1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * handling kvm guest interrupts
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 */
9
10 #define pr_fmt(fmt) "kvm-s390: " fmt
11
12 #include <linux/cpufeature.h>
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/export.h>
17 #include <linux/mmu_context.h>
18 #include <linux/nospec.h>
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/bitmap.h>
22 #include <linux/vmalloc.h>
23 #include <asm/access-regs.h>
24 #include <asm/asm-offsets.h>
25 #include <asm/dis.h>
26 #include <linux/uaccess.h>
27 #include <asm/sclp.h>
28 #include <asm/isc.h>
29 #include <asm/gmap.h>
30 #include <asm/nmi.h>
31 #include <asm/airq.h>
32 #include <asm/tpi.h>
33 #include "kvm-s390.h"
34 #include "gaccess.h"
35 #include "trace-s390.h"
36 #include "pci.h"
37
38 #define PFAULT_INIT 0x0600
39 #define PFAULT_DONE 0x0680
40 #define VIRTIO_PARAM 0x0d00
41
42 static struct kvm_s390_gib *gib;
43
44 /* handle external calls via sigp interpretation facility */
sca_ext_call_pending(struct kvm_vcpu * vcpu,int * src_id)45 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
46 {
47 struct esca_block *sca = vcpu->kvm->arch.sca;
48 union esca_sigp_ctrl sigp_ctrl = sca->cpu[vcpu->vcpu_id].sigp_ctrl;
49
50 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
51 return 0;
52
53 BUG_ON(!kvm_s390_use_sca_entries());
54
55 if (src_id)
56 *src_id = sigp_ctrl.scn;
57
58 return sigp_ctrl.c;
59 }
60
sca_inject_ext_call(struct kvm_vcpu * vcpu,int src_id)61 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
62 {
63 struct esca_block *sca = vcpu->kvm->arch.sca;
64 union esca_sigp_ctrl *sigp_ctrl = &sca->cpu[vcpu->vcpu_id].sigp_ctrl;
65 union esca_sigp_ctrl old_val, new_val = {.scn = src_id, .c = 1};
66 int expect, rc;
67
68 BUG_ON(!kvm_s390_use_sca_entries());
69
70 old_val = READ_ONCE(*sigp_ctrl);
71 old_val.c = 0;
72
73 expect = old_val.value;
74 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
75
76 if (rc != expect) {
77 /* another external call is pending */
78 return -EBUSY;
79 }
80 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
81 return 0;
82 }
83
sca_clear_ext_call(struct kvm_vcpu * vcpu)84 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
85 {
86 struct esca_block *sca = vcpu->kvm->arch.sca;
87 union esca_sigp_ctrl *sigp_ctrl = &sca->cpu[vcpu->vcpu_id].sigp_ctrl;
88
89 if (!kvm_s390_use_sca_entries())
90 return;
91 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
92
93 WRITE_ONCE(sigp_ctrl->value, 0);
94 }
95
psw_extint_disabled(struct kvm_vcpu * vcpu)96 int psw_extint_disabled(struct kvm_vcpu *vcpu)
97 {
98 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
99 }
100
psw_ioint_disabled(struct kvm_vcpu * vcpu)101 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
102 {
103 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
104 }
105
psw_mchk_disabled(struct kvm_vcpu * vcpu)106 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
107 {
108 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
109 }
110
psw_interrupts_disabled(struct kvm_vcpu * vcpu)111 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
112 {
113 return psw_extint_disabled(vcpu) &&
114 psw_ioint_disabled(vcpu) &&
115 psw_mchk_disabled(vcpu);
116 }
117
ckc_interrupts_enabled(struct kvm_vcpu * vcpu)118 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
119 {
120 if (psw_extint_disabled(vcpu) ||
121 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
122 return 0;
123 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
124 /* No timer interrupts when single stepping */
125 return 0;
126 return 1;
127 }
128
ckc_irq_pending(struct kvm_vcpu * vcpu)129 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
130 {
131 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
132 const u64 ckc = vcpu->arch.sie_block->ckc;
133
134 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
135 if ((s64)ckc >= (s64)now)
136 return 0;
137 } else if (ckc >= now) {
138 return 0;
139 }
140 return ckc_interrupts_enabled(vcpu);
141 }
142
cpu_timer_interrupts_enabled(struct kvm_vcpu * vcpu)143 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
144 {
145 return !psw_extint_disabled(vcpu) &&
146 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
147 }
148
cpu_timer_irq_pending(struct kvm_vcpu * vcpu)149 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
150 {
151 if (!cpu_timer_interrupts_enabled(vcpu))
152 return 0;
153 return kvm_s390_get_cpu_timer(vcpu) >> 63;
154 }
155
isc_to_isc_bits(int isc)156 static uint64_t isc_to_isc_bits(int isc)
157 {
158 return (0x80 >> isc) << 24;
159 }
160
isc_to_int_word(u8 isc)161 static inline u32 isc_to_int_word(u8 isc)
162 {
163 return ((u32)isc << 27) | 0x80000000;
164 }
165
int_word_to_isc(u32 int_word)166 static inline u8 int_word_to_isc(u32 int_word)
167 {
168 return (int_word & 0x38000000) >> 27;
169 }
170
171 /*
172 * To use atomic bitmap functions, we have to provide a bitmap address
173 * that is u64 aligned. However, the ipm might be u32 aligned.
174 * Therefore, we logically start the bitmap at the very beginning of the
175 * struct and fixup the bit number.
176 */
177 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
178
179 /**
180 * gisa_set_iam - change the GISA interruption alert mask
181 *
182 * @gisa: gisa to operate on
183 * @iam: new IAM value to use
184 *
185 * Change the IAM atomically with the next alert address and the IPM
186 * of the GISA if the GISA is not part of the GIB alert list. All three
187 * fields are located in the first long word of the GISA.
188 *
189 * Returns: 0 on success
190 * -EBUSY in case the gisa is part of the alert list
191 */
gisa_set_iam(struct kvm_s390_gisa * gisa,u8 iam)192 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
193 {
194 u64 word, _word;
195
196 word = READ_ONCE(gisa->u64.word[0]);
197 do {
198 if ((u64)gisa != word >> 32)
199 return -EBUSY;
200 _word = (word & ~0xffUL) | iam;
201 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
202
203 return 0;
204 }
205
206 /**
207 * gisa_clear_ipm - clear the GISA interruption pending mask
208 *
209 * @gisa: gisa to operate on
210 *
211 * Clear the IPM atomically with the next alert address and the IAM
212 * of the GISA unconditionally. All three fields are located in the
213 * first long word of the GISA.
214 */
gisa_clear_ipm(struct kvm_s390_gisa * gisa)215 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
216 {
217 u64 word, _word;
218
219 word = READ_ONCE(gisa->u64.word[0]);
220 do {
221 _word = word & ~(0xffUL << 24);
222 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
223 }
224
225 /**
226 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
227 *
228 * @gi: gisa interrupt struct to work on
229 *
230 * Atomically restores the interruption alert mask if none of the
231 * relevant ISCs are pending and return the IPM.
232 *
233 * Returns: the relevant pending ISCs
234 */
gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt * gi)235 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
236 {
237 u8 pending_mask, alert_mask;
238 u64 word, _word;
239
240 word = READ_ONCE(gi->origin->u64.word[0]);
241 do {
242 alert_mask = READ_ONCE(gi->alert.mask);
243 pending_mask = (u8)(word >> 24) & alert_mask;
244 if (pending_mask)
245 return pending_mask;
246 _word = (word & ~0xffUL) | alert_mask;
247 } while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word));
248
249 return 0;
250 }
251
gisa_set_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)252 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
253 {
254 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
255 }
256
gisa_get_ipm(struct kvm_s390_gisa * gisa)257 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
258 {
259 return READ_ONCE(gisa->ipm);
260 }
261
gisa_tac_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)262 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
263 {
264 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
265 }
266
pending_irqs_no_gisa(struct kvm_vcpu * vcpu)267 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
268 {
269 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
270 vcpu->arch.local_int.pending_irqs;
271
272 pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
273 return pending;
274 }
275
pending_irqs(struct kvm_vcpu * vcpu)276 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
277 {
278 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
279 unsigned long pending_mask;
280
281 pending_mask = pending_irqs_no_gisa(vcpu);
282 if (gi->origin)
283 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
284 return pending_mask;
285 }
286
isc_to_irq_type(unsigned long isc)287 static inline int isc_to_irq_type(unsigned long isc)
288 {
289 return IRQ_PEND_IO_ISC_0 - isc;
290 }
291
irq_type_to_isc(unsigned long irq_type)292 static inline int irq_type_to_isc(unsigned long irq_type)
293 {
294 return IRQ_PEND_IO_ISC_0 - irq_type;
295 }
296
disable_iscs(struct kvm_vcpu * vcpu,unsigned long active_mask)297 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
298 unsigned long active_mask)
299 {
300 int i;
301
302 for (i = 0; i <= MAX_ISC; i++)
303 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
304 active_mask &= ~(1UL << (isc_to_irq_type(i)));
305
306 return active_mask;
307 }
308
deliverable_irqs(struct kvm_vcpu * vcpu)309 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
310 {
311 unsigned long active_mask;
312
313 active_mask = pending_irqs(vcpu);
314 if (!active_mask)
315 return 0;
316
317 if (psw_extint_disabled(vcpu))
318 active_mask &= ~IRQ_PEND_EXT_MASK;
319 if (psw_ioint_disabled(vcpu))
320 active_mask &= ~IRQ_PEND_IO_MASK;
321 else
322 active_mask = disable_iscs(vcpu, active_mask);
323 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
324 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
325 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
326 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
327 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
328 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
329 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
330 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
331 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
332 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
333 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
334 }
335 if (psw_mchk_disabled(vcpu))
336 active_mask &= ~IRQ_PEND_MCHK_MASK;
337 /* PV guest cpus can have a single interruption injected at a time. */
338 if (kvm_s390_pv_cpu_get_handle(vcpu) &&
339 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
340 active_mask &= ~(IRQ_PEND_EXT_II_MASK |
341 IRQ_PEND_IO_MASK |
342 IRQ_PEND_MCHK_MASK);
343 /*
344 * Check both floating and local interrupt's cr14 because
345 * bit IRQ_PEND_MCHK_REP could be set in both cases.
346 */
347 if (!(vcpu->arch.sie_block->gcr[14] &
348 (vcpu->kvm->arch.float_int.mchk.cr14 |
349 vcpu->arch.local_int.irq.mchk.cr14)))
350 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
351
352 /*
353 * STOP irqs will never be actively delivered. They are triggered via
354 * intercept requests and cleared when the stop intercept is performed.
355 */
356 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
357
358 return active_mask;
359 }
360
__set_cpu_idle(struct kvm_vcpu * vcpu)361 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
362 {
363 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
364 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
365 }
366
__unset_cpu_idle(struct kvm_vcpu * vcpu)367 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
368 {
369 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
370 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
371 }
372
__reset_intercept_indicators(struct kvm_vcpu * vcpu)373 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
374 {
375 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
376 CPUSTAT_STOP_INT);
377 vcpu->arch.sie_block->lctl = 0x0000;
378 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
379
380 if (guestdbg_enabled(vcpu)) {
381 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
382 LCTL_CR10 | LCTL_CR11);
383 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
384 }
385 }
386
set_intercept_indicators_io(struct kvm_vcpu * vcpu)387 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
388 {
389 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
390 return;
391 if (psw_ioint_disabled(vcpu))
392 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
393 else
394 vcpu->arch.sie_block->lctl |= LCTL_CR6;
395 }
396
set_intercept_indicators_ext(struct kvm_vcpu * vcpu)397 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
398 {
399 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
400 return;
401 if (psw_extint_disabled(vcpu))
402 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
403 else
404 vcpu->arch.sie_block->lctl |= LCTL_CR0;
405 }
406
set_intercept_indicators_mchk(struct kvm_vcpu * vcpu)407 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
408 {
409 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
410 return;
411 if (psw_mchk_disabled(vcpu))
412 vcpu->arch.sie_block->ictl |= ICTL_LPSW;
413 else
414 vcpu->arch.sie_block->lctl |= LCTL_CR14;
415 }
416
set_intercept_indicators_stop(struct kvm_vcpu * vcpu)417 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
418 {
419 if (kvm_s390_is_stop_irq_pending(vcpu))
420 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
421 }
422
423 /* Set interception request for non-deliverable interrupts */
set_intercept_indicators(struct kvm_vcpu * vcpu)424 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
425 {
426 set_intercept_indicators_io(vcpu);
427 set_intercept_indicators_ext(vcpu);
428 set_intercept_indicators_mchk(vcpu);
429 set_intercept_indicators_stop(vcpu);
430 }
431
__deliver_cpu_timer(struct kvm_vcpu * vcpu)432 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
433 {
434 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
435 int rc = 0;
436
437 vcpu->stat.deliver_cputm++;
438 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
439 0, 0);
440 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
441 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
442 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
443 } else {
444 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
445 (u16 *)__LC_EXT_INT_CODE);
446 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
447 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
448 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
449 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
450 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
451 }
452 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
453 return rc ? -EFAULT : 0;
454 }
455
__deliver_ckc(struct kvm_vcpu * vcpu)456 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
457 {
458 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
459 int rc = 0;
460
461 vcpu->stat.deliver_ckc++;
462 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
463 0, 0);
464 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
465 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
466 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
467 } else {
468 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
469 (u16 __user *)__LC_EXT_INT_CODE);
470 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
471 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
472 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
473 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
474 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
475 }
476 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
477 return rc ? -EFAULT : 0;
478 }
479
__deliver_pfault_init(struct kvm_vcpu * vcpu)480 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
481 {
482 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
483 struct kvm_s390_ext_info ext;
484 int rc;
485
486 spin_lock(&li->lock);
487 ext = li->irq.ext;
488 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
489 li->irq.ext.ext_params2 = 0;
490 spin_unlock(&li->lock);
491
492 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
493 ext.ext_params2);
494 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
495 KVM_S390_INT_PFAULT_INIT,
496 0, ext.ext_params2);
497
498 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
499 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
500 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
501 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
502 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
503 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
504 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
505 return rc ? -EFAULT : 0;
506 }
507
__write_machine_check(struct kvm_vcpu * vcpu,struct kvm_s390_mchk_info * mchk)508 static int __write_machine_check(struct kvm_vcpu *vcpu,
509 struct kvm_s390_mchk_info *mchk)
510 {
511 unsigned long ext_sa_addr;
512 unsigned long lc;
513 freg_t fprs[NUM_FPRS];
514 union mci mci;
515 int rc;
516
517 /*
518 * All other possible payload for a machine check (e.g. the register
519 * contents in the save area) will be handled by the ultravisor, as
520 * the hypervisor does not not have the needed information for
521 * protected guests.
522 */
523 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
524 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
525 vcpu->arch.sie_block->mcic = mchk->mcic;
526 vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
527 vcpu->arch.sie_block->edc = mchk->ext_damage_code;
528 return 0;
529 }
530
531 mci.val = mchk->mcic;
532 /* take care of lazy register loading */
533 kvm_s390_fpu_store(vcpu->run);
534 save_access_regs(vcpu->run->s.regs.acrs);
535 if (cpu_has_gs() && vcpu->arch.gs_enabled)
536 save_gs_cb(current->thread.gs_cb);
537
538 /* Extended save area */
539 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
540 sizeof(unsigned long));
541 /* Only bits 0 through 63-LC are used for address formation */
542 lc = ext_sa_addr & MCESA_LC_MASK;
543 if (test_kvm_facility(vcpu->kvm, 133)) {
544 switch (lc) {
545 case 0:
546 case 10:
547 ext_sa_addr &= ~0x3ffUL;
548 break;
549 case 11:
550 ext_sa_addr &= ~0x7ffUL;
551 break;
552 case 12:
553 ext_sa_addr &= ~0xfffUL;
554 break;
555 default:
556 ext_sa_addr = 0;
557 break;
558 }
559 } else {
560 ext_sa_addr &= ~0x3ffUL;
561 }
562
563 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
564 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
565 512))
566 mci.vr = 0;
567 } else {
568 mci.vr = 0;
569 }
570 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
571 && (lc == 11 || lc == 12)) {
572 if (write_guest_abs(vcpu, ext_sa_addr + 1024,
573 &vcpu->run->s.regs.gscb, 32))
574 mci.gs = 0;
575 } else {
576 mci.gs = 0;
577 }
578
579 /* General interruption information */
580 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
581 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
582 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
583 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
584 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
585 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
586
587 /* Register-save areas */
588 if (cpu_has_vx()) {
589 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
590 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
591 } else {
592 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
593 vcpu->run->s.regs.fprs, 128);
594 }
595 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
596 vcpu->run->s.regs.gprs, 128);
597 rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc,
598 (u32 __user *) __LC_FP_CREG_SAVE_AREA);
599 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
600 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
601 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
602 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
603 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
604 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
605 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
606 &vcpu->run->s.regs.acrs, 64);
607 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
608 &vcpu->arch.sie_block->gcr, 128);
609
610 /* Extended interruption information */
611 rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
612 (u32 __user *) __LC_EXT_DAMAGE_CODE);
613 rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
614 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
615 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
616 sizeof(mchk->fixed_logout));
617 return rc ? -EFAULT : 0;
618 }
619
__deliver_machine_check(struct kvm_vcpu * vcpu)620 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
621 {
622 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
623 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
624 struct kvm_s390_mchk_info mchk = {};
625 int deliver = 0;
626 int rc = 0;
627
628 spin_lock(&fi->lock);
629 spin_lock(&li->lock);
630 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
631 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
632 /*
633 * If there was an exigent machine check pending, then any
634 * repressible machine checks that might have been pending
635 * are indicated along with it, so always clear bits for
636 * repressible and exigent interrupts
637 */
638 mchk = li->irq.mchk;
639 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
640 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
641 memset(&li->irq.mchk, 0, sizeof(mchk));
642 deliver = 1;
643 }
644 /*
645 * We indicate floating repressible conditions along with
646 * other pending conditions. Channel Report Pending and Channel
647 * Subsystem damage are the only two and are indicated by
648 * bits in mcic and masked in cr14.
649 */
650 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
651 mchk.mcic |= fi->mchk.mcic;
652 mchk.cr14 |= fi->mchk.cr14;
653 memset(&fi->mchk, 0, sizeof(mchk));
654 deliver = 1;
655 }
656 spin_unlock(&li->lock);
657 spin_unlock(&fi->lock);
658
659 if (deliver) {
660 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
661 mchk.mcic);
662 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
663 KVM_S390_MCHK,
664 mchk.cr14, mchk.mcic);
665 vcpu->stat.deliver_machine_check++;
666 rc = __write_machine_check(vcpu, &mchk);
667 }
668 return rc;
669 }
670
__deliver_restart(struct kvm_vcpu * vcpu)671 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
672 {
673 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
674 int rc = 0;
675
676 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
677 vcpu->stat.deliver_restart_signal++;
678 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
679
680 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
681 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
682 } else {
683 rc = write_guest_lc(vcpu,
684 offsetof(struct lowcore, restart_old_psw),
685 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
686 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
687 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
688 }
689 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
690 return rc ? -EFAULT : 0;
691 }
692
__deliver_set_prefix(struct kvm_vcpu * vcpu)693 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
694 {
695 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
696 struct kvm_s390_prefix_info prefix;
697
698 spin_lock(&li->lock);
699 prefix = li->irq.prefix;
700 li->irq.prefix.address = 0;
701 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
702 spin_unlock(&li->lock);
703
704 vcpu->stat.deliver_prefix_signal++;
705 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
706 KVM_S390_SIGP_SET_PREFIX,
707 prefix.address, 0);
708
709 kvm_s390_set_prefix(vcpu, prefix.address);
710 return 0;
711 }
712
__deliver_emergency_signal(struct kvm_vcpu * vcpu)713 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
714 {
715 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
716 int rc;
717 int cpu_addr;
718
719 spin_lock(&li->lock);
720 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
721 clear_bit(cpu_addr, li->sigp_emerg_pending);
722 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
723 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
724 spin_unlock(&li->lock);
725
726 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
727 vcpu->stat.deliver_emergency_signal++;
728 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
729 cpu_addr, 0);
730 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
731 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
732 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
733 vcpu->arch.sie_block->extcpuaddr = cpu_addr;
734 return 0;
735 }
736
737 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
738 (u16 *)__LC_EXT_INT_CODE);
739 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
740 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
741 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
742 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
743 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
744 return rc ? -EFAULT : 0;
745 }
746
__deliver_external_call(struct kvm_vcpu * vcpu)747 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
748 {
749 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
750 struct kvm_s390_extcall_info extcall;
751 int rc;
752
753 spin_lock(&li->lock);
754 extcall = li->irq.extcall;
755 li->irq.extcall.code = 0;
756 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
757 spin_unlock(&li->lock);
758
759 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
760 vcpu->stat.deliver_external_call++;
761 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
762 KVM_S390_INT_EXTERNAL_CALL,
763 extcall.code, 0);
764 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
765 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
766 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
767 vcpu->arch.sie_block->extcpuaddr = extcall.code;
768 return 0;
769 }
770
771 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
772 (u16 *)__LC_EXT_INT_CODE);
773 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
774 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
775 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
776 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
777 sizeof(psw_t));
778 return rc ? -EFAULT : 0;
779 }
780
__deliver_prog_pv(struct kvm_vcpu * vcpu,u16 code)781 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
782 {
783 switch (code) {
784 case PGM_SPECIFICATION:
785 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
786 break;
787 case PGM_OPERAND:
788 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
789 break;
790 default:
791 return -EINVAL;
792 }
793 return 0;
794 }
795
__deliver_prog(struct kvm_vcpu * vcpu)796 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
797 {
798 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
799 struct kvm_s390_pgm_info pgm_info;
800 int rc = 0, nullifying = false;
801 u16 ilen;
802
803 spin_lock(&li->lock);
804 pgm_info = li->irq.pgm;
805 clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
806 memset(&li->irq.pgm, 0, sizeof(pgm_info));
807 spin_unlock(&li->lock);
808
809 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
810 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
811 pgm_info.code, ilen);
812 vcpu->stat.deliver_program++;
813 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
814 pgm_info.code, 0);
815
816 /* PER is handled by the ultravisor */
817 if (kvm_s390_pv_cpu_is_protected(vcpu))
818 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
819
820 switch (pgm_info.code & ~PGM_PER) {
821 case PGM_AFX_TRANSLATION:
822 case PGM_ASX_TRANSLATION:
823 case PGM_EX_TRANSLATION:
824 case PGM_LFX_TRANSLATION:
825 case PGM_LSTE_SEQUENCE:
826 case PGM_LSX_TRANSLATION:
827 case PGM_LX_TRANSLATION:
828 case PGM_PRIMARY_AUTHORITY:
829 case PGM_SECONDARY_AUTHORITY:
830 nullifying = true;
831 fallthrough;
832 case PGM_SPACE_SWITCH:
833 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
834 (u64 *)__LC_TRANS_EXC_CODE);
835 break;
836 case PGM_ALEN_TRANSLATION:
837 case PGM_ALE_SEQUENCE:
838 case PGM_ASTE_INSTANCE:
839 case PGM_ASTE_SEQUENCE:
840 case PGM_ASTE_VALIDITY:
841 case PGM_EXTENDED_AUTHORITY:
842 rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
843 (u8 *)__LC_EXC_ACCESS_ID);
844 nullifying = true;
845 break;
846 case PGM_ASCE_TYPE:
847 case PGM_PAGE_TRANSLATION:
848 case PGM_REGION_FIRST_TRANS:
849 case PGM_REGION_SECOND_TRANS:
850 case PGM_REGION_THIRD_TRANS:
851 case PGM_SEGMENT_TRANSLATION:
852 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
853 (u64 *)__LC_TRANS_EXC_CODE);
854 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
855 (u8 *)__LC_EXC_ACCESS_ID);
856 rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
857 (u8 *)__LC_OP_ACCESS_ID);
858 nullifying = true;
859 break;
860 case PGM_MONITOR:
861 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
862 (u16 *)__LC_MON_CLASS_NR);
863 rc |= put_guest_lc(vcpu, pgm_info.mon_code,
864 (u64 *)__LC_MON_CODE);
865 break;
866 case PGM_VECTOR_PROCESSING:
867 case PGM_DATA:
868 rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
869 (u32 *)__LC_DATA_EXC_CODE);
870 break;
871 case PGM_PROTECTION:
872 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
873 (u64 *)__LC_TRANS_EXC_CODE);
874 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
875 (u8 *)__LC_EXC_ACCESS_ID);
876 break;
877 case PGM_STACK_FULL:
878 case PGM_STACK_EMPTY:
879 case PGM_STACK_SPECIFICATION:
880 case PGM_STACK_TYPE:
881 case PGM_STACK_OPERATION:
882 case PGM_TRACE_TABEL:
883 case PGM_CRYPTO_OPERATION:
884 nullifying = true;
885 break;
886 }
887
888 if (pgm_info.code & PGM_PER) {
889 rc |= put_guest_lc(vcpu, pgm_info.per_code,
890 (u8 *) __LC_PER_CODE);
891 rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
892 (u8 *)__LC_PER_ATMID);
893 rc |= put_guest_lc(vcpu, pgm_info.per_address,
894 (u64 *) __LC_PER_ADDRESS);
895 rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
896 (u8 *) __LC_PER_ACCESS_ID);
897 }
898
899 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
900 kvm_s390_rewind_psw(vcpu, ilen);
901
902 /* bit 1+2 of the target are the ilc, so we can directly use ilen */
903 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
904 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
905 (u64 *) __LC_PGM_LAST_BREAK);
906 rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE);
907 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
908 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
909 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
910 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
911 return rc ? -EFAULT : 0;
912 }
913
914 #define SCCB_MASK 0xFFFFFFF8
915 #define SCCB_EVENT_PENDING 0x3
916
write_sclp(struct kvm_vcpu * vcpu,u32 parm)917 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
918 {
919 int rc;
920
921 if (kvm_s390_pv_cpu_get_handle(vcpu)) {
922 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
923 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
924 vcpu->arch.sie_block->eiparams = parm;
925 return 0;
926 }
927
928 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
929 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
930 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
931 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
932 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
933 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
934 rc |= put_guest_lc(vcpu, parm,
935 (u32 *)__LC_EXT_PARAMS);
936
937 return rc ? -EFAULT : 0;
938 }
939
__deliver_service(struct kvm_vcpu * vcpu)940 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
941 {
942 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
943 struct kvm_s390_ext_info ext;
944
945 spin_lock(&fi->lock);
946 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
947 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
948 spin_unlock(&fi->lock);
949 return 0;
950 }
951 ext = fi->srv_signal;
952 memset(&fi->srv_signal, 0, sizeof(ext));
953 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
954 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
955 if (kvm_s390_pv_cpu_is_protected(vcpu))
956 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
957 spin_unlock(&fi->lock);
958
959 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
960 ext.ext_params);
961 vcpu->stat.deliver_service_signal++;
962 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
963 ext.ext_params, 0);
964
965 return write_sclp(vcpu, ext.ext_params);
966 }
967
__deliver_service_ev(struct kvm_vcpu * vcpu)968 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
969 {
970 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
971 struct kvm_s390_ext_info ext;
972
973 spin_lock(&fi->lock);
974 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
975 spin_unlock(&fi->lock);
976 return 0;
977 }
978 ext = fi->srv_signal;
979 /* only clear the event bits */
980 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
981 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
982 spin_unlock(&fi->lock);
983
984 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
985 vcpu->stat.deliver_service_signal++;
986 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
987 ext.ext_params, 0);
988
989 return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING);
990 }
991
__deliver_pfault_done(struct kvm_vcpu * vcpu)992 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
993 {
994 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
995 struct kvm_s390_interrupt_info *inti;
996 int rc = 0;
997
998 spin_lock(&fi->lock);
999 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1000 struct kvm_s390_interrupt_info,
1001 list);
1002 if (inti) {
1003 list_del(&inti->list);
1004 fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1005 }
1006 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1007 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1008 spin_unlock(&fi->lock);
1009
1010 if (inti) {
1011 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1012 KVM_S390_INT_PFAULT_DONE, 0,
1013 inti->ext.ext_params2);
1014 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1015 inti->ext.ext_params2);
1016
1017 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1018 (u16 *)__LC_EXT_INT_CODE);
1019 rc |= put_guest_lc(vcpu, PFAULT_DONE,
1020 (u16 *)__LC_EXT_CPU_ADDR);
1021 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1022 &vcpu->arch.sie_block->gpsw,
1023 sizeof(psw_t));
1024 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1025 &vcpu->arch.sie_block->gpsw,
1026 sizeof(psw_t));
1027 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1028 (u64 *)__LC_EXT_PARAMS2);
1029 kfree(inti);
1030 }
1031 return rc ? -EFAULT : 0;
1032 }
1033
__deliver_virtio(struct kvm_vcpu * vcpu)1034 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1035 {
1036 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1037 struct kvm_s390_interrupt_info *inti;
1038 int rc = 0;
1039
1040 spin_lock(&fi->lock);
1041 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1042 struct kvm_s390_interrupt_info,
1043 list);
1044 if (inti) {
1045 VCPU_EVENT(vcpu, 4,
1046 "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1047 inti->ext.ext_params, inti->ext.ext_params2);
1048 vcpu->stat.deliver_virtio++;
1049 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1050 inti->type,
1051 inti->ext.ext_params,
1052 inti->ext.ext_params2);
1053 list_del(&inti->list);
1054 fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1055 }
1056 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1057 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1058 spin_unlock(&fi->lock);
1059
1060 if (inti) {
1061 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1062 (u16 *)__LC_EXT_INT_CODE);
1063 rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1064 (u16 *)__LC_EXT_CPU_ADDR);
1065 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1066 &vcpu->arch.sie_block->gpsw,
1067 sizeof(psw_t));
1068 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1069 &vcpu->arch.sie_block->gpsw,
1070 sizeof(psw_t));
1071 rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1072 (u32 *)__LC_EXT_PARAMS);
1073 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1074 (u64 *)__LC_EXT_PARAMS2);
1075 kfree(inti);
1076 }
1077 return rc ? -EFAULT : 0;
1078 }
1079
__do_deliver_io(struct kvm_vcpu * vcpu,struct kvm_s390_io_info * io)1080 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1081 {
1082 int rc;
1083
1084 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1085 vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1086 vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1087 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1088 vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1089 vcpu->arch.sie_block->io_int_word = io->io_int_word;
1090 return 0;
1091 }
1092
1093 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1094 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1095 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1096 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1097 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1098 &vcpu->arch.sie_block->gpsw,
1099 sizeof(psw_t));
1100 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1101 &vcpu->arch.sie_block->gpsw,
1102 sizeof(psw_t));
1103 return rc ? -EFAULT : 0;
1104 }
1105
__deliver_io(struct kvm_vcpu * vcpu,unsigned long irq_type)1106 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1107 unsigned long irq_type)
1108 {
1109 struct list_head *isc_list;
1110 struct kvm_s390_float_interrupt *fi;
1111 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1112 struct kvm_s390_interrupt_info *inti = NULL;
1113 struct kvm_s390_io_info io;
1114 u32 isc;
1115 int rc = 0;
1116
1117 fi = &vcpu->kvm->arch.float_int;
1118
1119 spin_lock(&fi->lock);
1120 isc = irq_type_to_isc(irq_type);
1121 isc_list = &fi->lists[isc];
1122 inti = list_first_entry_or_null(isc_list,
1123 struct kvm_s390_interrupt_info,
1124 list);
1125 if (inti) {
1126 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1127 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1128 else
1129 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1130 inti->io.subchannel_id >> 8,
1131 inti->io.subchannel_id >> 1 & 0x3,
1132 inti->io.subchannel_nr);
1133
1134 vcpu->stat.deliver_io++;
1135 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1136 inti->type,
1137 ((__u32)inti->io.subchannel_id << 16) |
1138 inti->io.subchannel_nr,
1139 ((__u64)inti->io.io_int_parm << 32) |
1140 inti->io.io_int_word);
1141 list_del(&inti->list);
1142 fi->counters[FIRQ_CNTR_IO] -= 1;
1143 }
1144 if (list_empty(isc_list))
1145 clear_bit(irq_type, &fi->pending_irqs);
1146 spin_unlock(&fi->lock);
1147
1148 if (inti) {
1149 rc = __do_deliver_io(vcpu, &(inti->io));
1150 kfree(inti);
1151 goto out;
1152 }
1153
1154 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1155 /*
1156 * in case an adapter interrupt was not delivered
1157 * in SIE context KVM will handle the delivery
1158 */
1159 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1160 memset(&io, 0, sizeof(io));
1161 io.io_int_word = isc_to_int_word(isc);
1162 vcpu->stat.deliver_io++;
1163 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1164 KVM_S390_INT_IO(1, 0, 0, 0),
1165 ((__u32)io.subchannel_id << 16) |
1166 io.subchannel_nr,
1167 ((__u64)io.io_int_parm << 32) |
1168 io.io_int_word);
1169 rc = __do_deliver_io(vcpu, &io);
1170 }
1171 out:
1172 return rc;
1173 }
1174
1175 /* Check whether an external call is pending (deliverable or not) */
kvm_s390_ext_call_pending(struct kvm_vcpu * vcpu)1176 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1177 {
1178 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1179
1180 if (!kvm_s390_use_sca_entries())
1181 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1182
1183 return sca_ext_call_pending(vcpu, NULL);
1184 }
1185
kvm_s390_vcpu_has_irq(struct kvm_vcpu * vcpu,int exclude_stop)1186 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1187 {
1188 if (deliverable_irqs(vcpu))
1189 return 1;
1190
1191 if (kvm_cpu_has_pending_timer(vcpu))
1192 return 1;
1193
1194 /* external call pending and deliverable */
1195 if (kvm_s390_ext_call_pending(vcpu) &&
1196 !psw_extint_disabled(vcpu) &&
1197 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1198 return 1;
1199
1200 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1201 return 1;
1202 return 0;
1203 }
1204
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1205 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1206 {
1207 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1208 }
1209
__calculate_sltime(struct kvm_vcpu * vcpu)1210 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1211 {
1212 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1213 const u64 ckc = vcpu->arch.sie_block->ckc;
1214 u64 cputm, sltime = 0;
1215
1216 if (ckc_interrupts_enabled(vcpu)) {
1217 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1218 if ((s64)now < (s64)ckc)
1219 sltime = tod_to_ns((s64)ckc - (s64)now);
1220 } else if (now < ckc) {
1221 sltime = tod_to_ns(ckc - now);
1222 }
1223 /* already expired */
1224 if (!sltime)
1225 return 0;
1226 if (cpu_timer_interrupts_enabled(vcpu)) {
1227 cputm = kvm_s390_get_cpu_timer(vcpu);
1228 /* already expired? */
1229 if (cputm >> 63)
1230 return 0;
1231 return min_t(u64, sltime, tod_to_ns(cputm));
1232 }
1233 } else if (cpu_timer_interrupts_enabled(vcpu)) {
1234 sltime = kvm_s390_get_cpu_timer(vcpu);
1235 /* already expired? */
1236 if (sltime >> 63)
1237 return 0;
1238 }
1239 return sltime;
1240 }
1241
kvm_s390_handle_wait(struct kvm_vcpu * vcpu)1242 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1243 {
1244 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1245 u64 sltime;
1246
1247 vcpu->stat.exit_wait_state++;
1248
1249 /* fast path */
1250 if (kvm_arch_vcpu_runnable(vcpu))
1251 return 0;
1252
1253 if (psw_interrupts_disabled(vcpu)) {
1254 VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1255 return -EOPNOTSUPP; /* disabled wait */
1256 }
1257
1258 if (gi->origin &&
1259 (gisa_get_ipm_or_restore_iam(gi) &
1260 vcpu->arch.sie_block->gcr[6] >> 24))
1261 return 0;
1262
1263 if (!ckc_interrupts_enabled(vcpu) &&
1264 !cpu_timer_interrupts_enabled(vcpu)) {
1265 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1266 __set_cpu_idle(vcpu);
1267 goto no_timer;
1268 }
1269
1270 sltime = __calculate_sltime(vcpu);
1271 if (!sltime)
1272 return 0;
1273
1274 __set_cpu_idle(vcpu);
1275 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1276 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1277 no_timer:
1278 kvm_vcpu_srcu_read_unlock(vcpu);
1279 vcpu->kvm->arch.float_int.last_sleep_cpu = vcpu->vcpu_idx;
1280 kvm_vcpu_halt(vcpu);
1281 vcpu->valid_wakeup = false;
1282 __unset_cpu_idle(vcpu);
1283 kvm_vcpu_srcu_read_lock(vcpu);
1284
1285 hrtimer_cancel(&vcpu->arch.ckc_timer);
1286 return 0;
1287 }
1288
kvm_s390_vcpu_wakeup(struct kvm_vcpu * vcpu)1289 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1290 {
1291 vcpu->valid_wakeup = true;
1292 kvm_vcpu_wake_up(vcpu);
1293
1294 /*
1295 * The VCPU might not be sleeping but rather executing VSIE. Let's
1296 * kick it, so it leaves the SIE to process the request.
1297 */
1298 kvm_s390_vsie_kick(vcpu);
1299 }
1300
kvm_s390_idle_wakeup(struct hrtimer * timer)1301 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1302 {
1303 struct kvm_vcpu *vcpu;
1304 u64 sltime;
1305
1306 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1307 sltime = __calculate_sltime(vcpu);
1308
1309 /*
1310 * If the monotonic clock runs faster than the tod clock we might be
1311 * woken up too early and have to go back to sleep to avoid deadlocks.
1312 */
1313 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1314 return HRTIMER_RESTART;
1315 kvm_s390_vcpu_wakeup(vcpu);
1316 return HRTIMER_NORESTART;
1317 }
1318
kvm_s390_clear_local_irqs(struct kvm_vcpu * vcpu)1319 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1320 {
1321 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1322
1323 spin_lock(&li->lock);
1324 li->pending_irqs = 0;
1325 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1326 memset(&li->irq, 0, sizeof(li->irq));
1327 spin_unlock(&li->lock);
1328
1329 sca_clear_ext_call(vcpu);
1330 }
1331
kvm_s390_deliver_pending_interrupts(struct kvm_vcpu * vcpu)1332 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1333 {
1334 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1335 int rc = 0;
1336 bool delivered = false;
1337 unsigned long irq_type;
1338 unsigned long irqs;
1339
1340 __reset_intercept_indicators(vcpu);
1341
1342 /* pending ckc conditions might have been invalidated */
1343 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1344 if (ckc_irq_pending(vcpu))
1345 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1346
1347 /* pending cpu timer conditions might have been invalidated */
1348 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1349 if (cpu_timer_irq_pending(vcpu))
1350 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1351
1352 while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1353 /* bits are in the reverse order of interrupt priority */
1354 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1355 switch (irq_type) {
1356 case IRQ_PEND_IO_ISC_0:
1357 case IRQ_PEND_IO_ISC_1:
1358 case IRQ_PEND_IO_ISC_2:
1359 case IRQ_PEND_IO_ISC_3:
1360 case IRQ_PEND_IO_ISC_4:
1361 case IRQ_PEND_IO_ISC_5:
1362 case IRQ_PEND_IO_ISC_6:
1363 case IRQ_PEND_IO_ISC_7:
1364 rc = __deliver_io(vcpu, irq_type);
1365 break;
1366 case IRQ_PEND_MCHK_EX:
1367 case IRQ_PEND_MCHK_REP:
1368 rc = __deliver_machine_check(vcpu);
1369 break;
1370 case IRQ_PEND_PROG:
1371 rc = __deliver_prog(vcpu);
1372 break;
1373 case IRQ_PEND_EXT_EMERGENCY:
1374 rc = __deliver_emergency_signal(vcpu);
1375 break;
1376 case IRQ_PEND_EXT_EXTERNAL:
1377 rc = __deliver_external_call(vcpu);
1378 break;
1379 case IRQ_PEND_EXT_CLOCK_COMP:
1380 rc = __deliver_ckc(vcpu);
1381 break;
1382 case IRQ_PEND_EXT_CPU_TIMER:
1383 rc = __deliver_cpu_timer(vcpu);
1384 break;
1385 case IRQ_PEND_RESTART:
1386 rc = __deliver_restart(vcpu);
1387 break;
1388 case IRQ_PEND_SET_PREFIX:
1389 rc = __deliver_set_prefix(vcpu);
1390 break;
1391 case IRQ_PEND_PFAULT_INIT:
1392 rc = __deliver_pfault_init(vcpu);
1393 break;
1394 case IRQ_PEND_EXT_SERVICE:
1395 rc = __deliver_service(vcpu);
1396 break;
1397 case IRQ_PEND_EXT_SERVICE_EV:
1398 rc = __deliver_service_ev(vcpu);
1399 break;
1400 case IRQ_PEND_PFAULT_DONE:
1401 rc = __deliver_pfault_done(vcpu);
1402 break;
1403 case IRQ_PEND_VIRTIO:
1404 rc = __deliver_virtio(vcpu);
1405 break;
1406 default:
1407 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1408 clear_bit(irq_type, &li->pending_irqs);
1409 }
1410 delivered |= !rc;
1411 }
1412
1413 /*
1414 * We delivered at least one interrupt and modified the PC. Force a
1415 * singlestep event now.
1416 */
1417 if (delivered && guestdbg_sstep_enabled(vcpu)) {
1418 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
1419
1420 debug_exit->addr = vcpu->arch.sie_block->gpsw.addr;
1421 debug_exit->type = KVM_SINGLESTEP;
1422 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
1423 }
1424
1425 set_intercept_indicators(vcpu);
1426
1427 return rc;
1428 }
1429
__inject_prog(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1430 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1431 {
1432 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1433
1434 vcpu->stat.inject_program++;
1435 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1436 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1437 irq->u.pgm.code, 0);
1438
1439 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1440 /* auto detection if no valid ILC was given */
1441 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1442 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1443 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1444 }
1445
1446 if (irq->u.pgm.code == PGM_PER) {
1447 li->irq.pgm.code |= PGM_PER;
1448 li->irq.pgm.flags = irq->u.pgm.flags;
1449 /* only modify PER related information */
1450 li->irq.pgm.per_address = irq->u.pgm.per_address;
1451 li->irq.pgm.per_code = irq->u.pgm.per_code;
1452 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1453 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1454 } else if (!(irq->u.pgm.code & PGM_PER)) {
1455 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1456 irq->u.pgm.code;
1457 li->irq.pgm.flags = irq->u.pgm.flags;
1458 /* only modify non-PER information */
1459 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1460 li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1461 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1462 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1463 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1464 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1465 } else {
1466 li->irq.pgm = irq->u.pgm;
1467 }
1468 set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1469 return 0;
1470 }
1471
__inject_pfault_init(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1472 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1473 {
1474 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1475
1476 vcpu->stat.inject_pfault_init++;
1477 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1478 irq->u.ext.ext_params2);
1479 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1480 irq->u.ext.ext_params,
1481 irq->u.ext.ext_params2);
1482
1483 li->irq.ext = irq->u.ext;
1484 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1485 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1486 return 0;
1487 }
1488
__inject_extcall(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1489 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1490 {
1491 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1492 struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1493 uint16_t src_id = irq->u.extcall.code;
1494
1495 vcpu->stat.inject_external_call++;
1496 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1497 src_id);
1498 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1499 src_id, 0);
1500
1501 /* sending vcpu invalid */
1502 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1503 return -EINVAL;
1504
1505 if (kvm_s390_use_sca_entries() && !kvm_s390_pv_cpu_get_handle(vcpu))
1506 return sca_inject_ext_call(vcpu, src_id);
1507
1508 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1509 return -EBUSY;
1510 *extcall = irq->u.extcall;
1511 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1512 return 0;
1513 }
1514
__inject_set_prefix(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1515 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1516 {
1517 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1518 struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1519
1520 vcpu->stat.inject_set_prefix++;
1521 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1522 irq->u.prefix.address);
1523 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1524 irq->u.prefix.address, 0);
1525
1526 if (!is_vcpu_stopped(vcpu))
1527 return -EBUSY;
1528
1529 *prefix = irq->u.prefix;
1530 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1531 return 0;
1532 }
1533
1534 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
__inject_sigp_stop(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1535 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1536 {
1537 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1538 struct kvm_s390_stop_info *stop = &li->irq.stop;
1539 int rc = 0;
1540
1541 vcpu->stat.inject_stop_signal++;
1542 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1543
1544 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1545 return -EINVAL;
1546
1547 if (is_vcpu_stopped(vcpu)) {
1548 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1549 rc = kvm_s390_store_status_unloaded(vcpu,
1550 KVM_S390_STORE_STATUS_NOADDR);
1551 return rc;
1552 }
1553
1554 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1555 return -EBUSY;
1556 stop->flags = irq->u.stop.flags;
1557 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1558 return 0;
1559 }
1560
__inject_sigp_restart(struct kvm_vcpu * vcpu)1561 static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1562 {
1563 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1564
1565 vcpu->stat.inject_restart++;
1566 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1567 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1568
1569 set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1570 return 0;
1571 }
1572
__inject_sigp_emergency(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1573 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1574 struct kvm_s390_irq *irq)
1575 {
1576 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1577
1578 vcpu->stat.inject_emergency_signal++;
1579 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1580 irq->u.emerg.code);
1581 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1582 irq->u.emerg.code, 0);
1583
1584 /* sending vcpu invalid */
1585 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1586 return -EINVAL;
1587
1588 set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1589 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1590 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1591 return 0;
1592 }
1593
__inject_mchk(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1594 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1595 {
1596 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1597 struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1598
1599 vcpu->stat.inject_mchk++;
1600 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1601 irq->u.mchk.mcic);
1602 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1603 irq->u.mchk.mcic);
1604
1605 /*
1606 * Because repressible machine checks can be indicated along with
1607 * exigent machine checks (PoP, Chapter 11, Interruption action)
1608 * we need to combine cr14, mcic and external damage code.
1609 * Failing storage address and the logout area should not be or'ed
1610 * together, we just indicate the last occurrence of the corresponding
1611 * machine check
1612 */
1613 mchk->cr14 |= irq->u.mchk.cr14;
1614 mchk->mcic |= irq->u.mchk.mcic;
1615 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1616 mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1617 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1618 sizeof(mchk->fixed_logout));
1619 if (mchk->mcic & MCHK_EX_MASK)
1620 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1621 else if (mchk->mcic & MCHK_REP_MASK)
1622 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1623 return 0;
1624 }
1625
__inject_ckc(struct kvm_vcpu * vcpu)1626 static int __inject_ckc(struct kvm_vcpu *vcpu)
1627 {
1628 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1629
1630 vcpu->stat.inject_ckc++;
1631 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1632 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1633 0, 0);
1634
1635 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1636 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1637 return 0;
1638 }
1639
__inject_cpu_timer(struct kvm_vcpu * vcpu)1640 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1641 {
1642 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1643
1644 vcpu->stat.inject_cputm++;
1645 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1646 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1647 0, 0);
1648
1649 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1650 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1651 return 0;
1652 }
1653
get_io_int(struct kvm * kvm,int isc,u32 schid)1654 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1655 int isc, u32 schid)
1656 {
1657 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1658 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1659 struct kvm_s390_interrupt_info *iter;
1660 u16 id = (schid & 0xffff0000U) >> 16;
1661 u16 nr = schid & 0x0000ffffU;
1662
1663 spin_lock(&fi->lock);
1664 list_for_each_entry(iter, isc_list, list) {
1665 if (schid && (id != iter->io.subchannel_id ||
1666 nr != iter->io.subchannel_nr))
1667 continue;
1668 /* found an appropriate entry */
1669 list_del_init(&iter->list);
1670 fi->counters[FIRQ_CNTR_IO] -= 1;
1671 if (list_empty(isc_list))
1672 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1673 spin_unlock(&fi->lock);
1674 return iter;
1675 }
1676 spin_unlock(&fi->lock);
1677 return NULL;
1678 }
1679
get_top_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1680 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1681 u64 isc_mask, u32 schid)
1682 {
1683 struct kvm_s390_interrupt_info *inti = NULL;
1684 int isc;
1685
1686 for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1687 if (isc_mask & isc_to_isc_bits(isc))
1688 inti = get_io_int(kvm, isc, schid);
1689 }
1690 return inti;
1691 }
1692
get_top_gisa_isc(struct kvm * kvm,u64 isc_mask,u32 schid)1693 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1694 {
1695 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1696 unsigned long active_mask;
1697 int isc;
1698
1699 if (schid)
1700 goto out;
1701 if (!gi->origin)
1702 goto out;
1703
1704 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1705 while (active_mask) {
1706 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1707 if (gisa_tac_ipm_gisc(gi->origin, isc))
1708 return isc;
1709 clear_bit_inv(isc, &active_mask);
1710 }
1711 out:
1712 return -EINVAL;
1713 }
1714
1715 /*
1716 * Dequeue and return an I/O interrupt matching any of the interruption
1717 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1718 * Take into account the interrupts pending in the interrupt list and in GISA.
1719 *
1720 * Note that for a guest that does not enable I/O interrupts
1721 * but relies on TPI, a flood of classic interrupts may starve
1722 * out adapter interrupts on the same isc. Linux does not do
1723 * that, and it is possible to work around the issue by configuring
1724 * different iscs for classic and adapter interrupts in the guest,
1725 * but we may want to revisit this in the future.
1726 */
kvm_s390_get_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1727 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1728 u64 isc_mask, u32 schid)
1729 {
1730 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1731 struct kvm_s390_interrupt_info *inti, *tmp_inti;
1732 int isc;
1733
1734 inti = get_top_io_int(kvm, isc_mask, schid);
1735
1736 isc = get_top_gisa_isc(kvm, isc_mask, schid);
1737 if (isc < 0)
1738 /* no AI in GISA */
1739 goto out;
1740
1741 if (!inti)
1742 /* AI in GISA but no classical IO int */
1743 goto gisa_out;
1744
1745 /* both types of interrupts present */
1746 if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1747 /* classical IO int with higher priority */
1748 gisa_set_ipm_gisc(gi->origin, isc);
1749 goto out;
1750 }
1751 gisa_out:
1752 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1753 if (tmp_inti) {
1754 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1755 tmp_inti->io.io_int_word = isc_to_int_word(isc);
1756 if (inti)
1757 kvm_s390_reinject_io_int(kvm, inti);
1758 inti = tmp_inti;
1759 } else
1760 gisa_set_ipm_gisc(gi->origin, isc);
1761 out:
1762 return inti;
1763 }
1764
__inject_service(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1765 static int __inject_service(struct kvm *kvm,
1766 struct kvm_s390_interrupt_info *inti)
1767 {
1768 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1769
1770 kvm->stat.inject_service_signal++;
1771 spin_lock(&fi->lock);
1772 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1773
1774 /* We always allow events, track them separately from the sccb ints */
1775 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1776 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1777
1778 /*
1779 * Early versions of the QEMU s390 bios will inject several
1780 * service interrupts after another without handling a
1781 * condition code indicating busy.
1782 * We will silently ignore those superfluous sccb values.
1783 * A future version of QEMU will take care of serialization
1784 * of servc requests
1785 */
1786 if (fi->srv_signal.ext_params & SCCB_MASK)
1787 goto out;
1788 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1789 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1790 out:
1791 spin_unlock(&fi->lock);
1792 kfree(inti);
1793 return 0;
1794 }
1795
__inject_virtio(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1796 static int __inject_virtio(struct kvm *kvm,
1797 struct kvm_s390_interrupt_info *inti)
1798 {
1799 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1800
1801 kvm->stat.inject_virtio++;
1802 spin_lock(&fi->lock);
1803 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1804 spin_unlock(&fi->lock);
1805 return -EBUSY;
1806 }
1807 fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1808 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1809 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1810 spin_unlock(&fi->lock);
1811 return 0;
1812 }
1813
__inject_pfault_done(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1814 static int __inject_pfault_done(struct kvm *kvm,
1815 struct kvm_s390_interrupt_info *inti)
1816 {
1817 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1818
1819 kvm->stat.inject_pfault_done++;
1820 spin_lock(&fi->lock);
1821 if (fi->counters[FIRQ_CNTR_PFAULT] >=
1822 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1823 spin_unlock(&fi->lock);
1824 return -EBUSY;
1825 }
1826 fi->counters[FIRQ_CNTR_PFAULT] += 1;
1827 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1828 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1829 spin_unlock(&fi->lock);
1830 return 0;
1831 }
1832
1833 #define CR_PENDING_SUBCLASS 28
__inject_float_mchk(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1834 static int __inject_float_mchk(struct kvm *kvm,
1835 struct kvm_s390_interrupt_info *inti)
1836 {
1837 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1838
1839 kvm->stat.inject_float_mchk++;
1840 spin_lock(&fi->lock);
1841 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1842 fi->mchk.mcic |= inti->mchk.mcic;
1843 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1844 spin_unlock(&fi->lock);
1845 kfree(inti);
1846 return 0;
1847 }
1848
__inject_io(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1849 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1850 {
1851 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1852 struct kvm_s390_float_interrupt *fi;
1853 struct list_head *list;
1854 int isc;
1855
1856 kvm->stat.inject_io++;
1857 isc = int_word_to_isc(inti->io.io_int_word);
1858
1859 /*
1860 * We do not use the lock checking variant as this is just a
1861 * performance optimization and we do not hold the lock here.
1862 * This is ok as the code will pick interrupts from both "lists"
1863 * for delivery.
1864 */
1865 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1866 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1867 gisa_set_ipm_gisc(gi->origin, isc);
1868 kfree(inti);
1869 return 0;
1870 }
1871
1872 fi = &kvm->arch.float_int;
1873 spin_lock(&fi->lock);
1874 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1875 spin_unlock(&fi->lock);
1876 return -EBUSY;
1877 }
1878 fi->counters[FIRQ_CNTR_IO] += 1;
1879
1880 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1881 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1882 else
1883 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1884 inti->io.subchannel_id >> 8,
1885 inti->io.subchannel_id >> 1 & 0x3,
1886 inti->io.subchannel_nr);
1887 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1888 list_add_tail(&inti->list, list);
1889 set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1890 spin_unlock(&fi->lock);
1891 return 0;
1892 }
1893
1894 /*
1895 * Find a destination VCPU for a floating irq and kick it.
1896 */
__floating_irq_kick(struct kvm * kvm,u64 type)1897 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1898 {
1899 struct kvm_vcpu *dst_vcpu;
1900 int sigcpu, online_vcpus, nr_tries = 0;
1901
1902 online_vcpus = atomic_read(&kvm->online_vcpus);
1903 if (!online_vcpus)
1904 return;
1905
1906 for (sigcpu = kvm->arch.float_int.last_sleep_cpu; ; sigcpu++) {
1907 sigcpu %= online_vcpus;
1908 dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1909 if (!is_vcpu_stopped(dst_vcpu))
1910 break;
1911 /* avoid endless loops if all vcpus are stopped */
1912 if (nr_tries++ >= online_vcpus)
1913 return;
1914 }
1915
1916 /* make the VCPU drop out of the SIE, or wake it up if sleeping */
1917 switch (type) {
1918 case KVM_S390_MCHK:
1919 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1920 break;
1921 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1922 if (!(type & KVM_S390_INT_IO_AI_MASK &&
1923 kvm->arch.gisa_int.origin) ||
1924 kvm_s390_pv_cpu_get_handle(dst_vcpu))
1925 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1926 break;
1927 default:
1928 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1929 break;
1930 }
1931 kvm_s390_vcpu_wakeup(dst_vcpu);
1932 }
1933
__inject_vm(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1934 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1935 {
1936 u64 type = READ_ONCE(inti->type);
1937 int rc;
1938
1939 switch (type) {
1940 case KVM_S390_MCHK:
1941 rc = __inject_float_mchk(kvm, inti);
1942 break;
1943 case KVM_S390_INT_VIRTIO:
1944 rc = __inject_virtio(kvm, inti);
1945 break;
1946 case KVM_S390_INT_SERVICE:
1947 rc = __inject_service(kvm, inti);
1948 break;
1949 case KVM_S390_INT_PFAULT_DONE:
1950 rc = __inject_pfault_done(kvm, inti);
1951 break;
1952 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1953 rc = __inject_io(kvm, inti);
1954 break;
1955 default:
1956 rc = -EINVAL;
1957 }
1958 if (rc)
1959 return rc;
1960
1961 __floating_irq_kick(kvm, type);
1962 return 0;
1963 }
1964
kvm_s390_inject_vm(struct kvm * kvm,struct kvm_s390_interrupt * s390int)1965 int kvm_s390_inject_vm(struct kvm *kvm,
1966 struct kvm_s390_interrupt *s390int)
1967 {
1968 struct kvm_s390_interrupt_info *inti;
1969 int rc;
1970
1971 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1972 if (!inti)
1973 return -ENOMEM;
1974
1975 inti->type = s390int->type;
1976 switch (inti->type) {
1977 case KVM_S390_INT_VIRTIO:
1978 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1979 s390int->parm, s390int->parm64);
1980 inti->ext.ext_params = s390int->parm;
1981 inti->ext.ext_params2 = s390int->parm64;
1982 break;
1983 case KVM_S390_INT_SERVICE:
1984 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1985 inti->ext.ext_params = s390int->parm;
1986 break;
1987 case KVM_S390_INT_PFAULT_DONE:
1988 inti->ext.ext_params2 = s390int->parm64;
1989 break;
1990 case KVM_S390_MCHK:
1991 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1992 s390int->parm64);
1993 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
1994 inti->mchk.mcic = s390int->parm64;
1995 break;
1996 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1997 inti->io.subchannel_id = s390int->parm >> 16;
1998 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
1999 inti->io.io_int_parm = s390int->parm64 >> 32;
2000 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2001 break;
2002 default:
2003 kfree(inti);
2004 return -EINVAL;
2005 }
2006 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2007 2);
2008
2009 rc = __inject_vm(kvm, inti);
2010 if (rc)
2011 kfree(inti);
2012 return rc;
2013 }
2014
kvm_s390_reinject_io_int(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)2015 int kvm_s390_reinject_io_int(struct kvm *kvm,
2016 struct kvm_s390_interrupt_info *inti)
2017 {
2018 return __inject_vm(kvm, inti);
2019 }
2020
s390int_to_s390irq(struct kvm_s390_interrupt * s390int,struct kvm_s390_irq * irq)2021 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2022 struct kvm_s390_irq *irq)
2023 {
2024 irq->type = s390int->type;
2025 switch (irq->type) {
2026 case KVM_S390_PROGRAM_INT:
2027 if (s390int->parm & 0xffff0000)
2028 return -EINVAL;
2029 irq->u.pgm.code = s390int->parm;
2030 break;
2031 case KVM_S390_SIGP_SET_PREFIX:
2032 irq->u.prefix.address = s390int->parm;
2033 break;
2034 case KVM_S390_SIGP_STOP:
2035 irq->u.stop.flags = s390int->parm;
2036 break;
2037 case KVM_S390_INT_EXTERNAL_CALL:
2038 if (s390int->parm & 0xffff0000)
2039 return -EINVAL;
2040 irq->u.extcall.code = s390int->parm;
2041 break;
2042 case KVM_S390_INT_EMERGENCY:
2043 if (s390int->parm & 0xffff0000)
2044 return -EINVAL;
2045 irq->u.emerg.code = s390int->parm;
2046 break;
2047 case KVM_S390_MCHK:
2048 irq->u.mchk.mcic = s390int->parm64;
2049 break;
2050 case KVM_S390_INT_PFAULT_INIT:
2051 irq->u.ext.ext_params = s390int->parm;
2052 irq->u.ext.ext_params2 = s390int->parm64;
2053 break;
2054 case KVM_S390_RESTART:
2055 case KVM_S390_INT_CLOCK_COMP:
2056 case KVM_S390_INT_CPU_TIMER:
2057 break;
2058 default:
2059 return -EINVAL;
2060 }
2061 return 0;
2062 }
2063
kvm_s390_is_stop_irq_pending(struct kvm_vcpu * vcpu)2064 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2065 {
2066 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2067
2068 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2069 }
2070
kvm_s390_is_restart_irq_pending(struct kvm_vcpu * vcpu)2071 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2072 {
2073 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2074
2075 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2076 }
2077
kvm_s390_clear_stop_irq(struct kvm_vcpu * vcpu)2078 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2079 {
2080 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2081
2082 spin_lock(&li->lock);
2083 li->irq.stop.flags = 0;
2084 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2085 spin_unlock(&li->lock);
2086 }
2087
do_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2088 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2089 {
2090 int rc;
2091
2092 switch (irq->type) {
2093 case KVM_S390_PROGRAM_INT:
2094 rc = __inject_prog(vcpu, irq);
2095 break;
2096 case KVM_S390_SIGP_SET_PREFIX:
2097 rc = __inject_set_prefix(vcpu, irq);
2098 break;
2099 case KVM_S390_SIGP_STOP:
2100 rc = __inject_sigp_stop(vcpu, irq);
2101 break;
2102 case KVM_S390_RESTART:
2103 rc = __inject_sigp_restart(vcpu);
2104 break;
2105 case KVM_S390_INT_CLOCK_COMP:
2106 rc = __inject_ckc(vcpu);
2107 break;
2108 case KVM_S390_INT_CPU_TIMER:
2109 rc = __inject_cpu_timer(vcpu);
2110 break;
2111 case KVM_S390_INT_EXTERNAL_CALL:
2112 rc = __inject_extcall(vcpu, irq);
2113 break;
2114 case KVM_S390_INT_EMERGENCY:
2115 rc = __inject_sigp_emergency(vcpu, irq);
2116 break;
2117 case KVM_S390_MCHK:
2118 rc = __inject_mchk(vcpu, irq);
2119 break;
2120 case KVM_S390_INT_PFAULT_INIT:
2121 rc = __inject_pfault_init(vcpu, irq);
2122 break;
2123 case KVM_S390_INT_VIRTIO:
2124 case KVM_S390_INT_SERVICE:
2125 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2126 default:
2127 rc = -EINVAL;
2128 }
2129
2130 return rc;
2131 }
2132
kvm_s390_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2133 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2134 {
2135 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2136 int rc;
2137
2138 spin_lock(&li->lock);
2139 rc = do_inject_vcpu(vcpu, irq);
2140 spin_unlock(&li->lock);
2141 if (!rc)
2142 kvm_s390_vcpu_wakeup(vcpu);
2143 return rc;
2144 }
2145
clear_irq_list(struct list_head * _list)2146 static inline void clear_irq_list(struct list_head *_list)
2147 {
2148 struct kvm_s390_interrupt_info *inti, *n;
2149
2150 list_for_each_entry_safe(inti, n, _list, list) {
2151 list_del(&inti->list);
2152 kfree(inti);
2153 }
2154 }
2155
inti_to_irq(struct kvm_s390_interrupt_info * inti,struct kvm_s390_irq * irq)2156 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2157 struct kvm_s390_irq *irq)
2158 {
2159 irq->type = inti->type;
2160 switch (inti->type) {
2161 case KVM_S390_INT_PFAULT_INIT:
2162 case KVM_S390_INT_PFAULT_DONE:
2163 case KVM_S390_INT_VIRTIO:
2164 irq->u.ext = inti->ext;
2165 break;
2166 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2167 irq->u.io = inti->io;
2168 break;
2169 }
2170 }
2171
kvm_s390_clear_float_irqs(struct kvm * kvm)2172 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2173 {
2174 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2175 int i;
2176
2177 mutex_lock(&kvm->lock);
2178 if (!kvm_s390_pv_is_protected(kvm))
2179 fi->masked_irqs = 0;
2180 mutex_unlock(&kvm->lock);
2181 spin_lock(&fi->lock);
2182 fi->pending_irqs = 0;
2183 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2184 memset(&fi->mchk, 0, sizeof(fi->mchk));
2185 for (i = 0; i < FIRQ_LIST_COUNT; i++)
2186 clear_irq_list(&fi->lists[i]);
2187 for (i = 0; i < FIRQ_MAX_COUNT; i++)
2188 fi->counters[i] = 0;
2189 spin_unlock(&fi->lock);
2190 kvm_s390_gisa_clear(kvm);
2191 };
2192
get_all_floating_irqs(struct kvm * kvm,u8 __user * usrbuf,u64 len)2193 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2194 {
2195 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2196 struct kvm_s390_interrupt_info *inti;
2197 struct kvm_s390_float_interrupt *fi;
2198 struct kvm_s390_irq *buf;
2199 struct kvm_s390_irq *irq;
2200 int max_irqs;
2201 int ret = 0;
2202 int n = 0;
2203 int i;
2204
2205 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2206 return -EINVAL;
2207
2208 /*
2209 * We are already using -ENOMEM to signal
2210 * userspace it may retry with a bigger buffer,
2211 * so we need to use something else for this case
2212 */
2213 buf = vzalloc(len);
2214 if (!buf)
2215 return -ENOBUFS;
2216
2217 max_irqs = len / sizeof(struct kvm_s390_irq);
2218
2219 if (gi->origin && gisa_get_ipm(gi->origin)) {
2220 for (i = 0; i <= MAX_ISC; i++) {
2221 if (n == max_irqs) {
2222 /* signal userspace to try again */
2223 ret = -ENOMEM;
2224 goto out_nolock;
2225 }
2226 if (gisa_tac_ipm_gisc(gi->origin, i)) {
2227 irq = (struct kvm_s390_irq *) &buf[n];
2228 irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2229 irq->u.io.io_int_word = isc_to_int_word(i);
2230 n++;
2231 }
2232 }
2233 }
2234 fi = &kvm->arch.float_int;
2235 spin_lock(&fi->lock);
2236 for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2237 list_for_each_entry(inti, &fi->lists[i], list) {
2238 if (n == max_irqs) {
2239 /* signal userspace to try again */
2240 ret = -ENOMEM;
2241 goto out;
2242 }
2243 inti_to_irq(inti, &buf[n]);
2244 n++;
2245 }
2246 }
2247 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2248 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2249 if (n == max_irqs) {
2250 /* signal userspace to try again */
2251 ret = -ENOMEM;
2252 goto out;
2253 }
2254 irq = (struct kvm_s390_irq *) &buf[n];
2255 irq->type = KVM_S390_INT_SERVICE;
2256 irq->u.ext = fi->srv_signal;
2257 n++;
2258 }
2259 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2260 if (n == max_irqs) {
2261 /* signal userspace to try again */
2262 ret = -ENOMEM;
2263 goto out;
2264 }
2265 irq = (struct kvm_s390_irq *) &buf[n];
2266 irq->type = KVM_S390_MCHK;
2267 irq->u.mchk = fi->mchk;
2268 n++;
2269 }
2270
2271 out:
2272 spin_unlock(&fi->lock);
2273 out_nolock:
2274 if (!ret && n > 0) {
2275 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2276 ret = -EFAULT;
2277 }
2278 vfree(buf);
2279
2280 return ret < 0 ? ret : n;
2281 }
2282
flic_ais_mode_get_all(struct kvm * kvm,struct kvm_device_attr * attr)2283 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2284 {
2285 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2286 struct kvm_s390_ais_all ais;
2287
2288 if (attr->attr < sizeof(ais))
2289 return -EINVAL;
2290
2291 if (!test_kvm_facility(kvm, 72))
2292 return -EOPNOTSUPP;
2293
2294 mutex_lock(&fi->ais_lock);
2295 ais.simm = fi->simm;
2296 ais.nimm = fi->nimm;
2297 mutex_unlock(&fi->ais_lock);
2298
2299 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2300 return -EFAULT;
2301
2302 return 0;
2303 }
2304
flic_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2305 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2306 {
2307 int r;
2308
2309 switch (attr->group) {
2310 case KVM_DEV_FLIC_GET_ALL_IRQS:
2311 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2312 attr->attr);
2313 break;
2314 case KVM_DEV_FLIC_AISM_ALL:
2315 r = flic_ais_mode_get_all(dev->kvm, attr);
2316 break;
2317 default:
2318 r = -EINVAL;
2319 }
2320
2321 return r;
2322 }
2323
copy_irq_from_user(struct kvm_s390_interrupt_info * inti,u64 addr)2324 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2325 u64 addr)
2326 {
2327 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2328 void *target = NULL;
2329 void __user *source;
2330 u64 size;
2331
2332 if (get_user(inti->type, (u64 __user *)addr))
2333 return -EFAULT;
2334
2335 switch (inti->type) {
2336 case KVM_S390_INT_PFAULT_INIT:
2337 case KVM_S390_INT_PFAULT_DONE:
2338 case KVM_S390_INT_VIRTIO:
2339 case KVM_S390_INT_SERVICE:
2340 target = (void *) &inti->ext;
2341 source = &uptr->u.ext;
2342 size = sizeof(inti->ext);
2343 break;
2344 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2345 target = (void *) &inti->io;
2346 source = &uptr->u.io;
2347 size = sizeof(inti->io);
2348 break;
2349 case KVM_S390_MCHK:
2350 target = (void *) &inti->mchk;
2351 source = &uptr->u.mchk;
2352 size = sizeof(inti->mchk);
2353 break;
2354 default:
2355 return -EINVAL;
2356 }
2357
2358 if (copy_from_user(target, source, size))
2359 return -EFAULT;
2360
2361 return 0;
2362 }
2363
enqueue_floating_irq(struct kvm_device * dev,struct kvm_device_attr * attr)2364 static int enqueue_floating_irq(struct kvm_device *dev,
2365 struct kvm_device_attr *attr)
2366 {
2367 struct kvm_s390_interrupt_info *inti = NULL;
2368 int r = 0;
2369 int len = attr->attr;
2370
2371 if (len % sizeof(struct kvm_s390_irq) != 0)
2372 return -EINVAL;
2373 else if (len > KVM_S390_FLIC_MAX_BUFFER)
2374 return -EINVAL;
2375
2376 while (len >= sizeof(struct kvm_s390_irq)) {
2377 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2378 if (!inti)
2379 return -ENOMEM;
2380
2381 r = copy_irq_from_user(inti, attr->addr);
2382 if (r) {
2383 kfree(inti);
2384 return r;
2385 }
2386 r = __inject_vm(dev->kvm, inti);
2387 if (r) {
2388 kfree(inti);
2389 return r;
2390 }
2391 len -= sizeof(struct kvm_s390_irq);
2392 attr->addr += sizeof(struct kvm_s390_irq);
2393 }
2394
2395 return r;
2396 }
2397
get_io_adapter(struct kvm * kvm,unsigned int id)2398 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2399 {
2400 if (id >= MAX_S390_IO_ADAPTERS)
2401 return NULL;
2402 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2403 return kvm->arch.adapters[id];
2404 }
2405
register_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2406 static int register_io_adapter(struct kvm_device *dev,
2407 struct kvm_device_attr *attr)
2408 {
2409 struct s390_io_adapter *adapter;
2410 struct kvm_s390_io_adapter adapter_info;
2411
2412 if (copy_from_user(&adapter_info,
2413 (void __user *)attr->addr, sizeof(adapter_info)))
2414 return -EFAULT;
2415
2416 if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2417 return -EINVAL;
2418
2419 adapter_info.id = array_index_nospec(adapter_info.id,
2420 MAX_S390_IO_ADAPTERS);
2421
2422 if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2423 return -EINVAL;
2424
2425 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2426 if (!adapter)
2427 return -ENOMEM;
2428
2429 adapter->id = adapter_info.id;
2430 adapter->isc = adapter_info.isc;
2431 adapter->maskable = adapter_info.maskable;
2432 adapter->masked = false;
2433 adapter->swap = adapter_info.swap;
2434 adapter->suppressible = (adapter_info.flags) &
2435 KVM_S390_ADAPTER_SUPPRESSIBLE;
2436 dev->kvm->arch.adapters[adapter->id] = adapter;
2437
2438 return 0;
2439 }
2440
kvm_s390_mask_adapter(struct kvm * kvm,unsigned int id,bool masked)2441 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2442 {
2443 int ret;
2444 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2445
2446 if (!adapter || !adapter->maskable)
2447 return -EINVAL;
2448 ret = adapter->masked;
2449 adapter->masked = masked;
2450 return ret;
2451 }
2452
kvm_s390_destroy_adapters(struct kvm * kvm)2453 void kvm_s390_destroy_adapters(struct kvm *kvm)
2454 {
2455 int i;
2456
2457 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2458 kfree(kvm->arch.adapters[i]);
2459 }
2460
modify_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2461 static int modify_io_adapter(struct kvm_device *dev,
2462 struct kvm_device_attr *attr)
2463 {
2464 struct kvm_s390_io_adapter_req req;
2465 struct s390_io_adapter *adapter;
2466 int ret;
2467
2468 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2469 return -EFAULT;
2470
2471 adapter = get_io_adapter(dev->kvm, req.id);
2472 if (!adapter)
2473 return -EINVAL;
2474 switch (req.type) {
2475 case KVM_S390_IO_ADAPTER_MASK:
2476 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2477 if (ret > 0)
2478 ret = 0;
2479 break;
2480 /*
2481 * The following operations are no longer needed and therefore no-ops.
2482 * The gpa to hva translation is done when an IRQ route is set up. The
2483 * set_irq code uses get_user_pages_remote() to do the actual write.
2484 */
2485 case KVM_S390_IO_ADAPTER_MAP:
2486 case KVM_S390_IO_ADAPTER_UNMAP:
2487 ret = 0;
2488 break;
2489 default:
2490 ret = -EINVAL;
2491 }
2492
2493 return ret;
2494 }
2495
clear_io_irq(struct kvm * kvm,struct kvm_device_attr * attr)2496 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2497
2498 {
2499 const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2500 u32 schid;
2501
2502 if (attr->flags)
2503 return -EINVAL;
2504 if (attr->attr != sizeof(schid))
2505 return -EINVAL;
2506 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2507 return -EFAULT;
2508 if (!schid)
2509 return -EINVAL;
2510 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2511 /*
2512 * If userspace is conforming to the architecture, we can have at most
2513 * one pending I/O interrupt per subchannel, so this is effectively a
2514 * clear all.
2515 */
2516 return 0;
2517 }
2518
modify_ais_mode(struct kvm * kvm,struct kvm_device_attr * attr)2519 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2520 {
2521 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2522 struct kvm_s390_ais_req req;
2523 int ret = 0;
2524
2525 if (!test_kvm_facility(kvm, 72))
2526 return -EOPNOTSUPP;
2527
2528 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2529 return -EFAULT;
2530
2531 if (req.isc > MAX_ISC)
2532 return -EINVAL;
2533
2534 trace_kvm_s390_modify_ais_mode(req.isc,
2535 (fi->simm & AIS_MODE_MASK(req.isc)) ?
2536 (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2537 2 : KVM_S390_AIS_MODE_SINGLE :
2538 KVM_S390_AIS_MODE_ALL, req.mode);
2539
2540 mutex_lock(&fi->ais_lock);
2541 switch (req.mode) {
2542 case KVM_S390_AIS_MODE_ALL:
2543 fi->simm &= ~AIS_MODE_MASK(req.isc);
2544 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2545 break;
2546 case KVM_S390_AIS_MODE_SINGLE:
2547 fi->simm |= AIS_MODE_MASK(req.isc);
2548 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2549 break;
2550 default:
2551 ret = -EINVAL;
2552 }
2553 mutex_unlock(&fi->ais_lock);
2554
2555 return ret;
2556 }
2557
kvm_s390_inject_airq(struct kvm * kvm,struct s390_io_adapter * adapter)2558 static int kvm_s390_inject_airq(struct kvm *kvm,
2559 struct s390_io_adapter *adapter)
2560 {
2561 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2562 struct kvm_s390_interrupt s390int = {
2563 .type = KVM_S390_INT_IO(1, 0, 0, 0),
2564 .parm = 0,
2565 .parm64 = isc_to_int_word(adapter->isc),
2566 };
2567 int ret = 0;
2568
2569 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2570 return kvm_s390_inject_vm(kvm, &s390int);
2571
2572 mutex_lock(&fi->ais_lock);
2573 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2574 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2575 goto out;
2576 }
2577
2578 ret = kvm_s390_inject_vm(kvm, &s390int);
2579 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2580 fi->nimm |= AIS_MODE_MASK(adapter->isc);
2581 trace_kvm_s390_modify_ais_mode(adapter->isc,
2582 KVM_S390_AIS_MODE_SINGLE, 2);
2583 }
2584 out:
2585 mutex_unlock(&fi->ais_lock);
2586 return ret;
2587 }
2588
flic_inject_airq(struct kvm * kvm,struct kvm_device_attr * attr)2589 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2590 {
2591 unsigned int id = attr->attr;
2592 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2593
2594 if (!adapter)
2595 return -EINVAL;
2596
2597 return kvm_s390_inject_airq(kvm, adapter);
2598 }
2599
flic_ais_mode_set_all(struct kvm * kvm,struct kvm_device_attr * attr)2600 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2601 {
2602 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2603 struct kvm_s390_ais_all ais;
2604
2605 if (!test_kvm_facility(kvm, 72))
2606 return -EOPNOTSUPP;
2607
2608 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2609 return -EFAULT;
2610
2611 mutex_lock(&fi->ais_lock);
2612 fi->simm = ais.simm;
2613 fi->nimm = ais.nimm;
2614 mutex_unlock(&fi->ais_lock);
2615
2616 return 0;
2617 }
2618
flic_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2619 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2620 {
2621 int r = 0;
2622 unsigned long i;
2623 struct kvm_vcpu *vcpu;
2624
2625 switch (attr->group) {
2626 case KVM_DEV_FLIC_ENQUEUE:
2627 r = enqueue_floating_irq(dev, attr);
2628 break;
2629 case KVM_DEV_FLIC_CLEAR_IRQS:
2630 kvm_s390_clear_float_irqs(dev->kvm);
2631 break;
2632 case KVM_DEV_FLIC_APF_ENABLE:
2633 if (kvm_is_ucontrol(dev->kvm))
2634 return -EINVAL;
2635 dev->kvm->arch.gmap->pfault_enabled = 1;
2636 break;
2637 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2638 if (kvm_is_ucontrol(dev->kvm))
2639 return -EINVAL;
2640 dev->kvm->arch.gmap->pfault_enabled = 0;
2641 /*
2642 * Make sure no async faults are in transition when
2643 * clearing the queues. So we don't need to worry
2644 * about late coming workers.
2645 */
2646 synchronize_srcu(&dev->kvm->srcu);
2647 kvm_for_each_vcpu(i, vcpu, dev->kvm)
2648 kvm_clear_async_pf_completion_queue(vcpu);
2649 break;
2650 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2651 r = register_io_adapter(dev, attr);
2652 break;
2653 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2654 r = modify_io_adapter(dev, attr);
2655 break;
2656 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2657 r = clear_io_irq(dev->kvm, attr);
2658 break;
2659 case KVM_DEV_FLIC_AISM:
2660 r = modify_ais_mode(dev->kvm, attr);
2661 break;
2662 case KVM_DEV_FLIC_AIRQ_INJECT:
2663 r = flic_inject_airq(dev->kvm, attr);
2664 break;
2665 case KVM_DEV_FLIC_AISM_ALL:
2666 r = flic_ais_mode_set_all(dev->kvm, attr);
2667 break;
2668 default:
2669 r = -EINVAL;
2670 }
2671
2672 return r;
2673 }
2674
flic_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2675 static int flic_has_attr(struct kvm_device *dev,
2676 struct kvm_device_attr *attr)
2677 {
2678 switch (attr->group) {
2679 case KVM_DEV_FLIC_GET_ALL_IRQS:
2680 case KVM_DEV_FLIC_ENQUEUE:
2681 case KVM_DEV_FLIC_CLEAR_IRQS:
2682 case KVM_DEV_FLIC_APF_ENABLE:
2683 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2684 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2685 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2686 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2687 case KVM_DEV_FLIC_AISM:
2688 case KVM_DEV_FLIC_AIRQ_INJECT:
2689 case KVM_DEV_FLIC_AISM_ALL:
2690 return 0;
2691 }
2692 return -ENXIO;
2693 }
2694
flic_create(struct kvm_device * dev,u32 type)2695 static int flic_create(struct kvm_device *dev, u32 type)
2696 {
2697 if (!dev)
2698 return -EINVAL;
2699 if (dev->kvm->arch.flic)
2700 return -EINVAL;
2701 dev->kvm->arch.flic = dev;
2702 return 0;
2703 }
2704
flic_destroy(struct kvm_device * dev)2705 static void flic_destroy(struct kvm_device *dev)
2706 {
2707 dev->kvm->arch.flic = NULL;
2708 kfree(dev);
2709 }
2710
2711 /* s390 floating irq controller (flic) */
2712 struct kvm_device_ops kvm_flic_ops = {
2713 .name = "kvm-flic",
2714 .get_attr = flic_get_attr,
2715 .set_attr = flic_set_attr,
2716 .has_attr = flic_has_attr,
2717 .create = flic_create,
2718 .destroy = flic_destroy,
2719 };
2720
get_ind_bit(__u64 addr,unsigned long bit_nr,bool swap)2721 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2722 {
2723 unsigned long bit;
2724
2725 bit = bit_nr + (addr % PAGE_SIZE) * 8;
2726
2727 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2728 }
2729
get_map_page(struct kvm * kvm,u64 uaddr)2730 static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2731 {
2732 struct mm_struct *mm = kvm->mm;
2733 struct page *page = NULL;
2734 int locked = 1;
2735
2736 if (mmget_not_zero(mm)) {
2737 mmap_read_lock(mm);
2738 get_user_pages_remote(mm, uaddr, 1, FOLL_WRITE,
2739 &page, &locked);
2740 if (locked)
2741 mmap_read_unlock(mm);
2742 mmput(mm);
2743 }
2744
2745 return page;
2746 }
2747
adapter_indicators_set(struct kvm * kvm,struct s390_io_adapter * adapter,struct kvm_s390_adapter_int * adapter_int)2748 static int adapter_indicators_set(struct kvm *kvm,
2749 struct s390_io_adapter *adapter,
2750 struct kvm_s390_adapter_int *adapter_int)
2751 {
2752 unsigned long bit;
2753 int summary_set, idx;
2754 struct page *ind_page, *summary_page;
2755 void *map;
2756
2757 ind_page = get_map_page(kvm, adapter_int->ind_addr);
2758 if (!ind_page)
2759 return -1;
2760 summary_page = get_map_page(kvm, adapter_int->summary_addr);
2761 if (!summary_page) {
2762 put_page(ind_page);
2763 return -1;
2764 }
2765
2766 idx = srcu_read_lock(&kvm->srcu);
2767 map = page_address(ind_page);
2768 bit = get_ind_bit(adapter_int->ind_addr,
2769 adapter_int->ind_offset, adapter->swap);
2770 set_bit(bit, map);
2771 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2772 set_page_dirty_lock(ind_page);
2773 map = page_address(summary_page);
2774 bit = get_ind_bit(adapter_int->summary_addr,
2775 adapter_int->summary_offset, adapter->swap);
2776 summary_set = test_and_set_bit(bit, map);
2777 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2778 set_page_dirty_lock(summary_page);
2779 srcu_read_unlock(&kvm->srcu, idx);
2780
2781 put_page(ind_page);
2782 put_page(summary_page);
2783 return summary_set ? 0 : 1;
2784 }
2785
2786 /*
2787 * < 0 - not injected due to error
2788 * = 0 - coalesced, summary indicator already active
2789 * > 0 - injected interrupt
2790 */
set_adapter_int(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2791 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2792 struct kvm *kvm, int irq_source_id, int level,
2793 bool line_status)
2794 {
2795 int ret;
2796 struct s390_io_adapter *adapter;
2797
2798 /* We're only interested in the 0->1 transition. */
2799 if (!level)
2800 return 0;
2801 adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2802 if (!adapter)
2803 return -1;
2804 ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2805 if ((ret > 0) && !adapter->masked) {
2806 ret = kvm_s390_inject_airq(kvm, adapter);
2807 if (ret == 0)
2808 ret = 1;
2809 }
2810 return ret;
2811 }
2812
2813 /*
2814 * Inject the machine check to the guest.
2815 */
kvm_s390_reinject_machine_check(struct kvm_vcpu * vcpu,struct mcck_volatile_info * mcck_info)2816 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2817 struct mcck_volatile_info *mcck_info)
2818 {
2819 struct kvm_s390_interrupt_info inti;
2820 struct kvm_s390_irq irq;
2821 struct kvm_s390_mchk_info *mchk;
2822 union mci mci;
2823 __u64 cr14 = 0; /* upper bits are not used */
2824 int rc;
2825
2826 mci.val = mcck_info->mcic;
2827 if (mci.sr)
2828 cr14 |= CR14_RECOVERY_SUBMASK;
2829 if (mci.dg)
2830 cr14 |= CR14_DEGRADATION_SUBMASK;
2831 if (mci.w)
2832 cr14 |= CR14_WARNING_SUBMASK;
2833
2834 mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2835 mchk->cr14 = cr14;
2836 mchk->mcic = mcck_info->mcic;
2837 mchk->ext_damage_code = mcck_info->ext_damage_code;
2838 mchk->failing_storage_address = mcck_info->failing_storage_address;
2839 if (mci.ck) {
2840 /* Inject the floating machine check */
2841 inti.type = KVM_S390_MCHK;
2842 rc = __inject_vm(vcpu->kvm, &inti);
2843 } else {
2844 /* Inject the machine check to specified vcpu */
2845 irq.type = KVM_S390_MCHK;
2846 rc = kvm_s390_inject_vcpu(vcpu, &irq);
2847 }
2848 WARN_ON_ONCE(rc);
2849 }
2850
kvm_set_routing_entry(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)2851 int kvm_set_routing_entry(struct kvm *kvm,
2852 struct kvm_kernel_irq_routing_entry *e,
2853 const struct kvm_irq_routing_entry *ue)
2854 {
2855 u64 uaddr_s, uaddr_i;
2856 int idx;
2857
2858 switch (ue->type) {
2859 /* we store the userspace addresses instead of the guest addresses */
2860 case KVM_IRQ_ROUTING_S390_ADAPTER:
2861 if (kvm_is_ucontrol(kvm))
2862 return -EINVAL;
2863 e->set = set_adapter_int;
2864
2865 idx = srcu_read_lock(&kvm->srcu);
2866 uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr);
2867 uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr);
2868 srcu_read_unlock(&kvm->srcu, idx);
2869
2870 if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i))
2871 return -EFAULT;
2872 e->adapter.summary_addr = uaddr_s;
2873 e->adapter.ind_addr = uaddr_i;
2874 e->adapter.summary_offset = ue->u.adapter.summary_offset;
2875 e->adapter.ind_offset = ue->u.adapter.ind_offset;
2876 e->adapter.adapter_id = ue->u.adapter.adapter_id;
2877 return 0;
2878 default:
2879 return -EINVAL;
2880 }
2881 }
2882
kvm_set_msi(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2883 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2884 int irq_source_id, int level, bool line_status)
2885 {
2886 return -EINVAL;
2887 }
2888
kvm_s390_set_irq_state(struct kvm_vcpu * vcpu,void __user * irqstate,int len)2889 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2890 {
2891 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2892 struct kvm_s390_irq *buf;
2893 int r = 0;
2894 int n;
2895
2896 buf = vmalloc(len);
2897 if (!buf)
2898 return -ENOMEM;
2899
2900 if (copy_from_user((void *) buf, irqstate, len)) {
2901 r = -EFAULT;
2902 goto out_free;
2903 }
2904
2905 /*
2906 * Don't allow setting the interrupt state
2907 * when there are already interrupts pending
2908 */
2909 spin_lock(&li->lock);
2910 if (li->pending_irqs) {
2911 r = -EBUSY;
2912 goto out_unlock;
2913 }
2914
2915 for (n = 0; n < len / sizeof(*buf); n++) {
2916 r = do_inject_vcpu(vcpu, &buf[n]);
2917 if (r)
2918 break;
2919 }
2920
2921 out_unlock:
2922 spin_unlock(&li->lock);
2923 out_free:
2924 vfree(buf);
2925
2926 return r;
2927 }
2928
store_local_irq(struct kvm_s390_local_interrupt * li,struct kvm_s390_irq * irq,unsigned long irq_type)2929 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2930 struct kvm_s390_irq *irq,
2931 unsigned long irq_type)
2932 {
2933 switch (irq_type) {
2934 case IRQ_PEND_MCHK_EX:
2935 case IRQ_PEND_MCHK_REP:
2936 irq->type = KVM_S390_MCHK;
2937 irq->u.mchk = li->irq.mchk;
2938 break;
2939 case IRQ_PEND_PROG:
2940 irq->type = KVM_S390_PROGRAM_INT;
2941 irq->u.pgm = li->irq.pgm;
2942 break;
2943 case IRQ_PEND_PFAULT_INIT:
2944 irq->type = KVM_S390_INT_PFAULT_INIT;
2945 irq->u.ext = li->irq.ext;
2946 break;
2947 case IRQ_PEND_EXT_EXTERNAL:
2948 irq->type = KVM_S390_INT_EXTERNAL_CALL;
2949 irq->u.extcall = li->irq.extcall;
2950 break;
2951 case IRQ_PEND_EXT_CLOCK_COMP:
2952 irq->type = KVM_S390_INT_CLOCK_COMP;
2953 break;
2954 case IRQ_PEND_EXT_CPU_TIMER:
2955 irq->type = KVM_S390_INT_CPU_TIMER;
2956 break;
2957 case IRQ_PEND_SIGP_STOP:
2958 irq->type = KVM_S390_SIGP_STOP;
2959 irq->u.stop = li->irq.stop;
2960 break;
2961 case IRQ_PEND_RESTART:
2962 irq->type = KVM_S390_RESTART;
2963 break;
2964 case IRQ_PEND_SET_PREFIX:
2965 irq->type = KVM_S390_SIGP_SET_PREFIX;
2966 irq->u.prefix = li->irq.prefix;
2967 break;
2968 }
2969 }
2970
kvm_s390_get_irq_state(struct kvm_vcpu * vcpu,__u8 __user * buf,int len)2971 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
2972 {
2973 int scn;
2974 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
2975 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2976 unsigned long pending_irqs;
2977 struct kvm_s390_irq irq;
2978 unsigned long irq_type;
2979 int cpuaddr;
2980 int n = 0;
2981
2982 spin_lock(&li->lock);
2983 pending_irqs = li->pending_irqs;
2984 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
2985 sizeof(sigp_emerg_pending));
2986 spin_unlock(&li->lock);
2987
2988 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
2989 memset(&irq, 0, sizeof(irq));
2990 if (irq_type == IRQ_PEND_EXT_EMERGENCY)
2991 continue;
2992 if (n + sizeof(irq) > len)
2993 return -ENOBUFS;
2994 store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
2995 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2996 return -EFAULT;
2997 n += sizeof(irq);
2998 }
2999
3000 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3001 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3002 memset(&irq, 0, sizeof(irq));
3003 if (n + sizeof(irq) > len)
3004 return -ENOBUFS;
3005 irq.type = KVM_S390_INT_EMERGENCY;
3006 irq.u.emerg.code = cpuaddr;
3007 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3008 return -EFAULT;
3009 n += sizeof(irq);
3010 }
3011 }
3012
3013 if (sca_ext_call_pending(vcpu, &scn)) {
3014 if (n + sizeof(irq) > len)
3015 return -ENOBUFS;
3016 memset(&irq, 0, sizeof(irq));
3017 irq.type = KVM_S390_INT_EXTERNAL_CALL;
3018 irq.u.extcall.code = scn;
3019 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3020 return -EFAULT;
3021 n += sizeof(irq);
3022 }
3023
3024 return n;
3025 }
3026
__airqs_kick_single_vcpu(struct kvm * kvm,u8 deliverable_mask)3027 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3028 {
3029 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3030 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3031 struct kvm_vcpu *vcpu;
3032 u8 vcpu_isc_mask;
3033
3034 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3035 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3036 if (psw_ioint_disabled(vcpu))
3037 continue;
3038 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3039 if (deliverable_mask & vcpu_isc_mask) {
3040 /* lately kicked but not yet running */
3041 if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3042 return;
3043 kvm_s390_vcpu_wakeup(vcpu);
3044 return;
3045 }
3046 }
3047 }
3048
gisa_vcpu_kicker(struct hrtimer * timer)3049 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3050 {
3051 struct kvm_s390_gisa_interrupt *gi =
3052 container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3053 struct kvm *kvm =
3054 container_of(gi->origin, struct sie_page2, gisa)->kvm;
3055 u8 pending_mask;
3056
3057 pending_mask = gisa_get_ipm_or_restore_iam(gi);
3058 if (pending_mask) {
3059 __airqs_kick_single_vcpu(kvm, pending_mask);
3060 hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3061 return HRTIMER_RESTART;
3062 }
3063
3064 return HRTIMER_NORESTART;
3065 }
3066
3067 #define NULL_GISA_ADDR 0x00000000UL
3068 #define NONE_GISA_ADDR 0x00000001UL
3069 #define GISA_ADDR_MASK 0xfffff000UL
3070
process_gib_alert_list(void)3071 static void process_gib_alert_list(void)
3072 {
3073 struct kvm_s390_gisa_interrupt *gi;
3074 u32 final, gisa_phys, origin = 0UL;
3075 struct kvm_s390_gisa *gisa;
3076 struct kvm *kvm;
3077
3078 do {
3079 /*
3080 * If the NONE_GISA_ADDR is still stored in the alert list
3081 * origin, we will leave the outer loop. No further GISA has
3082 * been added to the alert list by millicode while processing
3083 * the current alert list.
3084 */
3085 final = (origin & NONE_GISA_ADDR);
3086 /*
3087 * Cut off the alert list and store the NONE_GISA_ADDR in the
3088 * alert list origin to avoid further GAL interruptions.
3089 * A new alert list can be build up by millicode in parallel
3090 * for guests not in the yet cut-off alert list. When in the
3091 * final loop, store the NULL_GISA_ADDR instead. This will re-
3092 * enable GAL interruptions on the host again.
3093 */
3094 origin = xchg(&gib->alert_list_origin,
3095 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3096 /*
3097 * Loop through the just cut-off alert list and start the
3098 * gisa timers to kick idle vcpus to consume the pending
3099 * interruptions asap.
3100 */
3101 while (origin & GISA_ADDR_MASK) {
3102 gisa_phys = origin;
3103 gisa = phys_to_virt(gisa_phys);
3104 origin = gisa->next_alert;
3105 gisa->next_alert = gisa_phys;
3106 kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3107 gi = &kvm->arch.gisa_int;
3108 if (hrtimer_active(&gi->timer))
3109 hrtimer_cancel(&gi->timer);
3110 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3111 }
3112 } while (!final);
3113
3114 }
3115
kvm_s390_gisa_clear(struct kvm * kvm)3116 void kvm_s390_gisa_clear(struct kvm *kvm)
3117 {
3118 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3119
3120 if (!gi->origin)
3121 return;
3122 gisa_clear_ipm(gi->origin);
3123 VM_EVENT(kvm, 3, "gisa 0x%p cleared", gi->origin);
3124 }
3125
kvm_s390_gisa_init(struct kvm * kvm)3126 void kvm_s390_gisa_init(struct kvm *kvm)
3127 {
3128 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3129
3130 if (!css_general_characteristics.aiv)
3131 return;
3132 gi->origin = &kvm->arch.sie_page2->gisa;
3133 gi->alert.mask = 0;
3134 spin_lock_init(&gi->alert.ref_lock);
3135 gi->expires = 50 * 1000; /* 50 usec */
3136 hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3137 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3138 gi->origin->next_alert = (u32)virt_to_phys(gi->origin);
3139 VM_EVENT(kvm, 3, "gisa 0x%p initialized", gi->origin);
3140 }
3141
kvm_s390_gisa_enable(struct kvm * kvm)3142 void kvm_s390_gisa_enable(struct kvm *kvm)
3143 {
3144 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3145 struct kvm_vcpu *vcpu;
3146 unsigned long i;
3147 u32 gisa_desc;
3148
3149 if (gi->origin)
3150 return;
3151 kvm_s390_gisa_init(kvm);
3152 gisa_desc = kvm_s390_get_gisa_desc(kvm);
3153 if (!gisa_desc)
3154 return;
3155 kvm_for_each_vcpu(i, vcpu, kvm) {
3156 mutex_lock(&vcpu->mutex);
3157 vcpu->arch.sie_block->gd = gisa_desc;
3158 vcpu->arch.sie_block->eca |= ECA_AIV;
3159 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3160 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3161 mutex_unlock(&vcpu->mutex);
3162 }
3163 }
3164
kvm_s390_gisa_destroy(struct kvm * kvm)3165 void kvm_s390_gisa_destroy(struct kvm *kvm)
3166 {
3167 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3168 struct kvm_s390_gisa *gisa = gi->origin;
3169
3170 if (!gi->origin)
3171 return;
3172 WARN(gi->alert.mask != 0x00,
3173 "unexpected non zero alert.mask 0x%02x",
3174 gi->alert.mask);
3175 gi->alert.mask = 0x00;
3176 if (gisa_set_iam(gi->origin, gi->alert.mask))
3177 process_gib_alert_list();
3178 hrtimer_cancel(&gi->timer);
3179 gi->origin = NULL;
3180 VM_EVENT(kvm, 3, "gisa 0x%p destroyed", gisa);
3181 }
3182
kvm_s390_gisa_disable(struct kvm * kvm)3183 void kvm_s390_gisa_disable(struct kvm *kvm)
3184 {
3185 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3186 struct kvm_vcpu *vcpu;
3187 unsigned long i;
3188
3189 if (!gi->origin)
3190 return;
3191 kvm_for_each_vcpu(i, vcpu, kvm) {
3192 mutex_lock(&vcpu->mutex);
3193 vcpu->arch.sie_block->eca &= ~ECA_AIV;
3194 vcpu->arch.sie_block->gd = 0U;
3195 mutex_unlock(&vcpu->mutex);
3196 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3197 }
3198 kvm_s390_gisa_destroy(kvm);
3199 }
3200
3201 /**
3202 * kvm_s390_gisc_register - register a guest ISC
3203 *
3204 * @kvm: the kernel vm to work with
3205 * @gisc: the guest interruption sub class to register
3206 *
3207 * The function extends the vm specific alert mask to use.
3208 * The effective IAM mask in the GISA is updated as well
3209 * in case the GISA is not part of the GIB alert list.
3210 * It will be updated latest when the IAM gets restored
3211 * by gisa_get_ipm_or_restore_iam().
3212 *
3213 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3214 * has registered with the channel subsystem.
3215 * -ENODEV in case the vm uses no GISA
3216 * -ERANGE in case the guest ISC is invalid
3217 */
kvm_s390_gisc_register(struct kvm * kvm,u32 gisc)3218 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3219 {
3220 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3221
3222 if (!gi->origin)
3223 return -ENODEV;
3224 if (gisc > MAX_ISC)
3225 return -ERANGE;
3226
3227 spin_lock(&gi->alert.ref_lock);
3228 gi->alert.ref_count[gisc]++;
3229 if (gi->alert.ref_count[gisc] == 1) {
3230 gi->alert.mask |= 0x80 >> gisc;
3231 gisa_set_iam(gi->origin, gi->alert.mask);
3232 }
3233 spin_unlock(&gi->alert.ref_lock);
3234
3235 return gib->nisc;
3236 }
3237 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3238
3239 /**
3240 * kvm_s390_gisc_unregister - unregister a guest ISC
3241 *
3242 * @kvm: the kernel vm to work with
3243 * @gisc: the guest interruption sub class to register
3244 *
3245 * The function reduces the vm specific alert mask to use.
3246 * The effective IAM mask in the GISA is updated as well
3247 * in case the GISA is not part of the GIB alert list.
3248 * It will be updated latest when the IAM gets restored
3249 * by gisa_get_ipm_or_restore_iam().
3250 *
3251 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3252 * has registered with the channel subsystem.
3253 * -ENODEV in case the vm uses no GISA
3254 * -ERANGE in case the guest ISC is invalid
3255 * -EINVAL in case the guest ISC is not registered
3256 */
kvm_s390_gisc_unregister(struct kvm * kvm,u32 gisc)3257 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3258 {
3259 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3260 int rc = 0;
3261
3262 if (!gi->origin)
3263 return -ENODEV;
3264 if (gisc > MAX_ISC)
3265 return -ERANGE;
3266
3267 spin_lock(&gi->alert.ref_lock);
3268 if (gi->alert.ref_count[gisc] == 0) {
3269 rc = -EINVAL;
3270 goto out;
3271 }
3272 gi->alert.ref_count[gisc]--;
3273 if (gi->alert.ref_count[gisc] == 0) {
3274 gi->alert.mask &= ~(0x80 >> gisc);
3275 gisa_set_iam(gi->origin, gi->alert.mask);
3276 }
3277 out:
3278 spin_unlock(&gi->alert.ref_lock);
3279
3280 return rc;
3281 }
3282 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3283
aen_host_forward(unsigned long si)3284 static void aen_host_forward(unsigned long si)
3285 {
3286 struct kvm_s390_gisa_interrupt *gi;
3287 struct zpci_gaite *gaite;
3288 struct kvm *kvm;
3289
3290 gaite = (struct zpci_gaite *)aift->gait +
3291 (si * sizeof(struct zpci_gaite));
3292 if (gaite->count == 0)
3293 return;
3294 if (gaite->aisb != 0)
3295 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3296
3297 kvm = kvm_s390_pci_si_to_kvm(aift, si);
3298 if (!kvm)
3299 return;
3300 gi = &kvm->arch.gisa_int;
3301
3302 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3303 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3304 gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3305 if (hrtimer_active(&gi->timer))
3306 hrtimer_cancel(&gi->timer);
3307 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3308 kvm->stat.aen_forward++;
3309 }
3310 }
3311
aen_process_gait(u8 isc)3312 static void aen_process_gait(u8 isc)
3313 {
3314 bool found = false, first = true;
3315 union zpci_sic_iib iib = {{0}};
3316 unsigned long si, flags;
3317
3318 spin_lock_irqsave(&aift->gait_lock, flags);
3319
3320 if (!aift->gait) {
3321 spin_unlock_irqrestore(&aift->gait_lock, flags);
3322 return;
3323 }
3324
3325 for (si = 0;;) {
3326 /* Scan adapter summary indicator bit vector */
3327 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3328 if (si == -1UL) {
3329 if (first || found) {
3330 /* Re-enable interrupts. */
3331 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3332 &iib);
3333 first = found = false;
3334 } else {
3335 /* Interrupts on and all bits processed */
3336 break;
3337 }
3338 found = false;
3339 si = 0;
3340 /* Scan again after re-enabling interrupts */
3341 continue;
3342 }
3343 found = true;
3344 aen_host_forward(si);
3345 }
3346
3347 spin_unlock_irqrestore(&aift->gait_lock, flags);
3348 }
3349
gib_alert_irq_handler(struct airq_struct * airq,struct tpi_info * tpi_info)3350 static void gib_alert_irq_handler(struct airq_struct *airq,
3351 struct tpi_info *tpi_info)
3352 {
3353 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3354
3355 inc_irq_stat(IRQIO_GAL);
3356
3357 if ((info->forward || info->error) &&
3358 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3359 aen_process_gait(info->isc);
3360 if (info->aism != 0)
3361 process_gib_alert_list();
3362 } else {
3363 process_gib_alert_list();
3364 }
3365 }
3366
3367 static struct airq_struct gib_alert_irq = {
3368 .handler = gib_alert_irq_handler,
3369 };
3370
kvm_s390_gib_destroy(void)3371 void kvm_s390_gib_destroy(void)
3372 {
3373 if (!gib)
3374 return;
3375 if (kvm_s390_pci_interp_allowed() && aift) {
3376 mutex_lock(&aift->aift_lock);
3377 kvm_s390_pci_aen_exit();
3378 mutex_unlock(&aift->aift_lock);
3379 }
3380 chsc_sgib(0);
3381 unregister_adapter_interrupt(&gib_alert_irq);
3382 free_page((unsigned long)gib);
3383 gib = NULL;
3384 }
3385
kvm_s390_gib_init(u8 nisc)3386 int __init kvm_s390_gib_init(u8 nisc)
3387 {
3388 u32 gib_origin;
3389 int rc = 0;
3390
3391 if (!css_general_characteristics.aiv) {
3392 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3393 goto out;
3394 }
3395
3396 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3397 if (!gib) {
3398 rc = -ENOMEM;
3399 goto out;
3400 }
3401
3402 gib_alert_irq.isc = nisc;
3403 if (register_adapter_interrupt(&gib_alert_irq)) {
3404 pr_err("Registering the GIB alert interruption handler failed\n");
3405 rc = -EIO;
3406 goto out_free_gib;
3407 }
3408 /* adapter interrupts used for AP (applicable here) don't use the LSI */
3409 *gib_alert_irq.lsi_ptr = 0xff;
3410
3411 gib->nisc = nisc;
3412 gib_origin = virt_to_phys(gib);
3413 if (chsc_sgib(gib_origin)) {
3414 pr_err("Associating the GIB with the AIV facility failed\n");
3415 free_page((unsigned long)gib);
3416 gib = NULL;
3417 rc = -EIO;
3418 goto out_unreg_gal;
3419 }
3420
3421 if (kvm_s390_pci_interp_allowed()) {
3422 if (kvm_s390_pci_aen_init(nisc)) {
3423 pr_err("Initializing AEN for PCI failed\n");
3424 rc = -EIO;
3425 goto out_unreg_gal;
3426 }
3427 }
3428
3429 KVM_EVENT(3, "gib 0x%p (nisc=%d) initialized", gib, gib->nisc);
3430 goto out;
3431
3432 out_unreg_gal:
3433 unregister_adapter_interrupt(&gib_alert_irq);
3434 out_free_gib:
3435 free_page((unsigned long)gib);
3436 gib = NULL;
3437 out:
3438 return rc;
3439 }
3440