xref: /linux/arch/x86/kvm/cpuid.h (revision 43db1111073049220381944af4a3b8a5400eda71)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_CPUID_H
3 #define ARCH_X86_KVM_CPUID_H
4 
5 #include "reverse_cpuid.h"
6 #include <asm/cpu.h>
7 #include <asm/processor.h>
8 #include <uapi/asm/kvm_para.h>
9 
10 extern u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
11 void kvm_set_cpu_caps(void);
12 
13 void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu);
14 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry2(struct kvm_cpuid_entry2 *entries,
15 					       int nent, u32 function, u64 index);
16 /*
17  * Magic value used by KVM when querying userspace-provided CPUID entries and
18  * doesn't care about the CPIUD index because the index of the function in
19  * question is not significant.  Note, this magic value must have at least one
20  * bit set in bits[63:32] and must be consumed as a u64 by kvm_find_cpuid_entry2()
21  * to avoid false positives when processing guest CPUID input.
22  *
23  * KVM_CPUID_INDEX_NOT_SIGNIFICANT should never be used directly outside of
24  * kvm_find_cpuid_entry2() and kvm_find_cpuid_entry().
25  */
26 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
27 
kvm_find_cpuid_entry_index(struct kvm_vcpu * vcpu,u32 function,u32 index)28 static inline struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
29 								  u32 function, u32 index)
30 {
31 	return kvm_find_cpuid_entry2(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
32 				     function, index);
33 }
34 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function)35 static inline struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
36 							    u32 function)
37 {
38 	return kvm_find_cpuid_entry2(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
39 				     function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
40 }
41 
42 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
43 			    struct kvm_cpuid_entry2 __user *entries,
44 			    unsigned int type);
45 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
46 			     struct kvm_cpuid *cpuid,
47 			     struct kvm_cpuid_entry __user *entries);
48 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
49 			      struct kvm_cpuid2 *cpuid,
50 			      struct kvm_cpuid_entry2 __user *entries);
51 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
52 			      struct kvm_cpuid2 *cpuid,
53 			      struct kvm_cpuid_entry2 __user *entries);
54 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
55 	       u32 *ecx, u32 *edx, bool exact_only);
56 
57 void __init kvm_init_xstate_sizes(void);
58 u32 xstate_required_size(u64 xstate_bv, bool compacted);
59 
60 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
61 int cpuid_query_maxguestphyaddr(struct kvm_vcpu *vcpu);
62 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu);
63 
cpuid_maxphyaddr(struct kvm_vcpu * vcpu)64 static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
65 {
66 	return vcpu->arch.maxphyaddr;
67 }
68 
kvm_vcpu_is_legal_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)69 static inline bool kvm_vcpu_is_legal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
70 {
71 	return !(gpa & vcpu->arch.reserved_gpa_bits);
72 }
73 
kvm_vcpu_is_legal_aligned_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t alignment)74 static inline bool kvm_vcpu_is_legal_aligned_gpa(struct kvm_vcpu *vcpu,
75 						 gpa_t gpa, gpa_t alignment)
76 {
77 	return IS_ALIGNED(gpa, alignment) && kvm_vcpu_is_legal_gpa(vcpu, gpa);
78 }
79 
page_address_valid(struct kvm_vcpu * vcpu,gpa_t gpa)80 static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
81 {
82 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, gpa, PAGE_SIZE);
83 }
84 
cpuid_entry_override(struct kvm_cpuid_entry2 * entry,unsigned int leaf)85 static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
86 						 unsigned int leaf)
87 {
88 	u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
89 
90 	BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
91 	*reg = kvm_cpu_caps[leaf];
92 }
93 
guest_cpuid_has(struct kvm_vcpu * vcpu,unsigned int x86_feature)94 static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
95 					    unsigned int x86_feature)
96 {
97 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
98 	struct kvm_cpuid_entry2 *entry;
99 	u32 *reg;
100 
101 	/*
102 	 * XSAVES is a special snowflake.  Due to lack of a dedicated intercept
103 	 * on SVM, KVM must assume that XSAVES (and thus XRSTORS) is usable by
104 	 * the guest if the host supports XSAVES and *XSAVE* is exposed to the
105 	 * guest.  Because the guest can execute XSAVES and XRSTORS, i.e. can
106 	 * indirectly consume XSS, KVM must ensure XSS is zeroed when running
107 	 * the guest, i.e. must set XSAVES in vCPU capabilities.  But to reject
108 	 * direct XSS reads and writes (to minimize the virtualization hole and
109 	 * honor userspace's CPUID), KVM needs to check the raw guest CPUID,
110 	 * not KVM's view of guest capabilities.
111 	 *
112 	 * For all other features, guest capabilities are accurate.  Expand
113 	 * this allowlist with extreme vigilance.
114 	 */
115 	BUILD_BUG_ON(x86_feature != X86_FEATURE_XSAVES);
116 
117 	entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
118 	if (!entry)
119 		return NULL;
120 
121 	reg = __cpuid_entry_get_reg(entry, cpuid.reg);
122 	if (!reg)
123 		return false;
124 
125 	return *reg & __feature_bit(x86_feature);
126 }
127 
guest_cpuid_is_amd_compatible(struct kvm_vcpu * vcpu)128 static inline bool guest_cpuid_is_amd_compatible(struct kvm_vcpu *vcpu)
129 {
130 	return vcpu->arch.is_amd_compatible;
131 }
132 
guest_cpuid_is_intel_compatible(struct kvm_vcpu * vcpu)133 static inline bool guest_cpuid_is_intel_compatible(struct kvm_vcpu *vcpu)
134 {
135 	return !guest_cpuid_is_amd_compatible(vcpu);
136 }
137 
guest_cpuid_family(struct kvm_vcpu * vcpu)138 static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
139 {
140 	struct kvm_cpuid_entry2 *best;
141 
142 	best = kvm_find_cpuid_entry(vcpu, 0x1);
143 	if (!best)
144 		return -1;
145 
146 	return x86_family(best->eax);
147 }
148 
guest_cpuid_model(struct kvm_vcpu * vcpu)149 static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
150 {
151 	struct kvm_cpuid_entry2 *best;
152 
153 	best = kvm_find_cpuid_entry(vcpu, 0x1);
154 	if (!best)
155 		return -1;
156 
157 	return x86_model(best->eax);
158 }
159 
cpuid_model_is_consistent(struct kvm_vcpu * vcpu)160 static inline bool cpuid_model_is_consistent(struct kvm_vcpu *vcpu)
161 {
162 	return boot_cpu_data.x86_model == guest_cpuid_model(vcpu);
163 }
164 
guest_cpuid_stepping(struct kvm_vcpu * vcpu)165 static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
166 {
167 	struct kvm_cpuid_entry2 *best;
168 
169 	best = kvm_find_cpuid_entry(vcpu, 0x1);
170 	if (!best)
171 		return -1;
172 
173 	return x86_stepping(best->eax);
174 }
175 
supports_cpuid_fault(struct kvm_vcpu * vcpu)176 static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
177 {
178 	return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
179 }
180 
cpuid_fault_enabled(struct kvm_vcpu * vcpu)181 static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
182 {
183 	return vcpu->arch.msr_misc_features_enables &
184 		  MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
185 }
186 
kvm_cpu_cap_clear(unsigned int x86_feature)187 static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
188 {
189 	unsigned int x86_leaf = __feature_leaf(x86_feature);
190 
191 	kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
192 }
193 
kvm_cpu_cap_set(unsigned int x86_feature)194 static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
195 {
196 	unsigned int x86_leaf = __feature_leaf(x86_feature);
197 
198 	kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
199 }
200 
kvm_cpu_cap_get(unsigned int x86_feature)201 static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
202 {
203 	unsigned int x86_leaf = __feature_leaf(x86_feature);
204 
205 	return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
206 }
207 
kvm_cpu_cap_has(unsigned int x86_feature)208 static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
209 {
210 	return !!kvm_cpu_cap_get(x86_feature);
211 }
212 
kvm_cpu_cap_check_and_set(unsigned int x86_feature)213 static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
214 {
215 	if (boot_cpu_has(x86_feature))
216 		kvm_cpu_cap_set(x86_feature);
217 }
218 
guest_pv_has(struct kvm_vcpu * vcpu,unsigned int kvm_feature)219 static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu,
220 					 unsigned int kvm_feature)
221 {
222 	if (!vcpu->arch.pv_cpuid.enforce)
223 		return true;
224 
225 	return vcpu->arch.pv_cpuid.features & (1u << kvm_feature);
226 }
227 
guest_cpu_cap_set(struct kvm_vcpu * vcpu,unsigned int x86_feature)228 static __always_inline void guest_cpu_cap_set(struct kvm_vcpu *vcpu,
229 					      unsigned int x86_feature)
230 {
231 	unsigned int x86_leaf = __feature_leaf(x86_feature);
232 
233 	vcpu->arch.cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
234 }
235 
guest_cpu_cap_clear(struct kvm_vcpu * vcpu,unsigned int x86_feature)236 static __always_inline void guest_cpu_cap_clear(struct kvm_vcpu *vcpu,
237 						unsigned int x86_feature)
238 {
239 	unsigned int x86_leaf = __feature_leaf(x86_feature);
240 
241 	vcpu->arch.cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
242 }
243 
guest_cpu_cap_change(struct kvm_vcpu * vcpu,unsigned int x86_feature,bool guest_has_cap)244 static __always_inline void guest_cpu_cap_change(struct kvm_vcpu *vcpu,
245 						 unsigned int x86_feature,
246 						 bool guest_has_cap)
247 {
248 	if (guest_has_cap)
249 		guest_cpu_cap_set(vcpu, x86_feature);
250 	else
251 		guest_cpu_cap_clear(vcpu, x86_feature);
252 }
253 
guest_cpu_cap_has(struct kvm_vcpu * vcpu,unsigned int x86_feature)254 static __always_inline bool guest_cpu_cap_has(struct kvm_vcpu *vcpu,
255 					      unsigned int x86_feature)
256 {
257 	unsigned int x86_leaf = __feature_leaf(x86_feature);
258 
259 	/*
260 	 * Except for MWAIT, querying dynamic feature bits is disallowed, so
261 	 * that KVM can defer runtime updates until the next CPUID emulation.
262 	 */
263 	BUILD_BUG_ON(x86_feature == X86_FEATURE_APIC ||
264 		     x86_feature == X86_FEATURE_OSXSAVE ||
265 		     x86_feature == X86_FEATURE_OSPKE);
266 
267 	return vcpu->arch.cpu_caps[x86_leaf] & __feature_bit(x86_feature);
268 }
269 
kvm_vcpu_is_legal_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)270 static inline bool kvm_vcpu_is_legal_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
271 {
272 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_LAM))
273 		cr3 &= ~(X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
274 
275 	return kvm_vcpu_is_legal_gpa(vcpu, cr3);
276 }
277 
guest_has_spec_ctrl_msr(struct kvm_vcpu * vcpu)278 static inline bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu)
279 {
280 	return (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
281 		guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_STIBP) ||
282 		guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS) ||
283 		guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_SSBD));
284 }
285 
guest_has_pred_cmd_msr(struct kvm_vcpu * vcpu)286 static inline bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu)
287 {
288 	return (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
289 		guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB) ||
290 		guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB));
291 }
292 
293 #endif
294