1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_CPUID_H
3 #define ARCH_X86_KVM_CPUID_H
4
5 #include "reverse_cpuid.h"
6 #include <asm/cpu.h>
7 #include <asm/processor.h>
8 #include <uapi/asm/kvm_para.h>
9
10 extern u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
11 void kvm_set_cpu_caps(void);
12
13 void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu);
14 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
15 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
16 u32 function, u32 index);
17 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
18 u32 function);
19 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
20 struct kvm_cpuid_entry2 __user *entries,
21 unsigned int type);
22 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
23 struct kvm_cpuid *cpuid,
24 struct kvm_cpuid_entry __user *entries);
25 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
26 struct kvm_cpuid2 *cpuid,
27 struct kvm_cpuid_entry2 __user *entries);
28 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
29 struct kvm_cpuid2 *cpuid,
30 struct kvm_cpuid_entry2 __user *entries);
31 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
32 u32 *ecx, u32 *edx, bool exact_only);
33
34 void __init kvm_init_xstate_sizes(void);
35 u32 xstate_required_size(u64 xstate_bv, bool compacted);
36
37 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
38 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu);
39
cpuid_maxphyaddr(struct kvm_vcpu * vcpu)40 static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
41 {
42 return vcpu->arch.maxphyaddr;
43 }
44
kvm_vcpu_is_legal_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)45 static inline bool kvm_vcpu_is_legal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
46 {
47 return !(gpa & vcpu->arch.reserved_gpa_bits);
48 }
49
kvm_vcpu_is_legal_aligned_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t alignment)50 static inline bool kvm_vcpu_is_legal_aligned_gpa(struct kvm_vcpu *vcpu,
51 gpa_t gpa, gpa_t alignment)
52 {
53 return IS_ALIGNED(gpa, alignment) && kvm_vcpu_is_legal_gpa(vcpu, gpa);
54 }
55
page_address_valid(struct kvm_vcpu * vcpu,gpa_t gpa)56 static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
57 {
58 return kvm_vcpu_is_legal_aligned_gpa(vcpu, gpa, PAGE_SIZE);
59 }
60
cpuid_entry_override(struct kvm_cpuid_entry2 * entry,unsigned int leaf)61 static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
62 unsigned int leaf)
63 {
64 u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
65
66 BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
67 *reg = kvm_cpu_caps[leaf];
68 }
69
guest_cpuid_has(struct kvm_vcpu * vcpu,unsigned int x86_feature)70 static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
71 unsigned int x86_feature)
72 {
73 const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
74 struct kvm_cpuid_entry2 *entry;
75 u32 *reg;
76
77 /*
78 * XSAVES is a special snowflake. Due to lack of a dedicated intercept
79 * on SVM, KVM must assume that XSAVES (and thus XRSTORS) is usable by
80 * the guest if the host supports XSAVES and *XSAVE* is exposed to the
81 * guest. Because the guest can execute XSAVES and XRSTORS, i.e. can
82 * indirectly consume XSS, KVM must ensure XSS is zeroed when running
83 * the guest, i.e. must set XSAVES in vCPU capabilities. But to reject
84 * direct XSS reads and writes (to minimize the virtualization hole and
85 * honor userspace's CPUID), KVM needs to check the raw guest CPUID,
86 * not KVM's view of guest capabilities.
87 *
88 * For all other features, guest capabilities are accurate. Expand
89 * this allowlist with extreme vigilance.
90 */
91 BUILD_BUG_ON(x86_feature != X86_FEATURE_XSAVES);
92
93 entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
94 if (!entry)
95 return NULL;
96
97 reg = __cpuid_entry_get_reg(entry, cpuid.reg);
98 if (!reg)
99 return false;
100
101 return *reg & __feature_bit(x86_feature);
102 }
103
guest_cpuid_is_amd_compatible(struct kvm_vcpu * vcpu)104 static inline bool guest_cpuid_is_amd_compatible(struct kvm_vcpu *vcpu)
105 {
106 return vcpu->arch.is_amd_compatible;
107 }
108
guest_cpuid_is_intel_compatible(struct kvm_vcpu * vcpu)109 static inline bool guest_cpuid_is_intel_compatible(struct kvm_vcpu *vcpu)
110 {
111 return !guest_cpuid_is_amd_compatible(vcpu);
112 }
113
guest_cpuid_family(struct kvm_vcpu * vcpu)114 static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
115 {
116 struct kvm_cpuid_entry2 *best;
117
118 best = kvm_find_cpuid_entry(vcpu, 0x1);
119 if (!best)
120 return -1;
121
122 return x86_family(best->eax);
123 }
124
guest_cpuid_model(struct kvm_vcpu * vcpu)125 static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
126 {
127 struct kvm_cpuid_entry2 *best;
128
129 best = kvm_find_cpuid_entry(vcpu, 0x1);
130 if (!best)
131 return -1;
132
133 return x86_model(best->eax);
134 }
135
cpuid_model_is_consistent(struct kvm_vcpu * vcpu)136 static inline bool cpuid_model_is_consistent(struct kvm_vcpu *vcpu)
137 {
138 return boot_cpu_data.x86_model == guest_cpuid_model(vcpu);
139 }
140
guest_cpuid_stepping(struct kvm_vcpu * vcpu)141 static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
142 {
143 struct kvm_cpuid_entry2 *best;
144
145 best = kvm_find_cpuid_entry(vcpu, 0x1);
146 if (!best)
147 return -1;
148
149 return x86_stepping(best->eax);
150 }
151
supports_cpuid_fault(struct kvm_vcpu * vcpu)152 static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
153 {
154 return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
155 }
156
cpuid_fault_enabled(struct kvm_vcpu * vcpu)157 static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
158 {
159 return vcpu->arch.msr_misc_features_enables &
160 MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
161 }
162
kvm_cpu_cap_clear(unsigned int x86_feature)163 static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
164 {
165 unsigned int x86_leaf = __feature_leaf(x86_feature);
166
167 kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
168 }
169
kvm_cpu_cap_set(unsigned int x86_feature)170 static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
171 {
172 unsigned int x86_leaf = __feature_leaf(x86_feature);
173
174 kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
175 }
176
kvm_cpu_cap_get(unsigned int x86_feature)177 static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
178 {
179 unsigned int x86_leaf = __feature_leaf(x86_feature);
180
181 return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
182 }
183
kvm_cpu_cap_has(unsigned int x86_feature)184 static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
185 {
186 return !!kvm_cpu_cap_get(x86_feature);
187 }
188
kvm_cpu_cap_check_and_set(unsigned int x86_feature)189 static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
190 {
191 if (boot_cpu_has(x86_feature))
192 kvm_cpu_cap_set(x86_feature);
193 }
194
guest_pv_has(struct kvm_vcpu * vcpu,unsigned int kvm_feature)195 static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu,
196 unsigned int kvm_feature)
197 {
198 if (!vcpu->arch.pv_cpuid.enforce)
199 return true;
200
201 return vcpu->arch.pv_cpuid.features & (1u << kvm_feature);
202 }
203
guest_cpu_cap_set(struct kvm_vcpu * vcpu,unsigned int x86_feature)204 static __always_inline void guest_cpu_cap_set(struct kvm_vcpu *vcpu,
205 unsigned int x86_feature)
206 {
207 unsigned int x86_leaf = __feature_leaf(x86_feature);
208
209 vcpu->arch.cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
210 }
211
guest_cpu_cap_clear(struct kvm_vcpu * vcpu,unsigned int x86_feature)212 static __always_inline void guest_cpu_cap_clear(struct kvm_vcpu *vcpu,
213 unsigned int x86_feature)
214 {
215 unsigned int x86_leaf = __feature_leaf(x86_feature);
216
217 vcpu->arch.cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
218 }
219
guest_cpu_cap_change(struct kvm_vcpu * vcpu,unsigned int x86_feature,bool guest_has_cap)220 static __always_inline void guest_cpu_cap_change(struct kvm_vcpu *vcpu,
221 unsigned int x86_feature,
222 bool guest_has_cap)
223 {
224 if (guest_has_cap)
225 guest_cpu_cap_set(vcpu, x86_feature);
226 else
227 guest_cpu_cap_clear(vcpu, x86_feature);
228 }
229
guest_cpu_cap_has(struct kvm_vcpu * vcpu,unsigned int x86_feature)230 static __always_inline bool guest_cpu_cap_has(struct kvm_vcpu *vcpu,
231 unsigned int x86_feature)
232 {
233 unsigned int x86_leaf = __feature_leaf(x86_feature);
234
235 return vcpu->arch.cpu_caps[x86_leaf] & __feature_bit(x86_feature);
236 }
237
kvm_vcpu_is_legal_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)238 static inline bool kvm_vcpu_is_legal_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
239 {
240 if (guest_cpu_cap_has(vcpu, X86_FEATURE_LAM))
241 cr3 &= ~(X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
242
243 return kvm_vcpu_is_legal_gpa(vcpu, cr3);
244 }
245
guest_has_spec_ctrl_msr(struct kvm_vcpu * vcpu)246 static inline bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu)
247 {
248 return (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
249 guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_STIBP) ||
250 guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS) ||
251 guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_SSBD));
252 }
253
guest_has_pred_cmd_msr(struct kvm_vcpu * vcpu)254 static inline bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu)
255 {
256 return (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
257 guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB) ||
258 guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB));
259 }
260
261 #endif
262