xref: /linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision 5d6ba5ab8582aa35c1ee98e47af28e6f6772596c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/mem_protect.h>
30 
31 /* Non-VHE specific context */
32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
35 
36 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
37 
__activate_cptr_traps(struct kvm_vcpu * vcpu)38 static void __activate_cptr_traps(struct kvm_vcpu *vcpu)
39 {
40 	u64 val = CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
41 
42 	if (!guest_owns_fp_regs())
43 		__activate_traps_fpsimd32(vcpu);
44 
45 	if (has_hvhe()) {
46 		val |= CPACR_EL1_TTA;
47 
48 		if (guest_owns_fp_regs()) {
49 			val |= CPACR_EL1_FPEN;
50 			if (vcpu_has_sve(vcpu))
51 				val |= CPACR_EL1_ZEN;
52 		}
53 
54 		write_sysreg(val, cpacr_el1);
55 	} else {
56 		val |= CPTR_EL2_TTA | CPTR_NVHE_EL2_RES1;
57 
58 		/*
59 		 * Always trap SME since it's not supported in KVM.
60 		 * TSM is RES1 if SME isn't implemented.
61 		 */
62 		val |= CPTR_EL2_TSM;
63 
64 		if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs())
65 			val |= CPTR_EL2_TZ;
66 
67 		if (!guest_owns_fp_regs())
68 			val |= CPTR_EL2_TFP;
69 
70 		write_sysreg(val, cptr_el2);
71 	}
72 }
73 
__deactivate_cptr_traps(struct kvm_vcpu * vcpu)74 static void __deactivate_cptr_traps(struct kvm_vcpu *vcpu)
75 {
76 	if (has_hvhe()) {
77 		u64 val = CPACR_EL1_FPEN;
78 
79 		if (cpus_have_final_cap(ARM64_SVE))
80 			val |= CPACR_EL1_ZEN;
81 		if (cpus_have_final_cap(ARM64_SME))
82 			val |= CPACR_EL1_SMEN;
83 
84 		write_sysreg(val, cpacr_el1);
85 	} else {
86 		u64 val = CPTR_NVHE_EL2_RES1;
87 
88 		if (!cpus_have_final_cap(ARM64_SVE))
89 			val |= CPTR_EL2_TZ;
90 		if (!cpus_have_final_cap(ARM64_SME))
91 			val |= CPTR_EL2_TSM;
92 
93 		write_sysreg(val, cptr_el2);
94 	}
95 }
96 
__activate_traps(struct kvm_vcpu * vcpu)97 static void __activate_traps(struct kvm_vcpu *vcpu)
98 {
99 	___activate_traps(vcpu, vcpu->arch.hcr_el2);
100 	__activate_traps_common(vcpu);
101 	__activate_cptr_traps(vcpu);
102 
103 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
104 
105 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
106 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
107 
108 		isb();
109 		/*
110 		 * At this stage, and thanks to the above isb(), S2 is
111 		 * configured and enabled. We can now restore the guest's S1
112 		 * configuration: SCTLR, and only then TCR.
113 		 */
114 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
115 		isb();
116 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
117 	}
118 }
119 
__deactivate_traps(struct kvm_vcpu * vcpu)120 static void __deactivate_traps(struct kvm_vcpu *vcpu)
121 {
122 	extern char __kvm_hyp_host_vector[];
123 
124 	___deactivate_traps(vcpu);
125 
126 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
127 		u64 val;
128 
129 		/*
130 		 * Set the TCR and SCTLR registers in the exact opposite
131 		 * sequence as __activate_traps (first prevent walks,
132 		 * then force the MMU on). A generous sprinkling of isb()
133 		 * ensure that things happen in this exact order.
134 		 */
135 		val = read_sysreg_el1(SYS_TCR);
136 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
137 		isb();
138 		val = read_sysreg_el1(SYS_SCTLR);
139 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
140 		isb();
141 	}
142 
143 	__deactivate_traps_common(vcpu);
144 
145 	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
146 
147 	__deactivate_cptr_traps(vcpu);
148 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
149 }
150 
151 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)152 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
153 {
154 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
155 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
156 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
157 	}
158 }
159 
160 /* Restore VGICv3 state on non-VHE systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)161 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
162 {
163 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
164 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
165 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
166 	}
167 }
168 
169 /*
170  * Disable host events, enable guest events
171  */
172 #ifdef CONFIG_HW_PERF_EVENTS
__pmu_switch_to_guest(struct kvm_vcpu * vcpu)173 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
174 {
175 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
176 
177 	if (pmu->events_host)
178 		write_sysreg(pmu->events_host, pmcntenclr_el0);
179 
180 	if (pmu->events_guest)
181 		write_sysreg(pmu->events_guest, pmcntenset_el0);
182 
183 	return (pmu->events_host || pmu->events_guest);
184 }
185 
186 /*
187  * Disable guest events, enable host events
188  */
__pmu_switch_to_host(struct kvm_vcpu * vcpu)189 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
190 {
191 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
192 
193 	if (pmu->events_guest)
194 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
195 
196 	if (pmu->events_host)
197 		write_sysreg(pmu->events_host, pmcntenset_el0);
198 }
199 #else
200 #define __pmu_switch_to_guest(v)	({ false; })
201 #define __pmu_switch_to_host(v)		do {} while (0)
202 #endif
203 
204 /*
205  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
206  *
207  * Returns true if the hypervisor has handled the exit, and control should go
208  * back to the guest, or false if it hasn't.
209  */
kvm_handle_pvm_sys64(struct kvm_vcpu * vcpu,u64 * exit_code)210 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
211 {
212 	/*
213 	 * Make sure we handle the exit for workarounds before the pKVM
214 	 * handling, as the latter could decide to UNDEF.
215 	 */
216 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
217 		kvm_handle_pvm_sysreg(vcpu, exit_code));
218 }
219 
220 static const exit_handler_fn hyp_exit_handlers[] = {
221 	[0 ... ESR_ELx_EC_MAX]		= NULL,
222 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
223 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
224 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
225 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
226 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
227 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
228 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
229 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
230 };
231 
232 static const exit_handler_fn pvm_exit_handlers[] = {
233 	[0 ... ESR_ELx_EC_MAX]		= NULL,
234 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
235 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
236 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
237 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
238 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
239 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
240 	[ESR_ELx_EC_MOPS]		= kvm_hyp_handle_mops,
241 };
242 
kvm_get_exit_handler_array(struct kvm_vcpu * vcpu)243 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
244 {
245 	if (unlikely(vcpu_is_protected(vcpu)))
246 		return pvm_exit_handlers;
247 
248 	return hyp_exit_handlers;
249 }
250 
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)251 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
252 {
253 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
254 
255 	synchronize_vcpu_pstate(vcpu, exit_code);
256 
257 	/*
258 	 * Some guests (e.g., protected VMs) are not be allowed to run in
259 	 * AArch32.  The ARMv8 architecture does not give the hypervisor a
260 	 * mechanism to prevent a guest from dropping to AArch32 EL0 if
261 	 * implemented by the CPU. If the hypervisor spots a guest in such a
262 	 * state ensure it is handled, and don't trust the host to spot or fix
263 	 * it.  The check below is based on the one in
264 	 * kvm_arch_vcpu_ioctl_run().
265 	 */
266 	if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
267 		/*
268 		 * As we have caught the guest red-handed, decide that it isn't
269 		 * fit for purpose anymore by making the vcpu invalid. The VMM
270 		 * can try and fix it by re-initializing the vcpu with
271 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
272 		 * protected VMs.
273 		 */
274 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
275 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
276 		*exit_code |= ARM_EXCEPTION_IL;
277 	}
278 
279 	return __fixup_guest_exit(vcpu, exit_code, handlers);
280 }
281 
282 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run(struct kvm_vcpu * vcpu)283 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
284 {
285 	struct kvm_cpu_context *host_ctxt;
286 	struct kvm_cpu_context *guest_ctxt;
287 	struct kvm_s2_mmu *mmu;
288 	bool pmu_switch_needed;
289 	u64 exit_code;
290 
291 	/*
292 	 * Having IRQs masked via PMR when entering the guest means the GIC
293 	 * will not signal the CPU of interrupts of lower priority, and the
294 	 * only way to get out will be via guest exceptions.
295 	 * Naturally, we want to avoid this.
296 	 */
297 	if (system_uses_irq_prio_masking()) {
298 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
299 		pmr_sync();
300 	}
301 
302 	host_ctxt = host_data_ptr(host_ctxt);
303 	host_ctxt->__hyp_running_vcpu = vcpu;
304 	guest_ctxt = &vcpu->arch.ctxt;
305 
306 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
307 
308 	__sysreg_save_state_nvhe(host_ctxt);
309 	/*
310 	 * We must flush and disable the SPE buffer for nVHE, as
311 	 * the translation regime(EL1&0) is going to be loaded with
312 	 * that of the guest. And we must do this before we change the
313 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
314 	 * before we load guest Stage1.
315 	 */
316 	__debug_save_host_buffers_nvhe(vcpu);
317 
318 	/*
319 	 * We're about to restore some new MMU state. Make sure
320 	 * ongoing page-table walks that have started before we
321 	 * trapped to EL2 have completed. This also synchronises the
322 	 * above disabling of SPE and TRBE.
323 	 *
324 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
325 	 * rule R_LFHQG and subsequent information statements.
326 	 */
327 	dsb(nsh);
328 
329 	__kvm_adjust_pc(vcpu);
330 
331 	/*
332 	 * We must restore the 32-bit state before the sysregs, thanks
333 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
334 	 *
335 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
336 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
337 	 * restored before we enable S2 translation.
338 	 */
339 	__sysreg32_restore_state(vcpu);
340 	__sysreg_restore_state_nvhe(guest_ctxt);
341 
342 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
343 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
344 	__activate_traps(vcpu);
345 
346 	__hyp_vgic_restore_state(vcpu);
347 	__timer_enable_traps(vcpu);
348 
349 	__debug_switch_to_guest(vcpu);
350 
351 	do {
352 		/* Jump in the fire! */
353 		exit_code = __guest_enter(vcpu);
354 
355 		/* And we're baaack! */
356 	} while (fixup_guest_exit(vcpu, &exit_code));
357 
358 	__sysreg_save_state_nvhe(guest_ctxt);
359 	__sysreg32_save_state(vcpu);
360 	__timer_disable_traps(vcpu);
361 	__hyp_vgic_save_state(vcpu);
362 
363 	/*
364 	 * Same thing as before the guest run: we're about to switch
365 	 * the MMU context, so let's make sure we don't have any
366 	 * ongoing EL1&0 translations.
367 	 */
368 	dsb(nsh);
369 
370 	__deactivate_traps(vcpu);
371 	__load_host_stage2();
372 
373 	__sysreg_restore_state_nvhe(host_ctxt);
374 
375 	if (guest_owns_fp_regs())
376 		__fpsimd_save_fpexc32(vcpu);
377 
378 	__debug_switch_to_host(vcpu);
379 	/*
380 	 * This must come after restoring the host sysregs, since a non-VHE
381 	 * system may enable SPE here and make use of the TTBRs.
382 	 */
383 	__debug_restore_host_buffers_nvhe(vcpu);
384 
385 	if (pmu_switch_needed)
386 		__pmu_switch_to_host(vcpu);
387 
388 	/* Returning to host will clear PSR.I, remask PMR if needed */
389 	if (system_uses_irq_prio_masking())
390 		gic_write_pmr(GIC_PRIO_IRQOFF);
391 
392 	host_ctxt->__hyp_running_vcpu = NULL;
393 
394 	return exit_code;
395 }
396 
hyp_panic(void)397 asmlinkage void __noreturn hyp_panic(void)
398 {
399 	u64 spsr = read_sysreg_el2(SYS_SPSR);
400 	u64 elr = read_sysreg_el2(SYS_ELR);
401 	u64 par = read_sysreg_par();
402 	struct kvm_cpu_context *host_ctxt;
403 	struct kvm_vcpu *vcpu;
404 
405 	host_ctxt = host_data_ptr(host_ctxt);
406 	vcpu = host_ctxt->__hyp_running_vcpu;
407 
408 	if (vcpu) {
409 		__timer_disable_traps(vcpu);
410 		__deactivate_traps(vcpu);
411 		__load_host_stage2();
412 		__sysreg_restore_state_nvhe(host_ctxt);
413 	}
414 
415 	/* Prepare to dump kvm nvhe hyp stacktrace */
416 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
417 				   _THIS_IP_);
418 
419 	__hyp_do_panic(host_ctxt, spsr, elr, par);
420 	unreachable();
421 }
422 
hyp_panic_bad_stack(void)423 asmlinkage void __noreturn hyp_panic_bad_stack(void)
424 {
425 	hyp_panic();
426 }
427 
kvm_unexpected_el2_exception(void)428 asmlinkage void kvm_unexpected_el2_exception(void)
429 {
430 	__kvm_unexpected_el2_exception();
431 }
432