1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90
91 #define MAX_IO_MSRS 256
92
93 /*
94 * Note, kvm_caps fields should *never* have default values, all fields must be
95 * recomputed from scratch during vendor module load, e.g. to account for a
96 * vendor module being reloaded with different module parameters.
97 */
98 struct kvm_caps kvm_caps __read_mostly;
99 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps);
100
101 struct kvm_host_values kvm_host __read_mostly;
102 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host);
103
104 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
105
106 #define emul_to_vcpu(ctxt) \
107 ((struct kvm_vcpu *)(ctxt)->vcpu)
108
109 /* EFER defaults:
110 * - enable syscall per default because its emulated by KVM
111 * - enable LME and LMA per default on 64 bit KVM
112 */
113 #ifdef CONFIG_X86_64
114 static
115 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
116 #else
117 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
118 #endif
119
120 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
121
122 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
123
124 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
125 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
126
127 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
128 static void process_nmi(struct kvm_vcpu *vcpu);
129 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
130 static void store_regs(struct kvm_vcpu *vcpu);
131 static int sync_regs(struct kvm_vcpu *vcpu);
132 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
133
134 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
135 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136
137 static DEFINE_MUTEX(vendor_module_lock);
138 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
139 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
140
141 struct kvm_x86_ops kvm_x86_ops __read_mostly;
142
143 #define KVM_X86_OP(func) \
144 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
145 *(((struct kvm_x86_ops *)0)->func));
146 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
147 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
148 #include <asm/kvm-x86-ops.h>
149 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
150 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
151
152 static bool __read_mostly ignore_msrs = 0;
153 module_param(ignore_msrs, bool, 0644);
154
155 bool __read_mostly report_ignored_msrs = true;
156 module_param(report_ignored_msrs, bool, 0644);
157 EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
158
159 unsigned int min_timer_period_us = 200;
160 module_param(min_timer_period_us, uint, 0644);
161
162 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
163 static u32 __read_mostly tsc_tolerance_ppm = 250;
164 module_param(tsc_tolerance_ppm, uint, 0644);
165
166 bool __read_mostly enable_vmware_backdoor = false;
167 module_param(enable_vmware_backdoor, bool, 0444);
168 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor);
169
170 /*
171 * Flags to manipulate forced emulation behavior (any non-zero value will
172 * enable forced emulation).
173 */
174 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
175 static int __read_mostly force_emulation_prefix;
176 module_param(force_emulation_prefix, int, 0644);
177
178 int __read_mostly pi_inject_timer = -1;
179 module_param(pi_inject_timer, bint, 0644);
180
181 /* Enable/disable PMU virtualization */
182 bool __read_mostly enable_pmu = true;
183 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu);
184 module_param(enable_pmu, bool, 0444);
185
186 bool __read_mostly eager_page_split = true;
187 module_param(eager_page_split, bool, 0644);
188
189 /* Enable/disable SMT_RSB bug mitigation */
190 static bool __read_mostly mitigate_smt_rsb;
191 module_param(mitigate_smt_rsb, bool, 0444);
192
193 /*
194 * Restoring the host value for MSRs that are only consumed when running in
195 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
196 * returns to userspace, i.e. the kernel can run with the guest's value.
197 */
198 #define KVM_MAX_NR_USER_RETURN_MSRS 16
199
200 struct kvm_user_return_msrs {
201 struct user_return_notifier urn;
202 bool registered;
203 struct kvm_user_return_msr_values {
204 u64 host;
205 u64 curr;
206 } values[KVM_MAX_NR_USER_RETURN_MSRS];
207 };
208
209 u32 __read_mostly kvm_nr_uret_msrs;
210 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
211 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
212 static DEFINE_PER_CPU(struct kvm_user_return_msrs, user_return_msrs);
213
214 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
215 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
216 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
217 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
218
219 #define XFEATURE_MASK_CET_ALL (XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL)
220 /*
221 * Note, KVM supports exposing PT to the guest, but does not support context
222 * switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping
223 * PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support
224 * IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs).
225 */
226 #define KVM_SUPPORTED_XSS (XFEATURE_MASK_CET_ALL)
227
228 bool __read_mostly allow_smaller_maxphyaddr = 0;
229 EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr);
230
231 bool __read_mostly enable_apicv = true;
232 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv);
233
234 bool __read_mostly enable_ipiv = true;
235 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv);
236
237 bool __read_mostly enable_device_posted_irqs = true;
238 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs);
239
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 KVM_GENERIC_VM_STATS(),
242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 STATS_DESC_COUNTER(VM, mmu_pte_write),
244 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 STATS_DESC_COUNTER(VM, mmu_flooded),
246 STATS_DESC_COUNTER(VM, mmu_recycled),
247 STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 STATS_DESC_ICOUNTER(VM, mmu_unsync),
249 STATS_DESC_ICOUNTER(VM, pages_4k),
250 STATS_DESC_ICOUNTER(VM, pages_2m),
251 STATS_DESC_ICOUNTER(VM, pages_1g),
252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 };
256
257 const struct kvm_stats_header kvm_vm_stats_header = {
258 .name_size = KVM_STATS_NAME_SIZE,
259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 .id_offset = sizeof(struct kvm_stats_header),
261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 sizeof(kvm_vm_stats_desc),
264 };
265
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 KVM_GENERIC_VCPU_STATS(),
268 STATS_DESC_COUNTER(VCPU, pf_taken),
269 STATS_DESC_COUNTER(VCPU, pf_fixed),
270 STATS_DESC_COUNTER(VCPU, pf_emulate),
271 STATS_DESC_COUNTER(VCPU, pf_spurious),
272 STATS_DESC_COUNTER(VCPU, pf_fast),
273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274 STATS_DESC_COUNTER(VCPU, pf_guest),
275 STATS_DESC_COUNTER(VCPU, tlb_flush),
276 STATS_DESC_COUNTER(VCPU, invlpg),
277 STATS_DESC_COUNTER(VCPU, exits),
278 STATS_DESC_COUNTER(VCPU, io_exits),
279 STATS_DESC_COUNTER(VCPU, mmio_exits),
280 STATS_DESC_COUNTER(VCPU, signal_exits),
281 STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 STATS_DESC_COUNTER(VCPU, l1d_flush),
284 STATS_DESC_COUNTER(VCPU, halt_exits),
285 STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 STATS_DESC_COUNTER(VCPU, irq_exits),
287 STATS_DESC_COUNTER(VCPU, host_state_reload),
288 STATS_DESC_COUNTER(VCPU, fpu_reload),
289 STATS_DESC_COUNTER(VCPU, insn_emulation),
290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 STATS_DESC_COUNTER(VCPU, hypercalls),
292 STATS_DESC_COUNTER(VCPU, irq_injections),
293 STATS_DESC_COUNTER(VCPU, nmi_injections),
294 STATS_DESC_COUNTER(VCPU, req_event),
295 STATS_DESC_COUNTER(VCPU, nested_run),
296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298 STATS_DESC_COUNTER(VCPU, preemption_reported),
299 STATS_DESC_COUNTER(VCPU, preemption_other),
300 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301 STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 };
303
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 .name_size = KVM_STATS_NAME_SIZE,
306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 .id_offset = sizeof(struct kvm_stats_header),
308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 sizeof(kvm_vcpu_stats_desc),
311 };
312
313 static struct kmem_cache *x86_emulator_cache;
314
315 /*
316 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
317 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
318 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
319 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
320 * MSRs that KVM emulates without strictly requiring host support.
321 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
322 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
323 * msrs_to_save and emulated_msrs.
324 */
325
326 static const u32 msrs_to_save_base[] = {
327 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
328 MSR_STAR,
329 #ifdef CONFIG_X86_64
330 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
331 #endif
332 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
333 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
334 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
335 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
336 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
337 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
338 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
339 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
340 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
341 MSR_IA32_UMWAIT_CONTROL,
342
343 MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS,
344
345 MSR_IA32_U_CET, MSR_IA32_S_CET,
346 MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP,
347 MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB,
348 };
349
350 static const u32 msrs_to_save_pmu[] = {
351 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
352 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
353 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
354 MSR_CORE_PERF_GLOBAL_CTRL,
355 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
356
357 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
358 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
359 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
360 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
361 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
362 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
363 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
364 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
365 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
366
367 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
368 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
369
370 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
371 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
372 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
373 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
374 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
375
376 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
377 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
378 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
379 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
380 };
381
382 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
383 ARRAY_SIZE(msrs_to_save_pmu)];
384 static unsigned num_msrs_to_save;
385
386 static const u32 emulated_msrs_all[] = {
387 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
388 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
389
390 #ifdef CONFIG_KVM_HYPERV
391 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
392 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
393 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
394 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
395 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
396 HV_X64_MSR_RESET,
397 HV_X64_MSR_VP_INDEX,
398 HV_X64_MSR_VP_RUNTIME,
399 HV_X64_MSR_SCONTROL,
400 HV_X64_MSR_STIMER0_CONFIG,
401 HV_X64_MSR_VP_ASSIST_PAGE,
402 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
403 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
404 HV_X64_MSR_SYNDBG_OPTIONS,
405 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
406 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
407 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
408 #endif
409
410 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
411 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
412
413 MSR_IA32_TSC_ADJUST,
414 MSR_IA32_TSC_DEADLINE,
415 MSR_IA32_ARCH_CAPABILITIES,
416 MSR_IA32_PERF_CAPABILITIES,
417 MSR_IA32_MISC_ENABLE,
418 MSR_IA32_MCG_STATUS,
419 MSR_IA32_MCG_CTL,
420 MSR_IA32_MCG_EXT_CTL,
421 MSR_IA32_SMBASE,
422 MSR_SMI_COUNT,
423 MSR_PLATFORM_INFO,
424 MSR_MISC_FEATURES_ENABLES,
425 MSR_AMD64_VIRT_SPEC_CTRL,
426 MSR_AMD64_TSC_RATIO,
427 MSR_IA32_POWER_CTL,
428 MSR_IA32_UCODE_REV,
429
430 /*
431 * KVM always supports the "true" VMX control MSRs, even if the host
432 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
433 * doesn't strictly require them to exist in the host (ignoring that
434 * KVM would refuse to load in the first place if the core set of MSRs
435 * aren't supported).
436 */
437 MSR_IA32_VMX_BASIC,
438 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
439 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
440 MSR_IA32_VMX_TRUE_EXIT_CTLS,
441 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
442 MSR_IA32_VMX_MISC,
443 MSR_IA32_VMX_CR0_FIXED0,
444 MSR_IA32_VMX_CR4_FIXED0,
445 MSR_IA32_VMX_VMCS_ENUM,
446 MSR_IA32_VMX_PROCBASED_CTLS2,
447 MSR_IA32_VMX_EPT_VPID_CAP,
448 MSR_IA32_VMX_VMFUNC,
449
450 MSR_K7_HWCR,
451 MSR_KVM_POLL_CONTROL,
452 };
453
454 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
455 static unsigned num_emulated_msrs;
456
457 /*
458 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
459 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
460 * feature MSRs, but are handled separately to allow expedited lookups.
461 */
462 static const u32 msr_based_features_all_except_vmx[] = {
463 MSR_AMD64_DE_CFG,
464 MSR_IA32_UCODE_REV,
465 MSR_IA32_ARCH_CAPABILITIES,
466 MSR_IA32_PERF_CAPABILITIES,
467 MSR_PLATFORM_INFO,
468 };
469
470 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
471 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
472 static unsigned int num_msr_based_features;
473
474 /*
475 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
476 * patch, are immutable once the vCPU model is defined.
477 */
kvm_is_immutable_feature_msr(u32 msr)478 static bool kvm_is_immutable_feature_msr(u32 msr)
479 {
480 int i;
481
482 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
483 return true;
484
485 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
486 if (msr == msr_based_features_all_except_vmx[i])
487 return msr != MSR_IA32_UCODE_REV;
488 }
489
490 return false;
491 }
492
kvm_is_advertised_msr(u32 msr_index)493 static bool kvm_is_advertised_msr(u32 msr_index)
494 {
495 unsigned int i;
496
497 for (i = 0; i < num_msrs_to_save; i++) {
498 if (msrs_to_save[i] == msr_index)
499 return true;
500 }
501
502 for (i = 0; i < num_emulated_msrs; i++) {
503 if (emulated_msrs[i] == msr_index)
504 return true;
505 }
506
507 return false;
508 }
509
510 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
511 bool host_initiated);
512
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)513 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
514 u64 *data, bool host_initiated,
515 enum kvm_msr_access rw,
516 msr_access_t msr_access_fn)
517 {
518 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
519 int ret;
520
521 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
522
523 /*
524 * Zero the data on read failures to avoid leaking stack data to the
525 * guest and/or userspace, e.g. if the failure is ignored below.
526 */
527 ret = msr_access_fn(vcpu, msr, data, host_initiated);
528 if (ret && rw == MSR_TYPE_R)
529 *data = 0;
530
531 if (ret != KVM_MSR_RET_UNSUPPORTED)
532 return ret;
533
534 /*
535 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
536 * advertises to userspace, even if an MSR isn't fully supported.
537 * Simply check that @data is '0', which covers both the write '0' case
538 * and all reads (in which case @data is zeroed on failure; see above).
539 */
540 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
541 return 0;
542
543 if (!ignore_msrs) {
544 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
545 op, msr, *data);
546 return ret;
547 }
548
549 if (report_ignored_msrs)
550 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
551
552 return 0;
553 }
554
kvm_alloc_emulator_cache(void)555 static struct kmem_cache *kvm_alloc_emulator_cache(void)
556 {
557 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
558 unsigned int size = sizeof(struct x86_emulate_ctxt);
559
560 return kmem_cache_create_usercopy("x86_emulator", size,
561 __alignof__(struct x86_emulate_ctxt),
562 SLAB_ACCOUNT, useroffset,
563 size - useroffset, NULL);
564 }
565
566 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
567
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)568 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
569 {
570 int i;
571 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
572 vcpu->arch.apf.gfns[i] = ~0;
573 }
574
kvm_destroy_user_return_msrs(void)575 static void kvm_destroy_user_return_msrs(void)
576 {
577 int cpu;
578
579 for_each_possible_cpu(cpu)
580 WARN_ON_ONCE(per_cpu(user_return_msrs, cpu).registered);
581
582 kvm_nr_uret_msrs = 0;
583 }
584
kvm_on_user_return(struct user_return_notifier * urn)585 static void kvm_on_user_return(struct user_return_notifier *urn)
586 {
587 unsigned slot;
588 struct kvm_user_return_msrs *msrs
589 = container_of(urn, struct kvm_user_return_msrs, urn);
590 struct kvm_user_return_msr_values *values;
591
592 msrs->registered = false;
593 user_return_notifier_unregister(urn);
594
595 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
596 values = &msrs->values[slot];
597 if (values->host != values->curr) {
598 wrmsrq(kvm_uret_msrs_list[slot], values->host);
599 values->curr = values->host;
600 }
601 }
602 }
603
kvm_probe_user_return_msr(u32 msr)604 static int kvm_probe_user_return_msr(u32 msr)
605 {
606 u64 val;
607 int ret;
608
609 preempt_disable();
610 ret = rdmsrq_safe(msr, &val);
611 if (ret)
612 goto out;
613 ret = wrmsrq_safe(msr, val);
614 out:
615 preempt_enable();
616 return ret;
617 }
618
kvm_add_user_return_msr(u32 msr)619 int kvm_add_user_return_msr(u32 msr)
620 {
621 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
622
623 if (kvm_probe_user_return_msr(msr))
624 return -1;
625
626 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
627 return kvm_nr_uret_msrs++;
628 }
629 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr);
630
kvm_find_user_return_msr(u32 msr)631 int kvm_find_user_return_msr(u32 msr)
632 {
633 int i;
634
635 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
636 if (kvm_uret_msrs_list[i] == msr)
637 return i;
638 }
639 return -1;
640 }
641 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
642
kvm_user_return_msr_cpu_online(void)643 static void kvm_user_return_msr_cpu_online(void)
644 {
645 struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
646 u64 value;
647 int i;
648
649 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
650 rdmsrq_safe(kvm_uret_msrs_list[i], &value);
651 msrs->values[i].host = value;
652 msrs->values[i].curr = value;
653 }
654 }
655
kvm_user_return_register_notifier(struct kvm_user_return_msrs * msrs)656 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
657 {
658 if (!msrs->registered) {
659 msrs->urn.on_user_return = kvm_on_user_return;
660 user_return_notifier_register(&msrs->urn);
661 msrs->registered = true;
662 }
663 }
664
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)665 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
666 {
667 struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
668 int err;
669
670 value = (value & mask) | (msrs->values[slot].host & ~mask);
671 if (value == msrs->values[slot].curr)
672 return 0;
673 err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
674 if (err)
675 return 1;
676
677 msrs->values[slot].curr = value;
678 kvm_user_return_register_notifier(msrs);
679 return 0;
680 }
681 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
682
kvm_get_user_return_msr(unsigned int slot)683 u64 kvm_get_user_return_msr(unsigned int slot)
684 {
685 return this_cpu_ptr(&user_return_msrs)->values[slot].curr;
686 }
687 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
688
drop_user_return_notifiers(void)689 static void drop_user_return_notifiers(void)
690 {
691 struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
692
693 if (msrs->registered)
694 kvm_on_user_return(&msrs->urn);
695 }
696
697 /*
698 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
699 *
700 * Hardware virtualization extension instructions may fault if a reboot turns
701 * off virtualization while processes are running. Usually after catching the
702 * fault we just panic; during reboot instead the instruction is ignored.
703 */
kvm_spurious_fault(void)704 noinstr void kvm_spurious_fault(void)
705 {
706 /* Fault while not rebooting. We want the trace. */
707 BUG_ON(!kvm_rebooting);
708 }
709 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault);
710
711 #define EXCPT_BENIGN 0
712 #define EXCPT_CONTRIBUTORY 1
713 #define EXCPT_PF 2
714
exception_class(int vector)715 static int exception_class(int vector)
716 {
717 switch (vector) {
718 case PF_VECTOR:
719 return EXCPT_PF;
720 case DE_VECTOR:
721 case TS_VECTOR:
722 case NP_VECTOR:
723 case SS_VECTOR:
724 case GP_VECTOR:
725 return EXCPT_CONTRIBUTORY;
726 default:
727 break;
728 }
729 return EXCPT_BENIGN;
730 }
731
732 #define EXCPT_FAULT 0
733 #define EXCPT_TRAP 1
734 #define EXCPT_ABORT 2
735 #define EXCPT_INTERRUPT 3
736 #define EXCPT_DB 4
737
exception_type(int vector)738 static int exception_type(int vector)
739 {
740 unsigned int mask;
741
742 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
743 return EXCPT_INTERRUPT;
744
745 mask = 1 << vector;
746
747 /*
748 * #DBs can be trap-like or fault-like, the caller must check other CPU
749 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
750 */
751 if (mask & (1 << DB_VECTOR))
752 return EXCPT_DB;
753
754 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
755 return EXCPT_TRAP;
756
757 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
758 return EXCPT_ABORT;
759
760 /* Reserved exceptions will result in fault */
761 return EXCPT_FAULT;
762 }
763
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)764 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
765 struct kvm_queued_exception *ex)
766 {
767 if (!ex->has_payload)
768 return;
769
770 switch (ex->vector) {
771 case DB_VECTOR:
772 /*
773 * "Certain debug exceptions may clear bit 0-3. The
774 * remaining contents of the DR6 register are never
775 * cleared by the processor".
776 */
777 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
778 /*
779 * In order to reflect the #DB exception payload in guest
780 * dr6, three components need to be considered: active low
781 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
782 * DR6_BS and DR6_BT)
783 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
784 * In the target guest dr6:
785 * FIXED_1 bits should always be set.
786 * Active low bits should be cleared if 1-setting in payload.
787 * Active high bits should be set if 1-setting in payload.
788 *
789 * Note, the payload is compatible with the pending debug
790 * exceptions/exit qualification under VMX, that active_low bits
791 * are active high in payload.
792 * So they need to be flipped for DR6.
793 */
794 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
795 vcpu->arch.dr6 |= ex->payload;
796 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
797
798 /*
799 * The #DB payload is defined as compatible with the 'pending
800 * debug exceptions' field under VMX, not DR6. While bit 12 is
801 * defined in the 'pending debug exceptions' field (enabled
802 * breakpoint), it is reserved and must be zero in DR6.
803 */
804 vcpu->arch.dr6 &= ~BIT(12);
805 break;
806 case PF_VECTOR:
807 vcpu->arch.cr2 = ex->payload;
808 break;
809 }
810
811 ex->has_payload = false;
812 ex->payload = 0;
813 }
814 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload);
815
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)816 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
817 bool has_error_code, u32 error_code,
818 bool has_payload, unsigned long payload)
819 {
820 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
821
822 ex->vector = vector;
823 ex->injected = false;
824 ex->pending = true;
825 ex->has_error_code = has_error_code;
826 ex->error_code = error_code;
827 ex->has_payload = has_payload;
828 ex->payload = payload;
829 }
830
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)831 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
832 bool has_error, u32 error_code,
833 bool has_payload, unsigned long payload)
834 {
835 u32 prev_nr;
836 int class1, class2;
837
838 kvm_make_request(KVM_REQ_EVENT, vcpu);
839
840 /*
841 * If the exception is destined for L2, morph it to a VM-Exit if L1
842 * wants to intercept the exception.
843 */
844 if (is_guest_mode(vcpu) &&
845 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
846 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
847 has_payload, payload);
848 return;
849 }
850
851 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
852 queue:
853 vcpu->arch.exception.pending = true;
854 vcpu->arch.exception.injected = false;
855
856 vcpu->arch.exception.has_error_code = has_error;
857 vcpu->arch.exception.vector = nr;
858 vcpu->arch.exception.error_code = error_code;
859 vcpu->arch.exception.has_payload = has_payload;
860 vcpu->arch.exception.payload = payload;
861 if (!is_guest_mode(vcpu))
862 kvm_deliver_exception_payload(vcpu,
863 &vcpu->arch.exception);
864 return;
865 }
866
867 /* to check exception */
868 prev_nr = vcpu->arch.exception.vector;
869 if (prev_nr == DF_VECTOR) {
870 /* triple fault -> shutdown */
871 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
872 return;
873 }
874 class1 = exception_class(prev_nr);
875 class2 = exception_class(nr);
876 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
877 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
878 /*
879 * Synthesize #DF. Clear the previously injected or pending
880 * exception so as not to incorrectly trigger shutdown.
881 */
882 vcpu->arch.exception.injected = false;
883 vcpu->arch.exception.pending = false;
884
885 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
886 } else {
887 /* replace previous exception with a new one in a hope
888 that instruction re-execution will regenerate lost
889 exception */
890 goto queue;
891 }
892 }
893
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)894 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
895 {
896 kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
897 }
898 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception);
899
900
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)901 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
902 unsigned long payload)
903 {
904 kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
905 }
906 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p);
907
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)908 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
909 u32 error_code, unsigned long payload)
910 {
911 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
912 }
913
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)914 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
915 bool has_error_code, u32 error_code)
916 {
917
918 /*
919 * On VM-Entry, an exception can be pending if and only if event
920 * injection was blocked by nested_run_pending. In that case, however,
921 * vcpu_enter_guest() requests an immediate exit, and the guest
922 * shouldn't proceed far enough to need reinjection.
923 */
924 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
925
926 /*
927 * Do not check for interception when injecting an event for L2, as the
928 * exception was checked for intercept when it was original queued, and
929 * re-checking is incorrect if _L1_ injected the exception, in which
930 * case it's exempt from interception.
931 */
932 kvm_make_request(KVM_REQ_EVENT, vcpu);
933
934 vcpu->arch.exception.injected = true;
935 vcpu->arch.exception.has_error_code = has_error_code;
936 vcpu->arch.exception.vector = nr;
937 vcpu->arch.exception.error_code = error_code;
938 vcpu->arch.exception.has_payload = false;
939 vcpu->arch.exception.payload = 0;
940 }
941 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception);
942
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)943 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
944 {
945 if (err)
946 kvm_inject_gp(vcpu, 0);
947 else
948 return kvm_skip_emulated_instruction(vcpu);
949
950 return 1;
951 }
952 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp);
953
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)954 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
955 {
956 if (err) {
957 kvm_inject_gp(vcpu, 0);
958 return 1;
959 }
960
961 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
962 EMULTYPE_COMPLETE_USER_EXIT);
963 }
964
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)965 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
966 {
967 ++vcpu->stat.pf_guest;
968
969 /*
970 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
971 * whether or not L1 wants to intercept "regular" #PF.
972 */
973 if (is_guest_mode(vcpu) && fault->async_page_fault)
974 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
975 true, fault->error_code,
976 true, fault->address);
977 else
978 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
979 fault->address);
980 }
981
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)982 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
983 struct x86_exception *fault)
984 {
985 struct kvm_mmu *fault_mmu;
986 WARN_ON_ONCE(fault->vector != PF_VECTOR);
987
988 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
989 vcpu->arch.walk_mmu;
990
991 /*
992 * Invalidate the TLB entry for the faulting address, if it exists,
993 * else the access will fault indefinitely (and to emulate hardware).
994 */
995 if ((fault->error_code & PFERR_PRESENT_MASK) &&
996 !(fault->error_code & PFERR_RSVD_MASK))
997 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
998 KVM_MMU_ROOT_CURRENT);
999
1000 fault_mmu->inject_page_fault(vcpu, fault);
1001 }
1002 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault);
1003
kvm_inject_nmi(struct kvm_vcpu * vcpu)1004 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1005 {
1006 atomic_inc(&vcpu->arch.nmi_queued);
1007 kvm_make_request(KVM_REQ_NMI, vcpu);
1008 }
1009
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1010 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1011 {
1012 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1013 }
1014 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e);
1015
1016 /*
1017 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1018 * a #GP and return false.
1019 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1020 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1021 {
1022 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1023 return true;
1024 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1025 return false;
1026 }
1027
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1028 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1029 {
1030 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1031 return true;
1032
1033 kvm_queue_exception(vcpu, UD_VECTOR);
1034 return false;
1035 }
1036 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
1037
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)1038 static bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
1039 {
1040 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
1041
1042 return (vcpu->arch.apf.msr_en_val & mask) == mask;
1043 }
1044
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1045 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1046 {
1047 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1048 }
1049
1050 /*
1051 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1052 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1053 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1054 {
1055 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1056 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1057 gpa_t real_gpa;
1058 int i;
1059 int ret;
1060 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1061
1062 /*
1063 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1064 * to an L1 GPA.
1065 */
1066 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1067 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1068 if (real_gpa == INVALID_GPA)
1069 return 0;
1070
1071 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1072 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1073 cr3 & GENMASK(11, 5), sizeof(pdpte));
1074 if (ret < 0)
1075 return 0;
1076
1077 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1078 if ((pdpte[i] & PT_PRESENT_MASK) &&
1079 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1080 return 0;
1081 }
1082 }
1083
1084 /*
1085 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1086 * Shadow page roots need to be reconstructed instead.
1087 */
1088 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1089 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1090
1091 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1092 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1093 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1094 vcpu->arch.pdptrs_from_userspace = false;
1095
1096 return 1;
1097 }
1098 EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs);
1099
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1100 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1101 {
1102 #ifdef CONFIG_X86_64
1103 if (cr0 & 0xffffffff00000000UL)
1104 return false;
1105 #endif
1106
1107 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1108 return false;
1109
1110 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1111 return false;
1112
1113 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1114 }
1115
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1116 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1117 {
1118 /*
1119 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1120 * indirect shadow MMUs. If paging is disabled, no updates are needed
1121 * as there are no permission bits to emulate. If TDP is enabled, the
1122 * MMU's metadata needs to be updated, e.g. so that emulating guest
1123 * translations does the right thing, but there's no need to unload the
1124 * root as CR0.WP doesn't affect SPTEs.
1125 */
1126 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1127 if (!(cr0 & X86_CR0_PG))
1128 return;
1129
1130 if (tdp_enabled) {
1131 kvm_init_mmu(vcpu);
1132 return;
1133 }
1134 }
1135
1136 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1137 /*
1138 * Clearing CR0.PG is defined to flush the TLB from the guest's
1139 * perspective.
1140 */
1141 if (!(cr0 & X86_CR0_PG))
1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143 /*
1144 * Check for async #PF completion events when enabling paging,
1145 * as the vCPU may have previously encountered async #PFs (it's
1146 * entirely legal for the guest to toggle paging on/off without
1147 * waiting for the async #PF queue to drain).
1148 */
1149 else if (kvm_pv_async_pf_enabled(vcpu))
1150 kvm_make_request(KVM_REQ_APF_READY, vcpu);
1151 }
1152
1153 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1154 kvm_mmu_reset_context(vcpu);
1155 }
1156 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0);
1157
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1158 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1159 {
1160 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1161
1162 if (!kvm_is_valid_cr0(vcpu, cr0))
1163 return 1;
1164
1165 cr0 |= X86_CR0_ET;
1166
1167 /* Write to CR0 reserved bits are ignored, even on Intel. */
1168 cr0 &= ~CR0_RESERVED_BITS;
1169
1170 #ifdef CONFIG_X86_64
1171 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1172 (cr0 & X86_CR0_PG)) {
1173 int cs_db, cs_l;
1174
1175 if (!is_pae(vcpu))
1176 return 1;
1177 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1178 if (cs_l)
1179 return 1;
1180 }
1181 #endif
1182 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1183 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1184 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1185 return 1;
1186
1187 if (!(cr0 & X86_CR0_PG) &&
1188 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1189 return 1;
1190
1191 if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET))
1192 return 1;
1193
1194 kvm_x86_call(set_cr0)(vcpu, cr0);
1195
1196 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1197
1198 return 0;
1199 }
1200 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0);
1201
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1202 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1203 {
1204 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1205 }
1206 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
1207
kvm_load_xfeatures(struct kvm_vcpu * vcpu,bool load_guest)1208 static void kvm_load_xfeatures(struct kvm_vcpu *vcpu, bool load_guest)
1209 {
1210 if (vcpu->arch.guest_state_protected)
1211 return;
1212
1213 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE))
1214 return;
1215
1216 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1217 xsetbv(XCR_XFEATURE_ENABLED_MASK,
1218 load_guest ? vcpu->arch.xcr0 : kvm_host.xcr0);
1219
1220 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1221 vcpu->arch.ia32_xss != kvm_host.xss)
1222 wrmsrq(MSR_IA32_XSS, load_guest ? vcpu->arch.ia32_xss : kvm_host.xss);
1223 }
1224
kvm_load_guest_pkru(struct kvm_vcpu * vcpu)1225 static void kvm_load_guest_pkru(struct kvm_vcpu *vcpu)
1226 {
1227 if (vcpu->arch.guest_state_protected)
1228 return;
1229
1230 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1231 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1232 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1233 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1234 wrpkru(vcpu->arch.pkru);
1235 }
1236
kvm_load_host_pkru(struct kvm_vcpu * vcpu)1237 static void kvm_load_host_pkru(struct kvm_vcpu *vcpu)
1238 {
1239 if (vcpu->arch.guest_state_protected)
1240 return;
1241
1242 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1243 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1244 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1245 vcpu->arch.pkru = rdpkru();
1246 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1247 wrpkru(vcpu->arch.host_pkru);
1248 }
1249 }
1250
1251 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1252 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1253 {
1254 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1255 }
1256 #endif
1257
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1258 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1259 {
1260 u64 xcr0 = xcr;
1261 u64 old_xcr0 = vcpu->arch.xcr0;
1262 u64 valid_bits;
1263
1264 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1265 if (index != XCR_XFEATURE_ENABLED_MASK)
1266 return 1;
1267 if (!(xcr0 & XFEATURE_MASK_FP))
1268 return 1;
1269 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1270 return 1;
1271
1272 /*
1273 * Do not allow the guest to set bits that we do not support
1274 * saving. However, xcr0 bit 0 is always set, even if the
1275 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1276 */
1277 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1278 if (xcr0 & ~valid_bits)
1279 return 1;
1280
1281 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1282 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1283 return 1;
1284
1285 if (xcr0 & XFEATURE_MASK_AVX512) {
1286 if (!(xcr0 & XFEATURE_MASK_YMM))
1287 return 1;
1288 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1289 return 1;
1290 }
1291
1292 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1293 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1294 return 1;
1295
1296 vcpu->arch.xcr0 = xcr0;
1297
1298 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1299 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1300 return 0;
1301 }
1302 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr);
1303
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1304 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1305 {
1306 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1307 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1308 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1309 kvm_inject_gp(vcpu, 0);
1310 return 1;
1311 }
1312
1313 return kvm_skip_emulated_instruction(vcpu);
1314 }
1315 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv);
1316
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1317 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1318 {
1319 return __kvm_is_valid_cr4(vcpu, cr4) &&
1320 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1321 }
1322
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1323 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1324 {
1325 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1326 kvm_mmu_reset_context(vcpu);
1327
1328 /*
1329 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1330 * according to the SDM; however, stale prev_roots could be reused
1331 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1332 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1333 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1334 * so fall through.
1335 */
1336 if (!tdp_enabled &&
1337 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1338 kvm_mmu_unload(vcpu);
1339
1340 /*
1341 * The TLB has to be flushed for all PCIDs if any of the following
1342 * (architecturally required) changes happen:
1343 * - CR4.PCIDE is changed from 1 to 0
1344 * - CR4.PGE is toggled
1345 *
1346 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1347 */
1348 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1349 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1350 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1351
1352 /*
1353 * The TLB has to be flushed for the current PCID if any of the
1354 * following (architecturally required) changes happen:
1355 * - CR4.SMEP is changed from 0 to 1
1356 * - CR4.PAE is toggled
1357 */
1358 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1359 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1360 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1361
1362 }
1363 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4);
1364
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1365 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1366 {
1367 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1368
1369 if (!kvm_is_valid_cr4(vcpu, cr4))
1370 return 1;
1371
1372 if (is_long_mode(vcpu)) {
1373 if (!(cr4 & X86_CR4_PAE))
1374 return 1;
1375 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1376 return 1;
1377 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1378 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1379 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1380 return 1;
1381
1382 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1383 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1384 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1385 return 1;
1386 }
1387
1388 if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP))
1389 return 1;
1390
1391 kvm_x86_call(set_cr4)(vcpu, cr4);
1392
1393 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1394
1395 return 0;
1396 }
1397 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4);
1398
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1399 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1400 {
1401 struct kvm_mmu *mmu = vcpu->arch.mmu;
1402 unsigned long roots_to_free = 0;
1403 int i;
1404
1405 /*
1406 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1407 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1408 * also via the emulator. KVM's TDP page tables are not in the scope of
1409 * the invalidation, but the guest's TLB entries need to be flushed as
1410 * the CPU may have cached entries in its TLB for the target PCID.
1411 */
1412 if (unlikely(tdp_enabled)) {
1413 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1414 return;
1415 }
1416
1417 /*
1418 * If neither the current CR3 nor any of the prev_roots use the given
1419 * PCID, then nothing needs to be done here because a resync will
1420 * happen anyway before switching to any other CR3.
1421 */
1422 if (kvm_get_active_pcid(vcpu) == pcid) {
1423 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1424 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1425 }
1426
1427 /*
1428 * If PCID is disabled, there is no need to free prev_roots even if the
1429 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1430 * with PCIDE=0.
1431 */
1432 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1433 return;
1434
1435 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1436 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1437 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1438
1439 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1440 }
1441
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1442 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1443 {
1444 bool skip_tlb_flush = false;
1445 unsigned long pcid = 0;
1446 #ifdef CONFIG_X86_64
1447 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1448 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1449 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1450 pcid = cr3 & X86_CR3_PCID_MASK;
1451 }
1452 #endif
1453
1454 /* PDPTRs are always reloaded for PAE paging. */
1455 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1456 goto handle_tlb_flush;
1457
1458 /*
1459 * Do not condition the GPA check on long mode, this helper is used to
1460 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1461 * the current vCPU mode is accurate.
1462 */
1463 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1464 return 1;
1465
1466 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1467 return 1;
1468
1469 if (cr3 != kvm_read_cr3(vcpu))
1470 kvm_mmu_new_pgd(vcpu, cr3);
1471
1472 vcpu->arch.cr3 = cr3;
1473 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1474 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1475
1476 handle_tlb_flush:
1477 /*
1478 * A load of CR3 that flushes the TLB flushes only the current PCID,
1479 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1480 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1481 * and it's impossible to use a non-zero PCID when PCID is disabled,
1482 * i.e. only PCID=0 can be relevant.
1483 */
1484 if (!skip_tlb_flush)
1485 kvm_invalidate_pcid(vcpu, pcid);
1486
1487 return 0;
1488 }
1489 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3);
1490
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1491 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1492 {
1493 if (cr8 & CR8_RESERVED_BITS)
1494 return 1;
1495 if (lapic_in_kernel(vcpu))
1496 kvm_lapic_set_tpr(vcpu, cr8);
1497 else
1498 vcpu->arch.cr8 = cr8;
1499 return 0;
1500 }
1501 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8);
1502
kvm_get_cr8(struct kvm_vcpu * vcpu)1503 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1504 {
1505 if (lapic_in_kernel(vcpu))
1506 return kvm_lapic_get_cr8(vcpu);
1507 else
1508 return vcpu->arch.cr8;
1509 }
1510 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8);
1511
kvm_update_dr0123(struct kvm_vcpu * vcpu)1512 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1513 {
1514 int i;
1515
1516 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1517 for (i = 0; i < KVM_NR_DB_REGS; i++)
1518 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1519 }
1520 }
1521
kvm_update_dr7(struct kvm_vcpu * vcpu)1522 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1523 {
1524 unsigned long dr7;
1525
1526 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1527 dr7 = vcpu->arch.guest_debug_dr7;
1528 else
1529 dr7 = vcpu->arch.dr7;
1530 kvm_x86_call(set_dr7)(vcpu, dr7);
1531 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1532 if (dr7 & DR7_BP_EN_MASK)
1533 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1534 }
1535 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7);
1536
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1537 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1538 {
1539 u64 fixed = DR6_FIXED_1;
1540
1541 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1542 fixed |= DR6_RTM;
1543
1544 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1545 fixed |= DR6_BUS_LOCK;
1546 return fixed;
1547 }
1548
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1549 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1550 {
1551 size_t size = ARRAY_SIZE(vcpu->arch.db);
1552
1553 switch (dr) {
1554 case 0 ... 3:
1555 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1556 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1557 vcpu->arch.eff_db[dr] = val;
1558 break;
1559 case 4:
1560 case 6:
1561 if (!kvm_dr6_valid(val))
1562 return 1; /* #GP */
1563 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1564 break;
1565 case 5:
1566 default: /* 7 */
1567 if (!kvm_dr7_valid(val))
1568 return 1; /* #GP */
1569 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1570 kvm_update_dr7(vcpu);
1571 break;
1572 }
1573
1574 return 0;
1575 }
1576 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr);
1577
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1578 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1579 {
1580 size_t size = ARRAY_SIZE(vcpu->arch.db);
1581
1582 switch (dr) {
1583 case 0 ... 3:
1584 return vcpu->arch.db[array_index_nospec(dr, size)];
1585 case 4:
1586 case 6:
1587 return vcpu->arch.dr6;
1588 case 5:
1589 default: /* 7 */
1590 return vcpu->arch.dr7;
1591 }
1592 }
1593 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr);
1594
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1595 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1596 {
1597 u32 pmc = kvm_rcx_read(vcpu);
1598 u64 data;
1599
1600 if (kvm_pmu_rdpmc(vcpu, pmc, &data)) {
1601 kvm_inject_gp(vcpu, 0);
1602 return 1;
1603 }
1604
1605 kvm_rax_write(vcpu, (u32)data);
1606 kvm_rdx_write(vcpu, data >> 32);
1607 return kvm_skip_emulated_instruction(vcpu);
1608 }
1609 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc);
1610
1611 /*
1612 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1613 * does not yet virtualize. These include:
1614 * 10 - MISC_PACKAGE_CTRLS
1615 * 11 - ENERGY_FILTERING_CTL
1616 * 12 - DOITM
1617 * 18 - FB_CLEAR_CTRL
1618 * 21 - XAPIC_DISABLE_STATUS
1619 * 23 - OVERCLOCKING_STATUS
1620 */
1621
1622 #define KVM_SUPPORTED_ARCH_CAP \
1623 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1624 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1625 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1626 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1627 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1628 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1629
kvm_get_arch_capabilities(void)1630 static u64 kvm_get_arch_capabilities(void)
1631 {
1632 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1633
1634 /*
1635 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1636 * the nested hypervisor runs with NX huge pages. If it is not,
1637 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1638 * L1 guests, so it need not worry about its own (L2) guests.
1639 */
1640 data |= ARCH_CAP_PSCHANGE_MC_NO;
1641
1642 /*
1643 * If we're doing cache flushes (either "always" or "cond")
1644 * we will do one whenever the guest does a vmlaunch/vmresume.
1645 * If an outer hypervisor is doing the cache flush for us
1646 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1647 * capability to the guest too, and if EPT is disabled we're not
1648 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1649 * require a nested hypervisor to do a flush of its own.
1650 */
1651 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1652 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1653
1654 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1655 data |= ARCH_CAP_RDCL_NO;
1656 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1657 data |= ARCH_CAP_SSB_NO;
1658 if (!boot_cpu_has_bug(X86_BUG_MDS))
1659 data |= ARCH_CAP_MDS_NO;
1660 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1661 data |= ARCH_CAP_RFDS_NO;
1662 if (!boot_cpu_has_bug(X86_BUG_ITS))
1663 data |= ARCH_CAP_ITS_NO;
1664
1665 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1666 /*
1667 * If RTM=0 because the kernel has disabled TSX, the host might
1668 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1669 * and therefore knows that there cannot be TAA) but keep
1670 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1671 * and we want to allow migrating those guests to tsx=off hosts.
1672 */
1673 data &= ~ARCH_CAP_TAA_NO;
1674 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1675 data |= ARCH_CAP_TAA_NO;
1676 } else {
1677 /*
1678 * Nothing to do here; we emulate TSX_CTRL if present on the
1679 * host so the guest can choose between disabling TSX or
1680 * using VERW to clear CPU buffers.
1681 */
1682 }
1683
1684 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1685 data |= ARCH_CAP_GDS_NO;
1686
1687 return data;
1688 }
1689
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1690 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1691 bool host_initiated)
1692 {
1693 WARN_ON_ONCE(!host_initiated);
1694
1695 switch (index) {
1696 case MSR_IA32_ARCH_CAPABILITIES:
1697 *data = kvm_get_arch_capabilities();
1698 break;
1699 case MSR_IA32_PERF_CAPABILITIES:
1700 *data = kvm_caps.supported_perf_cap;
1701 break;
1702 case MSR_PLATFORM_INFO:
1703 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1704 break;
1705 case MSR_IA32_UCODE_REV:
1706 rdmsrq_safe(index, data);
1707 break;
1708 default:
1709 return kvm_x86_call(get_feature_msr)(index, data);
1710 }
1711 return 0;
1712 }
1713
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1714 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1715 {
1716 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1717 kvm_get_feature_msr);
1718 }
1719
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721 {
1722 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1723 return false;
1724
1725 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1726 return false;
1727
1728 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1729 return false;
1730
1731 if (efer & (EFER_LME | EFER_LMA) &&
1732 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1733 return false;
1734
1735 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1736 return false;
1737
1738 return true;
1739
1740 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1742 {
1743 if (efer & efer_reserved_bits)
1744 return false;
1745
1746 return __kvm_valid_efer(vcpu, efer);
1747 }
1748 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer);
1749
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1751 {
1752 u64 old_efer = vcpu->arch.efer;
1753 u64 efer = msr_info->data;
1754 int r;
1755
1756 if (efer & efer_reserved_bits)
1757 return 1;
1758
1759 if (!msr_info->host_initiated) {
1760 if (!__kvm_valid_efer(vcpu, efer))
1761 return 1;
1762
1763 if (is_paging(vcpu) &&
1764 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1765 return 1;
1766 }
1767
1768 efer &= ~EFER_LMA;
1769 efer |= vcpu->arch.efer & EFER_LMA;
1770
1771 r = kvm_x86_call(set_efer)(vcpu, efer);
1772 if (r) {
1773 WARN_ON(r > 0);
1774 return r;
1775 }
1776
1777 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1778 kvm_mmu_reset_context(vcpu);
1779
1780 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1781 (efer & EFER_SVME))
1782 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1783
1784 return 0;
1785 }
1786
kvm_enable_efer_bits(u64 mask)1787 void kvm_enable_efer_bits(u64 mask)
1788 {
1789 efer_reserved_bits &= ~mask;
1790 }
1791 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits);
1792
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1793 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1794 {
1795 struct kvm_x86_msr_filter *msr_filter;
1796 struct msr_bitmap_range *ranges;
1797 struct kvm *kvm = vcpu->kvm;
1798 bool allowed;
1799 int idx;
1800 u32 i;
1801
1802 /* x2APIC MSRs do not support filtering. */
1803 if (index >= 0x800 && index <= 0x8ff)
1804 return true;
1805
1806 idx = srcu_read_lock(&kvm->srcu);
1807
1808 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1809 if (!msr_filter) {
1810 allowed = true;
1811 goto out;
1812 }
1813
1814 allowed = msr_filter->default_allow;
1815 ranges = msr_filter->ranges;
1816
1817 for (i = 0; i < msr_filter->count; i++) {
1818 u32 start = ranges[i].base;
1819 u32 end = start + ranges[i].nmsrs;
1820 u32 flags = ranges[i].flags;
1821 unsigned long *bitmap = ranges[i].bitmap;
1822
1823 if ((index >= start) && (index < end) && (flags & type)) {
1824 allowed = test_bit(index - start, bitmap);
1825 break;
1826 }
1827 }
1828
1829 out:
1830 srcu_read_unlock(&kvm->srcu, idx);
1831
1832 return allowed;
1833 }
1834 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed);
1835
1836 /*
1837 * Write @data into the MSR specified by @index. Select MSR specific fault
1838 * checks are bypassed if @host_initiated is %true.
1839 * Returns 0 on success, non-0 otherwise.
1840 * Assumes vcpu_load() was already called.
1841 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1842 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1843 bool host_initiated)
1844 {
1845 struct msr_data msr;
1846
1847 switch (index) {
1848 case MSR_FS_BASE:
1849 case MSR_GS_BASE:
1850 case MSR_KERNEL_GS_BASE:
1851 case MSR_CSTAR:
1852 case MSR_LSTAR:
1853 if (is_noncanonical_msr_address(data, vcpu))
1854 return 1;
1855 break;
1856 case MSR_IA32_SYSENTER_EIP:
1857 case MSR_IA32_SYSENTER_ESP:
1858 /*
1859 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1860 * non-canonical address is written on Intel but not on
1861 * AMD (which ignores the top 32-bits, because it does
1862 * not implement 64-bit SYSENTER).
1863 *
1864 * 64-bit code should hence be able to write a non-canonical
1865 * value on AMD. Making the address canonical ensures that
1866 * vmentry does not fail on Intel after writing a non-canonical
1867 * value, and that something deterministic happens if the guest
1868 * invokes 64-bit SYSENTER.
1869 */
1870 data = __canonical_address(data, max_host_virt_addr_bits());
1871 break;
1872 case MSR_TSC_AUX:
1873 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874 return 1;
1875
1876 if (!host_initiated &&
1877 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1878 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1879 return 1;
1880
1881 /*
1882 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1883 * incomplete and conflicting architectural behavior. Current
1884 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1885 * reserved and always read as zeros. Enforce Intel's reserved
1886 * bits check if the guest CPU is Intel compatible, otherwise
1887 * clear the bits. This ensures cross-vendor migration will
1888 * provide consistent behavior for the guest.
1889 */
1890 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1891 return 1;
1892
1893 data = (u32)data;
1894 break;
1895 case MSR_IA32_U_CET:
1896 case MSR_IA32_S_CET:
1897 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1898 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1899 return KVM_MSR_RET_UNSUPPORTED;
1900 if (!kvm_is_valid_u_s_cet(vcpu, data))
1901 return 1;
1902 break;
1903 case MSR_KVM_INTERNAL_GUEST_SSP:
1904 if (!host_initiated)
1905 return 1;
1906 fallthrough;
1907 /*
1908 * Note that the MSR emulation here is flawed when a vCPU
1909 * doesn't support the Intel 64 architecture. The expected
1910 * architectural behavior in this case is that the upper 32
1911 * bits do not exist and should always read '0'. However,
1912 * because the actual hardware on which the virtual CPU is
1913 * running does support Intel 64, XRSTORS/XSAVES in the
1914 * guest could observe behavior that violates the
1915 * architecture. Intercepting XRSTORS/XSAVES for this
1916 * special case isn't deemed worthwhile.
1917 */
1918 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1919 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1920 return KVM_MSR_RET_UNSUPPORTED;
1921 /*
1922 * MSR_IA32_INT_SSP_TAB is not present on processors that do
1923 * not support Intel 64 architecture.
1924 */
1925 if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1926 return KVM_MSR_RET_UNSUPPORTED;
1927 if (is_noncanonical_msr_address(data, vcpu))
1928 return 1;
1929 /* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */
1930 if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4))
1931 return 1;
1932 break;
1933 }
1934
1935 msr.data = data;
1936 msr.index = index;
1937 msr.host_initiated = host_initiated;
1938
1939 return kvm_x86_call(set_msr)(vcpu, &msr);
1940 }
1941
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1942 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1943 bool host_initiated)
1944 {
1945 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1946 }
1947
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1948 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1949 u32 index, u64 data, bool host_initiated)
1950 {
1951 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1952 _kvm_set_msr);
1953 }
1954
1955 /*
1956 * Read the MSR specified by @index into @data. Select MSR specific fault
1957 * checks are bypassed if @host_initiated is %true.
1958 * Returns 0 on success, non-0 otherwise.
1959 * Assumes vcpu_load() was already called.
1960 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1961 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1962 bool host_initiated)
1963 {
1964 struct msr_data msr;
1965 int ret;
1966
1967 switch (index) {
1968 case MSR_TSC_AUX:
1969 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1970 return 1;
1971
1972 if (!host_initiated &&
1973 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1974 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1975 return 1;
1976 break;
1977 case MSR_IA32_U_CET:
1978 case MSR_IA32_S_CET:
1979 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1980 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1981 return KVM_MSR_RET_UNSUPPORTED;
1982 break;
1983 case MSR_KVM_INTERNAL_GUEST_SSP:
1984 if (!host_initiated)
1985 return 1;
1986 fallthrough;
1987 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1988 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1989 return KVM_MSR_RET_UNSUPPORTED;
1990 break;
1991 }
1992
1993 msr.index = index;
1994 msr.host_initiated = host_initiated;
1995
1996 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1997 if (!ret)
1998 *data = msr.data;
1999 return ret;
2000 }
2001
kvm_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2002 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2003 {
2004 return __kvm_set_msr(vcpu, index, data, true);
2005 }
2006
kvm_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2007 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2008 {
2009 return __kvm_get_msr(vcpu, index, data, true);
2010 }
2011
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)2012 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
2013 u32 index, u64 *data, bool host_initiated)
2014 {
2015 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
2016 __kvm_get_msr);
2017 }
2018
__kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2019 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2020 {
2021 return kvm_get_msr_ignored_check(vcpu, index, data, false);
2022 }
2023 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read);
2024
__kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2025 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2026 {
2027 return kvm_set_msr_ignored_check(vcpu, index, data, false);
2028 }
2029 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write);
2030
kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2031 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2032 {
2033 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
2034 return KVM_MSR_RET_FILTERED;
2035
2036 return __kvm_emulate_msr_read(vcpu, index, data);
2037 }
2038 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read);
2039
kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2040 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2041 {
2042 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
2043 return KVM_MSR_RET_FILTERED;
2044
2045 return __kvm_emulate_msr_write(vcpu, index, data);
2046 }
2047 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write);
2048
2049
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)2050 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
2051 {
2052 if (!vcpu->run->msr.error) {
2053 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
2054 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2055 }
2056 }
2057
complete_emulated_msr_access(struct kvm_vcpu * vcpu)2058 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2059 {
2060 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2061 }
2062
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2063 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2064 {
2065 complete_userspace_rdmsr(vcpu);
2066 return complete_emulated_msr_access(vcpu);
2067 }
2068
complete_fast_msr_access(struct kvm_vcpu * vcpu)2069 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2070 {
2071 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2072 }
2073
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2074 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2075 {
2076 complete_userspace_rdmsr(vcpu);
2077 return complete_fast_msr_access(vcpu);
2078 }
2079
complete_fast_rdmsr_imm(struct kvm_vcpu * vcpu)2080 static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu)
2081 {
2082 if (!vcpu->run->msr.error)
2083 kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg,
2084 vcpu->run->msr.data);
2085
2086 return complete_fast_msr_access(vcpu);
2087 }
2088
kvm_msr_reason(int r)2089 static u64 kvm_msr_reason(int r)
2090 {
2091 switch (r) {
2092 case KVM_MSR_RET_UNSUPPORTED:
2093 return KVM_MSR_EXIT_REASON_UNKNOWN;
2094 case KVM_MSR_RET_FILTERED:
2095 return KVM_MSR_EXIT_REASON_FILTER;
2096 default:
2097 return KVM_MSR_EXIT_REASON_INVAL;
2098 }
2099 }
2100
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2101 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2102 u32 exit_reason, u64 data,
2103 int (*completion)(struct kvm_vcpu *vcpu),
2104 int r)
2105 {
2106 u64 msr_reason = kvm_msr_reason(r);
2107
2108 /* Check if the user wanted to know about this MSR fault */
2109 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2110 return 0;
2111
2112 vcpu->run->exit_reason = exit_reason;
2113 vcpu->run->msr.error = 0;
2114 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2115 vcpu->run->msr.reason = msr_reason;
2116 vcpu->run->msr.index = index;
2117 vcpu->run->msr.data = data;
2118 vcpu->arch.complete_userspace_io = completion;
2119
2120 return 1;
2121 }
2122
__kvm_emulate_rdmsr(struct kvm_vcpu * vcpu,u32 msr,int reg,int (* complete_rdmsr)(struct kvm_vcpu *))2123 static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg,
2124 int (*complete_rdmsr)(struct kvm_vcpu *))
2125 {
2126 u64 data;
2127 int r;
2128
2129 r = kvm_emulate_msr_read(vcpu, msr, &data);
2130
2131 if (!r) {
2132 trace_kvm_msr_read(msr, data);
2133
2134 if (reg < 0) {
2135 kvm_rax_write(vcpu, data & -1u);
2136 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2137 } else {
2138 kvm_register_write(vcpu, reg, data);
2139 }
2140 } else {
2141 /* MSR read failed? See if we should ask user space */
2142 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0,
2143 complete_rdmsr, r))
2144 return 0;
2145 trace_kvm_msr_read_ex(msr);
2146 }
2147
2148 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2149 }
2150
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2151 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2152 {
2153 return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1,
2154 complete_fast_rdmsr);
2155 }
2156 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr);
2157
kvm_emulate_rdmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2158 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2159 {
2160 vcpu->arch.cui_rdmsr_imm_reg = reg;
2161
2162 return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm);
2163 }
2164 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm);
2165
__kvm_emulate_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2166 static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2167 {
2168 int r;
2169
2170 r = kvm_emulate_msr_write(vcpu, msr, data);
2171 if (!r) {
2172 trace_kvm_msr_write(msr, data);
2173 } else {
2174 /* MSR write failed? See if we should ask user space */
2175 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data,
2176 complete_fast_msr_access, r))
2177 return 0;
2178 /* Signal all other negative errors to userspace */
2179 if (r < 0)
2180 return r;
2181 trace_kvm_msr_write_ex(msr, data);
2182 }
2183
2184 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2185 }
2186
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2187 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2188 {
2189 return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu),
2190 kvm_read_edx_eax(vcpu));
2191 }
2192 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr);
2193
kvm_emulate_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2194 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2195 {
2196 return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2197 }
2198 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm);
2199
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2200 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2201 {
2202 return kvm_skip_emulated_instruction(vcpu);
2203 }
2204
kvm_emulate_invd(struct kvm_vcpu * vcpu)2205 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2206 {
2207 /* Treat an INVD instruction as a NOP and just skip it. */
2208 return kvm_emulate_as_nop(vcpu);
2209 }
2210 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd);
2211
handle_fastpath_invd(struct kvm_vcpu * vcpu)2212 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu)
2213 {
2214 if (!kvm_emulate_invd(vcpu))
2215 return EXIT_FASTPATH_EXIT_USERSPACE;
2216
2217 return EXIT_FASTPATH_REENTER_GUEST;
2218 }
2219 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd);
2220
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2221 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2222 {
2223 kvm_queue_exception(vcpu, UD_VECTOR);
2224 return 1;
2225 }
2226 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op);
2227
2228
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2229 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2230 {
2231 bool enabled;
2232
2233 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2234 goto emulate_as_nop;
2235
2236 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2237 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2238 else
2239 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2240
2241 if (!enabled)
2242 return kvm_handle_invalid_op(vcpu);
2243
2244 emulate_as_nop:
2245 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2246 return kvm_emulate_as_nop(vcpu);
2247 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2248 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2249 {
2250 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2251 }
2252 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait);
2253
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2254 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2255 {
2256 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2257 }
2258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor);
2259
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2260 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2261 {
2262 xfer_to_guest_mode_prepare();
2263
2264 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2265 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2266 }
2267
__handle_fastpath_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2268 static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2269 {
2270 switch (msr) {
2271 case APIC_BASE_MSR + (APIC_ICR >> 4):
2272 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) ||
2273 kvm_x2apic_icr_write_fast(vcpu->arch.apic, data))
2274 return EXIT_FASTPATH_NONE;
2275 break;
2276 case MSR_IA32_TSC_DEADLINE:
2277 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2278 break;
2279 default:
2280 return EXIT_FASTPATH_NONE;
2281 }
2282
2283 trace_kvm_msr_write(msr, data);
2284
2285 if (!kvm_skip_emulated_instruction(vcpu))
2286 return EXIT_FASTPATH_EXIT_USERSPACE;
2287
2288 return EXIT_FASTPATH_REENTER_GUEST;
2289 }
2290
handle_fastpath_wrmsr(struct kvm_vcpu * vcpu)2291 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu)
2292 {
2293 return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu),
2294 kvm_read_edx_eax(vcpu));
2295 }
2296 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr);
2297
handle_fastpath_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2298 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2299 {
2300 return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2301 }
2302 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm);
2303
2304 /*
2305 * Adapt set_msr() to msr_io()'s calling convention
2306 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2307 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2308 {
2309 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2310 }
2311
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2312 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2313 {
2314 u64 val;
2315
2316 /*
2317 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2318 * not support modifying the guest vCPU model on the fly, e.g. changing
2319 * the nVMX capabilities while L2 is running is nonsensical. Allow
2320 * writes of the same value, e.g. to allow userspace to blindly stuff
2321 * all MSRs when emulating RESET.
2322 */
2323 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2324 (do_get_msr(vcpu, index, &val) || *data != val))
2325 return -EINVAL;
2326
2327 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2328 }
2329
2330 #ifdef CONFIG_X86_64
2331 struct pvclock_clock {
2332 int vclock_mode;
2333 u64 cycle_last;
2334 u64 mask;
2335 u32 mult;
2336 u32 shift;
2337 u64 base_cycles;
2338 u64 offset;
2339 };
2340
2341 struct pvclock_gtod_data {
2342 seqcount_t seq;
2343
2344 struct pvclock_clock clock; /* extract of a clocksource struct */
2345 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2346
2347 ktime_t offs_boot;
2348 u64 wall_time_sec;
2349 };
2350
2351 static struct pvclock_gtod_data pvclock_gtod_data;
2352
update_pvclock_gtod(struct timekeeper * tk)2353 static void update_pvclock_gtod(struct timekeeper *tk)
2354 {
2355 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2356
2357 write_seqcount_begin(&vdata->seq);
2358
2359 /* copy pvclock gtod data */
2360 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2361 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2362 vdata->clock.mask = tk->tkr_mono.mask;
2363 vdata->clock.mult = tk->tkr_mono.mult;
2364 vdata->clock.shift = tk->tkr_mono.shift;
2365 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2366 vdata->clock.offset = tk->tkr_mono.base;
2367
2368 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2369 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2370 vdata->raw_clock.mask = tk->tkr_raw.mask;
2371 vdata->raw_clock.mult = tk->tkr_raw.mult;
2372 vdata->raw_clock.shift = tk->tkr_raw.shift;
2373 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2374 vdata->raw_clock.offset = tk->tkr_raw.base;
2375
2376 vdata->wall_time_sec = tk->xtime_sec;
2377
2378 vdata->offs_boot = tk->offs_boot;
2379
2380 write_seqcount_end(&vdata->seq);
2381 }
2382
get_kvmclock_base_ns(void)2383 static s64 get_kvmclock_base_ns(void)
2384 {
2385 /* Count up from boot time, but with the frequency of the raw clock. */
2386 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2387 }
2388 #else
get_kvmclock_base_ns(void)2389 static s64 get_kvmclock_base_ns(void)
2390 {
2391 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2392 return ktime_get_boottime_ns();
2393 }
2394 #endif
2395
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2396 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2397 {
2398 int version;
2399 int r;
2400 struct pvclock_wall_clock wc;
2401 u32 wc_sec_hi;
2402 u64 wall_nsec;
2403
2404 if (!wall_clock)
2405 return;
2406
2407 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2408 if (r)
2409 return;
2410
2411 if (version & 1)
2412 ++version; /* first time write, random junk */
2413
2414 ++version;
2415
2416 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2417 return;
2418
2419 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2420
2421 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2422 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2423 wc.version = version;
2424
2425 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2426
2427 if (sec_hi_ofs) {
2428 wc_sec_hi = wall_nsec >> 32;
2429 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2430 &wc_sec_hi, sizeof(wc_sec_hi));
2431 }
2432
2433 version++;
2434 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2435 }
2436
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2437 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2438 bool old_msr, bool host_initiated)
2439 {
2440 struct kvm_arch *ka = &vcpu->kvm->arch;
2441
2442 if (vcpu->vcpu_id == 0 && !host_initiated) {
2443 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2444 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2445
2446 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2447 }
2448
2449 vcpu->arch.time = system_time;
2450 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2451
2452 /* we verify if the enable bit is set... */
2453 if (system_time & 1)
2454 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2455 sizeof(struct pvclock_vcpu_time_info));
2456 else
2457 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2458
2459 return;
2460 }
2461
div_frac(uint32_t dividend,uint32_t divisor)2462 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2463 {
2464 do_shl32_div32(dividend, divisor);
2465 return dividend;
2466 }
2467
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2468 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2469 s8 *pshift, u32 *pmultiplier)
2470 {
2471 uint64_t scaled64;
2472 int32_t shift = 0;
2473 uint64_t tps64;
2474 uint32_t tps32;
2475
2476 tps64 = base_hz;
2477 scaled64 = scaled_hz;
2478 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2479 tps64 >>= 1;
2480 shift--;
2481 }
2482
2483 tps32 = (uint32_t)tps64;
2484 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2485 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2486 scaled64 >>= 1;
2487 else
2488 tps32 <<= 1;
2489 shift++;
2490 }
2491
2492 *pshift = shift;
2493 *pmultiplier = div_frac(scaled64, tps32);
2494 }
2495
2496 #ifdef CONFIG_X86_64
2497 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2498 #endif
2499
2500 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2501 static unsigned long max_tsc_khz;
2502
adjust_tsc_khz(u32 khz,s32 ppm)2503 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2504 {
2505 u64 v = (u64)khz * (1000000 + ppm);
2506 do_div(v, 1000000);
2507 return v;
2508 }
2509
2510 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2511
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2512 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2513 {
2514 u64 ratio;
2515
2516 /* Guest TSC same frequency as host TSC? */
2517 if (!scale) {
2518 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2519 return 0;
2520 }
2521
2522 /* TSC scaling supported? */
2523 if (!kvm_caps.has_tsc_control) {
2524 if (user_tsc_khz > tsc_khz) {
2525 vcpu->arch.tsc_catchup = 1;
2526 vcpu->arch.tsc_always_catchup = 1;
2527 return 0;
2528 } else {
2529 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2530 return -1;
2531 }
2532 }
2533
2534 /* TSC scaling required - calculate ratio */
2535 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2536 user_tsc_khz, tsc_khz);
2537
2538 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2539 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2540 user_tsc_khz);
2541 return -1;
2542 }
2543
2544 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2545 return 0;
2546 }
2547
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2548 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2549 {
2550 u32 thresh_lo, thresh_hi;
2551 int use_scaling = 0;
2552
2553 /* tsc_khz can be zero if TSC calibration fails */
2554 if (user_tsc_khz == 0) {
2555 /* set tsc_scaling_ratio to a safe value */
2556 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2557 return -1;
2558 }
2559
2560 /* Compute a scale to convert nanoseconds in TSC cycles */
2561 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2562 &vcpu->arch.virtual_tsc_shift,
2563 &vcpu->arch.virtual_tsc_mult);
2564 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2565
2566 /*
2567 * Compute the variation in TSC rate which is acceptable
2568 * within the range of tolerance and decide if the
2569 * rate being applied is within that bounds of the hardware
2570 * rate. If so, no scaling or compensation need be done.
2571 */
2572 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2573 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2574 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2575 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2576 user_tsc_khz, thresh_lo, thresh_hi);
2577 use_scaling = 1;
2578 }
2579 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2580 }
2581
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2582 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2583 {
2584 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2585 vcpu->arch.virtual_tsc_mult,
2586 vcpu->arch.virtual_tsc_shift);
2587 tsc += vcpu->arch.this_tsc_write;
2588 return tsc;
2589 }
2590
2591 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2592 static inline bool gtod_is_based_on_tsc(int mode)
2593 {
2594 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2595 }
2596 #endif
2597
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2598 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2599 {
2600 #ifdef CONFIG_X86_64
2601 struct kvm_arch *ka = &vcpu->kvm->arch;
2602 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2603
2604 /*
2605 * To use the masterclock, the host clocksource must be based on TSC
2606 * and all vCPUs must have matching TSCs. Note, the count for matching
2607 * vCPUs doesn't include the reference vCPU, hence "+1".
2608 */
2609 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2610 atomic_read(&vcpu->kvm->online_vcpus)) &&
2611 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2612
2613 /*
2614 * Request a masterclock update if the masterclock needs to be toggled
2615 * on/off, or when starting a new generation and the masterclock is
2616 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2617 * taken _after_ the new generation is created).
2618 */
2619 if ((ka->use_master_clock && new_generation) ||
2620 (ka->use_master_clock != use_master_clock))
2621 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2622
2623 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2624 atomic_read(&vcpu->kvm->online_vcpus),
2625 ka->use_master_clock, gtod->clock.vclock_mode);
2626 #endif
2627 }
2628
2629 /*
2630 * Multiply tsc by a fixed point number represented by ratio.
2631 *
2632 * The most significant 64-N bits (mult) of ratio represent the
2633 * integral part of the fixed point number; the remaining N bits
2634 * (frac) represent the fractional part, ie. ratio represents a fixed
2635 * point number (mult + frac * 2^(-N)).
2636 *
2637 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2638 */
__scale_tsc(u64 ratio,u64 tsc)2639 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2640 {
2641 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2642 }
2643
kvm_scale_tsc(u64 tsc,u64 ratio)2644 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2645 {
2646 u64 _tsc = tsc;
2647
2648 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2649 _tsc = __scale_tsc(ratio, tsc);
2650
2651 return _tsc;
2652 }
2653
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2654 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2655 {
2656 u64 tsc;
2657
2658 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2659
2660 return target_tsc - tsc;
2661 }
2662
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2663 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2664 {
2665 return vcpu->arch.l1_tsc_offset +
2666 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2667 }
2668 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc);
2669
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2670 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2671 {
2672 u64 nested_offset;
2673
2674 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2675 nested_offset = l1_offset;
2676 else
2677 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2678 kvm_caps.tsc_scaling_ratio_frac_bits);
2679
2680 nested_offset += l2_offset;
2681 return nested_offset;
2682 }
2683 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset);
2684
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2685 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2686 {
2687 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2688 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2689 kvm_caps.tsc_scaling_ratio_frac_bits);
2690
2691 return l1_multiplier;
2692 }
2693 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier);
2694
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2695 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2696 {
2697 if (vcpu->arch.guest_tsc_protected)
2698 return;
2699
2700 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2701 vcpu->arch.l1_tsc_offset,
2702 l1_offset);
2703
2704 vcpu->arch.l1_tsc_offset = l1_offset;
2705
2706 /*
2707 * If we are here because L1 chose not to trap WRMSR to TSC then
2708 * according to the spec this should set L1's TSC (as opposed to
2709 * setting L1's offset for L2).
2710 */
2711 if (is_guest_mode(vcpu))
2712 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2713 l1_offset,
2714 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2715 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2716 else
2717 vcpu->arch.tsc_offset = l1_offset;
2718
2719 kvm_x86_call(write_tsc_offset)(vcpu);
2720 }
2721
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2722 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2723 {
2724 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2725
2726 /* Userspace is changing the multiplier while L2 is active */
2727 if (is_guest_mode(vcpu))
2728 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2729 l1_multiplier,
2730 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2731 else
2732 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2733
2734 if (kvm_caps.has_tsc_control)
2735 kvm_x86_call(write_tsc_multiplier)(vcpu);
2736 }
2737
kvm_check_tsc_unstable(void)2738 static inline bool kvm_check_tsc_unstable(void)
2739 {
2740 #ifdef CONFIG_X86_64
2741 /*
2742 * TSC is marked unstable when we're running on Hyper-V,
2743 * 'TSC page' clocksource is good.
2744 */
2745 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2746 return false;
2747 #endif
2748 return check_tsc_unstable();
2749 }
2750
2751 /*
2752 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2753 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2754 * participates in.
2755 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2756 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2757 u64 ns, bool matched, bool user_set_tsc)
2758 {
2759 struct kvm *kvm = vcpu->kvm;
2760
2761 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2762
2763 if (vcpu->arch.guest_tsc_protected)
2764 return;
2765
2766 if (user_set_tsc)
2767 vcpu->kvm->arch.user_set_tsc = true;
2768
2769 /*
2770 * We also track th most recent recorded KHZ, write and time to
2771 * allow the matching interval to be extended at each write.
2772 */
2773 kvm->arch.last_tsc_nsec = ns;
2774 kvm->arch.last_tsc_write = tsc;
2775 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2776 kvm->arch.last_tsc_offset = offset;
2777
2778 vcpu->arch.last_guest_tsc = tsc;
2779
2780 kvm_vcpu_write_tsc_offset(vcpu, offset);
2781
2782 if (!matched) {
2783 /*
2784 * We split periods of matched TSC writes into generations.
2785 * For each generation, we track the original measured
2786 * nanosecond time, offset, and write, so if TSCs are in
2787 * sync, we can match exact offset, and if not, we can match
2788 * exact software computation in compute_guest_tsc()
2789 *
2790 * These values are tracked in kvm->arch.cur_xxx variables.
2791 */
2792 kvm->arch.cur_tsc_generation++;
2793 kvm->arch.cur_tsc_nsec = ns;
2794 kvm->arch.cur_tsc_write = tsc;
2795 kvm->arch.cur_tsc_offset = offset;
2796 kvm->arch.nr_vcpus_matched_tsc = 0;
2797 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2798 kvm->arch.nr_vcpus_matched_tsc++;
2799 }
2800
2801 /* Keep track of which generation this VCPU has synchronized to */
2802 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2803 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2804 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2805
2806 kvm_track_tsc_matching(vcpu, !matched);
2807 }
2808
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2809 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2810 {
2811 u64 data = user_value ? *user_value : 0;
2812 struct kvm *kvm = vcpu->kvm;
2813 u64 offset, ns, elapsed;
2814 unsigned long flags;
2815 bool matched = false;
2816 bool synchronizing = false;
2817
2818 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2819 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2820 ns = get_kvmclock_base_ns();
2821 elapsed = ns - kvm->arch.last_tsc_nsec;
2822
2823 if (vcpu->arch.virtual_tsc_khz) {
2824 if (data == 0) {
2825 /*
2826 * Force synchronization when creating a vCPU, or when
2827 * userspace explicitly writes a zero value.
2828 */
2829 synchronizing = true;
2830 } else if (kvm->arch.user_set_tsc) {
2831 u64 tsc_exp = kvm->arch.last_tsc_write +
2832 nsec_to_cycles(vcpu, elapsed);
2833 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2834 /*
2835 * Here lies UAPI baggage: when a user-initiated TSC write has
2836 * a small delta (1 second) of virtual cycle time against the
2837 * previously set vCPU, we assume that they were intended to be
2838 * in sync and the delta was only due to the racy nature of the
2839 * legacy API.
2840 *
2841 * This trick falls down when restoring a guest which genuinely
2842 * has been running for less time than the 1 second of imprecision
2843 * which we allow for in the legacy API. In this case, the first
2844 * value written by userspace (on any vCPU) should not be subject
2845 * to this 'correction' to make it sync up with values that only
2846 * come from the kernel's default vCPU creation. Make the 1-second
2847 * slop hack only trigger if the user_set_tsc flag is already set.
2848 */
2849 synchronizing = data < tsc_exp + tsc_hz &&
2850 data + tsc_hz > tsc_exp;
2851 }
2852 }
2853
2854
2855 /*
2856 * For a reliable TSC, we can match TSC offsets, and for an unstable
2857 * TSC, we add elapsed time in this computation. We could let the
2858 * compensation code attempt to catch up if we fall behind, but
2859 * it's better to try to match offsets from the beginning.
2860 */
2861 if (synchronizing &&
2862 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2863 if (!kvm_check_tsc_unstable()) {
2864 offset = kvm->arch.cur_tsc_offset;
2865 } else {
2866 u64 delta = nsec_to_cycles(vcpu, elapsed);
2867 data += delta;
2868 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2869 }
2870 matched = true;
2871 }
2872
2873 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2874 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2875 }
2876
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2877 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2878 s64 adjustment)
2879 {
2880 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2881 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2882 }
2883
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2884 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2885 {
2886 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2887 WARN_ON(adjustment < 0);
2888 adjustment = kvm_scale_tsc((u64) adjustment,
2889 vcpu->arch.l1_tsc_scaling_ratio);
2890 adjust_tsc_offset_guest(vcpu, adjustment);
2891 }
2892
2893 #ifdef CONFIG_X86_64
2894
read_tsc(void)2895 static u64 read_tsc(void)
2896 {
2897 u64 ret = (u64)rdtsc_ordered();
2898 u64 last = pvclock_gtod_data.clock.cycle_last;
2899
2900 if (likely(ret >= last))
2901 return ret;
2902
2903 /*
2904 * GCC likes to generate cmov here, but this branch is extremely
2905 * predictable (it's just a function of time and the likely is
2906 * very likely) and there's a data dependence, so force GCC
2907 * to generate a branch instead. I don't barrier() because
2908 * we don't actually need a barrier, and if this function
2909 * ever gets inlined it will generate worse code.
2910 */
2911 asm volatile ("");
2912 return last;
2913 }
2914
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2915 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2916 int *mode)
2917 {
2918 u64 tsc_pg_val;
2919 long v;
2920
2921 switch (clock->vclock_mode) {
2922 case VDSO_CLOCKMODE_HVCLOCK:
2923 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2924 tsc_timestamp, &tsc_pg_val)) {
2925 /* TSC page valid */
2926 *mode = VDSO_CLOCKMODE_HVCLOCK;
2927 v = (tsc_pg_val - clock->cycle_last) &
2928 clock->mask;
2929 } else {
2930 /* TSC page invalid */
2931 *mode = VDSO_CLOCKMODE_NONE;
2932 }
2933 break;
2934 case VDSO_CLOCKMODE_TSC:
2935 *mode = VDSO_CLOCKMODE_TSC;
2936 *tsc_timestamp = read_tsc();
2937 v = (*tsc_timestamp - clock->cycle_last) &
2938 clock->mask;
2939 break;
2940 default:
2941 *mode = VDSO_CLOCKMODE_NONE;
2942 }
2943
2944 if (*mode == VDSO_CLOCKMODE_NONE)
2945 *tsc_timestamp = v = 0;
2946
2947 return v * clock->mult;
2948 }
2949
2950 /*
2951 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2952 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2953 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2954 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2955 {
2956 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2957 unsigned long seq;
2958 int mode;
2959 u64 ns;
2960
2961 do {
2962 seq = read_seqcount_begin(>od->seq);
2963 ns = gtod->raw_clock.base_cycles;
2964 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2965 ns >>= gtod->raw_clock.shift;
2966 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2967 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2968 *t = ns;
2969
2970 return mode;
2971 }
2972
2973 /*
2974 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2975 * no boot time offset.
2976 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2977 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2978 {
2979 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2980 unsigned long seq;
2981 int mode;
2982 u64 ns;
2983
2984 do {
2985 seq = read_seqcount_begin(>od->seq);
2986 ns = gtod->clock.base_cycles;
2987 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2988 ns >>= gtod->clock.shift;
2989 ns += ktime_to_ns(gtod->clock.offset);
2990 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2991 *t = ns;
2992
2993 return mode;
2994 }
2995
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2996 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2997 {
2998 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2999 unsigned long seq;
3000 int mode;
3001 u64 ns;
3002
3003 do {
3004 seq = read_seqcount_begin(>od->seq);
3005 ts->tv_sec = gtod->wall_time_sec;
3006 ns = gtod->clock.base_cycles;
3007 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
3008 ns >>= gtod->clock.shift;
3009 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
3010
3011 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
3012 ts->tv_nsec = ns;
3013
3014 return mode;
3015 }
3016
3017 /*
3018 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
3019 * reports the TSC value from which it do so. Returns true if host is
3020 * using TSC based clocksource.
3021 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3022 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3023 {
3024 /* checked again under seqlock below */
3025 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3026 return false;
3027
3028 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
3029 tsc_timestamp));
3030 }
3031
3032 /*
3033 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
3034 * so. Returns true if host is using TSC based clocksource.
3035 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3036 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3037 {
3038 /* checked again under seqlock below */
3039 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3040 return false;
3041
3042 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
3043 tsc_timestamp));
3044 }
3045
3046 /*
3047 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
3048 * so. Returns true if host is using TSC based clocksource.
3049 *
3050 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
3051 * for that.
3052 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)3053 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
3054 u64 *tsc_timestamp)
3055 {
3056 /* checked again under seqlock below */
3057 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3058 return false;
3059
3060 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
3061 }
3062 #endif
3063
3064 /*
3065 *
3066 * Assuming a stable TSC across physical CPUS, and a stable TSC
3067 * across virtual CPUs, the following condition is possible.
3068 * Each numbered line represents an event visible to both
3069 * CPUs at the next numbered event.
3070 *
3071 * "timespecX" represents host monotonic time. "tscX" represents
3072 * RDTSC value.
3073 *
3074 * VCPU0 on CPU0 | VCPU1 on CPU1
3075 *
3076 * 1. read timespec0,tsc0
3077 * 2. | timespec1 = timespec0 + N
3078 * | tsc1 = tsc0 + M
3079 * 3. transition to guest | transition to guest
3080 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
3081 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
3082 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
3083 *
3084 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
3085 *
3086 * - ret0 < ret1
3087 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3088 * ...
3089 * - 0 < N - M => M < N
3090 *
3091 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3092 * always the case (the difference between two distinct xtime instances
3093 * might be smaller then the difference between corresponding TSC reads,
3094 * when updating guest vcpus pvclock areas).
3095 *
3096 * To avoid that problem, do not allow visibility of distinct
3097 * system_timestamp/tsc_timestamp values simultaneously: use a master
3098 * copy of host monotonic time values. Update that master copy
3099 * in lockstep.
3100 *
3101 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3102 *
3103 */
3104
pvclock_update_vm_gtod_copy(struct kvm * kvm)3105 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3106 {
3107 #ifdef CONFIG_X86_64
3108 struct kvm_arch *ka = &kvm->arch;
3109 int vclock_mode;
3110 bool host_tsc_clocksource, vcpus_matched;
3111
3112 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3113 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3114 atomic_read(&kvm->online_vcpus));
3115
3116 /*
3117 * If the host uses TSC clock, then passthrough TSC as stable
3118 * to the guest.
3119 */
3120 host_tsc_clocksource = kvm_get_time_and_clockread(
3121 &ka->master_kernel_ns,
3122 &ka->master_cycle_now);
3123
3124 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3125 && !ka->backwards_tsc_observed
3126 && !ka->boot_vcpu_runs_old_kvmclock;
3127
3128 if (ka->use_master_clock)
3129 atomic_set(&kvm_guest_has_master_clock, 1);
3130
3131 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3132 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3133 vcpus_matched);
3134 #endif
3135 }
3136
kvm_make_mclock_inprogress_request(struct kvm * kvm)3137 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3138 {
3139 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3140 }
3141
__kvm_start_pvclock_update(struct kvm * kvm)3142 static void __kvm_start_pvclock_update(struct kvm *kvm)
3143 {
3144 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3145 write_seqcount_begin(&kvm->arch.pvclock_sc);
3146 }
3147
kvm_start_pvclock_update(struct kvm * kvm)3148 static void kvm_start_pvclock_update(struct kvm *kvm)
3149 {
3150 kvm_make_mclock_inprogress_request(kvm);
3151
3152 /* no guest entries from this point */
3153 __kvm_start_pvclock_update(kvm);
3154 }
3155
kvm_end_pvclock_update(struct kvm * kvm)3156 static void kvm_end_pvclock_update(struct kvm *kvm)
3157 {
3158 struct kvm_arch *ka = &kvm->arch;
3159 struct kvm_vcpu *vcpu;
3160 unsigned long i;
3161
3162 write_seqcount_end(&ka->pvclock_sc);
3163 raw_spin_unlock_irq(&ka->tsc_write_lock);
3164 kvm_for_each_vcpu(i, vcpu, kvm)
3165 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3166
3167 /* guest entries allowed */
3168 kvm_for_each_vcpu(i, vcpu, kvm)
3169 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3170 }
3171
kvm_update_masterclock(struct kvm * kvm)3172 static void kvm_update_masterclock(struct kvm *kvm)
3173 {
3174 kvm_hv_request_tsc_page_update(kvm);
3175 kvm_start_pvclock_update(kvm);
3176 pvclock_update_vm_gtod_copy(kvm);
3177 kvm_end_pvclock_update(kvm);
3178 }
3179
3180 /*
3181 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3182 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3183 * can change during boot even if the TSC is constant, as it's possible for KVM
3184 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3185 * notification when calibration completes, but practically speaking calibration
3186 * will complete before userspace is alive enough to create VMs.
3187 */
get_cpu_tsc_khz(void)3188 static unsigned long get_cpu_tsc_khz(void)
3189 {
3190 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3191 return tsc_khz;
3192 else
3193 return __this_cpu_read(cpu_tsc_khz);
3194 }
3195
3196 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3197 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3198 {
3199 struct kvm_arch *ka = &kvm->arch;
3200 struct pvclock_vcpu_time_info hv_clock;
3201
3202 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3203 get_cpu();
3204
3205 data->flags = 0;
3206 if (ka->use_master_clock &&
3207 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3208 #ifdef CONFIG_X86_64
3209 struct timespec64 ts;
3210
3211 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3212 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3213 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3214 } else
3215 #endif
3216 data->host_tsc = rdtsc();
3217
3218 data->flags |= KVM_CLOCK_TSC_STABLE;
3219 hv_clock.tsc_timestamp = ka->master_cycle_now;
3220 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3221 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3222 &hv_clock.tsc_shift,
3223 &hv_clock.tsc_to_system_mul);
3224 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3225 } else {
3226 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3227 }
3228
3229 put_cpu();
3230 }
3231
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3232 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3233 {
3234 struct kvm_arch *ka = &kvm->arch;
3235 unsigned seq;
3236
3237 do {
3238 seq = read_seqcount_begin(&ka->pvclock_sc);
3239 __get_kvmclock(kvm, data);
3240 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3241 }
3242
get_kvmclock_ns(struct kvm * kvm)3243 u64 get_kvmclock_ns(struct kvm *kvm)
3244 {
3245 struct kvm_clock_data data;
3246
3247 get_kvmclock(kvm, &data);
3248 return data.clock;
3249 }
3250
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3251 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3252 struct kvm_vcpu *vcpu,
3253 struct gfn_to_pfn_cache *gpc,
3254 unsigned int offset)
3255 {
3256 struct pvclock_vcpu_time_info *guest_hv_clock;
3257 struct pvclock_vcpu_time_info hv_clock;
3258 unsigned long flags;
3259
3260 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3261
3262 read_lock_irqsave(&gpc->lock, flags);
3263 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3264 read_unlock_irqrestore(&gpc->lock, flags);
3265
3266 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3267 return;
3268
3269 read_lock_irqsave(&gpc->lock, flags);
3270 }
3271
3272 guest_hv_clock = (void *)(gpc->khva + offset);
3273
3274 /*
3275 * This VCPU is paused, but it's legal for a guest to read another
3276 * VCPU's kvmclock, so we really have to follow the specification where
3277 * it says that version is odd if data is being modified, and even after
3278 * it is consistent.
3279 */
3280
3281 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3282 smp_wmb();
3283
3284 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3285 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3286
3287 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3288
3289 smp_wmb();
3290
3291 guest_hv_clock->version = ++hv_clock.version;
3292
3293 kvm_gpc_mark_dirty_in_slot(gpc);
3294 read_unlock_irqrestore(&gpc->lock, flags);
3295
3296 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3297 }
3298
kvm_guest_time_update(struct kvm_vcpu * v)3299 int kvm_guest_time_update(struct kvm_vcpu *v)
3300 {
3301 struct pvclock_vcpu_time_info hv_clock = {};
3302 unsigned long flags, tgt_tsc_khz;
3303 unsigned seq;
3304 struct kvm_vcpu_arch *vcpu = &v->arch;
3305 struct kvm_arch *ka = &v->kvm->arch;
3306 s64 kernel_ns;
3307 u64 tsc_timestamp, host_tsc;
3308 bool use_master_clock;
3309
3310 kernel_ns = 0;
3311 host_tsc = 0;
3312
3313 /*
3314 * If the host uses TSC clock, then passthrough TSC as stable
3315 * to the guest.
3316 */
3317 do {
3318 seq = read_seqcount_begin(&ka->pvclock_sc);
3319 use_master_clock = ka->use_master_clock;
3320 if (use_master_clock) {
3321 host_tsc = ka->master_cycle_now;
3322 kernel_ns = ka->master_kernel_ns;
3323 }
3324 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3325
3326 /* Keep irq disabled to prevent changes to the clock */
3327 local_irq_save(flags);
3328 tgt_tsc_khz = get_cpu_tsc_khz();
3329 if (unlikely(tgt_tsc_khz == 0)) {
3330 local_irq_restore(flags);
3331 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3332 return 1;
3333 }
3334 if (!use_master_clock) {
3335 host_tsc = rdtsc();
3336 kernel_ns = get_kvmclock_base_ns();
3337 }
3338
3339 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3340
3341 /*
3342 * We may have to catch up the TSC to match elapsed wall clock
3343 * time for two reasons, even if kvmclock is used.
3344 * 1) CPU could have been running below the maximum TSC rate
3345 * 2) Broken TSC compensation resets the base at each VCPU
3346 * entry to avoid unknown leaps of TSC even when running
3347 * again on the same CPU. This may cause apparent elapsed
3348 * time to disappear, and the guest to stand still or run
3349 * very slowly.
3350 */
3351 if (vcpu->tsc_catchup) {
3352 u64 tsc = compute_guest_tsc(v, kernel_ns);
3353 if (tsc > tsc_timestamp) {
3354 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3355 tsc_timestamp = tsc;
3356 }
3357 }
3358
3359 local_irq_restore(flags);
3360
3361 /* With all the info we got, fill in the values */
3362
3363 if (kvm_caps.has_tsc_control) {
3364 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3365 v->arch.l1_tsc_scaling_ratio);
3366 tgt_tsc_khz = tgt_tsc_khz ? : 1;
3367 }
3368
3369 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3370 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3371 &vcpu->pvclock_tsc_shift,
3372 &vcpu->pvclock_tsc_mul);
3373 vcpu->hw_tsc_khz = tgt_tsc_khz;
3374 }
3375
3376 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3377 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3378 hv_clock.tsc_timestamp = tsc_timestamp;
3379 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3380 vcpu->last_guest_tsc = tsc_timestamp;
3381
3382 /* If the host uses TSC clocksource, then it is stable */
3383 hv_clock.flags = 0;
3384 if (use_master_clock)
3385 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3386
3387 if (vcpu->pv_time.active) {
3388 /*
3389 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3390 * historic behavior is to only process the request if kvmclock
3391 * is active/enabled.
3392 */
3393 if (vcpu->pvclock_set_guest_stopped_request) {
3394 hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3395 vcpu->pvclock_set_guest_stopped_request = false;
3396 }
3397 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3398
3399 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3400 }
3401
3402 kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3403
3404 #ifdef CONFIG_KVM_XEN
3405 /*
3406 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3407 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3408 * This default behaviour led to bugs in some guest kernels which cause
3409 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3410 *
3411 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3412 */
3413 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3414 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3415
3416 if (vcpu->xen.vcpu_info_cache.active)
3417 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3418 offsetof(struct compat_vcpu_info, time));
3419 if (vcpu->xen.vcpu_time_info_cache.active)
3420 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3421 #endif
3422 return 0;
3423 }
3424
3425 /*
3426 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3427 * which it started (i.e. its epoch, when its kvmclock was zero).
3428 *
3429 * In fact those clocks are subtly different; wall clock frequency is
3430 * adjusted by NTP and has leap seconds, while the kvmclock is a
3431 * simple function of the TSC without any such adjustment.
3432 *
3433 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3434 * that and kvmclock, but even that would be subject to change over
3435 * time.
3436 *
3437 * Attempt to calculate the epoch at a given moment using the *same*
3438 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3439 * wallclock and kvmclock times, and subtracting one from the other.
3440 *
3441 * Fall back to using their values at slightly different moments by
3442 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3443 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3444 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3445 {
3446 #ifdef CONFIG_X86_64
3447 struct pvclock_vcpu_time_info hv_clock;
3448 struct kvm_arch *ka = &kvm->arch;
3449 unsigned long seq, local_tsc_khz;
3450 struct timespec64 ts;
3451 uint64_t host_tsc;
3452
3453 do {
3454 seq = read_seqcount_begin(&ka->pvclock_sc);
3455
3456 local_tsc_khz = 0;
3457 if (!ka->use_master_clock)
3458 break;
3459
3460 /*
3461 * The TSC read and the call to get_cpu_tsc_khz() must happen
3462 * on the same CPU.
3463 */
3464 get_cpu();
3465
3466 local_tsc_khz = get_cpu_tsc_khz();
3467
3468 if (local_tsc_khz &&
3469 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3470 local_tsc_khz = 0; /* Fall back to old method */
3471
3472 put_cpu();
3473
3474 /*
3475 * These values must be snapshotted within the seqcount loop.
3476 * After that, it's just mathematics which can happen on any
3477 * CPU at any time.
3478 */
3479 hv_clock.tsc_timestamp = ka->master_cycle_now;
3480 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3481
3482 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3483
3484 /*
3485 * If the conditions were right, and obtaining the wallclock+TSC was
3486 * successful, calculate the KVM clock at the corresponding time and
3487 * subtract one from the other to get the guest's epoch in nanoseconds
3488 * since 1970-01-01.
3489 */
3490 if (local_tsc_khz) {
3491 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3492 &hv_clock.tsc_shift,
3493 &hv_clock.tsc_to_system_mul);
3494 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3495 __pvclock_read_cycles(&hv_clock, host_tsc);
3496 }
3497 #endif
3498 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3499 }
3500
3501 /*
3502 * kvmclock updates which are isolated to a given vcpu, such as
3503 * vcpu->cpu migration, should not allow system_timestamp from
3504 * the rest of the vcpus to remain static.
3505 *
3506 * So in those cases, request a kvmclock update for all vcpus.
3507 * The worst case for a remote vcpu to update its kvmclock
3508 * is then bounded by maximum nohz sleep latency.
3509 */
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3510 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3511 {
3512 unsigned long i;
3513 struct kvm_vcpu *vcpu;
3514 struct kvm *kvm = v->kvm;
3515
3516 kvm_for_each_vcpu(i, vcpu, kvm) {
3517 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3518 kvm_vcpu_kick(vcpu);
3519 }
3520 }
3521
3522 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3523 static bool is_mci_control_msr(u32 msr)
3524 {
3525 return (msr & 3) == 0;
3526 }
is_mci_status_msr(u32 msr)3527 static bool is_mci_status_msr(u32 msr)
3528 {
3529 return (msr & 3) == 1;
3530 }
3531
3532 /*
3533 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3534 */
can_set_mci_status(struct kvm_vcpu * vcpu)3535 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3536 {
3537 /* McStatusWrEn enabled? */
3538 if (guest_cpuid_is_amd_compatible(vcpu))
3539 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3540
3541 return false;
3542 }
3543
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3544 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3545 {
3546 u64 mcg_cap = vcpu->arch.mcg_cap;
3547 unsigned bank_num = mcg_cap & 0xff;
3548 u32 msr = msr_info->index;
3549 u64 data = msr_info->data;
3550 u32 offset, last_msr;
3551
3552 switch (msr) {
3553 case MSR_IA32_MCG_STATUS:
3554 vcpu->arch.mcg_status = data;
3555 break;
3556 case MSR_IA32_MCG_CTL:
3557 if (!(mcg_cap & MCG_CTL_P) &&
3558 (data || !msr_info->host_initiated))
3559 return 1;
3560 if (data != 0 && data != ~(u64)0)
3561 return 1;
3562 vcpu->arch.mcg_ctl = data;
3563 break;
3564 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3565 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3566 if (msr > last_msr)
3567 return 1;
3568
3569 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3570 return 1;
3571 /* An attempt to write a 1 to a reserved bit raises #GP */
3572 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3573 return 1;
3574 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3575 last_msr + 1 - MSR_IA32_MC0_CTL2);
3576 vcpu->arch.mci_ctl2_banks[offset] = data;
3577 break;
3578 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3579 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3580 if (msr > last_msr)
3581 return 1;
3582
3583 /*
3584 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3585 * values are architecturally undefined. But, some Linux
3586 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3587 * issue on AMD K8s, allow bit 10 to be clear when setting all
3588 * other bits in order to avoid an uncaught #GP in the guest.
3589 *
3590 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3591 * single-bit ECC data errors.
3592 */
3593 if (is_mci_control_msr(msr) &&
3594 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3595 return 1;
3596
3597 /*
3598 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3599 * AMD-based CPUs allow non-zero values, but if and only if
3600 * HWCR[McStatusWrEn] is set.
3601 */
3602 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3603 data != 0 && !can_set_mci_status(vcpu))
3604 return 1;
3605
3606 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3607 last_msr + 1 - MSR_IA32_MC0_CTL);
3608 vcpu->arch.mce_banks[offset] = data;
3609 break;
3610 default:
3611 return 1;
3612 }
3613 return 0;
3614 }
3615
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3616 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3617 {
3618 gpa_t gpa = data & ~0x3f;
3619
3620 /* Bits 4:5 are reserved, Should be zero */
3621 if (data & 0x30)
3622 return 1;
3623
3624 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3625 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3626 return 1;
3627
3628 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3629 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3630 return 1;
3631
3632 if (!lapic_in_kernel(vcpu))
3633 return data ? 1 : 0;
3634
3635 vcpu->arch.apf.msr_en_val = data;
3636
3637 if (!kvm_pv_async_pf_enabled(vcpu)) {
3638 kvm_clear_async_pf_completion_queue(vcpu);
3639 kvm_async_pf_hash_reset(vcpu);
3640 return 0;
3641 }
3642
3643 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3644 sizeof(u64)))
3645 return 1;
3646
3647 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3648 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3649
3650 kvm_async_pf_wakeup_all(vcpu);
3651
3652 return 0;
3653 }
3654
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3655 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3656 {
3657 /* Bits 8-63 are reserved */
3658 if (data >> 8)
3659 return 1;
3660
3661 if (!lapic_in_kernel(vcpu))
3662 return 1;
3663
3664 vcpu->arch.apf.msr_int_val = data;
3665
3666 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3667
3668 return 0;
3669 }
3670
kvmclock_reset(struct kvm_vcpu * vcpu)3671 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3672 {
3673 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3674 vcpu->arch.time = 0;
3675 }
3676
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3677 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3678 {
3679 ++vcpu->stat.tlb_flush;
3680 kvm_x86_call(flush_tlb_all)(vcpu);
3681
3682 /* Flushing all ASIDs flushes the current ASID... */
3683 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3684 }
3685
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3686 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3687 {
3688 ++vcpu->stat.tlb_flush;
3689
3690 if (!tdp_enabled) {
3691 /*
3692 * A TLB flush on behalf of the guest is equivalent to
3693 * INVPCID(all), toggling CR4.PGE, etc., which requires
3694 * a forced sync of the shadow page tables. Ensure all the
3695 * roots are synced and the guest TLB in hardware is clean.
3696 */
3697 kvm_mmu_sync_roots(vcpu);
3698 kvm_mmu_sync_prev_roots(vcpu);
3699 }
3700
3701 kvm_x86_call(flush_tlb_guest)(vcpu);
3702
3703 /*
3704 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3705 * grained flushing.
3706 */
3707 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3708 }
3709
3710
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3711 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3712 {
3713 ++vcpu->stat.tlb_flush;
3714 kvm_x86_call(flush_tlb_current)(vcpu);
3715 }
3716
3717 /*
3718 * Service "local" TLB flush requests, which are specific to the current MMU
3719 * context. In addition to the generic event handling in vcpu_enter_guest(),
3720 * TLB flushes that are targeted at an MMU context also need to be serviced
3721 * prior before nested VM-Enter/VM-Exit.
3722 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3723 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3724 {
3725 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3726 kvm_vcpu_flush_tlb_current(vcpu);
3727
3728 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3729 kvm_vcpu_flush_tlb_guest(vcpu);
3730 }
3731 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests);
3732
record_steal_time(struct kvm_vcpu * vcpu)3733 static void record_steal_time(struct kvm_vcpu *vcpu)
3734 {
3735 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3736 struct kvm_steal_time __user *st;
3737 struct kvm_memslots *slots;
3738 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3739 u64 steal;
3740 u32 version;
3741
3742 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3743 kvm_xen_runstate_set_running(vcpu);
3744 return;
3745 }
3746
3747 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3748 return;
3749
3750 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3751 return;
3752
3753 slots = kvm_memslots(vcpu->kvm);
3754
3755 if (unlikely(slots->generation != ghc->generation ||
3756 gpa != ghc->gpa ||
3757 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3758 /* We rely on the fact that it fits in a single page. */
3759 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3760
3761 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3762 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3763 return;
3764 }
3765
3766 st = (struct kvm_steal_time __user *)ghc->hva;
3767 /*
3768 * Doing a TLB flush here, on the guest's behalf, can avoid
3769 * expensive IPIs.
3770 */
3771 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3772 u8 st_preempted = 0;
3773 int err = -EFAULT;
3774
3775 if (!user_access_begin(st, sizeof(*st)))
3776 return;
3777
3778 asm volatile("1: xchgb %0, %2\n"
3779 "xor %1, %1\n"
3780 "2:\n"
3781 _ASM_EXTABLE_UA(1b, 2b)
3782 : "+q" (st_preempted),
3783 "+&r" (err),
3784 "+m" (st->preempted));
3785 if (err)
3786 goto out;
3787
3788 user_access_end();
3789
3790 vcpu->arch.st.preempted = 0;
3791
3792 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3793 st_preempted & KVM_VCPU_FLUSH_TLB);
3794 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3795 kvm_vcpu_flush_tlb_guest(vcpu);
3796
3797 if (!user_access_begin(st, sizeof(*st)))
3798 goto dirty;
3799 } else {
3800 if (!user_access_begin(st, sizeof(*st)))
3801 return;
3802
3803 unsafe_put_user(0, &st->preempted, out);
3804 vcpu->arch.st.preempted = 0;
3805 }
3806
3807 unsafe_get_user(version, &st->version, out);
3808 if (version & 1)
3809 version += 1; /* first time write, random junk */
3810
3811 version += 1;
3812 unsafe_put_user(version, &st->version, out);
3813
3814 smp_wmb();
3815
3816 unsafe_get_user(steal, &st->steal, out);
3817 steal += current->sched_info.run_delay -
3818 vcpu->arch.st.last_steal;
3819 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3820 unsafe_put_user(steal, &st->steal, out);
3821
3822 version += 1;
3823 unsafe_put_user(version, &st->version, out);
3824
3825 out:
3826 user_access_end();
3827 dirty:
3828 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3829 }
3830
3831 /*
3832 * Returns true if the MSR in question is managed via XSTATE, i.e. is context
3833 * switched with the rest of guest FPU state.
3834 *
3835 * Note, S_CET is _not_ saved/restored via XSAVES/XRSTORS.
3836 */
is_xstate_managed_msr(struct kvm_vcpu * vcpu,u32 msr)3837 static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr)
3838 {
3839 if (!vcpu)
3840 return false;
3841
3842 switch (msr) {
3843 case MSR_IA32_U_CET:
3844 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ||
3845 guest_cpu_cap_has(vcpu, X86_FEATURE_IBT);
3846 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
3847 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
3848 default:
3849 return false;
3850 }
3851 }
3852
3853 /*
3854 * Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an
3855 * MSR that is managed via XSTATE. Note, the caller is responsible for doing
3856 * the initial FPU load, this helper only ensures that guest state is resident
3857 * in hardware (the kernel can load its FPU state in IRQ context).
3858 *
3859 * Note, loading guest values for U_CET and PL[0-3]_SSP while executing in the
3860 * kernel is safe, as U_CET is specific to userspace, and PL[0-3]_SSP are only
3861 * consumed when transitioning to lower privilege levels, i.e. are effectively
3862 * only consumed by userspace as well.
3863 */
kvm_access_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info,int access)3864 static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu,
3865 struct msr_data *msr_info,
3866 int access)
3867 {
3868 BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W);
3869
3870 KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm);
3871 KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm);
3872
3873 kvm_fpu_get();
3874 if (access == MSR_TYPE_R)
3875 rdmsrq(msr_info->index, msr_info->data);
3876 else
3877 wrmsrq(msr_info->index, msr_info->data);
3878 kvm_fpu_put();
3879 }
3880
kvm_set_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3881 static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3882 {
3883 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W);
3884 }
3885
kvm_get_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3886 static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3887 {
3888 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R);
3889 }
3890
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3891 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3892 {
3893 u32 msr = msr_info->index;
3894 u64 data = msr_info->data;
3895
3896 /*
3897 * Do not allow host-initiated writes to trigger the Xen hypercall
3898 * page setup; it could incur locking paths which are not expected
3899 * if userspace sets the MSR in an unusual location.
3900 */
3901 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3902 !msr_info->host_initiated)
3903 return kvm_xen_write_hypercall_page(vcpu, data);
3904
3905 switch (msr) {
3906 case MSR_AMD64_NB_CFG:
3907 case MSR_IA32_UCODE_WRITE:
3908 case MSR_VM_HSAVE_PA:
3909 case MSR_AMD64_PATCH_LOADER:
3910 case MSR_AMD64_BU_CFG2:
3911 case MSR_AMD64_DC_CFG:
3912 case MSR_AMD64_TW_CFG:
3913 case MSR_F15H_EX_CFG:
3914 break;
3915
3916 case MSR_IA32_UCODE_REV:
3917 if (msr_info->host_initiated)
3918 vcpu->arch.microcode_version = data;
3919 break;
3920 case MSR_IA32_ARCH_CAPABILITIES:
3921 if (!msr_info->host_initiated ||
3922 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3923 return KVM_MSR_RET_UNSUPPORTED;
3924 vcpu->arch.arch_capabilities = data;
3925 break;
3926 case MSR_IA32_PERF_CAPABILITIES:
3927 if (!msr_info->host_initiated ||
3928 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3929 return KVM_MSR_RET_UNSUPPORTED;
3930
3931 if (data & ~kvm_caps.supported_perf_cap)
3932 return 1;
3933
3934 /*
3935 * Note, this is not just a performance optimization! KVM
3936 * disallows changing feature MSRs after the vCPU has run; PMU
3937 * refresh will bug the VM if called after the vCPU has run.
3938 */
3939 if (vcpu->arch.perf_capabilities == data)
3940 break;
3941
3942 vcpu->arch.perf_capabilities = data;
3943 kvm_pmu_refresh(vcpu);
3944 break;
3945 case MSR_IA32_PRED_CMD: {
3946 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3947
3948 if (!msr_info->host_initiated) {
3949 if ((!guest_has_pred_cmd_msr(vcpu)))
3950 return 1;
3951
3952 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3953 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3954 reserved_bits |= PRED_CMD_IBPB;
3955
3956 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3957 reserved_bits |= PRED_CMD_SBPB;
3958 }
3959
3960 if (!boot_cpu_has(X86_FEATURE_IBPB))
3961 reserved_bits |= PRED_CMD_IBPB;
3962
3963 if (!boot_cpu_has(X86_FEATURE_SBPB))
3964 reserved_bits |= PRED_CMD_SBPB;
3965
3966 if (data & reserved_bits)
3967 return 1;
3968
3969 if (!data)
3970 break;
3971
3972 wrmsrq(MSR_IA32_PRED_CMD, data);
3973 break;
3974 }
3975 case MSR_IA32_FLUSH_CMD:
3976 if (!msr_info->host_initiated &&
3977 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3978 return 1;
3979
3980 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3981 return 1;
3982 if (!data)
3983 break;
3984
3985 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3986 break;
3987 case MSR_EFER:
3988 return set_efer(vcpu, msr_info);
3989 case MSR_K7_HWCR:
3990 data &= ~(u64)0x40; /* ignore flush filter disable */
3991 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3992 data &= ~(u64)0x8; /* ignore TLB cache disable */
3993
3994 /*
3995 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3996 * through at least v6.6 whine if TscFreqSel is clear,
3997 * depending on F/M/S.
3998 */
3999 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
4000 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4001 return 1;
4002 }
4003 vcpu->arch.msr_hwcr = data;
4004 break;
4005 case MSR_FAM10H_MMIO_CONF_BASE:
4006 if (data != 0) {
4007 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4008 return 1;
4009 }
4010 break;
4011 case MSR_IA32_CR_PAT:
4012 if (!kvm_pat_valid(data))
4013 return 1;
4014
4015 vcpu->arch.pat = data;
4016 break;
4017 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4018 case MSR_MTRRdefType:
4019 return kvm_mtrr_set_msr(vcpu, msr, data);
4020 case MSR_IA32_APICBASE:
4021 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
4022 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4023 return kvm_x2apic_msr_write(vcpu, msr, data);
4024 case MSR_IA32_TSC_DEADLINE:
4025 kvm_set_lapic_tscdeadline_msr(vcpu, data);
4026 break;
4027 case MSR_IA32_TSC_ADJUST:
4028 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
4029 if (!msr_info->host_initiated) {
4030 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
4031 adjust_tsc_offset_guest(vcpu, adj);
4032 /* Before back to guest, tsc_timestamp must be adjusted
4033 * as well, otherwise guest's percpu pvclock time could jump.
4034 */
4035 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4036 }
4037 vcpu->arch.ia32_tsc_adjust_msr = data;
4038 }
4039 break;
4040 case MSR_IA32_MISC_ENABLE: {
4041 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
4042
4043 if (!msr_info->host_initiated) {
4044 /* RO bits */
4045 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
4046 return 1;
4047
4048 /* R bits, i.e. writes are ignored, but don't fault. */
4049 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
4050 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
4051 }
4052
4053 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
4054 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
4055 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
4056 return 1;
4057 vcpu->arch.ia32_misc_enable_msr = data;
4058 vcpu->arch.cpuid_dynamic_bits_dirty = true;
4059 } else {
4060 vcpu->arch.ia32_misc_enable_msr = data;
4061 }
4062 break;
4063 }
4064 case MSR_IA32_SMBASE:
4065 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4066 return 1;
4067 vcpu->arch.smbase = data;
4068 break;
4069 case MSR_IA32_POWER_CTL:
4070 vcpu->arch.msr_ia32_power_ctl = data;
4071 break;
4072 case MSR_IA32_TSC:
4073 if (msr_info->host_initiated) {
4074 kvm_synchronize_tsc(vcpu, &data);
4075 } else if (!vcpu->arch.guest_tsc_protected) {
4076 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
4077 adjust_tsc_offset_guest(vcpu, adj);
4078 vcpu->arch.ia32_tsc_adjust_msr += adj;
4079 }
4080 break;
4081 case MSR_IA32_XSS:
4082 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4083 return KVM_MSR_RET_UNSUPPORTED;
4084
4085 if (data & ~vcpu->arch.guest_supported_xss)
4086 return 1;
4087 if (vcpu->arch.ia32_xss == data)
4088 break;
4089 vcpu->arch.ia32_xss = data;
4090 vcpu->arch.cpuid_dynamic_bits_dirty = true;
4091 break;
4092 case MSR_SMI_COUNT:
4093 if (!msr_info->host_initiated)
4094 return 1;
4095 vcpu->arch.smi_count = data;
4096 break;
4097 case MSR_KVM_WALL_CLOCK_NEW:
4098 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4099 return 1;
4100
4101 vcpu->kvm->arch.wall_clock = data;
4102 kvm_write_wall_clock(vcpu->kvm, data, 0);
4103 break;
4104 case MSR_KVM_WALL_CLOCK:
4105 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4106 return 1;
4107
4108 vcpu->kvm->arch.wall_clock = data;
4109 kvm_write_wall_clock(vcpu->kvm, data, 0);
4110 break;
4111 case MSR_KVM_SYSTEM_TIME_NEW:
4112 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4113 return 1;
4114
4115 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4116 break;
4117 case MSR_KVM_SYSTEM_TIME:
4118 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4119 return 1;
4120
4121 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
4122 break;
4123 case MSR_KVM_ASYNC_PF_EN:
4124 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4125 return 1;
4126
4127 if (kvm_pv_enable_async_pf(vcpu, data))
4128 return 1;
4129 break;
4130 case MSR_KVM_ASYNC_PF_INT:
4131 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4132 return 1;
4133
4134 if (kvm_pv_enable_async_pf_int(vcpu, data))
4135 return 1;
4136 break;
4137 case MSR_KVM_ASYNC_PF_ACK:
4138 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4139 return 1;
4140 if (data & 0x1) {
4141 /*
4142 * Pairs with the smp_mb__after_atomic() in
4143 * kvm_arch_async_page_present_queued().
4144 */
4145 smp_store_mb(vcpu->arch.apf.pageready_pending, false);
4146
4147 kvm_check_async_pf_completion(vcpu);
4148 }
4149 break;
4150 case MSR_KVM_STEAL_TIME:
4151 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4152 return 1;
4153
4154 if (unlikely(!sched_info_on()))
4155 return 1;
4156
4157 if (data & KVM_STEAL_RESERVED_MASK)
4158 return 1;
4159
4160 vcpu->arch.st.msr_val = data;
4161
4162 if (!(data & KVM_MSR_ENABLED))
4163 break;
4164
4165 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4166
4167 break;
4168 case MSR_KVM_PV_EOI_EN:
4169 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4170 return 1;
4171
4172 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4173 return 1;
4174 break;
4175
4176 case MSR_KVM_POLL_CONTROL:
4177 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4178 return 1;
4179
4180 /* only enable bit supported */
4181 if (data & (-1ULL << 1))
4182 return 1;
4183
4184 vcpu->arch.msr_kvm_poll_control = data;
4185 break;
4186
4187 case MSR_IA32_MCG_CTL:
4188 case MSR_IA32_MCG_STATUS:
4189 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4190 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4191 return set_msr_mce(vcpu, msr_info);
4192
4193 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4194 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4195 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4196 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4197 if (kvm_pmu_is_valid_msr(vcpu, msr))
4198 return kvm_pmu_set_msr(vcpu, msr_info);
4199
4200 if (data)
4201 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4202 break;
4203 case MSR_K7_CLK_CTL:
4204 /*
4205 * Ignore all writes to this no longer documented MSR.
4206 * Writes are only relevant for old K7 processors,
4207 * all pre-dating SVM, but a recommended workaround from
4208 * AMD for these chips. It is possible to specify the
4209 * affected processor models on the command line, hence
4210 * the need to ignore the workaround.
4211 */
4212 break;
4213 #ifdef CONFIG_KVM_HYPERV
4214 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4215 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4216 case HV_X64_MSR_SYNDBG_OPTIONS:
4217 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4218 case HV_X64_MSR_CRASH_CTL:
4219 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4220 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4221 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4222 case HV_X64_MSR_TSC_EMULATION_STATUS:
4223 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4224 return kvm_hv_set_msr_common(vcpu, msr, data,
4225 msr_info->host_initiated);
4226 #endif
4227 case MSR_IA32_BBL_CR_CTL3:
4228 /* Drop writes to this legacy MSR -- see rdmsr
4229 * counterpart for further detail.
4230 */
4231 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4232 break;
4233 case MSR_AMD64_OSVW_ID_LENGTH:
4234 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4235 return 1;
4236 vcpu->arch.osvw.length = data;
4237 break;
4238 case MSR_AMD64_OSVW_STATUS:
4239 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4240 return 1;
4241 vcpu->arch.osvw.status = data;
4242 break;
4243 case MSR_PLATFORM_INFO:
4244 if (!msr_info->host_initiated)
4245 return 1;
4246 vcpu->arch.msr_platform_info = data;
4247 break;
4248 case MSR_MISC_FEATURES_ENABLES:
4249 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4250 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4251 !supports_cpuid_fault(vcpu)))
4252 return 1;
4253 vcpu->arch.msr_misc_features_enables = data;
4254 break;
4255 #ifdef CONFIG_X86_64
4256 case MSR_IA32_XFD:
4257 if (!msr_info->host_initiated &&
4258 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4259 return 1;
4260
4261 if (data & ~kvm_guest_supported_xfd(vcpu))
4262 return 1;
4263
4264 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4265 break;
4266 case MSR_IA32_XFD_ERR:
4267 if (!msr_info->host_initiated &&
4268 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4269 return 1;
4270
4271 if (data & ~kvm_guest_supported_xfd(vcpu))
4272 return 1;
4273
4274 vcpu->arch.guest_fpu.xfd_err = data;
4275 break;
4276 #endif
4277 case MSR_IA32_U_CET:
4278 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4279 kvm_set_xstate_msr(vcpu, msr_info);
4280 break;
4281 default:
4282 if (kvm_pmu_is_valid_msr(vcpu, msr))
4283 return kvm_pmu_set_msr(vcpu, msr_info);
4284
4285 return KVM_MSR_RET_UNSUPPORTED;
4286 }
4287 return 0;
4288 }
4289 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common);
4290
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4291 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4292 {
4293 u64 data;
4294 u64 mcg_cap = vcpu->arch.mcg_cap;
4295 unsigned bank_num = mcg_cap & 0xff;
4296 u32 offset, last_msr;
4297
4298 switch (msr) {
4299 case MSR_IA32_P5_MC_ADDR:
4300 case MSR_IA32_P5_MC_TYPE:
4301 data = 0;
4302 break;
4303 case MSR_IA32_MCG_CAP:
4304 data = vcpu->arch.mcg_cap;
4305 break;
4306 case MSR_IA32_MCG_CTL:
4307 if (!(mcg_cap & MCG_CTL_P) && !host)
4308 return 1;
4309 data = vcpu->arch.mcg_ctl;
4310 break;
4311 case MSR_IA32_MCG_STATUS:
4312 data = vcpu->arch.mcg_status;
4313 break;
4314 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4315 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4316 if (msr > last_msr)
4317 return 1;
4318
4319 if (!(mcg_cap & MCG_CMCI_P) && !host)
4320 return 1;
4321 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4322 last_msr + 1 - MSR_IA32_MC0_CTL2);
4323 data = vcpu->arch.mci_ctl2_banks[offset];
4324 break;
4325 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4326 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4327 if (msr > last_msr)
4328 return 1;
4329
4330 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4331 last_msr + 1 - MSR_IA32_MC0_CTL);
4332 data = vcpu->arch.mce_banks[offset];
4333 break;
4334 default:
4335 return 1;
4336 }
4337 *pdata = data;
4338 return 0;
4339 }
4340
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4341 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4342 {
4343 switch (msr_info->index) {
4344 case MSR_IA32_PLATFORM_ID:
4345 case MSR_IA32_EBL_CR_POWERON:
4346 case MSR_IA32_LASTBRANCHFROMIP:
4347 case MSR_IA32_LASTBRANCHTOIP:
4348 case MSR_IA32_LASTINTFROMIP:
4349 case MSR_IA32_LASTINTTOIP:
4350 case MSR_AMD64_SYSCFG:
4351 case MSR_K8_TSEG_ADDR:
4352 case MSR_K8_TSEG_MASK:
4353 case MSR_VM_HSAVE_PA:
4354 case MSR_K8_INT_PENDING_MSG:
4355 case MSR_AMD64_NB_CFG:
4356 case MSR_FAM10H_MMIO_CONF_BASE:
4357 case MSR_AMD64_BU_CFG2:
4358 case MSR_IA32_PERF_CTL:
4359 case MSR_AMD64_DC_CFG:
4360 case MSR_AMD64_TW_CFG:
4361 case MSR_F15H_EX_CFG:
4362 /*
4363 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4364 * limit) MSRs. Just return 0, as we do not want to expose the host
4365 * data here. Do not conditionalize this on CPUID, as KVM does not do
4366 * so for existing CPU-specific MSRs.
4367 */
4368 case MSR_RAPL_POWER_UNIT:
4369 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4370 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4371 case MSR_PKG_ENERGY_STATUS: /* Total package */
4372 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4373 msr_info->data = 0;
4374 break;
4375 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4376 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4377 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4378 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4379 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4380 return kvm_pmu_get_msr(vcpu, msr_info);
4381 msr_info->data = 0;
4382 break;
4383 case MSR_IA32_UCODE_REV:
4384 msr_info->data = vcpu->arch.microcode_version;
4385 break;
4386 case MSR_IA32_ARCH_CAPABILITIES:
4387 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4388 return KVM_MSR_RET_UNSUPPORTED;
4389 msr_info->data = vcpu->arch.arch_capabilities;
4390 break;
4391 case MSR_IA32_PERF_CAPABILITIES:
4392 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4393 return KVM_MSR_RET_UNSUPPORTED;
4394 msr_info->data = vcpu->arch.perf_capabilities;
4395 break;
4396 case MSR_IA32_POWER_CTL:
4397 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4398 break;
4399 case MSR_IA32_TSC: {
4400 /*
4401 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4402 * even when not intercepted. AMD manual doesn't explicitly
4403 * state this but appears to behave the same.
4404 *
4405 * On userspace reads and writes, however, we unconditionally
4406 * return L1's TSC value to ensure backwards-compatible
4407 * behavior for migration.
4408 */
4409 u64 offset, ratio;
4410
4411 if (msr_info->host_initiated) {
4412 offset = vcpu->arch.l1_tsc_offset;
4413 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4414 } else {
4415 offset = vcpu->arch.tsc_offset;
4416 ratio = vcpu->arch.tsc_scaling_ratio;
4417 }
4418
4419 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4420 break;
4421 }
4422 case MSR_IA32_CR_PAT:
4423 msr_info->data = vcpu->arch.pat;
4424 break;
4425 case MSR_MTRRcap:
4426 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4427 case MSR_MTRRdefType:
4428 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4429 case 0xcd: /* fsb frequency */
4430 msr_info->data = 3;
4431 break;
4432 /*
4433 * MSR_EBC_FREQUENCY_ID
4434 * Conservative value valid for even the basic CPU models.
4435 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4436 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4437 * and 266MHz for model 3, or 4. Set Core Clock
4438 * Frequency to System Bus Frequency Ratio to 1 (bits
4439 * 31:24) even though these are only valid for CPU
4440 * models > 2, however guests may end up dividing or
4441 * multiplying by zero otherwise.
4442 */
4443 case MSR_EBC_FREQUENCY_ID:
4444 msr_info->data = 1 << 24;
4445 break;
4446 case MSR_IA32_APICBASE:
4447 msr_info->data = vcpu->arch.apic_base;
4448 break;
4449 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4450 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4451 case MSR_IA32_TSC_DEADLINE:
4452 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4453 break;
4454 case MSR_IA32_TSC_ADJUST:
4455 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4456 break;
4457 case MSR_IA32_MISC_ENABLE:
4458 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4459 break;
4460 case MSR_IA32_SMBASE:
4461 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4462 return 1;
4463 msr_info->data = vcpu->arch.smbase;
4464 break;
4465 case MSR_SMI_COUNT:
4466 msr_info->data = vcpu->arch.smi_count;
4467 break;
4468 case MSR_IA32_PERF_STATUS:
4469 /* TSC increment by tick */
4470 msr_info->data = 1000ULL;
4471 /* CPU multiplier */
4472 msr_info->data |= (((uint64_t)4ULL) << 40);
4473 break;
4474 case MSR_EFER:
4475 msr_info->data = vcpu->arch.efer;
4476 break;
4477 case MSR_KVM_WALL_CLOCK:
4478 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4479 return 1;
4480
4481 msr_info->data = vcpu->kvm->arch.wall_clock;
4482 break;
4483 case MSR_KVM_WALL_CLOCK_NEW:
4484 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4485 return 1;
4486
4487 msr_info->data = vcpu->kvm->arch.wall_clock;
4488 break;
4489 case MSR_KVM_SYSTEM_TIME:
4490 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4491 return 1;
4492
4493 msr_info->data = vcpu->arch.time;
4494 break;
4495 case MSR_KVM_SYSTEM_TIME_NEW:
4496 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4497 return 1;
4498
4499 msr_info->data = vcpu->arch.time;
4500 break;
4501 case MSR_KVM_ASYNC_PF_EN:
4502 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4503 return 1;
4504
4505 msr_info->data = vcpu->arch.apf.msr_en_val;
4506 break;
4507 case MSR_KVM_ASYNC_PF_INT:
4508 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4509 return 1;
4510
4511 msr_info->data = vcpu->arch.apf.msr_int_val;
4512 break;
4513 case MSR_KVM_ASYNC_PF_ACK:
4514 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4515 return 1;
4516
4517 msr_info->data = 0;
4518 break;
4519 case MSR_KVM_STEAL_TIME:
4520 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4521 return 1;
4522
4523 msr_info->data = vcpu->arch.st.msr_val;
4524 break;
4525 case MSR_KVM_PV_EOI_EN:
4526 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4527 return 1;
4528
4529 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4530 break;
4531 case MSR_KVM_POLL_CONTROL:
4532 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4533 return 1;
4534
4535 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4536 break;
4537 case MSR_IA32_P5_MC_ADDR:
4538 case MSR_IA32_P5_MC_TYPE:
4539 case MSR_IA32_MCG_CAP:
4540 case MSR_IA32_MCG_CTL:
4541 case MSR_IA32_MCG_STATUS:
4542 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4543 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4544 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4545 msr_info->host_initiated);
4546 case MSR_IA32_XSS:
4547 if (!msr_info->host_initiated &&
4548 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4549 return 1;
4550 msr_info->data = vcpu->arch.ia32_xss;
4551 break;
4552 case MSR_K7_CLK_CTL:
4553 /*
4554 * Provide expected ramp-up count for K7. All other
4555 * are set to zero, indicating minimum divisors for
4556 * every field.
4557 *
4558 * This prevents guest kernels on AMD host with CPU
4559 * type 6, model 8 and higher from exploding due to
4560 * the rdmsr failing.
4561 */
4562 msr_info->data = 0x20000000;
4563 break;
4564 #ifdef CONFIG_KVM_HYPERV
4565 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4566 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4567 case HV_X64_MSR_SYNDBG_OPTIONS:
4568 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4569 case HV_X64_MSR_CRASH_CTL:
4570 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4571 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4572 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4573 case HV_X64_MSR_TSC_EMULATION_STATUS:
4574 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4575 return kvm_hv_get_msr_common(vcpu,
4576 msr_info->index, &msr_info->data,
4577 msr_info->host_initiated);
4578 #endif
4579 case MSR_IA32_BBL_CR_CTL3:
4580 /* This legacy MSR exists but isn't fully documented in current
4581 * silicon. It is however accessed by winxp in very narrow
4582 * scenarios where it sets bit #19, itself documented as
4583 * a "reserved" bit. Best effort attempt to source coherent
4584 * read data here should the balance of the register be
4585 * interpreted by the guest:
4586 *
4587 * L2 cache control register 3: 64GB range, 256KB size,
4588 * enabled, latency 0x1, configured
4589 */
4590 msr_info->data = 0xbe702111;
4591 break;
4592 case MSR_AMD64_OSVW_ID_LENGTH:
4593 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4594 return 1;
4595 msr_info->data = vcpu->arch.osvw.length;
4596 break;
4597 case MSR_AMD64_OSVW_STATUS:
4598 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4599 return 1;
4600 msr_info->data = vcpu->arch.osvw.status;
4601 break;
4602 case MSR_PLATFORM_INFO:
4603 if (!msr_info->host_initiated &&
4604 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4605 return 1;
4606 msr_info->data = vcpu->arch.msr_platform_info;
4607 break;
4608 case MSR_MISC_FEATURES_ENABLES:
4609 msr_info->data = vcpu->arch.msr_misc_features_enables;
4610 break;
4611 case MSR_K7_HWCR:
4612 msr_info->data = vcpu->arch.msr_hwcr;
4613 break;
4614 #ifdef CONFIG_X86_64
4615 case MSR_IA32_XFD:
4616 if (!msr_info->host_initiated &&
4617 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4618 return 1;
4619
4620 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4621 break;
4622 case MSR_IA32_XFD_ERR:
4623 if (!msr_info->host_initiated &&
4624 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4625 return 1;
4626
4627 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4628 break;
4629 #endif
4630 case MSR_IA32_U_CET:
4631 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4632 kvm_get_xstate_msr(vcpu, msr_info);
4633 break;
4634 default:
4635 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4636 return kvm_pmu_get_msr(vcpu, msr_info);
4637
4638 return KVM_MSR_RET_UNSUPPORTED;
4639 }
4640 return 0;
4641 }
4642 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common);
4643
4644 /*
4645 * Read or write a bunch of msrs. All parameters are kernel addresses.
4646 *
4647 * @return number of msrs set successfully.
4648 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4649 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4650 struct kvm_msr_entry *entries,
4651 int (*do_msr)(struct kvm_vcpu *vcpu,
4652 unsigned index, u64 *data))
4653 {
4654 bool fpu_loaded = false;
4655 int i;
4656
4657 for (i = 0; i < msrs->nmsrs; ++i) {
4658 /*
4659 * If userspace is accessing one or more XSTATE-managed MSRs,
4660 * temporarily load the guest's FPU state so that the guest's
4661 * MSR value(s) is resident in hardware and thus can be accessed
4662 * via RDMSR/WRMSR.
4663 */
4664 if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) {
4665 kvm_load_guest_fpu(vcpu);
4666 fpu_loaded = true;
4667 }
4668 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4669 break;
4670 }
4671 if (fpu_loaded)
4672 kvm_put_guest_fpu(vcpu);
4673
4674 return i;
4675 }
4676
4677 /*
4678 * Read or write a bunch of msrs. Parameters are user addresses.
4679 *
4680 * @return number of msrs set successfully.
4681 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4682 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4683 int (*do_msr)(struct kvm_vcpu *vcpu,
4684 unsigned index, u64 *data),
4685 int writeback)
4686 {
4687 struct kvm_msrs msrs;
4688 struct kvm_msr_entry *entries;
4689 unsigned size;
4690 int r;
4691
4692 r = -EFAULT;
4693 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4694 goto out;
4695
4696 r = -E2BIG;
4697 if (msrs.nmsrs >= MAX_IO_MSRS)
4698 goto out;
4699
4700 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4701 entries = memdup_user(user_msrs->entries, size);
4702 if (IS_ERR(entries)) {
4703 r = PTR_ERR(entries);
4704 goto out;
4705 }
4706
4707 r = __msr_io(vcpu, &msrs, entries, do_msr);
4708
4709 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4710 r = -EFAULT;
4711
4712 kfree(entries);
4713 out:
4714 return r;
4715 }
4716
kvm_can_mwait_in_guest(void)4717 static inline bool kvm_can_mwait_in_guest(void)
4718 {
4719 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4720 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4721 boot_cpu_has(X86_FEATURE_ARAT);
4722 }
4723
kvm_get_allowed_disable_exits(void)4724 static u64 kvm_get_allowed_disable_exits(void)
4725 {
4726 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4727
4728 if (boot_cpu_has(X86_FEATURE_APERFMPERF))
4729 r |= KVM_X86_DISABLE_EXITS_APERFMPERF;
4730
4731 if (!mitigate_smt_rsb) {
4732 r |= KVM_X86_DISABLE_EXITS_HLT |
4733 KVM_X86_DISABLE_EXITS_CSTATE;
4734
4735 if (kvm_can_mwait_in_guest())
4736 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4737 }
4738 return r;
4739 }
4740
4741 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4742 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4743 struct kvm_cpuid2 __user *cpuid_arg)
4744 {
4745 struct kvm_cpuid2 cpuid;
4746 int r;
4747
4748 r = -EFAULT;
4749 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4750 return r;
4751
4752 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4753 if (r)
4754 return r;
4755
4756 r = -EFAULT;
4757 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4758 return r;
4759
4760 return 0;
4761 }
4762 #endif
4763
kvm_is_vm_type_supported(unsigned long type)4764 static bool kvm_is_vm_type_supported(unsigned long type)
4765 {
4766 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4767 }
4768
kvm_sync_valid_fields(struct kvm * kvm)4769 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4770 {
4771 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4772 }
4773
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4774 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4775 {
4776 int r = 0;
4777
4778 switch (ext) {
4779 case KVM_CAP_IRQCHIP:
4780 case KVM_CAP_HLT:
4781 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4782 case KVM_CAP_SET_TSS_ADDR:
4783 case KVM_CAP_EXT_CPUID:
4784 case KVM_CAP_EXT_EMUL_CPUID:
4785 case KVM_CAP_CLOCKSOURCE:
4786 #ifdef CONFIG_KVM_IOAPIC
4787 case KVM_CAP_PIT:
4788 case KVM_CAP_PIT2:
4789 case KVM_CAP_PIT_STATE2:
4790 case KVM_CAP_REINJECT_CONTROL:
4791 #endif
4792 case KVM_CAP_NOP_IO_DELAY:
4793 case KVM_CAP_MP_STATE:
4794 case KVM_CAP_SYNC_MMU:
4795 case KVM_CAP_USER_NMI:
4796 case KVM_CAP_IRQ_INJECT_STATUS:
4797 case KVM_CAP_IOEVENTFD:
4798 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4799
4800 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4801 case KVM_CAP_VCPU_EVENTS:
4802 #ifdef CONFIG_KVM_HYPERV
4803 case KVM_CAP_HYPERV:
4804 case KVM_CAP_HYPERV_VAPIC:
4805 case KVM_CAP_HYPERV_SPIN:
4806 case KVM_CAP_HYPERV_TIME:
4807 case KVM_CAP_HYPERV_SYNIC:
4808 case KVM_CAP_HYPERV_SYNIC2:
4809 case KVM_CAP_HYPERV_VP_INDEX:
4810 case KVM_CAP_HYPERV_EVENTFD:
4811 case KVM_CAP_HYPERV_TLBFLUSH:
4812 case KVM_CAP_HYPERV_SEND_IPI:
4813 case KVM_CAP_HYPERV_CPUID:
4814 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4815 case KVM_CAP_SYS_HYPERV_CPUID:
4816 #endif
4817 case KVM_CAP_PCI_SEGMENT:
4818 case KVM_CAP_DEBUGREGS:
4819 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4820 case KVM_CAP_XSAVE:
4821 case KVM_CAP_ASYNC_PF:
4822 case KVM_CAP_ASYNC_PF_INT:
4823 case KVM_CAP_GET_TSC_KHZ:
4824 case KVM_CAP_KVMCLOCK_CTRL:
4825 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4826 case KVM_CAP_TSC_DEADLINE_TIMER:
4827 case KVM_CAP_DISABLE_QUIRKS:
4828 case KVM_CAP_SET_BOOT_CPU_ID:
4829 case KVM_CAP_SPLIT_IRQCHIP:
4830 case KVM_CAP_IMMEDIATE_EXIT:
4831 case KVM_CAP_PMU_EVENT_FILTER:
4832 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4833 case KVM_CAP_GET_MSR_FEATURES:
4834 case KVM_CAP_MSR_PLATFORM_INFO:
4835 case KVM_CAP_EXCEPTION_PAYLOAD:
4836 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4837 case KVM_CAP_SET_GUEST_DEBUG:
4838 case KVM_CAP_LAST_CPU:
4839 case KVM_CAP_X86_USER_SPACE_MSR:
4840 case KVM_CAP_X86_MSR_FILTER:
4841 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4842 #ifdef CONFIG_X86_SGX_KVM
4843 case KVM_CAP_SGX_ATTRIBUTE:
4844 #endif
4845 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4846 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4847 case KVM_CAP_SREGS2:
4848 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4849 case KVM_CAP_VCPU_ATTRIBUTES:
4850 case KVM_CAP_SYS_ATTRIBUTES:
4851 case KVM_CAP_VAPIC:
4852 case KVM_CAP_ENABLE_CAP:
4853 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4854 case KVM_CAP_IRQFD_RESAMPLE:
4855 case KVM_CAP_MEMORY_FAULT_INFO:
4856 case KVM_CAP_X86_GUEST_MODE:
4857 case KVM_CAP_ONE_REG:
4858 r = 1;
4859 break;
4860 case KVM_CAP_PRE_FAULT_MEMORY:
4861 r = tdp_enabled;
4862 break;
4863 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4864 r = APIC_BUS_CYCLE_NS_DEFAULT;
4865 break;
4866 case KVM_CAP_EXIT_HYPERCALL:
4867 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4868 break;
4869 case KVM_CAP_SET_GUEST_DEBUG2:
4870 return KVM_GUESTDBG_VALID_MASK;
4871 #ifdef CONFIG_KVM_XEN
4872 case KVM_CAP_XEN_HVM:
4873 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4874 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4875 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4876 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4877 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4878 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4879 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4880 if (sched_info_on())
4881 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4882 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4883 break;
4884 #endif
4885 case KVM_CAP_SYNC_REGS:
4886 r = kvm_sync_valid_fields(kvm);
4887 break;
4888 case KVM_CAP_ADJUST_CLOCK:
4889 r = KVM_CLOCK_VALID_FLAGS;
4890 break;
4891 case KVM_CAP_X86_DISABLE_EXITS:
4892 r = kvm_get_allowed_disable_exits();
4893 break;
4894 case KVM_CAP_X86_SMM:
4895 if (!IS_ENABLED(CONFIG_KVM_SMM))
4896 break;
4897
4898 /* SMBASE is usually relocated above 1M on modern chipsets,
4899 * and SMM handlers might indeed rely on 4G segment limits,
4900 * so do not report SMM to be available if real mode is
4901 * emulated via vm86 mode. Still, do not go to great lengths
4902 * to avoid userspace's usage of the feature, because it is a
4903 * fringe case that is not enabled except via specific settings
4904 * of the module parameters.
4905 */
4906 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4907 break;
4908 case KVM_CAP_NR_VCPUS:
4909 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4910 break;
4911 case KVM_CAP_MAX_VCPUS:
4912 r = KVM_MAX_VCPUS;
4913 if (kvm)
4914 r = kvm->max_vcpus;
4915 break;
4916 case KVM_CAP_MAX_VCPU_ID:
4917 r = KVM_MAX_VCPU_IDS;
4918 break;
4919 case KVM_CAP_PV_MMU: /* obsolete */
4920 r = 0;
4921 break;
4922 case KVM_CAP_MCE:
4923 r = KVM_MAX_MCE_BANKS;
4924 break;
4925 case KVM_CAP_XCRS:
4926 r = boot_cpu_has(X86_FEATURE_XSAVE);
4927 break;
4928 case KVM_CAP_TSC_CONTROL:
4929 case KVM_CAP_VM_TSC_CONTROL:
4930 r = kvm_caps.has_tsc_control;
4931 break;
4932 case KVM_CAP_X2APIC_API:
4933 r = KVM_X2APIC_API_VALID_FLAGS;
4934 break;
4935 case KVM_CAP_NESTED_STATE:
4936 r = kvm_x86_ops.nested_ops->get_state ?
4937 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4938 break;
4939 #ifdef CONFIG_KVM_HYPERV
4940 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4941 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4942 break;
4943 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4944 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4945 break;
4946 #endif
4947 case KVM_CAP_SMALLER_MAXPHYADDR:
4948 r = (int) allow_smaller_maxphyaddr;
4949 break;
4950 case KVM_CAP_STEAL_TIME:
4951 r = sched_info_on();
4952 break;
4953 case KVM_CAP_X86_BUS_LOCK_EXIT:
4954 if (kvm_caps.has_bus_lock_exit)
4955 r = KVM_BUS_LOCK_DETECTION_OFF |
4956 KVM_BUS_LOCK_DETECTION_EXIT;
4957 else
4958 r = 0;
4959 break;
4960 case KVM_CAP_XSAVE2: {
4961 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4962 if (r < sizeof(struct kvm_xsave))
4963 r = sizeof(struct kvm_xsave);
4964 break;
4965 }
4966 case KVM_CAP_PMU_CAPABILITY:
4967 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4968 break;
4969 case KVM_CAP_DISABLE_QUIRKS2:
4970 r = kvm_caps.supported_quirks;
4971 break;
4972 case KVM_CAP_X86_NOTIFY_VMEXIT:
4973 r = kvm_caps.has_notify_vmexit;
4974 break;
4975 case KVM_CAP_VM_TYPES:
4976 r = kvm_caps.supported_vm_types;
4977 break;
4978 case KVM_CAP_READONLY_MEM:
4979 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4980 break;
4981 default:
4982 break;
4983 }
4984 return r;
4985 }
4986
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4987 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4988 {
4989 if (attr->group) {
4990 if (kvm_x86_ops.dev_get_attr)
4991 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4992 return -ENXIO;
4993 }
4994
4995 switch (attr->attr) {
4996 case KVM_X86_XCOMP_GUEST_SUPP:
4997 *val = kvm_caps.supported_xcr0;
4998 return 0;
4999 default:
5000 return -ENXIO;
5001 }
5002 }
5003
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)5004 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
5005 {
5006 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5007 int r;
5008 u64 val;
5009
5010 r = __kvm_x86_dev_get_attr(attr, &val);
5011 if (r < 0)
5012 return r;
5013
5014 if (put_user(val, uaddr))
5015 return -EFAULT;
5016
5017 return 0;
5018 }
5019
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)5020 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
5021 {
5022 u64 val;
5023
5024 return __kvm_x86_dev_get_attr(attr, &val);
5025 }
5026
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5027 long kvm_arch_dev_ioctl(struct file *filp,
5028 unsigned int ioctl, unsigned long arg)
5029 {
5030 void __user *argp = (void __user *)arg;
5031 long r;
5032
5033 switch (ioctl) {
5034 case KVM_GET_MSR_INDEX_LIST: {
5035 struct kvm_msr_list __user *user_msr_list = argp;
5036 struct kvm_msr_list msr_list;
5037 unsigned n;
5038
5039 r = -EFAULT;
5040 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5041 goto out;
5042 n = msr_list.nmsrs;
5043 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
5044 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5045 goto out;
5046 r = -E2BIG;
5047 if (n < msr_list.nmsrs)
5048 goto out;
5049 r = -EFAULT;
5050 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
5051 num_msrs_to_save * sizeof(u32)))
5052 goto out;
5053 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
5054 &emulated_msrs,
5055 num_emulated_msrs * sizeof(u32)))
5056 goto out;
5057 r = 0;
5058 break;
5059 }
5060 case KVM_GET_SUPPORTED_CPUID:
5061 case KVM_GET_EMULATED_CPUID: {
5062 struct kvm_cpuid2 __user *cpuid_arg = argp;
5063 struct kvm_cpuid2 cpuid;
5064
5065 r = -EFAULT;
5066 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5067 goto out;
5068
5069 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
5070 ioctl);
5071 if (r)
5072 goto out;
5073
5074 r = -EFAULT;
5075 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5076 goto out;
5077 r = 0;
5078 break;
5079 }
5080 case KVM_X86_GET_MCE_CAP_SUPPORTED:
5081 r = -EFAULT;
5082 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
5083 sizeof(kvm_caps.supported_mce_cap)))
5084 goto out;
5085 r = 0;
5086 break;
5087 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
5088 struct kvm_msr_list __user *user_msr_list = argp;
5089 struct kvm_msr_list msr_list;
5090 unsigned int n;
5091
5092 r = -EFAULT;
5093 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5094 goto out;
5095 n = msr_list.nmsrs;
5096 msr_list.nmsrs = num_msr_based_features;
5097 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5098 goto out;
5099 r = -E2BIG;
5100 if (n < msr_list.nmsrs)
5101 goto out;
5102 r = -EFAULT;
5103 if (copy_to_user(user_msr_list->indices, &msr_based_features,
5104 num_msr_based_features * sizeof(u32)))
5105 goto out;
5106 r = 0;
5107 break;
5108 }
5109 case KVM_GET_MSRS:
5110 r = msr_io(NULL, argp, do_get_feature_msr, 1);
5111 break;
5112 #ifdef CONFIG_KVM_HYPERV
5113 case KVM_GET_SUPPORTED_HV_CPUID:
5114 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
5115 break;
5116 #endif
5117 case KVM_GET_DEVICE_ATTR: {
5118 struct kvm_device_attr attr;
5119 r = -EFAULT;
5120 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5121 break;
5122 r = kvm_x86_dev_get_attr(&attr);
5123 break;
5124 }
5125 case KVM_HAS_DEVICE_ATTR: {
5126 struct kvm_device_attr attr;
5127 r = -EFAULT;
5128 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5129 break;
5130 r = kvm_x86_dev_has_attr(&attr);
5131 break;
5132 }
5133 default:
5134 r = -EINVAL;
5135 break;
5136 }
5137 out:
5138 return r;
5139 }
5140
need_emulate_wbinvd(struct kvm_vcpu * vcpu)5141 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5142 {
5143 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5144 }
5145
5146 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
5147
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)5148 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5149 {
5150 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5151
5152 kvm_request_l1tf_flush_l1d();
5153
5154 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5155 pmu->need_cleanup = true;
5156 kvm_make_request(KVM_REQ_PMU, vcpu);
5157 }
5158
5159 /* Address WBINVD may be executed by guest */
5160 if (need_emulate_wbinvd(vcpu)) {
5161 if (kvm_x86_call(has_wbinvd_exit)())
5162 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5163 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5164 wbinvd_on_cpu(vcpu->cpu);
5165 }
5166
5167 kvm_x86_call(vcpu_load)(vcpu, cpu);
5168
5169 if (vcpu != per_cpu(last_vcpu, cpu)) {
5170 /*
5171 * Flush the branch predictor when switching vCPUs on the same
5172 * physical CPU, as each vCPU needs its own branch prediction
5173 * domain. No IBPB is needed when switching between L1 and L2
5174 * on the same vCPU unless IBRS is advertised to the vCPU; that
5175 * is handled on the nested VM-Exit path.
5176 */
5177 if (static_branch_likely(&switch_vcpu_ibpb))
5178 indirect_branch_prediction_barrier();
5179 per_cpu(last_vcpu, cpu) = vcpu;
5180 }
5181
5182 /* Save host pkru register if supported */
5183 vcpu->arch.host_pkru = read_pkru();
5184
5185 /* Apply any externally detected TSC adjustments (due to suspend) */
5186 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5187 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5188 vcpu->arch.tsc_offset_adjustment = 0;
5189 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5190 }
5191
5192 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5193 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5194 rdtsc() - vcpu->arch.last_host_tsc;
5195 if (tsc_delta < 0)
5196 mark_tsc_unstable("KVM discovered backwards TSC");
5197
5198 if (kvm_check_tsc_unstable()) {
5199 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5200 vcpu->arch.last_guest_tsc);
5201 kvm_vcpu_write_tsc_offset(vcpu, offset);
5202 if (!vcpu->arch.guest_tsc_protected)
5203 vcpu->arch.tsc_catchup = 1;
5204 }
5205
5206 if (kvm_lapic_hv_timer_in_use(vcpu))
5207 kvm_lapic_restart_hv_timer(vcpu);
5208
5209 /*
5210 * On a host with synchronized TSC, there is no need to update
5211 * kvmclock on vcpu->cpu migration
5212 */
5213 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5214 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5215 if (vcpu->cpu != cpu)
5216 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5217 vcpu->cpu = cpu;
5218 }
5219
5220 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5221 }
5222
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5223 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5224 {
5225 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5226 struct kvm_steal_time __user *st;
5227 struct kvm_memslots *slots;
5228 static const u8 preempted = KVM_VCPU_PREEMPTED;
5229 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5230
5231 /*
5232 * The vCPU can be marked preempted if and only if the VM-Exit was on
5233 * an instruction boundary and will not trigger guest emulation of any
5234 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5235 * when this is true, for example allowing the vCPU to be marked
5236 * preempted if and only if the VM-Exit was due to a host interrupt.
5237 */
5238 if (!vcpu->arch.at_instruction_boundary) {
5239 vcpu->stat.preemption_other++;
5240 return;
5241 }
5242
5243 vcpu->stat.preemption_reported++;
5244 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5245 return;
5246
5247 if (vcpu->arch.st.preempted)
5248 return;
5249
5250 /* This happens on process exit */
5251 if (unlikely(current->mm != vcpu->kvm->mm))
5252 return;
5253
5254 slots = kvm_memslots(vcpu->kvm);
5255
5256 if (unlikely(slots->generation != ghc->generation ||
5257 gpa != ghc->gpa ||
5258 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5259 return;
5260
5261 st = (struct kvm_steal_time __user *)ghc->hva;
5262 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5263
5264 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5265 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5266
5267 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5268 }
5269
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5270 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5271 {
5272 int idx;
5273
5274 if (vcpu->preempted) {
5275 /*
5276 * Assume protected guests are in-kernel. Inefficient yielding
5277 * due to false positives is preferable to never yielding due
5278 * to false negatives.
5279 */
5280 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5281 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5282
5283 /*
5284 * Take the srcu lock as memslots will be accessed to check the gfn
5285 * cache generation against the memslots generation.
5286 */
5287 idx = srcu_read_lock(&vcpu->kvm->srcu);
5288 if (kvm_xen_msr_enabled(vcpu->kvm))
5289 kvm_xen_runstate_set_preempted(vcpu);
5290 else
5291 kvm_steal_time_set_preempted(vcpu);
5292 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5293 }
5294
5295 kvm_x86_call(vcpu_put)(vcpu);
5296 vcpu->arch.last_host_tsc = rdtsc();
5297 }
5298
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5299 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5300 struct kvm_lapic_state *s)
5301 {
5302 if (vcpu->arch.apic->guest_apic_protected)
5303 return -EINVAL;
5304
5305 kvm_x86_call(sync_pir_to_irr)(vcpu);
5306
5307 return kvm_apic_get_state(vcpu, s);
5308 }
5309
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5310 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5311 struct kvm_lapic_state *s)
5312 {
5313 int r;
5314
5315 if (vcpu->arch.apic->guest_apic_protected)
5316 return -EINVAL;
5317
5318 r = kvm_apic_set_state(vcpu, s);
5319 if (r)
5320 return r;
5321 update_cr8_intercept(vcpu);
5322
5323 return 0;
5324 }
5325
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5326 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5327 {
5328 /*
5329 * We can accept userspace's request for interrupt injection
5330 * as long as we have a place to store the interrupt number.
5331 * The actual injection will happen when the CPU is able to
5332 * deliver the interrupt.
5333 */
5334 if (kvm_cpu_has_extint(vcpu))
5335 return false;
5336
5337 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5338 return (!lapic_in_kernel(vcpu) ||
5339 kvm_apic_accept_pic_intr(vcpu));
5340 }
5341
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5342 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5343 {
5344 /*
5345 * Do not cause an interrupt window exit if an exception
5346 * is pending or an event needs reinjection; userspace
5347 * might want to inject the interrupt manually using KVM_SET_REGS
5348 * or KVM_SET_SREGS. For that to work, we must be at an
5349 * instruction boundary and with no events half-injected.
5350 */
5351 return (kvm_arch_interrupt_allowed(vcpu) &&
5352 kvm_cpu_accept_dm_intr(vcpu) &&
5353 !kvm_event_needs_reinjection(vcpu) &&
5354 !kvm_is_exception_pending(vcpu));
5355 }
5356
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5357 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5358 struct kvm_interrupt *irq)
5359 {
5360 if (irq->irq >= KVM_NR_INTERRUPTS)
5361 return -EINVAL;
5362
5363 if (!irqchip_in_kernel(vcpu->kvm)) {
5364 kvm_queue_interrupt(vcpu, irq->irq, false);
5365 kvm_make_request(KVM_REQ_EVENT, vcpu);
5366 return 0;
5367 }
5368
5369 /*
5370 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5371 * fail for in-kernel 8259.
5372 */
5373 if (pic_in_kernel(vcpu->kvm))
5374 return -ENXIO;
5375
5376 if (vcpu->arch.pending_external_vector != -1)
5377 return -EEXIST;
5378
5379 vcpu->arch.pending_external_vector = irq->irq;
5380 kvm_make_request(KVM_REQ_EVENT, vcpu);
5381 return 0;
5382 }
5383
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5384 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5385 {
5386 kvm_inject_nmi(vcpu);
5387
5388 return 0;
5389 }
5390
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5391 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5392 struct kvm_tpr_access_ctl *tac)
5393 {
5394 if (tac->flags)
5395 return -EINVAL;
5396 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5397 return 0;
5398 }
5399
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5400 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5401 u64 mcg_cap)
5402 {
5403 int r;
5404 unsigned bank_num = mcg_cap & 0xff, bank;
5405
5406 r = -EINVAL;
5407 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5408 goto out;
5409 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5410 goto out;
5411 r = 0;
5412 vcpu->arch.mcg_cap = mcg_cap;
5413 /* Init IA32_MCG_CTL to all 1s */
5414 if (mcg_cap & MCG_CTL_P)
5415 vcpu->arch.mcg_ctl = ~(u64)0;
5416 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5417 for (bank = 0; bank < bank_num; bank++) {
5418 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5419 if (mcg_cap & MCG_CMCI_P)
5420 vcpu->arch.mci_ctl2_banks[bank] = 0;
5421 }
5422
5423 kvm_apic_after_set_mcg_cap(vcpu);
5424
5425 kvm_x86_call(setup_mce)(vcpu);
5426 out:
5427 return r;
5428 }
5429
5430 /*
5431 * Validate this is an UCNA (uncorrectable no action) error by checking the
5432 * MCG_STATUS and MCi_STATUS registers:
5433 * - none of the bits for Machine Check Exceptions are set
5434 * - both the VAL (valid) and UC (uncorrectable) bits are set
5435 * MCI_STATUS_PCC - Processor Context Corrupted
5436 * MCI_STATUS_S - Signaled as a Machine Check Exception
5437 * MCI_STATUS_AR - Software recoverable Action Required
5438 */
is_ucna(struct kvm_x86_mce * mce)5439 static bool is_ucna(struct kvm_x86_mce *mce)
5440 {
5441 return !mce->mcg_status &&
5442 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5443 (mce->status & MCI_STATUS_VAL) &&
5444 (mce->status & MCI_STATUS_UC);
5445 }
5446
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5447 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5448 {
5449 u64 mcg_cap = vcpu->arch.mcg_cap;
5450
5451 banks[1] = mce->status;
5452 banks[2] = mce->addr;
5453 banks[3] = mce->misc;
5454 vcpu->arch.mcg_status = mce->mcg_status;
5455
5456 if (!(mcg_cap & MCG_CMCI_P) ||
5457 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5458 return 0;
5459
5460 if (lapic_in_kernel(vcpu))
5461 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5462
5463 return 0;
5464 }
5465
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5466 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5467 struct kvm_x86_mce *mce)
5468 {
5469 u64 mcg_cap = vcpu->arch.mcg_cap;
5470 unsigned bank_num = mcg_cap & 0xff;
5471 u64 *banks = vcpu->arch.mce_banks;
5472
5473 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5474 return -EINVAL;
5475
5476 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5477
5478 if (is_ucna(mce))
5479 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5480
5481 /*
5482 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5483 * reporting is disabled
5484 */
5485 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5486 vcpu->arch.mcg_ctl != ~(u64)0)
5487 return 0;
5488 /*
5489 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5490 * reporting is disabled for the bank
5491 */
5492 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5493 return 0;
5494 if (mce->status & MCI_STATUS_UC) {
5495 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5496 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5497 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5498 return 0;
5499 }
5500 if (banks[1] & MCI_STATUS_VAL)
5501 mce->status |= MCI_STATUS_OVER;
5502 banks[2] = mce->addr;
5503 banks[3] = mce->misc;
5504 vcpu->arch.mcg_status = mce->mcg_status;
5505 banks[1] = mce->status;
5506 kvm_queue_exception(vcpu, MC_VECTOR);
5507 } else if (!(banks[1] & MCI_STATUS_VAL)
5508 || !(banks[1] & MCI_STATUS_UC)) {
5509 if (banks[1] & MCI_STATUS_VAL)
5510 mce->status |= MCI_STATUS_OVER;
5511 banks[2] = mce->addr;
5512 banks[3] = mce->misc;
5513 banks[1] = mce->status;
5514 } else
5515 banks[1] |= MCI_STATUS_OVER;
5516 return 0;
5517 }
5518
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5519 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5520 struct kvm_vcpu_events *events)
5521 {
5522 struct kvm_queued_exception *ex;
5523
5524 process_nmi(vcpu);
5525
5526 #ifdef CONFIG_KVM_SMM
5527 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5528 process_smi(vcpu);
5529 #endif
5530
5531 /*
5532 * KVM's ABI only allows for one exception to be migrated. Luckily,
5533 * the only time there can be two queued exceptions is if there's a
5534 * non-exiting _injected_ exception, and a pending exiting exception.
5535 * In that case, ignore the VM-Exiting exception as it's an extension
5536 * of the injected exception.
5537 */
5538 if (vcpu->arch.exception_vmexit.pending &&
5539 !vcpu->arch.exception.pending &&
5540 !vcpu->arch.exception.injected)
5541 ex = &vcpu->arch.exception_vmexit;
5542 else
5543 ex = &vcpu->arch.exception;
5544
5545 /*
5546 * In guest mode, payload delivery should be deferred if the exception
5547 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5548 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5549 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5550 * propagate the payload and so it cannot be safely deferred. Deliver
5551 * the payload if the capability hasn't been requested.
5552 */
5553 if (!vcpu->kvm->arch.exception_payload_enabled &&
5554 ex->pending && ex->has_payload)
5555 kvm_deliver_exception_payload(vcpu, ex);
5556
5557 memset(events, 0, sizeof(*events));
5558
5559 /*
5560 * The API doesn't provide the instruction length for software
5561 * exceptions, so don't report them. As long as the guest RIP
5562 * isn't advanced, we should expect to encounter the exception
5563 * again.
5564 */
5565 if (!kvm_exception_is_soft(ex->vector)) {
5566 events->exception.injected = ex->injected;
5567 events->exception.pending = ex->pending;
5568 /*
5569 * For ABI compatibility, deliberately conflate
5570 * pending and injected exceptions when
5571 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5572 */
5573 if (!vcpu->kvm->arch.exception_payload_enabled)
5574 events->exception.injected |= ex->pending;
5575 }
5576 events->exception.nr = ex->vector;
5577 events->exception.has_error_code = ex->has_error_code;
5578 events->exception.error_code = ex->error_code;
5579 events->exception_has_payload = ex->has_payload;
5580 events->exception_payload = ex->payload;
5581
5582 events->interrupt.injected =
5583 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5584 events->interrupt.nr = vcpu->arch.interrupt.nr;
5585 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5586
5587 events->nmi.injected = vcpu->arch.nmi_injected;
5588 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5589 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5590
5591 /* events->sipi_vector is never valid when reporting to user space */
5592
5593 #ifdef CONFIG_KVM_SMM
5594 events->smi.smm = is_smm(vcpu);
5595 events->smi.pending = vcpu->arch.smi_pending;
5596 events->smi.smm_inside_nmi =
5597 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5598 #endif
5599 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5600
5601 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5602 | KVM_VCPUEVENT_VALID_SHADOW
5603 | KVM_VCPUEVENT_VALID_SMM);
5604 if (vcpu->kvm->arch.exception_payload_enabled)
5605 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5606 if (vcpu->kvm->arch.triple_fault_event) {
5607 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5608 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5609 }
5610 }
5611
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5612 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5613 struct kvm_vcpu_events *events)
5614 {
5615 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5616 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5617 | KVM_VCPUEVENT_VALID_SHADOW
5618 | KVM_VCPUEVENT_VALID_SMM
5619 | KVM_VCPUEVENT_VALID_PAYLOAD
5620 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5621 return -EINVAL;
5622
5623 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5624 if (!vcpu->kvm->arch.exception_payload_enabled)
5625 return -EINVAL;
5626 if (events->exception.pending)
5627 events->exception.injected = 0;
5628 else
5629 events->exception_has_payload = 0;
5630 } else {
5631 events->exception.pending = 0;
5632 events->exception_has_payload = 0;
5633 }
5634
5635 if ((events->exception.injected || events->exception.pending) &&
5636 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5637 return -EINVAL;
5638
5639 process_nmi(vcpu);
5640
5641 /*
5642 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5643 * morph the exception to a VM-Exit if appropriate. Do this only for
5644 * pending exceptions, already-injected exceptions are not subject to
5645 * intercpetion. Note, userspace that conflates pending and injected
5646 * is hosed, and will incorrectly convert an injected exception into a
5647 * pending exception, which in turn may cause a spurious VM-Exit.
5648 */
5649 vcpu->arch.exception_from_userspace = events->exception.pending;
5650
5651 vcpu->arch.exception_vmexit.pending = false;
5652
5653 vcpu->arch.exception.injected = events->exception.injected;
5654 vcpu->arch.exception.pending = events->exception.pending;
5655 vcpu->arch.exception.vector = events->exception.nr;
5656 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5657 vcpu->arch.exception.error_code = events->exception.error_code;
5658 vcpu->arch.exception.has_payload = events->exception_has_payload;
5659 vcpu->arch.exception.payload = events->exception_payload;
5660
5661 vcpu->arch.interrupt.injected = events->interrupt.injected;
5662 vcpu->arch.interrupt.nr = events->interrupt.nr;
5663 vcpu->arch.interrupt.soft = events->interrupt.soft;
5664 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5665 kvm_x86_call(set_interrupt_shadow)(vcpu,
5666 events->interrupt.shadow);
5667
5668 vcpu->arch.nmi_injected = events->nmi.injected;
5669 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5670 vcpu->arch.nmi_pending = 0;
5671 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5672 if (events->nmi.pending)
5673 kvm_make_request(KVM_REQ_NMI, vcpu);
5674 }
5675 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5676
5677 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5678 lapic_in_kernel(vcpu))
5679 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5680
5681 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5682 #ifdef CONFIG_KVM_SMM
5683 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5684 kvm_leave_nested(vcpu);
5685 kvm_smm_changed(vcpu, events->smi.smm);
5686 }
5687
5688 vcpu->arch.smi_pending = events->smi.pending;
5689
5690 if (events->smi.smm) {
5691 if (events->smi.smm_inside_nmi)
5692 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5693 else
5694 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5695 }
5696
5697 #else
5698 if (events->smi.smm || events->smi.pending ||
5699 events->smi.smm_inside_nmi)
5700 return -EINVAL;
5701 #endif
5702
5703 if (lapic_in_kernel(vcpu)) {
5704 if (events->smi.latched_init)
5705 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5706 else
5707 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5708 }
5709 }
5710
5711 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5712 if (!vcpu->kvm->arch.triple_fault_event)
5713 return -EINVAL;
5714 if (events->triple_fault.pending)
5715 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5716 else
5717 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5718 }
5719
5720 kvm_make_request(KVM_REQ_EVENT, vcpu);
5721
5722 return 0;
5723 }
5724
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5725 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5726 struct kvm_debugregs *dbgregs)
5727 {
5728 unsigned int i;
5729
5730 if (vcpu->kvm->arch.has_protected_state &&
5731 vcpu->arch.guest_state_protected)
5732 return -EINVAL;
5733
5734 memset(dbgregs, 0, sizeof(*dbgregs));
5735
5736 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5737 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5738 dbgregs->db[i] = vcpu->arch.db[i];
5739
5740 dbgregs->dr6 = vcpu->arch.dr6;
5741 dbgregs->dr7 = vcpu->arch.dr7;
5742 return 0;
5743 }
5744
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5745 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5746 struct kvm_debugregs *dbgregs)
5747 {
5748 unsigned int i;
5749
5750 if (vcpu->kvm->arch.has_protected_state &&
5751 vcpu->arch.guest_state_protected)
5752 return -EINVAL;
5753
5754 if (dbgregs->flags)
5755 return -EINVAL;
5756
5757 if (!kvm_dr6_valid(dbgregs->dr6))
5758 return -EINVAL;
5759 if (!kvm_dr7_valid(dbgregs->dr7))
5760 return -EINVAL;
5761
5762 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5763 vcpu->arch.db[i] = dbgregs->db[i];
5764
5765 kvm_update_dr0123(vcpu);
5766 vcpu->arch.dr6 = dbgregs->dr6;
5767 vcpu->arch.dr7 = dbgregs->dr7;
5768 kvm_update_dr7(vcpu);
5769
5770 return 0;
5771 }
5772
5773
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5774 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5775 u8 *state, unsigned int size)
5776 {
5777 /*
5778 * Only copy state for features that are enabled for the guest. The
5779 * state itself isn't problematic, but setting bits in the header for
5780 * features that are supported in *this* host but not exposed to the
5781 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5782 * compatible host without the features that are NOT exposed to the
5783 * guest.
5784 *
5785 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5786 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5787 * supported by the host.
5788 */
5789 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5790 XFEATURE_MASK_FPSSE;
5791
5792 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5793 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5794
5795 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5796 supported_xcr0, vcpu->arch.pkru);
5797 return 0;
5798 }
5799
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5800 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5801 struct kvm_xsave *guest_xsave)
5802 {
5803 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5804 sizeof(guest_xsave->region));
5805 }
5806
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5807 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5808 struct kvm_xsave *guest_xsave)
5809 {
5810 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5811 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5812
5813 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5814 guest_xsave->region,
5815 kvm_caps.supported_xcr0,
5816 &vcpu->arch.pkru);
5817 }
5818
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5819 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5820 struct kvm_xcrs *guest_xcrs)
5821 {
5822 if (vcpu->kvm->arch.has_protected_state &&
5823 vcpu->arch.guest_state_protected)
5824 return -EINVAL;
5825
5826 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5827 guest_xcrs->nr_xcrs = 0;
5828 return 0;
5829 }
5830
5831 guest_xcrs->nr_xcrs = 1;
5832 guest_xcrs->flags = 0;
5833 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5834 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5835 return 0;
5836 }
5837
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5838 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5839 struct kvm_xcrs *guest_xcrs)
5840 {
5841 int i, r = 0;
5842
5843 if (vcpu->kvm->arch.has_protected_state &&
5844 vcpu->arch.guest_state_protected)
5845 return -EINVAL;
5846
5847 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5848 return -EINVAL;
5849
5850 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5851 return -EINVAL;
5852
5853 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5854 /* Only support XCR0 currently */
5855 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5856 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5857 guest_xcrs->xcrs[i].value);
5858 break;
5859 }
5860 if (r)
5861 r = -EINVAL;
5862 return r;
5863 }
5864
5865 /*
5866 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5867 * stopped by the hypervisor. This function will be called from the host only.
5868 * EINVAL is returned when the host attempts to set the flag for a guest that
5869 * does not support pv clocks.
5870 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5871 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5872 {
5873 if (!vcpu->arch.pv_time.active)
5874 return -EINVAL;
5875 vcpu->arch.pvclock_set_guest_stopped_request = true;
5876 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5877 return 0;
5878 }
5879
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5880 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5881 struct kvm_device_attr *attr)
5882 {
5883 int r;
5884
5885 switch (attr->attr) {
5886 case KVM_VCPU_TSC_OFFSET:
5887 r = 0;
5888 break;
5889 default:
5890 r = -ENXIO;
5891 }
5892
5893 return r;
5894 }
5895
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5896 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5897 struct kvm_device_attr *attr)
5898 {
5899 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5900 int r;
5901
5902 switch (attr->attr) {
5903 case KVM_VCPU_TSC_OFFSET:
5904 r = -EFAULT;
5905 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5906 break;
5907 r = 0;
5908 break;
5909 default:
5910 r = -ENXIO;
5911 }
5912
5913 return r;
5914 }
5915
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5916 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5917 struct kvm_device_attr *attr)
5918 {
5919 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5920 struct kvm *kvm = vcpu->kvm;
5921 int r;
5922
5923 switch (attr->attr) {
5924 case KVM_VCPU_TSC_OFFSET: {
5925 u64 offset, tsc, ns;
5926 unsigned long flags;
5927 bool matched;
5928
5929 r = -EFAULT;
5930 if (get_user(offset, uaddr))
5931 break;
5932
5933 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5934
5935 matched = (vcpu->arch.virtual_tsc_khz &&
5936 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5937 kvm->arch.last_tsc_offset == offset);
5938
5939 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5940 ns = get_kvmclock_base_ns();
5941
5942 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5943 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5944
5945 r = 0;
5946 break;
5947 }
5948 default:
5949 r = -ENXIO;
5950 }
5951
5952 return r;
5953 }
5954
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5955 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5956 unsigned int ioctl,
5957 void __user *argp)
5958 {
5959 struct kvm_device_attr attr;
5960 int r;
5961
5962 if (copy_from_user(&attr, argp, sizeof(attr)))
5963 return -EFAULT;
5964
5965 if (attr.group != KVM_VCPU_TSC_CTRL)
5966 return -ENXIO;
5967
5968 switch (ioctl) {
5969 case KVM_HAS_DEVICE_ATTR:
5970 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5971 break;
5972 case KVM_GET_DEVICE_ATTR:
5973 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5974 break;
5975 case KVM_SET_DEVICE_ATTR:
5976 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5977 break;
5978 }
5979
5980 return r;
5981 }
5982
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5983 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5984 struct kvm_enable_cap *cap)
5985 {
5986 if (cap->flags)
5987 return -EINVAL;
5988
5989 switch (cap->cap) {
5990 #ifdef CONFIG_KVM_HYPERV
5991 case KVM_CAP_HYPERV_SYNIC2:
5992 if (cap->args[0])
5993 return -EINVAL;
5994 fallthrough;
5995
5996 case KVM_CAP_HYPERV_SYNIC:
5997 if (!irqchip_in_kernel(vcpu->kvm))
5998 return -EINVAL;
5999 return kvm_hv_activate_synic(vcpu, cap->cap ==
6000 KVM_CAP_HYPERV_SYNIC2);
6001 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
6002 {
6003 int r;
6004 uint16_t vmcs_version;
6005 void __user *user_ptr;
6006
6007 if (!kvm_x86_ops.nested_ops->enable_evmcs)
6008 return -ENOTTY;
6009 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
6010 if (!r) {
6011 user_ptr = (void __user *)(uintptr_t)cap->args[0];
6012 if (copy_to_user(user_ptr, &vmcs_version,
6013 sizeof(vmcs_version)))
6014 r = -EFAULT;
6015 }
6016 return r;
6017 }
6018 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
6019 if (!kvm_x86_ops.enable_l2_tlb_flush)
6020 return -ENOTTY;
6021
6022 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
6023
6024 case KVM_CAP_HYPERV_ENFORCE_CPUID:
6025 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
6026 #endif
6027
6028 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
6029 vcpu->arch.pv_cpuid.enforce = cap->args[0];
6030 return 0;
6031 default:
6032 return -EINVAL;
6033 }
6034 }
6035
6036 struct kvm_x86_reg_id {
6037 __u32 index;
6038 __u8 type;
6039 __u8 rsvd1;
6040 __u8 rsvd2:4;
6041 __u8 size:4;
6042 __u8 x86;
6043 };
6044
kvm_translate_kvm_reg(struct kvm_vcpu * vcpu,struct kvm_x86_reg_id * reg)6045 static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu,
6046 struct kvm_x86_reg_id *reg)
6047 {
6048 switch (reg->index) {
6049 case KVM_REG_GUEST_SSP:
6050 /*
6051 * FIXME: If host-initiated accesses are ever exempted from
6052 * ignore_msrs (in kvm_do_msr_access()), drop this manual check
6053 * and rely on KVM's standard checks to reject accesses to regs
6054 * that don't exist.
6055 */
6056 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
6057 return -EINVAL;
6058
6059 reg->type = KVM_X86_REG_TYPE_MSR;
6060 reg->index = MSR_KVM_INTERNAL_GUEST_SSP;
6061 break;
6062 default:
6063 return -EINVAL;
6064 }
6065 return 0;
6066 }
6067
kvm_get_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6068 static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6069 {
6070 u64 val;
6071
6072 if (do_get_msr(vcpu, msr, &val))
6073 return -EINVAL;
6074
6075 if (put_user(val, user_val))
6076 return -EFAULT;
6077
6078 return 0;
6079 }
6080
kvm_set_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6081 static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6082 {
6083 u64 val;
6084
6085 if (get_user(val, user_val))
6086 return -EFAULT;
6087
6088 if (do_set_msr(vcpu, msr, &val))
6089 return -EINVAL;
6090
6091 return 0;
6092 }
6093
kvm_get_set_one_reg(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)6094 static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl,
6095 void __user *argp)
6096 {
6097 struct kvm_one_reg one_reg;
6098 struct kvm_x86_reg_id *reg;
6099 u64 __user *user_val;
6100 bool load_fpu;
6101 int r;
6102
6103 if (copy_from_user(&one_reg, argp, sizeof(one_reg)))
6104 return -EFAULT;
6105
6106 if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86)
6107 return -EINVAL;
6108
6109 reg = (struct kvm_x86_reg_id *)&one_reg.id;
6110 if (reg->rsvd1 || reg->rsvd2)
6111 return -EINVAL;
6112
6113 if (reg->type == KVM_X86_REG_TYPE_KVM) {
6114 r = kvm_translate_kvm_reg(vcpu, reg);
6115 if (r)
6116 return r;
6117 }
6118
6119 if (reg->type != KVM_X86_REG_TYPE_MSR)
6120 return -EINVAL;
6121
6122 if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64)
6123 return -EINVAL;
6124
6125 guard(srcu)(&vcpu->kvm->srcu);
6126
6127 load_fpu = is_xstate_managed_msr(vcpu, reg->index);
6128 if (load_fpu)
6129 kvm_load_guest_fpu(vcpu);
6130
6131 user_val = u64_to_user_ptr(one_reg.addr);
6132 if (ioctl == KVM_GET_ONE_REG)
6133 r = kvm_get_one_msr(vcpu, reg->index, user_val);
6134 else
6135 r = kvm_set_one_msr(vcpu, reg->index, user_val);
6136
6137 if (load_fpu)
6138 kvm_put_guest_fpu(vcpu);
6139 return r;
6140 }
6141
kvm_get_reg_list(struct kvm_vcpu * vcpu,struct kvm_reg_list __user * user_list)6142 static int kvm_get_reg_list(struct kvm_vcpu *vcpu,
6143 struct kvm_reg_list __user *user_list)
6144 {
6145 u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0;
6146 u64 user_nr_regs;
6147
6148 if (get_user(user_nr_regs, &user_list->n))
6149 return -EFAULT;
6150
6151 if (put_user(nr_regs, &user_list->n))
6152 return -EFAULT;
6153
6154 if (user_nr_regs < nr_regs)
6155 return -E2BIG;
6156
6157 if (nr_regs &&
6158 put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0]))
6159 return -EFAULT;
6160
6161 return 0;
6162 }
6163
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6164 long kvm_arch_vcpu_ioctl(struct file *filp,
6165 unsigned int ioctl, unsigned long arg)
6166 {
6167 struct kvm_vcpu *vcpu = filp->private_data;
6168 void __user *argp = (void __user *)arg;
6169 int r;
6170 union {
6171 struct kvm_sregs2 *sregs2;
6172 struct kvm_lapic_state *lapic;
6173 struct kvm_xsave *xsave;
6174 struct kvm_xcrs *xcrs;
6175 void *buffer;
6176 } u;
6177
6178 vcpu_load(vcpu);
6179
6180 u.buffer = NULL;
6181 switch (ioctl) {
6182 case KVM_GET_LAPIC: {
6183 r = -EINVAL;
6184 if (!lapic_in_kernel(vcpu))
6185 goto out;
6186 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
6187
6188 r = -ENOMEM;
6189 if (!u.lapic)
6190 goto out;
6191 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
6192 if (r)
6193 goto out;
6194 r = -EFAULT;
6195 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
6196 goto out;
6197 r = 0;
6198 break;
6199 }
6200 case KVM_SET_LAPIC: {
6201 r = -EINVAL;
6202 if (!lapic_in_kernel(vcpu))
6203 goto out;
6204 u.lapic = memdup_user(argp, sizeof(*u.lapic));
6205 if (IS_ERR(u.lapic)) {
6206 r = PTR_ERR(u.lapic);
6207 goto out_nofree;
6208 }
6209
6210 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
6211 break;
6212 }
6213 case KVM_INTERRUPT: {
6214 struct kvm_interrupt irq;
6215
6216 r = -EFAULT;
6217 if (copy_from_user(&irq, argp, sizeof(irq)))
6218 goto out;
6219 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
6220 break;
6221 }
6222 case KVM_NMI: {
6223 r = kvm_vcpu_ioctl_nmi(vcpu);
6224 break;
6225 }
6226 case KVM_SMI: {
6227 r = kvm_inject_smi(vcpu);
6228 break;
6229 }
6230 case KVM_SET_CPUID: {
6231 struct kvm_cpuid __user *cpuid_arg = argp;
6232 struct kvm_cpuid cpuid;
6233
6234 r = -EFAULT;
6235 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6236 goto out;
6237 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
6238 break;
6239 }
6240 case KVM_SET_CPUID2: {
6241 struct kvm_cpuid2 __user *cpuid_arg = argp;
6242 struct kvm_cpuid2 cpuid;
6243
6244 r = -EFAULT;
6245 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6246 goto out;
6247 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
6248 cpuid_arg->entries);
6249 break;
6250 }
6251 case KVM_GET_CPUID2: {
6252 struct kvm_cpuid2 __user *cpuid_arg = argp;
6253 struct kvm_cpuid2 cpuid;
6254
6255 r = -EFAULT;
6256 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6257 goto out;
6258 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
6259 cpuid_arg->entries);
6260 if (r)
6261 goto out;
6262 r = -EFAULT;
6263 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
6264 goto out;
6265 r = 0;
6266 break;
6267 }
6268 case KVM_GET_MSRS: {
6269 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6270 r = msr_io(vcpu, argp, do_get_msr, 1);
6271 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6272 break;
6273 }
6274 case KVM_SET_MSRS: {
6275 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6276 r = msr_io(vcpu, argp, do_set_msr, 0);
6277 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6278 break;
6279 }
6280 case KVM_GET_ONE_REG:
6281 case KVM_SET_ONE_REG:
6282 r = kvm_get_set_one_reg(vcpu, ioctl, argp);
6283 break;
6284 case KVM_GET_REG_LIST:
6285 r = kvm_get_reg_list(vcpu, argp);
6286 break;
6287 case KVM_TPR_ACCESS_REPORTING: {
6288 struct kvm_tpr_access_ctl tac;
6289
6290 r = -EFAULT;
6291 if (copy_from_user(&tac, argp, sizeof(tac)))
6292 goto out;
6293 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6294 if (r)
6295 goto out;
6296 r = -EFAULT;
6297 if (copy_to_user(argp, &tac, sizeof(tac)))
6298 goto out;
6299 r = 0;
6300 break;
6301 };
6302 case KVM_SET_VAPIC_ADDR: {
6303 struct kvm_vapic_addr va;
6304 int idx;
6305
6306 r = -EINVAL;
6307 if (!lapic_in_kernel(vcpu))
6308 goto out;
6309 r = -EFAULT;
6310 if (copy_from_user(&va, argp, sizeof(va)))
6311 goto out;
6312 idx = srcu_read_lock(&vcpu->kvm->srcu);
6313 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6314 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6315 break;
6316 }
6317 case KVM_X86_SETUP_MCE: {
6318 u64 mcg_cap;
6319
6320 r = -EFAULT;
6321 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6322 goto out;
6323 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6324 break;
6325 }
6326 case KVM_X86_SET_MCE: {
6327 struct kvm_x86_mce mce;
6328
6329 r = -EFAULT;
6330 if (copy_from_user(&mce, argp, sizeof(mce)))
6331 goto out;
6332 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6333 break;
6334 }
6335 case KVM_GET_VCPU_EVENTS: {
6336 struct kvm_vcpu_events events;
6337
6338 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6339
6340 r = -EFAULT;
6341 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6342 break;
6343 r = 0;
6344 break;
6345 }
6346 case KVM_SET_VCPU_EVENTS: {
6347 struct kvm_vcpu_events events;
6348
6349 r = -EFAULT;
6350 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6351 break;
6352
6353 kvm_vcpu_srcu_read_lock(vcpu);
6354 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6355 kvm_vcpu_srcu_read_unlock(vcpu);
6356 break;
6357 }
6358 case KVM_GET_DEBUGREGS: {
6359 struct kvm_debugregs dbgregs;
6360
6361 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6362 if (r < 0)
6363 break;
6364
6365 r = -EFAULT;
6366 if (copy_to_user(argp, &dbgregs,
6367 sizeof(struct kvm_debugregs)))
6368 break;
6369 r = 0;
6370 break;
6371 }
6372 case KVM_SET_DEBUGREGS: {
6373 struct kvm_debugregs dbgregs;
6374
6375 r = -EFAULT;
6376 if (copy_from_user(&dbgregs, argp,
6377 sizeof(struct kvm_debugregs)))
6378 break;
6379
6380 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6381 break;
6382 }
6383 case KVM_GET_XSAVE: {
6384 r = -EINVAL;
6385 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6386 break;
6387
6388 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6389 r = -ENOMEM;
6390 if (!u.xsave)
6391 break;
6392
6393 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6394 if (r < 0)
6395 break;
6396
6397 r = -EFAULT;
6398 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6399 break;
6400 r = 0;
6401 break;
6402 }
6403 case KVM_SET_XSAVE: {
6404 int size = vcpu->arch.guest_fpu.uabi_size;
6405
6406 u.xsave = memdup_user(argp, size);
6407 if (IS_ERR(u.xsave)) {
6408 r = PTR_ERR(u.xsave);
6409 goto out_nofree;
6410 }
6411
6412 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6413 break;
6414 }
6415
6416 case KVM_GET_XSAVE2: {
6417 int size = vcpu->arch.guest_fpu.uabi_size;
6418
6419 u.xsave = kzalloc(size, GFP_KERNEL);
6420 r = -ENOMEM;
6421 if (!u.xsave)
6422 break;
6423
6424 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6425 if (r < 0)
6426 break;
6427
6428 r = -EFAULT;
6429 if (copy_to_user(argp, u.xsave, size))
6430 break;
6431
6432 r = 0;
6433 break;
6434 }
6435
6436 case KVM_GET_XCRS: {
6437 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6438 r = -ENOMEM;
6439 if (!u.xcrs)
6440 break;
6441
6442 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6443 if (r < 0)
6444 break;
6445
6446 r = -EFAULT;
6447 if (copy_to_user(argp, u.xcrs,
6448 sizeof(struct kvm_xcrs)))
6449 break;
6450 r = 0;
6451 break;
6452 }
6453 case KVM_SET_XCRS: {
6454 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6455 if (IS_ERR(u.xcrs)) {
6456 r = PTR_ERR(u.xcrs);
6457 goto out_nofree;
6458 }
6459
6460 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6461 break;
6462 }
6463 case KVM_SET_TSC_KHZ: {
6464 u32 user_tsc_khz;
6465
6466 r = -EINVAL;
6467
6468 if (vcpu->arch.guest_tsc_protected)
6469 goto out;
6470
6471 user_tsc_khz = (u32)arg;
6472
6473 if (kvm_caps.has_tsc_control &&
6474 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6475 goto out;
6476
6477 if (user_tsc_khz == 0)
6478 user_tsc_khz = tsc_khz;
6479
6480 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6481 r = 0;
6482
6483 goto out;
6484 }
6485 case KVM_GET_TSC_KHZ: {
6486 r = vcpu->arch.virtual_tsc_khz;
6487 goto out;
6488 }
6489 case KVM_KVMCLOCK_CTRL: {
6490 r = kvm_set_guest_paused(vcpu);
6491 goto out;
6492 }
6493 case KVM_ENABLE_CAP: {
6494 struct kvm_enable_cap cap;
6495
6496 r = -EFAULT;
6497 if (copy_from_user(&cap, argp, sizeof(cap)))
6498 goto out;
6499 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6500 break;
6501 }
6502 case KVM_GET_NESTED_STATE: {
6503 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6504 u32 user_data_size;
6505
6506 r = -EINVAL;
6507 if (!kvm_x86_ops.nested_ops->get_state)
6508 break;
6509
6510 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6511 r = -EFAULT;
6512 if (get_user(user_data_size, &user_kvm_nested_state->size))
6513 break;
6514
6515 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6516 user_data_size);
6517 if (r < 0)
6518 break;
6519
6520 if (r > user_data_size) {
6521 if (put_user(r, &user_kvm_nested_state->size))
6522 r = -EFAULT;
6523 else
6524 r = -E2BIG;
6525 break;
6526 }
6527
6528 r = 0;
6529 break;
6530 }
6531 case KVM_SET_NESTED_STATE: {
6532 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6533 struct kvm_nested_state kvm_state;
6534 int idx;
6535
6536 r = -EINVAL;
6537 if (!kvm_x86_ops.nested_ops->set_state)
6538 break;
6539
6540 r = -EFAULT;
6541 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6542 break;
6543
6544 r = -EINVAL;
6545 if (kvm_state.size < sizeof(kvm_state))
6546 break;
6547
6548 if (kvm_state.flags &
6549 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6550 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6551 | KVM_STATE_NESTED_GIF_SET))
6552 break;
6553
6554 /* nested_run_pending implies guest_mode. */
6555 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6556 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6557 break;
6558
6559 idx = srcu_read_lock(&vcpu->kvm->srcu);
6560 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6561 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6562 break;
6563 }
6564 #ifdef CONFIG_KVM_HYPERV
6565 case KVM_GET_SUPPORTED_HV_CPUID:
6566 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6567 break;
6568 #endif
6569 #ifdef CONFIG_KVM_XEN
6570 case KVM_XEN_VCPU_GET_ATTR: {
6571 struct kvm_xen_vcpu_attr xva;
6572
6573 r = -EFAULT;
6574 if (copy_from_user(&xva, argp, sizeof(xva)))
6575 goto out;
6576 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6577 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6578 r = -EFAULT;
6579 break;
6580 }
6581 case KVM_XEN_VCPU_SET_ATTR: {
6582 struct kvm_xen_vcpu_attr xva;
6583
6584 r = -EFAULT;
6585 if (copy_from_user(&xva, argp, sizeof(xva)))
6586 goto out;
6587 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6588 break;
6589 }
6590 #endif
6591 case KVM_GET_SREGS2: {
6592 r = -EINVAL;
6593 if (vcpu->kvm->arch.has_protected_state &&
6594 vcpu->arch.guest_state_protected)
6595 goto out;
6596
6597 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6598 r = -ENOMEM;
6599 if (!u.sregs2)
6600 goto out;
6601 __get_sregs2(vcpu, u.sregs2);
6602 r = -EFAULT;
6603 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6604 goto out;
6605 r = 0;
6606 break;
6607 }
6608 case KVM_SET_SREGS2: {
6609 r = -EINVAL;
6610 if (vcpu->kvm->arch.has_protected_state &&
6611 vcpu->arch.guest_state_protected)
6612 goto out;
6613
6614 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6615 if (IS_ERR(u.sregs2)) {
6616 r = PTR_ERR(u.sregs2);
6617 u.sregs2 = NULL;
6618 goto out;
6619 }
6620 r = __set_sregs2(vcpu, u.sregs2);
6621 break;
6622 }
6623 case KVM_HAS_DEVICE_ATTR:
6624 case KVM_GET_DEVICE_ATTR:
6625 case KVM_SET_DEVICE_ATTR:
6626 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6627 break;
6628 case KVM_MEMORY_ENCRYPT_OP:
6629 r = -ENOTTY;
6630 if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6631 goto out;
6632 r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6633 break;
6634 default:
6635 r = -EINVAL;
6636 }
6637 out:
6638 kfree(u.buffer);
6639 out_nofree:
6640 vcpu_put(vcpu);
6641 return r;
6642 }
6643
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6644 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6645 {
6646 return VM_FAULT_SIGBUS;
6647 }
6648
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6649 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6650 {
6651 int ret;
6652
6653 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6654 return -EINVAL;
6655 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6656 return ret;
6657 }
6658
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6659 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6660 u64 ident_addr)
6661 {
6662 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6663 }
6664
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6665 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6666 unsigned long kvm_nr_mmu_pages)
6667 {
6668 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6669 return -EINVAL;
6670
6671 mutex_lock(&kvm->slots_lock);
6672
6673 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6674 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6675
6676 mutex_unlock(&kvm->slots_lock);
6677 return 0;
6678 }
6679
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6680 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6681 {
6682
6683 /*
6684 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6685 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6686 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6687 * VM-Exit.
6688 */
6689 struct kvm_vcpu *vcpu;
6690 unsigned long i;
6691
6692 if (!kvm->arch.cpu_dirty_log_size)
6693 return;
6694
6695 kvm_for_each_vcpu(i, vcpu, kvm)
6696 kvm_vcpu_kick(vcpu);
6697 }
6698
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6699 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6700 struct kvm_enable_cap *cap)
6701 {
6702 int r;
6703
6704 if (cap->flags)
6705 return -EINVAL;
6706
6707 switch (cap->cap) {
6708 case KVM_CAP_DISABLE_QUIRKS2:
6709 r = -EINVAL;
6710 if (cap->args[0] & ~kvm_caps.supported_quirks)
6711 break;
6712 fallthrough;
6713 case KVM_CAP_DISABLE_QUIRKS:
6714 kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6715 r = 0;
6716 break;
6717 case KVM_CAP_SPLIT_IRQCHIP: {
6718 mutex_lock(&kvm->lock);
6719 r = -EINVAL;
6720 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6721 goto split_irqchip_unlock;
6722 r = -EEXIST;
6723 if (irqchip_in_kernel(kvm))
6724 goto split_irqchip_unlock;
6725 if (kvm->created_vcpus)
6726 goto split_irqchip_unlock;
6727 /* Pairs with irqchip_in_kernel. */
6728 smp_wmb();
6729 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6730 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6731 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6732 r = 0;
6733 split_irqchip_unlock:
6734 mutex_unlock(&kvm->lock);
6735 break;
6736 }
6737 case KVM_CAP_X2APIC_API:
6738 r = -EINVAL;
6739 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6740 break;
6741
6742 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6743 kvm->arch.x2apic_format = true;
6744 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6745 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6746
6747 r = 0;
6748 break;
6749 case KVM_CAP_X86_DISABLE_EXITS:
6750 r = -EINVAL;
6751 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6752 break;
6753
6754 mutex_lock(&kvm->lock);
6755 if (kvm->created_vcpus)
6756 goto disable_exits_unlock;
6757
6758 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6759 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6760
6761 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6762 cpu_smt_possible() &&
6763 (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE |
6764 KVM_X86_DISABLE_EXITS_APERFMPERF)))
6765 pr_warn_once(SMT_RSB_MSG);
6766
6767 kvm_disable_exits(kvm, cap->args[0]);
6768 r = 0;
6769 disable_exits_unlock:
6770 mutex_unlock(&kvm->lock);
6771 break;
6772 case KVM_CAP_MSR_PLATFORM_INFO:
6773 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6774 r = 0;
6775 break;
6776 case KVM_CAP_EXCEPTION_PAYLOAD:
6777 kvm->arch.exception_payload_enabled = cap->args[0];
6778 r = 0;
6779 break;
6780 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6781 kvm->arch.triple_fault_event = cap->args[0];
6782 r = 0;
6783 break;
6784 case KVM_CAP_X86_USER_SPACE_MSR:
6785 r = -EINVAL;
6786 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6787 break;
6788 kvm->arch.user_space_msr_mask = cap->args[0];
6789 r = 0;
6790 break;
6791 case KVM_CAP_X86_BUS_LOCK_EXIT:
6792 r = -EINVAL;
6793 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6794 break;
6795
6796 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6797 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6798 break;
6799
6800 if (kvm_caps.has_bus_lock_exit &&
6801 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6802 kvm->arch.bus_lock_detection_enabled = true;
6803 r = 0;
6804 break;
6805 #ifdef CONFIG_X86_SGX_KVM
6806 case KVM_CAP_SGX_ATTRIBUTE: {
6807 unsigned long allowed_attributes = 0;
6808
6809 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6810 if (r)
6811 break;
6812
6813 /* KVM only supports the PROVISIONKEY privileged attribute. */
6814 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6815 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6816 kvm->arch.sgx_provisioning_allowed = true;
6817 else
6818 r = -EINVAL;
6819 break;
6820 }
6821 #endif
6822 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6823 r = -EINVAL;
6824 if (!kvm_x86_ops.vm_copy_enc_context_from)
6825 break;
6826
6827 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6828 break;
6829 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6830 r = -EINVAL;
6831 if (!kvm_x86_ops.vm_move_enc_context_from)
6832 break;
6833
6834 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6835 break;
6836 case KVM_CAP_EXIT_HYPERCALL:
6837 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6838 r = -EINVAL;
6839 break;
6840 }
6841 kvm->arch.hypercall_exit_enabled = cap->args[0];
6842 r = 0;
6843 break;
6844 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6845 r = -EINVAL;
6846 if (cap->args[0] & ~1)
6847 break;
6848 kvm->arch.exit_on_emulation_error = cap->args[0];
6849 r = 0;
6850 break;
6851 case KVM_CAP_PMU_CAPABILITY:
6852 r = -EINVAL;
6853 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6854 break;
6855
6856 mutex_lock(&kvm->lock);
6857 if (!kvm->created_vcpus) {
6858 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6859 r = 0;
6860 }
6861 mutex_unlock(&kvm->lock);
6862 break;
6863 case KVM_CAP_MAX_VCPU_ID:
6864 r = -EINVAL;
6865 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6866 break;
6867
6868 mutex_lock(&kvm->lock);
6869 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6870 ;
6871 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6872 r = 0;
6873 } else if (!kvm->arch.max_vcpu_ids) {
6874 kvm->arch.max_vcpu_ids = cap->args[0];
6875 r = 0;
6876 }
6877 mutex_unlock(&kvm->lock);
6878 break;
6879 case KVM_CAP_X86_NOTIFY_VMEXIT:
6880 r = -EINVAL;
6881 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6882 break;
6883 if (!kvm_caps.has_notify_vmexit)
6884 break;
6885 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6886 break;
6887 mutex_lock(&kvm->lock);
6888 if (!kvm->created_vcpus) {
6889 kvm->arch.notify_window = cap->args[0] >> 32;
6890 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6891 r = 0;
6892 }
6893 mutex_unlock(&kvm->lock);
6894 break;
6895 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6896 r = -EINVAL;
6897
6898 /*
6899 * Since the risk of disabling NX hugepages is a guest crashing
6900 * the system, ensure the userspace process has permission to
6901 * reboot the system.
6902 *
6903 * Note that unlike the reboot() syscall, the process must have
6904 * this capability in the root namespace because exposing
6905 * /dev/kvm into a container does not limit the scope of the
6906 * iTLB multihit bug to that container. In other words,
6907 * this must use capable(), not ns_capable().
6908 */
6909 if (!capable(CAP_SYS_BOOT)) {
6910 r = -EPERM;
6911 break;
6912 }
6913
6914 if (cap->args[0])
6915 break;
6916
6917 mutex_lock(&kvm->lock);
6918 if (!kvm->created_vcpus) {
6919 kvm->arch.disable_nx_huge_pages = true;
6920 r = 0;
6921 }
6922 mutex_unlock(&kvm->lock);
6923 break;
6924 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6925 u64 bus_cycle_ns = cap->args[0];
6926 u64 unused;
6927
6928 /*
6929 * Guard against overflow in tmict_to_ns(). 128 is the highest
6930 * divide value that can be programmed in APIC_TDCR.
6931 */
6932 r = -EINVAL;
6933 if (!bus_cycle_ns ||
6934 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6935 break;
6936
6937 r = 0;
6938 mutex_lock(&kvm->lock);
6939 if (!irqchip_in_kernel(kvm))
6940 r = -ENXIO;
6941 else if (kvm->created_vcpus)
6942 r = -EINVAL;
6943 else
6944 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6945 mutex_unlock(&kvm->lock);
6946 break;
6947 }
6948 default:
6949 r = -EINVAL;
6950 break;
6951 }
6952 return r;
6953 }
6954
kvm_alloc_msr_filter(bool default_allow)6955 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6956 {
6957 struct kvm_x86_msr_filter *msr_filter;
6958
6959 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6960 if (!msr_filter)
6961 return NULL;
6962
6963 msr_filter->default_allow = default_allow;
6964 return msr_filter;
6965 }
6966
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6967 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6968 {
6969 u32 i;
6970
6971 if (!msr_filter)
6972 return;
6973
6974 for (i = 0; i < msr_filter->count; i++)
6975 kfree(msr_filter->ranges[i].bitmap);
6976
6977 kfree(msr_filter);
6978 }
6979
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6980 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6981 struct kvm_msr_filter_range *user_range)
6982 {
6983 unsigned long *bitmap;
6984 size_t bitmap_size;
6985
6986 if (!user_range->nmsrs)
6987 return 0;
6988
6989 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6990 return -EINVAL;
6991
6992 if (!user_range->flags)
6993 return -EINVAL;
6994
6995 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6996 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6997 return -EINVAL;
6998
6999 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
7000 if (IS_ERR(bitmap))
7001 return PTR_ERR(bitmap);
7002
7003 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
7004 .flags = user_range->flags,
7005 .base = user_range->base,
7006 .nmsrs = user_range->nmsrs,
7007 .bitmap = bitmap,
7008 };
7009
7010 msr_filter->count++;
7011 return 0;
7012 }
7013
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)7014 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
7015 struct kvm_msr_filter *filter)
7016 {
7017 struct kvm_x86_msr_filter *new_filter, *old_filter;
7018 bool default_allow;
7019 bool empty = true;
7020 int r;
7021 u32 i;
7022
7023 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
7024 return -EINVAL;
7025
7026 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
7027 empty &= !filter->ranges[i].nmsrs;
7028
7029 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
7030 if (empty && !default_allow)
7031 return -EINVAL;
7032
7033 new_filter = kvm_alloc_msr_filter(default_allow);
7034 if (!new_filter)
7035 return -ENOMEM;
7036
7037 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
7038 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
7039 if (r) {
7040 kvm_free_msr_filter(new_filter);
7041 return r;
7042 }
7043 }
7044
7045 mutex_lock(&kvm->lock);
7046 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
7047 mutex_is_locked(&kvm->lock));
7048 mutex_unlock(&kvm->lock);
7049 synchronize_srcu(&kvm->srcu);
7050
7051 kvm_free_msr_filter(old_filter);
7052
7053 /*
7054 * Recalc MSR intercepts as userspace may want to intercept accesses to
7055 * MSRs that KVM would otherwise pass through to the guest.
7056 */
7057 kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS);
7058
7059 return 0;
7060 }
7061
7062 #ifdef CONFIG_KVM_COMPAT
7063 /* for KVM_X86_SET_MSR_FILTER */
7064 struct kvm_msr_filter_range_compat {
7065 __u32 flags;
7066 __u32 nmsrs;
7067 __u32 base;
7068 __u32 bitmap;
7069 };
7070
7071 struct kvm_msr_filter_compat {
7072 __u32 flags;
7073 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
7074 };
7075
7076 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
7077
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7078 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
7079 unsigned long arg)
7080 {
7081 void __user *argp = (void __user *)arg;
7082 struct kvm *kvm = filp->private_data;
7083 long r = -ENOTTY;
7084
7085 switch (ioctl) {
7086 case KVM_X86_SET_MSR_FILTER_COMPAT: {
7087 struct kvm_msr_filter __user *user_msr_filter = argp;
7088 struct kvm_msr_filter_compat filter_compat;
7089 struct kvm_msr_filter filter;
7090 int i;
7091
7092 if (copy_from_user(&filter_compat, user_msr_filter,
7093 sizeof(filter_compat)))
7094 return -EFAULT;
7095
7096 filter.flags = filter_compat.flags;
7097 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
7098 struct kvm_msr_filter_range_compat *cr;
7099
7100 cr = &filter_compat.ranges[i];
7101 filter.ranges[i] = (struct kvm_msr_filter_range) {
7102 .flags = cr->flags,
7103 .nmsrs = cr->nmsrs,
7104 .base = cr->base,
7105 .bitmap = (__u8 *)(ulong)cr->bitmap,
7106 };
7107 }
7108
7109 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7110 break;
7111 }
7112 }
7113
7114 return r;
7115 }
7116 #endif
7117
7118 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)7119 static int kvm_arch_suspend_notifier(struct kvm *kvm)
7120 {
7121 struct kvm_vcpu *vcpu;
7122 unsigned long i;
7123
7124 /*
7125 * Ignore the return, marking the guest paused only "fails" if the vCPU
7126 * isn't using kvmclock; continuing on is correct and desirable.
7127 */
7128 kvm_for_each_vcpu(i, vcpu, kvm)
7129 (void)kvm_set_guest_paused(vcpu);
7130
7131 return NOTIFY_DONE;
7132 }
7133
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)7134 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
7135 {
7136 switch (state) {
7137 case PM_HIBERNATION_PREPARE:
7138 case PM_SUSPEND_PREPARE:
7139 return kvm_arch_suspend_notifier(kvm);
7140 }
7141
7142 return NOTIFY_DONE;
7143 }
7144 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7145
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)7146 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7147 {
7148 struct kvm_clock_data data = { 0 };
7149
7150 get_kvmclock(kvm, &data);
7151 if (copy_to_user(argp, &data, sizeof(data)))
7152 return -EFAULT;
7153
7154 return 0;
7155 }
7156
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)7157 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7158 {
7159 struct kvm_arch *ka = &kvm->arch;
7160 struct kvm_clock_data data;
7161 u64 now_raw_ns;
7162
7163 if (copy_from_user(&data, argp, sizeof(data)))
7164 return -EFAULT;
7165
7166 /*
7167 * Only KVM_CLOCK_REALTIME is used, but allow passing the
7168 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7169 */
7170 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7171 return -EINVAL;
7172
7173 kvm_hv_request_tsc_page_update(kvm);
7174 kvm_start_pvclock_update(kvm);
7175 pvclock_update_vm_gtod_copy(kvm);
7176
7177 /*
7178 * This pairs with kvm_guest_time_update(): when masterclock is
7179 * in use, we use master_kernel_ns + kvmclock_offset to set
7180 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7181 * is slightly ahead) here we risk going negative on unsigned
7182 * 'system_time' when 'data.clock' is very small.
7183 */
7184 if (data.flags & KVM_CLOCK_REALTIME) {
7185 u64 now_real_ns = ktime_get_real_ns();
7186
7187 /*
7188 * Avoid stepping the kvmclock backwards.
7189 */
7190 if (now_real_ns > data.realtime)
7191 data.clock += now_real_ns - data.realtime;
7192 }
7193
7194 if (ka->use_master_clock)
7195 now_raw_ns = ka->master_kernel_ns;
7196 else
7197 now_raw_ns = get_kvmclock_base_ns();
7198 ka->kvmclock_offset = data.clock - now_raw_ns;
7199 kvm_end_pvclock_update(kvm);
7200 return 0;
7201 }
7202
kvm_arch_vcpu_unlocked_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7203 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
7204 unsigned long arg)
7205 {
7206 struct kvm_vcpu *vcpu = filp->private_data;
7207 void __user *argp = (void __user *)arg;
7208
7209 if (ioctl == KVM_MEMORY_ENCRYPT_OP &&
7210 kvm_x86_ops.vcpu_mem_enc_unlocked_ioctl)
7211 return kvm_x86_call(vcpu_mem_enc_unlocked_ioctl)(vcpu, argp);
7212
7213 return -ENOIOCTLCMD;
7214 }
7215
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7216 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7217 {
7218 struct kvm *kvm = filp->private_data;
7219 void __user *argp = (void __user *)arg;
7220 int r = -ENOTTY;
7221
7222 #ifdef CONFIG_KVM_IOAPIC
7223 /*
7224 * This union makes it completely explicit to gcc-3.x
7225 * that these three variables' stack usage should be
7226 * combined, not added together.
7227 */
7228 union {
7229 struct kvm_pit_state ps;
7230 struct kvm_pit_state2 ps2;
7231 struct kvm_pit_config pit_config;
7232 } u;
7233 #endif
7234
7235 switch (ioctl) {
7236 case KVM_SET_TSS_ADDR:
7237 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7238 break;
7239 case KVM_SET_IDENTITY_MAP_ADDR: {
7240 u64 ident_addr;
7241
7242 mutex_lock(&kvm->lock);
7243 r = -EINVAL;
7244 if (kvm->created_vcpus)
7245 goto set_identity_unlock;
7246 r = -EFAULT;
7247 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7248 goto set_identity_unlock;
7249 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7250 set_identity_unlock:
7251 mutex_unlock(&kvm->lock);
7252 break;
7253 }
7254 case KVM_SET_NR_MMU_PAGES:
7255 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7256 break;
7257 #ifdef CONFIG_KVM_IOAPIC
7258 case KVM_CREATE_IRQCHIP: {
7259 mutex_lock(&kvm->lock);
7260
7261 r = -EEXIST;
7262 if (irqchip_in_kernel(kvm))
7263 goto create_irqchip_unlock;
7264
7265 /*
7266 * Disallow an in-kernel I/O APIC if the VM has protected EOIs,
7267 * i.e. if KVM can't intercept EOIs and thus can't properly
7268 * emulate level-triggered interrupts.
7269 */
7270 r = -ENOTTY;
7271 if (kvm->arch.has_protected_eoi)
7272 goto create_irqchip_unlock;
7273
7274 r = -EINVAL;
7275 if (kvm->created_vcpus)
7276 goto create_irqchip_unlock;
7277
7278 r = kvm_pic_init(kvm);
7279 if (r)
7280 goto create_irqchip_unlock;
7281
7282 r = kvm_ioapic_init(kvm);
7283 if (r) {
7284 kvm_pic_destroy(kvm);
7285 goto create_irqchip_unlock;
7286 }
7287
7288 r = kvm_setup_default_ioapic_and_pic_routing(kvm);
7289 if (r) {
7290 kvm_ioapic_destroy(kvm);
7291 kvm_pic_destroy(kvm);
7292 goto create_irqchip_unlock;
7293 }
7294 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7295 smp_wmb();
7296 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7297 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7298 create_irqchip_unlock:
7299 mutex_unlock(&kvm->lock);
7300 break;
7301 }
7302 case KVM_CREATE_PIT:
7303 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7304 goto create_pit;
7305 case KVM_CREATE_PIT2:
7306 r = -EFAULT;
7307 if (copy_from_user(&u.pit_config, argp,
7308 sizeof(struct kvm_pit_config)))
7309 goto out;
7310 create_pit:
7311 mutex_lock(&kvm->lock);
7312 r = -EEXIST;
7313 if (kvm->arch.vpit)
7314 goto create_pit_unlock;
7315 r = -ENOENT;
7316 if (!pic_in_kernel(kvm))
7317 goto create_pit_unlock;
7318 r = -ENOMEM;
7319 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7320 if (kvm->arch.vpit)
7321 r = 0;
7322 create_pit_unlock:
7323 mutex_unlock(&kvm->lock);
7324 break;
7325 case KVM_GET_IRQCHIP: {
7326 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7327 struct kvm_irqchip *chip;
7328
7329 chip = memdup_user(argp, sizeof(*chip));
7330 if (IS_ERR(chip)) {
7331 r = PTR_ERR(chip);
7332 goto out;
7333 }
7334
7335 r = -ENXIO;
7336 if (!irqchip_full(kvm))
7337 goto get_irqchip_out;
7338 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7339 if (r)
7340 goto get_irqchip_out;
7341 r = -EFAULT;
7342 if (copy_to_user(argp, chip, sizeof(*chip)))
7343 goto get_irqchip_out;
7344 r = 0;
7345 get_irqchip_out:
7346 kfree(chip);
7347 break;
7348 }
7349 case KVM_SET_IRQCHIP: {
7350 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7351 struct kvm_irqchip *chip;
7352
7353 chip = memdup_user(argp, sizeof(*chip));
7354 if (IS_ERR(chip)) {
7355 r = PTR_ERR(chip);
7356 goto out;
7357 }
7358
7359 r = -ENXIO;
7360 if (!irqchip_full(kvm))
7361 goto set_irqchip_out;
7362 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7363 set_irqchip_out:
7364 kfree(chip);
7365 break;
7366 }
7367 case KVM_GET_PIT: {
7368 r = -EFAULT;
7369 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7370 goto out;
7371 r = -ENXIO;
7372 if (!kvm->arch.vpit)
7373 goto out;
7374 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7375 if (r)
7376 goto out;
7377 r = -EFAULT;
7378 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7379 goto out;
7380 r = 0;
7381 break;
7382 }
7383 case KVM_SET_PIT: {
7384 r = -EFAULT;
7385 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7386 goto out;
7387 mutex_lock(&kvm->lock);
7388 r = -ENXIO;
7389 if (!kvm->arch.vpit)
7390 goto set_pit_out;
7391 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7392 set_pit_out:
7393 mutex_unlock(&kvm->lock);
7394 break;
7395 }
7396 case KVM_GET_PIT2: {
7397 r = -ENXIO;
7398 if (!kvm->arch.vpit)
7399 goto out;
7400 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7401 if (r)
7402 goto out;
7403 r = -EFAULT;
7404 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7405 goto out;
7406 r = 0;
7407 break;
7408 }
7409 case KVM_SET_PIT2: {
7410 r = -EFAULT;
7411 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7412 goto out;
7413 mutex_lock(&kvm->lock);
7414 r = -ENXIO;
7415 if (!kvm->arch.vpit)
7416 goto set_pit2_out;
7417 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7418 set_pit2_out:
7419 mutex_unlock(&kvm->lock);
7420 break;
7421 }
7422 case KVM_REINJECT_CONTROL: {
7423 struct kvm_reinject_control control;
7424 r = -EFAULT;
7425 if (copy_from_user(&control, argp, sizeof(control)))
7426 goto out;
7427 r = -ENXIO;
7428 if (!kvm->arch.vpit)
7429 goto out;
7430 r = kvm_vm_ioctl_reinject(kvm, &control);
7431 break;
7432 }
7433 #endif
7434 case KVM_SET_BOOT_CPU_ID:
7435 r = 0;
7436 mutex_lock(&kvm->lock);
7437 if (kvm->created_vcpus)
7438 r = -EBUSY;
7439 else if (arg > KVM_MAX_VCPU_IDS ||
7440 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7441 r = -EINVAL;
7442 else
7443 kvm->arch.bsp_vcpu_id = arg;
7444 mutex_unlock(&kvm->lock);
7445 break;
7446 #ifdef CONFIG_KVM_XEN
7447 case KVM_XEN_HVM_CONFIG: {
7448 struct kvm_xen_hvm_config xhc;
7449 r = -EFAULT;
7450 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7451 goto out;
7452 r = kvm_xen_hvm_config(kvm, &xhc);
7453 break;
7454 }
7455 case KVM_XEN_HVM_GET_ATTR: {
7456 struct kvm_xen_hvm_attr xha;
7457
7458 r = -EFAULT;
7459 if (copy_from_user(&xha, argp, sizeof(xha)))
7460 goto out;
7461 r = kvm_xen_hvm_get_attr(kvm, &xha);
7462 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7463 r = -EFAULT;
7464 break;
7465 }
7466 case KVM_XEN_HVM_SET_ATTR: {
7467 struct kvm_xen_hvm_attr xha;
7468
7469 r = -EFAULT;
7470 if (copy_from_user(&xha, argp, sizeof(xha)))
7471 goto out;
7472 r = kvm_xen_hvm_set_attr(kvm, &xha);
7473 break;
7474 }
7475 case KVM_XEN_HVM_EVTCHN_SEND: {
7476 struct kvm_irq_routing_xen_evtchn uxe;
7477
7478 r = -EFAULT;
7479 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7480 goto out;
7481 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7482 break;
7483 }
7484 #endif
7485 case KVM_SET_CLOCK:
7486 r = kvm_vm_ioctl_set_clock(kvm, argp);
7487 break;
7488 case KVM_GET_CLOCK:
7489 r = kvm_vm_ioctl_get_clock(kvm, argp);
7490 break;
7491 case KVM_SET_TSC_KHZ: {
7492 u32 user_tsc_khz;
7493
7494 r = -EINVAL;
7495 user_tsc_khz = (u32)arg;
7496
7497 if (kvm_caps.has_tsc_control &&
7498 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7499 goto out;
7500
7501 if (user_tsc_khz == 0)
7502 user_tsc_khz = tsc_khz;
7503
7504 mutex_lock(&kvm->lock);
7505 if (!kvm->created_vcpus) {
7506 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7507 r = 0;
7508 }
7509 mutex_unlock(&kvm->lock);
7510 goto out;
7511 }
7512 case KVM_GET_TSC_KHZ: {
7513 r = READ_ONCE(kvm->arch.default_tsc_khz);
7514 goto out;
7515 }
7516 case KVM_MEMORY_ENCRYPT_OP:
7517 r = -ENOTTY;
7518 if (!kvm_x86_ops.mem_enc_ioctl)
7519 goto out;
7520
7521 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7522 break;
7523 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7524 struct kvm_enc_region region;
7525
7526 r = -EFAULT;
7527 if (copy_from_user(®ion, argp, sizeof(region)))
7528 goto out;
7529
7530 r = -ENOTTY;
7531 if (!kvm_x86_ops.mem_enc_register_region)
7532 goto out;
7533
7534 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7535 break;
7536 }
7537 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7538 struct kvm_enc_region region;
7539
7540 r = -EFAULT;
7541 if (copy_from_user(®ion, argp, sizeof(region)))
7542 goto out;
7543
7544 r = -ENOTTY;
7545 if (!kvm_x86_ops.mem_enc_unregister_region)
7546 goto out;
7547
7548 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7549 break;
7550 }
7551 #ifdef CONFIG_KVM_HYPERV
7552 case KVM_HYPERV_EVENTFD: {
7553 struct kvm_hyperv_eventfd hvevfd;
7554
7555 r = -EFAULT;
7556 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7557 goto out;
7558 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7559 break;
7560 }
7561 #endif
7562 case KVM_SET_PMU_EVENT_FILTER:
7563 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7564 break;
7565 case KVM_X86_SET_MSR_FILTER: {
7566 struct kvm_msr_filter __user *user_msr_filter = argp;
7567 struct kvm_msr_filter filter;
7568
7569 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7570 return -EFAULT;
7571
7572 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7573 break;
7574 }
7575 default:
7576 r = -ENOTTY;
7577 }
7578 out:
7579 return r;
7580 }
7581
kvm_probe_feature_msr(u32 msr_index)7582 static void kvm_probe_feature_msr(u32 msr_index)
7583 {
7584 u64 data;
7585
7586 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7587 return;
7588
7589 msr_based_features[num_msr_based_features++] = msr_index;
7590 }
7591
kvm_probe_msr_to_save(u32 msr_index)7592 static void kvm_probe_msr_to_save(u32 msr_index)
7593 {
7594 u32 dummy[2];
7595
7596 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7597 return;
7598
7599 /*
7600 * Even MSRs that are valid in the host may not be exposed to guests in
7601 * some cases.
7602 */
7603 switch (msr_index) {
7604 case MSR_IA32_BNDCFGS:
7605 if (!kvm_mpx_supported())
7606 return;
7607 break;
7608 case MSR_TSC_AUX:
7609 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7610 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7611 return;
7612 break;
7613 case MSR_IA32_UMWAIT_CONTROL:
7614 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7615 return;
7616 break;
7617 case MSR_IA32_RTIT_CTL:
7618 case MSR_IA32_RTIT_STATUS:
7619 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7620 return;
7621 break;
7622 case MSR_IA32_RTIT_CR3_MATCH:
7623 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7624 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7625 return;
7626 break;
7627 case MSR_IA32_RTIT_OUTPUT_BASE:
7628 case MSR_IA32_RTIT_OUTPUT_MASK:
7629 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7630 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7631 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7632 return;
7633 break;
7634 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7635 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7636 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7637 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7638 return;
7639 break;
7640 case MSR_ARCH_PERFMON_PERFCTR0 ...
7641 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7642 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7643 kvm_pmu_cap.num_counters_gp)
7644 return;
7645 break;
7646 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7647 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7648 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7649 kvm_pmu_cap.num_counters_gp)
7650 return;
7651 break;
7652 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7653 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7654 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7655 kvm_pmu_cap.num_counters_fixed)
7656 return;
7657 break;
7658 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7659 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7660 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7661 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
7662 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7663 return;
7664 break;
7665 case MSR_IA32_XFD:
7666 case MSR_IA32_XFD_ERR:
7667 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7668 return;
7669 break;
7670 case MSR_IA32_TSX_CTRL:
7671 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7672 return;
7673 break;
7674 case MSR_IA32_XSS:
7675 if (!kvm_caps.supported_xss)
7676 return;
7677 break;
7678 case MSR_IA32_U_CET:
7679 case MSR_IA32_S_CET:
7680 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7681 !kvm_cpu_cap_has(X86_FEATURE_IBT))
7682 return;
7683 break;
7684 case MSR_IA32_INT_SSP_TAB:
7685 if (!kvm_cpu_cap_has(X86_FEATURE_LM))
7686 return;
7687 fallthrough;
7688 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
7689 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK))
7690 return;
7691 break;
7692 default:
7693 break;
7694 }
7695
7696 msrs_to_save[num_msrs_to_save++] = msr_index;
7697 }
7698
kvm_init_msr_lists(void)7699 static void kvm_init_msr_lists(void)
7700 {
7701 unsigned i;
7702
7703 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7704 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7705
7706 num_msrs_to_save = 0;
7707 num_emulated_msrs = 0;
7708 num_msr_based_features = 0;
7709
7710 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7711 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7712
7713 if (enable_pmu) {
7714 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7715 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7716 }
7717
7718 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7719 if (!kvm_x86_call(has_emulated_msr)(NULL,
7720 emulated_msrs_all[i]))
7721 continue;
7722
7723 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7724 }
7725
7726 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7727 kvm_probe_feature_msr(i);
7728
7729 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7730 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7731 }
7732
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7733 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7734 const void *v)
7735 {
7736 int handled = 0;
7737 int n;
7738
7739 do {
7740 n = min(len, 8);
7741 if (!(lapic_in_kernel(vcpu) &&
7742 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7743 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7744 break;
7745 handled += n;
7746 addr += n;
7747 len -= n;
7748 v += n;
7749 } while (len);
7750
7751 return handled;
7752 }
7753
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7754 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7755 {
7756 int handled = 0;
7757 int n;
7758
7759 do {
7760 n = min(len, 8);
7761 if (!(lapic_in_kernel(vcpu) &&
7762 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7763 addr, n, v))
7764 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7765 break;
7766 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7767 handled += n;
7768 addr += n;
7769 len -= n;
7770 v += n;
7771 } while (len);
7772
7773 return handled;
7774 }
7775
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7776 void kvm_set_segment(struct kvm_vcpu *vcpu,
7777 struct kvm_segment *var, int seg)
7778 {
7779 kvm_x86_call(set_segment)(vcpu, var, seg);
7780 }
7781
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7782 void kvm_get_segment(struct kvm_vcpu *vcpu,
7783 struct kvm_segment *var, int seg)
7784 {
7785 kvm_x86_call(get_segment)(vcpu, var, seg);
7786 }
7787
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7788 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7789 struct x86_exception *exception)
7790 {
7791 struct kvm_mmu *mmu = vcpu->arch.mmu;
7792 gpa_t t_gpa;
7793
7794 BUG_ON(!mmu_is_nested(vcpu));
7795
7796 /* NPT walks are always user-walks */
7797 access |= PFERR_USER_MASK;
7798 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7799
7800 return t_gpa;
7801 }
7802
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7803 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7804 struct x86_exception *exception)
7805 {
7806 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7807
7808 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7809 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7810 }
7811 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read);
7812
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7813 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7814 struct x86_exception *exception)
7815 {
7816 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7817
7818 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7819 access |= PFERR_WRITE_MASK;
7820 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7821 }
7822 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write);
7823
7824 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7825 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7826 struct x86_exception *exception)
7827 {
7828 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7829
7830 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7831 }
7832
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7833 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7834 struct kvm_vcpu *vcpu, u64 access,
7835 struct x86_exception *exception)
7836 {
7837 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7838 void *data = val;
7839 int r = X86EMUL_CONTINUE;
7840
7841 while (bytes) {
7842 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7843 unsigned offset = addr & (PAGE_SIZE-1);
7844 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7845 int ret;
7846
7847 if (gpa == INVALID_GPA)
7848 return X86EMUL_PROPAGATE_FAULT;
7849 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7850 offset, toread);
7851 if (ret < 0) {
7852 r = X86EMUL_IO_NEEDED;
7853 goto out;
7854 }
7855
7856 bytes -= toread;
7857 data += toread;
7858 addr += toread;
7859 }
7860 out:
7861 return r;
7862 }
7863
7864 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7865 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7866 gva_t addr, void *val, unsigned int bytes,
7867 struct x86_exception *exception)
7868 {
7869 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7870 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7871 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7872 unsigned offset;
7873 int ret;
7874
7875 /* Inline kvm_read_guest_virt_helper for speed. */
7876 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7877 exception);
7878 if (unlikely(gpa == INVALID_GPA))
7879 return X86EMUL_PROPAGATE_FAULT;
7880
7881 offset = addr & (PAGE_SIZE-1);
7882 if (WARN_ON(offset + bytes > PAGE_SIZE))
7883 bytes = (unsigned)PAGE_SIZE - offset;
7884 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7885 offset, bytes);
7886 if (unlikely(ret < 0))
7887 return X86EMUL_IO_NEEDED;
7888
7889 return X86EMUL_CONTINUE;
7890 }
7891
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7892 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7893 gva_t addr, void *val, unsigned int bytes,
7894 struct x86_exception *exception)
7895 {
7896 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7897
7898 /*
7899 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7900 * is returned, but our callers are not ready for that and they blindly
7901 * call kvm_inject_page_fault. Ensure that they at least do not leak
7902 * uninitialized kernel stack memory into cr2 and error code.
7903 */
7904 memset(exception, 0, sizeof(*exception));
7905 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7906 exception);
7907 }
7908 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt);
7909
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7910 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7911 gva_t addr, void *val, unsigned int bytes,
7912 struct x86_exception *exception, bool system)
7913 {
7914 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7915 u64 access = 0;
7916
7917 if (system)
7918 access |= PFERR_IMPLICIT_ACCESS;
7919 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7920 access |= PFERR_USER_MASK;
7921
7922 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7923 }
7924
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7925 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7926 struct kvm_vcpu *vcpu, u64 access,
7927 struct x86_exception *exception)
7928 {
7929 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7930 void *data = val;
7931 int r = X86EMUL_CONTINUE;
7932
7933 while (bytes) {
7934 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7935 unsigned offset = addr & (PAGE_SIZE-1);
7936 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7937 int ret;
7938
7939 if (gpa == INVALID_GPA)
7940 return X86EMUL_PROPAGATE_FAULT;
7941 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7942 if (ret < 0) {
7943 r = X86EMUL_IO_NEEDED;
7944 goto out;
7945 }
7946
7947 bytes -= towrite;
7948 data += towrite;
7949 addr += towrite;
7950 }
7951 out:
7952 return r;
7953 }
7954
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7955 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7956 unsigned int bytes, struct x86_exception *exception,
7957 bool system)
7958 {
7959 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7960 u64 access = PFERR_WRITE_MASK;
7961
7962 if (system)
7963 access |= PFERR_IMPLICIT_ACCESS;
7964 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7965 access |= PFERR_USER_MASK;
7966
7967 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7968 access, exception);
7969 }
7970
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7971 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7972 unsigned int bytes, struct x86_exception *exception)
7973 {
7974 /* kvm_write_guest_virt_system can pull in tons of pages. */
7975 kvm_request_l1tf_flush_l1d();
7976
7977 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7978 PFERR_WRITE_MASK, exception);
7979 }
7980 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system);
7981
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7982 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7983 void *insn, int insn_len)
7984 {
7985 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7986 insn, insn_len);
7987 }
7988
handle_ud(struct kvm_vcpu * vcpu)7989 int handle_ud(struct kvm_vcpu *vcpu)
7990 {
7991 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7992 int fep_flags = READ_ONCE(force_emulation_prefix);
7993 int emul_type = EMULTYPE_TRAP_UD;
7994 char sig[5]; /* ud2; .ascii "kvm" */
7995 struct x86_exception e;
7996 int r;
7997
7998 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7999 if (r != X86EMUL_CONTINUE)
8000 return 1;
8001
8002 if (fep_flags &&
8003 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
8004 sig, sizeof(sig), &e) == 0 &&
8005 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
8006 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
8007 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
8008 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
8009 emul_type = EMULTYPE_TRAP_UD_FORCED;
8010 }
8011
8012 return kvm_emulate_instruction(vcpu, emul_type);
8013 }
8014 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud);
8015
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)8016 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8017 gpa_t gpa, bool write)
8018 {
8019 /* For APIC access vmexit */
8020 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8021 return 1;
8022
8023 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
8024 trace_vcpu_match_mmio(gva, gpa, write, true);
8025 return 1;
8026 }
8027
8028 return 0;
8029 }
8030
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)8031 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8032 gpa_t *gpa, struct x86_exception *exception,
8033 bool write)
8034 {
8035 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8036 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
8037 | (write ? PFERR_WRITE_MASK : 0);
8038
8039 /*
8040 * currently PKRU is only applied to ept enabled guest so
8041 * there is no pkey in EPT page table for L1 guest or EPT
8042 * shadow page table for L2 guest.
8043 */
8044 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
8045 !permission_fault(vcpu, vcpu->arch.walk_mmu,
8046 vcpu->arch.mmio_access, 0, access))) {
8047 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
8048 (gva & (PAGE_SIZE - 1));
8049 trace_vcpu_match_mmio(gva, *gpa, write, false);
8050 return 1;
8051 }
8052
8053 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
8054
8055 if (*gpa == INVALID_GPA)
8056 return -1;
8057
8058 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
8059 }
8060
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)8061 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
8062 const void *val, int bytes)
8063 {
8064 int ret;
8065
8066 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
8067 if (ret < 0)
8068 return 0;
8069 kvm_page_track_write(vcpu, gpa, val, bytes);
8070 return 1;
8071 }
8072
8073 struct read_write_emulator_ops {
8074 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
8075 int bytes);
8076 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
8077 void *val, int bytes);
8078 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8079 int bytes, void *val);
8080 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8081 void *val, int bytes);
8082 bool write;
8083 };
8084
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)8085 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
8086 {
8087 if (vcpu->mmio_read_completed) {
8088 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
8089 vcpu->mmio_fragments[0].gpa, val);
8090 vcpu->mmio_read_completed = 0;
8091 return 1;
8092 }
8093
8094 return 0;
8095 }
8096
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8097 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8098 void *val, int bytes)
8099 {
8100 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
8101 }
8102
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8103 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8104 void *val, int bytes)
8105 {
8106 return emulator_write_phys(vcpu, gpa, val, bytes);
8107 }
8108
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)8109 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
8110 {
8111 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
8112 return vcpu_mmio_write(vcpu, gpa, bytes, val);
8113 }
8114
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8115 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8116 void *val, int bytes)
8117 {
8118 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
8119 return X86EMUL_IO_NEEDED;
8120 }
8121
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8122 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8123 void *val, int bytes)
8124 {
8125 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
8126
8127 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
8128 return X86EMUL_CONTINUE;
8129 }
8130
8131 static const struct read_write_emulator_ops read_emultor = {
8132 .read_write_prepare = read_prepare,
8133 .read_write_emulate = read_emulate,
8134 .read_write_mmio = vcpu_mmio_read,
8135 .read_write_exit_mmio = read_exit_mmio,
8136 };
8137
8138 static const struct read_write_emulator_ops write_emultor = {
8139 .read_write_emulate = write_emulate,
8140 .read_write_mmio = write_mmio,
8141 .read_write_exit_mmio = write_exit_mmio,
8142 .write = true,
8143 };
8144
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)8145 static int emulator_read_write_onepage(unsigned long addr, void *val,
8146 unsigned int bytes,
8147 struct x86_exception *exception,
8148 struct kvm_vcpu *vcpu,
8149 const struct read_write_emulator_ops *ops)
8150 {
8151 gpa_t gpa;
8152 int handled, ret;
8153 bool write = ops->write;
8154 struct kvm_mmio_fragment *frag;
8155 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8156
8157 /*
8158 * If the exit was due to a NPF we may already have a GPA.
8159 * If the GPA is present, use it to avoid the GVA to GPA table walk.
8160 * Note, this cannot be used on string operations since string
8161 * operation using rep will only have the initial GPA from the NPF
8162 * occurred.
8163 */
8164 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
8165 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
8166 gpa = ctxt->gpa_val;
8167 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
8168 } else {
8169 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
8170 if (ret < 0)
8171 return X86EMUL_PROPAGATE_FAULT;
8172 }
8173
8174 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
8175 return X86EMUL_CONTINUE;
8176
8177 /*
8178 * Is this MMIO handled locally?
8179 */
8180 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
8181 if (handled == bytes)
8182 return X86EMUL_CONTINUE;
8183
8184 gpa += handled;
8185 bytes -= handled;
8186 val += handled;
8187
8188 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8189 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8190 frag->gpa = gpa;
8191 frag->data = val;
8192 frag->len = bytes;
8193 return X86EMUL_CONTINUE;
8194 }
8195
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)8196 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8197 unsigned long addr,
8198 void *val, unsigned int bytes,
8199 struct x86_exception *exception,
8200 const struct read_write_emulator_ops *ops)
8201 {
8202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8203 gpa_t gpa;
8204 int rc;
8205
8206 if (ops->read_write_prepare &&
8207 ops->read_write_prepare(vcpu, val, bytes))
8208 return X86EMUL_CONTINUE;
8209
8210 vcpu->mmio_nr_fragments = 0;
8211
8212 /* Crossing a page boundary? */
8213 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8214 int now;
8215
8216 now = -addr & ~PAGE_MASK;
8217 rc = emulator_read_write_onepage(addr, val, now, exception,
8218 vcpu, ops);
8219
8220 if (rc != X86EMUL_CONTINUE)
8221 return rc;
8222 addr += now;
8223 if (ctxt->mode != X86EMUL_MODE_PROT64)
8224 addr = (u32)addr;
8225 val += now;
8226 bytes -= now;
8227 }
8228
8229 rc = emulator_read_write_onepage(addr, val, bytes, exception,
8230 vcpu, ops);
8231 if (rc != X86EMUL_CONTINUE)
8232 return rc;
8233
8234 if (!vcpu->mmio_nr_fragments)
8235 return X86EMUL_CONTINUE;
8236
8237 gpa = vcpu->mmio_fragments[0].gpa;
8238
8239 vcpu->mmio_needed = 1;
8240 vcpu->mmio_cur_fragment = 0;
8241
8242 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8243 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8244 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8245 vcpu->run->mmio.phys_addr = gpa;
8246
8247 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8248 }
8249
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8250 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8251 unsigned long addr,
8252 void *val,
8253 unsigned int bytes,
8254 struct x86_exception *exception)
8255 {
8256 return emulator_read_write(ctxt, addr, val, bytes,
8257 exception, &read_emultor);
8258 }
8259
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8260 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8261 unsigned long addr,
8262 const void *val,
8263 unsigned int bytes,
8264 struct x86_exception *exception)
8265 {
8266 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8267 exception, &write_emultor);
8268 }
8269
8270 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8271 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8272
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8273 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8274 unsigned long addr,
8275 const void *old,
8276 const void *new,
8277 unsigned int bytes,
8278 struct x86_exception *exception)
8279 {
8280 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8281 u64 page_line_mask;
8282 unsigned long hva;
8283 gpa_t gpa;
8284 int r;
8285
8286 /* guests cmpxchg8b have to be emulated atomically */
8287 if (bytes > 8 || (bytes & (bytes - 1)))
8288 goto emul_write;
8289
8290 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8291
8292 if (gpa == INVALID_GPA ||
8293 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8294 goto emul_write;
8295
8296 /*
8297 * Emulate the atomic as a straight write to avoid #AC if SLD is
8298 * enabled in the host and the access splits a cache line.
8299 */
8300 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8301 page_line_mask = ~(cache_line_size() - 1);
8302 else
8303 page_line_mask = PAGE_MASK;
8304
8305 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8306 goto emul_write;
8307
8308 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8309 if (kvm_is_error_hva(hva))
8310 goto emul_write;
8311
8312 hva += offset_in_page(gpa);
8313
8314 switch (bytes) {
8315 case 1:
8316 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8317 break;
8318 case 2:
8319 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8320 break;
8321 case 4:
8322 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8323 break;
8324 case 8:
8325 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8326 break;
8327 default:
8328 BUG();
8329 }
8330
8331 if (r < 0)
8332 return X86EMUL_UNHANDLEABLE;
8333
8334 /*
8335 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8336 * successful, as the old value is written back on failure. Note, for
8337 * live migration, this is unnecessarily conservative as CMPXCHG writes
8338 * back the original value and the access is atomic, but KVM's ABI is
8339 * that all writes are dirty logged, regardless of the value written.
8340 */
8341 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8342
8343 if (r)
8344 return X86EMUL_CMPXCHG_FAILED;
8345
8346 kvm_page_track_write(vcpu, gpa, new, bytes);
8347
8348 return X86EMUL_CONTINUE;
8349
8350 emul_write:
8351 pr_warn_once("emulating exchange as write\n");
8352
8353 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8354 }
8355
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8356 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8357 unsigned short port, void *data,
8358 unsigned int count, bool in)
8359 {
8360 unsigned i;
8361 int r;
8362
8363 WARN_ON_ONCE(vcpu->arch.pio.count);
8364 for (i = 0; i < count; i++) {
8365 if (in)
8366 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8367 else
8368 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8369
8370 if (r) {
8371 if (i == 0)
8372 goto userspace_io;
8373
8374 /*
8375 * Userspace must have unregistered the device while PIO
8376 * was running. Drop writes / read as 0.
8377 */
8378 if (in)
8379 memset(data, 0, size * (count - i));
8380 break;
8381 }
8382
8383 data += size;
8384 }
8385 return 1;
8386
8387 userspace_io:
8388 vcpu->arch.pio.port = port;
8389 vcpu->arch.pio.in = in;
8390 vcpu->arch.pio.count = count;
8391 vcpu->arch.pio.size = size;
8392
8393 if (in)
8394 memset(vcpu->arch.pio_data, 0, size * count);
8395 else
8396 memcpy(vcpu->arch.pio_data, data, size * count);
8397
8398 vcpu->run->exit_reason = KVM_EXIT_IO;
8399 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8400 vcpu->run->io.size = size;
8401 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8402 vcpu->run->io.count = count;
8403 vcpu->run->io.port = port;
8404 return 0;
8405 }
8406
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8407 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8408 unsigned short port, void *val, unsigned int count)
8409 {
8410 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8411 if (r)
8412 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8413
8414 return r;
8415 }
8416
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8417 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8418 {
8419 int size = vcpu->arch.pio.size;
8420 unsigned int count = vcpu->arch.pio.count;
8421 memcpy(val, vcpu->arch.pio_data, size * count);
8422 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8423 vcpu->arch.pio.count = 0;
8424 }
8425
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8426 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8427 int size, unsigned short port, void *val,
8428 unsigned int count)
8429 {
8430 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8431 if (vcpu->arch.pio.count) {
8432 /*
8433 * Complete a previous iteration that required userspace I/O.
8434 * Note, @count isn't guaranteed to match pio.count as userspace
8435 * can modify ECX before rerunning the vCPU. Ignore any such
8436 * shenanigans as KVM doesn't support modifying the rep count,
8437 * and the emulator ensures @count doesn't overflow the buffer.
8438 */
8439 complete_emulator_pio_in(vcpu, val);
8440 return 1;
8441 }
8442
8443 return emulator_pio_in(vcpu, size, port, val, count);
8444 }
8445
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8446 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8447 unsigned short port, const void *val,
8448 unsigned int count)
8449 {
8450 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8451 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8452 }
8453
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8454 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8455 int size, unsigned short port,
8456 const void *val, unsigned int count)
8457 {
8458 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8459 }
8460
get_segment_base(struct kvm_vcpu * vcpu,int seg)8461 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8462 {
8463 return kvm_x86_call(get_segment_base)(vcpu, seg);
8464 }
8465
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8466 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8467 {
8468 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8469 }
8470
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8471 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8472 {
8473 if (!need_emulate_wbinvd(vcpu))
8474 return X86EMUL_CONTINUE;
8475
8476 if (kvm_x86_call(has_wbinvd_exit)()) {
8477 int cpu = get_cpu();
8478
8479 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8480 wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask);
8481 put_cpu();
8482 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8483 } else
8484 wbinvd();
8485 return X86EMUL_CONTINUE;
8486 }
8487
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8488 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8489 {
8490 kvm_emulate_wbinvd_noskip(vcpu);
8491 return kvm_skip_emulated_instruction(vcpu);
8492 }
8493 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd);
8494
8495
8496
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8497 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8498 {
8499 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8500 }
8501
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8502 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8503 {
8504 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8505 }
8506
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8507 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8508 unsigned long value)
8509 {
8510
8511 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8512 }
8513
mk_cr_64(u64 curr_cr,u32 new_val)8514 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8515 {
8516 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8517 }
8518
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8519 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8520 {
8521 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8522 unsigned long value;
8523
8524 switch (cr) {
8525 case 0:
8526 value = kvm_read_cr0(vcpu);
8527 break;
8528 case 2:
8529 value = vcpu->arch.cr2;
8530 break;
8531 case 3:
8532 value = kvm_read_cr3(vcpu);
8533 break;
8534 case 4:
8535 value = kvm_read_cr4(vcpu);
8536 break;
8537 case 8:
8538 value = kvm_get_cr8(vcpu);
8539 break;
8540 default:
8541 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8542 return 0;
8543 }
8544
8545 return value;
8546 }
8547
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8548 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8549 {
8550 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8551 int res = 0;
8552
8553 switch (cr) {
8554 case 0:
8555 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8556 break;
8557 case 2:
8558 vcpu->arch.cr2 = val;
8559 break;
8560 case 3:
8561 res = kvm_set_cr3(vcpu, val);
8562 break;
8563 case 4:
8564 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8565 break;
8566 case 8:
8567 res = kvm_set_cr8(vcpu, val);
8568 break;
8569 default:
8570 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8571 res = -1;
8572 }
8573
8574 return res;
8575 }
8576
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8577 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8578 {
8579 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8580 }
8581
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8582 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8583 {
8584 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8585 }
8586
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8587 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8588 {
8589 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8590 }
8591
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8592 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8593 {
8594 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8595 }
8596
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8597 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8598 {
8599 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8600 }
8601
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8602 static unsigned long emulator_get_cached_segment_base(
8603 struct x86_emulate_ctxt *ctxt, int seg)
8604 {
8605 return get_segment_base(emul_to_vcpu(ctxt), seg);
8606 }
8607
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8608 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8609 struct desc_struct *desc, u32 *base3,
8610 int seg)
8611 {
8612 struct kvm_segment var;
8613
8614 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8615 *selector = var.selector;
8616
8617 if (var.unusable) {
8618 memset(desc, 0, sizeof(*desc));
8619 if (base3)
8620 *base3 = 0;
8621 return false;
8622 }
8623
8624 if (var.g)
8625 var.limit >>= 12;
8626 set_desc_limit(desc, var.limit);
8627 set_desc_base(desc, (unsigned long)var.base);
8628 #ifdef CONFIG_X86_64
8629 if (base3)
8630 *base3 = var.base >> 32;
8631 #endif
8632 desc->type = var.type;
8633 desc->s = var.s;
8634 desc->dpl = var.dpl;
8635 desc->p = var.present;
8636 desc->avl = var.avl;
8637 desc->l = var.l;
8638 desc->d = var.db;
8639 desc->g = var.g;
8640
8641 return true;
8642 }
8643
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8644 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8645 struct desc_struct *desc, u32 base3,
8646 int seg)
8647 {
8648 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8649 struct kvm_segment var;
8650
8651 var.selector = selector;
8652 var.base = get_desc_base(desc);
8653 #ifdef CONFIG_X86_64
8654 var.base |= ((u64)base3) << 32;
8655 #endif
8656 var.limit = get_desc_limit(desc);
8657 if (desc->g)
8658 var.limit = (var.limit << 12) | 0xfff;
8659 var.type = desc->type;
8660 var.dpl = desc->dpl;
8661 var.db = desc->d;
8662 var.s = desc->s;
8663 var.l = desc->l;
8664 var.g = desc->g;
8665 var.avl = desc->avl;
8666 var.present = desc->p;
8667 var.unusable = !var.present;
8668 var.padding = 0;
8669
8670 kvm_set_segment(vcpu, &var, seg);
8671 return;
8672 }
8673
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8674 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8675 u32 msr_index, u64 *pdata)
8676 {
8677 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8678 int r;
8679
8680 r = kvm_emulate_msr_read(vcpu, msr_index, pdata);
8681 if (r < 0)
8682 return X86EMUL_UNHANDLEABLE;
8683
8684 if (r) {
8685 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8686 complete_emulated_rdmsr, r))
8687 return X86EMUL_IO_NEEDED;
8688
8689 trace_kvm_msr_read_ex(msr_index);
8690 return X86EMUL_PROPAGATE_FAULT;
8691 }
8692
8693 trace_kvm_msr_read(msr_index, *pdata);
8694 return X86EMUL_CONTINUE;
8695 }
8696
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8697 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8698 u32 msr_index, u64 data)
8699 {
8700 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8701 int r;
8702
8703 r = kvm_emulate_msr_write(vcpu, msr_index, data);
8704 if (r < 0)
8705 return X86EMUL_UNHANDLEABLE;
8706
8707 if (r) {
8708 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8709 complete_emulated_msr_access, r))
8710 return X86EMUL_IO_NEEDED;
8711
8712 trace_kvm_msr_write_ex(msr_index, data);
8713 return X86EMUL_PROPAGATE_FAULT;
8714 }
8715
8716 trace_kvm_msr_write(msr_index, data);
8717 return X86EMUL_CONTINUE;
8718 }
8719
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8720 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8721 u32 msr_index, u64 *pdata)
8722 {
8723 /*
8724 * Treat emulator accesses to the current shadow stack pointer as host-
8725 * initiated, as they aren't true MSR accesses (SSP is a "just a reg"),
8726 * and this API is used only for implicit accesses, i.e. not RDMSR, and
8727 * so the index is fully KVM-controlled.
8728 */
8729 if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP))
8730 return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8731
8732 return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8733 }
8734
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8735 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8736 {
8737 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8738 }
8739
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8740 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8741 u32 pmc, u64 *pdata)
8742 {
8743 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8744 }
8745
emulator_halt(struct x86_emulate_ctxt * ctxt)8746 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8747 {
8748 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8749 }
8750
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8751 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8752 struct x86_instruction_info *info,
8753 enum x86_intercept_stage stage)
8754 {
8755 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8756 &ctxt->exception);
8757 }
8758
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8759 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8760 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8761 bool exact_only)
8762 {
8763 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8764 }
8765
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8766 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8767 {
8768 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8769 }
8770
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8771 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8772 {
8773 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8774 }
8775
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8776 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8777 {
8778 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8779 }
8780
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8781 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8782 {
8783 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8784 }
8785
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8786 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8787 {
8788 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8789 }
8790
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8791 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8792 {
8793 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8794 }
8795
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8796 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8797 {
8798 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8799 }
8800
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8801 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8802 {
8803 return is_smm(emul_to_vcpu(ctxt));
8804 }
8805
8806 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8807 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8808 {
8809 WARN_ON_ONCE(1);
8810 return X86EMUL_UNHANDLEABLE;
8811 }
8812 #endif
8813
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8814 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8815 {
8816 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8817 }
8818
emulator_get_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 * xcr)8819 static int emulator_get_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 *xcr)
8820 {
8821 if (index != XCR_XFEATURE_ENABLED_MASK)
8822 return 1;
8823 *xcr = emul_to_vcpu(ctxt)->arch.xcr0;
8824 return 0;
8825 }
8826
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8827 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8828 {
8829 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8830 }
8831
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8832 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8833 {
8834 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8835
8836 if (!kvm->vm_bugged)
8837 kvm_vm_bugged(kvm);
8838 }
8839
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8840 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8841 gva_t addr, unsigned int flags)
8842 {
8843 if (!kvm_x86_ops.get_untagged_addr)
8844 return addr;
8845
8846 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8847 addr, flags);
8848 }
8849
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8850 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8851 gva_t addr, unsigned int flags)
8852 {
8853 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8854 }
8855
8856 static const struct x86_emulate_ops emulate_ops = {
8857 .vm_bugged = emulator_vm_bugged,
8858 .read_gpr = emulator_read_gpr,
8859 .write_gpr = emulator_write_gpr,
8860 .read_std = emulator_read_std,
8861 .write_std = emulator_write_std,
8862 .fetch = kvm_fetch_guest_virt,
8863 .read_emulated = emulator_read_emulated,
8864 .write_emulated = emulator_write_emulated,
8865 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8866 .invlpg = emulator_invlpg,
8867 .pio_in_emulated = emulator_pio_in_emulated,
8868 .pio_out_emulated = emulator_pio_out_emulated,
8869 .get_segment = emulator_get_segment,
8870 .set_segment = emulator_set_segment,
8871 .get_cached_segment_base = emulator_get_cached_segment_base,
8872 .get_gdt = emulator_get_gdt,
8873 .get_idt = emulator_get_idt,
8874 .set_gdt = emulator_set_gdt,
8875 .set_idt = emulator_set_idt,
8876 .get_cr = emulator_get_cr,
8877 .set_cr = emulator_set_cr,
8878 .cpl = emulator_get_cpl,
8879 .get_dr = emulator_get_dr,
8880 .set_dr = emulator_set_dr,
8881 .set_msr_with_filter = emulator_set_msr_with_filter,
8882 .get_msr_with_filter = emulator_get_msr_with_filter,
8883 .get_msr = emulator_get_msr,
8884 .check_rdpmc_early = emulator_check_rdpmc_early,
8885 .read_pmc = emulator_read_pmc,
8886 .halt = emulator_halt,
8887 .wbinvd = emulator_wbinvd,
8888 .fix_hypercall = emulator_fix_hypercall,
8889 .intercept = emulator_intercept,
8890 .get_cpuid = emulator_get_cpuid,
8891 .guest_has_movbe = emulator_guest_has_movbe,
8892 .guest_has_fxsr = emulator_guest_has_fxsr,
8893 .guest_has_rdpid = emulator_guest_has_rdpid,
8894 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8895 .set_nmi_mask = emulator_set_nmi_mask,
8896 .is_smm = emulator_is_smm,
8897 .leave_smm = emulator_leave_smm,
8898 .triple_fault = emulator_triple_fault,
8899 .get_xcr = emulator_get_xcr,
8900 .set_xcr = emulator_set_xcr,
8901 .get_untagged_addr = emulator_get_untagged_addr,
8902 .is_canonical_addr = emulator_is_canonical_addr,
8903 };
8904
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8905 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8906 {
8907 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8908 /*
8909 * an sti; sti; sequence only disable interrupts for the first
8910 * instruction. So, if the last instruction, be it emulated or
8911 * not, left the system with the INT_STI flag enabled, it
8912 * means that the last instruction is an sti. We should not
8913 * leave the flag on in this case. The same goes for mov ss
8914 */
8915 if (int_shadow & mask)
8916 mask = 0;
8917 if (unlikely(int_shadow || mask)) {
8918 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8919 if (!mask)
8920 kvm_make_request(KVM_REQ_EVENT, vcpu);
8921 }
8922 }
8923
inject_emulated_exception(struct kvm_vcpu * vcpu)8924 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8925 {
8926 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8927
8928 if (ctxt->exception.vector == PF_VECTOR)
8929 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8930 else if (ctxt->exception.error_code_valid)
8931 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8932 ctxt->exception.error_code);
8933 else
8934 kvm_queue_exception(vcpu, ctxt->exception.vector);
8935 }
8936
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8937 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8938 {
8939 struct x86_emulate_ctxt *ctxt;
8940
8941 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8942 if (!ctxt) {
8943 pr_err("failed to allocate vcpu's emulator\n");
8944 return NULL;
8945 }
8946
8947 ctxt->vcpu = vcpu;
8948 ctxt->ops = &emulate_ops;
8949 vcpu->arch.emulate_ctxt = ctxt;
8950
8951 return ctxt;
8952 }
8953
init_emulate_ctxt(struct kvm_vcpu * vcpu)8954 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8955 {
8956 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8957 int cs_db, cs_l;
8958
8959 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8960
8961 ctxt->gpa_available = false;
8962 ctxt->eflags = kvm_get_rflags(vcpu);
8963 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8964
8965 ctxt->eip = kvm_rip_read(vcpu);
8966 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8967 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8968 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8969 cs_db ? X86EMUL_MODE_PROT32 :
8970 X86EMUL_MODE_PROT16;
8971 ctxt->interruptibility = 0;
8972 ctxt->have_exception = false;
8973 ctxt->exception.vector = -1;
8974 ctxt->perm_ok = false;
8975
8976 init_decode_cache(ctxt);
8977 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8978 }
8979
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8980 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8981 {
8982 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8983 int ret;
8984
8985 init_emulate_ctxt(vcpu);
8986
8987 ctxt->op_bytes = 2;
8988 ctxt->ad_bytes = 2;
8989 ctxt->_eip = ctxt->eip + inc_eip;
8990 ret = emulate_int_real(ctxt, irq);
8991
8992 if (ret != X86EMUL_CONTINUE) {
8993 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8994 } else {
8995 ctxt->eip = ctxt->_eip;
8996 kvm_rip_write(vcpu, ctxt->eip);
8997 kvm_set_rflags(vcpu, ctxt->eflags);
8998 }
8999 }
9000 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt);
9001
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)9002 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9003 u8 ndata, u8 *insn_bytes, u8 insn_size)
9004 {
9005 struct kvm_run *run = vcpu->run;
9006 u64 info[5];
9007 u8 info_start;
9008
9009 /*
9010 * Zero the whole array used to retrieve the exit info, as casting to
9011 * u32 for select entries will leave some chunks uninitialized.
9012 */
9013 memset(&info, 0, sizeof(info));
9014
9015 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
9016 (u32 *)&info[3], (u32 *)&info[4]);
9017
9018 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9019 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
9020
9021 /*
9022 * There's currently space for 13 entries, but 5 are used for the exit
9023 * reason and info. Restrict to 4 to reduce the maintenance burden
9024 * when expanding kvm_run.emulation_failure in the future.
9025 */
9026 if (WARN_ON_ONCE(ndata > 4))
9027 ndata = 4;
9028
9029 /* Always include the flags as a 'data' entry. */
9030 info_start = 1;
9031 run->emulation_failure.flags = 0;
9032
9033 if (insn_size) {
9034 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
9035 sizeof(run->emulation_failure.insn_bytes) != 16));
9036 info_start += 2;
9037 run->emulation_failure.flags |=
9038 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
9039 run->emulation_failure.insn_size = insn_size;
9040 memset(run->emulation_failure.insn_bytes, 0x90,
9041 sizeof(run->emulation_failure.insn_bytes));
9042 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
9043 }
9044
9045 memcpy(&run->internal.data[info_start], info, sizeof(info));
9046 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
9047 ndata * sizeof(data[0]));
9048
9049 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
9050 }
9051
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)9052 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
9053 {
9054 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9055
9056 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
9057 ctxt->fetch.end - ctxt->fetch.data);
9058 }
9059
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)9060 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9061 u8 ndata)
9062 {
9063 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
9064 }
9065 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit);
9066
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)9067 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
9068 {
9069 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
9070 }
9071 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit);
9072
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)9073 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
9074 {
9075 u32 reason, intr_info, error_code;
9076 struct kvm_run *run = vcpu->run;
9077 u64 info1, info2;
9078 int ndata = 0;
9079
9080 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
9081 &intr_info, &error_code);
9082
9083 run->internal.data[ndata++] = info2;
9084 run->internal.data[ndata++] = reason;
9085 run->internal.data[ndata++] = info1;
9086 run->internal.data[ndata++] = gpa;
9087 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
9088
9089 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9090 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9091 run->internal.ndata = ndata;
9092 }
9093 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
9094
kvm_prepare_unexpected_reason_exit(struct kvm_vcpu * vcpu,u64 exit_reason)9095 void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason)
9096 {
9097 vcpu_unimpl(vcpu, "unexpected exit reason 0x%llx\n", exit_reason);
9098
9099 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9100 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
9101 vcpu->run->internal.ndata = 2;
9102 vcpu->run->internal.data[0] = exit_reason;
9103 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
9104 }
9105 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_unexpected_reason_exit);
9106
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)9107 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
9108 {
9109 struct kvm *kvm = vcpu->kvm;
9110
9111 ++vcpu->stat.insn_emulation_fail;
9112 trace_kvm_emulate_insn_failed(vcpu);
9113
9114 if (emulation_type & EMULTYPE_VMWARE_GP) {
9115 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9116 return 1;
9117 }
9118
9119 if (kvm->arch.exit_on_emulation_error ||
9120 (emulation_type & EMULTYPE_SKIP)) {
9121 prepare_emulation_ctxt_failure_exit(vcpu);
9122 return 0;
9123 }
9124
9125 kvm_queue_exception(vcpu, UD_VECTOR);
9126
9127 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
9128 prepare_emulation_ctxt_failure_exit(vcpu);
9129 return 0;
9130 }
9131
9132 return 1;
9133 }
9134
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)9135 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
9136 gpa_t cr2_or_gpa,
9137 int emulation_type)
9138 {
9139 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
9140 return false;
9141
9142 /*
9143 * If the failed instruction faulted on an access to page tables that
9144 * are used to translate any part of the instruction, KVM can't resolve
9145 * the issue by unprotecting the gfn, as zapping the shadow page will
9146 * result in the instruction taking a !PRESENT page fault and thus put
9147 * the vCPU into an infinite loop of page faults. E.g. KVM will create
9148 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
9149 * then zap the SPTE to unprotect the gfn, and then do it all over
9150 * again. Report the error to userspace.
9151 */
9152 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
9153 return false;
9154
9155 /*
9156 * If emulation may have been triggered by a write to a shadowed page
9157 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
9158 * guest to let the CPU re-execute the instruction in the hope that the
9159 * CPU can cleanly execute the instruction that KVM failed to emulate.
9160 */
9161 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
9162
9163 /*
9164 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
9165 * all SPTEs were already zapped by a different task. The alternative
9166 * is to report the error to userspace and likely terminate the guest,
9167 * and the last_retry_{eip,addr} checks will prevent retrying the page
9168 * fault indefinitely, i.e. there's nothing to lose by retrying.
9169 */
9170 return true;
9171 }
9172
9173 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
9174 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
9175
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)9176 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
9177 unsigned long *db)
9178 {
9179 u32 dr6 = 0;
9180 int i;
9181 u32 enable, rwlen;
9182
9183 enable = dr7;
9184 rwlen = dr7 >> 16;
9185 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
9186 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
9187 dr6 |= (1 << i);
9188 return dr6;
9189 }
9190
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)9191 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9192 {
9193 struct kvm_run *kvm_run = vcpu->run;
9194
9195 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9196 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9197 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9198 kvm_run->debug.arch.exception = DB_VECTOR;
9199 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9200 return 0;
9201 }
9202 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9203 return 1;
9204 }
9205
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)9206 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9207 {
9208 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9209 int r;
9210
9211 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9212 if (unlikely(!r))
9213 return 0;
9214
9215 kvm_pmu_instruction_retired(vcpu);
9216
9217 /*
9218 * rflags is the old, "raw" value of the flags. The new value has
9219 * not been saved yet.
9220 *
9221 * This is correct even for TF set by the guest, because "the
9222 * processor will not generate this exception after the instruction
9223 * that sets the TF flag".
9224 */
9225 if (unlikely(rflags & X86_EFLAGS_TF))
9226 r = kvm_vcpu_do_singlestep(vcpu);
9227 return r;
9228 }
9229 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction);
9230
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)9231 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9232 {
9233 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9234 return true;
9235
9236 /*
9237 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9238 * active, but AMD compatible CPUs do not.
9239 */
9240 if (!guest_cpuid_is_intel_compatible(vcpu))
9241 return false;
9242
9243 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9244 }
9245
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)9246 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9247 int emulation_type, int *r)
9248 {
9249 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9250
9251 /*
9252 * Do not check for code breakpoints if hardware has already done the
9253 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9254 * the instruction has passed all exception checks, and all intercepted
9255 * exceptions that trigger emulation have lower priority than code
9256 * breakpoints, i.e. the fact that the intercepted exception occurred
9257 * means any code breakpoints have already been serviced.
9258 *
9259 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9260 * hardware has checked the RIP of the magic prefix, but not the RIP of
9261 * the instruction being emulated. The intent of forced emulation is
9262 * to behave as if KVM intercepted the instruction without an exception
9263 * and without a prefix.
9264 */
9265 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9266 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9267 return false;
9268
9269 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9270 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9271 struct kvm_run *kvm_run = vcpu->run;
9272 unsigned long eip = kvm_get_linear_rip(vcpu);
9273 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9274 vcpu->arch.guest_debug_dr7,
9275 vcpu->arch.eff_db);
9276
9277 if (dr6 != 0) {
9278 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9279 kvm_run->debug.arch.pc = eip;
9280 kvm_run->debug.arch.exception = DB_VECTOR;
9281 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9282 *r = 0;
9283 return true;
9284 }
9285 }
9286
9287 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9288 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9289 unsigned long eip = kvm_get_linear_rip(vcpu);
9290 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9291 vcpu->arch.dr7,
9292 vcpu->arch.db);
9293
9294 if (dr6 != 0) {
9295 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9296 *r = 1;
9297 return true;
9298 }
9299 }
9300
9301 return false;
9302 }
9303
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9304 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9305 {
9306 switch (ctxt->opcode_len) {
9307 case 1:
9308 switch (ctxt->b) {
9309 case 0xe4: /* IN */
9310 case 0xe5:
9311 case 0xec:
9312 case 0xed:
9313 case 0xe6: /* OUT */
9314 case 0xe7:
9315 case 0xee:
9316 case 0xef:
9317 case 0x6c: /* INS */
9318 case 0x6d:
9319 case 0x6e: /* OUTS */
9320 case 0x6f:
9321 return true;
9322 }
9323 break;
9324 case 2:
9325 switch (ctxt->b) {
9326 case 0x33: /* RDPMC */
9327 return true;
9328 }
9329 break;
9330 }
9331
9332 return false;
9333 }
9334
is_soft_int_instruction(struct x86_emulate_ctxt * ctxt,int emulation_type)9335 static bool is_soft_int_instruction(struct x86_emulate_ctxt *ctxt,
9336 int emulation_type)
9337 {
9338 u8 vector = EMULTYPE_GET_SOFT_INT_VECTOR(emulation_type);
9339
9340 switch (ctxt->b) {
9341 case 0xcc:
9342 return vector == BP_VECTOR;
9343 case 0xcd:
9344 return vector == ctxt->src.val;
9345 case 0xce:
9346 return vector == OF_VECTOR;
9347 default:
9348 return false;
9349 }
9350 }
9351
9352 /*
9353 * Decode an instruction for emulation. The caller is responsible for handling
9354 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9355 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9356 * code breakpoints have higher priority and thus have already been done by
9357 * hardware.
9358 *
9359 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9360 * response to a machine check.
9361 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9362 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9363 void *insn, int insn_len)
9364 {
9365 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9366 int r;
9367
9368 init_emulate_ctxt(vcpu);
9369
9370 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9371
9372 trace_kvm_emulate_insn_start(vcpu);
9373 ++vcpu->stat.insn_emulation;
9374
9375 return r;
9376 }
9377 EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction);
9378
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9379 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9380 int emulation_type, void *insn, int insn_len)
9381 {
9382 int r;
9383 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9384 bool writeback = true;
9385
9386 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9387 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9388 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9389 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9390
9391 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9392 if (r != X86EMUL_CONTINUE) {
9393 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9394 return 1;
9395
9396 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9397 emulation_type))
9398 return 1;
9399
9400 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9401 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9402 return 0;
9403 }
9404
9405 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9406 return handle_emulation_failure(vcpu, emulation_type);
9407 }
9408
9409 kvm_request_l1tf_flush_l1d();
9410
9411 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9412 kvm_clear_exception_queue(vcpu);
9413
9414 /*
9415 * Return immediately if RIP hits a code breakpoint, such #DBs
9416 * are fault-like and are higher priority than any faults on
9417 * the code fetch itself.
9418 */
9419 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9420 return r;
9421
9422 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9423 insn, insn_len);
9424 if (r != EMULATION_OK) {
9425 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9426 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9427 kvm_queue_exception(vcpu, UD_VECTOR);
9428 return 1;
9429 }
9430 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9431 emulation_type))
9432 return 1;
9433
9434 if (ctxt->have_exception &&
9435 !(emulation_type & EMULTYPE_SKIP)) {
9436 /*
9437 * #UD should result in just EMULATION_FAILED, and trap-like
9438 * exception should not be encountered during decode.
9439 */
9440 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9441 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9442 inject_emulated_exception(vcpu);
9443 return 1;
9444 }
9445 return handle_emulation_failure(vcpu, emulation_type);
9446 }
9447 }
9448
9449 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9450 !is_vmware_backdoor_opcode(ctxt)) {
9451 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9452 return 1;
9453 }
9454
9455 /*
9456 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9457 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9458 * The caller is responsible for updating interruptibility state and
9459 * injecting single-step #DBs.
9460 */
9461 if (emulation_type & EMULTYPE_SKIP) {
9462 if (emulation_type & EMULTYPE_SKIP_SOFT_INT &&
9463 !is_soft_int_instruction(ctxt, emulation_type))
9464 return 0;
9465
9466 if (ctxt->mode != X86EMUL_MODE_PROT64)
9467 ctxt->eip = (u32)ctxt->_eip;
9468 else
9469 ctxt->eip = ctxt->_eip;
9470
9471 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9472 r = 1;
9473 goto writeback;
9474 }
9475
9476 kvm_rip_write(vcpu, ctxt->eip);
9477 if (ctxt->eflags & X86_EFLAGS_RF)
9478 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9479 return 1;
9480 }
9481
9482 /*
9483 * If emulation was caused by a write-protection #PF on a non-page_table
9484 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9485 * and retry the instruction, as the vCPU is likely no longer using the
9486 * gfn as a page table.
9487 */
9488 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9489 !x86_page_table_writing_insn(ctxt) &&
9490 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9491 return 1;
9492
9493 /* this is needed for vmware backdoor interface to work since it
9494 changes registers values during IO operation */
9495 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9496 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9497 emulator_invalidate_register_cache(ctxt);
9498 }
9499
9500 restart:
9501 if (emulation_type & EMULTYPE_PF) {
9502 /* Save the faulting GPA (cr2) in the address field */
9503 ctxt->exception.address = cr2_or_gpa;
9504
9505 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9506 if (vcpu->arch.mmu->root_role.direct) {
9507 ctxt->gpa_available = true;
9508 ctxt->gpa_val = cr2_or_gpa;
9509 }
9510 } else {
9511 /* Sanitize the address out of an abundance of paranoia. */
9512 ctxt->exception.address = 0;
9513 }
9514
9515 /*
9516 * Check L1's instruction intercepts when emulating instructions for
9517 * L2, unless KVM is re-emulating a previously decoded instruction,
9518 * e.g. to complete userspace I/O, in which case KVM has already
9519 * checked the intercepts.
9520 */
9521 r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9522 !(emulation_type & EMULTYPE_NO_DECODE));
9523
9524 if (r == EMULATION_INTERCEPTED)
9525 return 1;
9526
9527 if (r == EMULATION_FAILED) {
9528 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9529 emulation_type))
9530 return 1;
9531
9532 return handle_emulation_failure(vcpu, emulation_type);
9533 }
9534
9535 if (ctxt->have_exception) {
9536 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9537 vcpu->mmio_needed = false;
9538 r = 1;
9539 inject_emulated_exception(vcpu);
9540 } else if (vcpu->arch.pio.count) {
9541 if (!vcpu->arch.pio.in) {
9542 /* FIXME: return into emulator if single-stepping. */
9543 vcpu->arch.pio.count = 0;
9544 } else {
9545 writeback = false;
9546 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9547 }
9548 r = 0;
9549 } else if (vcpu->mmio_needed) {
9550 ++vcpu->stat.mmio_exits;
9551
9552 if (!vcpu->mmio_is_write)
9553 writeback = false;
9554 r = 0;
9555 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9556 } else if (vcpu->arch.complete_userspace_io) {
9557 writeback = false;
9558 r = 0;
9559 } else if (r == EMULATION_RESTART)
9560 goto restart;
9561 else
9562 r = 1;
9563
9564 writeback:
9565 if (writeback) {
9566 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9567 toggle_interruptibility(vcpu, ctxt->interruptibility);
9568 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9569
9570 /*
9571 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9572 * only supports code breakpoints and general detect #DB, both
9573 * of which are fault-like.
9574 */
9575 if (!ctxt->have_exception ||
9576 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9577 kvm_pmu_instruction_retired(vcpu);
9578 if (ctxt->is_branch)
9579 kvm_pmu_branch_retired(vcpu);
9580 kvm_rip_write(vcpu, ctxt->eip);
9581 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9582 r = kvm_vcpu_do_singlestep(vcpu);
9583 kvm_x86_call(update_emulated_instruction)(vcpu);
9584 __kvm_set_rflags(vcpu, ctxt->eflags);
9585 }
9586
9587 /*
9588 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9589 * do nothing, and it will be requested again as soon as
9590 * the shadow expires. But we still need to check here,
9591 * because POPF has no interrupt shadow.
9592 */
9593 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9594 kvm_make_request(KVM_REQ_EVENT, vcpu);
9595 } else
9596 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9597
9598 return r;
9599 }
9600
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9601 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9602 {
9603 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9604 }
9605 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction);
9606
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9607 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9608 void *insn, int insn_len)
9609 {
9610 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9611 }
9612 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer);
9613
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9614 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9615 {
9616 vcpu->arch.pio.count = 0;
9617 return 1;
9618 }
9619
complete_fast_pio_out(struct kvm_vcpu * vcpu)9620 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9621 {
9622 vcpu->arch.pio.count = 0;
9623
9624 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9625 return 1;
9626
9627 return kvm_skip_emulated_instruction(vcpu);
9628 }
9629
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9630 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9631 unsigned short port)
9632 {
9633 unsigned long val = kvm_rax_read(vcpu);
9634 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9635
9636 if (ret)
9637 return ret;
9638
9639 /*
9640 * Workaround userspace that relies on old KVM behavior of %rip being
9641 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9642 */
9643 if (port == 0x7e &&
9644 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9645 vcpu->arch.complete_userspace_io =
9646 complete_fast_pio_out_port_0x7e;
9647 kvm_skip_emulated_instruction(vcpu);
9648 } else {
9649 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9650 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9651 }
9652 return 0;
9653 }
9654
complete_fast_pio_in(struct kvm_vcpu * vcpu)9655 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9656 {
9657 unsigned long val;
9658
9659 /* We should only ever be called with arch.pio.count equal to 1 */
9660 BUG_ON(vcpu->arch.pio.count != 1);
9661
9662 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9663 vcpu->arch.pio.count = 0;
9664 return 1;
9665 }
9666
9667 /* For size less than 4 we merge, else we zero extend */
9668 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9669
9670 complete_emulator_pio_in(vcpu, &val);
9671 kvm_rax_write(vcpu, val);
9672
9673 return kvm_skip_emulated_instruction(vcpu);
9674 }
9675
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9676 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9677 unsigned short port)
9678 {
9679 unsigned long val;
9680 int ret;
9681
9682 /* For size less than 4 we merge, else we zero extend */
9683 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9684
9685 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9686 if (ret) {
9687 kvm_rax_write(vcpu, val);
9688 return ret;
9689 }
9690
9691 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9692 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9693
9694 return 0;
9695 }
9696
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9697 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9698 {
9699 int ret;
9700
9701 if (in)
9702 ret = kvm_fast_pio_in(vcpu, size, port);
9703 else
9704 ret = kvm_fast_pio_out(vcpu, size, port);
9705 return ret && kvm_skip_emulated_instruction(vcpu);
9706 }
9707 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio);
9708
kvmclock_cpu_down_prep(unsigned int cpu)9709 static int kvmclock_cpu_down_prep(unsigned int cpu)
9710 {
9711 __this_cpu_write(cpu_tsc_khz, 0);
9712 return 0;
9713 }
9714
tsc_khz_changed(void * data)9715 static void tsc_khz_changed(void *data)
9716 {
9717 struct cpufreq_freqs *freq = data;
9718 unsigned long khz;
9719
9720 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9721
9722 if (data)
9723 khz = freq->new;
9724 else
9725 khz = cpufreq_quick_get(raw_smp_processor_id());
9726 if (!khz)
9727 khz = tsc_khz;
9728 __this_cpu_write(cpu_tsc_khz, khz);
9729 }
9730
9731 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9732 static void kvm_hyperv_tsc_notifier(void)
9733 {
9734 struct kvm *kvm;
9735 int cpu;
9736
9737 mutex_lock(&kvm_lock);
9738 list_for_each_entry(kvm, &vm_list, vm_list)
9739 kvm_make_mclock_inprogress_request(kvm);
9740
9741 /* no guest entries from this point */
9742 hyperv_stop_tsc_emulation();
9743
9744 /* TSC frequency always matches when on Hyper-V */
9745 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9746 for_each_present_cpu(cpu)
9747 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9748 }
9749 kvm_caps.max_guest_tsc_khz = tsc_khz;
9750
9751 list_for_each_entry(kvm, &vm_list, vm_list) {
9752 __kvm_start_pvclock_update(kvm);
9753 pvclock_update_vm_gtod_copy(kvm);
9754 kvm_end_pvclock_update(kvm);
9755 }
9756
9757 mutex_unlock(&kvm_lock);
9758 }
9759 #endif
9760
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9761 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9762 {
9763 struct kvm *kvm;
9764 struct kvm_vcpu *vcpu;
9765 int send_ipi = 0;
9766 unsigned long i;
9767
9768 /*
9769 * We allow guests to temporarily run on slowing clocks,
9770 * provided we notify them after, or to run on accelerating
9771 * clocks, provided we notify them before. Thus time never
9772 * goes backwards.
9773 *
9774 * However, we have a problem. We can't atomically update
9775 * the frequency of a given CPU from this function; it is
9776 * merely a notifier, which can be called from any CPU.
9777 * Changing the TSC frequency at arbitrary points in time
9778 * requires a recomputation of local variables related to
9779 * the TSC for each VCPU. We must flag these local variables
9780 * to be updated and be sure the update takes place with the
9781 * new frequency before any guests proceed.
9782 *
9783 * Unfortunately, the combination of hotplug CPU and frequency
9784 * change creates an intractable locking scenario; the order
9785 * of when these callouts happen is undefined with respect to
9786 * CPU hotplug, and they can race with each other. As such,
9787 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9788 * undefined; you can actually have a CPU frequency change take
9789 * place in between the computation of X and the setting of the
9790 * variable. To protect against this problem, all updates of
9791 * the per_cpu tsc_khz variable are done in an interrupt
9792 * protected IPI, and all callers wishing to update the value
9793 * must wait for a synchronous IPI to complete (which is trivial
9794 * if the caller is on the CPU already). This establishes the
9795 * necessary total order on variable updates.
9796 *
9797 * Note that because a guest time update may take place
9798 * anytime after the setting of the VCPU's request bit, the
9799 * correct TSC value must be set before the request. However,
9800 * to ensure the update actually makes it to any guest which
9801 * starts running in hardware virtualization between the set
9802 * and the acquisition of the spinlock, we must also ping the
9803 * CPU after setting the request bit.
9804 *
9805 */
9806
9807 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9808
9809 mutex_lock(&kvm_lock);
9810 list_for_each_entry(kvm, &vm_list, vm_list) {
9811 kvm_for_each_vcpu(i, vcpu, kvm) {
9812 if (vcpu->cpu != cpu)
9813 continue;
9814 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9815 if (vcpu->cpu != raw_smp_processor_id())
9816 send_ipi = 1;
9817 }
9818 }
9819 mutex_unlock(&kvm_lock);
9820
9821 if (freq->old < freq->new && send_ipi) {
9822 /*
9823 * We upscale the frequency. Must make the guest
9824 * doesn't see old kvmclock values while running with
9825 * the new frequency, otherwise we risk the guest sees
9826 * time go backwards.
9827 *
9828 * In case we update the frequency for another cpu
9829 * (which might be in guest context) send an interrupt
9830 * to kick the cpu out of guest context. Next time
9831 * guest context is entered kvmclock will be updated,
9832 * so the guest will not see stale values.
9833 */
9834 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9835 }
9836 }
9837
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9838 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9839 void *data)
9840 {
9841 struct cpufreq_freqs *freq = data;
9842 int cpu;
9843
9844 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9845 return 0;
9846 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9847 return 0;
9848
9849 for_each_cpu(cpu, freq->policy->cpus)
9850 __kvmclock_cpufreq_notifier(freq, cpu);
9851
9852 return 0;
9853 }
9854
9855 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9856 .notifier_call = kvmclock_cpufreq_notifier
9857 };
9858
kvmclock_cpu_online(unsigned int cpu)9859 static int kvmclock_cpu_online(unsigned int cpu)
9860 {
9861 tsc_khz_changed(NULL);
9862 return 0;
9863 }
9864
kvm_timer_init(void)9865 static void kvm_timer_init(void)
9866 {
9867 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9868 max_tsc_khz = tsc_khz;
9869
9870 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9871 struct cpufreq_policy *policy;
9872 int cpu;
9873
9874 cpu = get_cpu();
9875 policy = cpufreq_cpu_get(cpu);
9876 if (policy) {
9877 if (policy->cpuinfo.max_freq)
9878 max_tsc_khz = policy->cpuinfo.max_freq;
9879 cpufreq_cpu_put(policy);
9880 }
9881 put_cpu();
9882 }
9883 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9884 CPUFREQ_TRANSITION_NOTIFIER);
9885
9886 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9887 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9888 }
9889 }
9890
9891 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9892 static void pvclock_gtod_update_fn(struct work_struct *work)
9893 {
9894 struct kvm *kvm;
9895 struct kvm_vcpu *vcpu;
9896 unsigned long i;
9897
9898 mutex_lock(&kvm_lock);
9899 list_for_each_entry(kvm, &vm_list, vm_list)
9900 kvm_for_each_vcpu(i, vcpu, kvm)
9901 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9902 atomic_set(&kvm_guest_has_master_clock, 0);
9903 mutex_unlock(&kvm_lock);
9904 }
9905
9906 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9907
9908 /*
9909 * Indirection to move queue_work() out of the tk_core.seq write held
9910 * region to prevent possible deadlocks against time accessors which
9911 * are invoked with work related locks held.
9912 */
pvclock_irq_work_fn(struct irq_work * w)9913 static void pvclock_irq_work_fn(struct irq_work *w)
9914 {
9915 queue_work(system_long_wq, &pvclock_gtod_work);
9916 }
9917
9918 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9919
9920 /*
9921 * Notification about pvclock gtod data update.
9922 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9923 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9924 void *priv)
9925 {
9926 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9927 struct timekeeper *tk = priv;
9928
9929 update_pvclock_gtod(tk);
9930
9931 /*
9932 * Disable master clock if host does not trust, or does not use,
9933 * TSC based clocksource. Delegate queue_work() to irq_work as
9934 * this is invoked with tk_core.seq write held.
9935 */
9936 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9937 atomic_read(&kvm_guest_has_master_clock) != 0)
9938 irq_work_queue(&pvclock_irq_work);
9939 return 0;
9940 }
9941
9942 static struct notifier_block pvclock_gtod_notifier = {
9943 .notifier_call = pvclock_gtod_notify,
9944 };
9945 #endif
9946
kvm_ops_update(struct kvm_x86_init_ops * ops)9947 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9948 {
9949 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9950
9951 #define __KVM_X86_OP(func) \
9952 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9953 #define KVM_X86_OP(func) \
9954 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9955 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9956 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9957 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9958 (void *)__static_call_return0);
9959 #include <asm/kvm-x86-ops.h>
9960 #undef __KVM_X86_OP
9961
9962 kvm_pmu_ops_update(ops->pmu_ops);
9963 }
9964
kvm_x86_check_processor_compatibility(void)9965 static int kvm_x86_check_processor_compatibility(void)
9966 {
9967 int cpu = smp_processor_id();
9968 struct cpuinfo_x86 *c = &cpu_data(cpu);
9969
9970 /*
9971 * Compatibility checks are done when loading KVM and when enabling
9972 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9973 * compatible, i.e. KVM should never perform a compatibility check on
9974 * an offline CPU.
9975 */
9976 WARN_ON(!cpu_online(cpu));
9977
9978 if (__cr4_reserved_bits(cpu_has, c) !=
9979 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9980 return -EIO;
9981
9982 return kvm_x86_call(check_processor_compatibility)();
9983 }
9984
kvm_x86_check_cpu_compat(void * ret)9985 static void kvm_x86_check_cpu_compat(void *ret)
9986 {
9987 *(int *)ret = kvm_x86_check_processor_compatibility();
9988 }
9989
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9990 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9991 {
9992 u64 host_pat;
9993 int r, cpu;
9994
9995 guard(mutex)(&vendor_module_lock);
9996
9997 if (kvm_x86_ops.enable_virtualization_cpu) {
9998 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9999 return -EEXIST;
10000 }
10001
10002 /*
10003 * KVM explicitly assumes that the guest has an FPU and
10004 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
10005 * vCPU's FPU state as a fxregs_state struct.
10006 */
10007 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
10008 pr_err("inadequate fpu\n");
10009 return -EOPNOTSUPP;
10010 }
10011
10012 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10013 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
10014 return -EOPNOTSUPP;
10015 }
10016
10017 /*
10018 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
10019 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
10020 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
10021 * with an exception. PAT[0] is set to WB on RESET and also by the
10022 * kernel, i.e. failure indicates a kernel bug or broken firmware.
10023 */
10024 if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
10025 (host_pat & GENMASK(2, 0)) != 6) {
10026 pr_err("host PAT[0] is not WB\n");
10027 return -EIO;
10028 }
10029
10030 if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) {
10031 rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet);
10032 /*
10033 * Linux doesn't yet support supervisor shadow stacks (SSS), so
10034 * KVM doesn't save/restore the associated MSRs, i.e. KVM may
10035 * clobber the host values. Yell and refuse to load if SSS is
10036 * unexpectedly enabled, e.g. to avoid crashing the host.
10037 */
10038 if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN))
10039 return -EIO;
10040 }
10041
10042 memset(&kvm_caps, 0, sizeof(kvm_caps));
10043
10044 x86_emulator_cache = kvm_alloc_emulator_cache();
10045 if (!x86_emulator_cache) {
10046 pr_err("failed to allocate cache for x86 emulator\n");
10047 return -ENOMEM;
10048 }
10049
10050 r = kvm_mmu_vendor_module_init();
10051 if (r)
10052 goto out_free_x86_emulator_cache;
10053
10054 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
10055 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
10056
10057 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
10058 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
10059 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
10060 }
10061
10062 if (boot_cpu_has(X86_FEATURE_XSAVES)) {
10063 rdmsrq(MSR_IA32_XSS, kvm_host.xss);
10064 kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS;
10065 }
10066
10067 kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
10068 kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
10069
10070 rdmsrq_safe(MSR_EFER, &kvm_host.efer);
10071
10072 kvm_init_pmu_capability(ops->pmu_ops);
10073
10074 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
10075 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
10076
10077 WARN_ON_ONCE(kvm_nr_uret_msrs);
10078
10079 r = ops->hardware_setup();
10080 if (r != 0)
10081 goto out_mmu_exit;
10082
10083 enable_device_posted_irqs &= enable_apicv &&
10084 irq_remapping_cap(IRQ_POSTING_CAP);
10085
10086 kvm_ops_update(ops);
10087
10088 for_each_online_cpu(cpu) {
10089 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
10090 if (r < 0)
10091 goto out_unwind_ops;
10092 }
10093
10094 /*
10095 * Point of no return! DO NOT add error paths below this point unless
10096 * absolutely necessary, as most operations from this point forward
10097 * require unwinding.
10098 */
10099 kvm_timer_init();
10100
10101 if (pi_inject_timer == -1)
10102 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
10103 #ifdef CONFIG_X86_64
10104 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
10105
10106 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10107 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
10108 #endif
10109
10110 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
10111
10112 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
10113 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
10114
10115 /* KVM always ignores guest PAT for shadow paging. */
10116 if (!tdp_enabled)
10117 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
10118
10119 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10120 kvm_caps.supported_xss = 0;
10121
10122 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
10123 !kvm_cpu_cap_has(X86_FEATURE_IBT))
10124 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10125
10126 if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) {
10127 kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
10128 kvm_cpu_cap_clear(X86_FEATURE_IBT);
10129 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10130 }
10131
10132 if (kvm_caps.has_tsc_control) {
10133 /*
10134 * Make sure the user can only configure tsc_khz values that
10135 * fit into a signed integer.
10136 * A min value is not calculated because it will always
10137 * be 1 on all machines.
10138 */
10139 u64 max = min(0x7fffffffULL,
10140 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
10141 kvm_caps.max_guest_tsc_khz = max;
10142 }
10143 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
10144 kvm_init_msr_lists();
10145 return 0;
10146
10147 out_unwind_ops:
10148 kvm_x86_ops.enable_virtualization_cpu = NULL;
10149 kvm_x86_call(hardware_unsetup)();
10150 out_mmu_exit:
10151 kvm_destroy_user_return_msrs();
10152 kvm_mmu_vendor_module_exit();
10153 out_free_x86_emulator_cache:
10154 kmem_cache_destroy(x86_emulator_cache);
10155 return r;
10156 }
10157 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init);
10158
kvm_x86_vendor_exit(void)10159 void kvm_x86_vendor_exit(void)
10160 {
10161 kvm_unregister_perf_callbacks();
10162
10163 #ifdef CONFIG_X86_64
10164 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10165 clear_hv_tscchange_cb();
10166 #endif
10167 kvm_lapic_exit();
10168
10169 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10170 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
10171 CPUFREQ_TRANSITION_NOTIFIER);
10172 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
10173 }
10174 #ifdef CONFIG_X86_64
10175 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
10176 irq_work_sync(&pvclock_irq_work);
10177 cancel_work_sync(&pvclock_gtod_work);
10178 #endif
10179 kvm_x86_call(hardware_unsetup)();
10180 kvm_destroy_user_return_msrs();
10181 kvm_mmu_vendor_module_exit();
10182 kmem_cache_destroy(x86_emulator_cache);
10183 #ifdef CONFIG_KVM_XEN
10184 static_key_deferred_flush(&kvm_xen_enabled);
10185 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
10186 #endif
10187 mutex_lock(&vendor_module_lock);
10188 kvm_x86_ops.enable_virtualization_cpu = NULL;
10189 mutex_unlock(&vendor_module_lock);
10190 }
10191 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit);
10192
10193 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)10194 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
10195 unsigned long clock_type)
10196 {
10197 struct kvm_clock_pairing clock_pairing;
10198 struct timespec64 ts;
10199 u64 cycle;
10200 int ret;
10201
10202 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
10203 return -KVM_EOPNOTSUPP;
10204
10205 /*
10206 * When tsc is in permanent catchup mode guests won't be able to use
10207 * pvclock_read_retry loop to get consistent view of pvclock
10208 */
10209 if (vcpu->arch.tsc_always_catchup)
10210 return -KVM_EOPNOTSUPP;
10211
10212 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
10213 return -KVM_EOPNOTSUPP;
10214
10215 clock_pairing.sec = ts.tv_sec;
10216 clock_pairing.nsec = ts.tv_nsec;
10217 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
10218 clock_pairing.flags = 0;
10219 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10220
10221 ret = 0;
10222 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10223 sizeof(struct kvm_clock_pairing)))
10224 ret = -KVM_EFAULT;
10225
10226 return ret;
10227 }
10228 #endif
10229
10230 /*
10231 * kvm_pv_kick_cpu_op: Kick a vcpu.
10232 *
10233 * @apicid - apicid of vcpu to be kicked.
10234 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)10235 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10236 {
10237 /*
10238 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
10239 * common code, e.g. for tracing. Defer initialization to the compiler.
10240 */
10241 struct kvm_lapic_irq lapic_irq = {
10242 .delivery_mode = APIC_DM_REMRD,
10243 .dest_mode = APIC_DEST_PHYSICAL,
10244 .shorthand = APIC_DEST_NOSHORT,
10245 .dest_id = apicid,
10246 };
10247
10248 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10249 }
10250
kvm_apicv_activated(struct kvm * kvm)10251 bool kvm_apicv_activated(struct kvm *kvm)
10252 {
10253 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10254 }
10255 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated);
10256
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)10257 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10258 {
10259 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10260 ulong vcpu_reasons =
10261 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10262
10263 return (vm_reasons | vcpu_reasons) == 0;
10264 }
10265 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated);
10266
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)10267 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10268 enum kvm_apicv_inhibit reason, bool set)
10269 {
10270 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10271
10272 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10273
10274 if (set)
10275 __set_bit(reason, inhibits);
10276 else
10277 __clear_bit(reason, inhibits);
10278
10279 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10280 }
10281
kvm_apicv_init(struct kvm * kvm)10282 static void kvm_apicv_init(struct kvm *kvm)
10283 {
10284 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10285 APICV_INHIBIT_REASON_DISABLED;
10286
10287 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10288
10289 init_rwsem(&kvm->arch.apicv_update_lock);
10290 }
10291
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)10292 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10293 {
10294 struct kvm_vcpu *target = NULL;
10295 struct kvm_apic_map *map;
10296
10297 vcpu->stat.directed_yield_attempted++;
10298
10299 if (single_task_running())
10300 goto no_yield;
10301
10302 rcu_read_lock();
10303 map = rcu_dereference(vcpu->kvm->arch.apic_map);
10304
10305 if (likely(map) && dest_id <= map->max_apic_id) {
10306 dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
10307 if (map->phys_map[dest_id])
10308 target = map->phys_map[dest_id]->vcpu;
10309 }
10310
10311 rcu_read_unlock();
10312
10313 if (!target || !READ_ONCE(target->ready))
10314 goto no_yield;
10315
10316 /* Ignore requests to yield to self */
10317 if (vcpu == target)
10318 goto no_yield;
10319
10320 if (kvm_vcpu_yield_to(target) <= 0)
10321 goto no_yield;
10322
10323 vcpu->stat.directed_yield_successful++;
10324
10325 no_yield:
10326 return;
10327 }
10328
complete_hypercall_exit(struct kvm_vcpu * vcpu)10329 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10330 {
10331 u64 ret = vcpu->run->hypercall.ret;
10332
10333 if (!is_64_bit_hypercall(vcpu))
10334 ret = (u32)ret;
10335 kvm_rax_write(vcpu, ret);
10336 return kvm_skip_emulated_instruction(vcpu);
10337 }
10338
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10339 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10340 int (*complete_hypercall)(struct kvm_vcpu *))
10341 {
10342 unsigned long ret;
10343 unsigned long nr = kvm_rax_read(vcpu);
10344 unsigned long a0 = kvm_rbx_read(vcpu);
10345 unsigned long a1 = kvm_rcx_read(vcpu);
10346 unsigned long a2 = kvm_rdx_read(vcpu);
10347 unsigned long a3 = kvm_rsi_read(vcpu);
10348 int op_64_bit = is_64_bit_hypercall(vcpu);
10349
10350 ++vcpu->stat.hypercalls;
10351
10352 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10353
10354 if (!op_64_bit) {
10355 nr &= 0xFFFFFFFF;
10356 a0 &= 0xFFFFFFFF;
10357 a1 &= 0xFFFFFFFF;
10358 a2 &= 0xFFFFFFFF;
10359 a3 &= 0xFFFFFFFF;
10360 }
10361
10362 if (cpl) {
10363 ret = -KVM_EPERM;
10364 goto out;
10365 }
10366
10367 ret = -KVM_ENOSYS;
10368
10369 switch (nr) {
10370 case KVM_HC_VAPIC_POLL_IRQ:
10371 ret = 0;
10372 break;
10373 case KVM_HC_KICK_CPU:
10374 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10375 break;
10376
10377 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10378 kvm_sched_yield(vcpu, a1);
10379 ret = 0;
10380 break;
10381 #ifdef CONFIG_X86_64
10382 case KVM_HC_CLOCK_PAIRING:
10383 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10384 break;
10385 #endif
10386 case KVM_HC_SEND_IPI:
10387 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10388 break;
10389
10390 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10391 break;
10392 case KVM_HC_SCHED_YIELD:
10393 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10394 break;
10395
10396 kvm_sched_yield(vcpu, a0);
10397 ret = 0;
10398 break;
10399 case KVM_HC_MAP_GPA_RANGE: {
10400 u64 gpa = a0, npages = a1, attrs = a2;
10401
10402 ret = -KVM_ENOSYS;
10403 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10404 break;
10405
10406 if (!PAGE_ALIGNED(gpa) || !npages ||
10407 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10408 ret = -KVM_EINVAL;
10409 break;
10410 }
10411
10412 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10413 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10414 /*
10415 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10416 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10417 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10418 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10419 */
10420 vcpu->run->hypercall.ret = 0;
10421 vcpu->run->hypercall.args[0] = gpa;
10422 vcpu->run->hypercall.args[1] = npages;
10423 vcpu->run->hypercall.args[2] = attrs;
10424 vcpu->run->hypercall.flags = 0;
10425 if (op_64_bit)
10426 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10427
10428 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10429 vcpu->arch.complete_userspace_io = complete_hypercall;
10430 return 0;
10431 }
10432 default:
10433 ret = -KVM_ENOSYS;
10434 break;
10435 }
10436
10437 out:
10438 vcpu->run->hypercall.ret = ret;
10439 return 1;
10440 }
10441 EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall);
10442
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10443 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10444 {
10445 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10446 return kvm_xen_hypercall(vcpu);
10447
10448 if (kvm_hv_hypercall_enabled(vcpu))
10449 return kvm_hv_hypercall(vcpu);
10450
10451 return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10452 complete_hypercall_exit);
10453 }
10454 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall);
10455
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10456 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10457 {
10458 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10459 char instruction[3];
10460 unsigned long rip = kvm_rip_read(vcpu);
10461
10462 /*
10463 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10464 * the pieces.
10465 */
10466 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10467 ctxt->exception.error_code_valid = false;
10468 ctxt->exception.vector = UD_VECTOR;
10469 ctxt->have_exception = true;
10470 return X86EMUL_PROPAGATE_FAULT;
10471 }
10472
10473 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10474
10475 return emulator_write_emulated(ctxt, rip, instruction, 3,
10476 &ctxt->exception);
10477 }
10478
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10479 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10480 {
10481 return vcpu->run->request_interrupt_window &&
10482 likely(!pic_in_kernel(vcpu->kvm));
10483 }
10484
10485 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10486 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10487 {
10488 struct kvm_run *kvm_run = vcpu->run;
10489
10490 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10491 kvm_run->cr8 = kvm_get_cr8(vcpu);
10492 kvm_run->apic_base = vcpu->arch.apic_base;
10493
10494 kvm_run->ready_for_interrupt_injection =
10495 pic_in_kernel(vcpu->kvm) ||
10496 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10497
10498 if (is_smm(vcpu))
10499 kvm_run->flags |= KVM_RUN_X86_SMM;
10500 if (is_guest_mode(vcpu))
10501 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10502 }
10503
update_cr8_intercept(struct kvm_vcpu * vcpu)10504 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10505 {
10506 int max_irr, tpr;
10507
10508 if (!kvm_x86_ops.update_cr8_intercept)
10509 return;
10510
10511 if (!lapic_in_kernel(vcpu))
10512 return;
10513
10514 if (vcpu->arch.apic->apicv_active)
10515 return;
10516
10517 if (!vcpu->arch.apic->vapic_addr)
10518 max_irr = kvm_lapic_find_highest_irr(vcpu);
10519 else
10520 max_irr = -1;
10521
10522 if (max_irr != -1)
10523 max_irr >>= 4;
10524
10525 tpr = kvm_lapic_get_cr8(vcpu);
10526
10527 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10528 }
10529
10530
kvm_check_nested_events(struct kvm_vcpu * vcpu)10531 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10532 {
10533 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10534 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10535 return 1;
10536 }
10537
10538 return kvm_x86_ops.nested_ops->check_events(vcpu);
10539 }
10540
kvm_inject_exception(struct kvm_vcpu * vcpu)10541 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10542 {
10543 /*
10544 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10545 * exceptions don't report error codes. The presence of an error code
10546 * is carried with the exception and only stripped when the exception
10547 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10548 * report an error code despite the CPU being in Real Mode.
10549 */
10550 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10551
10552 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10553 vcpu->arch.exception.has_error_code,
10554 vcpu->arch.exception.error_code,
10555 vcpu->arch.exception.injected);
10556
10557 kvm_x86_call(inject_exception)(vcpu);
10558 }
10559
10560 /*
10561 * Check for any event (interrupt or exception) that is ready to be injected,
10562 * and if there is at least one event, inject the event with the highest
10563 * priority. This handles both "pending" events, i.e. events that have never
10564 * been injected into the guest, and "injected" events, i.e. events that were
10565 * injected as part of a previous VM-Enter, but weren't successfully delivered
10566 * and need to be re-injected.
10567 *
10568 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10569 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10570 * be able to inject exceptions in the "middle" of an instruction, and so must
10571 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10572 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10573 * boundaries is necessary and correct.
10574 *
10575 * For simplicity, KVM uses a single path to inject all events (except events
10576 * that are injected directly from L1 to L2) and doesn't explicitly track
10577 * instruction boundaries for asynchronous events. However, because VM-Exits
10578 * that can occur during instruction execution typically result in KVM skipping
10579 * the instruction or injecting an exception, e.g. instruction and exception
10580 * intercepts, and because pending exceptions have higher priority than pending
10581 * interrupts, KVM still honors instruction boundaries in most scenarios.
10582 *
10583 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10584 * the instruction or inject an exception, then KVM can incorrecty inject a new
10585 * asynchronous event if the event became pending after the CPU fetched the
10586 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10587 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10588 * injected on the restarted instruction instead of being deferred until the
10589 * instruction completes.
10590 *
10591 * In practice, this virtualization hole is unlikely to be observed by the
10592 * guest, and even less likely to cause functional problems. To detect the
10593 * hole, the guest would have to trigger an event on a side effect of an early
10594 * phase of instruction execution, e.g. on the instruction fetch from memory.
10595 * And for it to be a functional problem, the guest would need to depend on the
10596 * ordering between that side effect, the instruction completing, _and_ the
10597 * delivery of the asynchronous event.
10598 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10599 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10600 bool *req_immediate_exit)
10601 {
10602 bool can_inject;
10603 int r;
10604
10605 /*
10606 * Process nested events first, as nested VM-Exit supersedes event
10607 * re-injection. If there's an event queued for re-injection, it will
10608 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10609 */
10610 if (is_guest_mode(vcpu))
10611 r = kvm_check_nested_events(vcpu);
10612 else
10613 r = 0;
10614
10615 /*
10616 * Re-inject exceptions and events *especially* if immediate entry+exit
10617 * to/from L2 is needed, as any event that has already been injected
10618 * into L2 needs to complete its lifecycle before injecting a new event.
10619 *
10620 * Don't re-inject an NMI or interrupt if there is a pending exception.
10621 * This collision arises if an exception occurred while vectoring the
10622 * injected event, KVM intercepted said exception, and KVM ultimately
10623 * determined the fault belongs to the guest and queues the exception
10624 * for injection back into the guest.
10625 *
10626 * "Injected" interrupts can also collide with pending exceptions if
10627 * userspace ignores the "ready for injection" flag and blindly queues
10628 * an interrupt. In that case, prioritizing the exception is correct,
10629 * as the exception "occurred" before the exit to userspace. Trap-like
10630 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10631 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10632 * priority, they're only generated (pended) during instruction
10633 * execution, and interrupts are recognized at instruction boundaries.
10634 * Thus a pending fault-like exception means the fault occurred on the
10635 * *previous* instruction and must be serviced prior to recognizing any
10636 * new events in order to fully complete the previous instruction.
10637 */
10638 if (vcpu->arch.exception.injected)
10639 kvm_inject_exception(vcpu);
10640 else if (kvm_is_exception_pending(vcpu))
10641 ; /* see above */
10642 else if (vcpu->arch.nmi_injected)
10643 kvm_x86_call(inject_nmi)(vcpu);
10644 else if (vcpu->arch.interrupt.injected)
10645 kvm_x86_call(inject_irq)(vcpu, true);
10646
10647 /*
10648 * Exceptions that morph to VM-Exits are handled above, and pending
10649 * exceptions on top of injected exceptions that do not VM-Exit should
10650 * either morph to #DF or, sadly, override the injected exception.
10651 */
10652 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10653 vcpu->arch.exception.pending);
10654
10655 /*
10656 * Bail if immediate entry+exit to/from the guest is needed to complete
10657 * nested VM-Enter or event re-injection so that a different pending
10658 * event can be serviced (or if KVM needs to exit to userspace).
10659 *
10660 * Otherwise, continue processing events even if VM-Exit occurred. The
10661 * VM-Exit will have cleared exceptions that were meant for L2, but
10662 * there may now be events that can be injected into L1.
10663 */
10664 if (r < 0)
10665 goto out;
10666
10667 /*
10668 * A pending exception VM-Exit should either result in nested VM-Exit
10669 * or force an immediate re-entry and exit to/from L2, and exception
10670 * VM-Exits cannot be injected (flag should _never_ be set).
10671 */
10672 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10673 vcpu->arch.exception_vmexit.pending);
10674
10675 /*
10676 * New events, other than exceptions, cannot be injected if KVM needs
10677 * to re-inject a previous event. See above comments on re-injecting
10678 * for why pending exceptions get priority.
10679 */
10680 can_inject = !kvm_event_needs_reinjection(vcpu);
10681
10682 if (vcpu->arch.exception.pending) {
10683 /*
10684 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10685 * value pushed on the stack. Trap-like exception and all #DBs
10686 * leave RF as-is (KVM follows Intel's behavior in this regard;
10687 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10688 *
10689 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10690 * describe the behavior of General Detect #DBs, which are
10691 * fault-like. They do _not_ set RF, a la code breakpoints.
10692 */
10693 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10694 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10695 X86_EFLAGS_RF);
10696
10697 if (vcpu->arch.exception.vector == DB_VECTOR) {
10698 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10699 if (vcpu->arch.dr7 & DR7_GD) {
10700 vcpu->arch.dr7 &= ~DR7_GD;
10701 kvm_update_dr7(vcpu);
10702 }
10703 }
10704
10705 kvm_inject_exception(vcpu);
10706
10707 vcpu->arch.exception.pending = false;
10708 vcpu->arch.exception.injected = true;
10709
10710 can_inject = false;
10711 }
10712
10713 /* Don't inject interrupts if the user asked to avoid doing so */
10714 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10715 return 0;
10716
10717 /*
10718 * Finally, inject interrupt events. If an event cannot be injected
10719 * due to architectural conditions (e.g. IF=0) a window-open exit
10720 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10721 * and can architecturally be injected, but we cannot do it right now:
10722 * an interrupt could have arrived just now and we have to inject it
10723 * as a vmexit, or there could already an event in the queue, which is
10724 * indicated by can_inject. In that case we request an immediate exit
10725 * in order to make progress and get back here for another iteration.
10726 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10727 */
10728 #ifdef CONFIG_KVM_SMM
10729 if (vcpu->arch.smi_pending) {
10730 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10731 -EBUSY;
10732 if (r < 0)
10733 goto out;
10734 if (r) {
10735 vcpu->arch.smi_pending = false;
10736 ++vcpu->arch.smi_count;
10737 enter_smm(vcpu);
10738 can_inject = false;
10739 } else
10740 kvm_x86_call(enable_smi_window)(vcpu);
10741 }
10742 #endif
10743
10744 if (vcpu->arch.nmi_pending) {
10745 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10746 -EBUSY;
10747 if (r < 0)
10748 goto out;
10749 if (r) {
10750 --vcpu->arch.nmi_pending;
10751 vcpu->arch.nmi_injected = true;
10752 kvm_x86_call(inject_nmi)(vcpu);
10753 can_inject = false;
10754 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10755 }
10756 if (vcpu->arch.nmi_pending)
10757 kvm_x86_call(enable_nmi_window)(vcpu);
10758 }
10759
10760 if (kvm_cpu_has_injectable_intr(vcpu)) {
10761 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10762 -EBUSY;
10763 if (r < 0)
10764 goto out;
10765 if (r) {
10766 int irq = kvm_cpu_get_interrupt(vcpu);
10767
10768 if (!WARN_ON_ONCE(irq == -1)) {
10769 kvm_queue_interrupt(vcpu, irq, false);
10770 kvm_x86_call(inject_irq)(vcpu, false);
10771 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10772 }
10773 }
10774 if (kvm_cpu_has_injectable_intr(vcpu))
10775 kvm_x86_call(enable_irq_window)(vcpu);
10776 }
10777
10778 if (is_guest_mode(vcpu) &&
10779 kvm_x86_ops.nested_ops->has_events &&
10780 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10781 *req_immediate_exit = true;
10782
10783 /*
10784 * KVM must never queue a new exception while injecting an event; KVM
10785 * is done emulating and should only propagate the to-be-injected event
10786 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10787 * infinite loop as KVM will bail from VM-Enter to inject the pending
10788 * exception and start the cycle all over.
10789 *
10790 * Exempt triple faults as they have special handling and won't put the
10791 * vCPU into an infinite loop. Triple fault can be queued when running
10792 * VMX without unrestricted guest, as that requires KVM to emulate Real
10793 * Mode events (see kvm_inject_realmode_interrupt()).
10794 */
10795 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10796 vcpu->arch.exception_vmexit.pending);
10797 return 0;
10798
10799 out:
10800 if (r == -EBUSY) {
10801 *req_immediate_exit = true;
10802 r = 0;
10803 }
10804 return r;
10805 }
10806
process_nmi(struct kvm_vcpu * vcpu)10807 static void process_nmi(struct kvm_vcpu *vcpu)
10808 {
10809 unsigned int limit;
10810
10811 /*
10812 * x86 is limited to one NMI pending, but because KVM can't react to
10813 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10814 * scheduled out, KVM needs to play nice with two queued NMIs showing
10815 * up at the same time. To handle this scenario, allow two NMIs to be
10816 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10817 * waiting for a previous NMI injection to complete (which effectively
10818 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10819 * will request an NMI window to handle the second NMI.
10820 */
10821 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10822 limit = 1;
10823 else
10824 limit = 2;
10825
10826 /*
10827 * Adjust the limit to account for pending virtual NMIs, which aren't
10828 * tracked in vcpu->arch.nmi_pending.
10829 */
10830 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10831 limit--;
10832
10833 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10834 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10835
10836 if (vcpu->arch.nmi_pending &&
10837 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10838 vcpu->arch.nmi_pending--;
10839
10840 if (vcpu->arch.nmi_pending)
10841 kvm_make_request(KVM_REQ_EVENT, vcpu);
10842 }
10843
10844 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10845 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10846 {
10847 return vcpu->arch.nmi_pending +
10848 kvm_x86_call(is_vnmi_pending)(vcpu);
10849 }
10850
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10851 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10852 unsigned long *vcpu_bitmap)
10853 {
10854 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10855 }
10856
kvm_make_scan_ioapic_request(struct kvm * kvm)10857 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10858 {
10859 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10860 }
10861
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10862 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10863 {
10864 struct kvm_lapic *apic = vcpu->arch.apic;
10865 bool activate;
10866
10867 if (!lapic_in_kernel(vcpu))
10868 return;
10869
10870 down_read(&vcpu->kvm->arch.apicv_update_lock);
10871 preempt_disable();
10872
10873 /* Do not activate APICV when APIC is disabled */
10874 activate = kvm_vcpu_apicv_activated(vcpu) &&
10875 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10876
10877 if (apic->apicv_active == activate)
10878 goto out;
10879
10880 apic->apicv_active = activate;
10881 kvm_apic_update_apicv(vcpu);
10882 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10883
10884 /*
10885 * When APICv gets disabled, we may still have injected interrupts
10886 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10887 * still active when the interrupt got accepted. Make sure
10888 * kvm_check_and_inject_events() is called to check for that.
10889 */
10890 if (!apic->apicv_active)
10891 kvm_make_request(KVM_REQ_EVENT, vcpu);
10892
10893 out:
10894 preempt_enable();
10895 up_read(&vcpu->kvm->arch.apicv_update_lock);
10896 }
10897 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv);
10898
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10899 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10900 {
10901 if (!lapic_in_kernel(vcpu))
10902 return;
10903
10904 /*
10905 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10906 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10907 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10908 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10909 * this case so that KVM can use the AVIC doorbell to inject interrupts
10910 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10911 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10912 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10913 * access page is sticky.
10914 */
10915 if (apic_x2apic_mode(vcpu->arch.apic) &&
10916 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10917 kvm_inhibit_apic_access_page(vcpu);
10918
10919 __kvm_vcpu_update_apicv(vcpu);
10920 }
10921
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10922 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10923 enum kvm_apicv_inhibit reason, bool set)
10924 {
10925 unsigned long old, new;
10926
10927 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10928
10929 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10930 return;
10931
10932 old = new = kvm->arch.apicv_inhibit_reasons;
10933
10934 set_or_clear_apicv_inhibit(&new, reason, set);
10935
10936 if (!!old != !!new) {
10937 /*
10938 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10939 * false positives in the sanity check WARN in vcpu_enter_guest().
10940 * This task will wait for all vCPUs to ack the kick IRQ before
10941 * updating apicv_inhibit_reasons, and all other vCPUs will
10942 * block on acquiring apicv_update_lock so that vCPUs can't
10943 * redo vcpu_enter_guest() without seeing the new inhibit state.
10944 *
10945 * Note, holding apicv_update_lock and taking it in the read
10946 * side (handling the request) also prevents other vCPUs from
10947 * servicing the request with a stale apicv_inhibit_reasons.
10948 */
10949 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10950 kvm->arch.apicv_inhibit_reasons = new;
10951 if (new) {
10952 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10953 int idx = srcu_read_lock(&kvm->srcu);
10954
10955 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10956 srcu_read_unlock(&kvm->srcu, idx);
10957 }
10958 } else {
10959 kvm->arch.apicv_inhibit_reasons = new;
10960 }
10961 }
10962
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10963 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10964 enum kvm_apicv_inhibit reason, bool set)
10965 {
10966 if (!enable_apicv)
10967 return;
10968
10969 down_write(&kvm->arch.apicv_update_lock);
10970 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10971 up_write(&kvm->arch.apicv_update_lock);
10972 }
10973 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit);
10974
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10975 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10976 {
10977 if (!kvm_apic_present(vcpu))
10978 return;
10979
10980 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10981 vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10982
10983 kvm_x86_call(sync_pir_to_irr)(vcpu);
10984
10985 if (irqchip_split(vcpu->kvm))
10986 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10987 #ifdef CONFIG_KVM_IOAPIC
10988 else if (ioapic_in_kernel(vcpu->kvm))
10989 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10990 #endif
10991
10992 if (is_guest_mode(vcpu))
10993 vcpu->arch.load_eoi_exitmap_pending = true;
10994 else
10995 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10996 }
10997
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10998 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10999 {
11000 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
11001 return;
11002
11003 #ifdef CONFIG_KVM_HYPERV
11004 if (to_hv_vcpu(vcpu)) {
11005 u64 eoi_exit_bitmap[4];
11006
11007 bitmap_or((ulong *)eoi_exit_bitmap,
11008 vcpu->arch.ioapic_handled_vectors,
11009 to_hv_synic(vcpu)->vec_bitmap, 256);
11010 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
11011 return;
11012 }
11013 #endif
11014 kvm_x86_call(load_eoi_exitmap)(
11015 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
11016 }
11017
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)11018 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
11019 {
11020 kvm_x86_call(guest_memory_reclaimed)(kvm);
11021 }
11022
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)11023 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
11024 {
11025 if (!lapic_in_kernel(vcpu))
11026 return;
11027
11028 kvm_x86_call(set_apic_access_page_addr)(vcpu);
11029 }
11030
11031 /*
11032 * Called within kvm->srcu read side.
11033 * Returns 1 to let vcpu_run() continue the guest execution loop without
11034 * exiting to the userspace. Otherwise, the value will be returned to the
11035 * userspace.
11036 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)11037 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
11038 {
11039 int r;
11040 bool req_int_win =
11041 dm_request_for_irq_injection(vcpu) &&
11042 kvm_cpu_accept_dm_intr(vcpu);
11043 fastpath_t exit_fastpath;
11044 u64 run_flags, debug_ctl;
11045
11046 bool req_immediate_exit = false;
11047
11048 if (kvm_request_pending(vcpu)) {
11049 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
11050 r = -EIO;
11051 goto out;
11052 }
11053
11054 if (kvm_dirty_ring_check_request(vcpu)) {
11055 r = 0;
11056 goto out;
11057 }
11058
11059 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
11060 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
11061 r = 0;
11062 goto out;
11063 }
11064 }
11065 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
11066 kvm_mmu_free_obsolete_roots(vcpu);
11067 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
11068 __kvm_migrate_timers(vcpu);
11069 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
11070 kvm_update_masterclock(vcpu->kvm);
11071 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
11072 kvm_gen_kvmclock_update(vcpu);
11073 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
11074 r = kvm_guest_time_update(vcpu);
11075 if (unlikely(r))
11076 goto out;
11077 }
11078 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
11079 kvm_mmu_sync_roots(vcpu);
11080 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
11081 kvm_mmu_load_pgd(vcpu);
11082
11083 /*
11084 * Note, the order matters here, as flushing "all" TLB entries
11085 * also flushes the "current" TLB entries, i.e. servicing the
11086 * flush "all" will clear any request to flush "current".
11087 */
11088 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
11089 kvm_vcpu_flush_tlb_all(vcpu);
11090
11091 kvm_service_local_tlb_flush_requests(vcpu);
11092
11093 /*
11094 * Fall back to a "full" guest flush if Hyper-V's precise
11095 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
11096 * the flushes are considered "remote" and not "local" because
11097 * the requests can be initiated from other vCPUs.
11098 */
11099 #ifdef CONFIG_KVM_HYPERV
11100 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
11101 kvm_hv_vcpu_flush_tlb(vcpu))
11102 kvm_vcpu_flush_tlb_guest(vcpu);
11103 #endif
11104
11105 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
11106 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
11107 r = 0;
11108 goto out;
11109 }
11110 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11111 if (is_guest_mode(vcpu))
11112 kvm_x86_ops.nested_ops->triple_fault(vcpu);
11113
11114 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11115 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
11116 vcpu->mmio_needed = 0;
11117 r = 0;
11118 goto out;
11119 }
11120 }
11121 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
11122 /* Page is swapped out. Do synthetic halt */
11123 vcpu->arch.apf.halted = true;
11124 r = 1;
11125 goto out;
11126 }
11127 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
11128 record_steal_time(vcpu);
11129 if (kvm_check_request(KVM_REQ_PMU, vcpu))
11130 kvm_pmu_handle_event(vcpu);
11131 if (kvm_check_request(KVM_REQ_PMI, vcpu))
11132 kvm_pmu_deliver_pmi(vcpu);
11133 #ifdef CONFIG_KVM_SMM
11134 if (kvm_check_request(KVM_REQ_SMI, vcpu))
11135 process_smi(vcpu);
11136 #endif
11137 if (kvm_check_request(KVM_REQ_NMI, vcpu))
11138 process_nmi(vcpu);
11139 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
11140 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
11141 if (test_bit(vcpu->arch.pending_ioapic_eoi,
11142 vcpu->arch.ioapic_handled_vectors)) {
11143 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
11144 vcpu->run->eoi.vector =
11145 vcpu->arch.pending_ioapic_eoi;
11146 r = 0;
11147 goto out;
11148 }
11149 }
11150 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
11151 vcpu_scan_ioapic(vcpu);
11152 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
11153 vcpu_load_eoi_exitmap(vcpu);
11154 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
11155 kvm_vcpu_reload_apic_access_page(vcpu);
11156 #ifdef CONFIG_KVM_HYPERV
11157 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
11158 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11159 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
11160 vcpu->run->system_event.ndata = 0;
11161 r = 0;
11162 goto out;
11163 }
11164 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
11165 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11166 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
11167 vcpu->run->system_event.ndata = 0;
11168 r = 0;
11169 goto out;
11170 }
11171 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
11172 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
11173
11174 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
11175 vcpu->run->hyperv = hv_vcpu->exit;
11176 r = 0;
11177 goto out;
11178 }
11179
11180 /*
11181 * KVM_REQ_HV_STIMER has to be processed after
11182 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
11183 * depend on the guest clock being up-to-date
11184 */
11185 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
11186 kvm_hv_process_stimers(vcpu);
11187 #endif
11188 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
11189 kvm_vcpu_update_apicv(vcpu);
11190 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
11191 kvm_check_async_pf_completion(vcpu);
11192
11193 if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu))
11194 kvm_x86_call(recalc_intercepts)(vcpu);
11195
11196 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
11197 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
11198
11199 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
11200 kvm_vcpu_reset(vcpu, true);
11201 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
11202 r = 1;
11203 goto out;
11204 }
11205 }
11206 }
11207
11208 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
11209 kvm_xen_has_interrupt(vcpu)) {
11210 ++vcpu->stat.req_event;
11211 r = kvm_apic_accept_events(vcpu);
11212 if (r < 0) {
11213 r = 0;
11214 goto out;
11215 }
11216 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
11217 r = 1;
11218 goto out;
11219 }
11220
11221 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11222 if (r < 0) {
11223 r = 0;
11224 goto out;
11225 }
11226 if (req_int_win)
11227 kvm_x86_call(enable_irq_window)(vcpu);
11228
11229 if (kvm_lapic_enabled(vcpu)) {
11230 update_cr8_intercept(vcpu);
11231 kvm_lapic_sync_to_vapic(vcpu);
11232 }
11233 }
11234
11235 r = kvm_mmu_reload(vcpu);
11236 if (unlikely(r)) {
11237 goto cancel_injection;
11238 }
11239
11240 preempt_disable();
11241
11242 kvm_x86_call(prepare_switch_to_guest)(vcpu);
11243
11244 /*
11245 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
11246 * IPI are then delayed after guest entry, which ensures that they
11247 * result in virtual interrupt delivery.
11248 */
11249 local_irq_disable();
11250
11251 /* Store vcpu->apicv_active before vcpu->mode. */
11252 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11253
11254 kvm_vcpu_srcu_read_unlock(vcpu);
11255
11256 /*
11257 * 1) We should set ->mode before checking ->requests. Please see
11258 * the comment in kvm_vcpu_exiting_guest_mode().
11259 *
11260 * 2) For APICv, we should set ->mode before checking PID.ON. This
11261 * pairs with the memory barrier implicit in pi_test_and_set_on
11262 * (see vmx_deliver_posted_interrupt).
11263 *
11264 * 3) This also orders the write to mode from any reads to the page
11265 * tables done while the VCPU is running. Please see the comment
11266 * in kvm_flush_remote_tlbs.
11267 */
11268 smp_mb__after_srcu_read_unlock();
11269
11270 /*
11271 * Process pending posted interrupts to handle the case where the
11272 * notification IRQ arrived in the host, or was never sent (because the
11273 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
11274 * status, KVM doesn't update assigned devices when APICv is inhibited,
11275 * i.e. they can post interrupts even if APICv is temporarily disabled.
11276 */
11277 if (kvm_lapic_enabled(vcpu))
11278 kvm_x86_call(sync_pir_to_irr)(vcpu);
11279
11280 if (kvm_vcpu_exit_request(vcpu)) {
11281 vcpu->mode = OUTSIDE_GUEST_MODE;
11282 smp_wmb();
11283 local_irq_enable();
11284 preempt_enable();
11285 kvm_vcpu_srcu_read_lock(vcpu);
11286 r = 1;
11287 goto cancel_injection;
11288 }
11289
11290 run_flags = 0;
11291 if (req_immediate_exit) {
11292 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
11293 kvm_make_request(KVM_REQ_EVENT, vcpu);
11294 }
11295
11296 fpregs_assert_state_consistent();
11297 if (test_thread_flag(TIF_NEED_FPU_LOAD))
11298 switch_fpu_return();
11299
11300 if (vcpu->arch.guest_fpu.xfd_err)
11301 wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11302
11303 kvm_load_xfeatures(vcpu, true);
11304
11305 if (unlikely(vcpu->arch.switch_db_regs &&
11306 !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11307 set_debugreg(DR7_FIXED_1, 7);
11308 set_debugreg(vcpu->arch.eff_db[0], 0);
11309 set_debugreg(vcpu->arch.eff_db[1], 1);
11310 set_debugreg(vcpu->arch.eff_db[2], 2);
11311 set_debugreg(vcpu->arch.eff_db[3], 3);
11312 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11313 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11314 run_flags |= KVM_RUN_LOAD_GUEST_DR6;
11315 } else if (unlikely(hw_breakpoint_active())) {
11316 set_debugreg(DR7_FIXED_1, 7);
11317 }
11318
11319 /*
11320 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
11321 * can be modified in IRQ context, e.g. via SMP function calls. Inform
11322 * vendor code if any host-owned bits were changed, e.g. so that the
11323 * value loaded into hardware while running the guest can be updated.
11324 */
11325 debug_ctl = get_debugctlmsr();
11326 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
11327 !vcpu->arch.guest_state_protected)
11328 run_flags |= KVM_RUN_LOAD_DEBUGCTL;
11329 vcpu->arch.host_debugctl = debug_ctl;
11330
11331 guest_timing_enter_irqoff();
11332
11333 /*
11334 * Swap PKRU with hardware breakpoints disabled to minimize the number
11335 * of flows where non-KVM code can run with guest state loaded.
11336 */
11337 kvm_load_guest_pkru(vcpu);
11338
11339 for (;;) {
11340 /*
11341 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11342 * update must kick and wait for all vCPUs before toggling the
11343 * per-VM state, and responding vCPUs must wait for the update
11344 * to complete before servicing KVM_REQ_APICV_UPDATE.
11345 */
11346 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11347 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11348
11349 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11350 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11351 break;
11352
11353 if (kvm_lapic_enabled(vcpu))
11354 kvm_x86_call(sync_pir_to_irr)(vcpu);
11355
11356 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11357 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11358 break;
11359 }
11360
11361 run_flags = 0;
11362
11363 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11364 ++vcpu->stat.exits;
11365 }
11366
11367 kvm_load_host_pkru(vcpu);
11368
11369 /*
11370 * Do this here before restoring debug registers on the host. And
11371 * since we do this before handling the vmexit, a DR access vmexit
11372 * can (a) read the correct value of the debug registers, (b) set
11373 * KVM_DEBUGREG_WONT_EXIT again.
11374 */
11375 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11376 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11377 WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11378 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11379 kvm_update_dr0123(vcpu);
11380 kvm_update_dr7(vcpu);
11381 }
11382
11383 /*
11384 * If the guest has used debug registers, at least dr7
11385 * will be disabled while returning to the host.
11386 * If we don't have active breakpoints in the host, we don't
11387 * care about the messed up debug address registers. But if
11388 * we have some of them active, restore the old state.
11389 */
11390 if (hw_breakpoint_active())
11391 hw_breakpoint_restore();
11392
11393 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11394 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11395
11396 vcpu->mode = OUTSIDE_GUEST_MODE;
11397 smp_wmb();
11398
11399 kvm_load_xfeatures(vcpu, false);
11400
11401 /*
11402 * Sync xfd before calling handle_exit_irqoff() which may
11403 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11404 * in #NM irqoff handler).
11405 */
11406 if (vcpu->arch.xfd_no_write_intercept)
11407 fpu_sync_guest_vmexit_xfd_state();
11408
11409 kvm_x86_call(handle_exit_irqoff)(vcpu);
11410
11411 if (vcpu->arch.guest_fpu.xfd_err)
11412 wrmsrq(MSR_IA32_XFD_ERR, 0);
11413
11414 /*
11415 * Mark this CPU as needing a branch predictor flush before running
11416 * userspace. Must be done before enabling preemption to ensure it gets
11417 * set for the CPU that actually ran the guest, and not the CPU that it
11418 * may migrate to.
11419 */
11420 if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11421 this_cpu_write(x86_ibpb_exit_to_user, true);
11422
11423 /*
11424 * Consume any pending interrupts, including the possible source of
11425 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11426 * An instruction is required after local_irq_enable() to fully unblock
11427 * interrupts on processors that implement an interrupt shadow, the
11428 * stat.exits increment will do nicely.
11429 */
11430 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11431 local_irq_enable();
11432 ++vcpu->stat.exits;
11433 local_irq_disable();
11434 kvm_after_interrupt(vcpu);
11435
11436 /*
11437 * Wait until after servicing IRQs to account guest time so that any
11438 * ticks that occurred while running the guest are properly accounted
11439 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11440 * of accounting via context tracking, but the loss of accuracy is
11441 * acceptable for all known use cases.
11442 */
11443 guest_timing_exit_irqoff();
11444
11445 local_irq_enable();
11446 preempt_enable();
11447
11448 kvm_vcpu_srcu_read_lock(vcpu);
11449
11450 /*
11451 * Call this to ensure WC buffers in guest are evicted after each VM
11452 * Exit, so that the evicted WC writes can be snooped across all cpus
11453 */
11454 smp_mb__after_srcu_read_lock();
11455
11456 /*
11457 * Profile KVM exit RIPs:
11458 */
11459 if (unlikely(prof_on == KVM_PROFILING &&
11460 !vcpu->arch.guest_state_protected)) {
11461 unsigned long rip = kvm_rip_read(vcpu);
11462 profile_hit(KVM_PROFILING, (void *)rip);
11463 }
11464
11465 if (unlikely(vcpu->arch.tsc_always_catchup))
11466 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11467
11468 if (vcpu->arch.apic_attention)
11469 kvm_lapic_sync_from_vapic(vcpu);
11470
11471 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11472 return 0;
11473
11474 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11475 return r;
11476
11477 cancel_injection:
11478 if (req_immediate_exit)
11479 kvm_make_request(KVM_REQ_EVENT, vcpu);
11480 kvm_x86_call(cancel_injection)(vcpu);
11481 if (unlikely(vcpu->arch.apic_attention))
11482 kvm_lapic_sync_from_vapic(vcpu);
11483 out:
11484 return r;
11485 }
11486
kvm_vcpu_running(struct kvm_vcpu * vcpu)11487 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11488 {
11489 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11490 !vcpu->arch.apf.halted);
11491 }
11492
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11493 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11494 {
11495 if (!list_empty_careful(&vcpu->async_pf.done))
11496 return true;
11497
11498 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11499 kvm_apic_init_sipi_allowed(vcpu))
11500 return true;
11501
11502 if (kvm_is_exception_pending(vcpu))
11503 return true;
11504
11505 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11506 (vcpu->arch.nmi_pending &&
11507 kvm_x86_call(nmi_allowed)(vcpu, false)))
11508 return true;
11509
11510 #ifdef CONFIG_KVM_SMM
11511 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11512 (vcpu->arch.smi_pending &&
11513 kvm_x86_call(smi_allowed)(vcpu, false)))
11514 return true;
11515 #endif
11516
11517 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11518 return true;
11519
11520 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11521 return true;
11522
11523 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11524 return true;
11525
11526 if (kvm_hv_has_stimer_pending(vcpu))
11527 return true;
11528
11529 if (is_guest_mode(vcpu) &&
11530 kvm_x86_ops.nested_ops->has_events &&
11531 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11532 return true;
11533
11534 if (kvm_xen_has_pending_events(vcpu))
11535 return true;
11536
11537 return false;
11538 }
11539 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events);
11540
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11541 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11542 {
11543 return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11544 kvm_vcpu_has_events(vcpu);
11545 }
11546
11547 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11548 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11549 {
11550 bool hv_timer;
11551
11552 if (!kvm_arch_vcpu_runnable(vcpu)) {
11553 /*
11554 * Switch to the software timer before halt-polling/blocking as
11555 * the guest's timer may be a break event for the vCPU, and the
11556 * hypervisor timer runs only when the CPU is in guest mode.
11557 * Switch before halt-polling so that KVM recognizes an expired
11558 * timer before blocking.
11559 */
11560 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11561 if (hv_timer)
11562 kvm_lapic_switch_to_sw_timer(vcpu);
11563
11564 kvm_vcpu_srcu_read_unlock(vcpu);
11565 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11566 kvm_vcpu_halt(vcpu);
11567 else
11568 kvm_vcpu_block(vcpu);
11569 kvm_vcpu_srcu_read_lock(vcpu);
11570
11571 if (hv_timer)
11572 kvm_lapic_switch_to_hv_timer(vcpu);
11573
11574 /*
11575 * If the vCPU is not runnable, a signal or another host event
11576 * of some kind is pending; service it without changing the
11577 * vCPU's activity state.
11578 */
11579 if (!kvm_arch_vcpu_runnable(vcpu))
11580 return 1;
11581 }
11582
11583 /*
11584 * Evaluate nested events before exiting the halted state. This allows
11585 * the halt state to be recorded properly in the VMCS12's activity
11586 * state field (AMD does not have a similar field and a VM-Exit always
11587 * causes a spurious wakeup from HLT).
11588 */
11589 if (is_guest_mode(vcpu)) {
11590 int r = kvm_check_nested_events(vcpu);
11591
11592 WARN_ON_ONCE(r == -EBUSY);
11593 if (r < 0)
11594 return 0;
11595 }
11596
11597 if (kvm_apic_accept_events(vcpu) < 0)
11598 return 0;
11599 switch(vcpu->arch.mp_state) {
11600 case KVM_MP_STATE_HALTED:
11601 case KVM_MP_STATE_AP_RESET_HOLD:
11602 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11603 fallthrough;
11604 case KVM_MP_STATE_RUNNABLE:
11605 vcpu->arch.apf.halted = false;
11606 break;
11607 case KVM_MP_STATE_INIT_RECEIVED:
11608 break;
11609 default:
11610 WARN_ON_ONCE(1);
11611 break;
11612 }
11613 return 1;
11614 }
11615
11616 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11617 static int vcpu_run(struct kvm_vcpu *vcpu)
11618 {
11619 int r;
11620
11621 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11622
11623 for (;;) {
11624 /*
11625 * If another guest vCPU requests a PV TLB flush in the middle
11626 * of instruction emulation, the rest of the emulation could
11627 * use a stale page translation. Assume that any code after
11628 * this point can start executing an instruction.
11629 */
11630 vcpu->arch.at_instruction_boundary = false;
11631 if (kvm_vcpu_running(vcpu)) {
11632 r = vcpu_enter_guest(vcpu);
11633 } else {
11634 r = vcpu_block(vcpu);
11635 }
11636
11637 if (r <= 0)
11638 break;
11639
11640 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11641 if (kvm_xen_has_pending_events(vcpu))
11642 kvm_xen_inject_pending_events(vcpu);
11643
11644 if (kvm_cpu_has_pending_timer(vcpu))
11645 kvm_inject_pending_timer_irqs(vcpu);
11646
11647 if (dm_request_for_irq_injection(vcpu) &&
11648 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11649 r = 0;
11650 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11651 ++vcpu->stat.request_irq_exits;
11652 break;
11653 }
11654
11655 if (__xfer_to_guest_mode_work_pending()) {
11656 kvm_vcpu_srcu_read_unlock(vcpu);
11657 r = kvm_xfer_to_guest_mode_handle_work(vcpu);
11658 kvm_vcpu_srcu_read_lock(vcpu);
11659 if (r)
11660 return r;
11661 }
11662 }
11663
11664 return r;
11665 }
11666
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11667 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11668 {
11669 /*
11670 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11671 * local APIC is in-kernel, the run loop will detect the non-runnable
11672 * state and halt the vCPU. Exit to userspace if the local APIC is
11673 * managed by userspace, in which case userspace is responsible for
11674 * handling wake events.
11675 */
11676 ++vcpu->stat.halt_exits;
11677 if (lapic_in_kernel(vcpu)) {
11678 if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11679 state = KVM_MP_STATE_RUNNABLE;
11680 kvm_set_mp_state(vcpu, state);
11681 return 1;
11682 } else {
11683 vcpu->run->exit_reason = reason;
11684 return 0;
11685 }
11686 }
11687
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11688 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11689 {
11690 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11691 }
11692 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip);
11693
kvm_emulate_halt(struct kvm_vcpu * vcpu)11694 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11695 {
11696 int ret = kvm_skip_emulated_instruction(vcpu);
11697 /*
11698 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11699 * KVM_EXIT_DEBUG here.
11700 */
11701 return kvm_emulate_halt_noskip(vcpu) && ret;
11702 }
11703 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt);
11704
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11705 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11706 {
11707 if (!kvm_emulate_halt(vcpu))
11708 return EXIT_FASTPATH_EXIT_USERSPACE;
11709
11710 if (kvm_vcpu_running(vcpu))
11711 return EXIT_FASTPATH_REENTER_GUEST;
11712
11713 return EXIT_FASTPATH_EXIT_HANDLED;
11714 }
11715 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt);
11716
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11717 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11718 {
11719 int ret = kvm_skip_emulated_instruction(vcpu);
11720
11721 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11722 KVM_EXIT_AP_RESET_HOLD) && ret;
11723 }
11724 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold);
11725
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11726 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11727 {
11728 return kvm_vcpu_apicv_active(vcpu) &&
11729 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11730 }
11731
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11732 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11733 {
11734 return vcpu->arch.preempted_in_kernel;
11735 }
11736
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11737 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11738 {
11739 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11740 return true;
11741
11742 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11743 #ifdef CONFIG_KVM_SMM
11744 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11745 #endif
11746 kvm_test_request(KVM_REQ_EVENT, vcpu))
11747 return true;
11748
11749 return kvm_arch_dy_has_pending_interrupt(vcpu);
11750 }
11751
complete_emulated_io(struct kvm_vcpu * vcpu)11752 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11753 {
11754 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11755 }
11756
complete_emulated_pio(struct kvm_vcpu * vcpu)11757 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11758 {
11759 BUG_ON(!vcpu->arch.pio.count);
11760
11761 return complete_emulated_io(vcpu);
11762 }
11763
11764 /*
11765 * Implements the following, as a state machine:
11766 *
11767 * read:
11768 * for each fragment
11769 * for each mmio piece in the fragment
11770 * write gpa, len
11771 * exit
11772 * copy data
11773 * execute insn
11774 *
11775 * write:
11776 * for each fragment
11777 * for each mmio piece in the fragment
11778 * write gpa, len
11779 * copy data
11780 * exit
11781 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11782 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11783 {
11784 struct kvm_run *run = vcpu->run;
11785 struct kvm_mmio_fragment *frag;
11786 unsigned len;
11787
11788 BUG_ON(!vcpu->mmio_needed);
11789
11790 /* Complete previous fragment */
11791 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11792 len = min(8u, frag->len);
11793 if (!vcpu->mmio_is_write)
11794 memcpy(frag->data, run->mmio.data, len);
11795
11796 if (frag->len <= 8) {
11797 /* Switch to the next fragment. */
11798 frag++;
11799 vcpu->mmio_cur_fragment++;
11800 } else {
11801 /* Go forward to the next mmio piece. */
11802 frag->data += len;
11803 frag->gpa += len;
11804 frag->len -= len;
11805 }
11806
11807 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11808 vcpu->mmio_needed = 0;
11809
11810 /* FIXME: return into emulator if single-stepping. */
11811 if (vcpu->mmio_is_write)
11812 return 1;
11813 vcpu->mmio_read_completed = 1;
11814 return complete_emulated_io(vcpu);
11815 }
11816
11817 run->exit_reason = KVM_EXIT_MMIO;
11818 run->mmio.phys_addr = frag->gpa;
11819 if (vcpu->mmio_is_write)
11820 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11821 run->mmio.len = min(8u, frag->len);
11822 run->mmio.is_write = vcpu->mmio_is_write;
11823 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11824 return 0;
11825 }
11826
11827 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11828 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11829 {
11830 if (KVM_BUG_ON(vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11831 return;
11832
11833 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11834 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11835 trace_kvm_fpu(1);
11836 }
11837
11838 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11839 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11840 {
11841 if (KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11842 return;
11843
11844 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11845 ++vcpu->stat.fpu_reload;
11846 trace_kvm_fpu(0);
11847 }
11848
kvm_x86_vcpu_pre_run(struct kvm_vcpu * vcpu)11849 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu)
11850 {
11851 /*
11852 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and
11853 * tracks the pending SIPI separately. SIPI_RECEIVED is still accepted
11854 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be
11855 * converted to INIT_RECEIVED.
11856 */
11857 if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED))
11858 return -EINVAL;
11859
11860 /*
11861 * Disallow running the vCPU if userspace forced it into an impossible
11862 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked.
11863 */
11864 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED &&
11865 !kvm_apic_init_sipi_allowed(vcpu))
11866 return -EINVAL;
11867
11868 return kvm_x86_call(vcpu_pre_run)(vcpu);
11869 }
11870
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11871 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11872 {
11873 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11874 struct kvm_run *kvm_run = vcpu->run;
11875 u64 sync_valid_fields;
11876 int r;
11877
11878 r = kvm_mmu_post_init_vm(vcpu->kvm);
11879 if (r)
11880 return r;
11881
11882 vcpu_load(vcpu);
11883 kvm_sigset_activate(vcpu);
11884 kvm_run->flags = 0;
11885 kvm_load_guest_fpu(vcpu);
11886
11887 kvm_vcpu_srcu_read_lock(vcpu);
11888 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11889 if (!vcpu->wants_to_run) {
11890 r = -EINTR;
11891 goto out;
11892 }
11893
11894 /*
11895 * Don't bother switching APIC timer emulation from the
11896 * hypervisor timer to the software timer, the only way for the
11897 * APIC timer to be active is if userspace stuffed vCPU state,
11898 * i.e. put the vCPU into a nonsensical state. Only an INIT
11899 * will transition the vCPU out of UNINITIALIZED (without more
11900 * state stuffing from userspace), which will reset the local
11901 * APIC and thus cancel the timer or drop the IRQ (if the timer
11902 * already expired).
11903 */
11904 kvm_vcpu_srcu_read_unlock(vcpu);
11905 kvm_vcpu_block(vcpu);
11906 kvm_vcpu_srcu_read_lock(vcpu);
11907
11908 if (kvm_apic_accept_events(vcpu) < 0) {
11909 r = 0;
11910 goto out;
11911 }
11912 r = -EAGAIN;
11913 if (signal_pending(current)) {
11914 r = -EINTR;
11915 kvm_run->exit_reason = KVM_EXIT_INTR;
11916 ++vcpu->stat.signal_exits;
11917 }
11918 goto out;
11919 }
11920
11921 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11922 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11923 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11924 r = -EINVAL;
11925 goto out;
11926 }
11927
11928 if (kvm_run->kvm_dirty_regs) {
11929 r = sync_regs(vcpu);
11930 if (r != 0)
11931 goto out;
11932 }
11933
11934 /* re-sync apic's tpr */
11935 if (!lapic_in_kernel(vcpu)) {
11936 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11937 r = -EINVAL;
11938 goto out;
11939 }
11940 }
11941
11942 /*
11943 * If userspace set a pending exception and L2 is active, convert it to
11944 * a pending VM-Exit if L1 wants to intercept the exception.
11945 */
11946 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11947 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11948 ex->error_code)) {
11949 kvm_queue_exception_vmexit(vcpu, ex->vector,
11950 ex->has_error_code, ex->error_code,
11951 ex->has_payload, ex->payload);
11952 ex->injected = false;
11953 ex->pending = false;
11954 }
11955 vcpu->arch.exception_from_userspace = false;
11956
11957 if (unlikely(vcpu->arch.complete_userspace_io)) {
11958 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11959 vcpu->arch.complete_userspace_io = NULL;
11960 r = cui(vcpu);
11961 if (r <= 0)
11962 goto out;
11963 } else {
11964 WARN_ON_ONCE(vcpu->arch.pio.count);
11965 WARN_ON_ONCE(vcpu->mmio_needed);
11966 }
11967
11968 if (!vcpu->wants_to_run) {
11969 r = -EINTR;
11970 goto out;
11971 }
11972
11973 r = kvm_x86_vcpu_pre_run(vcpu);
11974 if (r <= 0)
11975 goto out;
11976
11977 r = vcpu_run(vcpu);
11978
11979 out:
11980 kvm_put_guest_fpu(vcpu);
11981 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11982 store_regs(vcpu);
11983 post_kvm_run_save(vcpu);
11984 kvm_vcpu_srcu_read_unlock(vcpu);
11985
11986 kvm_sigset_deactivate(vcpu);
11987 vcpu_put(vcpu);
11988 return r;
11989 }
11990
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11991 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11992 {
11993 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11994 /*
11995 * We are here if userspace calls get_regs() in the middle of
11996 * instruction emulation. Registers state needs to be copied
11997 * back from emulation context to vcpu. Userspace shouldn't do
11998 * that usually, but some bad designed PV devices (vmware
11999 * backdoor interface) need this to work
12000 */
12001 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
12002 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12003 }
12004 regs->rax = kvm_rax_read(vcpu);
12005 regs->rbx = kvm_rbx_read(vcpu);
12006 regs->rcx = kvm_rcx_read(vcpu);
12007 regs->rdx = kvm_rdx_read(vcpu);
12008 regs->rsi = kvm_rsi_read(vcpu);
12009 regs->rdi = kvm_rdi_read(vcpu);
12010 regs->rsp = kvm_rsp_read(vcpu);
12011 regs->rbp = kvm_rbp_read(vcpu);
12012 #ifdef CONFIG_X86_64
12013 regs->r8 = kvm_r8_read(vcpu);
12014 regs->r9 = kvm_r9_read(vcpu);
12015 regs->r10 = kvm_r10_read(vcpu);
12016 regs->r11 = kvm_r11_read(vcpu);
12017 regs->r12 = kvm_r12_read(vcpu);
12018 regs->r13 = kvm_r13_read(vcpu);
12019 regs->r14 = kvm_r14_read(vcpu);
12020 regs->r15 = kvm_r15_read(vcpu);
12021 #endif
12022
12023 regs->rip = kvm_rip_read(vcpu);
12024 regs->rflags = kvm_get_rflags(vcpu);
12025 }
12026
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12027 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12028 {
12029 if (vcpu->kvm->arch.has_protected_state &&
12030 vcpu->arch.guest_state_protected)
12031 return -EINVAL;
12032
12033 vcpu_load(vcpu);
12034 __get_regs(vcpu, regs);
12035 vcpu_put(vcpu);
12036 return 0;
12037 }
12038
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12039 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12040 {
12041 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
12042 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12043
12044 kvm_rax_write(vcpu, regs->rax);
12045 kvm_rbx_write(vcpu, regs->rbx);
12046 kvm_rcx_write(vcpu, regs->rcx);
12047 kvm_rdx_write(vcpu, regs->rdx);
12048 kvm_rsi_write(vcpu, regs->rsi);
12049 kvm_rdi_write(vcpu, regs->rdi);
12050 kvm_rsp_write(vcpu, regs->rsp);
12051 kvm_rbp_write(vcpu, regs->rbp);
12052 #ifdef CONFIG_X86_64
12053 kvm_r8_write(vcpu, regs->r8);
12054 kvm_r9_write(vcpu, regs->r9);
12055 kvm_r10_write(vcpu, regs->r10);
12056 kvm_r11_write(vcpu, regs->r11);
12057 kvm_r12_write(vcpu, regs->r12);
12058 kvm_r13_write(vcpu, regs->r13);
12059 kvm_r14_write(vcpu, regs->r14);
12060 kvm_r15_write(vcpu, regs->r15);
12061 #endif
12062
12063 kvm_rip_write(vcpu, regs->rip);
12064 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
12065
12066 vcpu->arch.exception.pending = false;
12067 vcpu->arch.exception_vmexit.pending = false;
12068
12069 kvm_make_request(KVM_REQ_EVENT, vcpu);
12070 }
12071
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12072 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12073 {
12074 if (vcpu->kvm->arch.has_protected_state &&
12075 vcpu->arch.guest_state_protected)
12076 return -EINVAL;
12077
12078 vcpu_load(vcpu);
12079 __set_regs(vcpu, regs);
12080 vcpu_put(vcpu);
12081 return 0;
12082 }
12083
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12084 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12085 {
12086 struct desc_ptr dt;
12087
12088 if (vcpu->arch.guest_state_protected)
12089 goto skip_protected_regs;
12090
12091 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12092 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12093 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12094 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12095 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12096 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12097
12098 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12099 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12100
12101 kvm_x86_call(get_idt)(vcpu, &dt);
12102 sregs->idt.limit = dt.size;
12103 sregs->idt.base = dt.address;
12104 kvm_x86_call(get_gdt)(vcpu, &dt);
12105 sregs->gdt.limit = dt.size;
12106 sregs->gdt.base = dt.address;
12107
12108 sregs->cr2 = vcpu->arch.cr2;
12109 sregs->cr3 = kvm_read_cr3(vcpu);
12110
12111 skip_protected_regs:
12112 sregs->cr0 = kvm_read_cr0(vcpu);
12113 sregs->cr4 = kvm_read_cr4(vcpu);
12114 sregs->cr8 = kvm_get_cr8(vcpu);
12115 sregs->efer = vcpu->arch.efer;
12116 sregs->apic_base = vcpu->arch.apic_base;
12117 }
12118
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12119 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12120 {
12121 __get_sregs_common(vcpu, sregs);
12122
12123 if (vcpu->arch.guest_state_protected)
12124 return;
12125
12126 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
12127 set_bit(vcpu->arch.interrupt.nr,
12128 (unsigned long *)sregs->interrupt_bitmap);
12129 }
12130
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12131 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12132 {
12133 int i;
12134
12135 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
12136
12137 if (vcpu->arch.guest_state_protected)
12138 return;
12139
12140 if (is_pae_paging(vcpu)) {
12141 for (i = 0 ; i < 4 ; i++)
12142 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
12143 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
12144 }
12145 }
12146
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12147 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
12148 struct kvm_sregs *sregs)
12149 {
12150 if (vcpu->kvm->arch.has_protected_state &&
12151 vcpu->arch.guest_state_protected)
12152 return -EINVAL;
12153
12154 vcpu_load(vcpu);
12155 __get_sregs(vcpu, sregs);
12156 vcpu_put(vcpu);
12157 return 0;
12158 }
12159
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12160 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
12161 struct kvm_mp_state *mp_state)
12162 {
12163 int r;
12164
12165 vcpu_load(vcpu);
12166 kvm_vcpu_srcu_read_lock(vcpu);
12167
12168 r = kvm_apic_accept_events(vcpu);
12169 if (r < 0)
12170 goto out;
12171 r = 0;
12172
12173 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
12174 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
12175 vcpu->arch.pv.pv_unhalted)
12176 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
12177 else
12178 mp_state->mp_state = vcpu->arch.mp_state;
12179
12180 out:
12181 kvm_vcpu_srcu_read_unlock(vcpu);
12182 vcpu_put(vcpu);
12183 return r;
12184 }
12185
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12186 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
12187 struct kvm_mp_state *mp_state)
12188 {
12189 int ret = -EINVAL;
12190
12191 vcpu_load(vcpu);
12192
12193 switch (mp_state->mp_state) {
12194 case KVM_MP_STATE_UNINITIALIZED:
12195 case KVM_MP_STATE_HALTED:
12196 case KVM_MP_STATE_AP_RESET_HOLD:
12197 case KVM_MP_STATE_INIT_RECEIVED:
12198 case KVM_MP_STATE_SIPI_RECEIVED:
12199 if (!lapic_in_kernel(vcpu))
12200 goto out;
12201 break;
12202
12203 case KVM_MP_STATE_RUNNABLE:
12204 break;
12205
12206 default:
12207 goto out;
12208 }
12209
12210 /*
12211 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead
12212 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI.
12213 * Translate SIPI_RECEIVED as appropriate for backwards compatibility.
12214 */
12215 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
12216 mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED;
12217 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
12218 }
12219
12220 kvm_set_mp_state(vcpu, mp_state->mp_state);
12221 kvm_make_request(KVM_REQ_EVENT, vcpu);
12222
12223 ret = 0;
12224 out:
12225 vcpu_put(vcpu);
12226 return ret;
12227 }
12228
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)12229 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
12230 int reason, bool has_error_code, u32 error_code)
12231 {
12232 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
12233 int ret;
12234
12235 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) {
12236 u64 u_cet, s_cet;
12237
12238 /*
12239 * Check both User and Supervisor on task switches as inter-
12240 * privilege level task switches are impacted by CET at both
12241 * the current privilege level and the new privilege level, and
12242 * that information is not known at this time. The expectation
12243 * is that the guest won't require emulation of task switches
12244 * while using IBT or Shadow Stacks.
12245 */
12246 if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) ||
12247 __kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet))
12248 goto unhandled_task_switch;
12249
12250 if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN))
12251 goto unhandled_task_switch;
12252 }
12253
12254 init_emulate_ctxt(vcpu);
12255
12256 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
12257 has_error_code, error_code);
12258
12259 /*
12260 * Report an error userspace if MMIO is needed, as KVM doesn't support
12261 * MMIO during a task switch (or any other complex operation).
12262 */
12263 if (ret || vcpu->mmio_needed)
12264 goto unhandled_task_switch;
12265
12266 kvm_rip_write(vcpu, ctxt->eip);
12267 kvm_set_rflags(vcpu, ctxt->eflags);
12268 return 1;
12269
12270 unhandled_task_switch:
12271 vcpu->mmio_needed = false;
12272 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12273 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12274 vcpu->run->internal.ndata = 0;
12275 return 0;
12276 }
12277 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch);
12278
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12279 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12280 {
12281 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
12282 /*
12283 * When EFER.LME and CR0.PG are set, the processor is in
12284 * 64-bit mode (though maybe in a 32-bit code segment).
12285 * CR4.PAE and EFER.LMA must be set.
12286 */
12287 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
12288 return false;
12289 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
12290 return false;
12291 } else {
12292 /*
12293 * Not in 64-bit mode: EFER.LMA is clear and the code
12294 * segment cannot be 64-bit.
12295 */
12296 if (sregs->efer & EFER_LMA || sregs->cs.l)
12297 return false;
12298 }
12299
12300 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
12301 kvm_is_valid_cr0(vcpu, sregs->cr0);
12302 }
12303
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)12304 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
12305 int *mmu_reset_needed, bool update_pdptrs)
12306 {
12307 int idx;
12308 struct desc_ptr dt;
12309
12310 if (!kvm_is_valid_sregs(vcpu, sregs))
12311 return -EINVAL;
12312
12313 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
12314 return -EINVAL;
12315
12316 if (vcpu->arch.guest_state_protected)
12317 return 0;
12318
12319 dt.size = sregs->idt.limit;
12320 dt.address = sregs->idt.base;
12321 kvm_x86_call(set_idt)(vcpu, &dt);
12322 dt.size = sregs->gdt.limit;
12323 dt.address = sregs->gdt.base;
12324 kvm_x86_call(set_gdt)(vcpu, &dt);
12325
12326 vcpu->arch.cr2 = sregs->cr2;
12327 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
12328 vcpu->arch.cr3 = sregs->cr3;
12329 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12330 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12331
12332 kvm_set_cr8(vcpu, sregs->cr8);
12333
12334 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12335 kvm_x86_call(set_efer)(vcpu, sregs->efer);
12336
12337 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12338 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12339
12340 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12341 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12342
12343 if (update_pdptrs) {
12344 idx = srcu_read_lock(&vcpu->kvm->srcu);
12345 if (is_pae_paging(vcpu)) {
12346 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12347 *mmu_reset_needed = 1;
12348 }
12349 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12350 }
12351
12352 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12353 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12354 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12355 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12356 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12357 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12358
12359 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12360 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12361
12362 update_cr8_intercept(vcpu);
12363
12364 /* Older userspace won't unhalt the vcpu on reset. */
12365 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12366 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12367 !is_protmode(vcpu))
12368 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12369
12370 return 0;
12371 }
12372
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12373 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12374 {
12375 int pending_vec, max_bits;
12376 int mmu_reset_needed = 0;
12377 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12378
12379 if (ret)
12380 return ret;
12381
12382 if (mmu_reset_needed) {
12383 kvm_mmu_reset_context(vcpu);
12384 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12385 }
12386
12387 max_bits = KVM_NR_INTERRUPTS;
12388 pending_vec = find_first_bit(
12389 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
12390
12391 if (pending_vec < max_bits) {
12392 kvm_queue_interrupt(vcpu, pending_vec, false);
12393 pr_debug("Set back pending irq %d\n", pending_vec);
12394 kvm_make_request(KVM_REQ_EVENT, vcpu);
12395 }
12396 return 0;
12397 }
12398
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12399 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12400 {
12401 int mmu_reset_needed = 0;
12402 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12403 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12404 !(sregs2->efer & EFER_LMA);
12405 int i, ret;
12406
12407 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12408 return -EINVAL;
12409
12410 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12411 return -EINVAL;
12412
12413 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12414 &mmu_reset_needed, !valid_pdptrs);
12415 if (ret)
12416 return ret;
12417
12418 if (valid_pdptrs) {
12419 for (i = 0; i < 4 ; i++)
12420 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12421
12422 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12423 mmu_reset_needed = 1;
12424 vcpu->arch.pdptrs_from_userspace = true;
12425 }
12426 if (mmu_reset_needed) {
12427 kvm_mmu_reset_context(vcpu);
12428 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12429 }
12430 return 0;
12431 }
12432
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12433 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12434 struct kvm_sregs *sregs)
12435 {
12436 int ret;
12437
12438 if (vcpu->kvm->arch.has_protected_state &&
12439 vcpu->arch.guest_state_protected)
12440 return -EINVAL;
12441
12442 vcpu_load(vcpu);
12443 ret = __set_sregs(vcpu, sregs);
12444 vcpu_put(vcpu);
12445 return ret;
12446 }
12447
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12448 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12449 {
12450 bool set = false;
12451 struct kvm_vcpu *vcpu;
12452 unsigned long i;
12453
12454 if (!enable_apicv)
12455 return;
12456
12457 down_write(&kvm->arch.apicv_update_lock);
12458
12459 kvm_for_each_vcpu(i, vcpu, kvm) {
12460 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12461 set = true;
12462 break;
12463 }
12464 }
12465 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12466 up_write(&kvm->arch.apicv_update_lock);
12467 }
12468
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12469 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12470 struct kvm_guest_debug *dbg)
12471 {
12472 unsigned long rflags;
12473 int i, r;
12474
12475 if (vcpu->arch.guest_state_protected)
12476 return -EINVAL;
12477
12478 vcpu_load(vcpu);
12479
12480 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12481 r = -EBUSY;
12482 if (kvm_is_exception_pending(vcpu))
12483 goto out;
12484 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12485 kvm_queue_exception(vcpu, DB_VECTOR);
12486 else
12487 kvm_queue_exception(vcpu, BP_VECTOR);
12488 }
12489
12490 /*
12491 * Read rflags as long as potentially injected trace flags are still
12492 * filtered out.
12493 */
12494 rflags = kvm_get_rflags(vcpu);
12495
12496 vcpu->guest_debug = dbg->control;
12497 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12498 vcpu->guest_debug = 0;
12499
12500 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12501 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12502 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12503 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12504 } else {
12505 for (i = 0; i < KVM_NR_DB_REGS; i++)
12506 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12507 }
12508 kvm_update_dr7(vcpu);
12509
12510 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12511 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12512
12513 /*
12514 * Trigger an rflags update that will inject or remove the trace
12515 * flags.
12516 */
12517 kvm_set_rflags(vcpu, rflags);
12518
12519 kvm_x86_call(update_exception_bitmap)(vcpu);
12520
12521 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12522
12523 r = 0;
12524
12525 out:
12526 vcpu_put(vcpu);
12527 return r;
12528 }
12529
12530 /*
12531 * Translate a guest virtual address to a guest physical address.
12532 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12533 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12534 struct kvm_translation *tr)
12535 {
12536 unsigned long vaddr = tr->linear_address;
12537 gpa_t gpa;
12538 int idx;
12539
12540 vcpu_load(vcpu);
12541
12542 idx = srcu_read_lock(&vcpu->kvm->srcu);
12543 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12544 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12545 tr->physical_address = gpa;
12546 tr->valid = gpa != INVALID_GPA;
12547 tr->writeable = 1;
12548 tr->usermode = 0;
12549
12550 vcpu_put(vcpu);
12551 return 0;
12552 }
12553
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12554 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12555 {
12556 struct fxregs_state *fxsave;
12557
12558 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12559 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12560
12561 vcpu_load(vcpu);
12562
12563 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12564 memcpy(fpu->fpr, fxsave->st_space, 128);
12565 fpu->fcw = fxsave->cwd;
12566 fpu->fsw = fxsave->swd;
12567 fpu->ftwx = fxsave->twd;
12568 fpu->last_opcode = fxsave->fop;
12569 fpu->last_ip = fxsave->rip;
12570 fpu->last_dp = fxsave->rdp;
12571 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12572
12573 vcpu_put(vcpu);
12574 return 0;
12575 }
12576
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12577 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12578 {
12579 struct fxregs_state *fxsave;
12580
12581 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12582 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12583
12584 vcpu_load(vcpu);
12585
12586 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12587
12588 memcpy(fxsave->st_space, fpu->fpr, 128);
12589 fxsave->cwd = fpu->fcw;
12590 fxsave->swd = fpu->fsw;
12591 fxsave->twd = fpu->ftwx;
12592 fxsave->fop = fpu->last_opcode;
12593 fxsave->rip = fpu->last_ip;
12594 fxsave->rdp = fpu->last_dp;
12595 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12596
12597 vcpu_put(vcpu);
12598 return 0;
12599 }
12600
store_regs(struct kvm_vcpu * vcpu)12601 static void store_regs(struct kvm_vcpu *vcpu)
12602 {
12603 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12604
12605 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12606 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12607
12608 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12609 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12610
12611 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12612 kvm_vcpu_ioctl_x86_get_vcpu_events(
12613 vcpu, &vcpu->run->s.regs.events);
12614 }
12615
sync_regs(struct kvm_vcpu * vcpu)12616 static int sync_regs(struct kvm_vcpu *vcpu)
12617 {
12618 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12619 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12620 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12621 }
12622
12623 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12624 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12625
12626 if (__set_sregs(vcpu, &sregs))
12627 return -EINVAL;
12628
12629 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12630 }
12631
12632 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12633 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12634
12635 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12636 return -EINVAL;
12637
12638 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12639 }
12640
12641 return 0;
12642 }
12643
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12644 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12645 {
12646 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12647 pr_warn_once("SMP vm created on host with unstable TSC; "
12648 "guest TSC will not be reliable\n");
12649
12650 if (!kvm->arch.max_vcpu_ids)
12651 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12652
12653 if (id >= kvm->arch.max_vcpu_ids)
12654 return -EINVAL;
12655
12656 return kvm_x86_call(vcpu_precreate)(kvm);
12657 }
12658
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12659 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12660 {
12661 struct page *page;
12662 int r;
12663
12664 vcpu->arch.last_vmentry_cpu = -1;
12665 vcpu->arch.regs_avail = ~0;
12666 vcpu->arch.regs_dirty = ~0;
12667
12668 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12669
12670 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12671 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12672 else
12673 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12674
12675 r = kvm_mmu_create(vcpu);
12676 if (r < 0)
12677 return r;
12678
12679 r = kvm_create_lapic(vcpu);
12680 if (r < 0)
12681 goto fail_mmu_destroy;
12682
12683 r = -ENOMEM;
12684
12685 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12686 if (!page)
12687 goto fail_free_lapic;
12688 vcpu->arch.pio_data = page_address(page);
12689
12690 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12691 GFP_KERNEL_ACCOUNT);
12692 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12693 GFP_KERNEL_ACCOUNT);
12694 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12695 goto fail_free_mce_banks;
12696 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12697
12698 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12699 GFP_KERNEL_ACCOUNT))
12700 goto fail_free_mce_banks;
12701
12702 if (!alloc_emulate_ctxt(vcpu))
12703 goto free_wbinvd_dirty_mask;
12704
12705 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12706 pr_err("failed to allocate vcpu's fpu\n");
12707 goto free_emulate_ctxt;
12708 }
12709
12710 kvm_async_pf_hash_reset(vcpu);
12711
12712 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12713 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12714 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12715 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12716 }
12717 kvm_pmu_init(vcpu);
12718
12719 vcpu->arch.pending_external_vector = -1;
12720 vcpu->arch.preempted_in_kernel = false;
12721
12722 #if IS_ENABLED(CONFIG_HYPERV)
12723 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12724 #endif
12725
12726 r = kvm_x86_call(vcpu_create)(vcpu);
12727 if (r)
12728 goto free_guest_fpu;
12729
12730 kvm_xen_init_vcpu(vcpu);
12731 vcpu_load(vcpu);
12732 kvm_vcpu_after_set_cpuid(vcpu);
12733 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12734 kvm_vcpu_reset(vcpu, false);
12735 kvm_init_mmu(vcpu);
12736 vcpu_put(vcpu);
12737 return 0;
12738
12739 free_guest_fpu:
12740 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12741 free_emulate_ctxt:
12742 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12743 free_wbinvd_dirty_mask:
12744 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12745 fail_free_mce_banks:
12746 kfree(vcpu->arch.mce_banks);
12747 kfree(vcpu->arch.mci_ctl2_banks);
12748 free_page((unsigned long)vcpu->arch.pio_data);
12749 fail_free_lapic:
12750 kvm_free_lapic(vcpu);
12751 fail_mmu_destroy:
12752 kvm_mmu_destroy(vcpu);
12753 return r;
12754 }
12755
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12756 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12757 {
12758 if (mutex_lock_killable(&vcpu->mutex))
12759 return;
12760 vcpu_load(vcpu);
12761 kvm_synchronize_tsc(vcpu, NULL);
12762 vcpu_put(vcpu);
12763
12764 /* poll control enabled by default */
12765 vcpu->arch.msr_kvm_poll_control = 1;
12766
12767 mutex_unlock(&vcpu->mutex);
12768 }
12769
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12770 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12771 {
12772 int idx, cpu;
12773
12774 kvm_clear_async_pf_completion_queue(vcpu);
12775 kvm_mmu_unload(vcpu);
12776
12777 kvmclock_reset(vcpu);
12778
12779 for_each_possible_cpu(cpu)
12780 cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12781
12782 kvm_x86_call(vcpu_free)(vcpu);
12783
12784 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12785 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12786 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12787
12788 kvm_xen_destroy_vcpu(vcpu);
12789 kvm_hv_vcpu_uninit(vcpu);
12790 kvm_pmu_destroy(vcpu);
12791 kfree(vcpu->arch.mce_banks);
12792 kfree(vcpu->arch.mci_ctl2_banks);
12793 kvm_free_lapic(vcpu);
12794 idx = srcu_read_lock(&vcpu->kvm->srcu);
12795 kvm_mmu_destroy(vcpu);
12796 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12797 free_page((unsigned long)vcpu->arch.pio_data);
12798 kvfree(vcpu->arch.cpuid_entries);
12799 }
12800
kvm_xstate_reset(struct kvm_vcpu * vcpu,bool init_event)12801 static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event)
12802 {
12803 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12804 u64 xfeatures_mask;
12805 bool fpu_in_use;
12806 int i;
12807
12808 /*
12809 * Guest FPU state is zero allocated and so doesn't need to be manually
12810 * cleared on RESET, i.e. during vCPU creation.
12811 */
12812 if (!init_event || !fpstate)
12813 return;
12814
12815 /*
12816 * On INIT, only select XSTATE components are zeroed, most components
12817 * are unchanged. Currently, the only components that are zeroed and
12818 * supported by KVM are MPX and CET related.
12819 */
12820 xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) &
12821 (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR |
12822 XFEATURE_MASK_CET_ALL);
12823 if (!xfeatures_mask)
12824 return;
12825
12826 BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX);
12827
12828 /*
12829 * Unload guest FPU state (if necessary) before zeroing XSTATE fields
12830 * as the kernel can only modify the state when its resident in memory,
12831 * i.e. when it's not loaded into hardware.
12832 *
12833 * WARN if the vCPU's desire to run, i.e. whether or not its in KVM_RUN,
12834 * doesn't match the loaded/in-use state of the FPU, as KVM_RUN is the
12835 * only path that can trigger INIT emulation _and_ loads FPU state, and
12836 * KVM_RUN should _always_ load FPU state.
12837 */
12838 WARN_ON_ONCE(vcpu->wants_to_run != fpstate->in_use);
12839 fpu_in_use = fpstate->in_use;
12840 if (fpu_in_use)
12841 kvm_put_guest_fpu(vcpu);
12842 for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX)
12843 fpstate_clear_xstate_component(fpstate, i);
12844 if (fpu_in_use)
12845 kvm_load_guest_fpu(vcpu);
12846 }
12847
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12848 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12849 {
12850 struct kvm_cpuid_entry2 *cpuid_0x1;
12851 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12852 unsigned long new_cr0;
12853
12854 /*
12855 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12856 * to handle side effects. RESET emulation hits those flows and relies
12857 * on emulated/virtualized registers, including those that are loaded
12858 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12859 * to detect improper or missing initialization.
12860 */
12861 WARN_ON_ONCE(!init_event &&
12862 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12863
12864 /*
12865 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12866 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12867 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12868 * bits), i.e. virtualization is disabled.
12869 */
12870 if (is_guest_mode(vcpu))
12871 kvm_leave_nested(vcpu);
12872
12873 kvm_lapic_reset(vcpu, init_event);
12874
12875 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12876 vcpu->arch.hflags = 0;
12877
12878 vcpu->arch.smi_pending = 0;
12879 vcpu->arch.smi_count = 0;
12880 atomic_set(&vcpu->arch.nmi_queued, 0);
12881 vcpu->arch.nmi_pending = 0;
12882 vcpu->arch.nmi_injected = false;
12883 kvm_clear_interrupt_queue(vcpu);
12884 kvm_clear_exception_queue(vcpu);
12885
12886 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12887 kvm_update_dr0123(vcpu);
12888 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12889 vcpu->arch.dr7 = DR7_FIXED_1;
12890 kvm_update_dr7(vcpu);
12891
12892 vcpu->arch.cr2 = 0;
12893
12894 kvm_make_request(KVM_REQ_EVENT, vcpu);
12895 vcpu->arch.apf.msr_en_val = 0;
12896 vcpu->arch.apf.msr_int_val = 0;
12897 vcpu->arch.st.msr_val = 0;
12898
12899 kvmclock_reset(vcpu);
12900
12901 kvm_clear_async_pf_completion_queue(vcpu);
12902 kvm_async_pf_hash_reset(vcpu);
12903 vcpu->arch.apf.halted = false;
12904
12905 kvm_xstate_reset(vcpu, init_event);
12906
12907 if (!init_event) {
12908 vcpu->arch.smbase = 0x30000;
12909
12910 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12911
12912 vcpu->arch.msr_misc_features_enables = 0;
12913 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12914 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12915
12916 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12917 kvm_msr_write(vcpu, MSR_IA32_XSS, 0);
12918 }
12919
12920 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12921 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12922 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12923
12924 /*
12925 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12926 * if no CPUID match is found. Note, it's impossible to get a match at
12927 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12928 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12929 * on RESET. But, go through the motions in case that's ever remedied.
12930 */
12931 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12932 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12933
12934 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12935
12936 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12937 kvm_rip_write(vcpu, 0xfff0);
12938
12939 vcpu->arch.cr3 = 0;
12940 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12941
12942 /*
12943 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12944 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12945 * (or qualify) that with a footnote stating that CD/NW are preserved.
12946 */
12947 new_cr0 = X86_CR0_ET;
12948 if (init_event)
12949 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12950 else
12951 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12952
12953 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12954 kvm_x86_call(set_cr4)(vcpu, 0);
12955 kvm_x86_call(set_efer)(vcpu, 0);
12956 kvm_x86_call(update_exception_bitmap)(vcpu);
12957
12958 /*
12959 * On the standard CR0/CR4/EFER modification paths, there are several
12960 * complex conditions determining whether the MMU has to be reset and/or
12961 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12962 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12963 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12964 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12965 */
12966 if (old_cr0 & X86_CR0_PG) {
12967 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12968 kvm_mmu_reset_context(vcpu);
12969 }
12970
12971 /*
12972 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12973 * APM states the TLBs are untouched by INIT, but it also states that
12974 * the TLBs are flushed on "External initialization of the processor."
12975 * Flush the guest TLB regardless of vendor, there is no meaningful
12976 * benefit in relying on the guest to flush the TLB immediately after
12977 * INIT. A spurious TLB flush is benign and likely negligible from a
12978 * performance perspective.
12979 */
12980 if (init_event)
12981 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12982 }
12983 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset);
12984
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12985 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12986 {
12987 struct kvm_segment cs;
12988
12989 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12990 cs.selector = vector << 8;
12991 cs.base = vector << 12;
12992 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12993 kvm_rip_write(vcpu, 0);
12994 }
12995 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector);
12996
kvm_arch_enable_virtualization(void)12997 void kvm_arch_enable_virtualization(void)
12998 {
12999 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
13000 }
13001
kvm_arch_disable_virtualization(void)13002 void kvm_arch_disable_virtualization(void)
13003 {
13004 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
13005 }
13006
kvm_arch_enable_virtualization_cpu(void)13007 int kvm_arch_enable_virtualization_cpu(void)
13008 {
13009 struct kvm *kvm;
13010 struct kvm_vcpu *vcpu;
13011 unsigned long i;
13012 int ret;
13013 u64 local_tsc;
13014 u64 max_tsc = 0;
13015 bool stable, backwards_tsc = false;
13016
13017 kvm_user_return_msr_cpu_online();
13018
13019 ret = kvm_x86_check_processor_compatibility();
13020 if (ret)
13021 return ret;
13022
13023 ret = kvm_x86_call(enable_virtualization_cpu)();
13024 if (ret != 0)
13025 return ret;
13026
13027 local_tsc = rdtsc();
13028 stable = !kvm_check_tsc_unstable();
13029 list_for_each_entry(kvm, &vm_list, vm_list) {
13030 kvm_for_each_vcpu(i, vcpu, kvm) {
13031 if (!stable && vcpu->cpu == smp_processor_id())
13032 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
13033 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
13034 backwards_tsc = true;
13035 if (vcpu->arch.last_host_tsc > max_tsc)
13036 max_tsc = vcpu->arch.last_host_tsc;
13037 }
13038 }
13039 }
13040
13041 /*
13042 * Sometimes, even reliable TSCs go backwards. This happens on
13043 * platforms that reset TSC during suspend or hibernate actions, but
13044 * maintain synchronization. We must compensate. Fortunately, we can
13045 * detect that condition here, which happens early in CPU bringup,
13046 * before any KVM threads can be running. Unfortunately, we can't
13047 * bring the TSCs fully up to date with real time, as we aren't yet far
13048 * enough into CPU bringup that we know how much real time has actually
13049 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
13050 * variables that haven't been updated yet.
13051 *
13052 * So we simply find the maximum observed TSC above, then record the
13053 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
13054 * the adjustment will be applied. Note that we accumulate
13055 * adjustments, in case multiple suspend cycles happen before some VCPU
13056 * gets a chance to run again. In the event that no KVM threads get a
13057 * chance to run, we will miss the entire elapsed period, as we'll have
13058 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
13059 * loose cycle time. This isn't too big a deal, since the loss will be
13060 * uniform across all VCPUs (not to mention the scenario is extremely
13061 * unlikely). It is possible that a second hibernate recovery happens
13062 * much faster than a first, causing the observed TSC here to be
13063 * smaller; this would require additional padding adjustment, which is
13064 * why we set last_host_tsc to the local tsc observed here.
13065 *
13066 * N.B. - this code below runs only on platforms with reliable TSC,
13067 * as that is the only way backwards_tsc is set above. Also note
13068 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
13069 * have the same delta_cyc adjustment applied if backwards_tsc
13070 * is detected. Note further, this adjustment is only done once,
13071 * as we reset last_host_tsc on all VCPUs to stop this from being
13072 * called multiple times (one for each physical CPU bringup).
13073 *
13074 * Platforms with unreliable TSCs don't have to deal with this, they
13075 * will be compensated by the logic in vcpu_load, which sets the TSC to
13076 * catchup mode. This will catchup all VCPUs to real time, but cannot
13077 * guarantee that they stay in perfect synchronization.
13078 */
13079 if (backwards_tsc) {
13080 u64 delta_cyc = max_tsc - local_tsc;
13081 list_for_each_entry(kvm, &vm_list, vm_list) {
13082 kvm->arch.backwards_tsc_observed = true;
13083 kvm_for_each_vcpu(i, vcpu, kvm) {
13084 vcpu->arch.tsc_offset_adjustment += delta_cyc;
13085 vcpu->arch.last_host_tsc = local_tsc;
13086 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
13087 }
13088
13089 /*
13090 * We have to disable TSC offset matching.. if you were
13091 * booting a VM while issuing an S4 host suspend....
13092 * you may have some problem. Solving this issue is
13093 * left as an exercise to the reader.
13094 */
13095 kvm->arch.last_tsc_nsec = 0;
13096 kvm->arch.last_tsc_write = 0;
13097 }
13098
13099 }
13100 return 0;
13101 }
13102
kvm_arch_disable_virtualization_cpu(void)13103 void kvm_arch_disable_virtualization_cpu(void)
13104 {
13105 kvm_x86_call(disable_virtualization_cpu)();
13106
13107 /*
13108 * Leave the user-return notifiers as-is when disabling virtualization
13109 * for reboot, i.e. when disabling via IPI function call, and instead
13110 * pin kvm.ko (if it's a module) to defend against use-after-free (in
13111 * the *very* unlikely scenario module unload is racing with reboot).
13112 * On a forced reboot, tasks aren't frozen before shutdown, and so KVM
13113 * could be actively modifying user-return MSR state when the IPI to
13114 * disable virtualization arrives. Handle the extreme edge case here
13115 * instead of trying to account for it in the normal flows.
13116 */
13117 if (in_task() || WARN_ON_ONCE(!kvm_rebooting))
13118 drop_user_return_notifiers();
13119 else
13120 __module_get(THIS_MODULE);
13121 }
13122
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)13123 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
13124 {
13125 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
13126 }
13127 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp);
13128
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)13129 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
13130 {
13131 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
13132 }
13133
kvm_arch_free_vm(struct kvm * kvm)13134 void kvm_arch_free_vm(struct kvm *kvm)
13135 {
13136 #if IS_ENABLED(CONFIG_HYPERV)
13137 kfree(kvm->arch.hv_pa_pg);
13138 #endif
13139 __kvm_arch_free_vm(kvm);
13140 }
13141
13142
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)13143 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
13144 {
13145 int ret;
13146 unsigned long flags;
13147
13148 if (!kvm_is_vm_type_supported(type))
13149 return -EINVAL;
13150
13151 kvm->arch.vm_type = type;
13152 kvm->arch.has_private_mem =
13153 (type == KVM_X86_SW_PROTECTED_VM);
13154 /* Decided by the vendor code for other VM types. */
13155 kvm->arch.pre_fault_allowed =
13156 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
13157 kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
13158
13159 ret = kvm_page_track_init(kvm);
13160 if (ret)
13161 goto out;
13162
13163 ret = kvm_mmu_init_vm(kvm);
13164 if (ret)
13165 goto out_cleanup_page_track;
13166
13167 ret = kvm_x86_call(vm_init)(kvm);
13168 if (ret)
13169 goto out_uninit_mmu;
13170
13171 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
13172
13173 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
13174 mutex_init(&kvm->arch.apic_map_lock);
13175 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
13176 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
13177
13178 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
13179 pvclock_update_vm_gtod_copy(kvm);
13180 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
13181
13182 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
13183 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
13184 kvm->arch.guest_can_read_msr_platform_info = true;
13185 kvm->arch.enable_pmu = enable_pmu;
13186
13187 #if IS_ENABLED(CONFIG_HYPERV)
13188 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
13189 kvm->arch.hv_root_tdp = INVALID_PAGE;
13190 #endif
13191
13192 kvm_apicv_init(kvm);
13193 kvm_hv_init_vm(kvm);
13194 kvm_xen_init_vm(kvm);
13195
13196 if (ignore_msrs && !report_ignored_msrs) {
13197 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
13198 "a supported configuration. Lying to the guest about the existence of MSRs\n"
13199 "may cause the guest operating system to hang or produce errors. If a guest\n"
13200 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
13201 }
13202
13203 once_init(&kvm->arch.nx_once);
13204 return 0;
13205
13206 out_uninit_mmu:
13207 kvm_mmu_uninit_vm(kvm);
13208 out_cleanup_page_track:
13209 kvm_page_track_cleanup(kvm);
13210 out:
13211 return ret;
13212 }
13213
13214 /**
13215 * __x86_set_memory_region: Setup KVM internal memory slot
13216 *
13217 * @kvm: the kvm pointer to the VM.
13218 * @id: the slot ID to setup.
13219 * @gpa: the GPA to install the slot (unused when @size == 0).
13220 * @size: the size of the slot. Set to zero to uninstall a slot.
13221 *
13222 * This function helps to setup a KVM internal memory slot. Specify
13223 * @size > 0 to install a new slot, while @size == 0 to uninstall a
13224 * slot. The return code can be one of the following:
13225 *
13226 * HVA: on success (uninstall will return a bogus HVA)
13227 * -errno: on error
13228 *
13229 * The caller should always use IS_ERR() to check the return value
13230 * before use. Note, the KVM internal memory slots are guaranteed to
13231 * remain valid and unchanged until the VM is destroyed, i.e., the
13232 * GPA->HVA translation will not change. However, the HVA is a user
13233 * address, i.e. its accessibility is not guaranteed, and must be
13234 * accessed via __copy_{to,from}_user().
13235 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)13236 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
13237 u32 size)
13238 {
13239 int i, r;
13240 unsigned long hva, old_npages;
13241 struct kvm_memslots *slots = kvm_memslots(kvm);
13242 struct kvm_memory_slot *slot;
13243
13244 lockdep_assert_held(&kvm->slots_lock);
13245
13246 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
13247 return ERR_PTR_USR(-EINVAL);
13248
13249 slot = id_to_memslot(slots, id);
13250 if (size) {
13251 if (slot && slot->npages)
13252 return ERR_PTR_USR(-EEXIST);
13253
13254 /*
13255 * MAP_SHARED to prevent internal slot pages from being moved
13256 * by fork()/COW.
13257 */
13258 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
13259 MAP_SHARED | MAP_ANONYMOUS, 0);
13260 if (IS_ERR_VALUE(hva))
13261 return (void __user *)hva;
13262 } else {
13263 if (!slot || !slot->npages)
13264 return NULL;
13265
13266 old_npages = slot->npages;
13267 hva = slot->userspace_addr;
13268 }
13269
13270 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
13271 struct kvm_userspace_memory_region2 m;
13272
13273 m.slot = id | (i << 16);
13274 m.flags = 0;
13275 m.guest_phys_addr = gpa;
13276 m.userspace_addr = hva;
13277 m.memory_size = size;
13278 r = kvm_set_internal_memslot(kvm, &m);
13279 if (r < 0)
13280 return ERR_PTR_USR(r);
13281 }
13282
13283 if (!size)
13284 vm_munmap(hva, old_npages * PAGE_SIZE);
13285
13286 return (void __user *)hva;
13287 }
13288 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region);
13289
kvm_arch_pre_destroy_vm(struct kvm * kvm)13290 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
13291 {
13292 /*
13293 * Stop all background workers and kthreads before destroying vCPUs, as
13294 * iterating over vCPUs in a different task while vCPUs are being freed
13295 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to
13296 * be stopped before IRQ routing is freed.
13297 */
13298 #ifdef CONFIG_KVM_IOAPIC
13299 kvm_free_pit(kvm);
13300 #endif
13301
13302 kvm_mmu_pre_destroy_vm(kvm);
13303 static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
13304 }
13305
kvm_arch_destroy_vm(struct kvm * kvm)13306 void kvm_arch_destroy_vm(struct kvm *kvm)
13307 {
13308 if (current->mm == kvm->mm) {
13309 /*
13310 * Free memory regions allocated on behalf of userspace,
13311 * unless the memory map has changed due to process exit
13312 * or fd copying.
13313 */
13314 mutex_lock(&kvm->slots_lock);
13315 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
13316 0, 0);
13317 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
13318 0, 0);
13319 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
13320 mutex_unlock(&kvm->slots_lock);
13321 }
13322 kvm_destroy_vcpus(kvm);
13323 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
13324 #ifdef CONFIG_KVM_IOAPIC
13325 kvm_pic_destroy(kvm);
13326 kvm_ioapic_destroy(kvm);
13327 #endif
13328 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
13329 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13330 kvm_mmu_uninit_vm(kvm);
13331 kvm_page_track_cleanup(kvm);
13332 kvm_xen_destroy_vm(kvm);
13333 kvm_hv_destroy_vm(kvm);
13334 kvm_x86_call(vm_destroy)(kvm);
13335 }
13336
memslot_rmap_free(struct kvm_memory_slot * slot)13337 static void memslot_rmap_free(struct kvm_memory_slot *slot)
13338 {
13339 int i;
13340
13341 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13342 vfree(slot->arch.rmap[i]);
13343 slot->arch.rmap[i] = NULL;
13344 }
13345 }
13346
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)13347 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13348 {
13349 int i;
13350
13351 memslot_rmap_free(slot);
13352
13353 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13354 vfree(slot->arch.lpage_info[i - 1]);
13355 slot->arch.lpage_info[i - 1] = NULL;
13356 }
13357
13358 kvm_page_track_free_memslot(slot);
13359 }
13360
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)13361 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
13362 {
13363 const int sz = sizeof(*slot->arch.rmap[0]);
13364 int i;
13365
13366 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13367 int level = i + 1;
13368 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13369
13370 if (slot->arch.rmap[i])
13371 continue;
13372
13373 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13374 if (!slot->arch.rmap[i]) {
13375 memslot_rmap_free(slot);
13376 return -ENOMEM;
13377 }
13378 }
13379
13380 return 0;
13381 }
13382
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)13383 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13384 struct kvm_memory_slot *slot)
13385 {
13386 unsigned long npages = slot->npages;
13387 int i, r;
13388
13389 /*
13390 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
13391 * old arrays will be freed by kvm_set_memory_region() if installing
13392 * the new memslot is successful.
13393 */
13394 memset(&slot->arch, 0, sizeof(slot->arch));
13395
13396 if (kvm_memslots_have_rmaps(kvm)) {
13397 r = memslot_rmap_alloc(slot, npages);
13398 if (r)
13399 return r;
13400 }
13401
13402 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13403 struct kvm_lpage_info *linfo;
13404 unsigned long ugfn;
13405 int lpages;
13406 int level = i + 1;
13407
13408 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13409
13410 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13411 if (!linfo)
13412 goto out_free;
13413
13414 slot->arch.lpage_info[i - 1] = linfo;
13415
13416 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13417 linfo[0].disallow_lpage = 1;
13418 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13419 linfo[lpages - 1].disallow_lpage = 1;
13420 ugfn = slot->userspace_addr >> PAGE_SHIFT;
13421 /*
13422 * If the gfn and userspace address are not aligned wrt each
13423 * other, disable large page support for this slot.
13424 */
13425 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13426 unsigned long j;
13427
13428 for (j = 0; j < lpages; ++j)
13429 linfo[j].disallow_lpage = 1;
13430 }
13431 }
13432
13433 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13434 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13435 #endif
13436
13437 if (kvm_page_track_create_memslot(kvm, slot, npages))
13438 goto out_free;
13439
13440 return 0;
13441
13442 out_free:
13443 memslot_rmap_free(slot);
13444
13445 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13446 vfree(slot->arch.lpage_info[i - 1]);
13447 slot->arch.lpage_info[i - 1] = NULL;
13448 }
13449 return -ENOMEM;
13450 }
13451
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13452 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13453 {
13454 struct kvm_vcpu *vcpu;
13455 unsigned long i;
13456
13457 /*
13458 * memslots->generation has been incremented.
13459 * mmio generation may have reached its maximum value.
13460 */
13461 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13462
13463 /* Force re-initialization of steal_time cache */
13464 kvm_for_each_vcpu(i, vcpu, kvm)
13465 kvm_vcpu_kick(vcpu);
13466 }
13467
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13468 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13469 const struct kvm_memory_slot *old,
13470 struct kvm_memory_slot *new,
13471 enum kvm_mr_change change)
13472 {
13473 /*
13474 * KVM doesn't support moving memslots when there are external page
13475 * trackers attached to the VM, i.e. if KVMGT is in use.
13476 */
13477 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13478 return -EINVAL;
13479
13480 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13481 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13482 return -EINVAL;
13483
13484 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13485 return -EINVAL;
13486
13487 return kvm_alloc_memslot_metadata(kvm, new);
13488 }
13489
13490 if (change == KVM_MR_FLAGS_ONLY)
13491 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13492 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13493 return -EIO;
13494
13495 return 0;
13496 }
13497
13498
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13499 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13500 {
13501 int nr_slots;
13502
13503 if (!kvm->arch.cpu_dirty_log_size)
13504 return;
13505
13506 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13507 if ((enable && nr_slots == 1) || !nr_slots)
13508 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13509 }
13510
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13511 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13512 struct kvm_memory_slot *old,
13513 const struct kvm_memory_slot *new,
13514 enum kvm_mr_change change)
13515 {
13516 u32 old_flags = old ? old->flags : 0;
13517 u32 new_flags = new ? new->flags : 0;
13518 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13519
13520 /*
13521 * Update CPU dirty logging if dirty logging is being toggled. This
13522 * applies to all operations.
13523 */
13524 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13525 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13526
13527 /*
13528 * Nothing more to do for RO slots (which can't be dirtied and can't be
13529 * made writable) or CREATE/MOVE/DELETE of a slot.
13530 *
13531 * For a memslot with dirty logging disabled:
13532 * CREATE: No dirty mappings will already exist.
13533 * MOVE/DELETE: The old mappings will already have been cleaned up by
13534 * kvm_arch_flush_shadow_memslot()
13535 *
13536 * For a memslot with dirty logging enabled:
13537 * CREATE: No shadow pages exist, thus nothing to write-protect
13538 * and no dirty bits to clear.
13539 * MOVE/DELETE: The old mappings will already have been cleaned up by
13540 * kvm_arch_flush_shadow_memslot().
13541 */
13542 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13543 return;
13544
13545 /*
13546 * READONLY and non-flags changes were filtered out above, and the only
13547 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13548 * logging isn't being toggled on or off.
13549 */
13550 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13551 return;
13552
13553 if (!log_dirty_pages) {
13554 /*
13555 * Recover huge page mappings in the slot now that dirty logging
13556 * is disabled, i.e. now that KVM does not have to track guest
13557 * writes at 4KiB granularity.
13558 *
13559 * Dirty logging might be disabled by userspace if an ongoing VM
13560 * live migration is cancelled and the VM must continue running
13561 * on the source.
13562 */
13563 kvm_mmu_recover_huge_pages(kvm, new);
13564 } else {
13565 /*
13566 * Initially-all-set does not require write protecting any page,
13567 * because they're all assumed to be dirty.
13568 */
13569 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13570 return;
13571
13572 if (READ_ONCE(eager_page_split))
13573 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13574
13575 if (kvm->arch.cpu_dirty_log_size) {
13576 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13577 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13578 } else {
13579 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13580 }
13581
13582 /*
13583 * Unconditionally flush the TLBs after enabling dirty logging.
13584 * A flush is almost always going to be necessary (see below),
13585 * and unconditionally flushing allows the helpers to omit
13586 * the subtly complex checks when removing write access.
13587 *
13588 * Do the flush outside of mmu_lock to reduce the amount of
13589 * time mmu_lock is held. Flushing after dropping mmu_lock is
13590 * safe as KVM only needs to guarantee the slot is fully
13591 * write-protected before returning to userspace, i.e. before
13592 * userspace can consume the dirty status.
13593 *
13594 * Flushing outside of mmu_lock requires KVM to be careful when
13595 * making decisions based on writable status of an SPTE, e.g. a
13596 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13597 *
13598 * Specifically, KVM also write-protects guest page tables to
13599 * monitor changes when using shadow paging, and must guarantee
13600 * no CPUs can write to those page before mmu_lock is dropped.
13601 * Because CPUs may have stale TLB entries at this point, a
13602 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13603 *
13604 * KVM also allows making SPTES writable outside of mmu_lock,
13605 * e.g. to allow dirty logging without taking mmu_lock.
13606 *
13607 * To handle these scenarios, KVM uses a separate software-only
13608 * bit (MMU-writable) to track if a SPTE is !writable due to
13609 * a guest page table being write-protected (KVM clears the
13610 * MMU-writable flag when write-protecting for shadow paging).
13611 *
13612 * The use of MMU-writable is also the primary motivation for
13613 * the unconditional flush. Because KVM must guarantee that a
13614 * CPU doesn't contain stale, writable TLB entries for a
13615 * !MMU-writable SPTE, KVM must flush if it encounters any
13616 * MMU-writable SPTE regardless of whether the actual hardware
13617 * writable bit was set. I.e. KVM is almost guaranteed to need
13618 * to flush, while unconditionally flushing allows the "remove
13619 * write access" helpers to ignore MMU-writable entirely.
13620 *
13621 * See is_writable_pte() for more details (the case involving
13622 * access-tracked SPTEs is particularly relevant).
13623 */
13624 kvm_flush_remote_tlbs_memslot(kvm, new);
13625 }
13626 }
13627
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13628 void kvm_arch_commit_memory_region(struct kvm *kvm,
13629 struct kvm_memory_slot *old,
13630 const struct kvm_memory_slot *new,
13631 enum kvm_mr_change change)
13632 {
13633 if (change == KVM_MR_DELETE)
13634 kvm_page_track_delete_slot(kvm, old);
13635
13636 if (!kvm->arch.n_requested_mmu_pages &&
13637 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13638 unsigned long nr_mmu_pages;
13639
13640 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13641 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13642 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13643 }
13644
13645 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13646
13647 /* Free the arrays associated with the old memslot. */
13648 if (change == KVM_MR_MOVE)
13649 kvm_arch_free_memslot(kvm, old);
13650 }
13651
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13652 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13653 {
13654 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13655
13656 if (vcpu->arch.guest_state_protected)
13657 return true;
13658
13659 return kvm_x86_call(get_cpl)(vcpu) == 0;
13660 }
13661
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13662 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13663 {
13664 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13665
13666 if (vcpu->arch.guest_state_protected)
13667 return 0;
13668
13669 return kvm_rip_read(vcpu);
13670 }
13671
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13672 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13673 {
13674 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13675 }
13676
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13677 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13678 {
13679 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13680 }
13681
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13682 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13683 {
13684 /* Can't read the RIP when guest state is protected, just return 0 */
13685 if (vcpu->arch.guest_state_protected)
13686 return 0;
13687
13688 if (is_64_bit_mode(vcpu))
13689 return kvm_rip_read(vcpu);
13690 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13691 kvm_rip_read(vcpu));
13692 }
13693 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip);
13694
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13695 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13696 {
13697 return kvm_get_linear_rip(vcpu) == linear_rip;
13698 }
13699 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip);
13700
kvm_get_rflags(struct kvm_vcpu * vcpu)13701 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13702 {
13703 unsigned long rflags;
13704
13705 rflags = kvm_x86_call(get_rflags)(vcpu);
13706 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13707 rflags &= ~X86_EFLAGS_TF;
13708 return rflags;
13709 }
13710 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags);
13711
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13712 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13713 {
13714 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13715 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13716 rflags |= X86_EFLAGS_TF;
13717 kvm_x86_call(set_rflags)(vcpu, rflags);
13718 }
13719
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13720 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13721 {
13722 __kvm_set_rflags(vcpu, rflags);
13723 kvm_make_request(KVM_REQ_EVENT, vcpu);
13724 }
13725 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags);
13726
kvm_async_pf_hash_fn(gfn_t gfn)13727 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13728 {
13729 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13730
13731 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13732 }
13733
kvm_async_pf_next_probe(u32 key)13734 static inline u32 kvm_async_pf_next_probe(u32 key)
13735 {
13736 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13737 }
13738
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13739 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13740 {
13741 u32 key = kvm_async_pf_hash_fn(gfn);
13742
13743 while (vcpu->arch.apf.gfns[key] != ~0)
13744 key = kvm_async_pf_next_probe(key);
13745
13746 vcpu->arch.apf.gfns[key] = gfn;
13747 }
13748
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13749 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13750 {
13751 int i;
13752 u32 key = kvm_async_pf_hash_fn(gfn);
13753
13754 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13755 (vcpu->arch.apf.gfns[key] != gfn &&
13756 vcpu->arch.apf.gfns[key] != ~0); i++)
13757 key = kvm_async_pf_next_probe(key);
13758
13759 return key;
13760 }
13761
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13762 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13763 {
13764 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13765 }
13766
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13767 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13768 {
13769 u32 i, j, k;
13770
13771 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13772
13773 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13774 return;
13775
13776 while (true) {
13777 vcpu->arch.apf.gfns[i] = ~0;
13778 do {
13779 j = kvm_async_pf_next_probe(j);
13780 if (vcpu->arch.apf.gfns[j] == ~0)
13781 return;
13782 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13783 /*
13784 * k lies cyclically in ]i,j]
13785 * | i.k.j |
13786 * |....j i.k.| or |.k..j i...|
13787 */
13788 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13789 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13790 i = j;
13791 }
13792 }
13793
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13794 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13795 {
13796 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13797
13798 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13799 sizeof(reason));
13800 }
13801
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13802 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13803 {
13804 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13805
13806 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13807 &token, offset, sizeof(token));
13808 }
13809
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13810 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13811 {
13812 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13813 u32 val;
13814
13815 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13816 &val, offset, sizeof(val)))
13817 return false;
13818
13819 return !val;
13820 }
13821
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13822 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13823 {
13824
13825 if (!kvm_pv_async_pf_enabled(vcpu))
13826 return false;
13827
13828 if (!vcpu->arch.apf.send_always &&
13829 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13830 return false;
13831
13832 if (is_guest_mode(vcpu)) {
13833 /*
13834 * L1 needs to opt into the special #PF vmexits that are
13835 * used to deliver async page faults.
13836 */
13837 return vcpu->arch.apf.delivery_as_pf_vmexit;
13838 } else {
13839 /*
13840 * Play it safe in case the guest temporarily disables paging.
13841 * The real mode IDT in particular is unlikely to have a #PF
13842 * exception setup.
13843 */
13844 return is_paging(vcpu);
13845 }
13846 }
13847
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13848 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13849 {
13850 if (unlikely(!lapic_in_kernel(vcpu) ||
13851 kvm_event_needs_reinjection(vcpu) ||
13852 kvm_is_exception_pending(vcpu)))
13853 return false;
13854
13855 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13856 return false;
13857
13858 /*
13859 * If interrupts are off we cannot even use an artificial
13860 * halt state.
13861 */
13862 return kvm_arch_interrupt_allowed(vcpu);
13863 }
13864
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13865 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13866 struct kvm_async_pf *work)
13867 {
13868 struct x86_exception fault;
13869
13870 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13871 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13872
13873 if (kvm_can_deliver_async_pf(vcpu) &&
13874 !apf_put_user_notpresent(vcpu)) {
13875 fault.vector = PF_VECTOR;
13876 fault.error_code_valid = true;
13877 fault.error_code = 0;
13878 fault.nested_page_fault = false;
13879 fault.address = work->arch.token;
13880 fault.async_page_fault = true;
13881 kvm_inject_page_fault(vcpu, &fault);
13882 return true;
13883 } else {
13884 /*
13885 * It is not possible to deliver a paravirtualized asynchronous
13886 * page fault, but putting the guest in an artificial halt state
13887 * can be beneficial nevertheless: if an interrupt arrives, we
13888 * can deliver it timely and perhaps the guest will schedule
13889 * another process. When the instruction that triggered a page
13890 * fault is retried, hopefully the page will be ready in the host.
13891 */
13892 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13893 return false;
13894 }
13895 }
13896
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13897 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13898 struct kvm_async_pf *work)
13899 {
13900 struct kvm_lapic_irq irq = {
13901 .delivery_mode = APIC_DM_FIXED,
13902 .vector = vcpu->arch.apf.vec
13903 };
13904
13905 if (work->wakeup_all)
13906 work->arch.token = ~0; /* broadcast wakeup */
13907 else
13908 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13909 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13910
13911 if ((work->wakeup_all || work->notpresent_injected) &&
13912 kvm_pv_async_pf_enabled(vcpu) &&
13913 !apf_put_user_ready(vcpu, work->arch.token)) {
13914 WRITE_ONCE(vcpu->arch.apf.pageready_pending, true);
13915 kvm_apic_set_irq(vcpu, &irq, NULL);
13916 }
13917
13918 vcpu->arch.apf.halted = false;
13919 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13920 }
13921
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13922 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13923 {
13924 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13925
13926 /* Pairs with smp_store_mb() in kvm_set_msr_common(). */
13927 smp_mb__after_atomic();
13928
13929 if (!READ_ONCE(vcpu->arch.apf.pageready_pending))
13930 kvm_vcpu_kick(vcpu);
13931 }
13932
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13933 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13934 {
13935 if (!kvm_pv_async_pf_enabled(vcpu))
13936 return true;
13937 else
13938 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13939 }
13940
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13941 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13942 {
13943 /*
13944 * Non-coherent DMA assignment and de-assignment may affect whether or
13945 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13946 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13947 * (or last) non-coherent device is (un)registered to so that new SPTEs
13948 * with the correct "ignore guest PAT" setting are created.
13949 *
13950 * If KVM always honors guest PAT, however, there is nothing to do.
13951 */
13952 if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13953 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13954 }
13955
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13956 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13957 {
13958 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13959 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13960 }
13961
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13962 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13963 {
13964 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13965 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13966 }
13967
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13968 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13969 {
13970 return atomic_read(&kvm->arch.noncoherent_dma_count);
13971 }
13972 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma);
13973
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13974 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13975 {
13976 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13977 }
13978
13979 #ifdef CONFIG_KVM_GUEST_MEMFD
13980 /*
13981 * KVM doesn't yet support initializing guest_memfd memory as shared for VMs
13982 * with private memory (the private vs. shared tracking needs to be moved into
13983 * guest_memfd).
13984 */
kvm_arch_supports_gmem_init_shared(struct kvm * kvm)13985 bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm)
13986 {
13987 return !kvm_arch_has_private_mem(kvm);
13988 }
13989
13990 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13991 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13992 {
13993 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13994 }
13995 #endif
13996
13997 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13998 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13999 {
14000 kvm_x86_call(gmem_invalidate)(start, end);
14001 }
14002 #endif
14003 #endif
14004
kvm_spec_ctrl_test_value(u64 value)14005 int kvm_spec_ctrl_test_value(u64 value)
14006 {
14007 /*
14008 * test that setting IA32_SPEC_CTRL to given value
14009 * is allowed by the host processor
14010 */
14011
14012 u64 saved_value;
14013 unsigned long flags;
14014 int ret = 0;
14015
14016 local_irq_save(flags);
14017
14018 if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
14019 ret = 1;
14020 else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
14021 ret = 1;
14022 else
14023 wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
14024
14025 local_irq_restore(flags);
14026
14027 return ret;
14028 }
14029 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value);
14030
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)14031 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
14032 {
14033 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
14034 struct x86_exception fault;
14035 u64 access = error_code &
14036 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
14037
14038 if (!(error_code & PFERR_PRESENT_MASK) ||
14039 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
14040 /*
14041 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
14042 * tables probably do not match the TLB. Just proceed
14043 * with the error code that the processor gave.
14044 */
14045 fault.vector = PF_VECTOR;
14046 fault.error_code_valid = true;
14047 fault.error_code = error_code;
14048 fault.nested_page_fault = false;
14049 fault.address = gva;
14050 fault.async_page_fault = false;
14051 }
14052 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
14053 }
14054 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error);
14055
14056 /*
14057 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
14058 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
14059 * indicates whether exit to userspace is needed.
14060 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)14061 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
14062 struct x86_exception *e)
14063 {
14064 if (r == X86EMUL_PROPAGATE_FAULT) {
14065 if (KVM_BUG_ON(!e, vcpu->kvm))
14066 return -EIO;
14067
14068 kvm_inject_emulated_page_fault(vcpu, e);
14069 return 1;
14070 }
14071
14072 /*
14073 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
14074 * while handling a VMX instruction KVM could've handled the request
14075 * correctly by exiting to userspace and performing I/O but there
14076 * doesn't seem to be a real use-case behind such requests, just return
14077 * KVM_EXIT_INTERNAL_ERROR for now.
14078 */
14079 kvm_prepare_emulation_failure_exit(vcpu);
14080
14081 return 0;
14082 }
14083 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure);
14084
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)14085 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
14086 {
14087 bool pcid_enabled;
14088 struct x86_exception e;
14089 struct {
14090 u64 pcid;
14091 u64 gla;
14092 } operand;
14093 int r;
14094
14095 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
14096 if (r != X86EMUL_CONTINUE)
14097 return kvm_handle_memory_failure(vcpu, r, &e);
14098
14099 if (operand.pcid >> 12 != 0) {
14100 kvm_inject_gp(vcpu, 0);
14101 return 1;
14102 }
14103
14104 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
14105
14106 switch (type) {
14107 case INVPCID_TYPE_INDIV_ADDR:
14108 /*
14109 * LAM doesn't apply to addresses that are inputs to TLB
14110 * invalidation.
14111 */
14112 if ((!pcid_enabled && (operand.pcid != 0)) ||
14113 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
14114 kvm_inject_gp(vcpu, 0);
14115 return 1;
14116 }
14117 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
14118 return kvm_skip_emulated_instruction(vcpu);
14119
14120 case INVPCID_TYPE_SINGLE_CTXT:
14121 if (!pcid_enabled && (operand.pcid != 0)) {
14122 kvm_inject_gp(vcpu, 0);
14123 return 1;
14124 }
14125
14126 kvm_invalidate_pcid(vcpu, operand.pcid);
14127 return kvm_skip_emulated_instruction(vcpu);
14128
14129 case INVPCID_TYPE_ALL_NON_GLOBAL:
14130 /*
14131 * Currently, KVM doesn't mark global entries in the shadow
14132 * page tables, so a non-global flush just degenerates to a
14133 * global flush. If needed, we could optimize this later by
14134 * keeping track of global entries in shadow page tables.
14135 */
14136
14137 fallthrough;
14138 case INVPCID_TYPE_ALL_INCL_GLOBAL:
14139 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
14140 return kvm_skip_emulated_instruction(vcpu);
14141
14142 default:
14143 kvm_inject_gp(vcpu, 0);
14144 return 1;
14145 }
14146 }
14147 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid);
14148
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)14149 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
14150 {
14151 struct kvm_run *run = vcpu->run;
14152 struct kvm_mmio_fragment *frag;
14153 unsigned int len;
14154
14155 BUG_ON(!vcpu->mmio_needed);
14156
14157 /* Complete previous fragment */
14158 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
14159 len = min(8u, frag->len);
14160 if (!vcpu->mmio_is_write)
14161 memcpy(frag->data, run->mmio.data, len);
14162
14163 if (frag->len <= 8) {
14164 /* Switch to the next fragment. */
14165 frag++;
14166 vcpu->mmio_cur_fragment++;
14167 } else {
14168 /* Go forward to the next mmio piece. */
14169 frag->data += len;
14170 frag->gpa += len;
14171 frag->len -= len;
14172 }
14173
14174 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
14175 vcpu->mmio_needed = 0;
14176
14177 // VMG change, at this point, we're always done
14178 // RIP has already been advanced
14179 return 1;
14180 }
14181
14182 // More MMIO is needed
14183 run->mmio.phys_addr = frag->gpa;
14184 run->mmio.len = min(8u, frag->len);
14185 run->mmio.is_write = vcpu->mmio_is_write;
14186 if (run->mmio.is_write)
14187 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
14188 run->exit_reason = KVM_EXIT_MMIO;
14189
14190 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14191
14192 return 0;
14193 }
14194
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14195 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14196 void *data)
14197 {
14198 int handled;
14199 struct kvm_mmio_fragment *frag;
14200
14201 if (!data)
14202 return -EINVAL;
14203
14204 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14205 if (handled == bytes)
14206 return 1;
14207
14208 bytes -= handled;
14209 gpa += handled;
14210 data += handled;
14211
14212 /*TODO: Check if need to increment number of frags */
14213 frag = vcpu->mmio_fragments;
14214 vcpu->mmio_nr_fragments = 1;
14215 frag->len = bytes;
14216 frag->gpa = gpa;
14217 frag->data = data;
14218
14219 vcpu->mmio_needed = 1;
14220 vcpu->mmio_cur_fragment = 0;
14221
14222 vcpu->run->mmio.phys_addr = gpa;
14223 vcpu->run->mmio.len = min(8u, frag->len);
14224 vcpu->run->mmio.is_write = 1;
14225 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
14226 vcpu->run->exit_reason = KVM_EXIT_MMIO;
14227
14228 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14229
14230 return 0;
14231 }
14232 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write);
14233
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14234 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14235 void *data)
14236 {
14237 int handled;
14238 struct kvm_mmio_fragment *frag;
14239
14240 if (!data)
14241 return -EINVAL;
14242
14243 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14244 if (handled == bytes)
14245 return 1;
14246
14247 bytes -= handled;
14248 gpa += handled;
14249 data += handled;
14250
14251 /*TODO: Check if need to increment number of frags */
14252 frag = vcpu->mmio_fragments;
14253 vcpu->mmio_nr_fragments = 1;
14254 frag->len = bytes;
14255 frag->gpa = gpa;
14256 frag->data = data;
14257
14258 vcpu->mmio_needed = 1;
14259 vcpu->mmio_cur_fragment = 0;
14260
14261 vcpu->run->mmio.phys_addr = gpa;
14262 vcpu->run->mmio.len = min(8u, frag->len);
14263 vcpu->run->mmio.is_write = 0;
14264 vcpu->run->exit_reason = KVM_EXIT_MMIO;
14265
14266 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14267
14268 return 0;
14269 }
14270 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read);
14271
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)14272 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
14273 {
14274 vcpu->arch.sev_pio_count -= count;
14275 vcpu->arch.sev_pio_data += count * size;
14276 }
14277
14278 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14279 unsigned int port);
14280
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)14281 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14282 {
14283 int size = vcpu->arch.pio.size;
14284 int port = vcpu->arch.pio.port;
14285
14286 vcpu->arch.pio.count = 0;
14287 if (vcpu->arch.sev_pio_count)
14288 return kvm_sev_es_outs(vcpu, size, port);
14289 return 1;
14290 }
14291
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14292 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14293 unsigned int port)
14294 {
14295 for (;;) {
14296 unsigned int count =
14297 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14298 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14299
14300 /* memcpy done already by emulator_pio_out. */
14301 advance_sev_es_emulated_pio(vcpu, count, size);
14302 if (!ret)
14303 break;
14304
14305 /* Emulation done by the kernel. */
14306 if (!vcpu->arch.sev_pio_count)
14307 return 1;
14308 }
14309
14310 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14311 return 0;
14312 }
14313
14314 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14315 unsigned int port);
14316
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)14317 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14318 {
14319 unsigned count = vcpu->arch.pio.count;
14320 int size = vcpu->arch.pio.size;
14321 int port = vcpu->arch.pio.port;
14322
14323 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14324 advance_sev_es_emulated_pio(vcpu, count, size);
14325 if (vcpu->arch.sev_pio_count)
14326 return kvm_sev_es_ins(vcpu, size, port);
14327 return 1;
14328 }
14329
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14330 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14331 unsigned int port)
14332 {
14333 for (;;) {
14334 unsigned int count =
14335 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14336 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14337 break;
14338
14339 /* Emulation done by the kernel. */
14340 advance_sev_es_emulated_pio(vcpu, count, size);
14341 if (!vcpu->arch.sev_pio_count)
14342 return 1;
14343 }
14344
14345 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14346 return 0;
14347 }
14348
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14349 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14350 unsigned int port, void *data, unsigned int count,
14351 int in)
14352 {
14353 vcpu->arch.sev_pio_data = data;
14354 vcpu->arch.sev_pio_count = count;
14355 return in ? kvm_sev_es_ins(vcpu, size, port)
14356 : kvm_sev_es_outs(vcpu, size, port);
14357 }
14358 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io);
14359
14360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14362 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14363 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14364 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14365 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14366 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14367 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14368 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14369 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14390
kvm_x86_init(void)14391 static int __init kvm_x86_init(void)
14392 {
14393 kvm_init_xstate_sizes();
14394
14395 kvm_mmu_x86_module_init();
14396 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14397 return 0;
14398 }
14399 module_init(kvm_x86_init);
14400
kvm_x86_exit(void)14401 static void __exit kvm_x86_exit(void)
14402 {
14403 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14404 }
14405 module_exit(kvm_x86_exit);
14406