1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine (KVM) Hypervisor 4 * 5 * Copyright (C) 2006 Qumranet, Inc. 6 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 7 * 8 * Authors: 9 * Avi Kivity <avi@qumranet.com> 10 * Yaniv Kamay <yaniv@qumranet.com> 11 */ 12 13 #include <kvm/iodev.h> 14 15 #include <linux/kvm_host.h> 16 #include <linux/kvm.h> 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/percpu.h> 20 #include <linux/mm.h> 21 #include <linux/miscdevice.h> 22 #include <linux/vmalloc.h> 23 #include <linux/reboot.h> 24 #include <linux/debugfs.h> 25 #include <linux/highmem.h> 26 #include <linux/file.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/cpu.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/stat.h> 32 #include <linux/cpumask.h> 33 #include <linux/smp.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/profile.h> 36 #include <linux/kvm_para.h> 37 #include <linux/pagemap.h> 38 #include <linux/mman.h> 39 #include <linux/swap.h> 40 #include <linux/bitops.h> 41 #include <linux/spinlock.h> 42 #include <linux/compat.h> 43 #include <linux/srcu.h> 44 #include <linux/hugetlb.h> 45 #include <linux/slab.h> 46 #include <linux/sort.h> 47 #include <linux/bsearch.h> 48 #include <linux/io.h> 49 #include <linux/lockdep.h> 50 #include <linux/kthread.h> 51 #include <linux/suspend.h> 52 #include <linux/rseq.h> 53 54 #include <asm/processor.h> 55 #include <asm/ioctl.h> 56 #include <linux/uaccess.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 #include "kvm_mm.h" 61 #include "vfio.h" 62 63 #include <trace/events/ipi.h> 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 71 /* Worst case buffer size needed for holding an integer. */ 72 #define ITOA_MAX_LEN 12 73 74 MODULE_AUTHOR("Qumranet"); 75 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); 76 MODULE_LICENSE("GPL"); 77 78 /* Architectures should define their poll value according to the halt latency */ 79 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 80 module_param(halt_poll_ns, uint, 0644); 81 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns); 82 83 /* Default doubles per-vcpu halt_poll_ns. */ 84 unsigned int halt_poll_ns_grow = 2; 85 module_param(halt_poll_ns_grow, uint, 0644); 86 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow); 87 88 /* The start value to grow halt_poll_ns from */ 89 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 90 module_param(halt_poll_ns_grow_start, uint, 0644); 91 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start); 92 93 /* Default halves per-vcpu halt_poll_ns. */ 94 unsigned int halt_poll_ns_shrink = 2; 95 module_param(halt_poll_ns_shrink, uint, 0644); 96 EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink); 97 98 /* 99 * Allow direct access (from KVM or the CPU) without MMU notifier protection 100 * to unpinned pages. 101 */ 102 static bool allow_unsafe_mappings; 103 module_param(allow_unsafe_mappings, bool, 0444); 104 105 /* 106 * Ordering of locks: 107 * 108 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 109 */ 110 111 DEFINE_MUTEX(kvm_lock); 112 LIST_HEAD(vm_list); 113 114 static struct kmem_cache *kvm_vcpu_cache; 115 116 static __read_mostly struct preempt_ops kvm_preempt_ops; 117 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 118 119 static struct dentry *kvm_debugfs_dir; 120 121 static const struct file_operations stat_fops_per_vm; 122 123 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #ifdef CONFIG_KVM_COMPAT 126 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 127 unsigned long arg); 128 #define KVM_COMPAT(c) .compat_ioctl = (c) 129 #else 130 /* 131 * For architectures that don't implement a compat infrastructure, 132 * adopt a double line of defense: 133 * - Prevent a compat task from opening /dev/kvm 134 * - If the open has been done by a 64bit task, and the KVM fd 135 * passed to a compat task, let the ioctls fail. 136 */ 137 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 138 unsigned long arg) { return -EINVAL; } 139 140 static int kvm_no_compat_open(struct inode *inode, struct file *file) 141 { 142 return is_compat_task() ? -ENODEV : 0; 143 } 144 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 145 .open = kvm_no_compat_open 146 #endif 147 148 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 149 150 #define KVM_EVENT_CREATE_VM 0 151 #define KVM_EVENT_DESTROY_VM 1 152 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 153 static unsigned long long kvm_createvm_count; 154 static unsigned long long kvm_active_vms; 155 156 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 157 158 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 159 { 160 } 161 162 /* 163 * Switches to specified vcpu, until a matching vcpu_put() 164 */ 165 void vcpu_load(struct kvm_vcpu *vcpu) 166 { 167 int cpu = get_cpu(); 168 169 __this_cpu_write(kvm_running_vcpu, vcpu); 170 preempt_notifier_register(&vcpu->preempt_notifier); 171 kvm_arch_vcpu_load(vcpu, cpu); 172 put_cpu(); 173 } 174 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load); 175 176 void vcpu_put(struct kvm_vcpu *vcpu) 177 { 178 preempt_disable(); 179 kvm_arch_vcpu_put(vcpu); 180 preempt_notifier_unregister(&vcpu->preempt_notifier); 181 __this_cpu_write(kvm_running_vcpu, NULL); 182 preempt_enable(); 183 } 184 EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put); 185 186 /* TODO: merge with kvm_arch_vcpu_should_kick */ 187 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 188 { 189 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 190 191 /* 192 * We need to wait for the VCPU to reenable interrupts and get out of 193 * READING_SHADOW_PAGE_TABLES mode. 194 */ 195 if (req & KVM_REQUEST_WAIT) 196 return mode != OUTSIDE_GUEST_MODE; 197 198 /* 199 * Need to kick a running VCPU, but otherwise there is nothing to do. 200 */ 201 return mode == IN_GUEST_MODE; 202 } 203 204 static void ack_kick(void *_completed) 205 { 206 } 207 208 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 209 { 210 if (cpumask_empty(cpus)) 211 return false; 212 213 smp_call_function_many(cpus, ack_kick, NULL, wait); 214 return true; 215 } 216 217 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 218 struct cpumask *tmp, int current_cpu) 219 { 220 int cpu; 221 222 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 223 __kvm_make_request(req, vcpu); 224 225 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 226 return; 227 228 /* 229 * Note, the vCPU could get migrated to a different pCPU at any point 230 * after kvm_request_needs_ipi(), which could result in sending an IPI 231 * to the previous pCPU. But, that's OK because the purpose of the IPI 232 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 233 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 234 * after this point is also OK, as the requirement is only that KVM wait 235 * for vCPUs that were reading SPTEs _before_ any changes were 236 * finalized. See kvm_vcpu_kick() for more details on handling requests. 237 */ 238 if (kvm_request_needs_ipi(vcpu, req)) { 239 cpu = READ_ONCE(vcpu->cpu); 240 if (cpu != -1 && cpu != current_cpu) 241 __cpumask_set_cpu(cpu, tmp); 242 } 243 } 244 245 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 246 unsigned long *vcpu_bitmap) 247 { 248 struct kvm_vcpu *vcpu; 249 struct cpumask *cpus; 250 int i, me; 251 bool called; 252 253 me = get_cpu(); 254 255 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 256 cpumask_clear(cpus); 257 258 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 259 vcpu = kvm_get_vcpu(kvm, i); 260 if (!vcpu) 261 continue; 262 kvm_make_vcpu_request(vcpu, req, cpus, me); 263 } 264 265 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 266 put_cpu(); 267 268 return called; 269 } 270 271 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 272 { 273 struct kvm_vcpu *vcpu; 274 struct cpumask *cpus; 275 unsigned long i; 276 bool called; 277 int me; 278 279 me = get_cpu(); 280 281 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 282 cpumask_clear(cpus); 283 284 kvm_for_each_vcpu(i, vcpu, kvm) 285 kvm_make_vcpu_request(vcpu, req, cpus, me); 286 287 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 288 put_cpu(); 289 290 return called; 291 } 292 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request); 293 294 void kvm_flush_remote_tlbs(struct kvm *kvm) 295 { 296 ++kvm->stat.generic.remote_tlb_flush_requests; 297 298 /* 299 * We want to publish modifications to the page tables before reading 300 * mode. Pairs with a memory barrier in arch-specific code. 301 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 302 * and smp_mb in walk_shadow_page_lockless_begin/end. 303 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 304 * 305 * There is already an smp_mb__after_atomic() before 306 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 307 * barrier here. 308 */ 309 if (!kvm_arch_flush_remote_tlbs(kvm) 310 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 311 ++kvm->stat.generic.remote_tlb_flush; 312 } 313 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs); 314 315 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 316 { 317 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) 318 return; 319 320 /* 321 * Fall back to a flushing entire TLBs if the architecture range-based 322 * TLB invalidation is unsupported or can't be performed for whatever 323 * reason. 324 */ 325 kvm_flush_remote_tlbs(kvm); 326 } 327 328 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 329 const struct kvm_memory_slot *memslot) 330 { 331 /* 332 * All current use cases for flushing the TLBs for a specific memslot 333 * are related to dirty logging, and many do the TLB flush out of 334 * mmu_lock. The interaction between the various operations on memslot 335 * must be serialized by slots_lock to ensure the TLB flush from one 336 * operation is observed by any other operation on the same memslot. 337 */ 338 lockdep_assert_held(&kvm->slots_lock); 339 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); 340 } 341 342 static void kvm_flush_shadow_all(struct kvm *kvm) 343 { 344 kvm_arch_flush_shadow_all(kvm); 345 kvm_arch_guest_memory_reclaimed(kvm); 346 } 347 348 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 349 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 350 gfp_t gfp_flags) 351 { 352 void *page; 353 354 gfp_flags |= mc->gfp_zero; 355 356 if (mc->kmem_cache) 357 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 358 359 page = (void *)__get_free_page(gfp_flags); 360 if (page && mc->init_value) 361 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); 362 return page; 363 } 364 365 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 366 { 367 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 368 void *obj; 369 370 if (mc->nobjs >= min) 371 return 0; 372 373 if (unlikely(!mc->objects)) { 374 if (WARN_ON_ONCE(!capacity)) 375 return -EIO; 376 377 /* 378 * Custom init values can be used only for page allocations, 379 * and obviously conflict with __GFP_ZERO. 380 */ 381 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) 382 return -EIO; 383 384 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); 385 if (!mc->objects) 386 return -ENOMEM; 387 388 mc->capacity = capacity; 389 } 390 391 /* It is illegal to request a different capacity across topups. */ 392 if (WARN_ON_ONCE(mc->capacity != capacity)) 393 return -EIO; 394 395 while (mc->nobjs < mc->capacity) { 396 obj = mmu_memory_cache_alloc_obj(mc, gfp); 397 if (!obj) 398 return mc->nobjs >= min ? 0 : -ENOMEM; 399 mc->objects[mc->nobjs++] = obj; 400 } 401 return 0; 402 } 403 404 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 405 { 406 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 407 } 408 409 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 410 { 411 return mc->nobjs; 412 } 413 414 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 415 { 416 while (mc->nobjs) { 417 if (mc->kmem_cache) 418 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 419 else 420 free_page((unsigned long)mc->objects[--mc->nobjs]); 421 } 422 423 kvfree(mc->objects); 424 425 mc->objects = NULL; 426 mc->capacity = 0; 427 } 428 429 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 430 { 431 void *p; 432 433 if (WARN_ON(!mc->nobjs)) 434 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 435 else 436 p = mc->objects[--mc->nobjs]; 437 BUG_ON(!p); 438 return p; 439 } 440 #endif 441 442 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 443 { 444 mutex_init(&vcpu->mutex); 445 vcpu->cpu = -1; 446 vcpu->kvm = kvm; 447 vcpu->vcpu_id = id; 448 vcpu->pid = NULL; 449 rwlock_init(&vcpu->pid_lock); 450 #ifndef __KVM_HAVE_ARCH_WQP 451 rcuwait_init(&vcpu->wait); 452 #endif 453 kvm_async_pf_vcpu_init(vcpu); 454 455 kvm_vcpu_set_in_spin_loop(vcpu, false); 456 kvm_vcpu_set_dy_eligible(vcpu, false); 457 vcpu->preempted = false; 458 vcpu->ready = false; 459 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 460 vcpu->last_used_slot = NULL; 461 462 /* Fill the stats id string for the vcpu */ 463 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 464 task_pid_nr(current), id); 465 } 466 467 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 468 { 469 kvm_arch_vcpu_destroy(vcpu); 470 kvm_dirty_ring_free(&vcpu->dirty_ring); 471 472 /* 473 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 474 * the vcpu->pid pointer, and at destruction time all file descriptors 475 * are already gone. 476 */ 477 put_pid(vcpu->pid); 478 479 free_page((unsigned long)vcpu->run); 480 kmem_cache_free(kvm_vcpu_cache, vcpu); 481 } 482 483 void kvm_destroy_vcpus(struct kvm *kvm) 484 { 485 unsigned long i; 486 struct kvm_vcpu *vcpu; 487 488 kvm_for_each_vcpu(i, vcpu, kvm) { 489 kvm_vcpu_destroy(vcpu); 490 xa_erase(&kvm->vcpu_array, i); 491 492 /* 493 * Assert that the vCPU isn't visible in any way, to ensure KVM 494 * doesn't trigger a use-after-free if destroying vCPUs results 495 * in VM-wide request, e.g. to flush remote TLBs when tearing 496 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires. 497 */ 498 WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i)); 499 } 500 501 atomic_set(&kvm->online_vcpus, 0); 502 } 503 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus); 504 505 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 506 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 507 { 508 return container_of(mn, struct kvm, mmu_notifier); 509 } 510 511 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 512 513 typedef void (*on_lock_fn_t)(struct kvm *kvm); 514 515 struct kvm_mmu_notifier_range { 516 /* 517 * 64-bit addresses, as KVM notifiers can operate on host virtual 518 * addresses (unsigned long) and guest physical addresses (64-bit). 519 */ 520 u64 start; 521 u64 end; 522 union kvm_mmu_notifier_arg arg; 523 gfn_handler_t handler; 524 on_lock_fn_t on_lock; 525 bool flush_on_ret; 526 bool may_block; 527 bool lockless; 528 }; 529 530 /* 531 * The inner-most helper returns a tuple containing the return value from the 532 * arch- and action-specific handler, plus a flag indicating whether or not at 533 * least one memslot was found, i.e. if the handler found guest memory. 534 * 535 * Note, most notifiers are averse to booleans, so even though KVM tracks the 536 * return from arch code as a bool, outer helpers will cast it to an int. :-( 537 */ 538 typedef struct kvm_mmu_notifier_return { 539 bool ret; 540 bool found_memslot; 541 } kvm_mn_ret_t; 542 543 /* 544 * Use a dedicated stub instead of NULL to indicate that there is no callback 545 * function/handler. The compiler technically can't guarantee that a real 546 * function will have a non-zero address, and so it will generate code to 547 * check for !NULL, whereas comparing against a stub will be elided at compile 548 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 549 */ 550 static void kvm_null_fn(void) 551 { 552 553 } 554 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 555 556 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 557 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 558 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 559 node; \ 560 node = interval_tree_iter_next(node, start, last)) \ 561 562 static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm, 563 const struct kvm_mmu_notifier_range *range) 564 { 565 struct kvm_mmu_notifier_return r = { 566 .ret = false, 567 .found_memslot = false, 568 }; 569 struct kvm_gfn_range gfn_range; 570 struct kvm_memory_slot *slot; 571 struct kvm_memslots *slots; 572 int i, idx; 573 574 if (WARN_ON_ONCE(range->end <= range->start)) 575 return r; 576 577 /* A null handler is allowed if and only if on_lock() is provided. */ 578 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 579 IS_KVM_NULL_FN(range->handler))) 580 return r; 581 582 /* on_lock will never be called for lockless walks */ 583 if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock))) 584 return r; 585 586 idx = srcu_read_lock(&kvm->srcu); 587 588 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 589 struct interval_tree_node *node; 590 591 slots = __kvm_memslots(kvm, i); 592 kvm_for_each_memslot_in_hva_range(node, slots, 593 range->start, range->end - 1) { 594 unsigned long hva_start, hva_end; 595 596 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 597 hva_start = max_t(unsigned long, range->start, slot->userspace_addr); 598 hva_end = min_t(unsigned long, range->end, 599 slot->userspace_addr + (slot->npages << PAGE_SHIFT)); 600 601 /* 602 * To optimize for the likely case where the address 603 * range is covered by zero or one memslots, don't 604 * bother making these conditional (to avoid writes on 605 * the second or later invocation of the handler). 606 */ 607 gfn_range.arg = range->arg; 608 gfn_range.may_block = range->may_block; 609 /* 610 * HVA-based notifications aren't relevant to private 611 * mappings as they don't have a userspace mapping. 612 */ 613 gfn_range.attr_filter = KVM_FILTER_SHARED; 614 615 /* 616 * {gfn(page) | page intersects with [hva_start, hva_end)} = 617 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 618 */ 619 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 620 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 621 gfn_range.slot = slot; 622 gfn_range.lockless = range->lockless; 623 624 if (!r.found_memslot) { 625 r.found_memslot = true; 626 if (!range->lockless) { 627 KVM_MMU_LOCK(kvm); 628 if (!IS_KVM_NULL_FN(range->on_lock)) 629 range->on_lock(kvm); 630 631 if (IS_KVM_NULL_FN(range->handler)) 632 goto mmu_unlock; 633 } 634 } 635 r.ret |= range->handler(kvm, &gfn_range); 636 } 637 } 638 639 if (range->flush_on_ret && r.ret) 640 kvm_flush_remote_tlbs(kvm); 641 642 mmu_unlock: 643 if (r.found_memslot && !range->lockless) 644 KVM_MMU_UNLOCK(kvm); 645 646 srcu_read_unlock(&kvm->srcu, idx); 647 648 return r; 649 } 650 651 static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn, 652 unsigned long start, 653 unsigned long end, 654 gfn_handler_t handler, 655 bool flush_on_ret) 656 { 657 struct kvm *kvm = mmu_notifier_to_kvm(mn); 658 const struct kvm_mmu_notifier_range range = { 659 .start = start, 660 .end = end, 661 .handler = handler, 662 .on_lock = (void *)kvm_null_fn, 663 .flush_on_ret = flush_on_ret, 664 .may_block = false, 665 .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING), 666 }; 667 668 return kvm_handle_hva_range(kvm, &range).ret; 669 } 670 671 static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn, 672 unsigned long start, 673 unsigned long end, 674 gfn_handler_t handler) 675 { 676 return kvm_age_hva_range(mn, start, end, handler, false); 677 } 678 679 void kvm_mmu_invalidate_begin(struct kvm *kvm) 680 { 681 lockdep_assert_held_write(&kvm->mmu_lock); 682 /* 683 * The count increase must become visible at unlock time as no 684 * spte can be established without taking the mmu_lock and 685 * count is also read inside the mmu_lock critical section. 686 */ 687 kvm->mmu_invalidate_in_progress++; 688 689 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 690 kvm->mmu_invalidate_range_start = INVALID_GPA; 691 kvm->mmu_invalidate_range_end = INVALID_GPA; 692 } 693 } 694 695 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) 696 { 697 lockdep_assert_held_write(&kvm->mmu_lock); 698 699 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); 700 701 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { 702 kvm->mmu_invalidate_range_start = start; 703 kvm->mmu_invalidate_range_end = end; 704 } else { 705 /* 706 * Fully tracking multiple concurrent ranges has diminishing 707 * returns. Keep things simple and just find the minimal range 708 * which includes the current and new ranges. As there won't be 709 * enough information to subtract a range after its invalidate 710 * completes, any ranges invalidated concurrently will 711 * accumulate and persist until all outstanding invalidates 712 * complete. 713 */ 714 kvm->mmu_invalidate_range_start = 715 min(kvm->mmu_invalidate_range_start, start); 716 kvm->mmu_invalidate_range_end = 717 max(kvm->mmu_invalidate_range_end, end); 718 } 719 } 720 721 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 722 { 723 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 724 return kvm_unmap_gfn_range(kvm, range); 725 } 726 727 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 728 const struct mmu_notifier_range *range) 729 { 730 struct kvm *kvm = mmu_notifier_to_kvm(mn); 731 const struct kvm_mmu_notifier_range hva_range = { 732 .start = range->start, 733 .end = range->end, 734 .handler = kvm_mmu_unmap_gfn_range, 735 .on_lock = kvm_mmu_invalidate_begin, 736 .flush_on_ret = true, 737 .may_block = mmu_notifier_range_blockable(range), 738 }; 739 740 trace_kvm_unmap_hva_range(range->start, range->end); 741 742 /* 743 * Prevent memslot modification between range_start() and range_end() 744 * so that conditionally locking provides the same result in both 745 * functions. Without that guarantee, the mmu_invalidate_in_progress 746 * adjustments will be imbalanced. 747 * 748 * Pairs with the decrement in range_end(). 749 */ 750 spin_lock(&kvm->mn_invalidate_lock); 751 kvm->mn_active_invalidate_count++; 752 spin_unlock(&kvm->mn_invalidate_lock); 753 754 /* 755 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 756 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 757 * each cache's lock. There are relatively few caches in existence at 758 * any given time, and the caches themselves can check for hva overlap, 759 * i.e. don't need to rely on memslot overlap checks for performance. 760 * Because this runs without holding mmu_lock, the pfn caches must use 761 * mn_active_invalidate_count (see above) instead of 762 * mmu_invalidate_in_progress. 763 */ 764 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); 765 766 /* 767 * If one or more memslots were found and thus zapped, notify arch code 768 * that guest memory has been reclaimed. This needs to be done *after* 769 * dropping mmu_lock, as x86's reclaim path is slooooow. 770 */ 771 if (kvm_handle_hva_range(kvm, &hva_range).found_memslot) 772 kvm_arch_guest_memory_reclaimed(kvm); 773 774 return 0; 775 } 776 777 void kvm_mmu_invalidate_end(struct kvm *kvm) 778 { 779 lockdep_assert_held_write(&kvm->mmu_lock); 780 781 /* 782 * This sequence increase will notify the kvm page fault that 783 * the page that is going to be mapped in the spte could have 784 * been freed. 785 */ 786 kvm->mmu_invalidate_seq++; 787 smp_wmb(); 788 /* 789 * The above sequence increase must be visible before the 790 * below count decrease, which is ensured by the smp_wmb above 791 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 792 */ 793 kvm->mmu_invalidate_in_progress--; 794 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); 795 796 /* 797 * Assert that at least one range was added between start() and end(). 798 * Not adding a range isn't fatal, but it is a KVM bug. 799 */ 800 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); 801 } 802 803 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 804 const struct mmu_notifier_range *range) 805 { 806 struct kvm *kvm = mmu_notifier_to_kvm(mn); 807 const struct kvm_mmu_notifier_range hva_range = { 808 .start = range->start, 809 .end = range->end, 810 .handler = (void *)kvm_null_fn, 811 .on_lock = kvm_mmu_invalidate_end, 812 .flush_on_ret = false, 813 .may_block = mmu_notifier_range_blockable(range), 814 }; 815 bool wake; 816 817 kvm_handle_hva_range(kvm, &hva_range); 818 819 /* Pairs with the increment in range_start(). */ 820 spin_lock(&kvm->mn_invalidate_lock); 821 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) 822 --kvm->mn_active_invalidate_count; 823 wake = !kvm->mn_active_invalidate_count; 824 spin_unlock(&kvm->mn_invalidate_lock); 825 826 /* 827 * There can only be one waiter, since the wait happens under 828 * slots_lock. 829 */ 830 if (wake) 831 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 832 } 833 834 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 835 struct mm_struct *mm, 836 unsigned long start, 837 unsigned long end) 838 { 839 trace_kvm_age_hva(start, end); 840 841 return kvm_age_hva_range(mn, start, end, kvm_age_gfn, 842 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG)); 843 } 844 845 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 846 struct mm_struct *mm, 847 unsigned long start, 848 unsigned long end) 849 { 850 trace_kvm_age_hva(start, end); 851 852 /* 853 * Even though we do not flush TLB, this will still adversely 854 * affect performance on pre-Haswell Intel EPT, where there is 855 * no EPT Access Bit to clear so that we have to tear down EPT 856 * tables instead. If we find this unacceptable, we can always 857 * add a parameter to kvm_age_hva so that it effectively doesn't 858 * do anything on clear_young. 859 * 860 * Also note that currently we never issue secondary TLB flushes 861 * from clear_young, leaving this job up to the regular system 862 * cadence. If we find this inaccurate, we might come up with a 863 * more sophisticated heuristic later. 864 */ 865 return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn); 866 } 867 868 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 869 struct mm_struct *mm, 870 unsigned long address) 871 { 872 trace_kvm_test_age_hva(address); 873 874 return kvm_age_hva_range_no_flush(mn, address, address + 1, 875 kvm_test_age_gfn); 876 } 877 878 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 879 struct mm_struct *mm) 880 { 881 struct kvm *kvm = mmu_notifier_to_kvm(mn); 882 int idx; 883 884 idx = srcu_read_lock(&kvm->srcu); 885 kvm_flush_shadow_all(kvm); 886 srcu_read_unlock(&kvm->srcu, idx); 887 } 888 889 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 890 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 891 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 892 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 893 .clear_young = kvm_mmu_notifier_clear_young, 894 .test_young = kvm_mmu_notifier_test_young, 895 .release = kvm_mmu_notifier_release, 896 }; 897 898 static int kvm_init_mmu_notifier(struct kvm *kvm) 899 { 900 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 901 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 902 } 903 904 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 905 906 static int kvm_init_mmu_notifier(struct kvm *kvm) 907 { 908 return 0; 909 } 910 911 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ 912 913 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 914 static int kvm_pm_notifier_call(struct notifier_block *bl, 915 unsigned long state, 916 void *unused) 917 { 918 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 919 920 return kvm_arch_pm_notifier(kvm, state); 921 } 922 923 static void kvm_init_pm_notifier(struct kvm *kvm) 924 { 925 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 926 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 927 kvm->pm_notifier.priority = INT_MAX; 928 register_pm_notifier(&kvm->pm_notifier); 929 } 930 931 static void kvm_destroy_pm_notifier(struct kvm *kvm) 932 { 933 unregister_pm_notifier(&kvm->pm_notifier); 934 } 935 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 936 static void kvm_init_pm_notifier(struct kvm *kvm) 937 { 938 } 939 940 static void kvm_destroy_pm_notifier(struct kvm *kvm) 941 { 942 } 943 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 944 945 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 946 { 947 if (!memslot->dirty_bitmap) 948 return; 949 950 vfree(memslot->dirty_bitmap); 951 memslot->dirty_bitmap = NULL; 952 } 953 954 /* This does not remove the slot from struct kvm_memslots data structures */ 955 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 956 { 957 if (slot->flags & KVM_MEM_GUEST_MEMFD) 958 kvm_gmem_unbind(slot); 959 960 kvm_destroy_dirty_bitmap(slot); 961 962 kvm_arch_free_memslot(kvm, slot); 963 964 kfree(slot); 965 } 966 967 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 968 { 969 struct hlist_node *idnode; 970 struct kvm_memory_slot *memslot; 971 int bkt; 972 973 /* 974 * The same memslot objects live in both active and inactive sets, 975 * arbitrarily free using index '1' so the second invocation of this 976 * function isn't operating over a structure with dangling pointers 977 * (even though this function isn't actually touching them). 978 */ 979 if (!slots->node_idx) 980 return; 981 982 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 983 kvm_free_memslot(kvm, memslot); 984 } 985 986 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 987 { 988 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 989 case KVM_STATS_TYPE_INSTANT: 990 return 0444; 991 case KVM_STATS_TYPE_CUMULATIVE: 992 case KVM_STATS_TYPE_PEAK: 993 default: 994 return 0644; 995 } 996 } 997 998 999 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1000 { 1001 int i; 1002 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1003 kvm_vcpu_stats_header.num_desc; 1004 1005 if (IS_ERR(kvm->debugfs_dentry)) 1006 return; 1007 1008 debugfs_remove_recursive(kvm->debugfs_dentry); 1009 1010 if (kvm->debugfs_stat_data) { 1011 for (i = 0; i < kvm_debugfs_num_entries; i++) 1012 kfree(kvm->debugfs_stat_data[i]); 1013 kfree(kvm->debugfs_stat_data); 1014 } 1015 } 1016 1017 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1018 { 1019 static DEFINE_MUTEX(kvm_debugfs_lock); 1020 struct dentry *dent; 1021 char dir_name[ITOA_MAX_LEN * 2]; 1022 struct kvm_stat_data *stat_data; 1023 const struct _kvm_stats_desc *pdesc; 1024 int i, ret = -ENOMEM; 1025 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1026 kvm_vcpu_stats_header.num_desc; 1027 1028 if (!debugfs_initialized()) 1029 return 0; 1030 1031 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1032 mutex_lock(&kvm_debugfs_lock); 1033 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1034 if (dent) { 1035 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1036 dput(dent); 1037 mutex_unlock(&kvm_debugfs_lock); 1038 return 0; 1039 } 1040 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1041 mutex_unlock(&kvm_debugfs_lock); 1042 if (IS_ERR(dent)) 1043 return 0; 1044 1045 kvm->debugfs_dentry = dent; 1046 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1047 sizeof(*kvm->debugfs_stat_data), 1048 GFP_KERNEL_ACCOUNT); 1049 if (!kvm->debugfs_stat_data) 1050 goto out_err; 1051 1052 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1053 pdesc = &kvm_vm_stats_desc[i]; 1054 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1055 if (!stat_data) 1056 goto out_err; 1057 1058 stat_data->kvm = kvm; 1059 stat_data->desc = pdesc; 1060 stat_data->kind = KVM_STAT_VM; 1061 kvm->debugfs_stat_data[i] = stat_data; 1062 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1063 kvm->debugfs_dentry, stat_data, 1064 &stat_fops_per_vm); 1065 } 1066 1067 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1068 pdesc = &kvm_vcpu_stats_desc[i]; 1069 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1070 if (!stat_data) 1071 goto out_err; 1072 1073 stat_data->kvm = kvm; 1074 stat_data->desc = pdesc; 1075 stat_data->kind = KVM_STAT_VCPU; 1076 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1077 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1078 kvm->debugfs_dentry, stat_data, 1079 &stat_fops_per_vm); 1080 } 1081 1082 kvm_arch_create_vm_debugfs(kvm); 1083 return 0; 1084 out_err: 1085 kvm_destroy_vm_debugfs(kvm); 1086 return ret; 1087 } 1088 1089 /* 1090 * Called just after removing the VM from the vm_list, but before doing any 1091 * other destruction. 1092 */ 1093 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1094 { 1095 } 1096 1097 /* 1098 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1099 * be setup already, so we can create arch-specific debugfs entries under it. 1100 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1101 * a per-arch destroy interface is not needed. 1102 */ 1103 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1104 { 1105 } 1106 1107 /* Called only on cleanup and destruction paths when there are no users. */ 1108 static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm, 1109 enum kvm_bus idx) 1110 { 1111 return rcu_dereference_protected(kvm->buses[idx], 1112 !refcount_read(&kvm->users_count)); 1113 } 1114 1115 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1116 { 1117 struct kvm *kvm = kvm_arch_alloc_vm(); 1118 struct kvm_memslots *slots; 1119 int r, i, j; 1120 1121 if (!kvm) 1122 return ERR_PTR(-ENOMEM); 1123 1124 KVM_MMU_LOCK_INIT(kvm); 1125 mmgrab(current->mm); 1126 kvm->mm = current->mm; 1127 kvm_eventfd_init(kvm); 1128 mutex_init(&kvm->lock); 1129 mutex_init(&kvm->irq_lock); 1130 mutex_init(&kvm->slots_lock); 1131 mutex_init(&kvm->slots_arch_lock); 1132 spin_lock_init(&kvm->mn_invalidate_lock); 1133 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1134 xa_init(&kvm->vcpu_array); 1135 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1136 xa_init(&kvm->mem_attr_array); 1137 #endif 1138 1139 INIT_LIST_HEAD(&kvm->gpc_list); 1140 spin_lock_init(&kvm->gpc_lock); 1141 1142 INIT_LIST_HEAD(&kvm->devices); 1143 kvm->max_vcpus = KVM_MAX_VCPUS; 1144 1145 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1146 1147 /* 1148 * Force subsequent debugfs file creations to fail if the VM directory 1149 * is not created (by kvm_create_vm_debugfs()). 1150 */ 1151 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1152 1153 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1154 task_pid_nr(current)); 1155 1156 r = -ENOMEM; 1157 if (init_srcu_struct(&kvm->srcu)) 1158 goto out_err_no_srcu; 1159 if (init_srcu_struct(&kvm->irq_srcu)) 1160 goto out_err_no_irq_srcu; 1161 1162 r = kvm_init_irq_routing(kvm); 1163 if (r) 1164 goto out_err_no_irq_routing; 1165 1166 refcount_set(&kvm->users_count, 1); 1167 1168 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1169 for (j = 0; j < 2; j++) { 1170 slots = &kvm->__memslots[i][j]; 1171 1172 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1173 slots->hva_tree = RB_ROOT_CACHED; 1174 slots->gfn_tree = RB_ROOT; 1175 hash_init(slots->id_hash); 1176 slots->node_idx = j; 1177 1178 /* Generations must be different for each address space. */ 1179 slots->generation = i; 1180 } 1181 1182 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1183 } 1184 1185 r = -ENOMEM; 1186 for (i = 0; i < KVM_NR_BUSES; i++) { 1187 rcu_assign_pointer(kvm->buses[i], 1188 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1189 if (!kvm->buses[i]) 1190 goto out_err_no_arch_destroy_vm; 1191 } 1192 1193 r = kvm_arch_init_vm(kvm, type); 1194 if (r) 1195 goto out_err_no_arch_destroy_vm; 1196 1197 r = kvm_enable_virtualization(); 1198 if (r) 1199 goto out_err_no_disable; 1200 1201 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1202 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1203 #endif 1204 1205 r = kvm_init_mmu_notifier(kvm); 1206 if (r) 1207 goto out_err_no_mmu_notifier; 1208 1209 r = kvm_coalesced_mmio_init(kvm); 1210 if (r < 0) 1211 goto out_no_coalesced_mmio; 1212 1213 r = kvm_create_vm_debugfs(kvm, fdname); 1214 if (r) 1215 goto out_err_no_debugfs; 1216 1217 mutex_lock(&kvm_lock); 1218 list_add(&kvm->vm_list, &vm_list); 1219 mutex_unlock(&kvm_lock); 1220 1221 preempt_notifier_inc(); 1222 kvm_init_pm_notifier(kvm); 1223 1224 return kvm; 1225 1226 out_err_no_debugfs: 1227 kvm_coalesced_mmio_free(kvm); 1228 out_no_coalesced_mmio: 1229 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1230 if (kvm->mmu_notifier.ops) 1231 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1232 #endif 1233 out_err_no_mmu_notifier: 1234 kvm_disable_virtualization(); 1235 out_err_no_disable: 1236 kvm_arch_destroy_vm(kvm); 1237 out_err_no_arch_destroy_vm: 1238 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1239 for (i = 0; i < KVM_NR_BUSES; i++) 1240 kfree(kvm_get_bus_for_destruction(kvm, i)); 1241 kvm_free_irq_routing(kvm); 1242 out_err_no_irq_routing: 1243 cleanup_srcu_struct(&kvm->irq_srcu); 1244 out_err_no_irq_srcu: 1245 cleanup_srcu_struct(&kvm->srcu); 1246 out_err_no_srcu: 1247 kvm_arch_free_vm(kvm); 1248 mmdrop(current->mm); 1249 return ERR_PTR(r); 1250 } 1251 1252 static void kvm_destroy_devices(struct kvm *kvm) 1253 { 1254 struct kvm_device *dev, *tmp; 1255 1256 /* 1257 * We do not need to take the kvm->lock here, because nobody else 1258 * has a reference to the struct kvm at this point and therefore 1259 * cannot access the devices list anyhow. 1260 * 1261 * The device list is generally managed as an rculist, but list_del() 1262 * is used intentionally here. If a bug in KVM introduced a reader that 1263 * was not backed by a reference on the kvm struct, the hope is that 1264 * it'd consume the poisoned forward pointer instead of suffering a 1265 * use-after-free, even though this cannot be guaranteed. 1266 */ 1267 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1268 list_del(&dev->vm_node); 1269 dev->ops->destroy(dev); 1270 } 1271 } 1272 1273 static void kvm_destroy_vm(struct kvm *kvm) 1274 { 1275 int i; 1276 struct mm_struct *mm = kvm->mm; 1277 1278 kvm_destroy_pm_notifier(kvm); 1279 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1280 kvm_destroy_vm_debugfs(kvm); 1281 mutex_lock(&kvm_lock); 1282 list_del(&kvm->vm_list); 1283 mutex_unlock(&kvm_lock); 1284 kvm_arch_pre_destroy_vm(kvm); 1285 1286 kvm_free_irq_routing(kvm); 1287 for (i = 0; i < KVM_NR_BUSES; i++) { 1288 struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i); 1289 1290 if (bus) 1291 kvm_io_bus_destroy(bus); 1292 kvm->buses[i] = NULL; 1293 } 1294 kvm_coalesced_mmio_free(kvm); 1295 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1296 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1297 /* 1298 * At this point, pending calls to invalidate_range_start() 1299 * have completed but no more MMU notifiers will run, so 1300 * mn_active_invalidate_count may remain unbalanced. 1301 * No threads can be waiting in kvm_swap_active_memslots() as the 1302 * last reference on KVM has been dropped, but freeing 1303 * memslots would deadlock without this manual intervention. 1304 * 1305 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU 1306 * notifier between a start() and end(), then there shouldn't be any 1307 * in-progress invalidations. 1308 */ 1309 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1310 if (kvm->mn_active_invalidate_count) 1311 kvm->mn_active_invalidate_count = 0; 1312 else 1313 WARN_ON(kvm->mmu_invalidate_in_progress); 1314 #else 1315 kvm_flush_shadow_all(kvm); 1316 #endif 1317 kvm_arch_destroy_vm(kvm); 1318 kvm_destroy_devices(kvm); 1319 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 1320 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1321 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1322 } 1323 cleanup_srcu_struct(&kvm->irq_srcu); 1324 srcu_barrier(&kvm->srcu); 1325 cleanup_srcu_struct(&kvm->srcu); 1326 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 1327 xa_destroy(&kvm->mem_attr_array); 1328 #endif 1329 kvm_arch_free_vm(kvm); 1330 preempt_notifier_dec(); 1331 kvm_disable_virtualization(); 1332 mmdrop(mm); 1333 } 1334 1335 void kvm_get_kvm(struct kvm *kvm) 1336 { 1337 refcount_inc(&kvm->users_count); 1338 } 1339 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1340 1341 /* 1342 * Make sure the vm is not during destruction, which is a safe version of 1343 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1344 */ 1345 bool kvm_get_kvm_safe(struct kvm *kvm) 1346 { 1347 return refcount_inc_not_zero(&kvm->users_count); 1348 } 1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1350 1351 void kvm_put_kvm(struct kvm *kvm) 1352 { 1353 if (refcount_dec_and_test(&kvm->users_count)) 1354 kvm_destroy_vm(kvm); 1355 } 1356 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1357 1358 /* 1359 * Used to put a reference that was taken on behalf of an object associated 1360 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1361 * of the new file descriptor fails and the reference cannot be transferred to 1362 * its final owner. In such cases, the caller is still actively using @kvm and 1363 * will fail miserably if the refcount unexpectedly hits zero. 1364 */ 1365 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1366 { 1367 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1368 } 1369 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy); 1370 1371 static int kvm_vm_release(struct inode *inode, struct file *filp) 1372 { 1373 struct kvm *kvm = filp->private_data; 1374 1375 kvm_irqfd_release(kvm); 1376 1377 kvm_put_kvm(kvm); 1378 return 0; 1379 } 1380 1381 int kvm_trylock_all_vcpus(struct kvm *kvm) 1382 { 1383 struct kvm_vcpu *vcpu; 1384 unsigned long i, j; 1385 1386 lockdep_assert_held(&kvm->lock); 1387 1388 kvm_for_each_vcpu(i, vcpu, kvm) 1389 if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock)) 1390 goto out_unlock; 1391 return 0; 1392 1393 out_unlock: 1394 kvm_for_each_vcpu(j, vcpu, kvm) { 1395 if (i == j) 1396 break; 1397 mutex_unlock(&vcpu->mutex); 1398 } 1399 return -EINTR; 1400 } 1401 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus); 1402 1403 int kvm_lock_all_vcpus(struct kvm *kvm) 1404 { 1405 struct kvm_vcpu *vcpu; 1406 unsigned long i, j; 1407 int r; 1408 1409 lockdep_assert_held(&kvm->lock); 1410 1411 kvm_for_each_vcpu(i, vcpu, kvm) { 1412 r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock); 1413 if (r) 1414 goto out_unlock; 1415 } 1416 return 0; 1417 1418 out_unlock: 1419 kvm_for_each_vcpu(j, vcpu, kvm) { 1420 if (i == j) 1421 break; 1422 mutex_unlock(&vcpu->mutex); 1423 } 1424 return r; 1425 } 1426 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus); 1427 1428 void kvm_unlock_all_vcpus(struct kvm *kvm) 1429 { 1430 struct kvm_vcpu *vcpu; 1431 unsigned long i; 1432 1433 lockdep_assert_held(&kvm->lock); 1434 1435 kvm_for_each_vcpu(i, vcpu, kvm) 1436 mutex_unlock(&vcpu->mutex); 1437 } 1438 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus); 1439 1440 /* 1441 * Allocation size is twice as large as the actual dirty bitmap size. 1442 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1443 */ 1444 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1445 { 1446 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1447 1448 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1449 if (!memslot->dirty_bitmap) 1450 return -ENOMEM; 1451 1452 return 0; 1453 } 1454 1455 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1456 { 1457 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1458 int node_idx_inactive = active->node_idx ^ 1; 1459 1460 return &kvm->__memslots[as_id][node_idx_inactive]; 1461 } 1462 1463 /* 1464 * Helper to get the address space ID when one of memslot pointers may be NULL. 1465 * This also serves as a sanity that at least one of the pointers is non-NULL, 1466 * and that their address space IDs don't diverge. 1467 */ 1468 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1469 struct kvm_memory_slot *b) 1470 { 1471 if (WARN_ON_ONCE(!a && !b)) 1472 return 0; 1473 1474 if (!a) 1475 return b->as_id; 1476 if (!b) 1477 return a->as_id; 1478 1479 WARN_ON_ONCE(a->as_id != b->as_id); 1480 return a->as_id; 1481 } 1482 1483 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1484 struct kvm_memory_slot *slot) 1485 { 1486 struct rb_root *gfn_tree = &slots->gfn_tree; 1487 struct rb_node **node, *parent; 1488 int idx = slots->node_idx; 1489 1490 parent = NULL; 1491 for (node = &gfn_tree->rb_node; *node; ) { 1492 struct kvm_memory_slot *tmp; 1493 1494 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1495 parent = *node; 1496 if (slot->base_gfn < tmp->base_gfn) 1497 node = &(*node)->rb_left; 1498 else if (slot->base_gfn > tmp->base_gfn) 1499 node = &(*node)->rb_right; 1500 else 1501 BUG(); 1502 } 1503 1504 rb_link_node(&slot->gfn_node[idx], parent, node); 1505 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1506 } 1507 1508 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1509 struct kvm_memory_slot *slot) 1510 { 1511 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1512 } 1513 1514 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1515 struct kvm_memory_slot *old, 1516 struct kvm_memory_slot *new) 1517 { 1518 int idx = slots->node_idx; 1519 1520 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1521 1522 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1523 &slots->gfn_tree); 1524 } 1525 1526 /* 1527 * Replace @old with @new in the inactive memslots. 1528 * 1529 * With NULL @old this simply adds @new. 1530 * With NULL @new this simply removes @old. 1531 * 1532 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1533 * appropriately. 1534 */ 1535 static void kvm_replace_memslot(struct kvm *kvm, 1536 struct kvm_memory_slot *old, 1537 struct kvm_memory_slot *new) 1538 { 1539 int as_id = kvm_memslots_get_as_id(old, new); 1540 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1541 int idx = slots->node_idx; 1542 1543 if (old) { 1544 hash_del(&old->id_node[idx]); 1545 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1546 1547 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1548 atomic_long_set(&slots->last_used_slot, (long)new); 1549 1550 if (!new) { 1551 kvm_erase_gfn_node(slots, old); 1552 return; 1553 } 1554 } 1555 1556 /* 1557 * Initialize @new's hva range. Do this even when replacing an @old 1558 * slot, kvm_copy_memslot() deliberately does not touch node data. 1559 */ 1560 new->hva_node[idx].start = new->userspace_addr; 1561 new->hva_node[idx].last = new->userspace_addr + 1562 (new->npages << PAGE_SHIFT) - 1; 1563 1564 /* 1565 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1566 * hva_node needs to be swapped with remove+insert even though hva can't 1567 * change when replacing an existing slot. 1568 */ 1569 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1570 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1571 1572 /* 1573 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1574 * switch the node in the gfn tree instead of removing the old and 1575 * inserting the new as two separate operations. Replacement is a 1576 * single O(1) operation versus two O(log(n)) operations for 1577 * remove+insert. 1578 */ 1579 if (old && old->base_gfn == new->base_gfn) { 1580 kvm_replace_gfn_node(slots, old, new); 1581 } else { 1582 if (old) 1583 kvm_erase_gfn_node(slots, old); 1584 kvm_insert_gfn_node(slots, new); 1585 } 1586 } 1587 1588 /* 1589 * Flags that do not access any of the extra space of struct 1590 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS 1591 * only allows these. 1592 */ 1593 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ 1594 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) 1595 1596 static int check_memory_region_flags(struct kvm *kvm, 1597 const struct kvm_userspace_memory_region2 *mem) 1598 { 1599 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1600 1601 if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD)) 1602 valid_flags |= KVM_MEM_GUEST_MEMFD; 1603 1604 /* Dirty logging private memory is not currently supported. */ 1605 if (mem->flags & KVM_MEM_GUEST_MEMFD) 1606 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 1607 1608 /* 1609 * GUEST_MEMFD is incompatible with read-only memslots, as writes to 1610 * read-only memslots have emulated MMIO, not page fault, semantics, 1611 * and KVM doesn't allow emulated MMIO for private memory. 1612 */ 1613 if (kvm_arch_has_readonly_mem(kvm) && 1614 !(mem->flags & KVM_MEM_GUEST_MEMFD)) 1615 valid_flags |= KVM_MEM_READONLY; 1616 1617 if (mem->flags & ~valid_flags) 1618 return -EINVAL; 1619 1620 return 0; 1621 } 1622 1623 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1624 { 1625 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1626 1627 /* Grab the generation from the activate memslots. */ 1628 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1629 1630 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1631 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1632 1633 /* 1634 * Do not store the new memslots while there are invalidations in 1635 * progress, otherwise the locking in invalidate_range_start and 1636 * invalidate_range_end will be unbalanced. 1637 */ 1638 spin_lock(&kvm->mn_invalidate_lock); 1639 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1640 while (kvm->mn_active_invalidate_count) { 1641 set_current_state(TASK_UNINTERRUPTIBLE); 1642 spin_unlock(&kvm->mn_invalidate_lock); 1643 schedule(); 1644 spin_lock(&kvm->mn_invalidate_lock); 1645 } 1646 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1647 rcu_assign_pointer(kvm->memslots[as_id], slots); 1648 spin_unlock(&kvm->mn_invalidate_lock); 1649 1650 /* 1651 * Acquired in kvm_set_memslot. Must be released before synchronize 1652 * SRCU below in order to avoid deadlock with another thread 1653 * acquiring the slots_arch_lock in an srcu critical section. 1654 */ 1655 mutex_unlock(&kvm->slots_arch_lock); 1656 1657 synchronize_srcu_expedited(&kvm->srcu); 1658 1659 /* 1660 * Increment the new memslot generation a second time, dropping the 1661 * update in-progress flag and incrementing the generation based on 1662 * the number of address spaces. This provides a unique and easily 1663 * identifiable generation number while the memslots are in flux. 1664 */ 1665 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1666 1667 /* 1668 * Generations must be unique even across address spaces. We do not need 1669 * a global counter for that, instead the generation space is evenly split 1670 * across address spaces. For example, with two address spaces, address 1671 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1672 * use generations 1, 3, 5, ... 1673 */ 1674 gen += kvm_arch_nr_memslot_as_ids(kvm); 1675 1676 kvm_arch_memslots_updated(kvm, gen); 1677 1678 slots->generation = gen; 1679 } 1680 1681 static int kvm_prepare_memory_region(struct kvm *kvm, 1682 const struct kvm_memory_slot *old, 1683 struct kvm_memory_slot *new, 1684 enum kvm_mr_change change) 1685 { 1686 int r; 1687 1688 /* 1689 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1690 * will be freed on "commit". If logging is enabled in both old and 1691 * new, reuse the existing bitmap. If logging is enabled only in the 1692 * new and KVM isn't using a ring buffer, allocate and initialize a 1693 * new bitmap. 1694 */ 1695 if (change != KVM_MR_DELETE) { 1696 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1697 new->dirty_bitmap = NULL; 1698 else if (old && old->dirty_bitmap) 1699 new->dirty_bitmap = old->dirty_bitmap; 1700 else if (kvm_use_dirty_bitmap(kvm)) { 1701 r = kvm_alloc_dirty_bitmap(new); 1702 if (r) 1703 return r; 1704 1705 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1706 bitmap_set(new->dirty_bitmap, 0, new->npages); 1707 } 1708 } 1709 1710 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1711 1712 /* Free the bitmap on failure if it was allocated above. */ 1713 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1714 kvm_destroy_dirty_bitmap(new); 1715 1716 return r; 1717 } 1718 1719 static void kvm_commit_memory_region(struct kvm *kvm, 1720 struct kvm_memory_slot *old, 1721 const struct kvm_memory_slot *new, 1722 enum kvm_mr_change change) 1723 { 1724 int old_flags = old ? old->flags : 0; 1725 int new_flags = new ? new->flags : 0; 1726 /* 1727 * Update the total number of memslot pages before calling the arch 1728 * hook so that architectures can consume the result directly. 1729 */ 1730 if (change == KVM_MR_DELETE) 1731 kvm->nr_memslot_pages -= old->npages; 1732 else if (change == KVM_MR_CREATE) 1733 kvm->nr_memslot_pages += new->npages; 1734 1735 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1736 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1737 atomic_set(&kvm->nr_memslots_dirty_logging, 1738 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1739 } 1740 1741 kvm_arch_commit_memory_region(kvm, old, new, change); 1742 1743 switch (change) { 1744 case KVM_MR_CREATE: 1745 /* Nothing more to do. */ 1746 break; 1747 case KVM_MR_DELETE: 1748 /* Free the old memslot and all its metadata. */ 1749 kvm_free_memslot(kvm, old); 1750 break; 1751 case KVM_MR_MOVE: 1752 /* 1753 * Moving a guest_memfd memslot isn't supported, and will never 1754 * be supported. 1755 */ 1756 WARN_ON_ONCE(old->flags & KVM_MEM_GUEST_MEMFD); 1757 fallthrough; 1758 case KVM_MR_FLAGS_ONLY: 1759 /* 1760 * Free the dirty bitmap as needed; the below check encompasses 1761 * both the flags and whether a ring buffer is being used) 1762 */ 1763 if (old->dirty_bitmap && !new->dirty_bitmap) 1764 kvm_destroy_dirty_bitmap(old); 1765 1766 /* 1767 * Unbind the guest_memfd instance as needed; the @new slot has 1768 * already created its own binding. TODO: Drop the WARN when 1769 * dirty logging guest_memfd memslots is supported. Until then, 1770 * flags-only changes on guest_memfd slots should be impossible. 1771 */ 1772 if (WARN_ON_ONCE(old->flags & KVM_MEM_GUEST_MEMFD)) 1773 kvm_gmem_unbind(old); 1774 1775 /* 1776 * The final quirk. Free the detached, old slot, but only its 1777 * memory, not any metadata. Metadata, including arch specific 1778 * data, may be reused by @new. 1779 */ 1780 kfree(old); 1781 break; 1782 default: 1783 BUG(); 1784 } 1785 } 1786 1787 /* 1788 * Activate @new, which must be installed in the inactive slots by the caller, 1789 * by swapping the active slots and then propagating @new to @old once @old is 1790 * unreachable and can be safely modified. 1791 * 1792 * With NULL @old this simply adds @new to @active (while swapping the sets). 1793 * With NULL @new this simply removes @old from @active and frees it 1794 * (while also swapping the sets). 1795 */ 1796 static void kvm_activate_memslot(struct kvm *kvm, 1797 struct kvm_memory_slot *old, 1798 struct kvm_memory_slot *new) 1799 { 1800 int as_id = kvm_memslots_get_as_id(old, new); 1801 1802 kvm_swap_active_memslots(kvm, as_id); 1803 1804 /* Propagate the new memslot to the now inactive memslots. */ 1805 kvm_replace_memslot(kvm, old, new); 1806 } 1807 1808 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1809 const struct kvm_memory_slot *src) 1810 { 1811 dest->base_gfn = src->base_gfn; 1812 dest->npages = src->npages; 1813 dest->dirty_bitmap = src->dirty_bitmap; 1814 dest->arch = src->arch; 1815 dest->userspace_addr = src->userspace_addr; 1816 dest->flags = src->flags; 1817 dest->id = src->id; 1818 dest->as_id = src->as_id; 1819 } 1820 1821 static void kvm_invalidate_memslot(struct kvm *kvm, 1822 struct kvm_memory_slot *old, 1823 struct kvm_memory_slot *invalid_slot) 1824 { 1825 /* 1826 * Mark the current slot INVALID. As with all memslot modifications, 1827 * this must be done on an unreachable slot to avoid modifying the 1828 * current slot in the active tree. 1829 */ 1830 kvm_copy_memslot(invalid_slot, old); 1831 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1832 kvm_replace_memslot(kvm, old, invalid_slot); 1833 1834 /* 1835 * Activate the slot that is now marked INVALID, but don't propagate 1836 * the slot to the now inactive slots. The slot is either going to be 1837 * deleted or recreated as a new slot. 1838 */ 1839 kvm_swap_active_memslots(kvm, old->as_id); 1840 1841 /* 1842 * From this point no new shadow pages pointing to a deleted, or moved, 1843 * memslot will be created. Validation of sp->gfn happens in: 1844 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1845 * - kvm_is_visible_gfn (mmu_check_root) 1846 */ 1847 kvm_arch_flush_shadow_memslot(kvm, old); 1848 kvm_arch_guest_memory_reclaimed(kvm); 1849 1850 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1851 mutex_lock(&kvm->slots_arch_lock); 1852 1853 /* 1854 * Copy the arch-specific field of the newly-installed slot back to the 1855 * old slot as the arch data could have changed between releasing 1856 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1857 * above. Writers are required to retrieve memslots *after* acquiring 1858 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1859 */ 1860 old->arch = invalid_slot->arch; 1861 } 1862 1863 static void kvm_create_memslot(struct kvm *kvm, 1864 struct kvm_memory_slot *new) 1865 { 1866 /* Add the new memslot to the inactive set and activate. */ 1867 kvm_replace_memslot(kvm, NULL, new); 1868 kvm_activate_memslot(kvm, NULL, new); 1869 } 1870 1871 static void kvm_delete_memslot(struct kvm *kvm, 1872 struct kvm_memory_slot *old, 1873 struct kvm_memory_slot *invalid_slot) 1874 { 1875 /* 1876 * Remove the old memslot (in the inactive memslots) by passing NULL as 1877 * the "new" slot, and for the invalid version in the active slots. 1878 */ 1879 kvm_replace_memslot(kvm, old, NULL); 1880 kvm_activate_memslot(kvm, invalid_slot, NULL); 1881 } 1882 1883 static void kvm_move_memslot(struct kvm *kvm, 1884 struct kvm_memory_slot *old, 1885 struct kvm_memory_slot *new, 1886 struct kvm_memory_slot *invalid_slot) 1887 { 1888 /* 1889 * Replace the old memslot in the inactive slots, and then swap slots 1890 * and replace the current INVALID with the new as well. 1891 */ 1892 kvm_replace_memslot(kvm, old, new); 1893 kvm_activate_memslot(kvm, invalid_slot, new); 1894 } 1895 1896 static void kvm_update_flags_memslot(struct kvm *kvm, 1897 struct kvm_memory_slot *old, 1898 struct kvm_memory_slot *new) 1899 { 1900 /* 1901 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1902 * an intermediate step. Instead, the old memslot is simply replaced 1903 * with a new, updated copy in both memslot sets. 1904 */ 1905 kvm_replace_memslot(kvm, old, new); 1906 kvm_activate_memslot(kvm, old, new); 1907 } 1908 1909 static int kvm_set_memslot(struct kvm *kvm, 1910 struct kvm_memory_slot *old, 1911 struct kvm_memory_slot *new, 1912 enum kvm_mr_change change) 1913 { 1914 struct kvm_memory_slot *invalid_slot; 1915 int r; 1916 1917 /* 1918 * Released in kvm_swap_active_memslots(). 1919 * 1920 * Must be held from before the current memslots are copied until after 1921 * the new memslots are installed with rcu_assign_pointer, then 1922 * released before the synchronize srcu in kvm_swap_active_memslots(). 1923 * 1924 * When modifying memslots outside of the slots_lock, must be held 1925 * before reading the pointer to the current memslots until after all 1926 * changes to those memslots are complete. 1927 * 1928 * These rules ensure that installing new memslots does not lose 1929 * changes made to the previous memslots. 1930 */ 1931 mutex_lock(&kvm->slots_arch_lock); 1932 1933 /* 1934 * Invalidate the old slot if it's being deleted or moved. This is 1935 * done prior to actually deleting/moving the memslot to allow vCPUs to 1936 * continue running by ensuring there are no mappings or shadow pages 1937 * for the memslot when it is deleted/moved. Without pre-invalidation 1938 * (and without a lock), a window would exist between effecting the 1939 * delete/move and committing the changes in arch code where KVM or a 1940 * guest could access a non-existent memslot. 1941 * 1942 * Modifications are done on a temporary, unreachable slot. The old 1943 * slot needs to be preserved in case a later step fails and the 1944 * invalidation needs to be reverted. 1945 */ 1946 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1947 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1948 if (!invalid_slot) { 1949 mutex_unlock(&kvm->slots_arch_lock); 1950 return -ENOMEM; 1951 } 1952 kvm_invalidate_memslot(kvm, old, invalid_slot); 1953 } 1954 1955 r = kvm_prepare_memory_region(kvm, old, new, change); 1956 if (r) { 1957 /* 1958 * For DELETE/MOVE, revert the above INVALID change. No 1959 * modifications required since the original slot was preserved 1960 * in the inactive slots. Changing the active memslots also 1961 * release slots_arch_lock. 1962 */ 1963 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1964 kvm_activate_memslot(kvm, invalid_slot, old); 1965 kfree(invalid_slot); 1966 } else { 1967 mutex_unlock(&kvm->slots_arch_lock); 1968 } 1969 return r; 1970 } 1971 1972 /* 1973 * For DELETE and MOVE, the working slot is now active as the INVALID 1974 * version of the old slot. MOVE is particularly special as it reuses 1975 * the old slot and returns a copy of the old slot (in working_slot). 1976 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1977 * old slot is detached but otherwise preserved. 1978 */ 1979 if (change == KVM_MR_CREATE) 1980 kvm_create_memslot(kvm, new); 1981 else if (change == KVM_MR_DELETE) 1982 kvm_delete_memslot(kvm, old, invalid_slot); 1983 else if (change == KVM_MR_MOVE) 1984 kvm_move_memslot(kvm, old, new, invalid_slot); 1985 else if (change == KVM_MR_FLAGS_ONLY) 1986 kvm_update_flags_memslot(kvm, old, new); 1987 else 1988 BUG(); 1989 1990 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1991 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1992 kfree(invalid_slot); 1993 1994 /* 1995 * No need to refresh new->arch, changes after dropping slots_arch_lock 1996 * will directly hit the final, active memslot. Architectures are 1997 * responsible for knowing that new->arch may be stale. 1998 */ 1999 kvm_commit_memory_region(kvm, old, new, change); 2000 2001 return 0; 2002 } 2003 2004 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 2005 gfn_t start, gfn_t end) 2006 { 2007 struct kvm_memslot_iter iter; 2008 2009 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 2010 if (iter.slot->id != id) 2011 return true; 2012 } 2013 2014 return false; 2015 } 2016 2017 static int kvm_set_memory_region(struct kvm *kvm, 2018 const struct kvm_userspace_memory_region2 *mem) 2019 { 2020 struct kvm_memory_slot *old, *new; 2021 struct kvm_memslots *slots; 2022 enum kvm_mr_change change; 2023 unsigned long npages; 2024 gfn_t base_gfn; 2025 int as_id, id; 2026 int r; 2027 2028 lockdep_assert_held(&kvm->slots_lock); 2029 2030 r = check_memory_region_flags(kvm, mem); 2031 if (r) 2032 return r; 2033 2034 as_id = mem->slot >> 16; 2035 id = (u16)mem->slot; 2036 2037 /* General sanity checks */ 2038 if ((mem->memory_size & (PAGE_SIZE - 1)) || 2039 (mem->memory_size != (unsigned long)mem->memory_size)) 2040 return -EINVAL; 2041 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 2042 return -EINVAL; 2043 /* We can read the guest memory with __xxx_user() later on. */ 2044 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 2045 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 2046 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 2047 mem->memory_size)) 2048 return -EINVAL; 2049 if (mem->flags & KVM_MEM_GUEST_MEMFD && 2050 (mem->guest_memfd_offset & (PAGE_SIZE - 1) || 2051 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) 2052 return -EINVAL; 2053 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) 2054 return -EINVAL; 2055 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 2056 return -EINVAL; 2057 2058 /* 2059 * The size of userspace-defined memory regions is restricted in order 2060 * to play nice with dirty bitmap operations, which are indexed with an 2061 * "unsigned int". KVM's internal memory regions don't support dirty 2062 * logging, and so are exempt. 2063 */ 2064 if (id < KVM_USER_MEM_SLOTS && 2065 (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 2066 return -EINVAL; 2067 2068 slots = __kvm_memslots(kvm, as_id); 2069 2070 /* 2071 * Note, the old memslot (and the pointer itself!) may be invalidated 2072 * and/or destroyed by kvm_set_memslot(). 2073 */ 2074 old = id_to_memslot(slots, id); 2075 2076 if (!mem->memory_size) { 2077 if (!old || !old->npages) 2078 return -EINVAL; 2079 2080 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 2081 return -EIO; 2082 2083 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 2084 } 2085 2086 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 2087 npages = (mem->memory_size >> PAGE_SHIFT); 2088 2089 if (!old || !old->npages) { 2090 change = KVM_MR_CREATE; 2091 2092 /* 2093 * To simplify KVM internals, the total number of pages across 2094 * all memslots must fit in an unsigned long. 2095 */ 2096 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 2097 return -EINVAL; 2098 } else { /* Modify an existing slot. */ 2099 /* Private memslots are immutable, they can only be deleted. */ 2100 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2101 return -EINVAL; 2102 if ((mem->userspace_addr != old->userspace_addr) || 2103 (npages != old->npages) || 2104 ((mem->flags ^ old->flags) & (KVM_MEM_READONLY | KVM_MEM_GUEST_MEMFD))) 2105 return -EINVAL; 2106 2107 if (base_gfn != old->base_gfn) 2108 change = KVM_MR_MOVE; 2109 else if (mem->flags != old->flags) 2110 change = KVM_MR_FLAGS_ONLY; 2111 else /* Nothing to change. */ 2112 return 0; 2113 } 2114 2115 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2116 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2117 return -EEXIST; 2118 2119 /* Allocate a slot that will persist in the memslot. */ 2120 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2121 if (!new) 2122 return -ENOMEM; 2123 2124 new->as_id = as_id; 2125 new->id = id; 2126 new->base_gfn = base_gfn; 2127 new->npages = npages; 2128 new->flags = mem->flags; 2129 new->userspace_addr = mem->userspace_addr; 2130 if (mem->flags & KVM_MEM_GUEST_MEMFD) { 2131 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); 2132 if (r) 2133 goto out; 2134 } 2135 2136 r = kvm_set_memslot(kvm, old, new, change); 2137 if (r) 2138 goto out_unbind; 2139 2140 return 0; 2141 2142 out_unbind: 2143 if (mem->flags & KVM_MEM_GUEST_MEMFD) 2144 kvm_gmem_unbind(new); 2145 out: 2146 kfree(new); 2147 return r; 2148 } 2149 2150 int kvm_set_internal_memslot(struct kvm *kvm, 2151 const struct kvm_userspace_memory_region2 *mem) 2152 { 2153 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS)) 2154 return -EINVAL; 2155 2156 if (WARN_ON_ONCE(mem->flags)) 2157 return -EINVAL; 2158 2159 return kvm_set_memory_region(kvm, mem); 2160 } 2161 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot); 2162 2163 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2164 struct kvm_userspace_memory_region2 *mem) 2165 { 2166 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2167 return -EINVAL; 2168 2169 guard(mutex)(&kvm->slots_lock); 2170 return kvm_set_memory_region(kvm, mem); 2171 } 2172 2173 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2174 /** 2175 * kvm_get_dirty_log - get a snapshot of dirty pages 2176 * @kvm: pointer to kvm instance 2177 * @log: slot id and address to which we copy the log 2178 * @is_dirty: set to '1' if any dirty pages were found 2179 * @memslot: set to the associated memslot, always valid on success 2180 */ 2181 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2182 int *is_dirty, struct kvm_memory_slot **memslot) 2183 { 2184 struct kvm_memslots *slots; 2185 int i, as_id, id; 2186 unsigned long n; 2187 unsigned long any = 0; 2188 2189 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2190 if (!kvm_use_dirty_bitmap(kvm)) 2191 return -ENXIO; 2192 2193 *memslot = NULL; 2194 *is_dirty = 0; 2195 2196 as_id = log->slot >> 16; 2197 id = (u16)log->slot; 2198 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2199 return -EINVAL; 2200 2201 slots = __kvm_memslots(kvm, as_id); 2202 *memslot = id_to_memslot(slots, id); 2203 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2204 return -ENOENT; 2205 2206 kvm_arch_sync_dirty_log(kvm, *memslot); 2207 2208 n = kvm_dirty_bitmap_bytes(*memslot); 2209 2210 for (i = 0; !any && i < n/sizeof(long); ++i) 2211 any = (*memslot)->dirty_bitmap[i]; 2212 2213 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2214 return -EFAULT; 2215 2216 if (any) 2217 *is_dirty = 1; 2218 return 0; 2219 } 2220 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log); 2221 2222 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2223 /** 2224 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2225 * and reenable dirty page tracking for the corresponding pages. 2226 * @kvm: pointer to kvm instance 2227 * @log: slot id and address to which we copy the log 2228 * 2229 * We need to keep it in mind that VCPU threads can write to the bitmap 2230 * concurrently. So, to avoid losing track of dirty pages we keep the 2231 * following order: 2232 * 2233 * 1. Take a snapshot of the bit and clear it if needed. 2234 * 2. Write protect the corresponding page. 2235 * 3. Copy the snapshot to the userspace. 2236 * 4. Upon return caller flushes TLB's if needed. 2237 * 2238 * Between 2 and 4, the guest may write to the page using the remaining TLB 2239 * entry. This is not a problem because the page is reported dirty using 2240 * the snapshot taken before and step 4 ensures that writes done after 2241 * exiting to userspace will be logged for the next call. 2242 * 2243 */ 2244 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2245 { 2246 struct kvm_memslots *slots; 2247 struct kvm_memory_slot *memslot; 2248 int i, as_id, id; 2249 unsigned long n; 2250 unsigned long *dirty_bitmap; 2251 unsigned long *dirty_bitmap_buffer; 2252 bool flush; 2253 2254 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2255 if (!kvm_use_dirty_bitmap(kvm)) 2256 return -ENXIO; 2257 2258 as_id = log->slot >> 16; 2259 id = (u16)log->slot; 2260 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2261 return -EINVAL; 2262 2263 slots = __kvm_memslots(kvm, as_id); 2264 memslot = id_to_memslot(slots, id); 2265 if (!memslot || !memslot->dirty_bitmap) 2266 return -ENOENT; 2267 2268 dirty_bitmap = memslot->dirty_bitmap; 2269 2270 kvm_arch_sync_dirty_log(kvm, memslot); 2271 2272 n = kvm_dirty_bitmap_bytes(memslot); 2273 flush = false; 2274 if (kvm->manual_dirty_log_protect) { 2275 /* 2276 * Unlike kvm_get_dirty_log, we always return false in *flush, 2277 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2278 * is some code duplication between this function and 2279 * kvm_get_dirty_log, but hopefully all architecture 2280 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2281 * can be eliminated. 2282 */ 2283 dirty_bitmap_buffer = dirty_bitmap; 2284 } else { 2285 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2286 memset(dirty_bitmap_buffer, 0, n); 2287 2288 KVM_MMU_LOCK(kvm); 2289 for (i = 0; i < n / sizeof(long); i++) { 2290 unsigned long mask; 2291 gfn_t offset; 2292 2293 if (!dirty_bitmap[i]) 2294 continue; 2295 2296 flush = true; 2297 mask = xchg(&dirty_bitmap[i], 0); 2298 dirty_bitmap_buffer[i] = mask; 2299 2300 offset = i * BITS_PER_LONG; 2301 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2302 offset, mask); 2303 } 2304 KVM_MMU_UNLOCK(kvm); 2305 } 2306 2307 if (flush) 2308 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2309 2310 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2311 return -EFAULT; 2312 return 0; 2313 } 2314 2315 2316 /** 2317 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2318 * @kvm: kvm instance 2319 * @log: slot id and address to which we copy the log 2320 * 2321 * Steps 1-4 below provide general overview of dirty page logging. See 2322 * kvm_get_dirty_log_protect() function description for additional details. 2323 * 2324 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2325 * always flush the TLB (step 4) even if previous step failed and the dirty 2326 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2327 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2328 * writes will be marked dirty for next log read. 2329 * 2330 * 1. Take a snapshot of the bit and clear it if needed. 2331 * 2. Write protect the corresponding page. 2332 * 3. Copy the snapshot to the userspace. 2333 * 4. Flush TLB's if needed. 2334 */ 2335 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2336 struct kvm_dirty_log *log) 2337 { 2338 int r; 2339 2340 mutex_lock(&kvm->slots_lock); 2341 2342 r = kvm_get_dirty_log_protect(kvm, log); 2343 2344 mutex_unlock(&kvm->slots_lock); 2345 return r; 2346 } 2347 2348 /** 2349 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2350 * and reenable dirty page tracking for the corresponding pages. 2351 * @kvm: pointer to kvm instance 2352 * @log: slot id and address from which to fetch the bitmap of dirty pages 2353 */ 2354 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2355 struct kvm_clear_dirty_log *log) 2356 { 2357 struct kvm_memslots *slots; 2358 struct kvm_memory_slot *memslot; 2359 int as_id, id; 2360 gfn_t offset; 2361 unsigned long i, n; 2362 unsigned long *dirty_bitmap; 2363 unsigned long *dirty_bitmap_buffer; 2364 bool flush; 2365 2366 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2367 if (!kvm_use_dirty_bitmap(kvm)) 2368 return -ENXIO; 2369 2370 as_id = log->slot >> 16; 2371 id = (u16)log->slot; 2372 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) 2373 return -EINVAL; 2374 2375 if (log->first_page & 63) 2376 return -EINVAL; 2377 2378 slots = __kvm_memslots(kvm, as_id); 2379 memslot = id_to_memslot(slots, id); 2380 if (!memslot || !memslot->dirty_bitmap) 2381 return -ENOENT; 2382 2383 dirty_bitmap = memslot->dirty_bitmap; 2384 2385 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2386 2387 if (log->first_page > memslot->npages || 2388 log->num_pages > memslot->npages - log->first_page || 2389 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2390 return -EINVAL; 2391 2392 kvm_arch_sync_dirty_log(kvm, memslot); 2393 2394 flush = false; 2395 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2396 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2397 return -EFAULT; 2398 2399 KVM_MMU_LOCK(kvm); 2400 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2401 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2402 i++, offset += BITS_PER_LONG) { 2403 unsigned long mask = *dirty_bitmap_buffer++; 2404 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2405 if (!mask) 2406 continue; 2407 2408 mask &= atomic_long_fetch_andnot(mask, p); 2409 2410 /* 2411 * mask contains the bits that really have been cleared. This 2412 * never includes any bits beyond the length of the memslot (if 2413 * the length is not aligned to 64 pages), therefore it is not 2414 * a problem if userspace sets them in log->dirty_bitmap. 2415 */ 2416 if (mask) { 2417 flush = true; 2418 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2419 offset, mask); 2420 } 2421 } 2422 KVM_MMU_UNLOCK(kvm); 2423 2424 if (flush) 2425 kvm_flush_remote_tlbs_memslot(kvm, memslot); 2426 2427 return 0; 2428 } 2429 2430 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2431 struct kvm_clear_dirty_log *log) 2432 { 2433 int r; 2434 2435 mutex_lock(&kvm->slots_lock); 2436 2437 r = kvm_clear_dirty_log_protect(kvm, log); 2438 2439 mutex_unlock(&kvm->slots_lock); 2440 return r; 2441 } 2442 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2443 2444 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2445 static u64 kvm_supported_mem_attributes(struct kvm *kvm) 2446 { 2447 if (!kvm || kvm_arch_has_private_mem(kvm)) 2448 return KVM_MEMORY_ATTRIBUTE_PRIVATE; 2449 2450 return 0; 2451 } 2452 2453 /* 2454 * Returns true if _all_ gfns in the range [@start, @end) have attributes 2455 * such that the bits in @mask match @attrs. 2456 */ 2457 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2458 unsigned long mask, unsigned long attrs) 2459 { 2460 XA_STATE(xas, &kvm->mem_attr_array, start); 2461 unsigned long index; 2462 void *entry; 2463 2464 mask &= kvm_supported_mem_attributes(kvm); 2465 if (attrs & ~mask) 2466 return false; 2467 2468 if (end == start + 1) 2469 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; 2470 2471 guard(rcu)(); 2472 if (!attrs) 2473 return !xas_find(&xas, end - 1); 2474 2475 for (index = start; index < end; index++) { 2476 do { 2477 entry = xas_next(&xas); 2478 } while (xas_retry(&xas, entry)); 2479 2480 if (xas.xa_index != index || 2481 (xa_to_value(entry) & mask) != attrs) 2482 return false; 2483 } 2484 2485 return true; 2486 } 2487 2488 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, 2489 struct kvm_mmu_notifier_range *range) 2490 { 2491 struct kvm_gfn_range gfn_range; 2492 struct kvm_memory_slot *slot; 2493 struct kvm_memslots *slots; 2494 struct kvm_memslot_iter iter; 2495 bool found_memslot = false; 2496 bool ret = false; 2497 int i; 2498 2499 gfn_range.arg = range->arg; 2500 gfn_range.may_block = range->may_block; 2501 2502 /* 2503 * If/when KVM supports more attributes beyond private .vs shared, this 2504 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target 2505 * range already has the desired private vs. shared state (it's unclear 2506 * if that is a net win). For now, KVM reaches this point if and only 2507 * if the private flag is being toggled, i.e. all mappings are in play. 2508 */ 2509 2510 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 2511 slots = __kvm_memslots(kvm, i); 2512 2513 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { 2514 slot = iter.slot; 2515 gfn_range.slot = slot; 2516 2517 gfn_range.start = max(range->start, slot->base_gfn); 2518 gfn_range.end = min(range->end, slot->base_gfn + slot->npages); 2519 if (gfn_range.start >= gfn_range.end) 2520 continue; 2521 2522 if (!found_memslot) { 2523 found_memslot = true; 2524 KVM_MMU_LOCK(kvm); 2525 if (!IS_KVM_NULL_FN(range->on_lock)) 2526 range->on_lock(kvm); 2527 } 2528 2529 ret |= range->handler(kvm, &gfn_range); 2530 } 2531 } 2532 2533 if (range->flush_on_ret && ret) 2534 kvm_flush_remote_tlbs(kvm); 2535 2536 if (found_memslot) 2537 KVM_MMU_UNLOCK(kvm); 2538 } 2539 2540 static bool kvm_pre_set_memory_attributes(struct kvm *kvm, 2541 struct kvm_gfn_range *range) 2542 { 2543 /* 2544 * Unconditionally add the range to the invalidation set, regardless of 2545 * whether or not the arch callback actually needs to zap SPTEs. E.g. 2546 * if KVM supports RWX attributes in the future and the attributes are 2547 * going from R=>RW, zapping isn't strictly necessary. Unconditionally 2548 * adding the range allows KVM to require that MMU invalidations add at 2549 * least one range between begin() and end(), e.g. allows KVM to detect 2550 * bugs where the add() is missed. Relaxing the rule *might* be safe, 2551 * but it's not obvious that allowing new mappings while the attributes 2552 * are in flux is desirable or worth the complexity. 2553 */ 2554 kvm_mmu_invalidate_range_add(kvm, range->start, range->end); 2555 2556 return kvm_arch_pre_set_memory_attributes(kvm, range); 2557 } 2558 2559 /* Set @attributes for the gfn range [@start, @end). */ 2560 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2561 unsigned long attributes) 2562 { 2563 struct kvm_mmu_notifier_range pre_set_range = { 2564 .start = start, 2565 .end = end, 2566 .arg.attributes = attributes, 2567 .handler = kvm_pre_set_memory_attributes, 2568 .on_lock = kvm_mmu_invalidate_begin, 2569 .flush_on_ret = true, 2570 .may_block = true, 2571 }; 2572 struct kvm_mmu_notifier_range post_set_range = { 2573 .start = start, 2574 .end = end, 2575 .arg.attributes = attributes, 2576 .handler = kvm_arch_post_set_memory_attributes, 2577 .on_lock = kvm_mmu_invalidate_end, 2578 .may_block = true, 2579 }; 2580 unsigned long i; 2581 void *entry; 2582 int r = 0; 2583 2584 entry = attributes ? xa_mk_value(attributes) : NULL; 2585 2586 trace_kvm_vm_set_mem_attributes(start, end, attributes); 2587 2588 mutex_lock(&kvm->slots_lock); 2589 2590 /* Nothing to do if the entire range has the desired attributes. */ 2591 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) 2592 goto out_unlock; 2593 2594 /* 2595 * Reserve memory ahead of time to avoid having to deal with failures 2596 * partway through setting the new attributes. 2597 */ 2598 for (i = start; i < end; i++) { 2599 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); 2600 if (r) 2601 goto out_unlock; 2602 2603 cond_resched(); 2604 } 2605 2606 kvm_handle_gfn_range(kvm, &pre_set_range); 2607 2608 for (i = start; i < end; i++) { 2609 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, 2610 GFP_KERNEL_ACCOUNT)); 2611 KVM_BUG_ON(r, kvm); 2612 cond_resched(); 2613 } 2614 2615 kvm_handle_gfn_range(kvm, &post_set_range); 2616 2617 out_unlock: 2618 mutex_unlock(&kvm->slots_lock); 2619 2620 return r; 2621 } 2622 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, 2623 struct kvm_memory_attributes *attrs) 2624 { 2625 gfn_t start, end; 2626 2627 /* flags is currently not used. */ 2628 if (attrs->flags) 2629 return -EINVAL; 2630 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) 2631 return -EINVAL; 2632 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) 2633 return -EINVAL; 2634 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) 2635 return -EINVAL; 2636 2637 start = attrs->address >> PAGE_SHIFT; 2638 end = (attrs->address + attrs->size) >> PAGE_SHIFT; 2639 2640 /* 2641 * xarray tracks data using "unsigned long", and as a result so does 2642 * KVM. For simplicity, supports generic attributes only on 64-bit 2643 * architectures. 2644 */ 2645 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); 2646 2647 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); 2648 } 2649 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2650 2651 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2652 { 2653 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2654 } 2655 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot); 2656 2657 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2658 { 2659 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2660 u64 gen = slots->generation; 2661 struct kvm_memory_slot *slot; 2662 2663 /* 2664 * This also protects against using a memslot from a different address space, 2665 * since different address spaces have different generation numbers. 2666 */ 2667 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2668 vcpu->last_used_slot = NULL; 2669 vcpu->last_used_slot_gen = gen; 2670 } 2671 2672 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2673 if (slot) 2674 return slot; 2675 2676 /* 2677 * Fall back to searching all memslots. We purposely use 2678 * search_memslots() instead of __gfn_to_memslot() to avoid 2679 * thrashing the VM-wide last_used_slot in kvm_memslots. 2680 */ 2681 slot = search_memslots(slots, gfn, false); 2682 if (slot) { 2683 vcpu->last_used_slot = slot; 2684 return slot; 2685 } 2686 2687 return NULL; 2688 } 2689 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot); 2690 2691 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2692 { 2693 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2694 2695 return kvm_is_visible_memslot(memslot); 2696 } 2697 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn); 2698 2699 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2700 { 2701 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2702 2703 return kvm_is_visible_memslot(memslot); 2704 } 2705 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn); 2706 2707 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2708 { 2709 struct vm_area_struct *vma; 2710 unsigned long addr, size; 2711 2712 size = PAGE_SIZE; 2713 2714 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2715 if (kvm_is_error_hva(addr)) 2716 return PAGE_SIZE; 2717 2718 mmap_read_lock(current->mm); 2719 vma = find_vma(current->mm, addr); 2720 if (!vma) 2721 goto out; 2722 2723 size = vma_kernel_pagesize(vma); 2724 2725 out: 2726 mmap_read_unlock(current->mm); 2727 2728 return size; 2729 } 2730 2731 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2732 { 2733 return slot->flags & KVM_MEM_READONLY; 2734 } 2735 2736 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2737 gfn_t *nr_pages, bool write) 2738 { 2739 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2740 return KVM_HVA_ERR_BAD; 2741 2742 if (memslot_is_readonly(slot) && write) 2743 return KVM_HVA_ERR_RO_BAD; 2744 2745 if (nr_pages) 2746 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2747 2748 return __gfn_to_hva_memslot(slot, gfn); 2749 } 2750 2751 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2752 gfn_t *nr_pages) 2753 { 2754 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2755 } 2756 2757 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2758 gfn_t gfn) 2759 { 2760 return gfn_to_hva_many(slot, gfn, NULL); 2761 } 2762 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot); 2763 2764 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2765 { 2766 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2767 } 2768 EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva); 2769 2770 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2771 { 2772 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2773 } 2774 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva); 2775 2776 /* 2777 * Return the hva of a @gfn and the R/W attribute if possible. 2778 * 2779 * @slot: the kvm_memory_slot which contains @gfn 2780 * @gfn: the gfn to be translated 2781 * @writable: used to return the read/write attribute of the @slot if the hva 2782 * is valid and @writable is not NULL 2783 */ 2784 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2785 gfn_t gfn, bool *writable) 2786 { 2787 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2788 2789 if (!kvm_is_error_hva(hva) && writable) 2790 *writable = !memslot_is_readonly(slot); 2791 2792 return hva; 2793 } 2794 2795 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2796 { 2797 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2798 2799 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2800 } 2801 2802 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2803 { 2804 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2805 2806 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2807 } 2808 2809 static bool kvm_is_ad_tracked_page(struct page *page) 2810 { 2811 /* 2812 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2813 * touched (e.g. set dirty) except by its owner". 2814 */ 2815 return !PageReserved(page); 2816 } 2817 2818 static void kvm_set_page_dirty(struct page *page) 2819 { 2820 if (kvm_is_ad_tracked_page(page)) 2821 SetPageDirty(page); 2822 } 2823 2824 static void kvm_set_page_accessed(struct page *page) 2825 { 2826 if (kvm_is_ad_tracked_page(page)) 2827 mark_page_accessed(page); 2828 } 2829 2830 void kvm_release_page_clean(struct page *page) 2831 { 2832 if (!page) 2833 return; 2834 2835 kvm_set_page_accessed(page); 2836 put_page(page); 2837 } 2838 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean); 2839 2840 void kvm_release_page_dirty(struct page *page) 2841 { 2842 if (!page) 2843 return; 2844 2845 kvm_set_page_dirty(page); 2846 kvm_release_page_clean(page); 2847 } 2848 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty); 2849 2850 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page, 2851 struct follow_pfnmap_args *map, bool writable) 2852 { 2853 kvm_pfn_t pfn; 2854 2855 WARN_ON_ONCE(!!page == !!map); 2856 2857 if (kfp->map_writable) 2858 *kfp->map_writable = writable; 2859 2860 if (map) 2861 pfn = map->pfn; 2862 else 2863 pfn = page_to_pfn(page); 2864 2865 *kfp->refcounted_page = page; 2866 2867 return pfn; 2868 } 2869 2870 /* 2871 * The fast path to get the writable pfn which will be stored in @pfn, 2872 * true indicates success, otherwise false is returned. 2873 */ 2874 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2875 { 2876 struct page *page; 2877 bool r; 2878 2879 /* 2880 * Try the fast-only path when the caller wants to pin/get the page for 2881 * writing. If the caller only wants to read the page, KVM must go 2882 * down the full, slow path in order to avoid racing an operation that 2883 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing 2884 * at the old, read-only page while mm/ points at a new, writable page. 2885 */ 2886 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable)) 2887 return false; 2888 2889 if (kfp->pin) 2890 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1; 2891 else 2892 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page); 2893 2894 if (r) { 2895 *pfn = kvm_resolve_pfn(kfp, page, NULL, true); 2896 return true; 2897 } 2898 2899 return false; 2900 } 2901 2902 /* 2903 * The slow path to get the pfn of the specified host virtual address, 2904 * 1 indicates success, -errno is returned if error is detected. 2905 */ 2906 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) 2907 { 2908 /* 2909 * When a VCPU accesses a page that is not mapped into the secondary 2910 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2911 * make progress. We always want to honor NUMA hinting faults in that 2912 * case, because GUP usage corresponds to memory accesses from the VCPU. 2913 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2914 * mapped into the secondary MMU and gets accessed by a VCPU. 2915 * 2916 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2917 * implicitly honor NUMA hinting faults and don't need this flag. 2918 */ 2919 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags; 2920 struct page *page, *wpage; 2921 int npages; 2922 2923 if (kfp->pin) 2924 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags); 2925 else 2926 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags); 2927 if (npages != 1) 2928 return npages; 2929 2930 /* 2931 * Pinning is mutually exclusive with opportunistically mapping a read 2932 * fault as writable, as KVM should never pin pages when mapping memory 2933 * into the guest (pinning is only for direct accesses from KVM). 2934 */ 2935 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin)) 2936 goto out; 2937 2938 /* map read fault as writable if possible */ 2939 if (!(flags & FOLL_WRITE) && kfp->map_writable && 2940 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) { 2941 put_page(page); 2942 page = wpage; 2943 flags |= FOLL_WRITE; 2944 } 2945 2946 out: 2947 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE); 2948 return npages; 2949 } 2950 2951 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2952 { 2953 if (unlikely(!(vma->vm_flags & VM_READ))) 2954 return false; 2955 2956 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2957 return false; 2958 2959 return true; 2960 } 2961 2962 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2963 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn) 2964 { 2965 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva }; 2966 bool write_fault = kfp->flags & FOLL_WRITE; 2967 int r; 2968 2969 /* 2970 * Remapped memory cannot be pinned in any meaningful sense. Bail if 2971 * the caller wants to pin the page, i.e. access the page outside of 2972 * MMU notifier protection, and unsafe umappings are disallowed. 2973 */ 2974 if (kfp->pin && !allow_unsafe_mappings) 2975 return -EINVAL; 2976 2977 r = follow_pfnmap_start(&args); 2978 if (r) { 2979 /* 2980 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2981 * not call the fault handler, so do it here. 2982 */ 2983 bool unlocked = false; 2984 r = fixup_user_fault(current->mm, kfp->hva, 2985 (write_fault ? FAULT_FLAG_WRITE : 0), 2986 &unlocked); 2987 if (unlocked) 2988 return -EAGAIN; 2989 if (r) 2990 return r; 2991 2992 r = follow_pfnmap_start(&args); 2993 if (r) 2994 return r; 2995 } 2996 2997 if (write_fault && !args.writable) { 2998 *p_pfn = KVM_PFN_ERR_RO_FAULT; 2999 goto out; 3000 } 3001 3002 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable); 3003 out: 3004 follow_pfnmap_end(&args); 3005 return r; 3006 } 3007 3008 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp) 3009 { 3010 struct vm_area_struct *vma; 3011 kvm_pfn_t pfn; 3012 int npages, r; 3013 3014 might_sleep(); 3015 3016 if (WARN_ON_ONCE(!kfp->refcounted_page)) 3017 return KVM_PFN_ERR_FAULT; 3018 3019 if (hva_to_pfn_fast(kfp, &pfn)) 3020 return pfn; 3021 3022 npages = hva_to_pfn_slow(kfp, &pfn); 3023 if (npages == 1) 3024 return pfn; 3025 if (npages == -EINTR || npages == -EAGAIN) 3026 return KVM_PFN_ERR_SIGPENDING; 3027 if (npages == -EHWPOISON) 3028 return KVM_PFN_ERR_HWPOISON; 3029 3030 mmap_read_lock(current->mm); 3031 retry: 3032 vma = vma_lookup(current->mm, kfp->hva); 3033 3034 if (vma == NULL) 3035 pfn = KVM_PFN_ERR_FAULT; 3036 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 3037 r = hva_to_pfn_remapped(vma, kfp, &pfn); 3038 if (r == -EAGAIN) 3039 goto retry; 3040 if (r < 0) 3041 pfn = KVM_PFN_ERR_FAULT; 3042 } else { 3043 if ((kfp->flags & FOLL_NOWAIT) && 3044 vma_is_valid(vma, kfp->flags & FOLL_WRITE)) 3045 pfn = KVM_PFN_ERR_NEEDS_IO; 3046 else 3047 pfn = KVM_PFN_ERR_FAULT; 3048 } 3049 mmap_read_unlock(current->mm); 3050 return pfn; 3051 } 3052 3053 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp) 3054 { 3055 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL, 3056 kfp->flags & FOLL_WRITE); 3057 3058 if (kfp->hva == KVM_HVA_ERR_RO_BAD) 3059 return KVM_PFN_ERR_RO_FAULT; 3060 3061 if (kvm_is_error_hva(kfp->hva)) 3062 return KVM_PFN_NOSLOT; 3063 3064 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) { 3065 *kfp->map_writable = false; 3066 kfp->map_writable = NULL; 3067 } 3068 3069 return hva_to_pfn(kfp); 3070 } 3071 3072 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 3073 unsigned int foll, bool *writable, 3074 struct page **refcounted_page) 3075 { 3076 struct kvm_follow_pfn kfp = { 3077 .slot = slot, 3078 .gfn = gfn, 3079 .flags = foll, 3080 .map_writable = writable, 3081 .refcounted_page = refcounted_page, 3082 }; 3083 3084 if (WARN_ON_ONCE(!writable || !refcounted_page)) 3085 return KVM_PFN_ERR_FAULT; 3086 3087 *writable = false; 3088 *refcounted_page = NULL; 3089 3090 return kvm_follow_pfn(&kfp); 3091 } 3092 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn); 3093 3094 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 3095 struct page **pages, int nr_pages) 3096 { 3097 unsigned long addr; 3098 gfn_t entry = 0; 3099 3100 addr = gfn_to_hva_many(slot, gfn, &entry); 3101 if (kvm_is_error_hva(addr)) 3102 return -1; 3103 3104 if (entry < nr_pages) 3105 return 0; 3106 3107 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 3108 } 3109 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages); 3110 3111 /* 3112 * Don't use this API unless you are absolutely, positively certain that KVM 3113 * needs to get a struct page, e.g. to pin the page for firmware DMA. 3114 * 3115 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate 3116 * its refcount. 3117 */ 3118 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write) 3119 { 3120 struct page *refcounted_page = NULL; 3121 struct kvm_follow_pfn kfp = { 3122 .slot = gfn_to_memslot(kvm, gfn), 3123 .gfn = gfn, 3124 .flags = write ? FOLL_WRITE : 0, 3125 .refcounted_page = &refcounted_page, 3126 }; 3127 3128 (void)kvm_follow_pfn(&kfp); 3129 return refcounted_page; 3130 } 3131 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page); 3132 3133 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 3134 bool writable) 3135 { 3136 struct kvm_follow_pfn kfp = { 3137 .slot = gfn_to_memslot(vcpu->kvm, gfn), 3138 .gfn = gfn, 3139 .flags = writable ? FOLL_WRITE : 0, 3140 .refcounted_page = &map->pinned_page, 3141 .pin = true, 3142 }; 3143 3144 map->pinned_page = NULL; 3145 map->page = NULL; 3146 map->hva = NULL; 3147 map->gfn = gfn; 3148 map->writable = writable; 3149 3150 map->pfn = kvm_follow_pfn(&kfp); 3151 if (is_error_noslot_pfn(map->pfn)) 3152 return -EINVAL; 3153 3154 if (pfn_valid(map->pfn)) { 3155 map->page = pfn_to_page(map->pfn); 3156 map->hva = kmap(map->page); 3157 #ifdef CONFIG_HAS_IOMEM 3158 } else { 3159 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB); 3160 #endif 3161 } 3162 3163 return map->hva ? 0 : -EFAULT; 3164 } 3165 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map); 3166 3167 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map) 3168 { 3169 if (!map->hva) 3170 return; 3171 3172 if (map->page) 3173 kunmap(map->page); 3174 #ifdef CONFIG_HAS_IOMEM 3175 else 3176 memunmap(map->hva); 3177 #endif 3178 3179 if (map->writable) 3180 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 3181 3182 if (map->pinned_page) { 3183 if (map->writable) 3184 kvm_set_page_dirty(map->pinned_page); 3185 kvm_set_page_accessed(map->pinned_page); 3186 unpin_user_page(map->pinned_page); 3187 } 3188 3189 map->hva = NULL; 3190 map->page = NULL; 3191 map->pinned_page = NULL; 3192 } 3193 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap); 3194 3195 static int next_segment(unsigned long len, int offset) 3196 { 3197 if (len > PAGE_SIZE - offset) 3198 return PAGE_SIZE - offset; 3199 else 3200 return len; 3201 } 3202 3203 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ 3204 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3205 void *data, int offset, int len) 3206 { 3207 int r; 3208 unsigned long addr; 3209 3210 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3211 return -EFAULT; 3212 3213 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3214 if (kvm_is_error_hva(addr)) 3215 return -EFAULT; 3216 r = __copy_from_user(data, (void __user *)addr + offset, len); 3217 if (r) 3218 return -EFAULT; 3219 return 0; 3220 } 3221 3222 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3223 int len) 3224 { 3225 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3226 3227 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3228 } 3229 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page); 3230 3231 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3232 int offset, int len) 3233 { 3234 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3235 3236 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3237 } 3238 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page); 3239 3240 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3241 { 3242 gfn_t gfn = gpa >> PAGE_SHIFT; 3243 int seg; 3244 int offset = offset_in_page(gpa); 3245 int ret; 3246 3247 while ((seg = next_segment(len, offset)) != 0) { 3248 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3249 if (ret < 0) 3250 return ret; 3251 offset = 0; 3252 len -= seg; 3253 data += seg; 3254 ++gfn; 3255 } 3256 return 0; 3257 } 3258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest); 3259 3260 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3261 { 3262 gfn_t gfn = gpa >> PAGE_SHIFT; 3263 int seg; 3264 int offset = offset_in_page(gpa); 3265 int ret; 3266 3267 while ((seg = next_segment(len, offset)) != 0) { 3268 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3269 if (ret < 0) 3270 return ret; 3271 offset = 0; 3272 len -= seg; 3273 data += seg; 3274 ++gfn; 3275 } 3276 return 0; 3277 } 3278 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest); 3279 3280 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3281 void *data, int offset, unsigned long len) 3282 { 3283 int r; 3284 unsigned long addr; 3285 3286 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3287 return -EFAULT; 3288 3289 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3290 if (kvm_is_error_hva(addr)) 3291 return -EFAULT; 3292 pagefault_disable(); 3293 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3294 pagefault_enable(); 3295 if (r) 3296 return -EFAULT; 3297 return 0; 3298 } 3299 3300 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3301 void *data, unsigned long len) 3302 { 3303 gfn_t gfn = gpa >> PAGE_SHIFT; 3304 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3305 int offset = offset_in_page(gpa); 3306 3307 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3308 } 3309 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic); 3310 3311 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ 3312 static int __kvm_write_guest_page(struct kvm *kvm, 3313 struct kvm_memory_slot *memslot, gfn_t gfn, 3314 const void *data, int offset, int len) 3315 { 3316 int r; 3317 unsigned long addr; 3318 3319 if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) 3320 return -EFAULT; 3321 3322 addr = gfn_to_hva_memslot(memslot, gfn); 3323 if (kvm_is_error_hva(addr)) 3324 return -EFAULT; 3325 r = __copy_to_user((void __user *)addr + offset, data, len); 3326 if (r) 3327 return -EFAULT; 3328 mark_page_dirty_in_slot(kvm, memslot, gfn); 3329 return 0; 3330 } 3331 3332 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3333 const void *data, int offset, int len) 3334 { 3335 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3336 3337 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3338 } 3339 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page); 3340 3341 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3342 const void *data, int offset, int len) 3343 { 3344 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3345 3346 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3347 } 3348 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page); 3349 3350 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3351 unsigned long len) 3352 { 3353 gfn_t gfn = gpa >> PAGE_SHIFT; 3354 int seg; 3355 int offset = offset_in_page(gpa); 3356 int ret; 3357 3358 while ((seg = next_segment(len, offset)) != 0) { 3359 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3360 if (ret < 0) 3361 return ret; 3362 offset = 0; 3363 len -= seg; 3364 data += seg; 3365 ++gfn; 3366 } 3367 return 0; 3368 } 3369 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest); 3370 3371 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3372 unsigned long len) 3373 { 3374 gfn_t gfn = gpa >> PAGE_SHIFT; 3375 int seg; 3376 int offset = offset_in_page(gpa); 3377 int ret; 3378 3379 while ((seg = next_segment(len, offset)) != 0) { 3380 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3381 if (ret < 0) 3382 return ret; 3383 offset = 0; 3384 len -= seg; 3385 data += seg; 3386 ++gfn; 3387 } 3388 return 0; 3389 } 3390 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest); 3391 3392 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3393 struct gfn_to_hva_cache *ghc, 3394 gpa_t gpa, unsigned long len) 3395 { 3396 int offset = offset_in_page(gpa); 3397 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3398 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3399 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3400 gfn_t nr_pages_avail; 3401 3402 /* Update ghc->generation before performing any error checks. */ 3403 ghc->generation = slots->generation; 3404 3405 if (start_gfn > end_gfn) { 3406 ghc->hva = KVM_HVA_ERR_BAD; 3407 return -EINVAL; 3408 } 3409 3410 /* 3411 * If the requested region crosses two memslots, we still 3412 * verify that the entire region is valid here. 3413 */ 3414 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3415 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3416 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3417 &nr_pages_avail); 3418 if (kvm_is_error_hva(ghc->hva)) 3419 return -EFAULT; 3420 } 3421 3422 /* Use the slow path for cross page reads and writes. */ 3423 if (nr_pages_needed == 1) 3424 ghc->hva += offset; 3425 else 3426 ghc->memslot = NULL; 3427 3428 ghc->gpa = gpa; 3429 ghc->len = len; 3430 return 0; 3431 } 3432 3433 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3434 gpa_t gpa, unsigned long len) 3435 { 3436 struct kvm_memslots *slots = kvm_memslots(kvm); 3437 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3438 } 3439 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init); 3440 3441 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3442 void *data, unsigned int offset, 3443 unsigned long len) 3444 { 3445 struct kvm_memslots *slots = kvm_memslots(kvm); 3446 int r; 3447 gpa_t gpa = ghc->gpa + offset; 3448 3449 if (WARN_ON_ONCE(len + offset > ghc->len)) 3450 return -EINVAL; 3451 3452 if (slots->generation != ghc->generation) { 3453 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3454 return -EFAULT; 3455 } 3456 3457 if (kvm_is_error_hva(ghc->hva)) 3458 return -EFAULT; 3459 3460 if (unlikely(!ghc->memslot)) 3461 return kvm_write_guest(kvm, gpa, data, len); 3462 3463 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3464 if (r) 3465 return -EFAULT; 3466 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3467 3468 return 0; 3469 } 3470 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached); 3471 3472 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3473 void *data, unsigned long len) 3474 { 3475 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3476 } 3477 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached); 3478 3479 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3480 void *data, unsigned int offset, 3481 unsigned long len) 3482 { 3483 struct kvm_memslots *slots = kvm_memslots(kvm); 3484 int r; 3485 gpa_t gpa = ghc->gpa + offset; 3486 3487 if (WARN_ON_ONCE(len + offset > ghc->len)) 3488 return -EINVAL; 3489 3490 if (slots->generation != ghc->generation) { 3491 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3492 return -EFAULT; 3493 } 3494 3495 if (kvm_is_error_hva(ghc->hva)) 3496 return -EFAULT; 3497 3498 if (unlikely(!ghc->memslot)) 3499 return kvm_read_guest(kvm, gpa, data, len); 3500 3501 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3502 if (r) 3503 return -EFAULT; 3504 3505 return 0; 3506 } 3507 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached); 3508 3509 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3510 void *data, unsigned long len) 3511 { 3512 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3513 } 3514 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached); 3515 3516 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3517 { 3518 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3519 gfn_t gfn = gpa >> PAGE_SHIFT; 3520 int seg; 3521 int offset = offset_in_page(gpa); 3522 int ret; 3523 3524 while ((seg = next_segment(len, offset)) != 0) { 3525 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); 3526 if (ret < 0) 3527 return ret; 3528 offset = 0; 3529 len -= seg; 3530 ++gfn; 3531 } 3532 return 0; 3533 } 3534 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest); 3535 3536 void mark_page_dirty_in_slot(struct kvm *kvm, 3537 const struct kvm_memory_slot *memslot, 3538 gfn_t gfn) 3539 { 3540 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3541 3542 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3543 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3544 return; 3545 3546 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3547 #endif 3548 3549 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3550 unsigned long rel_gfn = gfn - memslot->base_gfn; 3551 u32 slot = (memslot->as_id << 16) | memslot->id; 3552 3553 if (kvm->dirty_ring_size && vcpu) 3554 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3555 else if (memslot->dirty_bitmap) 3556 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3557 } 3558 } 3559 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot); 3560 3561 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3562 { 3563 struct kvm_memory_slot *memslot; 3564 3565 memslot = gfn_to_memslot(kvm, gfn); 3566 mark_page_dirty_in_slot(kvm, memslot, gfn); 3567 } 3568 EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty); 3569 3570 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3571 { 3572 struct kvm_memory_slot *memslot; 3573 3574 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3575 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3576 } 3577 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty); 3578 3579 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3580 { 3581 if (!vcpu->sigset_active) 3582 return; 3583 3584 /* 3585 * This does a lockless modification of ->real_blocked, which is fine 3586 * because, only current can change ->real_blocked and all readers of 3587 * ->real_blocked don't care as long ->real_blocked is always a subset 3588 * of ->blocked. 3589 */ 3590 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3591 } 3592 3593 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3594 { 3595 if (!vcpu->sigset_active) 3596 return; 3597 3598 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3599 sigemptyset(¤t->real_blocked); 3600 } 3601 3602 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3603 { 3604 unsigned int old, val, grow, grow_start; 3605 3606 old = val = vcpu->halt_poll_ns; 3607 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3608 grow = READ_ONCE(halt_poll_ns_grow); 3609 if (!grow) 3610 goto out; 3611 3612 val *= grow; 3613 if (val < grow_start) 3614 val = grow_start; 3615 3616 vcpu->halt_poll_ns = val; 3617 out: 3618 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3619 } 3620 3621 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3622 { 3623 unsigned int old, val, shrink, grow_start; 3624 3625 old = val = vcpu->halt_poll_ns; 3626 shrink = READ_ONCE(halt_poll_ns_shrink); 3627 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3628 if (shrink == 0) 3629 val = 0; 3630 else 3631 val /= shrink; 3632 3633 if (val < grow_start) 3634 val = 0; 3635 3636 vcpu->halt_poll_ns = val; 3637 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3638 } 3639 3640 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3641 { 3642 int ret = -EINTR; 3643 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3644 3645 if (kvm_arch_vcpu_runnable(vcpu)) 3646 goto out; 3647 if (kvm_cpu_has_pending_timer(vcpu)) 3648 goto out; 3649 if (signal_pending(current)) 3650 goto out; 3651 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3652 goto out; 3653 3654 ret = 0; 3655 out: 3656 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3657 return ret; 3658 } 3659 3660 /* 3661 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3662 * pending. This is mostly used when halting a vCPU, but may also be used 3663 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3664 */ 3665 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3666 { 3667 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3668 bool waited = false; 3669 3670 vcpu->stat.generic.blocking = 1; 3671 3672 preempt_disable(); 3673 kvm_arch_vcpu_blocking(vcpu); 3674 prepare_to_rcuwait(wait); 3675 preempt_enable(); 3676 3677 for (;;) { 3678 set_current_state(TASK_INTERRUPTIBLE); 3679 3680 if (kvm_vcpu_check_block(vcpu) < 0) 3681 break; 3682 3683 waited = true; 3684 schedule(); 3685 } 3686 3687 preempt_disable(); 3688 finish_rcuwait(wait); 3689 kvm_arch_vcpu_unblocking(vcpu); 3690 preempt_enable(); 3691 3692 vcpu->stat.generic.blocking = 0; 3693 3694 return waited; 3695 } 3696 3697 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3698 ktime_t end, bool success) 3699 { 3700 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3701 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3702 3703 ++vcpu->stat.generic.halt_attempted_poll; 3704 3705 if (success) { 3706 ++vcpu->stat.generic.halt_successful_poll; 3707 3708 if (!vcpu_valid_wakeup(vcpu)) 3709 ++vcpu->stat.generic.halt_poll_invalid; 3710 3711 stats->halt_poll_success_ns += poll_ns; 3712 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3713 } else { 3714 stats->halt_poll_fail_ns += poll_ns; 3715 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3716 } 3717 } 3718 3719 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3720 { 3721 struct kvm *kvm = vcpu->kvm; 3722 3723 if (kvm->override_halt_poll_ns) { 3724 /* 3725 * Ensure kvm->max_halt_poll_ns is not read before 3726 * kvm->override_halt_poll_ns. 3727 * 3728 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3729 */ 3730 smp_rmb(); 3731 return READ_ONCE(kvm->max_halt_poll_ns); 3732 } 3733 3734 return READ_ONCE(halt_poll_ns); 3735 } 3736 3737 /* 3738 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3739 * polling is enabled, busy wait for a short time before blocking to avoid the 3740 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3741 * is halted. 3742 */ 3743 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3744 { 3745 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3746 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3747 ktime_t start, cur, poll_end; 3748 bool waited = false; 3749 bool do_halt_poll; 3750 u64 halt_ns; 3751 3752 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3753 vcpu->halt_poll_ns = max_halt_poll_ns; 3754 3755 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3756 3757 start = cur = poll_end = ktime_get(); 3758 if (do_halt_poll) { 3759 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3760 3761 do { 3762 if (kvm_vcpu_check_block(vcpu) < 0) 3763 goto out; 3764 cpu_relax(); 3765 poll_end = cur = ktime_get(); 3766 } while (kvm_vcpu_can_poll(cur, stop)); 3767 } 3768 3769 waited = kvm_vcpu_block(vcpu); 3770 3771 cur = ktime_get(); 3772 if (waited) { 3773 vcpu->stat.generic.halt_wait_ns += 3774 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3775 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3776 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3777 } 3778 out: 3779 /* The total time the vCPU was "halted", including polling time. */ 3780 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3781 3782 /* 3783 * Note, halt-polling is considered successful so long as the vCPU was 3784 * never actually scheduled out, i.e. even if the wake event arrived 3785 * after of the halt-polling loop itself, but before the full wait. 3786 */ 3787 if (do_halt_poll) 3788 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3789 3790 if (halt_poll_allowed) { 3791 /* Recompute the max halt poll time in case it changed. */ 3792 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3793 3794 if (!vcpu_valid_wakeup(vcpu)) { 3795 shrink_halt_poll_ns(vcpu); 3796 } else if (max_halt_poll_ns) { 3797 if (halt_ns <= vcpu->halt_poll_ns) 3798 ; 3799 /* we had a long block, shrink polling */ 3800 else if (vcpu->halt_poll_ns && 3801 halt_ns > max_halt_poll_ns) 3802 shrink_halt_poll_ns(vcpu); 3803 /* we had a short halt and our poll time is too small */ 3804 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3805 halt_ns < max_halt_poll_ns) 3806 grow_halt_poll_ns(vcpu); 3807 } else { 3808 vcpu->halt_poll_ns = 0; 3809 } 3810 } 3811 3812 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3813 } 3814 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt); 3815 3816 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3817 { 3818 if (__kvm_vcpu_wake_up(vcpu)) { 3819 WRITE_ONCE(vcpu->ready, true); 3820 ++vcpu->stat.generic.halt_wakeup; 3821 return true; 3822 } 3823 3824 return false; 3825 } 3826 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up); 3827 3828 #ifndef CONFIG_S390 3829 /* 3830 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3831 */ 3832 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait) 3833 { 3834 int me, cpu; 3835 3836 if (kvm_vcpu_wake_up(vcpu)) 3837 return; 3838 3839 me = get_cpu(); 3840 /* 3841 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3842 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3843 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3844 * within the vCPU thread itself. 3845 */ 3846 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3847 if (vcpu->mode == IN_GUEST_MODE) 3848 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3849 goto out; 3850 } 3851 3852 /* 3853 * Note, the vCPU could get migrated to a different pCPU at any point 3854 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3855 * IPI to the previous pCPU. But, that's ok because the purpose of the 3856 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3857 * vCPU also requires it to leave IN_GUEST_MODE. 3858 */ 3859 if (kvm_arch_vcpu_should_kick(vcpu)) { 3860 cpu = READ_ONCE(vcpu->cpu); 3861 if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) { 3862 /* 3863 * Use a reschedule IPI to kick the vCPU if the caller 3864 * doesn't need to wait for a response, as KVM allows 3865 * kicking vCPUs while IRQs are disabled, but using the 3866 * SMP function call framework with IRQs disabled can 3867 * deadlock due to taking cross-CPU locks. 3868 */ 3869 if (wait) 3870 smp_call_function_single(cpu, ack_kick, NULL, wait); 3871 else 3872 smp_send_reschedule(cpu); 3873 } 3874 } 3875 out: 3876 put_cpu(); 3877 } 3878 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick); 3879 #endif /* !CONFIG_S390 */ 3880 3881 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3882 { 3883 struct task_struct *task = NULL; 3884 int ret; 3885 3886 if (!read_trylock(&target->pid_lock)) 3887 return 0; 3888 3889 if (target->pid) 3890 task = get_pid_task(target->pid, PIDTYPE_PID); 3891 3892 read_unlock(&target->pid_lock); 3893 3894 if (!task) 3895 return 0; 3896 ret = yield_to(task, 1); 3897 put_task_struct(task); 3898 3899 return ret; 3900 } 3901 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to); 3902 3903 /* 3904 * Helper that checks whether a VCPU is eligible for directed yield. 3905 * Most eligible candidate to yield is decided by following heuristics: 3906 * 3907 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3908 * (preempted lock holder), indicated by @in_spin_loop. 3909 * Set at the beginning and cleared at the end of interception/PLE handler. 3910 * 3911 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3912 * chance last time (mostly it has become eligible now since we have probably 3913 * yielded to lockholder in last iteration. This is done by toggling 3914 * @dy_eligible each time a VCPU checked for eligibility.) 3915 * 3916 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3917 * to preempted lock-holder could result in wrong VCPU selection and CPU 3918 * burning. Giving priority for a potential lock-holder increases lock 3919 * progress. 3920 * 3921 * Since algorithm is based on heuristics, accessing another VCPU data without 3922 * locking does not harm. It may result in trying to yield to same VCPU, fail 3923 * and continue with next VCPU and so on. 3924 */ 3925 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3926 { 3927 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3928 bool eligible; 3929 3930 eligible = !vcpu->spin_loop.in_spin_loop || 3931 vcpu->spin_loop.dy_eligible; 3932 3933 if (vcpu->spin_loop.in_spin_loop) 3934 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3935 3936 return eligible; 3937 #else 3938 return true; 3939 #endif 3940 } 3941 3942 /* 3943 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3944 * a vcpu_load/vcpu_put pair. However, for most architectures 3945 * kvm_arch_vcpu_runnable does not require vcpu_load. 3946 */ 3947 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3948 { 3949 return kvm_arch_vcpu_runnable(vcpu); 3950 } 3951 3952 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3953 { 3954 if (kvm_arch_dy_runnable(vcpu)) 3955 return true; 3956 3957 #ifdef CONFIG_KVM_ASYNC_PF 3958 if (!list_empty_careful(&vcpu->async_pf.done)) 3959 return true; 3960 #endif 3961 3962 return false; 3963 } 3964 3965 /* 3966 * By default, simply query the target vCPU's current mode when checking if a 3967 * vCPU was preempted in kernel mode. All architectures except x86 (or more 3968 * specifical, except VMX) allow querying whether or not a vCPU is in kernel 3969 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() 3970 * directly for cross-vCPU checks is functionally correct and accurate. 3971 */ 3972 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 3973 { 3974 return kvm_arch_vcpu_in_kernel(vcpu); 3975 } 3976 3977 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3978 { 3979 return false; 3980 } 3981 3982 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3983 { 3984 int nr_vcpus, start, i, idx, yielded; 3985 struct kvm *kvm = me->kvm; 3986 struct kvm_vcpu *vcpu; 3987 int try = 3; 3988 3989 nr_vcpus = atomic_read(&kvm->online_vcpus); 3990 if (nr_vcpus < 2) 3991 return; 3992 3993 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */ 3994 smp_rmb(); 3995 3996 kvm_vcpu_set_in_spin_loop(me, true); 3997 3998 /* 3999 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely 4000 * waiting for a resource to become available. Attempt to yield to a 4001 * vCPU that is runnable, but not currently running, e.g. because the 4002 * vCPU was preempted by a higher priority task. With luck, the vCPU 4003 * that was preempted is holding a lock or some other resource that the 4004 * current vCPU is waiting to acquire, and yielding to the other vCPU 4005 * will allow it to make forward progress and release the lock (or kick 4006 * the spinning vCPU, etc). 4007 * 4008 * Since KVM has no insight into what exactly the guest is doing, 4009 * approximate a round-robin selection by iterating over all vCPUs, 4010 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu, 4011 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed. 4012 * 4013 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning, 4014 * they may all try to yield to the same vCPU(s). But as above, this 4015 * is all best effort due to KVM's lack of visibility into the guest. 4016 */ 4017 start = READ_ONCE(kvm->last_boosted_vcpu) + 1; 4018 for (i = 0; i < nr_vcpus; i++) { 4019 idx = (start + i) % nr_vcpus; 4020 if (idx == me->vcpu_idx) 4021 continue; 4022 4023 vcpu = xa_load(&kvm->vcpu_array, idx); 4024 if (!READ_ONCE(vcpu->ready)) 4025 continue; 4026 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 4027 continue; 4028 4029 /* 4030 * Treat the target vCPU as being in-kernel if it has a pending 4031 * interrupt, as the vCPU trying to yield may be spinning 4032 * waiting on IPI delivery, i.e. the target vCPU is in-kernel 4033 * for the purposes of directed yield. 4034 */ 4035 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 4036 !kvm_arch_dy_has_pending_interrupt(vcpu) && 4037 !kvm_arch_vcpu_preempted_in_kernel(vcpu)) 4038 continue; 4039 4040 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 4041 continue; 4042 4043 yielded = kvm_vcpu_yield_to(vcpu); 4044 if (yielded > 0) { 4045 WRITE_ONCE(kvm->last_boosted_vcpu, idx); 4046 break; 4047 } else if (yielded < 0 && !--try) { 4048 break; 4049 } 4050 } 4051 kvm_vcpu_set_in_spin_loop(me, false); 4052 4053 /* Ensure vcpu is not eligible during next spinloop */ 4054 kvm_vcpu_set_dy_eligible(me, false); 4055 } 4056 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin); 4057 4058 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 4059 { 4060 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4061 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 4062 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 4063 kvm->dirty_ring_size / PAGE_SIZE); 4064 #else 4065 return false; 4066 #endif 4067 } 4068 4069 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 4070 { 4071 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 4072 struct page *page; 4073 4074 if (vmf->pgoff == 0) 4075 page = virt_to_page(vcpu->run); 4076 #ifdef CONFIG_X86 4077 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 4078 page = virt_to_page(vcpu->arch.pio_data); 4079 #endif 4080 #ifdef CONFIG_KVM_MMIO 4081 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 4082 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 4083 #endif 4084 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 4085 page = kvm_dirty_ring_get_page( 4086 &vcpu->dirty_ring, 4087 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 4088 else 4089 return kvm_arch_vcpu_fault(vcpu, vmf); 4090 get_page(page); 4091 vmf->page = page; 4092 return 0; 4093 } 4094 4095 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 4096 .fault = kvm_vcpu_fault, 4097 }; 4098 4099 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 4100 { 4101 struct kvm_vcpu *vcpu = file->private_data; 4102 unsigned long pages = vma_pages(vma); 4103 4104 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 4105 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 4106 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 4107 return -EINVAL; 4108 4109 vma->vm_ops = &kvm_vcpu_vm_ops; 4110 return 0; 4111 } 4112 4113 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 4114 { 4115 struct kvm_vcpu *vcpu = filp->private_data; 4116 4117 kvm_put_kvm(vcpu->kvm); 4118 return 0; 4119 } 4120 4121 static struct file_operations kvm_vcpu_fops = { 4122 .release = kvm_vcpu_release, 4123 .unlocked_ioctl = kvm_vcpu_ioctl, 4124 .mmap = kvm_vcpu_mmap, 4125 .llseek = noop_llseek, 4126 KVM_COMPAT(kvm_vcpu_compat_ioctl), 4127 }; 4128 4129 /* 4130 * Allocates an inode for the vcpu. 4131 */ 4132 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 4133 { 4134 char name[8 + 1 + ITOA_MAX_LEN + 1]; 4135 4136 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 4137 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 4138 } 4139 4140 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 4141 static int vcpu_get_pid(void *data, u64 *val) 4142 { 4143 struct kvm_vcpu *vcpu = data; 4144 4145 read_lock(&vcpu->pid_lock); 4146 *val = pid_nr(vcpu->pid); 4147 read_unlock(&vcpu->pid_lock); 4148 return 0; 4149 } 4150 4151 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 4152 4153 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 4154 { 4155 struct dentry *debugfs_dentry; 4156 char dir_name[ITOA_MAX_LEN * 2]; 4157 4158 if (!debugfs_initialized()) 4159 return; 4160 4161 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 4162 debugfs_dentry = debugfs_create_dir(dir_name, 4163 vcpu->kvm->debugfs_dentry); 4164 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 4165 &vcpu_get_pid_fops); 4166 4167 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 4168 } 4169 #endif 4170 4171 /* 4172 * Creates some virtual cpus. Good luck creating more than one. 4173 */ 4174 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) 4175 { 4176 int r; 4177 struct kvm_vcpu *vcpu; 4178 struct page *page; 4179 4180 /* 4181 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject 4182 * too-large values instead of silently truncating. 4183 * 4184 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first 4185 * changing the storage type (at the very least, IDs should be tracked 4186 * as unsigned ints). 4187 */ 4188 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); 4189 if (id >= KVM_MAX_VCPU_IDS) 4190 return -EINVAL; 4191 4192 mutex_lock(&kvm->lock); 4193 if (kvm->created_vcpus >= kvm->max_vcpus) { 4194 mutex_unlock(&kvm->lock); 4195 return -EINVAL; 4196 } 4197 4198 r = kvm_arch_vcpu_precreate(kvm, id); 4199 if (r) { 4200 mutex_unlock(&kvm->lock); 4201 return r; 4202 } 4203 4204 kvm->created_vcpus++; 4205 mutex_unlock(&kvm->lock); 4206 4207 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 4208 if (!vcpu) { 4209 r = -ENOMEM; 4210 goto vcpu_decrement; 4211 } 4212 4213 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 4214 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 4215 if (!page) { 4216 r = -ENOMEM; 4217 goto vcpu_free; 4218 } 4219 vcpu->run = page_address(page); 4220 4221 kvm_vcpu_init(vcpu, kvm, id); 4222 4223 r = kvm_arch_vcpu_create(vcpu); 4224 if (r) 4225 goto vcpu_free_run_page; 4226 4227 if (kvm->dirty_ring_size) { 4228 r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring, 4229 id, kvm->dirty_ring_size); 4230 if (r) 4231 goto arch_vcpu_destroy; 4232 } 4233 4234 mutex_lock(&kvm->lock); 4235 4236 if (kvm_get_vcpu_by_id(kvm, id)) { 4237 r = -EEXIST; 4238 goto unlock_vcpu_destroy; 4239 } 4240 4241 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 4242 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 4243 WARN_ON_ONCE(r == -EBUSY); 4244 if (r) 4245 goto unlock_vcpu_destroy; 4246 4247 /* 4248 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex 4249 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully 4250 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked 4251 * into a NULL-pointer dereference because KVM thinks the _current_ 4252 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep 4253 * knows it's taken *inside* kvm->lock. 4254 */ 4255 mutex_lock(&vcpu->mutex); 4256 kvm_get_kvm(kvm); 4257 r = create_vcpu_fd(vcpu); 4258 if (r < 0) 4259 goto kvm_put_xa_erase; 4260 4261 /* 4262 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 4263 * pointer before kvm->online_vcpu's incremented value. 4264 */ 4265 smp_wmb(); 4266 atomic_inc(&kvm->online_vcpus); 4267 mutex_unlock(&vcpu->mutex); 4268 4269 mutex_unlock(&kvm->lock); 4270 kvm_arch_vcpu_postcreate(vcpu); 4271 kvm_create_vcpu_debugfs(vcpu); 4272 return r; 4273 4274 kvm_put_xa_erase: 4275 mutex_unlock(&vcpu->mutex); 4276 kvm_put_kvm_no_destroy(kvm); 4277 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 4278 unlock_vcpu_destroy: 4279 mutex_unlock(&kvm->lock); 4280 kvm_dirty_ring_free(&vcpu->dirty_ring); 4281 arch_vcpu_destroy: 4282 kvm_arch_vcpu_destroy(vcpu); 4283 vcpu_free_run_page: 4284 free_page((unsigned long)vcpu->run); 4285 vcpu_free: 4286 kmem_cache_free(kvm_vcpu_cache, vcpu); 4287 vcpu_decrement: 4288 mutex_lock(&kvm->lock); 4289 kvm->created_vcpus--; 4290 mutex_unlock(&kvm->lock); 4291 return r; 4292 } 4293 4294 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4295 { 4296 if (sigset) { 4297 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4298 vcpu->sigset_active = 1; 4299 vcpu->sigset = *sigset; 4300 } else 4301 vcpu->sigset_active = 0; 4302 return 0; 4303 } 4304 4305 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4306 size_t size, loff_t *offset) 4307 { 4308 struct kvm_vcpu *vcpu = file->private_data; 4309 4310 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4311 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4312 sizeof(vcpu->stat), user_buffer, size, offset); 4313 } 4314 4315 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4316 { 4317 struct kvm_vcpu *vcpu = file->private_data; 4318 4319 kvm_put_kvm(vcpu->kvm); 4320 return 0; 4321 } 4322 4323 static const struct file_operations kvm_vcpu_stats_fops = { 4324 .owner = THIS_MODULE, 4325 .read = kvm_vcpu_stats_read, 4326 .release = kvm_vcpu_stats_release, 4327 .llseek = noop_llseek, 4328 }; 4329 4330 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4331 { 4332 int fd; 4333 struct file *file; 4334 char name[15 + ITOA_MAX_LEN + 1]; 4335 4336 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4337 4338 fd = get_unused_fd_flags(O_CLOEXEC); 4339 if (fd < 0) 4340 return fd; 4341 4342 file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu, 4343 O_RDONLY, FMODE_PREAD); 4344 if (IS_ERR(file)) { 4345 put_unused_fd(fd); 4346 return PTR_ERR(file); 4347 } 4348 4349 kvm_get_kvm(vcpu->kvm); 4350 fd_install(fd, file); 4351 4352 return fd; 4353 } 4354 4355 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4356 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4357 struct kvm_pre_fault_memory *range) 4358 { 4359 int idx; 4360 long r; 4361 u64 full_size; 4362 4363 if (range->flags) 4364 return -EINVAL; 4365 4366 if (!PAGE_ALIGNED(range->gpa) || 4367 !PAGE_ALIGNED(range->size) || 4368 range->gpa + range->size <= range->gpa) 4369 return -EINVAL; 4370 4371 vcpu_load(vcpu); 4372 idx = srcu_read_lock(&vcpu->kvm->srcu); 4373 4374 full_size = range->size; 4375 do { 4376 if (signal_pending(current)) { 4377 r = -EINTR; 4378 break; 4379 } 4380 4381 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); 4382 if (WARN_ON_ONCE(r == 0 || r == -EIO)) 4383 break; 4384 4385 if (r < 0) 4386 break; 4387 4388 range->size -= r; 4389 range->gpa += r; 4390 cond_resched(); 4391 } while (range->size); 4392 4393 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4394 vcpu_put(vcpu); 4395 4396 /* Return success if at least one page was mapped successfully. */ 4397 return full_size == range->size ? r : 0; 4398 } 4399 #endif 4400 4401 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu) 4402 { 4403 struct kvm *kvm = vcpu->kvm; 4404 4405 /* 4406 * In practice, this happy path will always be taken, as a well-behaved 4407 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns. 4408 */ 4409 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus))) 4410 return 0; 4411 4412 /* 4413 * Acquire and release the vCPU's mutex to wait for vCPU creation to 4414 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU 4415 * is fully online). 4416 */ 4417 if (mutex_lock_killable(&vcpu->mutex)) 4418 return -EINTR; 4419 4420 mutex_unlock(&vcpu->mutex); 4421 4422 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx))) 4423 return -EIO; 4424 4425 return 0; 4426 } 4427 4428 static long kvm_vcpu_ioctl(struct file *filp, 4429 unsigned int ioctl, unsigned long arg) 4430 { 4431 struct kvm_vcpu *vcpu = filp->private_data; 4432 void __user *argp = (void __user *)arg; 4433 int r; 4434 struct kvm_fpu *fpu = NULL; 4435 struct kvm_sregs *kvm_sregs = NULL; 4436 4437 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4438 return -EIO; 4439 4440 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4441 return -EINVAL; 4442 4443 /* 4444 * Wait for the vCPU to be online before handling the ioctl(), as KVM 4445 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference 4446 * a NULL pointer if userspace invokes an ioctl() before KVM is ready. 4447 */ 4448 r = kvm_wait_for_vcpu_online(vcpu); 4449 if (r) 4450 return r; 4451 4452 /* 4453 * Let arch code handle select vCPU ioctls without holding vcpu->mutex, 4454 * e.g. to support ioctls that can run asynchronous to vCPU execution. 4455 */ 4456 r = kvm_arch_vcpu_unlocked_ioctl(filp, ioctl, arg); 4457 if (r != -ENOIOCTLCMD) 4458 return r; 4459 4460 if (mutex_lock_killable(&vcpu->mutex)) 4461 return -EINTR; 4462 switch (ioctl) { 4463 case KVM_RUN: { 4464 struct pid *oldpid; 4465 r = -EINVAL; 4466 if (arg) 4467 goto out; 4468 4469 /* 4470 * Note, vcpu->pid is primarily protected by vcpu->mutex. The 4471 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to 4472 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield 4473 * directly to this vCPU 4474 */ 4475 oldpid = vcpu->pid; 4476 if (unlikely(oldpid != task_pid(current))) { 4477 /* The thread running this VCPU changed. */ 4478 struct pid *newpid; 4479 4480 r = kvm_arch_vcpu_run_pid_change(vcpu); 4481 if (r) 4482 break; 4483 4484 newpid = get_task_pid(current, PIDTYPE_PID); 4485 write_lock(&vcpu->pid_lock); 4486 vcpu->pid = newpid; 4487 write_unlock(&vcpu->pid_lock); 4488 4489 put_pid(oldpid); 4490 } 4491 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); 4492 r = kvm_arch_vcpu_ioctl_run(vcpu); 4493 vcpu->wants_to_run = false; 4494 4495 /* 4496 * FIXME: Remove this hack once all KVM architectures 4497 * support the generic TIF bits, i.e. a dedicated TIF_RSEQ. 4498 */ 4499 rseq_virt_userspace_exit(); 4500 4501 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4502 break; 4503 } 4504 case KVM_GET_REGS: { 4505 struct kvm_regs *kvm_regs; 4506 4507 r = -ENOMEM; 4508 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 4509 if (!kvm_regs) 4510 goto out; 4511 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4512 if (r) 4513 goto out_free1; 4514 r = -EFAULT; 4515 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4516 goto out_free1; 4517 r = 0; 4518 out_free1: 4519 kfree(kvm_regs); 4520 break; 4521 } 4522 case KVM_SET_REGS: { 4523 struct kvm_regs *kvm_regs; 4524 4525 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4526 if (IS_ERR(kvm_regs)) { 4527 r = PTR_ERR(kvm_regs); 4528 goto out; 4529 } 4530 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4531 kfree(kvm_regs); 4532 break; 4533 } 4534 case KVM_GET_SREGS: { 4535 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 4536 r = -ENOMEM; 4537 if (!kvm_sregs) 4538 goto out; 4539 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4540 if (r) 4541 goto out; 4542 r = -EFAULT; 4543 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4544 goto out; 4545 r = 0; 4546 break; 4547 } 4548 case KVM_SET_SREGS: { 4549 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4550 if (IS_ERR(kvm_sregs)) { 4551 r = PTR_ERR(kvm_sregs); 4552 kvm_sregs = NULL; 4553 goto out; 4554 } 4555 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4556 break; 4557 } 4558 case KVM_GET_MP_STATE: { 4559 struct kvm_mp_state mp_state; 4560 4561 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4562 if (r) 4563 goto out; 4564 r = -EFAULT; 4565 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4566 goto out; 4567 r = 0; 4568 break; 4569 } 4570 case KVM_SET_MP_STATE: { 4571 struct kvm_mp_state mp_state; 4572 4573 r = -EFAULT; 4574 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4575 goto out; 4576 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4577 break; 4578 } 4579 case KVM_TRANSLATE: { 4580 struct kvm_translation tr; 4581 4582 r = -EFAULT; 4583 if (copy_from_user(&tr, argp, sizeof(tr))) 4584 goto out; 4585 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4586 if (r) 4587 goto out; 4588 r = -EFAULT; 4589 if (copy_to_user(argp, &tr, sizeof(tr))) 4590 goto out; 4591 r = 0; 4592 break; 4593 } 4594 case KVM_SET_GUEST_DEBUG: { 4595 struct kvm_guest_debug dbg; 4596 4597 r = -EFAULT; 4598 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4599 goto out; 4600 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4601 break; 4602 } 4603 case KVM_SET_SIGNAL_MASK: { 4604 struct kvm_signal_mask __user *sigmask_arg = argp; 4605 struct kvm_signal_mask kvm_sigmask; 4606 sigset_t sigset, *p; 4607 4608 p = NULL; 4609 if (argp) { 4610 r = -EFAULT; 4611 if (copy_from_user(&kvm_sigmask, argp, 4612 sizeof(kvm_sigmask))) 4613 goto out; 4614 r = -EINVAL; 4615 if (kvm_sigmask.len != sizeof(sigset)) 4616 goto out; 4617 r = -EFAULT; 4618 if (copy_from_user(&sigset, sigmask_arg->sigset, 4619 sizeof(sigset))) 4620 goto out; 4621 p = &sigset; 4622 } 4623 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4624 break; 4625 } 4626 case KVM_GET_FPU: { 4627 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 4628 r = -ENOMEM; 4629 if (!fpu) 4630 goto out; 4631 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4632 if (r) 4633 goto out; 4634 r = -EFAULT; 4635 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4636 goto out; 4637 r = 0; 4638 break; 4639 } 4640 case KVM_SET_FPU: { 4641 fpu = memdup_user(argp, sizeof(*fpu)); 4642 if (IS_ERR(fpu)) { 4643 r = PTR_ERR(fpu); 4644 fpu = NULL; 4645 goto out; 4646 } 4647 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4648 break; 4649 } 4650 case KVM_GET_STATS_FD: { 4651 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4652 break; 4653 } 4654 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 4655 case KVM_PRE_FAULT_MEMORY: { 4656 struct kvm_pre_fault_memory range; 4657 4658 r = -EFAULT; 4659 if (copy_from_user(&range, argp, sizeof(range))) 4660 break; 4661 r = kvm_vcpu_pre_fault_memory(vcpu, &range); 4662 /* Pass back leftover range. */ 4663 if (copy_to_user(argp, &range, sizeof(range))) 4664 r = -EFAULT; 4665 break; 4666 } 4667 #endif 4668 default: 4669 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4670 } 4671 out: 4672 mutex_unlock(&vcpu->mutex); 4673 kfree(fpu); 4674 kfree(kvm_sregs); 4675 return r; 4676 } 4677 4678 #ifdef CONFIG_KVM_COMPAT 4679 static long kvm_vcpu_compat_ioctl(struct file *filp, 4680 unsigned int ioctl, unsigned long arg) 4681 { 4682 struct kvm_vcpu *vcpu = filp->private_data; 4683 void __user *argp = compat_ptr(arg); 4684 int r; 4685 4686 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4687 return -EIO; 4688 4689 switch (ioctl) { 4690 case KVM_SET_SIGNAL_MASK: { 4691 struct kvm_signal_mask __user *sigmask_arg = argp; 4692 struct kvm_signal_mask kvm_sigmask; 4693 sigset_t sigset; 4694 4695 if (argp) { 4696 r = -EFAULT; 4697 if (copy_from_user(&kvm_sigmask, argp, 4698 sizeof(kvm_sigmask))) 4699 goto out; 4700 r = -EINVAL; 4701 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4702 goto out; 4703 r = -EFAULT; 4704 if (get_compat_sigset(&sigset, 4705 (compat_sigset_t __user *)sigmask_arg->sigset)) 4706 goto out; 4707 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4708 } else 4709 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4710 break; 4711 } 4712 default: 4713 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4714 } 4715 4716 out: 4717 return r; 4718 } 4719 #endif 4720 4721 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4722 { 4723 struct kvm_device *dev = filp->private_data; 4724 4725 if (dev->ops->mmap) 4726 return dev->ops->mmap(dev, vma); 4727 4728 return -ENODEV; 4729 } 4730 4731 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4732 int (*accessor)(struct kvm_device *dev, 4733 struct kvm_device_attr *attr), 4734 unsigned long arg) 4735 { 4736 struct kvm_device_attr attr; 4737 4738 if (!accessor) 4739 return -EPERM; 4740 4741 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4742 return -EFAULT; 4743 4744 return accessor(dev, &attr); 4745 } 4746 4747 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4748 unsigned long arg) 4749 { 4750 struct kvm_device *dev = filp->private_data; 4751 4752 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4753 return -EIO; 4754 4755 switch (ioctl) { 4756 case KVM_SET_DEVICE_ATTR: 4757 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4758 case KVM_GET_DEVICE_ATTR: 4759 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4760 case KVM_HAS_DEVICE_ATTR: 4761 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4762 default: 4763 if (dev->ops->ioctl) 4764 return dev->ops->ioctl(dev, ioctl, arg); 4765 4766 return -ENOTTY; 4767 } 4768 } 4769 4770 static int kvm_device_release(struct inode *inode, struct file *filp) 4771 { 4772 struct kvm_device *dev = filp->private_data; 4773 struct kvm *kvm = dev->kvm; 4774 4775 if (dev->ops->release) { 4776 mutex_lock(&kvm->lock); 4777 list_del_rcu(&dev->vm_node); 4778 synchronize_rcu(); 4779 dev->ops->release(dev); 4780 mutex_unlock(&kvm->lock); 4781 } 4782 4783 kvm_put_kvm(kvm); 4784 return 0; 4785 } 4786 4787 static struct file_operations kvm_device_fops = { 4788 .unlocked_ioctl = kvm_device_ioctl, 4789 .release = kvm_device_release, 4790 KVM_COMPAT(kvm_device_ioctl), 4791 .mmap = kvm_device_mmap, 4792 }; 4793 4794 struct kvm_device *kvm_device_from_filp(struct file *filp) 4795 { 4796 if (filp->f_op != &kvm_device_fops) 4797 return NULL; 4798 4799 return filp->private_data; 4800 } 4801 4802 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4803 #ifdef CONFIG_KVM_MPIC 4804 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4805 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4806 #endif 4807 }; 4808 4809 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4810 { 4811 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4812 return -ENOSPC; 4813 4814 if (kvm_device_ops_table[type] != NULL) 4815 return -EEXIST; 4816 4817 kvm_device_ops_table[type] = ops; 4818 return 0; 4819 } 4820 4821 void kvm_unregister_device_ops(u32 type) 4822 { 4823 if (kvm_device_ops_table[type] != NULL) 4824 kvm_device_ops_table[type] = NULL; 4825 } 4826 4827 static int kvm_ioctl_create_device(struct kvm *kvm, 4828 struct kvm_create_device *cd) 4829 { 4830 const struct kvm_device_ops *ops; 4831 struct kvm_device *dev; 4832 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4833 int type; 4834 int ret; 4835 4836 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4837 return -ENODEV; 4838 4839 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4840 ops = kvm_device_ops_table[type]; 4841 if (ops == NULL) 4842 return -ENODEV; 4843 4844 if (test) 4845 return 0; 4846 4847 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4848 if (!dev) 4849 return -ENOMEM; 4850 4851 dev->ops = ops; 4852 dev->kvm = kvm; 4853 4854 mutex_lock(&kvm->lock); 4855 ret = ops->create(dev, type); 4856 if (ret < 0) { 4857 mutex_unlock(&kvm->lock); 4858 kfree(dev); 4859 return ret; 4860 } 4861 list_add_rcu(&dev->vm_node, &kvm->devices); 4862 mutex_unlock(&kvm->lock); 4863 4864 if (ops->init) 4865 ops->init(dev); 4866 4867 kvm_get_kvm(kvm); 4868 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4869 if (ret < 0) { 4870 kvm_put_kvm_no_destroy(kvm); 4871 mutex_lock(&kvm->lock); 4872 list_del_rcu(&dev->vm_node); 4873 synchronize_rcu(); 4874 if (ops->release) 4875 ops->release(dev); 4876 mutex_unlock(&kvm->lock); 4877 if (ops->destroy) 4878 ops->destroy(dev); 4879 return ret; 4880 } 4881 4882 cd->fd = ret; 4883 return 0; 4884 } 4885 4886 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4887 { 4888 switch (arg) { 4889 case KVM_CAP_USER_MEMORY: 4890 case KVM_CAP_USER_MEMORY2: 4891 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4892 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4893 case KVM_CAP_INTERNAL_ERROR_DATA: 4894 #ifdef CONFIG_HAVE_KVM_MSI 4895 case KVM_CAP_SIGNAL_MSI: 4896 #endif 4897 #ifdef CONFIG_HAVE_KVM_IRQCHIP 4898 case KVM_CAP_IRQFD: 4899 #endif 4900 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4901 case KVM_CAP_CHECK_EXTENSION_VM: 4902 case KVM_CAP_ENABLE_CAP_VM: 4903 case KVM_CAP_HALT_POLL: 4904 return 1; 4905 #ifdef CONFIG_KVM_MMIO 4906 case KVM_CAP_COALESCED_MMIO: 4907 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4908 case KVM_CAP_COALESCED_PIO: 4909 return 1; 4910 #endif 4911 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4912 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4913 return KVM_DIRTY_LOG_MANUAL_CAPS; 4914 #endif 4915 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4916 case KVM_CAP_IRQ_ROUTING: 4917 return KVM_MAX_IRQ_ROUTES; 4918 #endif 4919 #if KVM_MAX_NR_ADDRESS_SPACES > 1 4920 case KVM_CAP_MULTI_ADDRESS_SPACE: 4921 if (kvm) 4922 return kvm_arch_nr_memslot_as_ids(kvm); 4923 return KVM_MAX_NR_ADDRESS_SPACES; 4924 #endif 4925 case KVM_CAP_NR_MEMSLOTS: 4926 return KVM_USER_MEM_SLOTS; 4927 case KVM_CAP_DIRTY_LOG_RING: 4928 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4929 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4930 #else 4931 return 0; 4932 #endif 4933 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4934 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4935 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4936 #else 4937 return 0; 4938 #endif 4939 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4940 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4941 #endif 4942 case KVM_CAP_BINARY_STATS_FD: 4943 case KVM_CAP_SYSTEM_EVENT_DATA: 4944 case KVM_CAP_DEVICE_CTRL: 4945 return 1; 4946 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 4947 case KVM_CAP_MEMORY_ATTRIBUTES: 4948 return kvm_supported_mem_attributes(kvm); 4949 #endif 4950 #ifdef CONFIG_KVM_GUEST_MEMFD 4951 case KVM_CAP_GUEST_MEMFD: 4952 return 1; 4953 case KVM_CAP_GUEST_MEMFD_FLAGS: 4954 return kvm_gmem_get_supported_flags(kvm); 4955 #endif 4956 default: 4957 break; 4958 } 4959 return kvm_vm_ioctl_check_extension(kvm, arg); 4960 } 4961 4962 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4963 { 4964 int r; 4965 4966 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4967 return -EINVAL; 4968 4969 /* the size should be power of 2 */ 4970 if (!size || (size & (size - 1))) 4971 return -EINVAL; 4972 4973 /* Should be bigger to keep the reserved entries, or a page */ 4974 if (size < kvm_dirty_ring_get_rsvd_entries(kvm) * 4975 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4976 return -EINVAL; 4977 4978 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4979 sizeof(struct kvm_dirty_gfn)) 4980 return -E2BIG; 4981 4982 /* We only allow it to set once */ 4983 if (kvm->dirty_ring_size) 4984 return -EINVAL; 4985 4986 mutex_lock(&kvm->lock); 4987 4988 if (kvm->created_vcpus) { 4989 /* We don't allow to change this value after vcpu created */ 4990 r = -EINVAL; 4991 } else { 4992 kvm->dirty_ring_size = size; 4993 r = 0; 4994 } 4995 4996 mutex_unlock(&kvm->lock); 4997 return r; 4998 } 4999 5000 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 5001 { 5002 unsigned long i; 5003 struct kvm_vcpu *vcpu; 5004 int cleared = 0, r; 5005 5006 if (!kvm->dirty_ring_size) 5007 return -EINVAL; 5008 5009 mutex_lock(&kvm->slots_lock); 5010 5011 kvm_for_each_vcpu(i, vcpu, kvm) { 5012 r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared); 5013 if (r) 5014 break; 5015 } 5016 5017 mutex_unlock(&kvm->slots_lock); 5018 5019 if (cleared) 5020 kvm_flush_remote_tlbs(kvm); 5021 5022 return cleared; 5023 } 5024 5025 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5026 struct kvm_enable_cap *cap) 5027 { 5028 return -EINVAL; 5029 } 5030 5031 bool kvm_are_all_memslots_empty(struct kvm *kvm) 5032 { 5033 int i; 5034 5035 lockdep_assert_held(&kvm->slots_lock); 5036 5037 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 5038 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 5039 return false; 5040 } 5041 5042 return true; 5043 } 5044 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty); 5045 5046 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 5047 struct kvm_enable_cap *cap) 5048 { 5049 switch (cap->cap) { 5050 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5051 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 5052 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 5053 5054 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 5055 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 5056 5057 if (cap->flags || (cap->args[0] & ~allowed_options)) 5058 return -EINVAL; 5059 kvm->manual_dirty_log_protect = cap->args[0]; 5060 return 0; 5061 } 5062 #endif 5063 case KVM_CAP_HALT_POLL: { 5064 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 5065 return -EINVAL; 5066 5067 kvm->max_halt_poll_ns = cap->args[0]; 5068 5069 /* 5070 * Ensure kvm->override_halt_poll_ns does not become visible 5071 * before kvm->max_halt_poll_ns. 5072 * 5073 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 5074 */ 5075 smp_wmb(); 5076 kvm->override_halt_poll_ns = true; 5077 5078 return 0; 5079 } 5080 case KVM_CAP_DIRTY_LOG_RING: 5081 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 5082 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 5083 return -EINVAL; 5084 5085 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 5086 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 5087 int r = -EINVAL; 5088 5089 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 5090 !kvm->dirty_ring_size || cap->flags) 5091 return r; 5092 5093 mutex_lock(&kvm->slots_lock); 5094 5095 /* 5096 * For simplicity, allow enabling ring+bitmap if and only if 5097 * there are no memslots, e.g. to ensure all memslots allocate 5098 * a bitmap after the capability is enabled. 5099 */ 5100 if (kvm_are_all_memslots_empty(kvm)) { 5101 kvm->dirty_ring_with_bitmap = true; 5102 r = 0; 5103 } 5104 5105 mutex_unlock(&kvm->slots_lock); 5106 5107 return r; 5108 } 5109 default: 5110 return kvm_vm_ioctl_enable_cap(kvm, cap); 5111 } 5112 } 5113 5114 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 5115 size_t size, loff_t *offset) 5116 { 5117 struct kvm *kvm = file->private_data; 5118 5119 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 5120 &kvm_vm_stats_desc[0], &kvm->stat, 5121 sizeof(kvm->stat), user_buffer, size, offset); 5122 } 5123 5124 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 5125 { 5126 struct kvm *kvm = file->private_data; 5127 5128 kvm_put_kvm(kvm); 5129 return 0; 5130 } 5131 5132 static const struct file_operations kvm_vm_stats_fops = { 5133 .owner = THIS_MODULE, 5134 .read = kvm_vm_stats_read, 5135 .release = kvm_vm_stats_release, 5136 .llseek = noop_llseek, 5137 }; 5138 5139 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 5140 { 5141 int fd; 5142 struct file *file; 5143 5144 fd = get_unused_fd_flags(O_CLOEXEC); 5145 if (fd < 0) 5146 return fd; 5147 5148 file = anon_inode_getfile_fmode("kvm-vm-stats", 5149 &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD); 5150 if (IS_ERR(file)) { 5151 put_unused_fd(fd); 5152 return PTR_ERR(file); 5153 } 5154 5155 kvm_get_kvm(kvm); 5156 fd_install(fd, file); 5157 5158 return fd; 5159 } 5160 5161 #define SANITY_CHECK_MEM_REGION_FIELD(field) \ 5162 do { \ 5163 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ 5164 offsetof(struct kvm_userspace_memory_region2, field)); \ 5165 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ 5166 sizeof_field(struct kvm_userspace_memory_region2, field)); \ 5167 } while (0) 5168 5169 static long kvm_vm_ioctl(struct file *filp, 5170 unsigned int ioctl, unsigned long arg) 5171 { 5172 struct kvm *kvm = filp->private_data; 5173 void __user *argp = (void __user *)arg; 5174 int r; 5175 5176 if (kvm->mm != current->mm || kvm->vm_dead) 5177 return -EIO; 5178 switch (ioctl) { 5179 case KVM_CREATE_VCPU: 5180 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 5181 break; 5182 case KVM_ENABLE_CAP: { 5183 struct kvm_enable_cap cap; 5184 5185 r = -EFAULT; 5186 if (copy_from_user(&cap, argp, sizeof(cap))) 5187 goto out; 5188 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 5189 break; 5190 } 5191 case KVM_SET_USER_MEMORY_REGION2: 5192 case KVM_SET_USER_MEMORY_REGION: { 5193 struct kvm_userspace_memory_region2 mem; 5194 unsigned long size; 5195 5196 if (ioctl == KVM_SET_USER_MEMORY_REGION) { 5197 /* 5198 * Fields beyond struct kvm_userspace_memory_region shouldn't be 5199 * accessed, but avoid leaking kernel memory in case of a bug. 5200 */ 5201 memset(&mem, 0, sizeof(mem)); 5202 size = sizeof(struct kvm_userspace_memory_region); 5203 } else { 5204 size = sizeof(struct kvm_userspace_memory_region2); 5205 } 5206 5207 /* Ensure the common parts of the two structs are identical. */ 5208 SANITY_CHECK_MEM_REGION_FIELD(slot); 5209 SANITY_CHECK_MEM_REGION_FIELD(flags); 5210 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); 5211 SANITY_CHECK_MEM_REGION_FIELD(memory_size); 5212 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); 5213 5214 r = -EFAULT; 5215 if (copy_from_user(&mem, argp, size)) 5216 goto out; 5217 5218 r = -EINVAL; 5219 if (ioctl == KVM_SET_USER_MEMORY_REGION && 5220 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) 5221 goto out; 5222 5223 r = kvm_vm_ioctl_set_memory_region(kvm, &mem); 5224 break; 5225 } 5226 case KVM_GET_DIRTY_LOG: { 5227 struct kvm_dirty_log log; 5228 5229 r = -EFAULT; 5230 if (copy_from_user(&log, argp, sizeof(log))) 5231 goto out; 5232 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5233 break; 5234 } 5235 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5236 case KVM_CLEAR_DIRTY_LOG: { 5237 struct kvm_clear_dirty_log log; 5238 5239 r = -EFAULT; 5240 if (copy_from_user(&log, argp, sizeof(log))) 5241 goto out; 5242 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5243 break; 5244 } 5245 #endif 5246 #ifdef CONFIG_KVM_MMIO 5247 case KVM_REGISTER_COALESCED_MMIO: { 5248 struct kvm_coalesced_mmio_zone zone; 5249 5250 r = -EFAULT; 5251 if (copy_from_user(&zone, argp, sizeof(zone))) 5252 goto out; 5253 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 5254 break; 5255 } 5256 case KVM_UNREGISTER_COALESCED_MMIO: { 5257 struct kvm_coalesced_mmio_zone zone; 5258 5259 r = -EFAULT; 5260 if (copy_from_user(&zone, argp, sizeof(zone))) 5261 goto out; 5262 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 5263 break; 5264 } 5265 #endif 5266 case KVM_IRQFD: { 5267 struct kvm_irqfd data; 5268 5269 r = -EFAULT; 5270 if (copy_from_user(&data, argp, sizeof(data))) 5271 goto out; 5272 r = kvm_irqfd(kvm, &data); 5273 break; 5274 } 5275 case KVM_IOEVENTFD: { 5276 struct kvm_ioeventfd data; 5277 5278 r = -EFAULT; 5279 if (copy_from_user(&data, argp, sizeof(data))) 5280 goto out; 5281 r = kvm_ioeventfd(kvm, &data); 5282 break; 5283 } 5284 #ifdef CONFIG_HAVE_KVM_MSI 5285 case KVM_SIGNAL_MSI: { 5286 struct kvm_msi msi; 5287 5288 r = -EFAULT; 5289 if (copy_from_user(&msi, argp, sizeof(msi))) 5290 goto out; 5291 r = kvm_send_userspace_msi(kvm, &msi); 5292 break; 5293 } 5294 #endif 5295 #ifdef __KVM_HAVE_IRQ_LINE 5296 case KVM_IRQ_LINE_STATUS: 5297 case KVM_IRQ_LINE: { 5298 struct kvm_irq_level irq_event; 5299 5300 r = -EFAULT; 5301 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 5302 goto out; 5303 5304 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 5305 ioctl == KVM_IRQ_LINE_STATUS); 5306 if (r) 5307 goto out; 5308 5309 r = -EFAULT; 5310 if (ioctl == KVM_IRQ_LINE_STATUS) { 5311 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 5312 goto out; 5313 } 5314 5315 r = 0; 5316 break; 5317 } 5318 #endif 5319 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 5320 case KVM_SET_GSI_ROUTING: { 5321 struct kvm_irq_routing routing; 5322 struct kvm_irq_routing __user *urouting; 5323 struct kvm_irq_routing_entry *entries = NULL; 5324 5325 r = -EFAULT; 5326 if (copy_from_user(&routing, argp, sizeof(routing))) 5327 goto out; 5328 r = -EINVAL; 5329 if (!kvm_arch_can_set_irq_routing(kvm)) 5330 goto out; 5331 if (routing.nr > KVM_MAX_IRQ_ROUTES) 5332 goto out; 5333 if (routing.flags) 5334 goto out; 5335 if (routing.nr) { 5336 urouting = argp; 5337 entries = vmemdup_array_user(urouting->entries, 5338 routing.nr, sizeof(*entries)); 5339 if (IS_ERR(entries)) { 5340 r = PTR_ERR(entries); 5341 goto out; 5342 } 5343 } 5344 r = kvm_set_irq_routing(kvm, entries, routing.nr, 5345 routing.flags); 5346 kvfree(entries); 5347 break; 5348 } 5349 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 5350 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 5351 case KVM_SET_MEMORY_ATTRIBUTES: { 5352 struct kvm_memory_attributes attrs; 5353 5354 r = -EFAULT; 5355 if (copy_from_user(&attrs, argp, sizeof(attrs))) 5356 goto out; 5357 5358 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); 5359 break; 5360 } 5361 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 5362 case KVM_CREATE_DEVICE: { 5363 struct kvm_create_device cd; 5364 5365 r = -EFAULT; 5366 if (copy_from_user(&cd, argp, sizeof(cd))) 5367 goto out; 5368 5369 r = kvm_ioctl_create_device(kvm, &cd); 5370 if (r) 5371 goto out; 5372 5373 r = -EFAULT; 5374 if (copy_to_user(argp, &cd, sizeof(cd))) 5375 goto out; 5376 5377 r = 0; 5378 break; 5379 } 5380 case KVM_CHECK_EXTENSION: 5381 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 5382 break; 5383 case KVM_RESET_DIRTY_RINGS: 5384 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 5385 break; 5386 case KVM_GET_STATS_FD: 5387 r = kvm_vm_ioctl_get_stats_fd(kvm); 5388 break; 5389 #ifdef CONFIG_KVM_GUEST_MEMFD 5390 case KVM_CREATE_GUEST_MEMFD: { 5391 struct kvm_create_guest_memfd guest_memfd; 5392 5393 r = -EFAULT; 5394 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) 5395 goto out; 5396 5397 r = kvm_gmem_create(kvm, &guest_memfd); 5398 break; 5399 } 5400 #endif 5401 default: 5402 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 5403 } 5404 out: 5405 return r; 5406 } 5407 5408 #ifdef CONFIG_KVM_COMPAT 5409 struct compat_kvm_dirty_log { 5410 __u32 slot; 5411 __u32 padding1; 5412 union { 5413 compat_uptr_t dirty_bitmap; /* one bit per page */ 5414 __u64 padding2; 5415 }; 5416 }; 5417 5418 struct compat_kvm_clear_dirty_log { 5419 __u32 slot; 5420 __u32 num_pages; 5421 __u64 first_page; 5422 union { 5423 compat_uptr_t dirty_bitmap; /* one bit per page */ 5424 __u64 padding2; 5425 }; 5426 }; 5427 5428 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5429 unsigned long arg) 5430 { 5431 return -ENOTTY; 5432 } 5433 5434 static long kvm_vm_compat_ioctl(struct file *filp, 5435 unsigned int ioctl, unsigned long arg) 5436 { 5437 struct kvm *kvm = filp->private_data; 5438 int r; 5439 5440 if (kvm->mm != current->mm || kvm->vm_dead) 5441 return -EIO; 5442 5443 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 5444 if (r != -ENOTTY) 5445 return r; 5446 5447 switch (ioctl) { 5448 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 5449 case KVM_CLEAR_DIRTY_LOG: { 5450 struct compat_kvm_clear_dirty_log compat_log; 5451 struct kvm_clear_dirty_log log; 5452 5453 if (copy_from_user(&compat_log, (void __user *)arg, 5454 sizeof(compat_log))) 5455 return -EFAULT; 5456 log.slot = compat_log.slot; 5457 log.num_pages = compat_log.num_pages; 5458 log.first_page = compat_log.first_page; 5459 log.padding2 = compat_log.padding2; 5460 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5461 5462 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5463 break; 5464 } 5465 #endif 5466 case KVM_GET_DIRTY_LOG: { 5467 struct compat_kvm_dirty_log compat_log; 5468 struct kvm_dirty_log log; 5469 5470 if (copy_from_user(&compat_log, (void __user *)arg, 5471 sizeof(compat_log))) 5472 return -EFAULT; 5473 log.slot = compat_log.slot; 5474 log.padding1 = compat_log.padding1; 5475 log.padding2 = compat_log.padding2; 5476 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5477 5478 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5479 break; 5480 } 5481 default: 5482 r = kvm_vm_ioctl(filp, ioctl, arg); 5483 } 5484 return r; 5485 } 5486 #endif 5487 5488 static struct file_operations kvm_vm_fops = { 5489 .release = kvm_vm_release, 5490 .unlocked_ioctl = kvm_vm_ioctl, 5491 .llseek = noop_llseek, 5492 KVM_COMPAT(kvm_vm_compat_ioctl), 5493 }; 5494 5495 bool file_is_kvm(struct file *file) 5496 { 5497 return file && file->f_op == &kvm_vm_fops; 5498 } 5499 EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm); 5500 5501 static int kvm_dev_ioctl_create_vm(unsigned long type) 5502 { 5503 char fdname[ITOA_MAX_LEN + 1]; 5504 int r, fd; 5505 struct kvm *kvm; 5506 struct file *file; 5507 5508 fd = get_unused_fd_flags(O_CLOEXEC); 5509 if (fd < 0) 5510 return fd; 5511 5512 snprintf(fdname, sizeof(fdname), "%d", fd); 5513 5514 kvm = kvm_create_vm(type, fdname); 5515 if (IS_ERR(kvm)) { 5516 r = PTR_ERR(kvm); 5517 goto put_fd; 5518 } 5519 5520 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5521 if (IS_ERR(file)) { 5522 r = PTR_ERR(file); 5523 goto put_kvm; 5524 } 5525 5526 /* 5527 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5528 * already set, with ->release() being kvm_vm_release(). In error 5529 * cases it will be called by the final fput(file) and will take 5530 * care of doing kvm_put_kvm(kvm). 5531 */ 5532 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5533 5534 fd_install(fd, file); 5535 return fd; 5536 5537 put_kvm: 5538 kvm_put_kvm(kvm); 5539 put_fd: 5540 put_unused_fd(fd); 5541 return r; 5542 } 5543 5544 static long kvm_dev_ioctl(struct file *filp, 5545 unsigned int ioctl, unsigned long arg) 5546 { 5547 int r = -EINVAL; 5548 5549 switch (ioctl) { 5550 case KVM_GET_API_VERSION: 5551 if (arg) 5552 goto out; 5553 r = KVM_API_VERSION; 5554 break; 5555 case KVM_CREATE_VM: 5556 r = kvm_dev_ioctl_create_vm(arg); 5557 break; 5558 case KVM_CHECK_EXTENSION: 5559 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5560 break; 5561 case KVM_GET_VCPU_MMAP_SIZE: 5562 if (arg) 5563 goto out; 5564 r = PAGE_SIZE; /* struct kvm_run */ 5565 #ifdef CONFIG_X86 5566 r += PAGE_SIZE; /* pio data page */ 5567 #endif 5568 #ifdef CONFIG_KVM_MMIO 5569 r += PAGE_SIZE; /* coalesced mmio ring page */ 5570 #endif 5571 break; 5572 default: 5573 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5574 } 5575 out: 5576 return r; 5577 } 5578 5579 static struct file_operations kvm_chardev_ops = { 5580 .unlocked_ioctl = kvm_dev_ioctl, 5581 .llseek = noop_llseek, 5582 KVM_COMPAT(kvm_dev_ioctl), 5583 }; 5584 5585 static struct miscdevice kvm_dev = { 5586 KVM_MINOR, 5587 "kvm", 5588 &kvm_chardev_ops, 5589 }; 5590 5591 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5592 bool enable_virt_at_load = true; 5593 module_param(enable_virt_at_load, bool, 0444); 5594 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load); 5595 5596 __visible bool kvm_rebooting; 5597 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting); 5598 5599 static DEFINE_PER_CPU(bool, virtualization_enabled); 5600 static DEFINE_MUTEX(kvm_usage_lock); 5601 static int kvm_usage_count; 5602 5603 __weak void kvm_arch_enable_virtualization(void) 5604 { 5605 5606 } 5607 5608 __weak void kvm_arch_disable_virtualization(void) 5609 { 5610 5611 } 5612 5613 static int kvm_enable_virtualization_cpu(void) 5614 { 5615 if (__this_cpu_read(virtualization_enabled)) 5616 return 0; 5617 5618 if (kvm_arch_enable_virtualization_cpu()) { 5619 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5620 raw_smp_processor_id()); 5621 return -EIO; 5622 } 5623 5624 __this_cpu_write(virtualization_enabled, true); 5625 return 0; 5626 } 5627 5628 static int kvm_online_cpu(unsigned int cpu) 5629 { 5630 /* 5631 * Abort the CPU online process if hardware virtualization cannot 5632 * be enabled. Otherwise running VMs would encounter unrecoverable 5633 * errors when scheduled to this CPU. 5634 */ 5635 return kvm_enable_virtualization_cpu(); 5636 } 5637 5638 static void kvm_disable_virtualization_cpu(void *ign) 5639 { 5640 if (!__this_cpu_read(virtualization_enabled)) 5641 return; 5642 5643 kvm_arch_disable_virtualization_cpu(); 5644 5645 __this_cpu_write(virtualization_enabled, false); 5646 } 5647 5648 static int kvm_offline_cpu(unsigned int cpu) 5649 { 5650 kvm_disable_virtualization_cpu(NULL); 5651 return 0; 5652 } 5653 5654 static void kvm_shutdown(void *data) 5655 { 5656 /* 5657 * Disable hardware virtualization and set kvm_rebooting to indicate 5658 * that KVM has asynchronously disabled hardware virtualization, i.e. 5659 * that relevant errors and exceptions aren't entirely unexpected. 5660 * Some flavors of hardware virtualization need to be disabled before 5661 * transferring control to firmware (to perform shutdown/reboot), e.g. 5662 * on x86, virtualization can block INIT interrupts, which are used by 5663 * firmware to pull APs back under firmware control. Note, this path 5664 * is used for both shutdown and reboot scenarios, i.e. neither name is 5665 * 100% comprehensive. 5666 */ 5667 pr_info("kvm: exiting hardware virtualization\n"); 5668 kvm_rebooting = true; 5669 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); 5670 } 5671 5672 static int kvm_suspend(void *data) 5673 { 5674 /* 5675 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5676 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage 5677 * count is stable. Assert that kvm_usage_lock is not held to ensure 5678 * the system isn't suspended while KVM is enabling hardware. Hardware 5679 * enabling can be preempted, but the task cannot be frozen until it has 5680 * dropped all locks (userspace tasks are frozen via a fake signal). 5681 */ 5682 lockdep_assert_not_held(&kvm_usage_lock); 5683 lockdep_assert_irqs_disabled(); 5684 5685 kvm_disable_virtualization_cpu(NULL); 5686 return 0; 5687 } 5688 5689 static void kvm_resume(void *data) 5690 { 5691 lockdep_assert_not_held(&kvm_usage_lock); 5692 lockdep_assert_irqs_disabled(); 5693 5694 WARN_ON_ONCE(kvm_enable_virtualization_cpu()); 5695 } 5696 5697 static const struct syscore_ops kvm_syscore_ops = { 5698 .suspend = kvm_suspend, 5699 .resume = kvm_resume, 5700 .shutdown = kvm_shutdown, 5701 }; 5702 5703 static struct syscore kvm_syscore = { 5704 .ops = &kvm_syscore_ops, 5705 }; 5706 5707 int kvm_enable_virtualization(void) 5708 { 5709 int r; 5710 5711 guard(mutex)(&kvm_usage_lock); 5712 5713 if (kvm_usage_count++) 5714 return 0; 5715 5716 kvm_arch_enable_virtualization(); 5717 5718 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5719 kvm_online_cpu, kvm_offline_cpu); 5720 if (r) 5721 goto err_cpuhp; 5722 5723 register_syscore(&kvm_syscore); 5724 5725 /* 5726 * Undo virtualization enabling and bail if the system is going down. 5727 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5728 * possible for an in-flight operation to enable virtualization after 5729 * syscore_shutdown() is called, i.e. without kvm_shutdown() being 5730 * invoked. Note, this relies on system_state being set _before_ 5731 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked 5732 * or this CPU observes the impending shutdown. Which is why KVM uses 5733 * a syscore ops hook instead of registering a dedicated reboot 5734 * notifier (the latter runs before system_state is updated). 5735 */ 5736 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5737 system_state == SYSTEM_RESTART) { 5738 r = -EBUSY; 5739 goto err_rebooting; 5740 } 5741 5742 return 0; 5743 5744 err_rebooting: 5745 unregister_syscore(&kvm_syscore); 5746 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5747 err_cpuhp: 5748 kvm_arch_disable_virtualization(); 5749 --kvm_usage_count; 5750 return r; 5751 } 5752 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization); 5753 5754 void kvm_disable_virtualization(void) 5755 { 5756 guard(mutex)(&kvm_usage_lock); 5757 5758 if (--kvm_usage_count) 5759 return; 5760 5761 unregister_syscore(&kvm_syscore); 5762 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); 5763 kvm_arch_disable_virtualization(); 5764 } 5765 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization); 5766 5767 static int kvm_init_virtualization(void) 5768 { 5769 if (enable_virt_at_load) 5770 return kvm_enable_virtualization(); 5771 5772 return 0; 5773 } 5774 5775 static void kvm_uninit_virtualization(void) 5776 { 5777 if (enable_virt_at_load) 5778 kvm_disable_virtualization(); 5779 } 5780 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5781 static int kvm_init_virtualization(void) 5782 { 5783 return 0; 5784 } 5785 5786 static void kvm_uninit_virtualization(void) 5787 { 5788 5789 } 5790 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5791 5792 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5793 { 5794 if (dev->ops->destructor) 5795 dev->ops->destructor(dev); 5796 } 5797 5798 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5799 { 5800 int i; 5801 5802 for (i = 0; i < bus->dev_count; i++) { 5803 struct kvm_io_device *pos = bus->range[i].dev; 5804 5805 kvm_iodevice_destructor(pos); 5806 } 5807 kfree(bus); 5808 } 5809 5810 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5811 const struct kvm_io_range *r2) 5812 { 5813 gpa_t addr1 = r1->addr; 5814 gpa_t addr2 = r2->addr; 5815 5816 if (addr1 < addr2) 5817 return -1; 5818 5819 /* If r2->len == 0, match the exact address. If r2->len != 0, 5820 * accept any overlapping write. Any order is acceptable for 5821 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5822 * we process all of them. 5823 */ 5824 if (r2->len) { 5825 addr1 += r1->len; 5826 addr2 += r2->len; 5827 } 5828 5829 if (addr1 > addr2) 5830 return 1; 5831 5832 return 0; 5833 } 5834 5835 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5836 { 5837 return kvm_io_bus_cmp(p1, p2); 5838 } 5839 5840 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5841 gpa_t addr, int len) 5842 { 5843 struct kvm_io_range *range, key; 5844 int off; 5845 5846 key = (struct kvm_io_range) { 5847 .addr = addr, 5848 .len = len, 5849 }; 5850 5851 range = bsearch(&key, bus->range, bus->dev_count, 5852 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5853 if (range == NULL) 5854 return -ENOENT; 5855 5856 off = range - bus->range; 5857 5858 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5859 off--; 5860 5861 return off; 5862 } 5863 5864 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5865 struct kvm_io_range *range, const void *val) 5866 { 5867 int idx; 5868 5869 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5870 if (idx < 0) 5871 return -EOPNOTSUPP; 5872 5873 while (idx < bus->dev_count && 5874 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5875 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5876 range->len, val)) 5877 return idx; 5878 idx++; 5879 } 5880 5881 return -EOPNOTSUPP; 5882 } 5883 5884 static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx) 5885 { 5886 /* 5887 * Ensure that any updates to kvm_buses[] observed by the previous vCPU 5888 * machine instruction are also visible to the vCPU machine instruction 5889 * that triggered this call. 5890 */ 5891 smp_mb__after_srcu_read_lock(); 5892 5893 return srcu_dereference(kvm->buses[idx], &kvm->srcu); 5894 } 5895 5896 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5897 int len, const void *val) 5898 { 5899 struct kvm_io_bus *bus; 5900 struct kvm_io_range range; 5901 int r; 5902 5903 range = (struct kvm_io_range) { 5904 .addr = addr, 5905 .len = len, 5906 }; 5907 5908 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5909 if (!bus) 5910 return -ENOMEM; 5911 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5912 return r < 0 ? r : 0; 5913 } 5914 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write); 5915 5916 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5917 gpa_t addr, int len, const void *val, long cookie) 5918 { 5919 struct kvm_io_bus *bus; 5920 struct kvm_io_range range; 5921 5922 range = (struct kvm_io_range) { 5923 .addr = addr, 5924 .len = len, 5925 }; 5926 5927 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5928 if (!bus) 5929 return -ENOMEM; 5930 5931 /* First try the device referenced by cookie. */ 5932 if ((cookie >= 0) && (cookie < bus->dev_count) && 5933 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5934 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5935 val)) 5936 return cookie; 5937 5938 /* 5939 * cookie contained garbage; fall back to search and return the 5940 * correct cookie value. 5941 */ 5942 return __kvm_io_bus_write(vcpu, bus, &range, val); 5943 } 5944 5945 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5946 struct kvm_io_range *range, void *val) 5947 { 5948 int idx; 5949 5950 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5951 if (idx < 0) 5952 return -EOPNOTSUPP; 5953 5954 while (idx < bus->dev_count && 5955 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5956 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5957 range->len, val)) 5958 return idx; 5959 idx++; 5960 } 5961 5962 return -EOPNOTSUPP; 5963 } 5964 5965 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5966 int len, void *val) 5967 { 5968 struct kvm_io_bus *bus; 5969 struct kvm_io_range range; 5970 int r; 5971 5972 range = (struct kvm_io_range) { 5973 .addr = addr, 5974 .len = len, 5975 }; 5976 5977 bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); 5978 if (!bus) 5979 return -ENOMEM; 5980 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5981 return r < 0 ? r : 0; 5982 } 5983 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read); 5984 5985 static void __free_bus(struct rcu_head *rcu) 5986 { 5987 struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu); 5988 5989 kfree(bus); 5990 } 5991 5992 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5993 int len, struct kvm_io_device *dev) 5994 { 5995 int i; 5996 struct kvm_io_bus *new_bus, *bus; 5997 struct kvm_io_range range; 5998 5999 lockdep_assert_held(&kvm->slots_lock); 6000 6001 bus = kvm_get_bus(kvm, bus_idx); 6002 if (!bus) 6003 return -ENOMEM; 6004 6005 /* exclude ioeventfd which is limited by maximum fd */ 6006 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 6007 return -ENOSPC; 6008 6009 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 6010 GFP_KERNEL_ACCOUNT); 6011 if (!new_bus) 6012 return -ENOMEM; 6013 6014 range = (struct kvm_io_range) { 6015 .addr = addr, 6016 .len = len, 6017 .dev = dev, 6018 }; 6019 6020 for (i = 0; i < bus->dev_count; i++) 6021 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 6022 break; 6023 6024 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 6025 new_bus->dev_count++; 6026 new_bus->range[i] = range; 6027 memcpy(new_bus->range + i + 1, bus->range + i, 6028 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 6029 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6030 call_srcu(&kvm->srcu, &bus->rcu, __free_bus); 6031 6032 return 0; 6033 } 6034 6035 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6036 struct kvm_io_device *dev) 6037 { 6038 int i; 6039 struct kvm_io_bus *new_bus, *bus; 6040 6041 lockdep_assert_held(&kvm->slots_lock); 6042 6043 bus = kvm_get_bus(kvm, bus_idx); 6044 if (!bus) 6045 return 0; 6046 6047 for (i = 0; i < bus->dev_count; i++) { 6048 if (bus->range[i].dev == dev) { 6049 break; 6050 } 6051 } 6052 6053 if (i == bus->dev_count) 6054 return 0; 6055 6056 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 6057 GFP_KERNEL_ACCOUNT); 6058 if (new_bus) { 6059 memcpy(new_bus, bus, struct_size(bus, range, i)); 6060 new_bus->dev_count--; 6061 memcpy(new_bus->range + i, bus->range + i + 1, 6062 flex_array_size(new_bus, range, new_bus->dev_count - i)); 6063 } 6064 6065 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 6066 synchronize_srcu_expedited(&kvm->srcu); 6067 6068 /* 6069 * If NULL bus is installed, destroy the old bus, including all the 6070 * attached devices. Otherwise, destroy the caller's device only. 6071 */ 6072 if (!new_bus) { 6073 pr_err("kvm: failed to shrink bus, removing it completely\n"); 6074 kvm_io_bus_destroy(bus); 6075 return -ENOMEM; 6076 } 6077 6078 kvm_iodevice_destructor(dev); 6079 kfree(bus); 6080 return 0; 6081 } 6082 6083 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 6084 gpa_t addr) 6085 { 6086 struct kvm_io_bus *bus; 6087 int dev_idx, srcu_idx; 6088 struct kvm_io_device *iodev = NULL; 6089 6090 srcu_idx = srcu_read_lock(&kvm->srcu); 6091 6092 bus = kvm_get_bus_srcu(kvm, bus_idx); 6093 if (!bus) 6094 goto out_unlock; 6095 6096 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 6097 if (dev_idx < 0) 6098 goto out_unlock; 6099 6100 iodev = bus->range[dev_idx].dev; 6101 6102 out_unlock: 6103 srcu_read_unlock(&kvm->srcu, srcu_idx); 6104 6105 return iodev; 6106 } 6107 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev); 6108 6109 static int kvm_debugfs_open(struct inode *inode, struct file *file, 6110 int (*get)(void *, u64 *), int (*set)(void *, u64), 6111 const char *fmt) 6112 { 6113 int ret; 6114 struct kvm_stat_data *stat_data = inode->i_private; 6115 6116 /* 6117 * The debugfs files are a reference to the kvm struct which 6118 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 6119 * avoids the race between open and the removal of the debugfs directory. 6120 */ 6121 if (!kvm_get_kvm_safe(stat_data->kvm)) 6122 return -ENOENT; 6123 6124 ret = simple_attr_open(inode, file, get, 6125 kvm_stats_debugfs_mode(stat_data->desc) & 0222 6126 ? set : NULL, fmt); 6127 if (ret) 6128 kvm_put_kvm(stat_data->kvm); 6129 6130 return ret; 6131 } 6132 6133 static int kvm_debugfs_release(struct inode *inode, struct file *file) 6134 { 6135 struct kvm_stat_data *stat_data = inode->i_private; 6136 6137 simple_attr_release(inode, file); 6138 kvm_put_kvm(stat_data->kvm); 6139 6140 return 0; 6141 } 6142 6143 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 6144 { 6145 *val = *(u64 *)((void *)(&kvm->stat) + offset); 6146 6147 return 0; 6148 } 6149 6150 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 6151 { 6152 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 6153 6154 return 0; 6155 } 6156 6157 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 6158 { 6159 unsigned long i; 6160 struct kvm_vcpu *vcpu; 6161 6162 *val = 0; 6163 6164 kvm_for_each_vcpu(i, vcpu, kvm) 6165 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 6166 6167 return 0; 6168 } 6169 6170 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 6171 { 6172 unsigned long i; 6173 struct kvm_vcpu *vcpu; 6174 6175 kvm_for_each_vcpu(i, vcpu, kvm) 6176 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 6177 6178 return 0; 6179 } 6180 6181 static int kvm_stat_data_get(void *data, u64 *val) 6182 { 6183 int r = -EFAULT; 6184 struct kvm_stat_data *stat_data = data; 6185 6186 switch (stat_data->kind) { 6187 case KVM_STAT_VM: 6188 r = kvm_get_stat_per_vm(stat_data->kvm, 6189 stat_data->desc->desc.offset, val); 6190 break; 6191 case KVM_STAT_VCPU: 6192 r = kvm_get_stat_per_vcpu(stat_data->kvm, 6193 stat_data->desc->desc.offset, val); 6194 break; 6195 } 6196 6197 return r; 6198 } 6199 6200 static int kvm_stat_data_clear(void *data, u64 val) 6201 { 6202 int r = -EFAULT; 6203 struct kvm_stat_data *stat_data = data; 6204 6205 if (val) 6206 return -EINVAL; 6207 6208 switch (stat_data->kind) { 6209 case KVM_STAT_VM: 6210 r = kvm_clear_stat_per_vm(stat_data->kvm, 6211 stat_data->desc->desc.offset); 6212 break; 6213 case KVM_STAT_VCPU: 6214 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 6215 stat_data->desc->desc.offset); 6216 break; 6217 } 6218 6219 return r; 6220 } 6221 6222 static int kvm_stat_data_open(struct inode *inode, struct file *file) 6223 { 6224 __simple_attr_check_format("%llu\n", 0ull); 6225 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 6226 kvm_stat_data_clear, "%llu\n"); 6227 } 6228 6229 static const struct file_operations stat_fops_per_vm = { 6230 .owner = THIS_MODULE, 6231 .open = kvm_stat_data_open, 6232 .release = kvm_debugfs_release, 6233 .read = simple_attr_read, 6234 .write = simple_attr_write, 6235 }; 6236 6237 static int vm_stat_get(void *_offset, u64 *val) 6238 { 6239 unsigned offset = (long)_offset; 6240 struct kvm *kvm; 6241 u64 tmp_val; 6242 6243 *val = 0; 6244 mutex_lock(&kvm_lock); 6245 list_for_each_entry(kvm, &vm_list, vm_list) { 6246 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 6247 *val += tmp_val; 6248 } 6249 mutex_unlock(&kvm_lock); 6250 return 0; 6251 } 6252 6253 static int vm_stat_clear(void *_offset, u64 val) 6254 { 6255 unsigned offset = (long)_offset; 6256 struct kvm *kvm; 6257 6258 if (val) 6259 return -EINVAL; 6260 6261 mutex_lock(&kvm_lock); 6262 list_for_each_entry(kvm, &vm_list, vm_list) { 6263 kvm_clear_stat_per_vm(kvm, offset); 6264 } 6265 mutex_unlock(&kvm_lock); 6266 6267 return 0; 6268 } 6269 6270 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 6271 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 6272 6273 static int vcpu_stat_get(void *_offset, u64 *val) 6274 { 6275 unsigned offset = (long)_offset; 6276 struct kvm *kvm; 6277 u64 tmp_val; 6278 6279 *val = 0; 6280 mutex_lock(&kvm_lock); 6281 list_for_each_entry(kvm, &vm_list, vm_list) { 6282 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 6283 *val += tmp_val; 6284 } 6285 mutex_unlock(&kvm_lock); 6286 return 0; 6287 } 6288 6289 static int vcpu_stat_clear(void *_offset, u64 val) 6290 { 6291 unsigned offset = (long)_offset; 6292 struct kvm *kvm; 6293 6294 if (val) 6295 return -EINVAL; 6296 6297 mutex_lock(&kvm_lock); 6298 list_for_each_entry(kvm, &vm_list, vm_list) { 6299 kvm_clear_stat_per_vcpu(kvm, offset); 6300 } 6301 mutex_unlock(&kvm_lock); 6302 6303 return 0; 6304 } 6305 6306 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 6307 "%llu\n"); 6308 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 6309 6310 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 6311 { 6312 struct kobj_uevent_env *env; 6313 unsigned long long created, active; 6314 6315 if (!kvm_dev.this_device || !kvm) 6316 return; 6317 6318 mutex_lock(&kvm_lock); 6319 if (type == KVM_EVENT_CREATE_VM) { 6320 kvm_createvm_count++; 6321 kvm_active_vms++; 6322 } else if (type == KVM_EVENT_DESTROY_VM) { 6323 kvm_active_vms--; 6324 } 6325 created = kvm_createvm_count; 6326 active = kvm_active_vms; 6327 mutex_unlock(&kvm_lock); 6328 6329 env = kzalloc(sizeof(*env), GFP_KERNEL); 6330 if (!env) 6331 return; 6332 6333 add_uevent_var(env, "CREATED=%llu", created); 6334 add_uevent_var(env, "COUNT=%llu", active); 6335 6336 if (type == KVM_EVENT_CREATE_VM) { 6337 add_uevent_var(env, "EVENT=create"); 6338 kvm->userspace_pid = task_pid_nr(current); 6339 } else if (type == KVM_EVENT_DESTROY_VM) { 6340 add_uevent_var(env, "EVENT=destroy"); 6341 } 6342 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 6343 6344 if (!IS_ERR(kvm->debugfs_dentry)) { 6345 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 6346 6347 if (p) { 6348 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 6349 if (!IS_ERR(tmp)) 6350 add_uevent_var(env, "STATS_PATH=%s", tmp); 6351 kfree(p); 6352 } 6353 } 6354 /* no need for checks, since we are adding at most only 5 keys */ 6355 env->envp[env->envp_idx++] = NULL; 6356 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 6357 kfree(env); 6358 } 6359 6360 static void kvm_init_debug(void) 6361 { 6362 const struct file_operations *fops; 6363 const struct _kvm_stats_desc *pdesc; 6364 int i; 6365 6366 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 6367 6368 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 6369 pdesc = &kvm_vm_stats_desc[i]; 6370 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6371 fops = &vm_stat_fops; 6372 else 6373 fops = &vm_stat_readonly_fops; 6374 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6375 kvm_debugfs_dir, 6376 (void *)(long)pdesc->desc.offset, fops); 6377 } 6378 6379 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 6380 pdesc = &kvm_vcpu_stats_desc[i]; 6381 if (kvm_stats_debugfs_mode(pdesc) & 0222) 6382 fops = &vcpu_stat_fops; 6383 else 6384 fops = &vcpu_stat_readonly_fops; 6385 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 6386 kvm_debugfs_dir, 6387 (void *)(long)pdesc->desc.offset, fops); 6388 } 6389 } 6390 6391 static inline 6392 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 6393 { 6394 return container_of(pn, struct kvm_vcpu, preempt_notifier); 6395 } 6396 6397 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 6398 { 6399 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6400 6401 WRITE_ONCE(vcpu->preempted, false); 6402 WRITE_ONCE(vcpu->ready, false); 6403 6404 __this_cpu_write(kvm_running_vcpu, vcpu); 6405 kvm_arch_vcpu_load(vcpu, cpu); 6406 6407 WRITE_ONCE(vcpu->scheduled_out, false); 6408 } 6409 6410 static void kvm_sched_out(struct preempt_notifier *pn, 6411 struct task_struct *next) 6412 { 6413 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 6414 6415 WRITE_ONCE(vcpu->scheduled_out, true); 6416 6417 if (task_is_runnable(current) && vcpu->wants_to_run) { 6418 WRITE_ONCE(vcpu->preempted, true); 6419 WRITE_ONCE(vcpu->ready, true); 6420 } 6421 kvm_arch_vcpu_put(vcpu); 6422 __this_cpu_write(kvm_running_vcpu, NULL); 6423 } 6424 6425 /** 6426 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 6427 * 6428 * We can disable preemption locally around accessing the per-CPU variable, 6429 * and use the resolved vcpu pointer after enabling preemption again, 6430 * because even if the current thread is migrated to another CPU, reading 6431 * the per-CPU value later will give us the same value as we update the 6432 * per-CPU variable in the preempt notifier handlers. 6433 */ 6434 struct kvm_vcpu *kvm_get_running_vcpu(void) 6435 { 6436 struct kvm_vcpu *vcpu; 6437 6438 preempt_disable(); 6439 vcpu = __this_cpu_read(kvm_running_vcpu); 6440 preempt_enable(); 6441 6442 return vcpu; 6443 } 6444 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu); 6445 6446 /** 6447 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 6448 */ 6449 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 6450 { 6451 return &kvm_running_vcpu; 6452 } 6453 6454 #ifdef CONFIG_GUEST_PERF_EVENTS 6455 static unsigned int kvm_guest_state(void) 6456 { 6457 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6458 unsigned int state; 6459 6460 if (!kvm_arch_pmi_in_guest(vcpu)) 6461 return 0; 6462 6463 state = PERF_GUEST_ACTIVE; 6464 if (!kvm_arch_vcpu_in_kernel(vcpu)) 6465 state |= PERF_GUEST_USER; 6466 6467 return state; 6468 } 6469 6470 static unsigned long kvm_guest_get_ip(void) 6471 { 6472 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6473 6474 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6475 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6476 return 0; 6477 6478 return kvm_arch_vcpu_get_ip(vcpu); 6479 } 6480 6481 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6482 .state = kvm_guest_state, 6483 .get_ip = kvm_guest_get_ip, 6484 .handle_intel_pt_intr = NULL, 6485 }; 6486 6487 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6488 { 6489 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6490 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6491 } 6492 void kvm_unregister_perf_callbacks(void) 6493 { 6494 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6495 } 6496 #endif 6497 6498 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6499 { 6500 int r; 6501 int cpu; 6502 6503 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6504 if (!vcpu_align) 6505 vcpu_align = __alignof__(struct kvm_vcpu); 6506 kvm_vcpu_cache = 6507 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6508 SLAB_ACCOUNT, 6509 offsetof(struct kvm_vcpu, arch), 6510 offsetofend(struct kvm_vcpu, stats_id) 6511 - offsetof(struct kvm_vcpu, arch), 6512 NULL); 6513 if (!kvm_vcpu_cache) 6514 return -ENOMEM; 6515 6516 for_each_possible_cpu(cpu) { 6517 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6518 GFP_KERNEL, cpu_to_node(cpu))) { 6519 r = -ENOMEM; 6520 goto err_cpu_kick_mask; 6521 } 6522 } 6523 6524 r = kvm_irqfd_init(); 6525 if (r) 6526 goto err_irqfd; 6527 6528 r = kvm_async_pf_init(); 6529 if (r) 6530 goto err_async_pf; 6531 6532 kvm_chardev_ops.owner = module; 6533 kvm_vm_fops.owner = module; 6534 kvm_vcpu_fops.owner = module; 6535 kvm_device_fops.owner = module; 6536 6537 kvm_preempt_ops.sched_in = kvm_sched_in; 6538 kvm_preempt_ops.sched_out = kvm_sched_out; 6539 6540 kvm_init_debug(); 6541 6542 r = kvm_vfio_ops_init(); 6543 if (WARN_ON_ONCE(r)) 6544 goto err_vfio; 6545 6546 r = kvm_gmem_init(module); 6547 if (r) 6548 goto err_gmem; 6549 6550 r = kvm_init_virtualization(); 6551 if (r) 6552 goto err_virt; 6553 6554 /* 6555 * Registration _must_ be the very last thing done, as this exposes 6556 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6557 */ 6558 r = misc_register(&kvm_dev); 6559 if (r) { 6560 pr_err("kvm: misc device register failed\n"); 6561 goto err_register; 6562 } 6563 6564 return 0; 6565 6566 err_register: 6567 kvm_uninit_virtualization(); 6568 err_virt: 6569 kvm_gmem_exit(); 6570 err_gmem: 6571 kvm_vfio_ops_exit(); 6572 err_vfio: 6573 kvm_async_pf_deinit(); 6574 err_async_pf: 6575 kvm_irqfd_exit(); 6576 err_irqfd: 6577 err_cpu_kick_mask: 6578 for_each_possible_cpu(cpu) 6579 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6580 kmem_cache_destroy(kvm_vcpu_cache); 6581 return r; 6582 } 6583 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init); 6584 6585 void kvm_exit(void) 6586 { 6587 int cpu; 6588 6589 /* 6590 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6591 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6592 * to KVM while the module is being stopped. 6593 */ 6594 misc_deregister(&kvm_dev); 6595 6596 kvm_uninit_virtualization(); 6597 6598 debugfs_remove_recursive(kvm_debugfs_dir); 6599 for_each_possible_cpu(cpu) 6600 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6601 kmem_cache_destroy(kvm_vcpu_cache); 6602 kvm_gmem_exit(); 6603 kvm_vfio_ops_exit(); 6604 kvm_async_pf_deinit(); 6605 kvm_irqfd_exit(); 6606 } 6607 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit); 6608