.user_space_msr_mask = cap->args[0]; 6607 r = 0; 6608 break; 6609 case KVM_CAP_X86_BUS_LOCK_EXIT: 6610 r = -EINVAL; 6611 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6612 break; 6613 6614 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6615 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6616 break; 6617 6618 if (kvm_caps.has_bus_lock_exit && 6619 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6620 kvm->arch.bus_lock_detection_enabled = true; 6621 r = 0; 6622 break; 6623 #ifdef CONFIG_X86_SGX_KVM 6624 case KVM_CAP_SGX_ATTRIBUTE: { 6625 unsigned long allowed_attributes = 0; 6626 6627 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6628 if (r) 6629 break; 6630 6631 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6632 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6633 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6634 kvm->arch.sgx_provisioning_allowed = true; 6635 else 6636 r = -EINVAL; 6637 break; 6638 } 6639 #endif 6640 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6641 r = -EINVAL; 6642 if (!kvm_x86_ops.vm_copy_enc_context_from) 6643 break; 6644 6645 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6646 break; 6647 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6648 r = -EINVAL; 6649 if (!kvm_x86_ops.vm_move_enc_context_from) 6650 break; 6651 6652 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6653 break; 6654 case KVM_CAP_EXIT_HYPERCALL: 6655 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6656 r = -EINVAL; 6657 break; 6658 } 6659 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6660 r = 0; 6661 break; 6662 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6663 r = -EINVAL; 6664 if (cap->args[0] & ~1) 6665 break; 6666 kvm->arch.exit_on_emulation_error = cap->args[0]; 6667 r = 0; 6668 break; 6669 case KVM_CAP_PMU_CAPABILITY: 6670 r = -EINVAL; 6671 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6672 break; 6673 6674 mutex_lock(&kvm->lock); 6675 if (!kvm->created_vcpus) { 6676 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6677 r = 0; 6678 } 6679 mutex_unlock(&kvm->lock); 6680 break; 6681 case KVM_CAP_MAX_VCPU_ID: 6682 r = -EINVAL; 6683 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6684 break; 6685 6686 mutex_lock(&kvm->lock); 6687 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6688 ; 6689 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6690 r = 0; 6691 } else if (!kvm->arch.max_vcpu_ids) { 6692 kvm->arch.max_vcpu_ids = cap->args[0]; 6693 r = 0; 6694 } 6695 mutex_unlock(&kvm->lock); 6696 break; 6697 case KVM_CAP_X86_NOTIFY_VMEXIT: 6698 r = -EINVAL; 6699 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6700 break; 6701 if (!kvm_caps.has_notify_vmexit) 6702 break; 6703 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6704 break; 6705 mutex_lock(&kvm->lock); 6706 if (!kvm->created_vcpus) { 6707 kvm->arch.notify_window = cap->args[0] >> 32; 6708 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6709 r = 0; 6710 } 6711 mutex_unlock(&kvm->lock); 6712 break; 6713 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6714 r = -EINVAL; 6715 6716 /* 6717 * Since the risk of disabling NX hugepages is a guest crashing 6718 * the system, ensure the userspace process has permission to 6719 * reboot the system. 6720 * 6721 * Note that unlike the reboot() syscall, the process must have 6722 * this capability in the root namespace because exposing 6723 * /dev/kvm into a container does not limit the scope of the 6724 * iTLB multihit bug to that container. In other words, 6725 * this must use capable(), not ns_capable(). 6726 */ 6727 if (!capable(CAP_SYS_BOOT)) { 6728 r = -EPERM; 6729 break; 6730 } 6731 6732 if (cap->args[0]) 6733 break; 6734 6735 mutex_lock(&kvm->lock); 6736 if (!kvm->created_vcpus) { 6737 kvm->arch.disable_nx_huge_pages = true; 6738 r = 0; 6739 } 6740 mutex_unlock(&kvm->lock); 6741 break; 6742 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6743 u64 bus_cycle_ns = cap->args[0]; 6744 u64 unused; 6745 6746 /* 6747 * Guard against overflow in tmict_to_ns(). 128 is the highest 6748 * divide value that can be programmed in APIC_TDCR. 6749 */ 6750 r = -EINVAL; 6751 if (!bus_cycle_ns || 6752 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6753 break; 6754 6755 r = 0; 6756 mutex_lock(&kvm->lock); 6757 if (!irqchip_in_kernel(kvm)) 6758 r = -ENXIO; 6759 else if (kvm->created_vcpus) 6760 r = -EINVAL; 6761 else 6762 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6763 mutex_unlock(&kvm->lock); 6764 break; 6765 } 6766 default: 6767 r = -EINVAL; 6768 break; 6769 } 6770 return r; 6771 } 6772 kvm_alloc_msr_filter(bool default_allow)6773 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6774 { 6775 struct kvm_x86_msr_filter *msr_filter; 6776 6777 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6778 if (!msr_filter) 6779 return NULL; 6780 6781 msr_filter->default_allow = default_allow; 6782 return msr_filter; 6783 } 6784 kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6785 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6786 { 6787 u32 i; 6788 6789 if (!msr_filter) 6790 return; 6791 6792 for (i = 0; i < msr_filter->count; i++) 6793 kfree(msr_filter->ranges[i].bitmap); 6794 6795 kfree(msr_filter); 6796 } 6797 kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6798 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6799 struct kvm_msr_filter_range *user_range) 6800 { 6801 unsigned long *bitmap; 6802 size_t bitmap_size; 6803 6804 if (!user_range->nmsrs) 6805 return 0; 6806 6807 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6808 return -EINVAL; 6809 6810 if (!user_range->flags) 6811 return -EINVAL; 6812 6813 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6814 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6815 return -EINVAL; 6816 6817 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6818 if (IS_ERR(bitmap)) 6819 return PTR_ERR(bitmap); 6820 6821 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6822 .flags = user_range->flags, 6823 .base = user_range->base, 6824 .nmsrs = user_range->nmsrs, 6825 .bitmap = bitmap, 6826 }; 6827 6828 msr_filter->count++; 6829 return 0; 6830 } 6831 kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6832 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6833 struct kvm_msr_filter *filter) 6834 { 6835 struct kvm_x86_msr_filter *new_filter, *old_filter; 6836 bool default_allow; 6837 bool empty = true; 6838 int r; 6839 u32 i; 6840 6841 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6842 return -EINVAL; 6843 6844 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6845 empty &= !filter->ranges[i].nmsrs; 6846 6847 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6848 if (empty && !default_allow) 6849 return -EINVAL; 6850 6851 new_filter = kvm_alloc_msr_filter(default_allow); 6852 if (!new_filter) 6853 return -ENOMEM; 6854 6855 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6856 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6857 if (r) { 6858 kvm_free_msr_filter(new_filter); 6859 return r; 6860 } 6861 } 6862 6863 mutex_lock(&kvm->lock); 6864 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6865 mutex_is_locked(&kvm->lock)); 6866 mutex_unlock(&kvm->lock); 6867 synchronize_srcu(&kvm->srcu); 6868 6869 kvm_free_msr_filter(old_filter); 6870 6871 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6872 6873 return 0; 6874 } 6875 6876 #ifdef CONFIG_KVM_COMPAT 6877 /* for KVM_X86_SET_MSR_FILTER */ 6878 struct kvm_msr_filter_range_compat { 6879 __u32 flags; 6880 __u32 nmsrs; 6881 __u32 base; 6882 __u32 bitmap; 6883 }; 6884 6885 struct kvm_msr_filter_compat { 6886 __u32 flags; 6887 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6888 }; 6889 6890 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6891 kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6892 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6893 unsigned long arg) 6894 { 6895 void __user *argp = (void __user *)arg; 6896 struct kvm *kvm = filp->private_data; 6897 long r = -ENOTTY; 6898 6899 switch (ioctl) { 6900 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6901 struct kvm_msr_filter __user *user_msr_filter = argp; 6902 struct kvm_msr_filter_compat filter_compat; 6903 struct kvm_msr_filter filter; 6904 int i; 6905 6906 if (copy_from_user(&filter_compat, user_msr_filter, 6907 sizeof(filter_compat))) 6908 return -EFAULT; 6909 6910 filter.flags = filter_compat.flags; 6911 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6912 struct kvm_msr_filter_range_compat *cr; 6913 6914 cr = &filter_compat.ranges[i]; 6915 filter.ranges[i] = (struct kvm_msr_filter_range) { 6916 .flags = cr->flags, 6917 .nmsrs = cr->nmsrs, 6918 .base = cr->base, 6919 .bitmap = (__u8 *)(ulong)cr->bitmap, 6920 }; 6921 } 6922 6923 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6924 break; 6925 } 6926 } 6927 6928 return r; 6929 } 6930 #endif 6931 6932 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER kvm_arch_suspend_notifier(struct kvm * kvm)6933 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6934 { 6935 struct kvm_vcpu *vcpu; 6936 unsigned long i; 6937 6938 /* 6939 * Ignore the return, marking the guest paused only "fails" if the vCPU 6940 * isn't using kvmclock; continuing on is correct and desirable. 6941 */ 6942 kvm_for_each_vcpu(i, vcpu, kvm) 6943 (void)kvm_set_guest_paused(vcpu); 6944 6945 return NOTIFY_DONE; 6946 } 6947 kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6948 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6949 { 6950 switch (state) { 6951 case PM_HIBERNATION_PREPARE: 6952 case PM_SUSPEND_PREPARE: 6953 return kvm_arch_suspend_notifier(kvm); 6954 } 6955 6956 return NOTIFY_DONE; 6957 } 6958 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6959 kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6960 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6961 { 6962 struct kvm_clock_data data = { 0 }; 6963 6964 get_kvmclock(kvm, &data); 6965 if (copy_to_user(argp, &data, sizeof(data))) 6966 return -EFAULT; 6967 6968 return 0; 6969 } 6970 kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6971 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6972 { 6973 struct kvm_arch *ka = &kvm->arch; 6974 struct kvm_clock_data data; 6975 u64 now_raw_ns; 6976 6977 if (copy_from_user(&data, argp, sizeof(data))) 6978 return -EFAULT; 6979 6980 /* 6981 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6982 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6983 */ 6984 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6985 return -EINVAL; 6986 6987 kvm_hv_request_tsc_page_update(kvm); 6988 kvm_start_pvclock_update(kvm); 6989 pvclock_update_vm_gtod_copy(kvm); 6990 6991 /* 6992 * This pairs with kvm_guest_time_update(): when masterclock is 6993 * in use, we use master_kernel_ns + kvmclock_offset to set 6994 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6995 * is slightly ahead) here we risk going negative on unsigned 6996 * 'system_time' when 'data.clock' is very small. 6997 */ 6998 if (data.flags & KVM_CLOCK_REALTIME) { 6999 u64 now_real_ns = ktime_get_real_ns(); 7000 7001 /* 7002 * Avoid stepping the kvmclock backwards. 7003 */ 7004 if (now_real_ns > data.realtime) 7005 data.clock += now_real_ns - data.realtime; 7006 } 7007 7008 if (ka->use_master_clock) 7009 now_raw_ns = ka->master_kernel_ns; 7010 else 7011 now_raw_ns = get_kvmclock_base_ns(); 7012 ka->kvmclock_offset = data.clock - now_raw_ns; 7013 kvm_end_pvclock_update(kvm); 7014 return 0; 7015 } 7016 kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7017 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7018 { 7019 struct kvm *kvm = filp->private_data; 7020 void __user *argp = (void __user *)arg; 7021 int r = -ENOTTY; 7022 /* 7023 * This union makes it completely explicit to gcc-3.x 7024 * that these two variables' stack usage should be 7025 * combined, not added together. 7026 */ 7027 union { 7028 struct kvm_pit_state ps; 7029 struct kvm_pit_state2 ps2; 7030 struct kvm_pit_config pit_config; 7031 } u; 7032 7033 switch (ioctl) { 7034 case KVM_SET_TSS_ADDR: 7035 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7036 break; 7037 case KVM_SET_IDENTITY_MAP_ADDR: { 7038 u64 ident_addr; 7039 7040 mutex_lock(&kvm->lock); 7041 r = -EINVAL; 7042 if (kvm->created_vcpus) 7043 goto set_identity_unlock; 7044 r = -EFAULT; 7045 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7046 goto set_identity_unlock; 7047 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7048 set_identity_unlock: 7049 mutex_unlock(&kvm->lock); 7050 break; 7051 } 7052 case KVM_SET_NR_MMU_PAGES: 7053 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7054 break; 7055 case KVM_CREATE_IRQCHIP: { 7056 mutex_lock(&kvm->lock); 7057 7058 r = -EEXIST; 7059 if (irqchip_in_kernel(kvm)) 7060 goto create_irqchip_unlock; 7061 7062 r = -EINVAL; 7063 if (kvm->created_vcpus) 7064 goto create_irqchip_unlock; 7065 7066 r = kvm_pic_init(kvm); 7067 if (r) 7068 goto create_irqchip_unlock; 7069 7070 r = kvm_ioapic_init(kvm); 7071 if (r) { 7072 kvm_pic_destroy(kvm); 7073 goto create_irqchip_unlock; 7074 } 7075 7076 r = kvm_setup_default_irq_routing(kvm); 7077 if (r) { 7078 kvm_ioapic_destroy(kvm); 7079 kvm_pic_destroy(kvm); 7080 goto create_irqchip_unlock; 7081 } 7082 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7083 smp_wmb(); 7084 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7085 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7086 create_irqchip_unlock: 7087 mutex_unlock(&kvm->lock); 7088 break; 7089 } 7090 case KVM_CREATE_PIT: 7091 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7092 goto create_pit; 7093 case KVM_CREATE_PIT2: 7094 r = -EFAULT; 7095 if (copy_from_user(&u.pit_config, argp, 7096 sizeof(struct kvm_pit_config))) 7097 goto out; 7098 create_pit: 7099 mutex_lock(&kvm->lock); 7100 r = -EEXIST; 7101 if (kvm->arch.vpit) 7102 goto create_pit_unlock; 7103 r = -ENOENT; 7104 if (!pic_in_kernel(kvm)) 7105 goto create_pit_unlock; 7106 r = -ENOMEM; 7107 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7108 if (kvm->arch.vpit) 7109 r = 0; 7110 create_pit_unlock: 7111 mutex_unlock(&kvm->lock); 7112 break; 7113 case KVM_GET_IRQCHIP: { 7114 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7115 struct kvm_irqchip *chip; 7116 7117 chip = memdup_user(argp, sizeof(*chip)); 7118 if (IS_ERR(chip)) { 7119 r = PTR_ERR(chip); 7120 goto out; 7121 } 7122 7123 r = -ENXIO; 7124 if (!irqchip_kernel(kvm)) 7125 goto get_irqchip_out; 7126 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7127 if (r) 7128 goto get_irqchip_out; 7129 r = -EFAULT; 7130 if (copy_to_user(argp, chip, sizeof(*chip))) 7131 goto get_irqchip_out; 7132 r = 0; 7133 get_irqchip_out: 7134 kfree(chip); 7135 break; 7136 } 7137 case KVM_SET_IRQCHIP: { 7138 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7139 struct kvm_irqchip *chip; 7140 7141 chip = memdup_user(argp, sizeof(*chip)); 7142 if (IS_ERR(chip)) { 7143 r = PTR_ERR(chip); 7144 goto out; 7145 } 7146 7147 r = -ENXIO; 7148 if (!irqchip_kernel(kvm)) 7149 goto set_irqchip_out; 7150 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7151 set_irqchip_out: 7152 kfree(chip); 7153 break; 7154 } 7155 case KVM_GET_PIT: { 7156 r = -EFAULT; 7157 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7158 goto out; 7159 r = -ENXIO; 7160 if (!kvm->arch.vpit) 7161 goto out; 7162 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7163 if (r) 7164 goto out; 7165 r = -EFAULT; 7166 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7167 goto out; 7168 r = 0; 7169 break; 7170 } 7171 case KVM_SET_PIT: { 7172 r = -EFAULT; 7173 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7174 goto out; 7175 mutex_lock(&kvm->lock); 7176 r = -ENXIO; 7177 if (!kvm->arch.vpit) 7178 goto set_pit_out; 7179 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7180 set_pit_out: 7181 mutex_unlock(&kvm->lock); 7182 break; 7183 } 7184 case KVM_GET_PIT2: { 7185 r = -ENXIO; 7186 if (!kvm->arch.vpit) 7187 goto out; 7188 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7189 if (r) 7190 goto out; 7191 r = -EFAULT; 7192 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7193 goto out; 7194 r = 0; 7195 break; 7196 } 7197 case KVM_SET_PIT2: { 7198 r = -EFAULT; 7199 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7200 goto out; 7201 mutex_lock(&kvm->lock); 7202 r = -ENXIO; 7203 if (!kvm->arch.vpit) 7204 goto set_pit2_out; 7205 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7206 set_pit2_out: 7207 mutex_unlock(&kvm->lock); 7208 break; 7209 } 7210 case KVM_REINJECT_CONTROL: { 7211 struct kvm_reinject_control control; 7212 r = -EFAULT; 7213 if (copy_from_user(&control, argp, sizeof(control))) 7214 goto out; 7215 r = -ENXIO; 7216 if (!kvm->arch.vpit) 7217 goto out; 7218 r = kvm_vm_ioctl_reinject(kvm, &control); 7219 break; 7220 } 7221 case KVM_SET_BOOT_CPU_ID: 7222 r = 0; 7223 mutex_lock(&kvm->lock); 7224 if (kvm->created_vcpus) 7225 r = -EBUSY; 7226 else if (arg > KVM_MAX_VCPU_IDS || 7227 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7228 r = -EINVAL; 7229 else 7230 kvm->arch.bsp_vcpu_id = arg; 7231 mutex_unlock(&kvm->lock); 7232 break; 7233 #ifdef CONFIG_KVM_XEN 7234 case KVM_XEN_HVM_CONFIG: { 7235 struct kvm_xen_hvm_config xhc; 7236 r = -EFAULT; 7237 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7238 goto out; 7239 r = kvm_xen_hvm_config(kvm, &xhc); 7240 break; 7241 } 7242 case KVM_XEN_HVM_GET_ATTR: { 7243 struct kvm_xen_hvm_attr xha; 7244 7245 r = -EFAULT; 7246 if (copy_from_user(&xha, argp, sizeof(xha))) 7247 goto out; 7248 r = kvm_xen_hvm_get_attr(kvm, &xha); 7249 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7250 r = -EFAULT; 7251 break; 7252 } 7253 case KVM_XEN_HVM_SET_ATTR: { 7254 struct kvm_xen_hvm_attr xha; 7255 7256 r = -EFAULT; 7257 if (copy_from_user(&xha, argp, sizeof(xha))) 7258 goto out; 7259 r = kvm_xen_hvm_set_attr(kvm, &xha); 7260 break; 7261 } 7262 case KVM_XEN_HVM_EVTCHN_SEND: { 7263 struct kvm_irq_routing_xen_evtchn uxe; 7264 7265 r = -EFAULT; 7266 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7267 goto out; 7268 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7269 break; 7270 } 7271 #endif 7272 case KVM_SET_CLOCK: 7273 r = kvm_vm_ioctl_set_clock(kvm, argp); 7274 break; 7275 case KVM_GET_CLOCK: 7276 r = kvm_vm_ioctl_get_clock(kvm, argp); 7277 break; 7278 case KVM_SET_TSC_KHZ: { 7279 u32 user_tsc_khz; 7280 7281 r = -EINVAL; 7282 user_tsc_khz = (u32)arg; 7283 7284 if (kvm_caps.has_tsc_control && 7285 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7286 goto out; 7287 7288 if (user_tsc_khz == 0) 7289 user_tsc_khz = tsc_khz; 7290 7291 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7292 r = 0; 7293 7294 goto out; 7295 } 7296 case KVM_GET_TSC_KHZ: { 7297 r = READ_ONCE(kvm->arch.default_tsc_khz); 7298 goto out; 7299 } 7300 case KVM_MEMORY_ENCRYPT_OP: { 7301 r = -ENOTTY; 7302 if (!kvm_x86_ops.mem_enc_ioctl) 7303 goto out; 7304 7305 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7306 break; 7307 } 7308 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7309 struct kvm_enc_region region; 7310 7311 r = -EFAULT; 7312 if (copy_from_user(®ion, argp, sizeof(region))) 7313 goto out; 7314 7315 r = -ENOTTY; 7316 if (!kvm_x86_ops.mem_enc_register_region) 7317 goto out; 7318 7319 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7320 break; 7321 } 7322 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7323 struct kvm_enc_region region; 7324 7325 r = -EFAULT; 7326 if (copy_from_user(®ion, argp, sizeof(region))) 7327 goto out; 7328 7329 r = -ENOTTY; 7330 if (!kvm_x86_ops.mem_enc_unregister_region) 7331 goto out; 7332 7333 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7334 break; 7335 } 7336 #ifdef CONFIG_KVM_HYPERV 7337 case KVM_HYPERV_EVENTFD: { 7338 struct kvm_hyperv_eventfd hvevfd; 7339 7340 r = -EFAULT; 7341 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7342 goto out; 7343 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7344 break; 7345 } 7346 #endif 7347 case KVM_SET_PMU_EVENT_FILTER: 7348 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7349 break; 7350 case KVM_X86_SET_MSR_FILTER: { 7351 struct kvm_msr_filter __user *user_msr_filter = argp; 7352 struct kvm_msr_filter filter; 7353 7354 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7355 return -EFAULT; 7356 7357 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7358 break; 7359 } 7360 default: 7361 r = -ENOTTY; 7362 } 7363 out: 7364 return r; 7365 } 7366 kvm_probe_feature_msr(u32 msr_index)7367 static void kvm_probe_feature_msr(u32 msr_index) 7368 { 7369 u64 data; 7370 7371 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7372 return; 7373 7374 msr_based_features[num_msr_based_features++] = msr_index; 7375 } 7376 kvm_probe_msr_to_save(u32 msr_index)7377 static void kvm_probe_msr_to_save(u32 msr_index) 7378 { 7379 u32 dummy[2]; 7380 7381 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7382 return; 7383 7384 /* 7385 * Even MSRs that are valid in the host may not be exposed to guests in 7386 * some cases. 7387 */ 7388 switch (msr_index) { 7389 case MSR_IA32_BNDCFGS: 7390 if (!kvm_mpx_supported()) 7391 return; 7392 break; 7393 case MSR_TSC_AUX: 7394 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7395 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7396 return; 7397 break; 7398 case MSR_IA32_UMWAIT_CONTROL: 7399 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7400 return; 7401 break; 7402 case MSR_IA32_RTIT_CTL: 7403 case MSR_IA32_RTIT_STATUS: 7404 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7405 return; 7406 break; 7407 case MSR_IA32_RTIT_CR3_MATCH: 7408 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7409 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7410 return; 7411 break; 7412 case MSR_IA32_RTIT_OUTPUT_BASE: 7413 case MSR_IA32_RTIT_OUTPUT_MASK: 7414 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7415 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7416 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7417 return; 7418 break; 7419 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7420 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7421 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7422 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7423 return; 7424 break; 7425 case MSR_ARCH_PERFMON_PERFCTR0 ... 7426 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7427 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7428 kvm_pmu_cap.num_counters_gp) 7429 return; 7430 break; 7431 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7432 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7433 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7434 kvm_pmu_cap.num_counters_gp) 7435 return; 7436 break; 7437 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7438 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7439 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7440 kvm_pmu_cap.num_counters_fixed) 7441 return; 7442 break; 7443 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7444 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7445 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7446 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7447 return; 7448 break; 7449 case MSR_IA32_XFD: 7450 case MSR_IA32_XFD_ERR: 7451 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7452 return; 7453 break; 7454 case MSR_IA32_TSX_CTRL: 7455 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7456 return; 7457 break; 7458 default: 7459 break; 7460 } 7461 7462 msrs_to_save[num_msrs_to_save++] = msr_index; 7463 } 7464 kvm_init_msr_lists(void)7465 static void kvm_init_msr_lists(void) 7466 { 7467 unsigned i; 7468 7469 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7470 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7471 7472 num_msrs_to_save = 0; 7473 num_emulated_msrs = 0; 7474 num_msr_based_features = 0; 7475 7476 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7477 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7478 7479 if (enable_pmu) { 7480 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7481 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7482 } 7483 7484 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7485 if (!kvm_x86_call(has_emulated_msr)(NULL, 7486 emulated_msrs_all[i])) 7487 continue; 7488 7489 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7490 } 7491 7492 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7493 kvm_probe_feature_msr(i); 7494 7495 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7496 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7497 } 7498 vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7499 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7500 const void *v) 7501 { 7502 int handled = 0; 7503 int n; 7504 7505 do { 7506 n = min(len, 8); 7507 if (!(lapic_in_kernel(vcpu) && 7508 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7509 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7510 break; 7511 handled += n; 7512 addr += n; 7513 len -= n; 7514 v += n; 7515 } while (len); 7516 7517 return handled; 7518 } 7519 vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7520 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7521 { 7522 int handled = 0; 7523 int n; 7524 7525 do { 7526 n = min(len, 8); 7527 if (!(lapic_in_kernel(vcpu) && 7528 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7529 addr, n, v)) 7530 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7531 break; 7532 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7533 handled += n; 7534 addr += n; 7535 len -= n; 7536 v += n; 7537 } while (len); 7538 7539 return handled; 7540 } 7541 kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7542 void kvm_set_segment(struct kvm_vcpu *vcpu, 7543 struct kvm_segment *var, int seg) 7544 { 7545 kvm_x86_call(set_segment)(vcpu, var, seg); 7546 } 7547 kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7548 void kvm_get_segment(struct kvm_vcpu *vcpu, 7549 struct kvm_segment *var, int seg) 7550 { 7551 kvm_x86_call(get_segment)(vcpu, var, seg); 7552 } 7553 translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7554 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7555 struct x86_exception *exception) 7556 { 7557 struct kvm_mmu *mmu = vcpu->arch.mmu; 7558 gpa_t t_gpa; 7559 7560 BUG_ON(!mmu_is_nested(vcpu)); 7561 7562 /* NPT walks are always user-walks */ 7563 access |= PFERR_USER_MASK; 7564 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7565 7566 return t_gpa; 7567 } 7568 kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7569 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7570 struct x86_exception *exception) 7571 { 7572 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7573 7574 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7575 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7576 } 7577 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7578 kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7579 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7580 struct x86_exception *exception) 7581 { 7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7583 7584 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7585 access |= PFERR_WRITE_MASK; 7586 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7587 } 7588 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7589 7590 /* uses this to access any guest's mapped memory without checking CPL */ kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7591 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7592 struct x86_exception *exception) 7593 { 7594 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7595 7596 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7597 } 7598 kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7599 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7600 struct kvm_vcpu *vcpu, u64 access, 7601 struct x86_exception *exception) 7602 { 7603 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7604 void *data = val; 7605 int r = X86EMUL_CONTINUE; 7606 7607 while (bytes) { 7608 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7609 unsigned offset = addr & (PAGE_SIZE-1); 7610 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7611 int ret; 7612 7613 if (gpa == INVALID_GPA) 7614 return X86EMUL_PROPAGATE_FAULT; 7615 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7616 offset, toread); 7617 if (ret < 0) { 7618 r = X86EMUL_IO_NEEDED; 7619 goto out; 7620 } 7621 7622 bytes -= toread; 7623 data += toread; 7624 addr += toread; 7625 } 7626 out: 7627 return r; 7628 } 7629 7630 /* used for instruction fetching */ kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7631 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7632 gva_t addr, void *val, unsigned int bytes, 7633 struct x86_exception *exception) 7634 { 7635 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7636 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7637 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7638 unsigned offset; 7639 int ret; 7640 7641 /* Inline kvm_read_guest_virt_helper for speed. */ 7642 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7643 exception); 7644 if (unlikely(gpa == INVALID_GPA)) 7645 return X86EMUL_PROPAGATE_FAULT; 7646 7647 offset = addr & (PAGE_SIZE-1); 7648 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7649 bytes = (unsigned)PAGE_SIZE - offset; 7650 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7651 offset, bytes); 7652 if (unlikely(ret < 0)) 7653 return X86EMUL_IO_NEEDED; 7654 7655 return X86EMUL_CONTINUE; 7656 } 7657 kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7658 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7659 gva_t addr, void *val, unsigned int bytes, 7660 struct x86_exception *exception) 7661 { 7662 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7663 7664 /* 7665 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7666 * is returned, but our callers are not ready for that and they blindly 7667 * call kvm_inject_page_fault. Ensure that they at least do not leak 7668 * uninitialized kernel stack memory into cr2 and error code. 7669 */ 7670 memset(exception, 0, sizeof(*exception)); 7671 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7672 exception); 7673 } 7674 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7675 emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7676 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7677 gva_t addr, void *val, unsigned int bytes, 7678 struct x86_exception *exception, bool system) 7679 { 7680 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7681 u64 access = 0; 7682 7683 if (system) 7684 access |= PFERR_IMPLICIT_ACCESS; 7685 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7686 access |= PFERR_USER_MASK; 7687 7688 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7689 } 7690 kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7691 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7692 struct kvm_vcpu *vcpu, u64 access, 7693 struct x86_exception *exception) 7694 { 7695 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7696 void *data = val; 7697 int r = X86EMUL_CONTINUE; 7698 7699 while (bytes) { 7700 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7701 unsigned offset = addr & (PAGE_SIZE-1); 7702 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7703 int ret; 7704 7705 if (gpa == INVALID_GPA) 7706 return X86EMUL_PROPAGATE_FAULT; 7707 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7708 if (ret < 0) { 7709 r = X86EMUL_IO_NEEDED; 7710 goto out; 7711 } 7712 7713 bytes -= towrite; 7714 data += towrite; 7715 addr += towrite; 7716 } 7717 out: 7718 return r; 7719 } 7720 emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7721 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7722 unsigned int bytes, struct x86_exception *exception, 7723 bool system) 7724 { 7725 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7726 u64 access = PFERR_WRITE_MASK; 7727 7728 if (system) 7729 access |= PFERR_IMPLICIT_ACCESS; 7730 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7731 access |= PFERR_USER_MASK; 7732 7733 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7734 access, exception); 7735 } 7736 kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7737 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7738 unsigned int bytes, struct x86_exception *exception) 7739 { 7740 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7741 vcpu->arch.l1tf_flush_l1d = true; 7742 7743 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7744 PFERR_WRITE_MASK, exception); 7745 } 7746 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7747 kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7748 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7749 void *insn, int insn_len) 7750 { 7751 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7752 insn, insn_len); 7753 } 7754 handle_ud(struct kvm_vcpu * vcpu)7755 int handle_ud(struct kvm_vcpu *vcpu) 7756 { 7757 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7758 int fep_flags = READ_ONCE(force_emulation_prefix); 7759 int emul_type = EMULTYPE_TRAP_UD; 7760 char sig[5]; /* ud2; .ascii "kvm" */ 7761 struct x86_exception e; 7762 int r; 7763 7764 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7765 if (r != X86EMUL_CONTINUE) 7766 return 1; 7767 7768 if (fep_flags && 7769 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7770 sig, sizeof(sig), &e) == 0 && 7771 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7772 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7773 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7774 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7775 emul_type = EMULTYPE_TRAP_UD_FORCED; 7776 } 7777 7778 return kvm_emulate_instruction(vcpu, emul_type); 7779 } 7780 EXPORT_SYMBOL_GPL(handle_ud); 7781 vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7782 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7783 gpa_t gpa, bool write) 7784 { 7785 /* For APIC access vmexit */ 7786 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7787 return 1; 7788 7789 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7790 trace_vcpu_match_mmio(gva, gpa, write, true); 7791 return 1; 7792 } 7793 7794 return 0; 7795 } 7796 vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7797 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7798 gpa_t *gpa, struct x86_exception *exception, 7799 bool write) 7800 { 7801 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7802 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7803 | (write ? PFERR_WRITE_MASK : 0); 7804 7805 /* 7806 * currently PKRU is only applied to ept enabled guest so 7807 * there is no pkey in EPT page table for L1 guest or EPT 7808 * shadow page table for L2 guest. 7809 */ 7810 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7811 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7812 vcpu->arch.mmio_access, 0, access))) { 7813 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7814 (gva & (PAGE_SIZE - 1)); 7815 trace_vcpu_match_mmio(gva, *gpa, write, false); 7816 return 1; 7817 } 7818 7819 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7820 7821 if (*gpa == INVALID_GPA) 7822 return -1; 7823 7824 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7825 } 7826 emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7827 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7828 const void *val, int bytes) 7829 { 7830 int ret; 7831 7832 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7833 if (ret < 0) 7834 return 0; 7835 kvm_page_track_write(vcpu, gpa, val, bytes); 7836 return 1; 7837 } 7838 7839 struct read_write_emulator_ops { 7840 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7841 int bytes); 7842 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7843 void *val, int bytes); 7844 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7845 int bytes, void *val); 7846 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7847 void *val, int bytes); 7848 bool write; 7849 }; 7850 read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7851 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7852 { 7853 if (vcpu->mmio_read_completed) { 7854 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7855 vcpu->mmio_fragments[0].gpa, val); 7856 vcpu->mmio_read_completed = 0; 7857 return 1; 7858 } 7859 7860 return 0; 7861 } 7862 read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7863 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7864 void *val, int bytes) 7865 { 7866 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7867 } 7868 write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7869 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7870 void *val, int bytes) 7871 { 7872 return emulator_write_phys(vcpu, gpa, val, bytes); 7873 } 7874 write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7875 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7876 { 7877 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7878 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7879 } 7880 read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7881 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7882 void *val, int bytes) 7883 { 7884 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7885 return X86EMUL_IO_NEEDED; 7886 } 7887 write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7888 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7889 void *val, int bytes) 7890 { 7891 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7892 7893 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7894 return X86EMUL_CONTINUE; 7895 } 7896 7897 static const struct read_write_emulator_ops read_emultor = { 7898 .read_write_prepare = read_prepare, 7899 .read_write_emulate = read_emulate, 7900 .read_write_mmio = vcpu_mmio_read, 7901 .read_write_exit_mmio = read_exit_mmio, 7902 }; 7903 7904 static const struct read_write_emulator_ops write_emultor = { 7905 .read_write_emulate = write_emulate, 7906 .read_write_mmio = write_mmio, 7907 .read_write_exit_mmio = write_exit_mmio, 7908 .write = true, 7909 }; 7910 emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7911 static int emulator_read_write_onepage(unsigned long addr, void *val, 7912 unsigned int bytes, 7913 struct x86_exception *exception, 7914 struct kvm_vcpu *vcpu, 7915 const struct read_write_emulator_ops *ops) 7916 { 7917 gpa_t gpa; 7918 int handled, ret; 7919 bool write = ops->write; 7920 struct kvm_mmio_fragment *frag; 7921 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7922 7923 /* 7924 * If the exit was due to a NPF we may already have a GPA. 7925 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7926 * Note, this cannot be used on string operations since string 7927 * operation using rep will only have the initial GPA from the NPF 7928 * occurred. 7929 */ 7930 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7931 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7932 gpa = ctxt->gpa_val; 7933 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7934 } else { 7935 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7936 if (ret < 0) 7937 return X86EMUL_PROPAGATE_FAULT; 7938 } 7939 7940 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7941 return X86EMUL_CONTINUE; 7942 7943 /* 7944 * Is this MMIO handled locally? 7945 */ 7946 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7947 if (handled == bytes) 7948 return X86EMUL_CONTINUE; 7949 7950 gpa += handled; 7951 bytes -= handled; 7952 val += handled; 7953 7954 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7955 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7956 frag->gpa = gpa; 7957 frag->data = val; 7958 frag->len = bytes; 7959 return X86EMUL_CONTINUE; 7960 } 7961 emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7962 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7963 unsigned long addr, 7964 void *val, unsigned int bytes, 7965 struct x86_exception *exception, 7966 const struct read_write_emulator_ops *ops) 7967 { 7968 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7969 gpa_t gpa; 7970 int rc; 7971 7972 if (ops->read_write_prepare && 7973 ops->read_write_prepare(vcpu, val, bytes)) 7974 return X86EMUL_CONTINUE; 7975 7976 vcpu->mmio_nr_fragments = 0; 7977 7978 /* Crossing a page boundary? */ 7979 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7980 int now; 7981 7982 now = -addr & ~PAGE_MASK; 7983 rc = emulator_read_write_onepage(addr, val, now, exception, 7984 vcpu, ops); 7985 7986 if (rc != X86EMUL_CONTINUE) 7987 return rc; 7988 addr += now; 7989 if (ctxt->mode != X86EMUL_MODE_PROT64) 7990 addr = (u32)addr; 7991 val += now; 7992 bytes -= now; 7993 } 7994 7995 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7996 vcpu, ops); 7997 if (rc != X86EMUL_CONTINUE) 7998 return rc; 7999 8000 if (!vcpu->mmio_nr_fragments) 8001 return rc; 8002 8003 gpa = vcpu->mmio_fragments[0].gpa; 8004 8005 vcpu->mmio_needed = 1; 8006 vcpu->mmio_cur_fragment = 0; 8007 8008 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 8009 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 8010 vcpu->run->exit_reason = KVM_EXIT_MMIO; 8011 vcpu->run->mmio.phys_addr = gpa; 8012 8013 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8014 } 8015 emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8016 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8017 unsigned long addr, 8018 void *val, 8019 unsigned int bytes, 8020 struct x86_exception *exception) 8021 { 8022 return emulator_read_write(ctxt, addr, val, bytes, 8023 exception, &read_emultor); 8024 } 8025 emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8026 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8027 unsigned long addr, 8028 const void *val, 8029 unsigned int bytes, 8030 struct x86_exception *exception) 8031 { 8032 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8033 exception, &write_emultor); 8034 } 8035 8036 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8037 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8038 emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8039 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8040 unsigned long addr, 8041 const void *old, 8042 const void *new, 8043 unsigned int bytes, 8044 struct x86_exception *exception) 8045 { 8046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8047 u64 page_line_mask; 8048 unsigned long hva; 8049 gpa_t gpa; 8050 int r; 8051 8052 /* guests cmpxchg8b have to be emulated atomically */ 8053 if (bytes > 8 || (bytes & (bytes - 1))) 8054 goto emul_write; 8055 8056 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8057 8058 if (gpa == INVALID_GPA || 8059 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8060 goto emul_write; 8061 8062 /* 8063 * Emulate the atomic as a straight write to avoid #AC if SLD is 8064 * enabled in the host and the access splits a cache line. 8065 */ 8066 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8067 page_line_mask = ~(cache_line_size() - 1); 8068 else 8069 page_line_mask = PAGE_MASK; 8070 8071 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8072 goto emul_write; 8073 8074 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8075 if (kvm_is_error_hva(hva)) 8076 goto emul_write; 8077 8078 hva += offset_in_page(gpa); 8079 8080 switch (bytes) { 8081 case 1: 8082 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8083 break; 8084 case 2: 8085 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8086 break; 8087 case 4: 8088 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8089 break; 8090 case 8: 8091 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8092 break; 8093 default: 8094 BUG(); 8095 } 8096 8097 if (r < 0) 8098 return X86EMUL_UNHANDLEABLE; 8099 8100 /* 8101 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8102 * successful, as the old value is written back on failure. Note, for 8103 * live migration, this is unnecessarily conservative as CMPXCHG writes 8104 * back the original value and the access is atomic, but KVM's ABI is 8105 * that all writes are dirty logged, regardless of the value written. 8106 */ 8107 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8108 8109 if (r) 8110 return X86EMUL_CMPXCHG_FAILED; 8111 8112 kvm_page_track_write(vcpu, gpa, new, bytes); 8113 8114 return X86EMUL_CONTINUE; 8115 8116 emul_write: 8117 pr_warn_once("emulating exchange as write\n"); 8118 8119 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8120 } 8121 emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8122 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8123 unsigned short port, void *data, 8124 unsigned int count, bool in) 8125 { 8126 unsigned i; 8127 int r; 8128 8129 WARN_ON_ONCE(vcpu->arch.pio.count); 8130 for (i = 0; i < count; i++) { 8131 if (in) 8132 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8133 else 8134 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8135 8136 if (r) { 8137 if (i == 0) 8138 goto userspace_io; 8139 8140 /* 8141 * Userspace must have unregistered the device while PIO 8142 * was running. Drop writes / read as 0. 8143 */ 8144 if (in) 8145 memset(data, 0, size * (count - i)); 8146 break; 8147 } 8148 8149 data += size; 8150 } 8151 return 1; 8152 8153 userspace_io: 8154 vcpu->arch.pio.port = port; 8155 vcpu->arch.pio.in = in; 8156 vcpu->arch.pio.count = count; 8157 vcpu->arch.pio.size = size; 8158 8159 if (in) 8160 memset(vcpu->arch.pio_data, 0, size * count); 8161 else 8162 memcpy(vcpu->arch.pio_data, data, size * count); 8163 8164 vcpu->run->exit_reason = KVM_EXIT_IO; 8165 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8166 vcpu->run->io.size = size; 8167 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8168 vcpu->run->io.count = count; 8169 vcpu->run->io.port = port; 8170 return 0; 8171 } 8172 emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8173 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8174 unsigned short port, void *val, unsigned int count) 8175 { 8176 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8177 if (r) 8178 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8179 8180 return r; 8181 } 8182 complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8183 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8184 { 8185 int size = vcpu->arch.pio.size; 8186 unsigned int count = vcpu->arch.pio.count; 8187 memcpy(val, vcpu->arch.pio_data, size * count); 8188 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8189 vcpu->arch.pio.count = 0; 8190 } 8191 emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8192 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8193 int size, unsigned short port, void *val, 8194 unsigned int count) 8195 { 8196 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8197 if (vcpu->arch.pio.count) { 8198 /* 8199 * Complete a previous iteration that required userspace I/O. 8200 * Note, @count isn't guaranteed to match pio.count as userspace 8201 * can modify ECX before rerunning the vCPU. Ignore any such 8202 * shenanigans as KVM doesn't support modifying the rep count, 8203 * and the emulator ensures @count doesn't overflow the buffer. 8204 */ 8205 complete_emulator_pio_in(vcpu, val); 8206 return 1; 8207 } 8208 8209 return emulator_pio_in(vcpu, size, port, val, count); 8210 } 8211 emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8212 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8213 unsigned short port, const void *val, 8214 unsigned int count) 8215 { 8216 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8217 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8218 } 8219 emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8220 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8221 int size, unsigned short port, 8222 const void *val, unsigned int count) 8223 { 8224 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8225 } 8226 get_segment_base(struct kvm_vcpu * vcpu,int seg)8227 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8228 { 8229 return kvm_x86_call(get_segment_base)(vcpu, seg); 8230 } 8231 emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8232 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8233 { 8234 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8235 } 8236 kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8237 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8238 { 8239 if (!need_emulate_wbinvd(vcpu)) 8240 return X86EMUL_CONTINUE; 8241 8242 if (kvm_x86_call(has_wbinvd_exit)()) { 8243 int cpu = get_cpu(); 8244 8245 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8246 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8247 wbinvd_ipi, NULL, 1); 8248 put_cpu(); 8249 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8250 } else 8251 wbinvd(); 8252 return X86EMUL_CONTINUE; 8253 } 8254 kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8255 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8256 { 8257 kvm_emulate_wbinvd_noskip(vcpu); 8258 return kvm_skip_emulated_instruction(vcpu); 8259 } 8260 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8261 8262 8263 emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8264 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8265 { 8266 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8267 } 8268 emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8269 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8270 { 8271 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8272 } 8273 emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8274 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8275 unsigned long value) 8276 { 8277 8278 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8279 } 8280 mk_cr_64(u64 curr_cr,u32 new_val)8281 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8282 { 8283 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8284 } 8285 emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8286 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8287 { 8288 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8289 unsigned long value; 8290 8291 switch (cr) { 8292 case 0: 8293 value = kvm_read_cr0(vcpu); 8294 break; 8295 case 2: 8296 value = vcpu->arch.cr2; 8297 break; 8298 case 3: 8299 value = kvm_read_cr3(vcpu); 8300 break; 8301 case 4: 8302 value = kvm_read_cr4(vcpu); 8303 break; 8304 case 8: 8305 value = kvm_get_cr8(vcpu); 8306 break; 8307 default: 8308 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8309 return 0; 8310 } 8311 8312 return value; 8313 } 8314 emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8315 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8316 { 8317 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8318 int res = 0; 8319 8320 switch (cr) { 8321 case 0: 8322 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8323 break; 8324 case 2: 8325 vcpu->arch.cr2 = val; 8326 break; 8327 case 3: 8328 res = kvm_set_cr3(vcpu, val); 8329 break; 8330 case 4: 8331 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8332 break; 8333 case 8: 8334 res = kvm_set_cr8(vcpu, val); 8335 break; 8336 default: 8337 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8338 res = -1; 8339 } 8340 8341 return res; 8342 } 8343 emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8344 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8345 { 8346 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8347 } 8348 emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8349 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8350 { 8351 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8352 } 8353 emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8354 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8355 { 8356 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8357 } 8358 emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8359 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8360 { 8361 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8362 } 8363 emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8364 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8365 { 8366 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8367 } 8368 emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8369 static unsigned long emulator_get_cached_segment_base( 8370 struct x86_emulate_ctxt *ctxt, int seg) 8371 { 8372 return get_segment_base(emul_to_vcpu(ctxt), seg); 8373 } 8374 emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8375 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8376 struct desc_struct *desc, u32 *base3, 8377 int seg) 8378 { 8379 struct kvm_segment var; 8380 8381 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8382 *selector = var.selector; 8383 8384 if (var.unusable) { 8385 memset(desc, 0, sizeof(*desc)); 8386 if (base3) 8387 *base3 = 0; 8388 return false; 8389 } 8390 8391 if (var.g) 8392 var.limit >>= 12; 8393 set_desc_limit(desc, var.limit); 8394 set_desc_base(desc, (unsigned long)var.base); 8395 #ifdef CONFIG_X86_64 8396 if (base3) 8397 *base3 = var.base >> 32; 8398 #endif 8399 desc->type = var.type; 8400 desc->s = var.s; 8401 desc->dpl = var.dpl; 8402 desc->p = var.present; 8403 desc->avl = var.avl; 8404 desc->l = var.l; 8405 desc->d = var.db; 8406 desc->g = var.g; 8407 8408 return true; 8409 } 8410 emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8411 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8412 struct desc_struct *desc, u32 base3, 8413 int seg) 8414 { 8415 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8416 struct kvm_segment var; 8417 8418 var.selector = selector; 8419 var.base = get_desc_base(desc); 8420 #ifdef CONFIG_X86_64 8421 var.base |= ((u64)base3) << 32; 8422 #endif 8423 var.limit = get_desc_limit(desc); 8424 if (desc->g) 8425 var.limit = (var.limit << 12) | 0xfff; 8426 var.type = desc->type; 8427 var.dpl = desc->dpl; 8428 var.db = desc->d; 8429 var.s = desc->s; 8430 var.l = desc->l; 8431 var.g = desc->g; 8432 var.avl = desc->avl; 8433 var.present = desc->p; 8434 var.unusable = !var.present; 8435 var.padding = 0; 8436 8437 kvm_set_segment(vcpu, &var, seg); 8438 return; 8439 } 8440 emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8441 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8442 u32 msr_index, u64 *pdata) 8443 { 8444 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8445 int r; 8446 8447 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8448 if (r < 0) 8449 return X86EMUL_UNHANDLEABLE; 8450 8451 if (r) { 8452 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8453 complete_emulated_rdmsr, r)) 8454 return X86EMUL_IO_NEEDED; 8455 8456 trace_kvm_msr_read_ex(msr_index); 8457 return X86EMUL_PROPAGATE_FAULT; 8458 } 8459 8460 trace_kvm_msr_read(msr_index, *pdata); 8461 return X86EMUL_CONTINUE; 8462 } 8463 emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8464 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8465 u32 msr_index, u64 data) 8466 { 8467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8468 int r; 8469 8470 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8471 if (r < 0) 8472 return X86EMUL_UNHANDLEABLE; 8473 8474 if (r) { 8475 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8476 complete_emulated_msr_access, r)) 8477 return X86EMUL_IO_NEEDED; 8478 8479 trace_kvm_msr_write_ex(msr_index, data); 8480 return X86EMUL_PROPAGATE_FAULT; 8481 } 8482 8483 trace_kvm_msr_write(msr_index, data); 8484 return X86EMUL_CONTINUE; 8485 } 8486 emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8487 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8488 u32 msr_index, u64 *pdata) 8489 { 8490 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8491 } 8492 emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8493 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8494 { 8495 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8496 } 8497 emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8498 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8499 u32 pmc, u64 *pdata) 8500 { 8501 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8502 } 8503 emulator_halt(struct x86_emulate_ctxt * ctxt)8504 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8505 { 8506 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8507 } 8508 emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8509 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8510 struct x86_instruction_info *info, 8511 enum x86_intercept_stage stage) 8512 { 8513 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8514 &ctxt->exception); 8515 } 8516 emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8517 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8518 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8519 bool exact_only) 8520 { 8521 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8522 } 8523 emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8524 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8525 { 8526 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8527 } 8528 emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8529 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8530 { 8531 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8532 } 8533 emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8534 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8535 { 8536 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8537 } 8538 emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8539 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8540 { 8541 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8542 } 8543 emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8544 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8545 { 8546 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8547 } 8548 emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8549 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8550 { 8551 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8552 } 8553 emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8554 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8555 { 8556 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8557 } 8558 emulator_is_smm(struct x86_emulate_ctxt * ctxt)8559 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8560 { 8561 return is_smm(emul_to_vcpu(ctxt)); 8562 } 8563 emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8564 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8565 { 8566 return is_guest_mode(emul_to_vcpu(ctxt)); 8567 } 8568 8569 #ifndef CONFIG_KVM_SMM emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8570 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8571 { 8572 WARN_ON_ONCE(1); 8573 return X86EMUL_UNHANDLEABLE; 8574 } 8575 #endif 8576 emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8577 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8578 { 8579 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8580 } 8581 emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8582 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8583 { 8584 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8585 } 8586 emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8587 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8588 { 8589 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8590 8591 if (!kvm->vm_bugged) 8592 kvm_vm_bugged(kvm); 8593 } 8594 emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8595 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8596 gva_t addr, unsigned int flags) 8597 { 8598 if (!kvm_x86_ops.get_untagged_addr) 8599 return addr; 8600 8601 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8602 addr, flags); 8603 } 8604 emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8605 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, 8606 gva_t addr, unsigned int flags) 8607 { 8608 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); 8609 } 8610 8611 static const struct x86_emulate_ops emulate_ops = { 8612 .vm_bugged = emulator_vm_bugged, 8613 .read_gpr = emulator_read_gpr, 8614 .write_gpr = emulator_write_gpr, 8615 .read_std = emulator_read_std, 8616 .write_std = emulator_write_std, 8617 .fetch = kvm_fetch_guest_virt, 8618 .read_emulated = emulator_read_emulated, 8619 .write_emulated = emulator_write_emulated, 8620 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8621 .invlpg = emulator_invlpg, 8622 .pio_in_emulated = emulator_pio_in_emulated, 8623 .pio_out_emulated = emulator_pio_out_emulated, 8624 .get_segment = emulator_get_segment, 8625 .set_segment = emulator_set_segment, 8626 .get_cached_segment_base = emulator_get_cached_segment_base, 8627 .get_gdt = emulator_get_gdt, 8628 .get_idt = emulator_get_idt, 8629 .set_gdt = emulator_set_gdt, 8630 .set_idt = emulator_set_idt, 8631 .get_cr = emulator_get_cr, 8632 .set_cr = emulator_set_cr, 8633 .cpl = emulator_get_cpl, 8634 .get_dr = emulator_get_dr, 8635 .set_dr = emulator_set_dr, 8636 .set_msr_with_filter = emulator_set_msr_with_filter, 8637 .get_msr_with_filter = emulator_get_msr_with_filter, 8638 .get_msr = emulator_get_msr, 8639 .check_rdpmc_early = emulator_check_rdpmc_early, 8640 .read_pmc = emulator_read_pmc, 8641 .halt = emulator_halt, 8642 .wbinvd = emulator_wbinvd, 8643 .fix_hypercall = emulator_fix_hypercall, 8644 .intercept = emulator_intercept, 8645 .get_cpuid = emulator_get_cpuid, 8646 .guest_has_movbe = emulator_guest_has_movbe, 8647 .guest_has_fxsr = emulator_guest_has_fxsr, 8648 .guest_has_rdpid = emulator_guest_has_rdpid, 8649 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8650 .set_nmi_mask = emulator_set_nmi_mask, 8651 .is_smm = emulator_is_smm, 8652 .is_guest_mode = emulator_is_guest_mode, 8653 .leave_smm = emulator_leave_smm, 8654 .triple_fault = emulator_triple_fault, 8655 .set_xcr = emulator_set_xcr, 8656 .get_untagged_addr = emulator_get_untagged_addr, 8657 .is_canonical_addr = emulator_is_canonical_addr, 8658 }; 8659 toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8660 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8661 { 8662 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8663 /* 8664 * an sti; sti; sequence only disable interrupts for the first 8665 * instruction. So, if the last instruction, be it emulated or 8666 * not, left the system with the INT_STI flag enabled, it 8667 * means that the last instruction is an sti. We should not 8668 * leave the flag on in this case. The same goes for mov ss 8669 */ 8670 if (int_shadow & mask) 8671 mask = 0; 8672 if (unlikely(int_shadow || mask)) { 8673 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8674 if (!mask) 8675 kvm_make_request(KVM_REQ_EVENT, vcpu); 8676 } 8677 } 8678 inject_emulated_exception(struct kvm_vcpu * vcpu)8679 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8680 { 8681 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8682 8683 if (ctxt->exception.vector == PF_VECTOR) 8684 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8685 else if (ctxt->exception.error_code_valid) 8686 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8687 ctxt->exception.error_code); 8688 else 8689 kvm_queue_exception(vcpu, ctxt->exception.vector); 8690 } 8691 alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8692 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8693 { 8694 struct x86_emulate_ctxt *ctxt; 8695 8696 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8697 if (!ctxt) { 8698 pr_err("failed to allocate vcpu's emulator\n"); 8699 return NULL; 8700 } 8701 8702 ctxt->vcpu = vcpu; 8703 ctxt->ops = &emulate_ops; 8704 vcpu->arch.emulate_ctxt = ctxt; 8705 8706 return ctxt; 8707 } 8708 init_emulate_ctxt(struct kvm_vcpu * vcpu)8709 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8710 { 8711 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8712 int cs_db, cs_l; 8713 8714 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8715 8716 ctxt->gpa_available = false; 8717 ctxt->eflags = kvm_get_rflags(vcpu); 8718 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8719 8720 ctxt->eip = kvm_rip_read(vcpu); 8721 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8722 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8723 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8724 cs_db ? X86EMUL_MODE_PROT32 : 8725 X86EMUL_MODE_PROT16; 8726 ctxt->interruptibility = 0; 8727 ctxt->have_exception = false; 8728 ctxt->exception.vector = -1; 8729 ctxt->perm_ok = false; 8730 8731 init_decode_cache(ctxt); 8732 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8733 } 8734 kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8735 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8736 { 8737 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8738 int ret; 8739 8740 init_emulate_ctxt(vcpu); 8741 8742 ctxt->op_bytes = 2; 8743 ctxt->ad_bytes = 2; 8744 ctxt->_eip = ctxt->eip + inc_eip; 8745 ret = emulate_int_real(ctxt, irq); 8746 8747 if (ret != X86EMUL_CONTINUE) { 8748 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8749 } else { 8750 ctxt->eip = ctxt->_eip; 8751 kvm_rip_write(vcpu, ctxt->eip); 8752 kvm_set_rflags(vcpu, ctxt->eflags); 8753 } 8754 } 8755 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8756 prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8757 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8758 u8 ndata, u8 *insn_bytes, u8 insn_size) 8759 { 8760 struct kvm_run *run = vcpu->run; 8761 u64 info[5]; 8762 u8 info_start; 8763 8764 /* 8765 * Zero the whole array used to retrieve the exit info, as casting to 8766 * u32 for select entries will leave some chunks uninitialized. 8767 */ 8768 memset(&info, 0, sizeof(info)); 8769 8770 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8771 (u32 *)&info[3], (u32 *)&info[4]); 8772 8773 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8774 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8775 8776 /* 8777 * There's currently space for 13 entries, but 5 are used for the exit 8778 * reason and info. Restrict to 4 to reduce the maintenance burden 8779 * when expanding kvm_run.emulation_failure in the future. 8780 */ 8781 if (WARN_ON_ONCE(ndata > 4)) 8782 ndata = 4; 8783 8784 /* Always include the flags as a 'data' entry. */ 8785 info_start = 1; 8786 run->emulation_failure.flags = 0; 8787 8788 if (insn_size) { 8789 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8790 sizeof(run->emulation_failure.insn_bytes) != 16)); 8791 info_start += 2; 8792 run->emulation_failure.flags |= 8793 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8794 run->emulation_failure.insn_size = insn_size; 8795 memset(run->emulation_failure.insn_bytes, 0x90, 8796 sizeof(run->emulation_failure.insn_bytes)); 8797 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8798 } 8799 8800 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8801 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8802 ndata * sizeof(data[0])); 8803 8804 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8805 } 8806 prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8807 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8808 { 8809 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8810 8811 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8812 ctxt->fetch.end - ctxt->fetch.data); 8813 } 8814 __kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8815 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8816 u8 ndata) 8817 { 8818 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8819 } 8820 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8821 kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8822 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8823 { 8824 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8825 } 8826 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8827 kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8828 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa) 8829 { 8830 u32 reason, intr_info, error_code; 8831 struct kvm_run *run = vcpu->run; 8832 u64 info1, info2; 8833 int ndata = 0; 8834 8835 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2, 8836 &intr_info, &error_code); 8837 8838 run->internal.data[ndata++] = info2; 8839 run->internal.data[ndata++] = reason; 8840 run->internal.data[ndata++] = info1; 8841 run->internal.data[ndata++] = gpa; 8842 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 8843 8844 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8845 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 8846 run->internal.ndata = ndata; 8847 } 8848 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit); 8849 handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8850 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8851 { 8852 struct kvm *kvm = vcpu->kvm; 8853 8854 ++vcpu->stat.insn_emulation_fail; 8855 trace_kvm_emulate_insn_failed(vcpu); 8856 8857 if (emulation_type & EMULTYPE_VMWARE_GP) { 8858 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8859 return 1; 8860 } 8861 8862 if (kvm->arch.exit_on_emulation_error || 8863 (emulation_type & EMULTYPE_SKIP)) { 8864 prepare_emulation_ctxt_failure_exit(vcpu); 8865 return 0; 8866 } 8867 8868 kvm_queue_exception(vcpu, UD_VECTOR); 8869 8870 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8871 prepare_emulation_ctxt_failure_exit(vcpu); 8872 return 0; 8873 } 8874 8875 return 1; 8876 } 8877 kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8878 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, 8879 gpa_t cr2_or_gpa, 8880 int emulation_type) 8881 { 8882 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8883 return false; 8884 8885 /* 8886 * If the failed instruction faulted on an access to page tables that 8887 * are used to translate any part of the instruction, KVM can't resolve 8888 * the issue by unprotecting the gfn, as zapping the shadow page will 8889 * result in the instruction taking a !PRESENT page fault and thus put 8890 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8891 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8892 * then zap the SPTE to unprotect the gfn, and then do it all over 8893 * again. Report the error to userspace. 8894 */ 8895 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) 8896 return false; 8897 8898 /* 8899 * If emulation may have been triggered by a write to a shadowed page 8900 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8901 * guest to let the CPU re-execute the instruction in the hope that the 8902 * CPU can cleanly execute the instruction that KVM failed to emulate. 8903 */ 8904 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); 8905 8906 /* 8907 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible 8908 * all SPTEs were already zapped by a different task. The alternative 8909 * is to report the error to userspace and likely terminate the guest, 8910 * and the last_retry_{eip,addr} checks will prevent retrying the page 8911 * fault indefinitely, i.e. there's nothing to lose by retrying. 8912 */ 8913 return true; 8914 } 8915 8916 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8917 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8918 kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8919 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8920 unsigned long *db) 8921 { 8922 u32 dr6 = 0; 8923 int i; 8924 u32 enable, rwlen; 8925 8926 enable = dr7; 8927 rwlen = dr7 >> 16; 8928 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8929 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8930 dr6 |= (1 << i); 8931 return dr6; 8932 } 8933 kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8934 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8935 { 8936 struct kvm_run *kvm_run = vcpu->run; 8937 8938 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8939 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8940 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8941 kvm_run->debug.arch.exception = DB_VECTOR; 8942 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8943 return 0; 8944 } 8945 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8946 return 1; 8947 } 8948 kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8949 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8950 { 8951 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 8952 int r; 8953 8954 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 8955 if (unlikely(!r)) 8956 return 0; 8957 8958 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8959 8960 /* 8961 * rflags is the old, "raw" value of the flags. The new value has 8962 * not been saved yet. 8963 * 8964 * This is correct even for TF set by the guest, because "the 8965 * processor will not generate this exception after the instruction 8966 * that sets the TF flag". 8967 */ 8968 if (unlikely(rflags & X86_EFLAGS_TF)) 8969 r = kvm_vcpu_do_singlestep(vcpu); 8970 return r; 8971 } 8972 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8973 kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8974 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8975 { 8976 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8977 return true; 8978 8979 /* 8980 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 8981 * active, but AMD compatible CPUs do not. 8982 */ 8983 if (!guest_cpuid_is_intel_compatible(vcpu)) 8984 return false; 8985 8986 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 8987 } 8988 kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8989 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8990 int emulation_type, int *r) 8991 { 8992 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8993 8994 /* 8995 * Do not check for code breakpoints if hardware has already done the 8996 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8997 * the instruction has passed all exception checks, and all intercepted 8998 * exceptions that trigger emulation have lower priority than code 8999 * breakpoints, i.e. the fact that the intercepted exception occurred 9000 * means any code breakpoints have already been serviced. 9001 * 9002 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9003 * hardware has checked the RIP of the magic prefix, but not the RIP of 9004 * the instruction being emulated. The intent of forced emulation is 9005 * to behave as if KVM intercepted the instruction without an exception 9006 * and without a prefix. 9007 */ 9008 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9009 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9010 return false; 9011 9012 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9013 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9014 struct kvm_run *kvm_run = vcpu->run; 9015 unsigned long eip = kvm_get_linear_rip(vcpu); 9016 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9017 vcpu->arch.guest_debug_dr7, 9018 vcpu->arch.eff_db); 9019 9020 if (dr6 != 0) { 9021 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9022 kvm_run->debug.arch.pc = eip; 9023 kvm_run->debug.arch.exception = DB_VECTOR; 9024 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9025 *r = 0; 9026 return true; 9027 } 9028 } 9029 9030 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9031 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9032 unsigned long eip = kvm_get_linear_rip(vcpu); 9033 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9034 vcpu->arch.dr7, 9035 vcpu->arch.db); 9036 9037 if (dr6 != 0) { 9038 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9039 *r = 1; 9040 return true; 9041 } 9042 } 9043 9044 return false; 9045 } 9046 is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9047 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9048 { 9049 switch (ctxt->opcode_len) { 9050 case 1: 9051 switch (ctxt->b) { 9052 case 0xe4: /* IN */ 9053 case 0xe5: 9054 case 0xec: 9055 case 0xed: 9056 case 0xe6: /* OUT */ 9057 case 0xe7: 9058 case 0xee: 9059 case 0xef: 9060 case 0x6c: /* INS */ 9061 case 0x6d: 9062 case 0x6e: /* OUTS */ 9063 case 0x6f: 9064 return true; 9065 } 9066 break; 9067 case 2: 9068 switch (ctxt->b) { 9069 case 0x33: /* RDPMC */ 9070 return true; 9071 } 9072 break; 9073 } 9074 9075 return false; 9076 } 9077 9078 /* 9079 * Decode an instruction for emulation. The caller is responsible for handling 9080 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9081 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9082 * code breakpoints have higher priority and thus have already been done by 9083 * hardware. 9084 * 9085 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9086 * response to a machine check. 9087 */ x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9088 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9089 void *insn, int insn_len) 9090 { 9091 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9092 int r; 9093 9094 init_emulate_ctxt(vcpu); 9095 9096 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9097 9098 trace_kvm_emulate_insn_start(vcpu); 9099 ++vcpu->stat.insn_emulation; 9100 9101 return r; 9102 } 9103 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9104 x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9105 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9106 int emulation_type, void *insn, int insn_len) 9107 { 9108 int r; 9109 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9110 bool writeback = true; 9111 9112 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9113 (WARN_ON_ONCE(is_guest_mode(vcpu)) || 9114 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) 9115 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; 9116 9117 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9118 if (r != X86EMUL_CONTINUE) { 9119 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9120 return 1; 9121 9122 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9123 emulation_type)) 9124 return 1; 9125 9126 if (r == X86EMUL_UNHANDLEABLE_VECTORING) { 9127 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa); 9128 return 0; 9129 } 9130 9131 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9132 return handle_emulation_failure(vcpu, emulation_type); 9133 } 9134 9135 vcpu->arch.l1tf_flush_l1d = true; 9136 9137 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9138 kvm_clear_exception_queue(vcpu); 9139 9140 /* 9141 * Return immediately if RIP hits a code breakpoint, such #DBs 9142 * are fault-like and are higher priority than any faults on 9143 * the code fetch itself. 9144 */ 9145 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9146 return r; 9147 9148 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9149 insn, insn_len); 9150 if (r != EMULATION_OK) { 9151 if ((emulation_type & EMULTYPE_TRAP_UD) || 9152 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9153 kvm_queue_exception(vcpu, UD_VECTOR); 9154 return 1; 9155 } 9156 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9157 emulation_type)) 9158 return 1; 9159 9160 if (ctxt->have_exception && 9161 !(emulation_type & EMULTYPE_SKIP)) { 9162 /* 9163 * #UD should result in just EMULATION_FAILED, and trap-like 9164 * exception should not be encountered during decode. 9165 */ 9166 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9167 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9168 inject_emulated_exception(vcpu); 9169 return 1; 9170 } 9171 return handle_emulation_failure(vcpu, emulation_type); 9172 } 9173 } 9174 9175 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9176 !is_vmware_backdoor_opcode(ctxt)) { 9177 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9178 return 1; 9179 } 9180 9181 /* 9182 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9183 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9184 * The caller is responsible for updating interruptibility state and 9185 * injecting single-step #DBs. 9186 */ 9187 if (emulation_type & EMULTYPE_SKIP) { 9188 if (ctxt->mode != X86EMUL_MODE_PROT64) 9189 ctxt->eip = (u32)ctxt->_eip; 9190 else 9191 ctxt->eip = ctxt->_eip; 9192 9193 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9194 r = 1; 9195 goto writeback; 9196 } 9197 9198 kvm_rip_write(vcpu, ctxt->eip); 9199 if (ctxt->eflags & X86_EFLAGS_RF) 9200 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9201 return 1; 9202 } 9203 9204 /* 9205 * If emulation was caused by a write-protection #PF on a non-page_table 9206 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, 9207 * and retry the instruction, as the vCPU is likely no longer using the 9208 * gfn as a page table. 9209 */ 9210 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9211 !x86_page_table_writing_insn(ctxt) && 9212 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 9213 return 1; 9214 9215 /* this is needed for vmware backdoor interface to work since it 9216 changes registers values during IO operation */ 9217 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9218 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9219 emulator_invalidate_register_cache(ctxt); 9220 } 9221 9222 restart: 9223 if (emulation_type & EMULTYPE_PF) { 9224 /* Save the faulting GPA (cr2) in the address field */ 9225 ctxt->exception.address = cr2_or_gpa; 9226 9227 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9228 if (vcpu->arch.mmu->root_role.direct) { 9229 ctxt->gpa_available = true; 9230 ctxt->gpa_val = cr2_or_gpa; 9231 } 9232 } else { 9233 /* Sanitize the address out of an abundance of paranoia. */ 9234 ctxt->exception.address = 0; 9235 } 9236 9237 r = x86_emulate_insn(ctxt); 9238 9239 if (r == EMULATION_INTERCEPTED) 9240 return 1; 9241 9242 if (r == EMULATION_FAILED) { 9243 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9244 emulation_type)) 9245 return 1; 9246 9247 return handle_emulation_failure(vcpu, emulation_type); 9248 } 9249 9250 if (ctxt->have_exception) { 9251 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9252 vcpu->mmio_needed = false; 9253 r = 1; 9254 inject_emulated_exception(vcpu); 9255 } else if (vcpu->arch.pio.count) { 9256 if (!vcpu->arch.pio.in) { 9257 /* FIXME: return into emulator if single-stepping. */ 9258 vcpu->arch.pio.count = 0; 9259 } else { 9260 writeback = false; 9261 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9262 } 9263 r = 0; 9264 } else if (vcpu->mmio_needed) { 9265 ++vcpu->stat.mmio_exits; 9266 9267 if (!vcpu->mmio_is_write) 9268 writeback = false; 9269 r = 0; 9270 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9271 } else if (vcpu->arch.complete_userspace_io) { 9272 writeback = false; 9273 r = 0; 9274 } else if (r == EMULATION_RESTART) 9275 goto restart; 9276 else 9277 r = 1; 9278 9279 writeback: 9280 if (writeback) { 9281 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9282 toggle_interruptibility(vcpu, ctxt->interruptibility); 9283 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9284 9285 /* 9286 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9287 * only supports code breakpoints and general detect #DB, both 9288 * of which are fault-like. 9289 */ 9290 if (!ctxt->have_exception || 9291 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9292 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9293 if (ctxt->is_branch) 9294 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9295 kvm_rip_write(vcpu, ctxt->eip); 9296 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9297 r = kvm_vcpu_do_singlestep(vcpu); 9298 kvm_x86_call(update_emulated_instruction)(vcpu); 9299 __kvm_set_rflags(vcpu, ctxt->eflags); 9300 } 9301 9302 /* 9303 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9304 * do nothing, and it will be requested again as soon as 9305 * the shadow expires. But we still need to check here, 9306 * because POPF has no interrupt shadow. 9307 */ 9308 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9309 kvm_make_request(KVM_REQ_EVENT, vcpu); 9310 } else 9311 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9312 9313 return r; 9314 } 9315 kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9316 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9317 { 9318 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9319 } 9320 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9321 kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9322 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9323 void *insn, int insn_len) 9324 { 9325 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9326 } 9327 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9328 complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9329 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9330 { 9331 vcpu->arch.pio.count = 0; 9332 return 1; 9333 } 9334 complete_fast_pio_out(struct kvm_vcpu * vcpu)9335 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9336 { 9337 vcpu->arch.pio.count = 0; 9338 9339 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9340 return 1; 9341 9342 return kvm_skip_emulated_instruction(vcpu); 9343 } 9344 kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9345 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9346 unsigned short port) 9347 { 9348 unsigned long val = kvm_rax_read(vcpu); 9349 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9350 9351 if (ret) 9352 return ret; 9353 9354 /* 9355 * Workaround userspace that relies on old KVM behavior of %rip being 9356 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9357 */ 9358 if (port == 0x7e && 9359 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9360 vcpu->arch.complete_userspace_io = 9361 complete_fast_pio_out_port_0x7e; 9362 kvm_skip_emulated_instruction(vcpu); 9363 } else { 9364 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9365 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9366 } 9367 return 0; 9368 } 9369 complete_fast_pio_in(struct kvm_vcpu * vcpu)9370 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9371 { 9372 unsigned long val; 9373 9374 /* We should only ever be called with arch.pio.count equal to 1 */ 9375 BUG_ON(vcpu->arch.pio.count != 1); 9376 9377 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9378 vcpu->arch.pio.count = 0; 9379 return 1; 9380 } 9381 9382 /* For size less than 4 we merge, else we zero extend */ 9383 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9384 9385 complete_emulator_pio_in(vcpu, &val); 9386 kvm_rax_write(vcpu, val); 9387 9388 return kvm_skip_emulated_instruction(vcpu); 9389 } 9390 kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9391 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9392 unsigned short port) 9393 { 9394 unsigned long val; 9395 int ret; 9396 9397 /* For size less than 4 we merge, else we zero extend */ 9398 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9399 9400 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9401 if (ret) { 9402 kvm_rax_write(vcpu, val); 9403 return ret; 9404 } 9405 9406 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9407 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9408 9409 return 0; 9410 } 9411 kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9412 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9413 { 9414 int ret; 9415 9416 if (in) 9417 ret = kvm_fast_pio_in(vcpu, size, port); 9418 else 9419 ret = kvm_fast_pio_out(vcpu, size, port); 9420 return ret && kvm_skip_emulated_instruction(vcpu); 9421 } 9422 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9423 kvmclock_cpu_down_prep(unsigned int cpu)9424 static int kvmclock_cpu_down_prep(unsigned int cpu) 9425 { 9426 __this_cpu_write(cpu_tsc_khz, 0); 9427 return 0; 9428 } 9429 tsc_khz_changed(void * data)9430 static void tsc_khz_changed(void *data) 9431 { 9432 struct cpufreq_freqs *freq = data; 9433 unsigned long khz; 9434 9435 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9436 9437 if (data) 9438 khz = freq->new; 9439 else 9440 khz = cpufreq_quick_get(raw_smp_processor_id()); 9441 if (!khz) 9442 khz = tsc_khz; 9443 __this_cpu_write(cpu_tsc_khz, khz); 9444 } 9445 9446 #ifdef CONFIG_X86_64 kvm_hyperv_tsc_notifier(void)9447 static void kvm_hyperv_tsc_notifier(void) 9448 { 9449 struct kvm *kvm; 9450 int cpu; 9451 9452 mutex_lock(&kvm_lock); 9453 list_for_each_entry(kvm, &vm_list, vm_list) 9454 kvm_make_mclock_inprogress_request(kvm); 9455 9456 /* no guest entries from this point */ 9457 hyperv_stop_tsc_emulation(); 9458 9459 /* TSC frequency always matches when on Hyper-V */ 9460 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9461 for_each_present_cpu(cpu) 9462 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9463 } 9464 kvm_caps.max_guest_tsc_khz = tsc_khz; 9465 9466 list_for_each_entry(kvm, &vm_list, vm_list) { 9467 __kvm_start_pvclock_update(kvm); 9468 pvclock_update_vm_gtod_copy(kvm); 9469 kvm_end_pvclock_update(kvm); 9470 } 9471 9472 mutex_unlock(&kvm_lock); 9473 } 9474 #endif 9475 __kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9476 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9477 { 9478 struct kvm *kvm; 9479 struct kvm_vcpu *vcpu; 9480 int send_ipi = 0; 9481 unsigned long i; 9482 9483 /* 9484 * We allow guests to temporarily run on slowing clocks, 9485 * provided we notify them after, or to run on accelerating 9486 * clocks, provided we notify them before. Thus time never 9487 * goes backwards. 9488 * 9489 * However, we have a problem. We can't atomically update 9490 * the frequency of a given CPU from this function; it is 9491 * merely a notifier, which can be called from any CPU. 9492 * Changing the TSC frequency at arbitrary points in time 9493 * requires a recomputation of local variables related to 9494 * the TSC for each VCPU. We must flag these local variables 9495 * to be updated and be sure the update takes place with the 9496 * new frequency before any guests proceed. 9497 * 9498 * Unfortunately, the combination of hotplug CPU and frequency 9499 * change creates an intractable locking scenario; the order 9500 * of when these callouts happen is undefined with respect to 9501 * CPU hotplug, and they can race with each other. As such, 9502 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9503 * undefined; you can actually have a CPU frequency change take 9504 * place in between the computation of X and the setting of the 9505 * variable. To protect against this problem, all updates of 9506 * the per_cpu tsc_khz variable are done in an interrupt 9507 * protected IPI, and all callers wishing to update the value 9508 * must wait for a synchronous IPI to complete (which is trivial 9509 * if the caller is on the CPU already). This establishes the 9510 * necessary total order on variable updates. 9511 * 9512 * Note that because a guest time update may take place 9513 * anytime after the setting of the VCPU's request bit, the 9514 * correct TSC value must be set before the request. However, 9515 * to ensure the update actually makes it to any guest which 9516 * starts running in hardware virtualization between the set 9517 * and the acquisition of the spinlock, we must also ping the 9518 * CPU after setting the request bit. 9519 * 9520 */ 9521 9522 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9523 9524 mutex_lock(&kvm_lock); 9525 list_for_each_entry(kvm, &vm_list, vm_list) { 9526 kvm_for_each_vcpu(i, vcpu, kvm) { 9527 if (vcpu->cpu != cpu) 9528 continue; 9529 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9530 if (vcpu->cpu != raw_smp_processor_id()) 9531 send_ipi = 1; 9532 } 9533 } 9534 mutex_unlock(&kvm_lock); 9535 9536 if (freq->old < freq->new && send_ipi) { 9537 /* 9538 * We upscale the frequency. Must make the guest 9539 * doesn't see old kvmclock values while running with 9540 * the new frequency, otherwise we risk the guest sees 9541 * time go backwards. 9542 * 9543 * In case we update the frequency for another cpu 9544 * (which might be in guest context) send an interrupt 9545 * to kick the cpu out of guest context. Next time 9546 * guest context is entered kvmclock will be updated, 9547 * so the guest will not see stale values. 9548 */ 9549 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9550 } 9551 } 9552 kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9553 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9554 void *data) 9555 { 9556 struct cpufreq_freqs *freq = data; 9557 int cpu; 9558 9559 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9560 return 0; 9561 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9562 return 0; 9563 9564 for_each_cpu(cpu, freq->policy->cpus) 9565 __kvmclock_cpufreq_notifier(freq, cpu); 9566 9567 return 0; 9568 } 9569 9570 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9571 .notifier_call = kvmclock_cpufreq_notifier 9572 }; 9573 kvmclock_cpu_online(unsigned int cpu)9574 static int kvmclock_cpu_online(unsigned int cpu) 9575 { 9576 tsc_khz_changed(NULL); 9577 return 0; 9578 } 9579 kvm_timer_init(void)9580 static void kvm_timer_init(void) 9581 { 9582 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9583 max_tsc_khz = tsc_khz; 9584 9585 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9586 struct cpufreq_policy *policy; 9587 int cpu; 9588 9589 cpu = get_cpu(); 9590 policy = cpufreq_cpu_get(cpu); 9591 if (policy) { 9592 if (policy->cpuinfo.max_freq) 9593 max_tsc_khz = policy->cpuinfo.max_freq; 9594 cpufreq_cpu_put(policy); 9595 } 9596 put_cpu(); 9597 } 9598 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9599 CPUFREQ_TRANSITION_NOTIFIER); 9600 9601 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9602 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9603 } 9604 } 9605 9606 #ifdef CONFIG_X86_64 pvclock_gtod_update_fn(struct work_struct * work)9607 static void pvclock_gtod_update_fn(struct work_struct *work) 9608 { 9609 struct kvm *kvm; 9610 struct kvm_vcpu *vcpu; 9611 unsigned long i; 9612 9613 mutex_lock(&kvm_lock); 9614 list_for_each_entry(kvm, &vm_list, vm_list) 9615 kvm_for_each_vcpu(i, vcpu, kvm) 9616 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9617 atomic_set(&kvm_guest_has_master_clock, 0); 9618 mutex_unlock(&kvm_lock); 9619 } 9620 9621 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9622 9623 /* 9624 * Indirection to move queue_work() out of the tk_core.seq write held 9625 * region to prevent possible deadlocks against time accessors which 9626 * are invoked with work related locks held. 9627 */ pvclock_irq_work_fn(struct irq_work * w)9628 static void pvclock_irq_work_fn(struct irq_work *w) 9629 { 9630 queue_work(system_long_wq, &pvclock_gtod_work); 9631 } 9632 9633 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9634 9635 /* 9636 * Notification about pvclock gtod data update. 9637 */ pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9638 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9639 void *priv) 9640 { 9641 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9642 struct timekeeper *tk = priv; 9643 9644 update_pvclock_gtod(tk); 9645 9646 /* 9647 * Disable master clock if host does not trust, or does not use, 9648 * TSC based clocksource. Delegate queue_work() to irq_work as 9649 * this is invoked with tk_core.seq write held. 9650 */ 9651 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9652 atomic_read(&kvm_guest_has_master_clock) != 0) 9653 irq_work_queue(&pvclock_irq_work); 9654 return 0; 9655 } 9656 9657 static struct notifier_block pvclock_gtod_notifier = { 9658 .notifier_call = pvclock_gtod_notify, 9659 }; 9660 #endif 9661 kvm_ops_update(struct kvm_x86_init_ops * ops)9662 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9663 { 9664 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9665 9666 #define __KVM_X86_OP(func) \ 9667 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9668 #define KVM_X86_OP(func) \ 9669 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9670 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9671 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9672 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9673 (void *)__static_call_return0); 9674 #include <asm/kvm-x86-ops.h> 9675 #undef __KVM_X86_OP 9676 9677 kvm_pmu_ops_update(ops->pmu_ops); 9678 } 9679 kvm_x86_check_processor_compatibility(void)9680 static int kvm_x86_check_processor_compatibility(void) 9681 { 9682 int cpu = smp_processor_id(); 9683 struct cpuinfo_x86 *c = &cpu_data(cpu); 9684 9685 /* 9686 * Compatibility checks are done when loading KVM and when enabling 9687 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9688 * compatible, i.e. KVM should never perform a compatibility check on 9689 * an offline CPU. 9690 */ 9691 WARN_ON(!cpu_online(cpu)); 9692 9693 if (__cr4_reserved_bits(cpu_has, c) != 9694 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9695 return -EIO; 9696 9697 return kvm_x86_call(check_processor_compatibility)(); 9698 } 9699 kvm_x86_check_cpu_compat(void * ret)9700 static void kvm_x86_check_cpu_compat(void *ret) 9701 { 9702 *(int *)ret = kvm_x86_check_processor_compatibility(); 9703 } 9704 kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9705 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9706 { 9707 u64 host_pat; 9708 int r, cpu; 9709 9710 guard(mutex)(&vendor_module_lock); 9711 9712 if (kvm_x86_ops.enable_virtualization_cpu) { 9713 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9714 return -EEXIST; 9715 } 9716 9717 /* 9718 * KVM explicitly assumes that the guest has an FPU and 9719 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9720 * vCPU's FPU state as a fxregs_state struct. 9721 */ 9722 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9723 pr_err("inadequate fpu\n"); 9724 return -EOPNOTSUPP; 9725 } 9726 9727 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9728 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9729 return -EOPNOTSUPP; 9730 } 9731 9732 /* 9733 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9734 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9735 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9736 * with an exception. PAT[0] is set to WB on RESET and also by the 9737 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9738 */ 9739 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9740 (host_pat & GENMASK(2, 0)) != 6) { 9741 pr_err("host PAT[0] is not WB\n"); 9742 return -EIO; 9743 } 9744 9745 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9746 9747 x86_emulator_cache = kvm_alloc_emulator_cache(); 9748 if (!x86_emulator_cache) { 9749 pr_err("failed to allocate cache for x86 emulator\n"); 9750 return -ENOMEM; 9751 } 9752 9753 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9754 if (!user_return_msrs) { 9755 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9756 r = -ENOMEM; 9757 goto out_free_x86_emulator_cache; 9758 } 9759 kvm_nr_uret_msrs = 0; 9760 9761 r = kvm_mmu_vendor_module_init(); 9762 if (r) 9763 goto out_free_percpu; 9764 9765 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9766 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9767 9768 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9769 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9770 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9771 } 9772 9773 rdmsrl_safe(MSR_EFER, &kvm_host.efer); 9774 9775 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9776 rdmsrl(MSR_IA32_XSS, kvm_host.xss); 9777 9778 kvm_init_pmu_capability(ops->pmu_ops); 9779 9780 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9781 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9782 9783 r = ops->hardware_setup(); 9784 if (r != 0) 9785 goto out_mmu_exit; 9786 9787 kvm_ops_update(ops); 9788 9789 for_each_online_cpu(cpu) { 9790 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9791 if (r < 0) 9792 goto out_unwind_ops; 9793 } 9794 9795 /* 9796 * Point of no return! DO NOT add error paths below this point unless 9797 * absolutely necessary, as most operations from this point forward 9798 * require unwinding. 9799 */ 9800 kvm_timer_init(); 9801 9802 if (pi_inject_timer == -1) 9803 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9804 #ifdef CONFIG_X86_64 9805 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9806 9807 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9808 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9809 #endif 9810 9811 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9812 9813 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9814 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9815 9816 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9817 kvm_caps.supported_xss = 0; 9818 9819 if (kvm_caps.has_tsc_control) { 9820 /* 9821 * Make sure the user can only configure tsc_khz values that 9822 * fit into a signed integer. 9823 * A min value is not calculated because it will always 9824 * be 1 on all machines. 9825 */ 9826 u64 max = min(0x7fffffffULL, 9827 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9828 kvm_caps.max_guest_tsc_khz = max; 9829 } 9830 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9831 kvm_init_msr_lists(); 9832 return 0; 9833 9834 out_unwind_ops: 9835 kvm_x86_ops.enable_virtualization_cpu = NULL; 9836 kvm_x86_call(hardware_unsetup)(); 9837 out_mmu_exit: 9838 kvm_mmu_vendor_module_exit(); 9839 out_free_percpu: 9840 free_percpu(user_return_msrs); 9841 out_free_x86_emulator_cache: 9842 kmem_cache_destroy(x86_emulator_cache); 9843 return r; 9844 } 9845 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9846 kvm_x86_vendor_exit(void)9847 void kvm_x86_vendor_exit(void) 9848 { 9849 kvm_unregister_perf_callbacks(); 9850 9851 #ifdef CONFIG_X86_64 9852 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9853 clear_hv_tscchange_cb(); 9854 #endif 9855 kvm_lapic_exit(); 9856 9857 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9858 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9859 CPUFREQ_TRANSITION_NOTIFIER); 9860 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9861 } 9862 #ifdef CONFIG_X86_64 9863 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9864 irq_work_sync(&pvclock_irq_work); 9865 cancel_work_sync(&pvclock_gtod_work); 9866 #endif 9867 kvm_x86_call(hardware_unsetup)(); 9868 kvm_mmu_vendor_module_exit(); 9869 free_percpu(user_return_msrs); 9870 kmem_cache_destroy(x86_emulator_cache); 9871 #ifdef CONFIG_KVM_XEN 9872 static_key_deferred_flush(&kvm_xen_enabled); 9873 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9874 #endif 9875 mutex_lock(&vendor_module_lock); 9876 kvm_x86_ops.enable_virtualization_cpu = NULL; 9877 mutex_unlock(&vendor_module_lock); 9878 } 9879 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9880 9881 #ifdef CONFIG_X86_64 kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9882 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9883 unsigned long clock_type) 9884 { 9885 struct kvm_clock_pairing clock_pairing; 9886 struct timespec64 ts; 9887 u64 cycle; 9888 int ret; 9889 9890 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9891 return -KVM_EOPNOTSUPP; 9892 9893 /* 9894 * When tsc is in permanent catchup mode guests won't be able to use 9895 * pvclock_read_retry loop to get consistent view of pvclock 9896 */ 9897 if (vcpu->arch.tsc_always_catchup) 9898 return -KVM_EOPNOTSUPP; 9899 9900 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9901 return -KVM_EOPNOTSUPP; 9902 9903 clock_pairing.sec = ts.tv_sec; 9904 clock_pairing.nsec = ts.tv_nsec; 9905 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9906 clock_pairing.flags = 0; 9907 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9908 9909 ret = 0; 9910 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9911 sizeof(struct kvm_clock_pairing))) 9912 ret = -KVM_EFAULT; 9913 9914 return ret; 9915 } 9916 #endif 9917 9918 /* 9919 * kvm_pv_kick_cpu_op: Kick a vcpu. 9920 * 9921 * @apicid - apicid of vcpu to be kicked. 9922 */ kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9923 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9924 { 9925 /* 9926 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9927 * common code, e.g. for tracing. Defer initialization to the compiler. 9928 */ 9929 struct kvm_lapic_irq lapic_irq = { 9930 .delivery_mode = APIC_DM_REMRD, 9931 .dest_mode = APIC_DEST_PHYSICAL, 9932 .shorthand = APIC_DEST_NOSHORT, 9933 .dest_id = apicid, 9934 }; 9935 9936 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9937 } 9938 kvm_apicv_activated(struct kvm * kvm)9939 bool kvm_apicv_activated(struct kvm *kvm) 9940 { 9941 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9942 } 9943 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9944 kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9945 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9946 { 9947 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9948 ulong vcpu_reasons = 9949 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 9950 9951 return (vm_reasons | vcpu_reasons) == 0; 9952 } 9953 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9954 set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9955 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9956 enum kvm_apicv_inhibit reason, bool set) 9957 { 9958 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 9959 9960 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 9961 9962 if (set) 9963 __set_bit(reason, inhibits); 9964 else 9965 __clear_bit(reason, inhibits); 9966 9967 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9968 } 9969 kvm_apicv_init(struct kvm * kvm)9970 static void kvm_apicv_init(struct kvm *kvm) 9971 { 9972 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 9973 APICV_INHIBIT_REASON_DISABLED; 9974 9975 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 9976 9977 init_rwsem(&kvm->arch.apicv_update_lock); 9978 } 9979 kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9980 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9981 { 9982 struct kvm_vcpu *target = NULL; 9983 struct kvm_apic_map *map; 9984 9985 vcpu->stat.directed_yield_attempted++; 9986 9987 if (single_task_running()) 9988 goto no_yield; 9989 9990 rcu_read_lock(); 9991 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9992 9993 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9994 target = map->phys_map[dest_id]->vcpu; 9995 9996 rcu_read_unlock(); 9997 9998 if (!target || !READ_ONCE(target->ready)) 9999 goto no_yield; 10000 10001 /* Ignore requests to yield to self */ 10002 if (vcpu == target) 10003 goto no_yield; 10004 10005 if (kvm_vcpu_yield_to(target) <= 0) 10006 goto no_yield; 10007 10008 vcpu->stat.directed_yield_successful++; 10009 10010 no_yield: 10011 return; 10012 } 10013 complete_hypercall_exit(struct kvm_vcpu * vcpu)10014 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10015 { 10016 u64 ret = vcpu->run->hypercall.ret; 10017 10018 if (!is_64_bit_hypercall(vcpu)) 10019 ret = (u32)ret; 10020 kvm_rax_write(vcpu, ret); 10021 return kvm_skip_emulated_instruction(vcpu); 10022 } 10023 ____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10024 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 10025 unsigned long a0, unsigned long a1, 10026 unsigned long a2, unsigned long a3, 10027 int op_64_bit, int cpl, 10028 int (*complete_hypercall)(struct kvm_vcpu *)) 10029 { 10030 unsigned long ret; 10031 10032 ++vcpu->stat.hypercalls; 10033 10034 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10035 10036 if (!op_64_bit) { 10037 nr &= 0xFFFFFFFF; 10038 a0 &= 0xFFFFFFFF; 10039 a1 &= 0xFFFFFFFF; 10040 a2 &= 0xFFFFFFFF; 10041 a3 &= 0xFFFFFFFF; 10042 } 10043 10044 if (cpl) { 10045 ret = -KVM_EPERM; 10046 goto out; 10047 } 10048 10049 ret = -KVM_ENOSYS; 10050 10051 switch (nr) { 10052 case KVM_HC_VAPIC_POLL_IRQ: 10053 ret = 0; 10054 break; 10055 case KVM_HC_KICK_CPU: 10056 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10057 break; 10058 10059 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10060 kvm_sched_yield(vcpu, a1); 10061 ret = 0; 10062 break; 10063 #ifdef CONFIG_X86_64 10064 case KVM_HC_CLOCK_PAIRING: 10065 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10066 break; 10067 #endif 10068 case KVM_HC_SEND_IPI: 10069 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10070 break; 10071 10072 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10073 break; 10074 case KVM_HC_SCHED_YIELD: 10075 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10076 break; 10077 10078 kvm_sched_yield(vcpu, a0); 10079 ret = 0; 10080 break; 10081 case KVM_HC_MAP_GPA_RANGE: { 10082 u64 gpa = a0, npages = a1, attrs = a2; 10083 10084 ret = -KVM_ENOSYS; 10085 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) 10086 break; 10087 10088 if (!PAGE_ALIGNED(gpa) || !npages || 10089 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10090 ret = -KVM_EINVAL; 10091 break; 10092 } 10093 10094 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10095 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10096 /* 10097 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 10098 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 10099 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 10100 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 10101 */ 10102 vcpu->run->hypercall.ret = 0; 10103 vcpu->run->hypercall.args[0] = gpa; 10104 vcpu->run->hypercall.args[1] = npages; 10105 vcpu->run->hypercall.args[2] = attrs; 10106 vcpu->run->hypercall.flags = 0; 10107 if (op_64_bit) 10108 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10109 10110 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10111 vcpu->arch.complete_userspace_io = complete_hypercall; 10112 return 0; 10113 } 10114 default: 10115 ret = -KVM_ENOSYS; 10116 break; 10117 } 10118 10119 out: 10120 vcpu->run->hypercall.ret = ret; 10121 return 1; 10122 } 10123 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall); 10124 kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10125 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10126 { 10127 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10128 return kvm_xen_hypercall(vcpu); 10129 10130 if (kvm_hv_hypercall_enabled(vcpu)) 10131 return kvm_hv_hypercall(vcpu); 10132 10133 return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi, 10134 is_64_bit_hypercall(vcpu), 10135 kvm_x86_call(get_cpl)(vcpu), 10136 complete_hypercall_exit); 10137 } 10138 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10139 emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10140 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10141 { 10142 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10143 char instruction[3]; 10144 unsigned long rip = kvm_rip_read(vcpu); 10145 10146 /* 10147 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10148 * the pieces. 10149 */ 10150 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10151 ctxt->exception.error_code_valid = false; 10152 ctxt->exception.vector = UD_VECTOR; 10153 ctxt->have_exception = true; 10154 return X86EMUL_PROPAGATE_FAULT; 10155 } 10156 10157 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10158 10159 return emulator_write_emulated(ctxt, rip, instruction, 3, 10160 &ctxt->exception); 10161 } 10162 dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10163 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10164 { 10165 return vcpu->run->request_interrupt_window && 10166 likely(!pic_in_kernel(vcpu->kvm)); 10167 } 10168 10169 /* Called within kvm->srcu read side. */ post_kvm_run_save(struct kvm_vcpu * vcpu)10170 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10171 { 10172 struct kvm_run *kvm_run = vcpu->run; 10173 10174 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10175 kvm_run->cr8 = kvm_get_cr8(vcpu); 10176 kvm_run->apic_base = vcpu->arch.apic_base; 10177 10178 kvm_run->ready_for_interrupt_injection = 10179 pic_in_kernel(vcpu->kvm) || 10180 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10181 10182 if (is_smm(vcpu)) 10183 kvm_run->flags |= KVM_RUN_X86_SMM; 10184 if (is_guest_mode(vcpu)) 10185 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10186 } 10187 update_cr8_intercept(struct kvm_vcpu * vcpu)10188 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10189 { 10190 int max_irr, tpr; 10191 10192 if (!kvm_x86_ops.update_cr8_intercept) 10193 return; 10194 10195 if (!lapic_in_kernel(vcpu)) 10196 return; 10197 10198 if (vcpu->arch.apic->apicv_active) 10199 return; 10200 10201 if (!vcpu->arch.apic->vapic_addr) 10202 max_irr = kvm_lapic_find_highest_irr(vcpu); 10203 else 10204 max_irr = -1; 10205 10206 if (max_irr != -1) 10207 max_irr >>= 4; 10208 10209 tpr = kvm_lapic_get_cr8(vcpu); 10210 10211 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10212 } 10213 10214 kvm_check_nested_events(struct kvm_vcpu * vcpu)10215 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10216 { 10217 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10218 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10219 return 1; 10220 } 10221 10222 return kvm_x86_ops.nested_ops->check_events(vcpu); 10223 } 10224 kvm_inject_exception(struct kvm_vcpu * vcpu)10225 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10226 { 10227 /* 10228 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10229 * exceptions don't report error codes. The presence of an error code 10230 * is carried with the exception and only stripped when the exception 10231 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10232 * report an error code despite the CPU being in Real Mode. 10233 */ 10234 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10235 10236 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10237 vcpu->arch.exception.has_error_code, 10238 vcpu->arch.exception.error_code, 10239 vcpu->arch.exception.injected); 10240 10241 kvm_x86_call(inject_exception)(vcpu); 10242 } 10243 10244 /* 10245 * Check for any event (interrupt or exception) that is ready to be injected, 10246 * and if there is at least one event, inject the event with the highest 10247 * priority. This handles both "pending" events, i.e. events that have never 10248 * been injected into the guest, and "injected" events, i.e. events that were 10249 * injected as part of a previous VM-Enter, but weren't successfully delivered 10250 * and need to be re-injected. 10251 * 10252 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10253 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10254 * be able to inject exceptions in the "middle" of an instruction, and so must 10255 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10256 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10257 * boundaries is necessary and correct. 10258 * 10259 * For simplicity, KVM uses a single path to inject all events (except events 10260 * that are injected directly from L1 to L2) and doesn't explicitly track 10261 * instruction boundaries for asynchronous events. However, because VM-Exits 10262 * that can occur during instruction execution typically result in KVM skipping 10263 * the instruction or injecting an exception, e.g. instruction and exception 10264 * intercepts, and because pending exceptions have higher priority than pending 10265 * interrupts, KVM still honors instruction boundaries in most scenarios. 10266 * 10267 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10268 * the instruction or inject an exception, then KVM can incorrecty inject a new 10269 * asynchronous event if the event became pending after the CPU fetched the 10270 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10271 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10272 * injected on the restarted instruction instead of being deferred until the 10273 * instruction completes. 10274 * 10275 * In practice, this virtualization hole is unlikely to be observed by the 10276 * guest, and even less likely to cause functional problems. To detect the 10277 * hole, the guest would have to trigger an event on a side effect of an early 10278 * phase of instruction execution, e.g. on the instruction fetch from memory. 10279 * And for it to be a functional problem, the guest would need to depend on the 10280 * ordering between that side effect, the instruction completing, _and_ the 10281 * delivery of the asynchronous event. 10282 */ kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10283 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10284 bool *req_immediate_exit) 10285 { 10286 bool can_inject; 10287 int r; 10288 10289 /* 10290 * Process nested events first, as nested VM-Exit supersedes event 10291 * re-injection. If there's an event queued for re-injection, it will 10292 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10293 */ 10294 if (is_guest_mode(vcpu)) 10295 r = kvm_check_nested_events(vcpu); 10296 else 10297 r = 0; 10298 10299 /* 10300 * Re-inject exceptions and events *especially* if immediate entry+exit 10301 * to/from L2 is needed, as any event that has already been injected 10302 * into L2 needs to complete its lifecycle before injecting a new event. 10303 * 10304 * Don't re-inject an NMI or interrupt if there is a pending exception. 10305 * This collision arises if an exception occurred while vectoring the 10306 * injected event, KVM intercepted said exception, and KVM ultimately 10307 * determined the fault belongs to the guest and queues the exception 10308 * for injection back into the guest. 10309 * 10310 * "Injected" interrupts can also collide with pending exceptions if 10311 * userspace ignores the "ready for injection" flag and blindly queues 10312 * an interrupt. In that case, prioritizing the exception is correct, 10313 * as the exception "occurred" before the exit to userspace. Trap-like 10314 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10315 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10316 * priority, they're only generated (pended) during instruction 10317 * execution, and interrupts are recognized at instruction boundaries. 10318 * Thus a pending fault-like exception means the fault occurred on the 10319 * *previous* instruction and must be serviced prior to recognizing any 10320 * new events in order to fully complete the previous instruction. 10321 */ 10322 if (vcpu->arch.exception.injected) 10323 kvm_inject_exception(vcpu); 10324 else if (kvm_is_exception_pending(vcpu)) 10325 ; /* see above */ 10326 else if (vcpu->arch.nmi_injected) 10327 kvm_x86_call(inject_nmi)(vcpu); 10328 else if (vcpu->arch.interrupt.injected) 10329 kvm_x86_call(inject_irq)(vcpu, true); 10330 10331 /* 10332 * Exceptions that morph to VM-Exits are handled above, and pending 10333 * exceptions on top of injected exceptions that do not VM-Exit should 10334 * either morph to #DF or, sadly, override the injected exception. 10335 */ 10336 WARN_ON_ONCE(vcpu->arch.exception.injected && 10337 vcpu->arch.exception.pending); 10338 10339 /* 10340 * Bail if immediate entry+exit to/from the guest is needed to complete 10341 * nested VM-Enter or event re-injection so that a different pending 10342 * event can be serviced (or if KVM needs to exit to userspace). 10343 * 10344 * Otherwise, continue processing events even if VM-Exit occurred. The 10345 * VM-Exit will have cleared exceptions that were meant for L2, but 10346 * there may now be events that can be injected into L1. 10347 */ 10348 if (r < 0) 10349 goto out; 10350 10351 /* 10352 * A pending exception VM-Exit should either result in nested VM-Exit 10353 * or force an immediate re-entry and exit to/from L2, and exception 10354 * VM-Exits cannot be injected (flag should _never_ be set). 10355 */ 10356 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10357 vcpu->arch.exception_vmexit.pending); 10358 10359 /* 10360 * New events, other than exceptions, cannot be injected if KVM needs 10361 * to re-inject a previous event. See above comments on re-injecting 10362 * for why pending exceptions get priority. 10363 */ 10364 can_inject = !kvm_event_needs_reinjection(vcpu); 10365 10366 if (vcpu->arch.exception.pending) { 10367 /* 10368 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10369 * value pushed on the stack. Trap-like exception and all #DBs 10370 * leave RF as-is (KVM follows Intel's behavior in this regard; 10371 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10372 * 10373 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10374 * describe the behavior of General Detect #DBs, which are 10375 * fault-like. They do _not_ set RF, a la code breakpoints. 10376 */ 10377 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10378 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10379 X86_EFLAGS_RF); 10380 10381 if (vcpu->arch.exception.vector == DB_VECTOR) { 10382 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10383 if (vcpu->arch.dr7 & DR7_GD) { 10384 vcpu->arch.dr7 &= ~DR7_GD; 10385 kvm_update_dr7(vcpu); 10386 } 10387 } 10388 10389 kvm_inject_exception(vcpu); 10390 10391 vcpu->arch.exception.pending = false; 10392 vcpu->arch.exception.injected = true; 10393 10394 can_inject = false; 10395 } 10396 10397 /* Don't inject interrupts if the user asked to avoid doing so */ 10398 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10399 return 0; 10400 10401 /* 10402 * Finally, inject interrupt events. If an event cannot be injected 10403 * due to architectural conditions (e.g. IF=0) a window-open exit 10404 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10405 * and can architecturally be injected, but we cannot do it right now: 10406 * an interrupt could have arrived just now and we have to inject it 10407 * as a vmexit, or there could already an event in the queue, which is 10408 * indicated by can_inject. In that case we request an immediate exit 10409 * in order to make progress and get back here for another iteration. 10410 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10411 */ 10412 #ifdef CONFIG_KVM_SMM 10413 if (vcpu->arch.smi_pending) { 10414 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10415 -EBUSY; 10416 if (r < 0) 10417 goto out; 10418 if (r) { 10419 vcpu->arch.smi_pending = false; 10420 ++vcpu->arch.smi_count; 10421 enter_smm(vcpu); 10422 can_inject = false; 10423 } else 10424 kvm_x86_call(enable_smi_window)(vcpu); 10425 } 10426 #endif 10427 10428 if (vcpu->arch.nmi_pending) { 10429 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10430 -EBUSY; 10431 if (r < 0) 10432 goto out; 10433 if (r) { 10434 --vcpu->arch.nmi_pending; 10435 vcpu->arch.nmi_injected = true; 10436 kvm_x86_call(inject_nmi)(vcpu); 10437 can_inject = false; 10438 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10439 } 10440 if (vcpu->arch.nmi_pending) 10441 kvm_x86_call(enable_nmi_window)(vcpu); 10442 } 10443 10444 if (kvm_cpu_has_injectable_intr(vcpu)) { 10445 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10446 -EBUSY; 10447 if (r < 0) 10448 goto out; 10449 if (r) { 10450 int irq = kvm_cpu_get_interrupt(vcpu); 10451 10452 if (!WARN_ON_ONCE(irq == -1)) { 10453 kvm_queue_interrupt(vcpu, irq, false); 10454 kvm_x86_call(inject_irq)(vcpu, false); 10455 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10456 } 10457 } 10458 if (kvm_cpu_has_injectable_intr(vcpu)) 10459 kvm_x86_call(enable_irq_window)(vcpu); 10460 } 10461 10462 if (is_guest_mode(vcpu) && 10463 kvm_x86_ops.nested_ops->has_events && 10464 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10465 *req_immediate_exit = true; 10466 10467 /* 10468 * KVM must never queue a new exception while injecting an event; KVM 10469 * is done emulating and should only propagate the to-be-injected event 10470 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10471 * infinite loop as KVM will bail from VM-Enter to inject the pending 10472 * exception and start the cycle all over. 10473 * 10474 * Exempt triple faults as they have special handling and won't put the 10475 * vCPU into an infinite loop. Triple fault can be queued when running 10476 * VMX without unrestricted guest, as that requires KVM to emulate Real 10477 * Mode events (see kvm_inject_realmode_interrupt()). 10478 */ 10479 WARN_ON_ONCE(vcpu->arch.exception.pending || 10480 vcpu->arch.exception_vmexit.pending); 10481 return 0; 10482 10483 out: 10484 if (r == -EBUSY) { 10485 *req_immediate_exit = true; 10486 r = 0; 10487 } 10488 return r; 10489 } 10490 process_nmi(struct kvm_vcpu * vcpu)10491 static void process_nmi(struct kvm_vcpu *vcpu) 10492 { 10493 unsigned int limit; 10494 10495 /* 10496 * x86 is limited to one NMI pending, but because KVM can't react to 10497 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10498 * scheduled out, KVM needs to play nice with two queued NMIs showing 10499 * up at the same time. To handle this scenario, allow two NMIs to be 10500 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10501 * waiting for a previous NMI injection to complete (which effectively 10502 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10503 * will request an NMI window to handle the second NMI. 10504 */ 10505 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10506 limit = 1; 10507 else 10508 limit = 2; 10509 10510 /* 10511 * Adjust the limit to account for pending virtual NMIs, which aren't 10512 * tracked in vcpu->arch.nmi_pending. 10513 */ 10514 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10515 limit--; 10516 10517 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10518 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10519 10520 if (vcpu->arch.nmi_pending && 10521 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10522 vcpu->arch.nmi_pending--; 10523 10524 if (vcpu->arch.nmi_pending) 10525 kvm_make_request(KVM_REQ_EVENT, vcpu); 10526 } 10527 10528 /* Return total number of NMIs pending injection to the VM */ kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10529 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10530 { 10531 return vcpu->arch.nmi_pending + 10532 kvm_x86_call(is_vnmi_pending)(vcpu); 10533 } 10534 kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10535 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10536 unsigned long *vcpu_bitmap) 10537 { 10538 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10539 } 10540 kvm_make_scan_ioapic_request(struct kvm * kvm)10541 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10542 { 10543 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10544 } 10545 __kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10546 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10547 { 10548 struct kvm_lapic *apic = vcpu->arch.apic; 10549 bool activate; 10550 10551 if (!lapic_in_kernel(vcpu)) 10552 return; 10553 10554 down_read(&vcpu->kvm->arch.apicv_update_lock); 10555 preempt_disable(); 10556 10557 /* Do not activate APICV when APIC is disabled */ 10558 activate = kvm_vcpu_apicv_activated(vcpu) && 10559 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10560 10561 if (apic->apicv_active == activate) 10562 goto out; 10563 10564 apic->apicv_active = activate; 10565 kvm_apic_update_apicv(vcpu); 10566 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10567 10568 /* 10569 * When APICv gets disabled, we may still have injected interrupts 10570 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10571 * still active when the interrupt got accepted. Make sure 10572 * kvm_check_and_inject_events() is called to check for that. 10573 */ 10574 if (!apic->apicv_active) 10575 kvm_make_request(KVM_REQ_EVENT, vcpu); 10576 10577 out: 10578 preempt_enable(); 10579 up_read(&vcpu->kvm->arch.apicv_update_lock); 10580 } 10581 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10582 kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10583 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10584 { 10585 if (!lapic_in_kernel(vcpu)) 10586 return; 10587 10588 /* 10589 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10590 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10591 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10592 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10593 * this case so that KVM can use the AVIC doorbell to inject interrupts 10594 * to running vCPUs, but KVM must not create SPTEs for the APIC base as 10595 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10596 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10597 * access page is sticky. 10598 */ 10599 if (apic_x2apic_mode(vcpu->arch.apic) && 10600 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10601 kvm_inhibit_apic_access_page(vcpu); 10602 10603 __kvm_vcpu_update_apicv(vcpu); 10604 } 10605 __kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10606 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10607 enum kvm_apicv_inhibit reason, bool set) 10608 { 10609 unsigned long old, new; 10610 10611 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10612 10613 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10614 return; 10615 10616 old = new = kvm->arch.apicv_inhibit_reasons; 10617 10618 set_or_clear_apicv_inhibit(&new, reason, set); 10619 10620 if (!!old != !!new) { 10621 /* 10622 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10623 * false positives in the sanity check WARN in vcpu_enter_guest(). 10624 * This task will wait for all vCPUs to ack the kick IRQ before 10625 * updating apicv_inhibit_reasons, and all other vCPUs will 10626 * block on acquiring apicv_update_lock so that vCPUs can't 10627 * redo vcpu_enter_guest() without seeing the new inhibit state. 10628 * 10629 * Note, holding apicv_update_lock and taking it in the read 10630 * side (handling the request) also prevents other vCPUs from 10631 * servicing the request with a stale apicv_inhibit_reasons. 10632 */ 10633 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10634 kvm->arch.apicv_inhibit_reasons = new; 10635 if (new) { 10636 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10637 int idx = srcu_read_lock(&kvm->srcu); 10638 10639 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10640 srcu_read_unlock(&kvm->srcu, idx); 10641 } 10642 } else { 10643 kvm->arch.apicv_inhibit_reasons = new; 10644 } 10645 } 10646 kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10647 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10648 enum kvm_apicv_inhibit reason, bool set) 10649 { 10650 if (!enable_apicv) 10651 return; 10652 10653 down_write(&kvm->arch.apicv_update_lock); 10654 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10655 up_write(&kvm->arch.apicv_update_lock); 10656 } 10657 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10658 vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10659 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10660 { 10661 if (!kvm_apic_present(vcpu)) 10662 return; 10663 10664 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10665 10666 kvm_x86_call(sync_pir_to_irr)(vcpu); 10667 10668 if (irqchip_split(vcpu->kvm)) 10669 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10670 else if (ioapic_in_kernel(vcpu->kvm)) 10671 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10672 10673 if (is_guest_mode(vcpu)) 10674 vcpu->arch.load_eoi_exitmap_pending = true; 10675 else 10676 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10677 } 10678 vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10679 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10680 { 10681 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10682 return; 10683 10684 #ifdef CONFIG_KVM_HYPERV 10685 if (to_hv_vcpu(vcpu)) { 10686 u64 eoi_exit_bitmap[4]; 10687 10688 bitmap_or((ulong *)eoi_exit_bitmap, 10689 vcpu->arch.ioapic_handled_vectors, 10690 to_hv_synic(vcpu)->vec_bitmap, 256); 10691 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10692 return; 10693 } 10694 #endif 10695 kvm_x86_call(load_eoi_exitmap)( 10696 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10697 } 10698 kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10699 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10700 { 10701 kvm_x86_call(guest_memory_reclaimed)(kvm); 10702 } 10703 kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10704 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10705 { 10706 if (!lapic_in_kernel(vcpu)) 10707 return; 10708 10709 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10710 } 10711 10712 /* 10713 * Called within kvm->srcu read side. 10714 * Returns 1 to let vcpu_run() continue the guest execution loop without 10715 * exiting to the userspace. Otherwise, the value will be returned to the 10716 * userspace. 10717 */ vcpu_enter_guest(struct kvm_vcpu * vcpu)10718 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10719 { 10720 int r; 10721 bool req_int_win = 10722 dm_request_for_irq_injection(vcpu) && 10723 kvm_cpu_accept_dm_intr(vcpu); 10724 fastpath_t exit_fastpath; 10725 10726 bool req_immediate_exit = false; 10727 10728 if (kvm_request_pending(vcpu)) { 10729 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10730 r = -EIO; 10731 goto out; 10732 } 10733 10734 if (kvm_dirty_ring_check_request(vcpu)) { 10735 r = 0; 10736 goto out; 10737 } 10738 10739 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10740 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10741 r = 0; 10742 goto out; 10743 } 10744 } 10745 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10746 kvm_mmu_free_obsolete_roots(vcpu); 10747 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10748 __kvm_migrate_timers(vcpu); 10749 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10750 kvm_update_masterclock(vcpu->kvm); 10751 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10752 kvm_gen_kvmclock_update(vcpu); 10753 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10754 r = kvm_guest_time_update(vcpu); 10755 if (unlikely(r)) 10756 goto out; 10757 } 10758 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10759 kvm_mmu_sync_roots(vcpu); 10760 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10761 kvm_mmu_load_pgd(vcpu); 10762 10763 /* 10764 * Note, the order matters here, as flushing "all" TLB entries 10765 * also flushes the "current" TLB entries, i.e. servicing the 10766 * flush "all" will clear any request to flush "current". 10767 */ 10768 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10769 kvm_vcpu_flush_tlb_all(vcpu); 10770 10771 kvm_service_local_tlb_flush_requests(vcpu); 10772 10773 /* 10774 * Fall back to a "full" guest flush if Hyper-V's precise 10775 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10776 * the flushes are considered "remote" and not "local" because 10777 * the requests can be initiated from other vCPUs. 10778 */ 10779 #ifdef CONFIG_KVM_HYPERV 10780 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10781 kvm_hv_vcpu_flush_tlb(vcpu)) 10782 kvm_vcpu_flush_tlb_guest(vcpu); 10783 #endif 10784 10785 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10786 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10787 r = 0; 10788 goto out; 10789 } 10790 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10791 if (is_guest_mode(vcpu)) 10792 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10793 10794 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10795 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10796 vcpu->mmio_needed = 0; 10797 r = 0; 10798 goto out; 10799 } 10800 } 10801 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10802 /* Page is swapped out. Do synthetic halt */ 10803 vcpu->arch.apf.halted = true; 10804 r = 1; 10805 goto out; 10806 } 10807 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10808 record_steal_time(vcpu); 10809 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10810 kvm_pmu_handle_event(vcpu); 10811 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10812 kvm_pmu_deliver_pmi(vcpu); 10813 #ifdef CONFIG_KVM_SMM 10814 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10815 process_smi(vcpu); 10816 #endif 10817 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10818 process_nmi(vcpu); 10819 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10820 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10821 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10822 vcpu->arch.ioapic_handled_vectors)) { 10823 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10824 vcpu->run->eoi.vector = 10825 vcpu->arch.pending_ioapic_eoi; 10826 r = 0; 10827 goto out; 10828 } 10829 } 10830 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10831 vcpu_scan_ioapic(vcpu); 10832 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10833 vcpu_load_eoi_exitmap(vcpu); 10834 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10835 kvm_vcpu_reload_apic_access_page(vcpu); 10836 #ifdef CONFIG_KVM_HYPERV 10837 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10838 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10839 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10840 vcpu->run->system_event.ndata = 0; 10841 r = 0; 10842 goto out; 10843 } 10844 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10845 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10846 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10847 vcpu->run->system_event.ndata = 0; 10848 r = 0; 10849 goto out; 10850 } 10851 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10852 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10853 10854 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10855 vcpu->run->hyperv = hv_vcpu->exit; 10856 r = 0; 10857 goto out; 10858 } 10859 10860 /* 10861 * KVM_REQ_HV_STIMER has to be processed after 10862 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10863 * depend on the guest clock being up-to-date 10864 */ 10865 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10866 kvm_hv_process_stimers(vcpu); 10867 #endif 10868 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10869 kvm_vcpu_update_apicv(vcpu); 10870 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10871 kvm_check_async_pf_completion(vcpu); 10872 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10873 kvm_x86_call(msr_filter_changed)(vcpu); 10874 10875 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10876 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10877 10878 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10879 kvm_vcpu_reset(vcpu, true); 10880 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10881 r = 1; 10882 goto out; 10883 } 10884 } 10885 } 10886 10887 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10888 kvm_xen_has_interrupt(vcpu)) { 10889 ++vcpu->stat.req_event; 10890 r = kvm_apic_accept_events(vcpu); 10891 if (r < 0) { 10892 r = 0; 10893 goto out; 10894 } 10895 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10896 r = 1; 10897 goto out; 10898 } 10899 10900 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10901 if (r < 0) { 10902 r = 0; 10903 goto out; 10904 } 10905 if (req_int_win) 10906 kvm_x86_call(enable_irq_window)(vcpu); 10907 10908 if (kvm_lapic_enabled(vcpu)) { 10909 update_cr8_intercept(vcpu); 10910 kvm_lapic_sync_to_vapic(vcpu); 10911 } 10912 } 10913 10914 r = kvm_mmu_reload(vcpu); 10915 if (unlikely(r)) { 10916 goto cancel_injection; 10917 } 10918 10919 preempt_disable(); 10920 10921 kvm_x86_call(prepare_switch_to_guest)(vcpu); 10922 10923 /* 10924 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10925 * IPI are then delayed after guest entry, which ensures that they 10926 * result in virtual interrupt delivery. 10927 */ 10928 local_irq_disable(); 10929 10930 /* Store vcpu->apicv_active before vcpu->mode. */ 10931 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10932 10933 kvm_vcpu_srcu_read_unlock(vcpu); 10934 10935 /* 10936 * 1) We should set ->mode before checking ->requests. Please see 10937 * the comment in kvm_vcpu_exiting_guest_mode(). 10938 * 10939 * 2) For APICv, we should set ->mode before checking PID.ON. This 10940 * pairs with the memory barrier implicit in pi_test_and_set_on 10941 * (see vmx_deliver_posted_interrupt). 10942 * 10943 * 3) This also orders the write to mode from any reads to the page 10944 * tables done while the VCPU is running. Please see the comment 10945 * in kvm_flush_remote_tlbs. 10946 */ 10947 smp_mb__after_srcu_read_unlock(); 10948 10949 /* 10950 * Process pending posted interrupts to handle the case where the 10951 * notification IRQ arrived in the host, or was never sent (because the 10952 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10953 * status, KVM doesn't update assigned devices when APICv is inhibited, 10954 * i.e. they can post interrupts even if APICv is temporarily disabled. 10955 */ 10956 if (kvm_lapic_enabled(vcpu)) 10957 kvm_x86_call(sync_pir_to_irr)(vcpu); 10958 10959 if (kvm_vcpu_exit_request(vcpu)) { 10960 vcpu->mode = OUTSIDE_GUEST_MODE; 10961 smp_wmb(); 10962 local_irq_enable(); 10963 preempt_enable(); 10964 kvm_vcpu_srcu_read_lock(vcpu); 10965 r = 1; 10966 goto cancel_injection; 10967 } 10968 10969 if (req_immediate_exit) 10970 kvm_make_request(KVM_REQ_EVENT, vcpu); 10971 10972 fpregs_assert_state_consistent(); 10973 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10974 switch_fpu_return(); 10975 10976 if (vcpu->arch.guest_fpu.xfd_err) 10977 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10978 10979 if (unlikely(vcpu->arch.switch_db_regs)) { 10980 set_debugreg(0, 7); 10981 set_debugreg(vcpu->arch.eff_db[0], 0); 10982 set_debugreg(vcpu->arch.eff_db[1], 1); 10983 set_debugreg(vcpu->arch.eff_db[2], 2); 10984 set_debugreg(vcpu->arch.eff_db[3], 3); 10985 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 10986 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 10987 kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6); 10988 } else if (unlikely(hw_breakpoint_active())) { 10989 set_debugreg(0, 7); 10990 } 10991 10992 vcpu->arch.host_debugctl = get_debugctlmsr(); 10993 10994 guest_timing_enter_irqoff(); 10995 10996 for (;;) { 10997 /* 10998 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10999 * update must kick and wait for all vCPUs before toggling the 11000 * per-VM state, and responding vCPUs must wait for the update 11001 * to complete before servicing KVM_REQ_APICV_UPDATE. 11002 */ 11003 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11004 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11005 11006 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, 11007 req_immediate_exit); 11008 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11009 break; 11010 11011 if (kvm_lapic_enabled(vcpu)) 11012 kvm_x86_call(sync_pir_to_irr)(vcpu); 11013 11014 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11015 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11016 break; 11017 } 11018 11019 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11020 ++vcpu->stat.exits; 11021 } 11022 11023 /* 11024 * Do this here before restoring debug registers on the host. And 11025 * since we do this before handling the vmexit, a DR access vmexit 11026 * can (a) read the correct value of the debug registers, (b) set 11027 * KVM_DEBUGREG_WONT_EXIT again. 11028 */ 11029 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11030 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11031 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 11032 kvm_update_dr0123(vcpu); 11033 kvm_update_dr7(vcpu); 11034 } 11035 11036 /* 11037 * If the guest has used debug registers, at least dr7 11038 * will be disabled while returning to the host. 11039 * If we don't have active breakpoints in the host, we don't 11040 * care about the messed up debug address registers. But if 11041 * we have some of them active, restore the old state. 11042 */ 11043 if (hw_breakpoint_active()) 11044 hw_breakpoint_restore(); 11045 11046 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11047 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11048 11049 vcpu->mode = OUTSIDE_GUEST_MODE; 11050 smp_wmb(); 11051 11052 /* 11053 * Sync xfd before calling handle_exit_irqoff() which may 11054 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11055 * in #NM irqoff handler). 11056 */ 11057 if (vcpu->arch.xfd_no_write_intercept) 11058 fpu_sync_guest_vmexit_xfd_state(); 11059 11060 kvm_x86_call(handle_exit_irqoff)(vcpu); 11061 11062 if (vcpu->arch.guest_fpu.xfd_err) 11063 wrmsrl(MSR_IA32_XFD_ERR, 0); 11064 11065 /* 11066 * Consume any pending interrupts, including the possible source of 11067 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11068 * An instruction is required after local_irq_enable() to fully unblock 11069 * interrupts on processors that implement an interrupt shadow, the 11070 * stat.exits increment will do nicely. 11071 */ 11072 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11073 local_irq_enable(); 11074 ++vcpu->stat.exits; 11075 local_irq_disable(); 11076 kvm_after_interrupt(vcpu); 11077 11078 /* 11079 * Wait until after servicing IRQs to account guest time so that any 11080 * ticks that occurred while running the guest are properly accounted 11081 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11082 * of accounting via context tracking, but the loss of accuracy is 11083 * acceptable for all known use cases. 11084 */ 11085 guest_timing_exit_irqoff(); 11086 11087 local_irq_enable(); 11088 preempt_enable(); 11089 11090 kvm_vcpu_srcu_read_lock(vcpu); 11091 11092 /* 11093 * Call this to ensure WC buffers in guest are evicted after each VM 11094 * Exit, so that the evicted WC writes can be snooped across all cpus 11095 */ 11096 smp_mb__after_srcu_read_lock(); 11097 11098 /* 11099 * Profile KVM exit RIPs: 11100 */ 11101 if (unlikely(prof_on == KVM_PROFILING)) { 11102 unsigned long rip = kvm_rip_read(vcpu); 11103 profile_hit(KVM_PROFILING, (void *)rip); 11104 } 11105 11106 if (unlikely(vcpu->arch.tsc_always_catchup)) 11107 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11108 11109 if (vcpu->arch.apic_attention) 11110 kvm_lapic_sync_from_vapic(vcpu); 11111 11112 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11113 return 0; 11114 11115 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11116 return r; 11117 11118 cancel_injection: 11119 if (req_immediate_exit) 11120 kvm_make_request(KVM_REQ_EVENT, vcpu); 11121 kvm_x86_call(cancel_injection)(vcpu); 11122 if (unlikely(vcpu->arch.apic_attention)) 11123 kvm_lapic_sync_from_vapic(vcpu); 11124 out: 11125 return r; 11126 } 11127 kvm_vcpu_running(struct kvm_vcpu * vcpu)11128 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11129 { 11130 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11131 !vcpu->arch.apf.halted); 11132 } 11133 kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11134 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11135 { 11136 if (!list_empty_careful(&vcpu->async_pf.done)) 11137 return true; 11138 11139 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11140 kvm_apic_init_sipi_allowed(vcpu)) 11141 return true; 11142 11143 if (vcpu->arch.pv.pv_unhalted) 11144 return true; 11145 11146 if (kvm_is_exception_pending(vcpu)) 11147 return true; 11148 11149 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11150 (vcpu->arch.nmi_pending && 11151 kvm_x86_call(nmi_allowed)(vcpu, false))) 11152 return true; 11153 11154 #ifdef CONFIG_KVM_SMM 11155 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11156 (vcpu->arch.smi_pending && 11157 kvm_x86_call(smi_allowed)(vcpu, false))) 11158 return true; 11159 #endif 11160 11161 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11162 return true; 11163 11164 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11165 return true; 11166 11167 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11168 return true; 11169 11170 if (kvm_hv_has_stimer_pending(vcpu)) 11171 return true; 11172 11173 if (is_guest_mode(vcpu) && 11174 kvm_x86_ops.nested_ops->has_events && 11175 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11176 return true; 11177 11178 if (kvm_xen_has_pending_events(vcpu)) 11179 return true; 11180 11181 return false; 11182 } 11183 kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11184 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11185 { 11186 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 11187 } 11188 11189 /* Called within kvm->srcu read side. */ vcpu_block(struct kvm_vcpu * vcpu)11190 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11191 { 11192 bool hv_timer; 11193 11194 if (!kvm_arch_vcpu_runnable(vcpu)) { 11195 /* 11196 * Switch to the software timer before halt-polling/blocking as 11197 * the guest's timer may be a break event for the vCPU, and the 11198 * hypervisor timer runs only when the CPU is in guest mode. 11199 * Switch before halt-polling so that KVM recognizes an expired 11200 * timer before blocking. 11201 */ 11202 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11203 if (hv_timer) 11204 kvm_lapic_switch_to_sw_timer(vcpu); 11205 11206 kvm_vcpu_srcu_read_unlock(vcpu); 11207 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11208 kvm_vcpu_halt(vcpu); 11209 else 11210 kvm_vcpu_block(vcpu); 11211 kvm_vcpu_srcu_read_lock(vcpu); 11212 11213 if (hv_timer) 11214 kvm_lapic_switch_to_hv_timer(vcpu); 11215 11216 /* 11217 * If the vCPU is not runnable, a signal or another host event 11218 * of some kind is pending; service it without changing the 11219 * vCPU's activity state. 11220 */ 11221 if (!kvm_arch_vcpu_runnable(vcpu)) 11222 return 1; 11223 } 11224 11225 /* 11226 * Evaluate nested events before exiting the halted state. This allows 11227 * the halt state to be recorded properly in the VMCS12's activity 11228 * state field (AMD does not have a similar field and a VM-Exit always 11229 * causes a spurious wakeup from HLT). 11230 */ 11231 if (is_guest_mode(vcpu)) { 11232 int r = kvm_check_nested_events(vcpu); 11233 11234 WARN_ON_ONCE(r == -EBUSY); 11235 if (r < 0) 11236 return 0; 11237 } 11238 11239 if (kvm_apic_accept_events(vcpu) < 0) 11240 return 0; 11241 switch(vcpu->arch.mp_state) { 11242 case KVM_MP_STATE_HALTED: 11243 case KVM_MP_STATE_AP_RESET_HOLD: 11244 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11245 fallthrough; 11246 case KVM_MP_STATE_RUNNABLE: 11247 vcpu->arch.apf.halted = false; 11248 break; 11249 case KVM_MP_STATE_INIT_RECEIVED: 11250 break; 11251 default: 11252 WARN_ON_ONCE(1); 11253 break; 11254 } 11255 return 1; 11256 } 11257 11258 /* Called within kvm->srcu read side. */ vcpu_run(struct kvm_vcpu * vcpu)11259 static int vcpu_run(struct kvm_vcpu *vcpu) 11260 { 11261 int r; 11262 11263 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11264 11265 for (;;) { 11266 /* 11267 * If another guest vCPU requests a PV TLB flush in the middle 11268 * of instruction emulation, the rest of the emulation could 11269 * use a stale page translation. Assume that any code after 11270 * this point can start executing an instruction. 11271 */ 11272 vcpu->arch.at_instruction_boundary = false; 11273 if (kvm_vcpu_running(vcpu)) { 11274 r = vcpu_enter_guest(vcpu); 11275 } else { 11276 r = vcpu_block(vcpu); 11277 } 11278 11279 if (r <= 0) 11280 break; 11281 11282 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11283 if (kvm_xen_has_pending_events(vcpu)) 11284 kvm_xen_inject_pending_events(vcpu); 11285 11286 if (kvm_cpu_has_pending_timer(vcpu)) 11287 kvm_inject_pending_timer_irqs(vcpu); 11288 11289 if (dm_request_for_irq_injection(vcpu) && 11290 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11291 r = 0; 11292 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11293 ++vcpu->stat.request_irq_exits; 11294 break; 11295 } 11296 11297 if (__xfer_to_guest_mode_work_pending()) { 11298 kvm_vcpu_srcu_read_unlock(vcpu); 11299 r = xfer_to_guest_mode_handle_work(vcpu); 11300 kvm_vcpu_srcu_read_lock(vcpu); 11301 if (r) 11302 return r; 11303 } 11304 } 11305 11306 return r; 11307 } 11308 __kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11309 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11310 { 11311 /* 11312 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11313 * local APIC is in-kernel, the run loop will detect the non-runnable 11314 * state and halt the vCPU. Exit to userspace if the local APIC is 11315 * managed by userspace, in which case userspace is responsible for 11316 * handling wake events. 11317 */ 11318 ++vcpu->stat.halt_exits; 11319 if (lapic_in_kernel(vcpu)) { 11320 if (kvm_vcpu_has_events(vcpu)) 11321 state = KVM_MP_STATE_RUNNABLE; 11322 kvm_set_mp_state(vcpu, state); 11323 return 1; 11324 } else { 11325 vcpu->run->exit_reason = reason; 11326 return 0; 11327 } 11328 } 11329 kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11330 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11331 { 11332 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11333 } 11334 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 11335 kvm_emulate_halt(struct kvm_vcpu * vcpu)11336 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11337 { 11338 int ret = kvm_skip_emulated_instruction(vcpu); 11339 /* 11340 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11341 * KVM_EXIT_DEBUG here. 11342 */ 11343 return kvm_emulate_halt_noskip(vcpu) && ret; 11344 } 11345 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 11346 handle_fastpath_hlt(struct kvm_vcpu * vcpu)11347 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) 11348 { 11349 int ret; 11350 11351 kvm_vcpu_srcu_read_lock(vcpu); 11352 ret = kvm_emulate_halt(vcpu); 11353 kvm_vcpu_srcu_read_unlock(vcpu); 11354 11355 if (!ret) 11356 return EXIT_FASTPATH_EXIT_USERSPACE; 11357 11358 if (kvm_vcpu_running(vcpu)) 11359 return EXIT_FASTPATH_REENTER_GUEST; 11360 11361 return EXIT_FASTPATH_EXIT_HANDLED; 11362 } 11363 EXPORT_SYMBOL_GPL(handle_fastpath_hlt); 11364 kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11365 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11366 { 11367 int ret = kvm_skip_emulated_instruction(vcpu); 11368 11369 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11370 KVM_EXIT_AP_RESET_HOLD) && ret; 11371 } 11372 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 11373 kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11374 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11375 { 11376 return kvm_vcpu_apicv_active(vcpu) && 11377 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11378 } 11379 kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11380 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11381 { 11382 return vcpu->arch.preempted_in_kernel; 11383 } 11384 kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11385 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11386 { 11387 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11388 return true; 11389 11390 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11391 #ifdef CONFIG_KVM_SMM 11392 kvm_test_request(KVM_REQ_SMI, vcpu) || 11393 #endif 11394 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11395 return true; 11396 11397 return kvm_arch_dy_has_pending_interrupt(vcpu); 11398 } 11399 complete_emulated_io(struct kvm_vcpu * vcpu)11400 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11401 { 11402 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11403 } 11404 complete_emulated_pio(struct kvm_vcpu * vcpu)11405 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11406 { 11407 BUG_ON(!vcpu->arch.pio.count); 11408 11409 return complete_emulated_io(vcpu); 11410 } 11411 11412 /* 11413 * Implements the following, as a state machine: 11414 * 11415 * read: 11416 * for each fragment 11417 * for each mmio piece in the fragment 11418 * write gpa, len 11419 * exit 11420 * copy data 11421 * execute insn 11422 * 11423 * write: 11424 * for each fragment 11425 * for each mmio piece in the fragment 11426 * write gpa, len 11427 * copy data 11428 * exit 11429 */ complete_emulated_mmio(struct kvm_vcpu * vcpu)11430 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11431 { 11432 struct kvm_run *run = vcpu->run; 11433 struct kvm_mmio_fragment *frag; 11434 unsigned len; 11435 11436 BUG_ON(!vcpu->mmio_needed); 11437 11438 /* Complete previous fragment */ 11439 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11440 len = min(8u, frag->len); 11441 if (!vcpu->mmio_is_write) 11442 memcpy(frag->data, run->mmio.data, len); 11443 11444 if (frag->len <= 8) { 11445 /* Switch to the next fragment. */ 11446 frag++; 11447 vcpu->mmio_cur_fragment++; 11448 } else { 11449 /* Go forward to the next mmio piece. */ 11450 frag->data += len; 11451 frag->gpa += len; 11452 frag->len -= len; 11453 } 11454 11455 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11456 vcpu->mmio_needed = 0; 11457 11458 /* FIXME: return into emulator if single-stepping. */ 11459 if (vcpu->mmio_is_write) 11460 return 1; 11461 vcpu->mmio_read_completed = 1; 11462 return complete_emulated_io(vcpu); 11463 } 11464 11465 run->exit_reason = KVM_EXIT_MMIO; 11466 run->mmio.phys_addr = frag->gpa; 11467 if (vcpu->mmio_is_write) 11468 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11469 run->mmio.len = min(8u, frag->len); 11470 run->mmio.is_write = vcpu->mmio_is_write; 11471 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11472 return 0; 11473 } 11474 11475 /* Swap (qemu) user FPU context for the guest FPU context. */ kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11476 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11477 { 11478 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11479 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11480 trace_kvm_fpu(1); 11481 } 11482 11483 /* When vcpu_run ends, restore user space FPU context. */ kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11484 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11485 { 11486 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11487 ++vcpu->stat.fpu_reload; 11488 trace_kvm_fpu(0); 11489 } 11490 kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11491 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11492 { 11493 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11494 struct kvm_run *kvm_run = vcpu->run; 11495 u32 sync_valid_fields; 11496 int r; 11497 11498 r = kvm_mmu_post_init_vm(vcpu->kvm); 11499 if (r) 11500 return r; 11501 11502 vcpu_load(vcpu); 11503 kvm_sigset_activate(vcpu); 11504 kvm_run->flags = 0; 11505 kvm_load_guest_fpu(vcpu); 11506 11507 kvm_vcpu_srcu_read_lock(vcpu); 11508 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11509 if (!vcpu->wants_to_run) { 11510 r = -EINTR; 11511 goto out; 11512 } 11513 11514 /* 11515 * Don't bother switching APIC timer emulation from the 11516 * hypervisor timer to the software timer, the only way for the 11517 * APIC timer to be active is if userspace stuffed vCPU state, 11518 * i.e. put the vCPU into a nonsensical state. Only an INIT 11519 * will transition the vCPU out of UNINITIALIZED (without more 11520 * state stuffing from userspace), which will reset the local 11521 * APIC and thus cancel the timer or drop the IRQ (if the timer 11522 * already expired). 11523 */ 11524 kvm_vcpu_srcu_read_unlock(vcpu); 11525 kvm_vcpu_block(vcpu); 11526 kvm_vcpu_srcu_read_lock(vcpu); 11527 11528 if (kvm_apic_accept_events(vcpu) < 0) { 11529 r = 0; 11530 goto out; 11531 } 11532 r = -EAGAIN; 11533 if (signal_pending(current)) { 11534 r = -EINTR; 11535 kvm_run->exit_reason = KVM_EXIT_INTR; 11536 ++vcpu->stat.signal_exits; 11537 } 11538 goto out; 11539 } 11540 11541 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm); 11542 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) || 11543 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) { 11544 r = -EINVAL; 11545 goto out; 11546 } 11547 11548 if (kvm_run->kvm_dirty_regs) { 11549 r = sync_regs(vcpu); 11550 if (r != 0) 11551 goto out; 11552 } 11553 11554 /* re-sync apic's tpr */ 11555 if (!lapic_in_kernel(vcpu)) { 11556 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11557 r = -EINVAL; 11558 goto out; 11559 } 11560 } 11561 11562 /* 11563 * If userspace set a pending exception and L2 is active, convert it to 11564 * a pending VM-Exit if L1 wants to intercept the exception. 11565 */ 11566 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11567 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11568 ex->error_code)) { 11569 kvm_queue_exception_vmexit(vcpu, ex->vector, 11570 ex->has_error_code, ex->error_code, 11571 ex->has_payload, ex->payload); 11572 ex->injected = false; 11573 ex->pending = false; 11574 } 11575 vcpu->arch.exception_from_userspace = false; 11576 11577 if (unlikely(vcpu->arch.complete_userspace_io)) { 11578 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11579 vcpu->arch.complete_userspace_io = NULL; 11580 r = cui(vcpu); 11581 if (r <= 0) 11582 goto out; 11583 } else { 11584 WARN_ON_ONCE(vcpu->arch.pio.count); 11585 WARN_ON_ONCE(vcpu->mmio_needed); 11586 } 11587 11588 if (!vcpu->wants_to_run) { 11589 r = -EINTR; 11590 goto out; 11591 } 11592 11593 r = kvm_x86_call(vcpu_pre_run)(vcpu); 11594 if (r <= 0) 11595 goto out; 11596 11597 r = vcpu_run(vcpu); 11598 11599 out: 11600 kvm_put_guest_fpu(vcpu); 11601 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected)) 11602 store_regs(vcpu); 11603 post_kvm_run_save(vcpu); 11604 kvm_vcpu_srcu_read_unlock(vcpu); 11605 11606 kvm_sigset_deactivate(vcpu); 11607 vcpu_put(vcpu); 11608 return r; 11609 } 11610 __get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11611 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11612 { 11613 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11614 /* 11615 * We are here if userspace calls get_regs() in the middle of 11616 * instruction emulation. Registers state needs to be copied 11617 * back from emulation context to vcpu. Userspace shouldn't do 11618 * that usually, but some bad designed PV devices (vmware 11619 * backdoor interface) need this to work 11620 */ 11621 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11622 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11623 } 11624 regs->rax = kvm_rax_read(vcpu); 11625 regs->rbx = kvm_rbx_read(vcpu); 11626 regs->rcx = kvm_rcx_read(vcpu); 11627 regs->rdx = kvm_rdx_read(vcpu); 11628 regs->rsi = kvm_rsi_read(vcpu); 11629 regs->rdi = kvm_rdi_read(vcpu); 11630 regs->rsp = kvm_rsp_read(vcpu); 11631 regs->rbp = kvm_rbp_read(vcpu); 11632 #ifdef CONFIG_X86_64 11633 regs->r8 = kvm_r8_read(vcpu); 11634 regs->r9 = kvm_r9_read(vcpu); 11635 regs->r10 = kvm_r10_read(vcpu); 11636 regs->r11 = kvm_r11_read(vcpu); 11637 regs->r12 = kvm_r12_read(vcpu); 11638 regs->r13 = kvm_r13_read(vcpu); 11639 regs->r14 = kvm_r14_read(vcpu); 11640 regs->r15 = kvm_r15_read(vcpu); 11641 #endif 11642 11643 regs->rip = kvm_rip_read(vcpu); 11644 regs->rflags = kvm_get_rflags(vcpu); 11645 } 11646 kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11647 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11648 { 11649 if (vcpu->kvm->arch.has_protected_state && 11650 vcpu->arch.guest_state_protected) 11651 return -EINVAL; 11652 11653 vcpu_load(vcpu); 11654 __get_regs(vcpu, regs); 11655 vcpu_put(vcpu); 11656 return 0; 11657 } 11658 __set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11659 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11660 { 11661 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11662 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11663 11664 kvm_rax_write(vcpu, regs->rax); 11665 kvm_rbx_write(vcpu, regs->rbx); 11666 kvm_rcx_write(vcpu, regs->rcx); 11667 kvm_rdx_write(vcpu, regs->rdx); 11668 kvm_rsi_write(vcpu, regs->rsi); 11669 kvm_rdi_write(vcpu, regs->rdi); 11670 kvm_rsp_write(vcpu, regs->rsp); 11671 kvm_rbp_write(vcpu, regs->rbp); 11672 #ifdef CONFIG_X86_64 11673 kvm_r8_write(vcpu, regs->r8); 11674 kvm_r9_write(vcpu, regs->r9); 11675 kvm_r10_write(vcpu, regs->r10); 11676 kvm_r11_write(vcpu, regs->r11); 11677 kvm_r12_write(vcpu, regs->r12); 11678 kvm_r13_write(vcpu, regs->r13); 11679 kvm_r14_write(vcpu, regs->r14); 11680 kvm_r15_write(vcpu, regs->r15); 11681 #endif 11682 11683 kvm_rip_write(vcpu, regs->rip); 11684 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11685 11686 vcpu->arch.exception.pending = false; 11687 vcpu->arch.exception_vmexit.pending = false; 11688 11689 kvm_make_request(KVM_REQ_EVENT, vcpu); 11690 } 11691 kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11692 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11693 { 11694 if (vcpu->kvm->arch.has_protected_state && 11695 vcpu->arch.guest_state_protected) 11696 return -EINVAL; 11697 11698 vcpu_load(vcpu); 11699 __set_regs(vcpu, regs); 11700 vcpu_put(vcpu); 11701 return 0; 11702 } 11703 __get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11704 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11705 { 11706 struct desc_ptr dt; 11707 11708 if (vcpu->arch.guest_state_protected) 11709 goto skip_protected_regs; 11710 11711 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11712 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11713 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11714 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11715 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11716 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11717 11718 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11719 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11720 11721 kvm_x86_call(get_idt)(vcpu, &dt); 11722 sregs->idt.limit = dt.size; 11723 sregs->idt.base = dt.address; 11724 kvm_x86_call(get_gdt)(vcpu, &dt); 11725 sregs->gdt.limit = dt.size; 11726 sregs->gdt.base = dt.address; 11727 11728 sregs->cr2 = vcpu->arch.cr2; 11729 sregs->cr3 = kvm_read_cr3(vcpu); 11730 11731 skip_protected_regs: 11732 sregs->cr0 = kvm_read_cr0(vcpu); 11733 sregs->cr4 = kvm_read_cr4(vcpu); 11734 sregs->cr8 = kvm_get_cr8(vcpu); 11735 sregs->efer = vcpu->arch.efer; 11736 sregs->apic_base = vcpu->arch.apic_base; 11737 } 11738 __get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11739 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11740 { 11741 __get_sregs_common(vcpu, sregs); 11742 11743 if (vcpu->arch.guest_state_protected) 11744 return; 11745 11746 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11747 set_bit(vcpu->arch.interrupt.nr, 11748 (unsigned long *)sregs->interrupt_bitmap); 11749 } 11750 __get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11751 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11752 { 11753 int i; 11754 11755 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11756 11757 if (vcpu->arch.guest_state_protected) 11758 return; 11759 11760 if (is_pae_paging(vcpu)) { 11761 for (i = 0 ; i < 4 ; i++) 11762 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11763 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11764 } 11765 } 11766 kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11767 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11768 struct kvm_sregs *sregs) 11769 { 11770 if (vcpu->kvm->arch.has_protected_state && 11771 vcpu->arch.guest_state_protected) 11772 return -EINVAL; 11773 11774 vcpu_load(vcpu); 11775 __get_sregs(vcpu, sregs); 11776 vcpu_put(vcpu); 11777 return 0; 11778 } 11779 kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11780 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11781 struct kvm_mp_state *mp_state) 11782 { 11783 int r; 11784 11785 vcpu_load(vcpu); 11786 if (kvm_mpx_supported()) 11787 kvm_load_guest_fpu(vcpu); 11788 11789 r = kvm_apic_accept_events(vcpu); 11790 if (r < 0) 11791 goto out; 11792 r = 0; 11793 11794 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11795 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11796 vcpu->arch.pv.pv_unhalted) 11797 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11798 else 11799 mp_state->mp_state = vcpu->arch.mp_state; 11800 11801 out: 11802 if (kvm_mpx_supported()) 11803 kvm_put_guest_fpu(vcpu); 11804 vcpu_put(vcpu); 11805 return r; 11806 } 11807 kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11808 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11809 struct kvm_mp_state *mp_state) 11810 { 11811 int ret = -EINVAL; 11812 11813 vcpu_load(vcpu); 11814 11815 switch (mp_state->mp_state) { 11816 case KVM_MP_STATE_UNINITIALIZED: 11817 case KVM_MP_STATE_HALTED: 11818 case KVM_MP_STATE_AP_RESET_HOLD: 11819 case KVM_MP_STATE_INIT_RECEIVED: 11820 case KVM_MP_STATE_SIPI_RECEIVED: 11821 if (!lapic_in_kernel(vcpu)) 11822 goto out; 11823 break; 11824 11825 case KVM_MP_STATE_RUNNABLE: 11826 break; 11827 11828 default: 11829 goto out; 11830 } 11831 11832 /* 11833 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11834 * forcing the guest into INIT/SIPI if those events are supposed to be 11835 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11836 * if an SMI is pending as well. 11837 */ 11838 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11839 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11840 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11841 goto out; 11842 11843 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11844 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 11845 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11846 } else 11847 kvm_set_mp_state(vcpu, mp_state->mp_state); 11848 kvm_make_request(KVM_REQ_EVENT, vcpu); 11849 11850 ret = 0; 11851 out: 11852 vcpu_put(vcpu); 11853 return ret; 11854 } 11855 kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11856 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11857 int reason, bool has_error_code, u32 error_code) 11858 { 11859 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11860 int ret; 11861 11862 init_emulate_ctxt(vcpu); 11863 11864 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11865 has_error_code, error_code); 11866 11867 /* 11868 * Report an error userspace if MMIO is needed, as KVM doesn't support 11869 * MMIO during a task switch (or any other complex operation). 11870 */ 11871 if (ret || vcpu->mmio_needed) { 11872 vcpu->mmio_needed = false; 11873 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11874 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11875 vcpu->run->internal.ndata = 0; 11876 return 0; 11877 } 11878 11879 kvm_rip_write(vcpu, ctxt->eip); 11880 kvm_set_rflags(vcpu, ctxt->eflags); 11881 return 1; 11882 } 11883 EXPORT_SYMBOL_GPL(kvm_task_switch); 11884 kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11885 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11886 { 11887 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11888 /* 11889 * When EFER.LME and CR0.PG are set, the processor is in 11890 * 64-bit mode (though maybe in a 32-bit code segment). 11891 * CR4.PAE and EFER.LMA must be set. 11892 */ 11893 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11894 return false; 11895 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11896 return false; 11897 } else { 11898 /* 11899 * Not in 64-bit mode: EFER.LMA is clear and the code 11900 * segment cannot be 64-bit. 11901 */ 11902 if (sregs->efer & EFER_LMA || sregs->cs.l) 11903 return false; 11904 } 11905 11906 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11907 kvm_is_valid_cr0(vcpu, sregs->cr0); 11908 } 11909 __set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11910 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11911 int *mmu_reset_needed, bool update_pdptrs) 11912 { 11913 int idx; 11914 struct desc_ptr dt; 11915 11916 if (!kvm_is_valid_sregs(vcpu, sregs)) 11917 return -EINVAL; 11918 11919 if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) 11920 return -EINVAL; 11921 11922 if (vcpu->arch.guest_state_protected) 11923 return 0; 11924 11925 dt.size = sregs->idt.limit; 11926 dt.address = sregs->idt.base; 11927 kvm_x86_call(set_idt)(vcpu, &dt); 11928 dt.size = sregs->gdt.limit; 11929 dt.address = sregs->gdt.base; 11930 kvm_x86_call(set_gdt)(vcpu, &dt); 11931 11932 vcpu->arch.cr2 = sregs->cr2; 11933 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11934 vcpu->arch.cr3 = sregs->cr3; 11935 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11936 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11937 11938 kvm_set_cr8(vcpu, sregs->cr8); 11939 11940 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11941 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11942 11943 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11944 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11945 11946 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11947 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11948 11949 if (update_pdptrs) { 11950 idx = srcu_read_lock(&vcpu->kvm->srcu); 11951 if (is_pae_paging(vcpu)) { 11952 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11953 *mmu_reset_needed = 1; 11954 } 11955 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11956 } 11957 11958 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11959 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11960 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11961 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11962 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11963 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11964 11965 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11966 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11967 11968 update_cr8_intercept(vcpu); 11969 11970 /* Older userspace won't unhalt the vcpu on reset. */ 11971 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11972 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11973 !is_protmode(vcpu)) 11974 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11975 11976 return 0; 11977 } 11978 __set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11979 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11980 { 11981 int pending_vec, max_bits; 11982 int mmu_reset_needed = 0; 11983 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11984 11985 if (ret) 11986 return ret; 11987 11988 if (mmu_reset_needed) { 11989 kvm_mmu_reset_context(vcpu); 11990 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11991 } 11992 11993 max_bits = KVM_NR_INTERRUPTS; 11994 pending_vec = find_first_bit( 11995 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11996 11997 if (pending_vec < max_bits) { 11998 kvm_queue_interrupt(vcpu, pending_vec, false); 11999 pr_debug("Set back pending irq %d\n", pending_vec); 12000 kvm_make_request(KVM_REQ_EVENT, vcpu); 12001 } 12002 return 0; 12003 } 12004 __set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12005 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 12006 { 12007 int mmu_reset_needed = 0; 12008 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 12009 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 12010 !(sregs2->efer & EFER_LMA); 12011 int i, ret; 12012 12013 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 12014 return -EINVAL; 12015 12016 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 12017 return -EINVAL; 12018 12019 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 12020 &mmu_reset_needed, !valid_pdptrs); 12021 if (ret) 12022 return ret; 12023 12024 if (valid_pdptrs) { 12025 for (i = 0; i < 4 ; i++) 12026 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 12027 12028 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 12029 mmu_reset_needed = 1; 12030 vcpu->arch.pdptrs_from_userspace = true; 12031 } 12032 if (mmu_reset_needed) { 12033 kvm_mmu_reset_context(vcpu); 12034 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12035 } 12036 return 0; 12037 } 12038 kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12039 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12040 struct kvm_sregs *sregs) 12041 { 12042 int ret; 12043 12044 if (vcpu->kvm->arch.has_protected_state && 12045 vcpu->arch.guest_state_protected) 12046 return -EINVAL; 12047 12048 vcpu_load(vcpu); 12049 ret = __set_sregs(vcpu, sregs); 12050 vcpu_put(vcpu); 12051 return ret; 12052 } 12053 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12054 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12055 { 12056 bool set = false; 12057 struct kvm_vcpu *vcpu; 12058 unsigned long i; 12059 12060 if (!enable_apicv) 12061 return; 12062 12063 down_write(&kvm->arch.apicv_update_lock); 12064 12065 kvm_for_each_vcpu(i, vcpu, kvm) { 12066 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12067 set = true; 12068 break; 12069 } 12070 } 12071 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12072 up_write(&kvm->arch.apicv_update_lock); 12073 } 12074 kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12075 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12076 struct kvm_guest_debug *dbg) 12077 { 12078 unsigned long rflags; 12079 int i, r; 12080 12081 if (vcpu->arch.guest_state_protected) 12082 return -EINVAL; 12083 12084 vcpu_load(vcpu); 12085 12086 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12087 r = -EBUSY; 12088 if (kvm_is_exception_pending(vcpu)) 12089 goto out; 12090 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12091 kvm_queue_exception(vcpu, DB_VECTOR); 12092 else 12093 kvm_queue_exception(vcpu, BP_VECTOR); 12094 } 12095 12096 /* 12097 * Read rflags as long as potentially injected trace flags are still 12098 * filtered out. 12099 */ 12100 rflags = kvm_get_rflags(vcpu); 12101 12102 vcpu->guest_debug = dbg->control; 12103 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12104 vcpu->guest_debug = 0; 12105 12106 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12107 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12108 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12109 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12110 } else { 12111 for (i = 0; i < KVM_NR_DB_REGS; i++) 12112 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12113 } 12114 kvm_update_dr7(vcpu); 12115 12116 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12117 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12118 12119 /* 12120 * Trigger an rflags update that will inject or remove the trace 12121 * flags. 12122 */ 12123 kvm_set_rflags(vcpu, rflags); 12124 12125 kvm_x86_call(update_exception_bitmap)(vcpu); 12126 12127 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12128 12129 r = 0; 12130 12131 out: 12132 vcpu_put(vcpu); 12133 return r; 12134 } 12135 12136 /* 12137 * Translate a guest virtual address to a guest physical address. 12138 */ kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12139 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12140 struct kvm_translation *tr) 12141 { 12142 unsigned long vaddr = tr->linear_address; 12143 gpa_t gpa; 12144 int idx; 12145 12146 vcpu_load(vcpu); 12147 12148 idx = srcu_read_lock(&vcpu->kvm->srcu); 12149 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12150 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12151 tr->physical_address = gpa; 12152 tr->valid = gpa != INVALID_GPA; 12153 tr->writeable = 1; 12154 tr->usermode = 0; 12155 12156 vcpu_put(vcpu); 12157 return 0; 12158 } 12159 kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12160 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12161 { 12162 struct fxregs_state *fxsave; 12163 12164 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12165 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12166 12167 vcpu_load(vcpu); 12168 12169 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12170 memcpy(fpu->fpr, fxsave->st_space, 128); 12171 fpu->fcw = fxsave->cwd; 12172 fpu->fsw = fxsave->swd; 12173 fpu->ftwx = fxsave->twd; 12174 fpu->last_opcode = fxsave->fop; 12175 fpu->last_ip = fxsave->rip; 12176 fpu->last_dp = fxsave->rdp; 12177 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12178 12179 vcpu_put(vcpu); 12180 return 0; 12181 } 12182 kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12183 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12184 { 12185 struct fxregs_state *fxsave; 12186 12187 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12188 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12189 12190 vcpu_load(vcpu); 12191 12192 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12193 12194 memcpy(fxsave->st_space, fpu->fpr, 128); 12195 fxsave->cwd = fpu->fcw; 12196 fxsave->swd = fpu->fsw; 12197 fxsave->twd = fpu->ftwx; 12198 fxsave->fop = fpu->last_opcode; 12199 fxsave->rip = fpu->last_ip; 12200 fxsave->rdp = fpu->last_dp; 12201 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12202 12203 vcpu_put(vcpu); 12204 return 0; 12205 } 12206 store_regs(struct kvm_vcpu * vcpu)12207 static void store_regs(struct kvm_vcpu *vcpu) 12208 { 12209 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12210 12211 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12212 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12213 12214 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12215 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12216 12217 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12218 kvm_vcpu_ioctl_x86_get_vcpu_events( 12219 vcpu, &vcpu->run->s.regs.events); 12220 } 12221 sync_regs(struct kvm_vcpu * vcpu)12222 static int sync_regs(struct kvm_vcpu *vcpu) 12223 { 12224 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12225 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12226 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12227 } 12228 12229 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12230 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12231 12232 if (__set_sregs(vcpu, &sregs)) 12233 return -EINVAL; 12234 12235 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12236 } 12237 12238 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12239 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12240 12241 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12242 return -EINVAL; 12243 12244 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12245 } 12246 12247 return 0; 12248 } 12249 kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12250 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12251 { 12252 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12253 pr_warn_once("SMP vm created on host with unstable TSC; " 12254 "guest TSC will not be reliable\n"); 12255 12256 if (!kvm->arch.max_vcpu_ids) 12257 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12258 12259 if (id >= kvm->arch.max_vcpu_ids) 12260 return -EINVAL; 12261 12262 return kvm_x86_call(vcpu_precreate)(kvm); 12263 } 12264 kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12265 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12266 { 12267 struct page *page; 12268 int r; 12269 12270 vcpu->arch.last_vmentry_cpu = -1; 12271 vcpu->arch.regs_avail = ~0; 12272 vcpu->arch.regs_dirty = ~0; 12273 12274 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12275 12276 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12277 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 12278 else 12279 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED); 12280 12281 r = kvm_mmu_create(vcpu); 12282 if (r < 0) 12283 return r; 12284 12285 r = kvm_create_lapic(vcpu); 12286 if (r < 0) 12287 goto fail_mmu_destroy; 12288 12289 r = -ENOMEM; 12290 12291 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12292 if (!page) 12293 goto fail_free_lapic; 12294 vcpu->arch.pio_data = page_address(page); 12295 12296 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12297 GFP_KERNEL_ACCOUNT); 12298 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12299 GFP_KERNEL_ACCOUNT); 12300 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12301 goto fail_free_mce_banks; 12302 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12303 12304 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12305 GFP_KERNEL_ACCOUNT)) 12306 goto fail_free_mce_banks; 12307 12308 if (!alloc_emulate_ctxt(vcpu)) 12309 goto free_wbinvd_dirty_mask; 12310 12311 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12312 pr_err("failed to allocate vcpu's fpu\n"); 12313 goto free_emulate_ctxt; 12314 } 12315 12316 kvm_async_pf_hash_reset(vcpu); 12317 12318 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 12319 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12320 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12321 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12322 } 12323 kvm_pmu_init(vcpu); 12324 12325 vcpu->arch.pending_external_vector = -1; 12326 vcpu->arch.preempted_in_kernel = false; 12327 12328 #if IS_ENABLED(CONFIG_HYPERV) 12329 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12330 #endif 12331 12332 r = kvm_x86_call(vcpu_create)(vcpu); 12333 if (r) 12334 goto free_guest_fpu; 12335 12336 kvm_xen_init_vcpu(vcpu); 12337 vcpu_load(vcpu); 12338 kvm_vcpu_after_set_cpuid(vcpu); 12339 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12340 kvm_vcpu_reset(vcpu, false); 12341 kvm_init_mmu(vcpu); 12342 vcpu_put(vcpu); 12343 return 0; 12344 12345 free_guest_fpu: 12346 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12347 free_emulate_ctxt: 12348 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12349 free_wbinvd_dirty_mask: 12350 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12351 fail_free_mce_banks: 12352 kfree(vcpu->arch.mce_banks); 12353 kfree(vcpu->arch.mci_ctl2_banks); 12354 free_page((unsigned long)vcpu->arch.pio_data); 12355 fail_free_lapic: 12356 kvm_free_lapic(vcpu); 12357 fail_mmu_destroy: 12358 kvm_mmu_destroy(vcpu); 12359 return r; 12360 } 12361 kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12362 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12363 { 12364 struct kvm *kvm = vcpu->kvm; 12365 12366 if (mutex_lock_killable(&vcpu->mutex)) 12367 return; 12368 vcpu_load(vcpu); 12369 kvm_synchronize_tsc(vcpu, NULL); 12370 vcpu_put(vcpu); 12371 12372 /* poll control enabled by default */ 12373 vcpu->arch.msr_kvm_poll_control = 1; 12374 12375 mutex_unlock(&vcpu->mutex); 12376 12377 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12378 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12379 KVMCLOCK_SYNC_PERIOD); 12380 } 12381 kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12382 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12383 { 12384 int idx; 12385 12386 kvm_clear_async_pf_completion_queue(vcpu); 12387 kvm_mmu_unload(vcpu); 12388 12389 kvmclock_reset(vcpu); 12390 12391 kvm_x86_call(vcpu_free)(vcpu); 12392 12393 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12394 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12395 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12396 12397 kvm_xen_destroy_vcpu(vcpu); 12398 kvm_hv_vcpu_uninit(vcpu); 12399 kvm_pmu_destroy(vcpu); 12400 kfree(vcpu->arch.mce_banks); 12401 kfree(vcpu->arch.mci_ctl2_banks); 12402 kvm_free_lapic(vcpu); 12403 idx = srcu_read_lock(&vcpu->kvm->srcu); 12404 kvm_mmu_destroy(vcpu); 12405 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12406 free_page((unsigned long)vcpu->arch.pio_data); 12407 kvfree(vcpu->arch.cpuid_entries); 12408 } 12409 kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12410 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12411 { 12412 struct kvm_cpuid_entry2 *cpuid_0x1; 12413 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12414 unsigned long new_cr0; 12415 12416 /* 12417 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12418 * to handle side effects. RESET emulation hits those flows and relies 12419 * on emulated/virtualized registers, including those that are loaded 12420 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12421 * to detect improper or missing initialization. 12422 */ 12423 WARN_ON_ONCE(!init_event && 12424 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12425 12426 /* 12427 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12428 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12429 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12430 * bits), i.e. virtualization is disabled. 12431 */ 12432 if (is_guest_mode(vcpu)) 12433 kvm_leave_nested(vcpu); 12434 12435 kvm_lapic_reset(vcpu, init_event); 12436 12437 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12438 vcpu->arch.hflags = 0; 12439 12440 vcpu->arch.smi_pending = 0; 12441 vcpu->arch.smi_count = 0; 12442 atomic_set(&vcpu->arch.nmi_queued, 0); 12443 vcpu->arch.nmi_pending = 0; 12444 vcpu->arch.nmi_injected = false; 12445 kvm_clear_interrupt_queue(vcpu); 12446 kvm_clear_exception_queue(vcpu); 12447 12448 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12449 kvm_update_dr0123(vcpu); 12450 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12451 vcpu->arch.dr7 = DR7_FIXED_1; 12452 kvm_update_dr7(vcpu); 12453 12454 vcpu->arch.cr2 = 0; 12455 12456 kvm_make_request(KVM_REQ_EVENT, vcpu); 12457 vcpu->arch.apf.msr_en_val = 0; 12458 vcpu->arch.apf.msr_int_val = 0; 12459 vcpu->arch.st.msr_val = 0; 12460 12461 kvmclock_reset(vcpu); 12462 12463 kvm_clear_async_pf_completion_queue(vcpu); 12464 kvm_async_pf_hash_reset(vcpu); 12465 vcpu->arch.apf.halted = false; 12466 12467 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12468 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12469 12470 /* 12471 * All paths that lead to INIT are required to load the guest's 12472 * FPU state (because most paths are buried in KVM_RUN). 12473 */ 12474 if (init_event) 12475 kvm_put_guest_fpu(vcpu); 12476 12477 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12478 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12479 12480 if (init_event) 12481 kvm_load_guest_fpu(vcpu); 12482 } 12483 12484 if (!init_event) { 12485 vcpu->arch.smbase = 0x30000; 12486 12487 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12488 12489 vcpu->arch.msr_misc_features_enables = 0; 12490 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12491 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12492 12493 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12494 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12495 } 12496 12497 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12498 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12499 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12500 12501 /* 12502 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12503 * if no CPUID match is found. Note, it's impossible to get a match at 12504 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12505 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12506 * on RESET. But, go through the motions in case that's ever remedied. 12507 */ 12508 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12509 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12510 12511 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12512 12513 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12514 kvm_rip_write(vcpu, 0xfff0); 12515 12516 vcpu->arch.cr3 = 0; 12517 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12518 12519 /* 12520 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12521 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12522 * (or qualify) that with a footnote stating that CD/NW are preserved. 12523 */ 12524 new_cr0 = X86_CR0_ET; 12525 if (init_event) 12526 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12527 else 12528 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12529 12530 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12531 kvm_x86_call(set_cr4)(vcpu, 0); 12532 kvm_x86_call(set_efer)(vcpu, 0); 12533 kvm_x86_call(update_exception_bitmap)(vcpu); 12534 12535 /* 12536 * On the standard CR0/CR4/EFER modification paths, there are several 12537 * complex conditions determining whether the MMU has to be reset and/or 12538 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12539 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12540 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12541 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12542 */ 12543 if (old_cr0 & X86_CR0_PG) { 12544 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12545 kvm_mmu_reset_context(vcpu); 12546 } 12547 12548 /* 12549 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12550 * APM states the TLBs are untouched by INIT, but it also states that 12551 * the TLBs are flushed on "External initialization of the processor." 12552 * Flush the guest TLB regardless of vendor, there is no meaningful 12553 * benefit in relying on the guest to flush the TLB immediately after 12554 * INIT. A spurious TLB flush is benign and likely negligible from a 12555 * performance perspective. 12556 */ 12557 if (init_event) 12558 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12559 } 12560 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12561 kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12562 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12563 { 12564 struct kvm_segment cs; 12565 12566 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12567 cs.selector = vector << 8; 12568 cs.base = vector << 12; 12569 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12570 kvm_rip_write(vcpu, 0); 12571 } 12572 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12573 kvm_arch_enable_virtualization(void)12574 void kvm_arch_enable_virtualization(void) 12575 { 12576 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12577 } 12578 kvm_arch_disable_virtualization(void)12579 void kvm_arch_disable_virtualization(void) 12580 { 12581 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12582 } 12583 kvm_arch_enable_virtualization_cpu(void)12584 int kvm_arch_enable_virtualization_cpu(void) 12585 { 12586 struct kvm *kvm; 12587 struct kvm_vcpu *vcpu; 12588 unsigned long i; 12589 int ret; 12590 u64 local_tsc; 12591 u64 max_tsc = 0; 12592 bool stable, backwards_tsc = false; 12593 12594 kvm_user_return_msr_cpu_online(); 12595 12596 ret = kvm_x86_check_processor_compatibility(); 12597 if (ret) 12598 return ret; 12599 12600 ret = kvm_x86_call(enable_virtualization_cpu)(); 12601 if (ret != 0) 12602 return ret; 12603 12604 local_tsc = rdtsc(); 12605 stable = !kvm_check_tsc_unstable(); 12606 list_for_each_entry(kvm, &vm_list, vm_list) { 12607 kvm_for_each_vcpu(i, vcpu, kvm) { 12608 if (!stable && vcpu->cpu == smp_processor_id()) 12609 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12610 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12611 backwards_tsc = true; 12612 if (vcpu->arch.last_host_tsc > max_tsc) 12613 max_tsc = vcpu->arch.last_host_tsc; 12614 } 12615 } 12616 } 12617 12618 /* 12619 * Sometimes, even reliable TSCs go backwards. This happens on 12620 * platforms that reset TSC during suspend or hibernate actions, but 12621 * maintain synchronization. We must compensate. Fortunately, we can 12622 * detect that condition here, which happens early in CPU bringup, 12623 * before any KVM threads can be running. Unfortunately, we can't 12624 * bring the TSCs fully up to date with real time, as we aren't yet far 12625 * enough into CPU bringup that we know how much real time has actually 12626 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12627 * variables that haven't been updated yet. 12628 * 12629 * So we simply find the maximum observed TSC above, then record the 12630 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12631 * the adjustment will be applied. Note that we accumulate 12632 * adjustments, in case multiple suspend cycles happen before some VCPU 12633 * gets a chance to run again. In the event that no KVM threads get a 12634 * chance to run, we will miss the entire elapsed period, as we'll have 12635 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12636 * loose cycle time. This isn't too big a deal, since the loss will be 12637 * uniform across all VCPUs (not to mention the scenario is extremely 12638 * unlikely). It is possible that a second hibernate recovery happens 12639 * much faster than a first, causing the observed TSC here to be 12640 * smaller; this would require additional padding adjustment, which is 12641 * why we set last_host_tsc to the local tsc observed here. 12642 * 12643 * N.B. - this code below runs only on platforms with reliable TSC, 12644 * as that is the only way backwards_tsc is set above. Also note 12645 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12646 * have the same delta_cyc adjustment applied if backwards_tsc 12647 * is detected. Note further, this adjustment is only done once, 12648 * as we reset last_host_tsc on all VCPUs to stop this from being 12649 * called multiple times (one for each physical CPU bringup). 12650 * 12651 * Platforms with unreliable TSCs don't have to deal with this, they 12652 * will be compensated by the logic in vcpu_load, which sets the TSC to 12653 * catchup mode. This will catchup all VCPUs to real time, but cannot 12654 * guarantee that they stay in perfect synchronization. 12655 */ 12656 if (backwards_tsc) { 12657 u64 delta_cyc = max_tsc - local_tsc; 12658 list_for_each_entry(kvm, &vm_list, vm_list) { 12659 kvm->arch.backwards_tsc_observed = true; 12660 kvm_for_each_vcpu(i, vcpu, kvm) { 12661 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12662 vcpu->arch.last_host_tsc = local_tsc; 12663 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12664 } 12665 12666 /* 12667 * We have to disable TSC offset matching.. if you were 12668 * booting a VM while issuing an S4 host suspend.... 12669 * you may have some problem. Solving this issue is 12670 * left as an exercise to the reader. 12671 */ 12672 kvm->arch.last_tsc_nsec = 0; 12673 kvm->arch.last_tsc_write = 0; 12674 } 12675 12676 } 12677 return 0; 12678 } 12679 kvm_arch_disable_virtualization_cpu(void)12680 void kvm_arch_disable_virtualization_cpu(void) 12681 { 12682 kvm_x86_call(disable_virtualization_cpu)(); 12683 drop_user_return_notifiers(); 12684 } 12685 kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12686 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12687 { 12688 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12689 } 12690 kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12691 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12692 { 12693 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12694 } 12695 kvm_arch_free_vm(struct kvm * kvm)12696 void kvm_arch_free_vm(struct kvm *kvm) 12697 { 12698 #if IS_ENABLED(CONFIG_HYPERV) 12699 kfree(kvm->arch.hv_pa_pg); 12700 #endif 12701 __kvm_arch_free_vm(kvm); 12702 } 12703 12704 kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12705 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12706 { 12707 int ret; 12708 unsigned long flags; 12709 12710 if (!kvm_is_vm_type_supported(type)) 12711 return -EINVAL; 12712 12713 kvm->arch.vm_type = type; 12714 kvm->arch.has_private_mem = 12715 (type == KVM_X86_SW_PROTECTED_VM); 12716 /* Decided by the vendor code for other VM types. */ 12717 kvm->arch.pre_fault_allowed = 12718 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12719 12720 ret = kvm_page_track_init(kvm); 12721 if (ret) 12722 goto out; 12723 12724 kvm_mmu_init_vm(kvm); 12725 12726 ret = kvm_x86_call(vm_init)(kvm); 12727 if (ret) 12728 goto out_uninit_mmu; 12729 12730 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12731 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12732 12733 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12734 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12735 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12736 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12737 &kvm->arch.irq_sources_bitmap); 12738 12739 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12740 mutex_init(&kvm->arch.apic_map_lock); 12741 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12742 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12743 12744 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12745 pvclock_update_vm_gtod_copy(kvm); 12746 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12747 12748 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12749 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12750 kvm->arch.guest_can_read_msr_platform_info = true; 12751 kvm->arch.enable_pmu = enable_pmu; 12752 12753 #if IS_ENABLED(CONFIG_HYPERV) 12754 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12755 kvm->arch.hv_root_tdp = INVALID_PAGE; 12756 #endif 12757 12758 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12759 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12760 12761 kvm_apicv_init(kvm); 12762 kvm_hv_init_vm(kvm); 12763 kvm_xen_init_vm(kvm); 12764 12765 if (ignore_msrs && !report_ignored_msrs) { 12766 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n" 12767 "a supported configuration. Lying to the guest about the existence of MSRs\n" 12768 "may cause the guest operating system to hang or produce errors. If a guest\n" 12769 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n"); 12770 } 12771 12772 once_init(&kvm->arch.nx_once); 12773 return 0; 12774 12775 out_uninit_mmu: 12776 kvm_mmu_uninit_vm(kvm); 12777 kvm_page_track_cleanup(kvm); 12778 out: 12779 return ret; 12780 } 12781 12782 /** 12783 * __x86_set_memory_region: Setup KVM internal memory slot 12784 * 12785 * @kvm: the kvm pointer to the VM. 12786 * @id: the slot ID to setup. 12787 * @gpa: the GPA to install the slot (unused when @size == 0). 12788 * @size: the size of the slot. Set to zero to uninstall a slot. 12789 * 12790 * This function helps to setup a KVM internal memory slot. Specify 12791 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12792 * slot. The return code can be one of the following: 12793 * 12794 * HVA: on success (uninstall will return a bogus HVA) 12795 * -errno: on error 12796 * 12797 * The caller should always use IS_ERR() to check the return value 12798 * before use. Note, the KVM internal memory slots are guaranteed to 12799 * remain valid and unchanged until the VM is destroyed, i.e., the 12800 * GPA->HVA translation will not change. However, the HVA is a user 12801 * address, i.e. its accessibility is not guaranteed, and must be 12802 * accessed via __copy_{to,from}_user(). 12803 */ __x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12804 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12805 u32 size) 12806 { 12807 int i, r; 12808 unsigned long hva, old_npages; 12809 struct kvm_memslots *slots = kvm_memslots(kvm); 12810 struct kvm_memory_slot *slot; 12811 12812 lockdep_assert_held(&kvm->slots_lock); 12813 12814 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12815 return ERR_PTR_USR(-EINVAL); 12816 12817 slot = id_to_memslot(slots, id); 12818 if (size) { 12819 if (slot && slot->npages) 12820 return ERR_PTR_USR(-EEXIST); 12821 12822 /* 12823 * MAP_SHARED to prevent internal slot pages from being moved 12824 * by fork()/COW. 12825 */ 12826 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12827 MAP_SHARED | MAP_ANONYMOUS, 0); 12828 if (IS_ERR_VALUE(hva)) 12829 return (void __user *)hva; 12830 } else { 12831 if (!slot || !slot->npages) 12832 return NULL; 12833 12834 old_npages = slot->npages; 12835 hva = slot->userspace_addr; 12836 } 12837 12838 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12839 struct kvm_userspace_memory_region2 m; 12840 12841 m.slot = id | (i << 16); 12842 m.flags = 0; 12843 m.guest_phys_addr = gpa; 12844 m.userspace_addr = hva; 12845 m.memory_size = size; 12846 r = kvm_set_internal_memslot(kvm, &m); 12847 if (r < 0) 12848 return ERR_PTR_USR(r); 12849 } 12850 12851 if (!size) 12852 vm_munmap(hva, old_npages * PAGE_SIZE); 12853 12854 return (void __user *)hva; 12855 } 12856 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12857 kvm_arch_pre_destroy_vm(struct kvm * kvm)12858 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12859 { 12860 /* 12861 * Stop all background workers and kthreads before destroying vCPUs, as 12862 * iterating over vCPUs in a different task while vCPUs are being freed 12863 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to 12864 * be stopped before IRQ routing is freed. 12865 */ 12866 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12867 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12868 12869 kvm_free_pit(kvm); 12870 12871 kvm_mmu_pre_destroy_vm(kvm); 12872 } 12873 kvm_arch_destroy_vm(struct kvm * kvm)12874 void kvm_arch_destroy_vm(struct kvm *kvm) 12875 { 12876 if (current->mm == kvm->mm) { 12877 /* 12878 * Free memory regions allocated on behalf of userspace, 12879 * unless the memory map has changed due to process exit 12880 * or fd copying. 12881 */ 12882 mutex_lock(&kvm->slots_lock); 12883 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12884 0, 0); 12885 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12886 0, 0); 12887 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12888 mutex_unlock(&kvm->slots_lock); 12889 } 12890 kvm_destroy_vcpus(kvm); 12891 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12892 kvm_pic_destroy(kvm); 12893 kvm_ioapic_destroy(kvm); 12894 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12895 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12896 kvm_mmu_uninit_vm(kvm); 12897 kvm_page_track_cleanup(kvm); 12898 kvm_xen_destroy_vm(kvm); 12899 kvm_hv_destroy_vm(kvm); 12900 kvm_x86_call(vm_destroy)(kvm); 12901 } 12902 memslot_rmap_free(struct kvm_memory_slot * slot)12903 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12904 { 12905 int i; 12906 12907 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12908 vfree(slot->arch.rmap[i]); 12909 slot->arch.rmap[i] = NULL; 12910 } 12911 } 12912 kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12913 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12914 { 12915 int i; 12916 12917 memslot_rmap_free(slot); 12918 12919 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12920 vfree(slot->arch.lpage_info[i - 1]); 12921 slot->arch.lpage_info[i - 1] = NULL; 12922 } 12923 12924 kvm_page_track_free_memslot(slot); 12925 } 12926 memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12927 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12928 { 12929 const int sz = sizeof(*slot->arch.rmap[0]); 12930 int i; 12931 12932 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12933 int level = i + 1; 12934 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12935 12936 if (slot->arch.rmap[i]) 12937 continue; 12938 12939 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12940 if (!slot->arch.rmap[i]) { 12941 memslot_rmap_free(slot); 12942 return -ENOMEM; 12943 } 12944 } 12945 12946 return 0; 12947 } 12948 kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12949 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12950 struct kvm_memory_slot *slot) 12951 { 12952 unsigned long npages = slot->npages; 12953 int i, r; 12954 12955 /* 12956 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12957 * old arrays will be freed by kvm_set_memory_region() if installing 12958 * the new memslot is successful. 12959 */ 12960 memset(&slot->arch, 0, sizeof(slot->arch)); 12961 12962 if (kvm_memslots_have_rmaps(kvm)) { 12963 r = memslot_rmap_alloc(slot, npages); 12964 if (r) 12965 return r; 12966 } 12967 12968 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12969 struct kvm_lpage_info *linfo; 12970 unsigned long ugfn; 12971 int lpages; 12972 int level = i + 1; 12973 12974 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12975 12976 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12977 if (!linfo) 12978 goto out_free; 12979 12980 slot->arch.lpage_info[i - 1] = linfo; 12981 12982 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12983 linfo[0].disallow_lpage = 1; 12984 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12985 linfo[lpages - 1].disallow_lpage = 1; 12986 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12987 /* 12988 * If the gfn and userspace address are not aligned wrt each 12989 * other, disable large page support for this slot. 12990 */ 12991 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12992 unsigned long j; 12993 12994 for (j = 0; j < lpages; ++j) 12995 linfo[j].disallow_lpage = 1; 12996 } 12997 } 12998 12999 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 13000 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 13001 #endif 13002 13003 if (kvm_page_track_create_memslot(kvm, slot, npages)) 13004 goto out_free; 13005 13006 return 0; 13007 13008 out_free: 13009 memslot_rmap_free(slot); 13010 13011 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 13012 vfree(slot->arch.lpage_info[i - 1]); 13013 slot->arch.lpage_info[i - 1] = NULL; 13014 } 13015 return -ENOMEM; 13016 } 13017 kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13018 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 13019 { 13020 struct kvm_vcpu *vcpu; 13021 unsigned long i; 13022 13023 /* 13024 * memslots->generation has been incremented. 13025 * mmio generation may have reached its maximum value. 13026 */ 13027 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13028 13029 /* Force re-initialization of steal_time cache */ 13030 kvm_for_each_vcpu(i, vcpu, kvm) 13031 kvm_vcpu_kick(vcpu); 13032 } 13033 kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13034 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13035 const struct kvm_memory_slot *old, 13036 struct kvm_memory_slot *new, 13037 enum kvm_mr_change change) 13038 { 13039 /* 13040 * KVM doesn't support moving memslots when there are external page 13041 * trackers attached to the VM, i.e. if KVMGT is in use. 13042 */ 13043 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13044 return -EINVAL; 13045 13046 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13047 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13048 return -EINVAL; 13049 13050 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1)) 13051 return -EINVAL; 13052 13053 return kvm_alloc_memslot_metadata(kvm, new); 13054 } 13055 13056 if (change == KVM_MR_FLAGS_ONLY) 13057 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13058 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13059 return -EIO; 13060 13061 return 0; 13062 } 13063 13064 kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13065 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13066 { 13067 int nr_slots; 13068 13069 if (!kvm_x86_ops.cpu_dirty_log_size) 13070 return; 13071 13072 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13073 if ((enable && nr_slots == 1) || !nr_slots) 13074 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13075 } 13076 kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13077 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13078 struct kvm_memory_slot *old, 13079 const struct kvm_memory_slot *new, 13080 enum kvm_mr_change change) 13081 { 13082 u32 old_flags = old ? old->flags : 0; 13083 u32 new_flags = new ? new->flags : 0; 13084 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13085 13086 /* 13087 * Update CPU dirty logging if dirty logging is being toggled. This 13088 * applies to all operations. 13089 */ 13090 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13091 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13092 13093 /* 13094 * Nothing more to do for RO slots (which can't be dirtied and can't be 13095 * made writable) or CREATE/MOVE/DELETE of a slot. 13096 * 13097 * For a memslot with dirty logging disabled: 13098 * CREATE: No dirty mappings will already exist. 13099 * MOVE/DELETE: The old mappings will already have been cleaned up by 13100 * kvm_arch_flush_shadow_memslot() 13101 * 13102 * For a memslot with dirty logging enabled: 13103 * CREATE: No shadow pages exist, thus nothing to write-protect 13104 * and no dirty bits to clear. 13105 * MOVE/DELETE: The old mappings will already have been cleaned up by 13106 * kvm_arch_flush_shadow_memslot(). 13107 */ 13108 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13109 return; 13110 13111 /* 13112 * READONLY and non-flags changes were filtered out above, and the only 13113 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13114 * logging isn't being toggled on or off. 13115 */ 13116 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13117 return; 13118 13119 if (!log_dirty_pages) { 13120 /* 13121 * Recover huge page mappings in the slot now that dirty logging 13122 * is disabled, i.e. now that KVM does not have to track guest 13123 * writes at 4KiB granularity. 13124 * 13125 * Dirty logging might be disabled by userspace if an ongoing VM 13126 * live migration is cancelled and the VM must continue running 13127 * on the source. 13128 */ 13129 kvm_mmu_recover_huge_pages(kvm, new); 13130 } else { 13131 /* 13132 * Initially-all-set does not require write protecting any page, 13133 * because they're all assumed to be dirty. 13134 */ 13135 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13136 return; 13137 13138 if (READ_ONCE(eager_page_split)) 13139 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13140 13141 if (kvm_x86_ops.cpu_dirty_log_size) { 13142 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13143 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13144 } else { 13145 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13146 } 13147 13148 /* 13149 * Unconditionally flush the TLBs after enabling dirty logging. 13150 * A flush is almost always going to be necessary (see below), 13151 * and unconditionally flushing allows the helpers to omit 13152 * the subtly complex checks when removing write access. 13153 * 13154 * Do the flush outside of mmu_lock to reduce the amount of 13155 * time mmu_lock is held. Flushing after dropping mmu_lock is 13156 * safe as KVM only needs to guarantee the slot is fully 13157 * write-protected before returning to userspace, i.e. before 13158 * userspace can consume the dirty status. 13159 * 13160 * Flushing outside of mmu_lock requires KVM to be careful when 13161 * making decisions based on writable status of an SPTE, e.g. a 13162 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13163 * 13164 * Specifically, KVM also write-protects guest page tables to 13165 * monitor changes when using shadow paging, and must guarantee 13166 * no CPUs can write to those page before mmu_lock is dropped. 13167 * Because CPUs may have stale TLB entries at this point, a 13168 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13169 * 13170 * KVM also allows making SPTES writable outside of mmu_lock, 13171 * e.g. to allow dirty logging without taking mmu_lock. 13172 * 13173 * To handle these scenarios, KVM uses a separate software-only 13174 * bit (MMU-writable) to track if a SPTE is !writable due to 13175 * a guest page table being write-protected (KVM clears the 13176 * MMU-writable flag when write-protecting for shadow paging). 13177 * 13178 * The use of MMU-writable is also the primary motivation for 13179 * the unconditional flush. Because KVM must guarantee that a 13180 * CPU doesn't contain stale, writable TLB entries for a 13181 * !MMU-writable SPTE, KVM must flush if it encounters any 13182 * MMU-writable SPTE regardless of whether the actual hardware 13183 * writable bit was set. I.e. KVM is almost guaranteed to need 13184 * to flush, while unconditionally flushing allows the "remove 13185 * write access" helpers to ignore MMU-writable entirely. 13186 * 13187 * See is_writable_pte() for more details (the case involving 13188 * access-tracked SPTEs is particularly relevant). 13189 */ 13190 kvm_flush_remote_tlbs_memslot(kvm, new); 13191 } 13192 } 13193 kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13194 void kvm_arch_commit_memory_region(struct kvm *kvm, 13195 struct kvm_memory_slot *old, 13196 const struct kvm_memory_slot *new, 13197 enum kvm_mr_change change) 13198 { 13199 if (change == KVM_MR_DELETE) 13200 kvm_page_track_delete_slot(kvm, old); 13201 13202 if (!kvm->arch.n_requested_mmu_pages && 13203 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13204 unsigned long nr_mmu_pages; 13205 13206 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13207 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13208 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13209 } 13210 13211 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13212 13213 /* Free the arrays associated with the old memslot. */ 13214 if (change == KVM_MR_MOVE) 13215 kvm_arch_free_memslot(kvm, old); 13216 } 13217 kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13218 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13219 { 13220 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13221 13222 if (vcpu->arch.guest_state_protected) 13223 return true; 13224 13225 return kvm_x86_call(get_cpl)(vcpu) == 0; 13226 } 13227 kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13228 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13229 { 13230 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13231 13232 if (vcpu->arch.guest_state_protected) 13233 return 0; 13234 13235 return kvm_rip_read(vcpu); 13236 } 13237 kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13238 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13239 { 13240 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13241 } 13242 kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13243 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13244 { 13245 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13246 } 13247 kvm_get_linear_rip(struct kvm_vcpu * vcpu)13248 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13249 { 13250 /* Can't read the RIP when guest state is protected, just return 0 */ 13251 if (vcpu->arch.guest_state_protected) 13252 return 0; 13253 13254 if (is_64_bit_mode(vcpu)) 13255 return kvm_rip_read(vcpu); 13256 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13257 kvm_rip_read(vcpu)); 13258 } 13259 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13260 kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13261 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13262 { 13263 return kvm_get_linear_rip(vcpu) == linear_rip; 13264 } 13265 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13266 kvm_get_rflags(struct kvm_vcpu * vcpu)13267 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13268 { 13269 unsigned long rflags; 13270 13271 rflags = kvm_x86_call(get_rflags)(vcpu); 13272 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13273 rflags &= ~X86_EFLAGS_TF; 13274 return rflags; 13275 } 13276 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13277 __kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13278 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13279 { 13280 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13281 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13282 rflags |= X86_EFLAGS_TF; 13283 kvm_x86_call(set_rflags)(vcpu, rflags); 13284 } 13285 kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13286 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13287 { 13288 __kvm_set_rflags(vcpu, rflags); 13289 kvm_make_request(KVM_REQ_EVENT, vcpu); 13290 } 13291 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13292 kvm_async_pf_hash_fn(gfn_t gfn)13293 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13294 { 13295 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13296 13297 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13298 } 13299 kvm_async_pf_next_probe(u32 key)13300 static inline u32 kvm_async_pf_next_probe(u32 key) 13301 { 13302 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13303 } 13304 kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13305 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13306 { 13307 u32 key = kvm_async_pf_hash_fn(gfn); 13308 13309 while (vcpu->arch.apf.gfns[key] != ~0) 13310 key = kvm_async_pf_next_probe(key); 13311 13312 vcpu->arch.apf.gfns[key] = gfn; 13313 } 13314 kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13315 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13316 { 13317 int i; 13318 u32 key = kvm_async_pf_hash_fn(gfn); 13319 13320 for (i = 0; i < ASYNC_PF_PER_VCPU && 13321 (vcpu->arch.apf.gfns[key] != gfn && 13322 vcpu->arch.apf.gfns[key] != ~0); i++) 13323 key = kvm_async_pf_next_probe(key); 13324 13325 return key; 13326 } 13327 kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13328 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13329 { 13330 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13331 } 13332 kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13333 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13334 { 13335 u32 i, j, k; 13336 13337 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13338 13339 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13340 return; 13341 13342 while (true) { 13343 vcpu->arch.apf.gfns[i] = ~0; 13344 do { 13345 j = kvm_async_pf_next_probe(j); 13346 if (vcpu->arch.apf.gfns[j] == ~0) 13347 return; 13348 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13349 /* 13350 * k lies cyclically in ]i,j] 13351 * | i.k.j | 13352 * |....j i.k.| or |.k..j i...| 13353 */ 13354 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13355 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13356 i = j; 13357 } 13358 } 13359 apf_put_user_notpresent(struct kvm_vcpu * vcpu)13360 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13361 { 13362 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13363 13364 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13365 sizeof(reason)); 13366 } 13367 apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13368 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13369 { 13370 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13371 13372 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13373 &token, offset, sizeof(token)); 13374 } 13375 apf_pageready_slot_free(struct kvm_vcpu * vcpu)13376 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13377 { 13378 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13379 u32 val; 13380 13381 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13382 &val, offset, sizeof(val))) 13383 return false; 13384 13385 return !val; 13386 } 13387 kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13388 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13389 { 13390 13391 if (!kvm_pv_async_pf_enabled(vcpu)) 13392 return false; 13393 13394 if (!vcpu->arch.apf.send_always && 13395 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu))) 13396 return false; 13397 13398 if (is_guest_mode(vcpu)) { 13399 /* 13400 * L1 needs to opt into the special #PF vmexits that are 13401 * used to deliver async page faults. 13402 */ 13403 return vcpu->arch.apf.delivery_as_pf_vmexit; 13404 } else { 13405 /* 13406 * Play it safe in case the guest temporarily disables paging. 13407 * The real mode IDT in particular is unlikely to have a #PF 13408 * exception setup. 13409 */ 13410 return is_paging(vcpu); 13411 } 13412 } 13413 kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13414 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13415 { 13416 if (unlikely(!lapic_in_kernel(vcpu) || 13417 kvm_event_needs_reinjection(vcpu) || 13418 kvm_is_exception_pending(vcpu))) 13419 return false; 13420 13421 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13422 return false; 13423 13424 /* 13425 * If interrupts are off we cannot even use an artificial 13426 * halt state. 13427 */ 13428 return kvm_arch_interrupt_allowed(vcpu); 13429 } 13430 kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13431 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13432 struct kvm_async_pf *work) 13433 { 13434 struct x86_exception fault; 13435 13436 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13437 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13438 13439 if (kvm_can_deliver_async_pf(vcpu) && 13440 !apf_put_user_notpresent(vcpu)) { 13441 fault.vector = PF_VECTOR; 13442 fault.error_code_valid = true; 13443 fault.error_code = 0; 13444 fault.nested_page_fault = false; 13445 fault.address = work->arch.token; 13446 fault.async_page_fault = true; 13447 kvm_inject_page_fault(vcpu, &fault); 13448 return true; 13449 } else { 13450 /* 13451 * It is not possible to deliver a paravirtualized asynchronous 13452 * page fault, but putting the guest in an artificial halt state 13453 * can be beneficial nevertheless: if an interrupt arrives, we 13454 * can deliver it timely and perhaps the guest will schedule 13455 * another process. When the instruction that triggered a page 13456 * fault is retried, hopefully the page will be ready in the host. 13457 */ 13458 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13459 return false; 13460 } 13461 } 13462 kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13463 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13464 struct kvm_async_pf *work) 13465 { 13466 struct kvm_lapic_irq irq = { 13467 .delivery_mode = APIC_DM_FIXED, 13468 .vector = vcpu->arch.apf.vec 13469 }; 13470 13471 if (work->wakeup_all) 13472 work->arch.token = ~0; /* broadcast wakeup */ 13473 else 13474 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13475 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13476 13477 if ((work->wakeup_all || work->notpresent_injected) && 13478 kvm_pv_async_pf_enabled(vcpu) && 13479 !apf_put_user_ready(vcpu, work->arch.token)) { 13480 vcpu->arch.apf.pageready_pending = true; 13481 kvm_apic_set_irq(vcpu, &irq, NULL); 13482 } 13483 13484 vcpu->arch.apf.halted = false; 13485 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 13486 } 13487 kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13488 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13489 { 13490 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13491 if (!vcpu->arch.apf.pageready_pending) 13492 kvm_vcpu_kick(vcpu); 13493 } 13494 kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13495 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13496 { 13497 if (!kvm_pv_async_pf_enabled(vcpu)) 13498 return true; 13499 else 13500 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13501 } 13502 kvm_arch_start_assignment(struct kvm * kvm)13503 void kvm_arch_start_assignment(struct kvm *kvm) 13504 { 13505 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13506 kvm_x86_call(pi_start_assignment)(kvm); 13507 } 13508 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13509 kvm_arch_end_assignment(struct kvm * kvm)13510 void kvm_arch_end_assignment(struct kvm *kvm) 13511 { 13512 atomic_dec(&kvm->arch.assigned_device_count); 13513 } 13514 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13515 kvm_arch_has_assigned_device(struct kvm * kvm)13516 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13517 { 13518 return raw_atomic_read(&kvm->arch.assigned_device_count); 13519 } 13520 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13521 kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13522 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13523 { 13524 /* 13525 * Non-coherent DMA assignment and de-assignment may affect whether or 13526 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13527 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13528 * (or last) non-coherent device is (un)registered to so that new SPTEs 13529 * with the correct "ignore guest PAT" setting are created. 13530 */ 13531 if (kvm_mmu_may_ignore_guest_pat()) 13532 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13533 } 13534 kvm_arch_register_noncoherent_dma(struct kvm * kvm)13535 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13536 { 13537 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13538 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13539 } 13540 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13541 kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13542 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13543 { 13544 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13545 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13546 } 13547 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13548 kvm_arch_has_noncoherent_dma(struct kvm * kvm)13549 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13550 { 13551 return atomic_read(&kvm->arch.noncoherent_dma_count); 13552 } 13553 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13554 kvm_arch_has_irq_bypass(void)13555 bool kvm_arch_has_irq_bypass(void) 13556 { 13557 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13558 } 13559 kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13560 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13561 struct irq_bypass_producer *prod) 13562 { 13563 struct kvm_kernel_irqfd *irqfd = 13564 container_of(cons, struct kvm_kernel_irqfd, consumer); 13565 int ret; 13566 13567 irqfd->producer = prod; 13568 kvm_arch_start_assignment(irqfd->kvm); 13569 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13570 prod->irq, irqfd->gsi, 1); 13571 if (ret) 13572 kvm_arch_end_assignment(irqfd->kvm); 13573 13574 return ret; 13575 } 13576 kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13577 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13578 struct irq_bypass_producer *prod) 13579 { 13580 int ret; 13581 struct kvm_kernel_irqfd *irqfd = 13582 container_of(cons, struct kvm_kernel_irqfd, consumer); 13583 13584 WARN_ON(irqfd->producer != prod); 13585 irqfd->producer = NULL; 13586 13587 /* 13588 * When producer of consumer is unregistered, we change back to 13589 * remapped mode, so we can re-use the current implementation 13590 * when the irq is masked/disabled or the consumer side (KVM 13591 * int this case doesn't want to receive the interrupts. 13592 */ 13593 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13594 prod->irq, irqfd->gsi, 0); 13595 if (ret) 13596 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13597 " fails: %d\n", irqfd->consumer.token, ret); 13598 13599 kvm_arch_end_assignment(irqfd->kvm); 13600 } 13601 kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13602 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13603 uint32_t guest_irq, bool set) 13604 { 13605 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set); 13606 } 13607 kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13608 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13609 struct kvm_kernel_irq_routing_entry *new) 13610 { 13611 if (new->type != KVM_IRQ_ROUTING_MSI) 13612 return true; 13613 13614 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13615 } 13616 kvm_vector_hashing_enabled(void)13617 bool kvm_vector_hashing_enabled(void) 13618 { 13619 return vector_hashing; 13620 } 13621 kvm_arch_no_poll(struct kvm_vcpu * vcpu)13622 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13623 { 13624 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13625 } 13626 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13627 13628 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13629 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13630 { 13631 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13632 } 13633 #endif 13634 13635 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13636 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13637 { 13638 kvm_x86_call(gmem_invalidate)(start, end); 13639 } 13640 #endif 13641 kvm_spec_ctrl_test_value(u64 value)13642 int kvm_spec_ctrl_test_value(u64 value) 13643 { 13644 /* 13645 * test that setting IA32_SPEC_CTRL to given value 13646 * is allowed by the host processor 13647 */ 13648 13649 u64 saved_value; 13650 unsigned long flags; 13651 int ret = 0; 13652 13653 local_irq_save(flags); 13654 13655 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13656 ret = 1; 13657 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13658 ret = 1; 13659 else 13660 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13661 13662 local_irq_restore(flags); 13663 13664 return ret; 13665 } 13666 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13667 kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13668 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13669 { 13670 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13671 struct x86_exception fault; 13672 u64 access = error_code & 13673 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13674 13675 if (!(error_code & PFERR_PRESENT_MASK) || 13676 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13677 /* 13678 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13679 * tables probably do not match the TLB. Just proceed 13680 * with the error code that the processor gave. 13681 */ 13682 fault.vector = PF_VECTOR; 13683 fault.error_code_valid = true; 13684 fault.error_code = error_code; 13685 fault.nested_page_fault = false; 13686 fault.address = gva; 13687 fault.async_page_fault = false; 13688 } 13689 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13690 } 13691 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13692 13693 /* 13694 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13695 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13696 * indicates whether exit to userspace is needed. 13697 */ kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13698 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13699 struct x86_exception *e) 13700 { 13701 if (r == X86EMUL_PROPAGATE_FAULT) { 13702 if (KVM_BUG_ON(!e, vcpu->kvm)) 13703 return -EIO; 13704 13705 kvm_inject_emulated_page_fault(vcpu, e); 13706 return 1; 13707 } 13708 13709 /* 13710 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13711 * while handling a VMX instruction KVM could've handled the request 13712 * correctly by exiting to userspace and performing I/O but there 13713 * doesn't seem to be a real use-case behind such requests, just return 13714 * KVM_EXIT_INTERNAL_ERROR for now. 13715 */ 13716 kvm_prepare_emulation_failure_exit(vcpu); 13717 13718 return 0; 13719 } 13720 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13721 kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13722 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13723 { 13724 bool pcid_enabled; 13725 struct x86_exception e; 13726 struct { 13727 u64 pcid; 13728 u64 gla; 13729 } operand; 13730 int r; 13731 13732 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13733 if (r != X86EMUL_CONTINUE) 13734 return kvm_handle_memory_failure(vcpu, r, &e); 13735 13736 if (operand.pcid >> 12 != 0) { 13737 kvm_inject_gp(vcpu, 0); 13738 return 1; 13739 } 13740 13741 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13742 13743 switch (type) { 13744 case INVPCID_TYPE_INDIV_ADDR: 13745 /* 13746 * LAM doesn't apply to addresses that are inputs to TLB 13747 * invalidation. 13748 */ 13749 if ((!pcid_enabled && (operand.pcid != 0)) || 13750 is_noncanonical_invlpg_address(operand.gla, vcpu)) { 13751 kvm_inject_gp(vcpu, 0); 13752 return 1; 13753 } 13754 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13755 return kvm_skip_emulated_instruction(vcpu); 13756 13757 case INVPCID_TYPE_SINGLE_CTXT: 13758 if (!pcid_enabled && (operand.pcid != 0)) { 13759 kvm_inject_gp(vcpu, 0); 13760 return 1; 13761 } 13762 13763 kvm_invalidate_pcid(vcpu, operand.pcid); 13764 return kvm_skip_emulated_instruction(vcpu); 13765 13766 case INVPCID_TYPE_ALL_NON_GLOBAL: 13767 /* 13768 * Currently, KVM doesn't mark global entries in the shadow 13769 * page tables, so a non-global flush just degenerates to a 13770 * global flush. If needed, we could optimize this later by 13771 * keeping track of global entries in shadow page tables. 13772 */ 13773 13774 fallthrough; 13775 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13776 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13777 return kvm_skip_emulated_instruction(vcpu); 13778 13779 default: 13780 kvm_inject_gp(vcpu, 0); 13781 return 1; 13782 } 13783 } 13784 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13785 complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13786 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13787 { 13788 struct kvm_run *run = vcpu->run; 13789 struct kvm_mmio_fragment *frag; 13790 unsigned int len; 13791 13792 BUG_ON(!vcpu->mmio_needed); 13793 13794 /* Complete previous fragment */ 13795 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13796 len = min(8u, frag->len); 13797 if (!vcpu->mmio_is_write) 13798 memcpy(frag->data, run->mmio.data, len); 13799 13800 if (frag->len <= 8) { 13801 /* Switch to the next fragment. */ 13802 frag++; 13803 vcpu->mmio_cur_fragment++; 13804 } else { 13805 /* Go forward to the next mmio piece. */ 13806 frag->data += len; 13807 frag->gpa += len; 13808 frag->len -= len; 13809 } 13810 13811 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13812 vcpu->mmio_needed = 0; 13813 13814 // VMG change, at this point, we're always done 13815 // RIP has already been advanced 13816 return 1; 13817 } 13818 13819 // More MMIO is needed 13820 run->mmio.phys_addr = frag->gpa; 13821 run->mmio.len = min(8u, frag->len); 13822 run->mmio.is_write = vcpu->mmio_is_write; 13823 if (run->mmio.is_write) 13824 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13825 run->exit_reason = KVM_EXIT_MMIO; 13826 13827 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13828 13829 return 0; 13830 } 13831 kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13832 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13833 void *data) 13834 { 13835 int handled; 13836 struct kvm_mmio_fragment *frag; 13837 13838 if (!data) 13839 return -EINVAL; 13840 13841 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13842 if (handled == bytes) 13843 return 1; 13844 13845 bytes -= handled; 13846 gpa += handled; 13847 data += handled; 13848 13849 /*TODO: Check if need to increment number of frags */ 13850 frag = vcpu->mmio_fragments; 13851 vcpu->mmio_nr_fragments = 1; 13852 frag->len = bytes; 13853 frag->gpa = gpa; 13854 frag->data = data; 13855 13856 vcpu->mmio_needed = 1; 13857 vcpu->mmio_cur_fragment = 0; 13858 13859 vcpu->run->mmio.phys_addr = gpa; 13860 vcpu->run->mmio.len = min(8u, frag->len); 13861 vcpu->run->mmio.is_write = 1; 13862 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13863 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13864 13865 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13866 13867 return 0; 13868 } 13869 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13870 kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13871 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13872 void *data) 13873 { 13874 int handled; 13875 struct kvm_mmio_fragment *frag; 13876 13877 if (!data) 13878 return -EINVAL; 13879 13880 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13881 if (handled == bytes) 13882 return 1; 13883 13884 bytes -= handled; 13885 gpa += handled; 13886 data += handled; 13887 13888 /*TODO: Check if need to increment number of frags */ 13889 frag = vcpu->mmio_fragments; 13890 vcpu->mmio_nr_fragments = 1; 13891 frag->len = bytes; 13892 frag->gpa = gpa; 13893 frag->data = data; 13894 13895 vcpu->mmio_needed = 1; 13896 vcpu->mmio_cur_fragment = 0; 13897 13898 vcpu->run->mmio.phys_addr = gpa; 13899 vcpu->run->mmio.len = min(8u, frag->len); 13900 vcpu->run->mmio.is_write = 0; 13901 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13902 13903 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13904 13905 return 0; 13906 } 13907 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13908 advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13909 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13910 { 13911 vcpu->arch.sev_pio_count -= count; 13912 vcpu->arch.sev_pio_data += count * size; 13913 } 13914 13915 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13916 unsigned int port); 13917 complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13918 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13919 { 13920 int size = vcpu->arch.pio.size; 13921 int port = vcpu->arch.pio.port; 13922 13923 vcpu->arch.pio.count = 0; 13924 if (vcpu->arch.sev_pio_count) 13925 return kvm_sev_es_outs(vcpu, size, port); 13926 return 1; 13927 } 13928 kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13929 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13930 unsigned int port) 13931 { 13932 for (;;) { 13933 unsigned int count = 13934 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13935 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13936 13937 /* memcpy done already by emulator_pio_out. */ 13938 advance_sev_es_emulated_pio(vcpu, count, size); 13939 if (!ret) 13940 break; 13941 13942 /* Emulation done by the kernel. */ 13943 if (!vcpu->arch.sev_pio_count) 13944 return 1; 13945 } 13946 13947 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13948 return 0; 13949 } 13950 13951 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13952 unsigned int port); 13953 complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13954 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13955 { 13956 unsigned count = vcpu->arch.pio.count; 13957 int size = vcpu->arch.pio.size; 13958 int port = vcpu->arch.pio.port; 13959 13960 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13961 advance_sev_es_emulated_pio(vcpu, count, size); 13962 if (vcpu->arch.sev_pio_count) 13963 return kvm_sev_es_ins(vcpu, size, port); 13964 return 1; 13965 } 13966 kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13967 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13968 unsigned int port) 13969 { 13970 for (;;) { 13971 unsigned int count = 13972 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13973 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13974 break; 13975 13976 /* Emulation done by the kernel. */ 13977 advance_sev_es_emulated_pio(vcpu, count, size); 13978 if (!vcpu->arch.sev_pio_count) 13979 return 1; 13980 } 13981 13982 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13983 return 0; 13984 } 13985 kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13986 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13987 unsigned int port, void *data, unsigned int count, 13988 int in) 13989 { 13990 vcpu->arch.sev_pio_data = data; 13991 vcpu->arch.sev_pio_count = count; 13992 return in ? kvm_sev_es_ins(vcpu, size, port) 13993 : kvm_sev_es_outs(vcpu, size, port); 13994 } 13995 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13996 13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 14010 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 14011 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 14012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 14027 kvm_x86_init(void)14028 static int __init kvm_x86_init(void) 14029 { 14030 kvm_init_xstate_sizes(); 14031 14032 kvm_mmu_x86_module_init(); 14033 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 14034 return 0; 14035 } 14036 module_init(kvm_x86_init); 14037 kvm_x86_exit(void)14038 static void __exit kvm_x86_exit(void) 14039 { 14040 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 14041 } 14042 module_exit(kvm_x86_exit); 14043