1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26
27 static size_t vcpu_mmap_sz(void);
28
__open_path_or_exit(const char * path,int flags,const char * enoent_help)29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help)
30 {
31 int fd;
32
33 fd = open(path, flags);
34 if (fd < 0)
35 goto error;
36
37 return fd;
38
39 error:
40 if (errno == EACCES || errno == ENOENT)
41 ksft_exit_skip("- Cannot open '%s': %s. %s\n",
42 path, strerror(errno),
43 errno == EACCES ? "Root required?" : enoent_help);
44 TEST_FAIL("Failed to open '%s'", path);
45 }
46
open_path_or_exit(const char * path,int flags)47 int open_path_or_exit(const char *path, int flags)
48 {
49 return __open_path_or_exit(path, flags, "");
50 }
51
52 /*
53 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
54 *
55 * Input Args:
56 * flags - The flags to pass when opening KVM_DEV_PATH.
57 *
58 * Return:
59 * The opened file descriptor of /dev/kvm.
60 */
_open_kvm_dev_path_or_exit(int flags)61 static int _open_kvm_dev_path_or_exit(int flags)
62 {
63 return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?");
64 }
65
open_kvm_dev_path_or_exit(void)66 int open_kvm_dev_path_or_exit(void)
67 {
68 return _open_kvm_dev_path_or_exit(O_RDONLY);
69 }
70
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)71 static ssize_t get_module_param(const char *module_name, const char *param,
72 void *buffer, size_t buffer_size)
73 {
74 const int path_size = 128;
75 char path[path_size];
76 ssize_t bytes_read;
77 int fd, r;
78
79 /* Verify KVM is loaded, to provide a more helpful SKIP message. */
80 close(open_kvm_dev_path_or_exit());
81
82 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
83 module_name, param);
84 TEST_ASSERT(r < path_size,
85 "Failed to construct sysfs path in %d bytes.", path_size);
86
87 fd = open_path_or_exit(path, O_RDONLY);
88
89 bytes_read = read(fd, buffer, buffer_size);
90 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
91 path, bytes_read, buffer_size);
92
93 r = close(fd);
94 TEST_ASSERT(!r, "close(%s) failed", path);
95 return bytes_read;
96 }
97
kvm_get_module_param_integer(const char * module_name,const char * param)98 int kvm_get_module_param_integer(const char *module_name, const char *param)
99 {
100 /*
101 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
102 * NUL char, and 1 byte because the kernel sucks and inserts a newline
103 * at the end.
104 */
105 char value[16 + 1 + 1];
106 ssize_t r;
107
108 memset(value, '\0', sizeof(value));
109
110 r = get_module_param(module_name, param, value, sizeof(value));
111 TEST_ASSERT(value[r - 1] == '\n',
112 "Expected trailing newline, got char '%c'", value[r - 1]);
113
114 /*
115 * Squash the newline, otherwise atoi_paranoid() will complain about
116 * trailing non-NUL characters in the string.
117 */
118 value[r - 1] = '\0';
119 return atoi_paranoid(value);
120 }
121
kvm_get_module_param_bool(const char * module_name,const char * param)122 bool kvm_get_module_param_bool(const char *module_name, const char *param)
123 {
124 char value;
125 ssize_t r;
126
127 r = get_module_param(module_name, param, &value, sizeof(value));
128 TEST_ASSERT_EQ(r, 1);
129
130 if (value == 'Y')
131 return true;
132 else if (value == 'N')
133 return false;
134
135 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
136 }
137
138 /*
139 * Capability
140 *
141 * Input Args:
142 * cap - Capability
143 *
144 * Output Args: None
145 *
146 * Return:
147 * On success, the Value corresponding to the capability (KVM_CAP_*)
148 * specified by the value of cap. On failure a TEST_ASSERT failure
149 * is produced.
150 *
151 * Looks up and returns the value corresponding to the capability
152 * (KVM_CAP_*) given by cap.
153 */
kvm_check_cap(long cap)154 unsigned int kvm_check_cap(long cap)
155 {
156 int ret;
157 int kvm_fd;
158
159 kvm_fd = open_kvm_dev_path_or_exit();
160 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
161 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
162
163 close(kvm_fd);
164
165 return (unsigned int)ret;
166 }
167
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
169 {
170 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
171 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
172 else
173 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
174 vm->dirty_ring_size = ring_size;
175 }
176
vm_open(struct kvm_vm * vm)177 static void vm_open(struct kvm_vm *vm)
178 {
179 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
180
181 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
182
183 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
184 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
185
186 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
187 vm->stats.fd = vm_get_stats_fd(vm);
188 else
189 vm->stats.fd = -1;
190 }
191
vm_guest_mode_string(uint32_t i)192 const char *vm_guest_mode_string(uint32_t i)
193 {
194 static const char * const strings[] = {
195 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
196 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages",
197 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
198 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
199 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
200 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
201 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
202 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
203 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
204 [VM_MODE_PXXVYY_4K] = "PA-bits:ANY, VA-bits:48 or 57, 4K pages",
205 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
206 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
207 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
208 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
209 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
210 [VM_MODE_P47V47_16K] = "PA-bits:47, VA-bits:47, 16K pages",
211 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
212 };
213 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
214 "Missing new mode strings?");
215
216 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
217
218 return strings[i];
219 }
220
221 const struct vm_guest_mode_params vm_guest_mode_params[] = {
222 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
223 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 },
224 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
225 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
226 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
227 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
228 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
229 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
230 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
231 [VM_MODE_PXXVYY_4K] = { 0, 0, 0x1000, 12 },
232 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
233 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
234 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
235 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
236 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
237 [VM_MODE_P47V47_16K] = { 47, 47, 0x4000, 14 },
238 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
239 };
240 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
241 "Missing new mode params?");
242
243 /*
244 * Initializes vm->vpages_valid to match the canonical VA space of the
245 * architecture.
246 *
247 * The default implementation is valid for architectures which split the
248 * range addressed by a single page table into a low and high region
249 * based on the MSB of the VA. On architectures with this behavior
250 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
251 */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)252 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
253 {
254 sparsebit_set_num(vm->vpages_valid,
255 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
256 sparsebit_set_num(vm->vpages_valid,
257 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
258 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
259 }
260
____vm_create(struct vm_shape shape)261 struct kvm_vm *____vm_create(struct vm_shape shape)
262 {
263 struct kvm_vm *vm;
264
265 vm = calloc(1, sizeof(*vm));
266 TEST_ASSERT(vm != NULL, "Insufficient Memory");
267
268 INIT_LIST_HEAD(&vm->vcpus);
269 vm->regions.gpa_tree = RB_ROOT;
270 vm->regions.hva_tree = RB_ROOT;
271 hash_init(vm->regions.slot_hash);
272
273 vm->mode = shape.mode;
274 vm->type = shape.type;
275
276 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
277 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
278 vm->page_size = vm_guest_mode_params[vm->mode].page_size;
279 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
280
281 /* Setup mode specific traits. */
282 switch (vm->mode) {
283 case VM_MODE_P52V48_4K:
284 vm->pgtable_levels = 4;
285 break;
286 case VM_MODE_P52V48_64K:
287 vm->pgtable_levels = 3;
288 break;
289 case VM_MODE_P48V48_4K:
290 vm->pgtable_levels = 4;
291 break;
292 case VM_MODE_P48V48_64K:
293 vm->pgtable_levels = 3;
294 break;
295 case VM_MODE_P40V48_4K:
296 case VM_MODE_P36V48_4K:
297 vm->pgtable_levels = 4;
298 break;
299 case VM_MODE_P40V48_64K:
300 case VM_MODE_P36V48_64K:
301 vm->pgtable_levels = 3;
302 break;
303 case VM_MODE_P52V48_16K:
304 case VM_MODE_P48V48_16K:
305 case VM_MODE_P40V48_16K:
306 case VM_MODE_P36V48_16K:
307 vm->pgtable_levels = 4;
308 break;
309 case VM_MODE_P47V47_16K:
310 case VM_MODE_P36V47_16K:
311 vm->pgtable_levels = 3;
312 break;
313 case VM_MODE_PXXVYY_4K:
314 #ifdef __x86_64__
315 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
316 kvm_init_vm_address_properties(vm);
317
318 pr_debug("Guest physical address width detected: %d\n",
319 vm->pa_bits);
320 pr_debug("Guest virtual address width detected: %d\n",
321 vm->va_bits);
322
323 if (vm->va_bits == 57) {
324 vm->pgtable_levels = 5;
325 } else {
326 TEST_ASSERT(vm->va_bits == 48,
327 "Unexpected guest virtual address width: %d",
328 vm->va_bits);
329 vm->pgtable_levels = 4;
330 }
331 #else
332 TEST_FAIL("VM_MODE_PXXVYY_4K not supported on non-x86 platforms");
333 #endif
334 break;
335 case VM_MODE_P47V64_4K:
336 vm->pgtable_levels = 5;
337 break;
338 case VM_MODE_P44V64_4K:
339 vm->pgtable_levels = 5;
340 break;
341 default:
342 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
343 }
344
345 #ifdef __aarch64__
346 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
347 if (vm->pa_bits != 40)
348 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
349 #endif
350
351 vm_open(vm);
352
353 /* Limit to VA-bit canonical virtual addresses. */
354 vm->vpages_valid = sparsebit_alloc();
355 vm_vaddr_populate_bitmap(vm);
356
357 /* Limit physical addresses to PA-bits. */
358 vm->max_gfn = vm_compute_max_gfn(vm);
359
360 /* Allocate and setup memory for guest. */
361 vm->vpages_mapped = sparsebit_alloc();
362
363 return vm;
364 }
365
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)366 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
367 uint32_t nr_runnable_vcpus,
368 uint64_t extra_mem_pages)
369 {
370 uint64_t page_size = vm_guest_mode_params[mode].page_size;
371 uint64_t nr_pages;
372
373 TEST_ASSERT(nr_runnable_vcpus,
374 "Use vm_create_barebones() for VMs that _never_ have vCPUs");
375
376 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
377 "nr_vcpus = %d too large for host, max-vcpus = %d",
378 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
379
380 /*
381 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
382 * test code and other per-VM assets that will be loaded into memslot0.
383 */
384 nr_pages = 512;
385
386 /* Account for the per-vCPU stacks on behalf of the test. */
387 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
388
389 /*
390 * Account for the number of pages needed for the page tables. The
391 * maximum page table size for a memory region will be when the
392 * smallest page size is used. Considering each page contains x page
393 * table descriptors, the total extra size for page tables (for extra
394 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
395 * than N/x*2.
396 */
397 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
398
399 /* Account for the number of pages needed by ucall. */
400 nr_pages += ucall_nr_pages_required(page_size);
401
402 return vm_adjust_num_guest_pages(mode, nr_pages);
403 }
404
kvm_set_files_rlimit(uint32_t nr_vcpus)405 void kvm_set_files_rlimit(uint32_t nr_vcpus)
406 {
407 /*
408 * Each vCPU will open two file descriptors: the vCPU itself and the
409 * vCPU's binary stats file descriptor. Add an arbitrary amount of
410 * buffer for all other files a test may open.
411 */
412 int nr_fds_wanted = nr_vcpus * 2 + 100;
413 struct rlimit rl;
414
415 /*
416 * Check that we're allowed to open nr_fds_wanted file descriptors and
417 * try raising the limits if needed.
418 */
419 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
420
421 if (rl.rlim_cur < nr_fds_wanted) {
422 rl.rlim_cur = nr_fds_wanted;
423 if (rl.rlim_max < nr_fds_wanted) {
424 int old_rlim_max = rl.rlim_max;
425
426 rl.rlim_max = nr_fds_wanted;
427 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
428 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
429 old_rlim_max, nr_fds_wanted);
430 } else {
431 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
432 }
433 }
434
435 }
436
is_guest_memfd_required(struct vm_shape shape)437 static bool is_guest_memfd_required(struct vm_shape shape)
438 {
439 #ifdef __x86_64__
440 return shape.type == KVM_X86_SNP_VM;
441 #else
442 return false;
443 #endif
444 }
445
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)446 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
447 uint64_t nr_extra_pages)
448 {
449 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
450 nr_extra_pages);
451 struct userspace_mem_region *slot0;
452 struct kvm_vm *vm;
453 int i, flags;
454
455 kvm_set_files_rlimit(nr_runnable_vcpus);
456
457 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
458 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
459
460 vm = ____vm_create(shape);
461
462 /*
463 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
464 * for CoCo VMs that require GUEST_MEMFD backed private memory.
465 */
466 flags = 0;
467 if (is_guest_memfd_required(shape))
468 flags |= KVM_MEM_GUEST_MEMFD;
469
470 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
471 for (i = 0; i < NR_MEM_REGIONS; i++)
472 vm->memslots[i] = 0;
473
474 kvm_vm_elf_load(vm, program_invocation_name);
475
476 /*
477 * TODO: Add proper defines to protect the library's memslots, and then
478 * carve out memslot1 for the ucall MMIO address. KVM treats writes to
479 * read-only memslots as MMIO, and creating a read-only memslot for the
480 * MMIO region would prevent silently clobbering the MMIO region.
481 */
482 slot0 = memslot2region(vm, 0);
483 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
484
485 if (guest_random_seed != last_guest_seed) {
486 pr_info("Random seed: 0x%x\n", guest_random_seed);
487 last_guest_seed = guest_random_seed;
488 }
489 guest_rng = new_guest_random_state(guest_random_seed);
490 sync_global_to_guest(vm, guest_rng);
491
492 kvm_arch_vm_post_create(vm, nr_runnable_vcpus);
493
494 return vm;
495 }
496
497 /*
498 * VM Create with customized parameters
499 *
500 * Input Args:
501 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
502 * nr_vcpus - VCPU count
503 * extra_mem_pages - Non-slot0 physical memory total size
504 * guest_code - Guest entry point
505 * vcpuids - VCPU IDs
506 *
507 * Output Args: None
508 *
509 * Return:
510 * Pointer to opaque structure that describes the created VM.
511 *
512 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
513 * extra_mem_pages is only used to calculate the maximum page table size,
514 * no real memory allocation for non-slot0 memory in this function.
515 */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])516 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
517 uint64_t extra_mem_pages,
518 void *guest_code, struct kvm_vcpu *vcpus[])
519 {
520 struct kvm_vm *vm;
521 int i;
522
523 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
524
525 vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
526
527 for (i = 0; i < nr_vcpus; ++i)
528 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
529
530 kvm_arch_vm_finalize_vcpus(vm);
531 return vm;
532 }
533
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)534 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
535 struct kvm_vcpu **vcpu,
536 uint64_t extra_mem_pages,
537 void *guest_code)
538 {
539 struct kvm_vcpu *vcpus[1];
540 struct kvm_vm *vm;
541
542 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
543
544 *vcpu = vcpus[0];
545 return vm;
546 }
547
548 /*
549 * VM Restart
550 *
551 * Input Args:
552 * vm - VM that has been released before
553 *
554 * Output Args: None
555 *
556 * Reopens the file descriptors associated to the VM and reinstates the
557 * global state, such as the irqchip and the memory regions that are mapped
558 * into the guest.
559 */
kvm_vm_restart(struct kvm_vm * vmp)560 void kvm_vm_restart(struct kvm_vm *vmp)
561 {
562 int ctr;
563 struct userspace_mem_region *region;
564
565 vm_open(vmp);
566 if (vmp->has_irqchip)
567 vm_create_irqchip(vmp);
568
569 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
570 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
571
572 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
573 " rc: %i errno: %i\n"
574 " slot: %u flags: 0x%x\n"
575 " guest_phys_addr: 0x%llx size: 0x%llx",
576 ret, errno, region->region.slot,
577 region->region.flags,
578 region->region.guest_phys_addr,
579 region->region.memory_size);
580 }
581 }
582
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)583 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
584 uint32_t vcpu_id)
585 {
586 return __vm_vcpu_add(vm, vcpu_id);
587 }
588
vm_recreate_with_one_vcpu(struct kvm_vm * vm)589 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
590 {
591 kvm_vm_restart(vm);
592
593 return vm_vcpu_recreate(vm, 0);
594 }
595
__pin_task_to_cpu(pthread_t task,int cpu)596 int __pin_task_to_cpu(pthread_t task, int cpu)
597 {
598 cpu_set_t cpuset;
599
600 CPU_ZERO(&cpuset);
601 CPU_SET(cpu, &cpuset);
602
603 return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset);
604 }
605
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)606 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
607 {
608 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
609
610 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
611 "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
612 return pcpu;
613 }
614
kvm_print_vcpu_pinning_help(void)615 void kvm_print_vcpu_pinning_help(void)
616 {
617 const char *name = program_invocation_name;
618
619 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n"
620 " values (target pCPU), one for each vCPU, plus an optional\n"
621 " entry for the main application task (specified via entry\n"
622 " <nr_vcpus + 1>). If used, entries must be provided for all\n"
623 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
624 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
625 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
626 " %s -v 3 -c 22,23,24,50\n\n"
627 " To leave the application task unpinned, drop the final entry:\n\n"
628 " %s -v 3 -c 22,23,24\n\n"
629 " (default: no pinning)\n", name, name);
630 }
631
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)632 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
633 int nr_vcpus)
634 {
635 cpu_set_t allowed_mask;
636 char *cpu, *cpu_list;
637 char delim[2] = ",";
638 int i, r;
639
640 cpu_list = strdup(pcpus_string);
641 TEST_ASSERT(cpu_list, "strdup() allocation failed.");
642
643 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
644 TEST_ASSERT(!r, "sched_getaffinity() failed");
645
646 cpu = strtok(cpu_list, delim);
647
648 /* 1. Get all pcpus for vcpus. */
649 for (i = 0; i < nr_vcpus; i++) {
650 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
651 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
652 cpu = strtok(NULL, delim);
653 }
654
655 /* 2. Check if the main worker needs to be pinned. */
656 if (cpu) {
657 pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask));
658 cpu = strtok(NULL, delim);
659 }
660
661 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
662 free(cpu_list);
663 }
664
665 /*
666 * Userspace Memory Region Find
667 *
668 * Input Args:
669 * vm - Virtual Machine
670 * start - Starting VM physical address
671 * end - Ending VM physical address, inclusive.
672 *
673 * Output Args: None
674 *
675 * Return:
676 * Pointer to overlapping region, NULL if no such region.
677 *
678 * Searches for a region with any physical memory that overlaps with
679 * any portion of the guest physical addresses from start to end
680 * inclusive. If multiple overlapping regions exist, a pointer to any
681 * of the regions is returned. Null is returned only when no overlapping
682 * region exists.
683 */
684 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)685 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
686 {
687 struct rb_node *node;
688
689 for (node = vm->regions.gpa_tree.rb_node; node; ) {
690 struct userspace_mem_region *region =
691 container_of(node, struct userspace_mem_region, gpa_node);
692 uint64_t existing_start = region->region.guest_phys_addr;
693 uint64_t existing_end = region->region.guest_phys_addr
694 + region->region.memory_size - 1;
695 if (start <= existing_end && end >= existing_start)
696 return region;
697
698 if (start < existing_start)
699 node = node->rb_left;
700 else
701 node = node->rb_right;
702 }
703
704 return NULL;
705 }
706
kvm_stats_release(struct kvm_binary_stats * stats)707 static void kvm_stats_release(struct kvm_binary_stats *stats)
708 {
709 if (stats->fd < 0)
710 return;
711
712 if (stats->desc) {
713 free(stats->desc);
714 stats->desc = NULL;
715 }
716
717 kvm_close(stats->fd);
718 stats->fd = -1;
719 }
720
vcpu_arch_free(struct kvm_vcpu * vcpu)721 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
722 {
723
724 }
725
726 /*
727 * VM VCPU Remove
728 *
729 * Input Args:
730 * vcpu - VCPU to remove
731 *
732 * Output Args: None
733 *
734 * Return: None, TEST_ASSERT failures for all error conditions
735 *
736 * Removes a vCPU from a VM and frees its resources.
737 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)738 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
739 {
740 if (vcpu->dirty_gfns) {
741 kvm_munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
742 vcpu->dirty_gfns = NULL;
743 }
744
745 kvm_munmap(vcpu->run, vcpu_mmap_sz());
746
747 kvm_close(vcpu->fd);
748 kvm_stats_release(&vcpu->stats);
749
750 list_del(&vcpu->list);
751
752 vcpu_arch_free(vcpu);
753 free(vcpu);
754 }
755
kvm_vm_release(struct kvm_vm * vmp)756 void kvm_vm_release(struct kvm_vm *vmp)
757 {
758 struct kvm_vcpu *vcpu, *tmp;
759
760 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
761 vm_vcpu_rm(vmp, vcpu);
762
763 kvm_close(vmp->fd);
764 kvm_close(vmp->kvm_fd);
765
766 /* Free cached stats metadata and close FD */
767 kvm_stats_release(&vmp->stats);
768
769 kvm_arch_vm_release(vmp);
770 }
771
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)772 static void __vm_mem_region_delete(struct kvm_vm *vm,
773 struct userspace_mem_region *region)
774 {
775 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
776 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
777 hash_del(®ion->slot_node);
778
779 sparsebit_free(®ion->unused_phy_pages);
780 sparsebit_free(®ion->protected_phy_pages);
781 kvm_munmap(region->mmap_start, region->mmap_size);
782 if (region->fd >= 0) {
783 /* There's an extra map when using shared memory. */
784 kvm_munmap(region->mmap_alias, region->mmap_size);
785 close(region->fd);
786 }
787 if (region->region.guest_memfd >= 0)
788 close(region->region.guest_memfd);
789
790 free(region);
791 }
792
793 /*
794 * Destroys and frees the VM pointed to by vmp.
795 */
kvm_vm_free(struct kvm_vm * vmp)796 void kvm_vm_free(struct kvm_vm *vmp)
797 {
798 int ctr;
799 struct hlist_node *node;
800 struct userspace_mem_region *region;
801
802 if (vmp == NULL)
803 return;
804
805 /* Free userspace_mem_regions. */
806 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
807 __vm_mem_region_delete(vmp, region);
808
809 /* Free sparsebit arrays. */
810 sparsebit_free(&vmp->vpages_valid);
811 sparsebit_free(&vmp->vpages_mapped);
812
813 kvm_vm_release(vmp);
814
815 /* Free the structure describing the VM. */
816 free(vmp);
817 }
818
kvm_memfd_alloc(size_t size,bool hugepages)819 int kvm_memfd_alloc(size_t size, bool hugepages)
820 {
821 int memfd_flags = MFD_CLOEXEC;
822 int fd;
823
824 if (hugepages)
825 memfd_flags |= MFD_HUGETLB;
826
827 fd = memfd_create("kvm_selftest", memfd_flags);
828 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
829
830 kvm_ftruncate(fd, size);
831 kvm_fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
832
833 return fd;
834 }
835
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)836 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
837 struct userspace_mem_region *region)
838 {
839 struct rb_node **cur, *parent;
840
841 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
842 struct userspace_mem_region *cregion;
843
844 cregion = container_of(*cur, typeof(*cregion), gpa_node);
845 parent = *cur;
846 if (region->region.guest_phys_addr <
847 cregion->region.guest_phys_addr)
848 cur = &(*cur)->rb_left;
849 else {
850 TEST_ASSERT(region->region.guest_phys_addr !=
851 cregion->region.guest_phys_addr,
852 "Duplicate GPA in region tree");
853
854 cur = &(*cur)->rb_right;
855 }
856 }
857
858 rb_link_node(®ion->gpa_node, parent, cur);
859 rb_insert_color(®ion->gpa_node, gpa_tree);
860 }
861
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)862 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
863 struct userspace_mem_region *region)
864 {
865 struct rb_node **cur, *parent;
866
867 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
868 struct userspace_mem_region *cregion;
869
870 cregion = container_of(*cur, typeof(*cregion), hva_node);
871 parent = *cur;
872 if (region->host_mem < cregion->host_mem)
873 cur = &(*cur)->rb_left;
874 else {
875 TEST_ASSERT(region->host_mem !=
876 cregion->host_mem,
877 "Duplicate HVA in region tree");
878
879 cur = &(*cur)->rb_right;
880 }
881 }
882
883 rb_link_node(®ion->hva_node, parent, cur);
884 rb_insert_color(®ion->hva_node, hva_tree);
885 }
886
887
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)888 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
889 uint64_t gpa, uint64_t size, void *hva)
890 {
891 struct kvm_userspace_memory_region region = {
892 .slot = slot,
893 .flags = flags,
894 .guest_phys_addr = gpa,
895 .memory_size = size,
896 .userspace_addr = (uintptr_t)hva,
897 };
898
899 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
900 }
901
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)902 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
903 uint64_t gpa, uint64_t size, void *hva)
904 {
905 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
906
907 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
908 errno, strerror(errno));
909 }
910
911 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \
912 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \
913 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
914
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)915 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
916 uint64_t gpa, uint64_t size, void *hva,
917 uint32_t guest_memfd, uint64_t guest_memfd_offset)
918 {
919 struct kvm_userspace_memory_region2 region = {
920 .slot = slot,
921 .flags = flags,
922 .guest_phys_addr = gpa,
923 .memory_size = size,
924 .userspace_addr = (uintptr_t)hva,
925 .guest_memfd = guest_memfd,
926 .guest_memfd_offset = guest_memfd_offset,
927 };
928
929 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
930
931 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion);
932 }
933
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)934 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
935 uint64_t gpa, uint64_t size, void *hva,
936 uint32_t guest_memfd, uint64_t guest_memfd_offset)
937 {
938 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
939 guest_memfd, guest_memfd_offset);
940
941 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
942 errno, strerror(errno));
943 }
944
945
946 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t gpa,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)947 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
948 uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags,
949 int guest_memfd, uint64_t guest_memfd_offset)
950 {
951 int ret;
952 struct userspace_mem_region *region;
953 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
954 size_t mem_size = npages * vm->page_size;
955 size_t alignment;
956
957 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
958
959 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
960 "Number of guest pages is not compatible with the host. "
961 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
962
963 TEST_ASSERT((gpa % vm->page_size) == 0, "Guest physical "
964 "address not on a page boundary.\n"
965 " gpa: 0x%lx vm->page_size: 0x%x",
966 gpa, vm->page_size);
967 TEST_ASSERT((((gpa >> vm->page_shift) + npages) - 1)
968 <= vm->max_gfn, "Physical range beyond maximum "
969 "supported physical address,\n"
970 " gpa: 0x%lx npages: 0x%lx\n"
971 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
972 gpa, npages, vm->max_gfn, vm->page_size);
973
974 /*
975 * Confirm a mem region with an overlapping address doesn't
976 * already exist.
977 */
978 region = (struct userspace_mem_region *) userspace_mem_region_find(
979 vm, gpa, (gpa + npages * vm->page_size) - 1);
980 if (region != NULL)
981 TEST_FAIL("overlapping userspace_mem_region already "
982 "exists\n"
983 " requested gpa: 0x%lx npages: 0x%lx page_size: 0x%x\n"
984 " existing gpa: 0x%lx size: 0x%lx",
985 gpa, npages, vm->page_size,
986 (uint64_t) region->region.guest_phys_addr,
987 (uint64_t) region->region.memory_size);
988
989 /* Confirm no region with the requested slot already exists. */
990 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
991 slot) {
992 if (region->region.slot != slot)
993 continue;
994
995 TEST_FAIL("A mem region with the requested slot "
996 "already exists.\n"
997 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
998 " existing slot: %u paddr: 0x%lx size: 0x%lx",
999 slot, gpa, npages, region->region.slot,
1000 (uint64_t) region->region.guest_phys_addr,
1001 (uint64_t) region->region.memory_size);
1002 }
1003
1004 /* Allocate and initialize new mem region structure. */
1005 region = calloc(1, sizeof(*region));
1006 TEST_ASSERT(region != NULL, "Insufficient Memory");
1007 region->mmap_size = mem_size;
1008
1009 #ifdef __s390x__
1010 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1011 alignment = 0x100000;
1012 #else
1013 alignment = 1;
1014 #endif
1015
1016 /*
1017 * When using THP mmap is not guaranteed to returned a hugepage aligned
1018 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1019 * because mmap will always return an address aligned to the HugeTLB
1020 * page size.
1021 */
1022 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1023 alignment = max(backing_src_pagesz, alignment);
1024
1025 TEST_ASSERT_EQ(gpa, align_up(gpa, backing_src_pagesz));
1026
1027 /* Add enough memory to align up if necessary */
1028 if (alignment > 1)
1029 region->mmap_size += alignment;
1030
1031 region->fd = -1;
1032 if (backing_src_is_shared(src_type))
1033 region->fd = kvm_memfd_alloc(region->mmap_size,
1034 src_type == VM_MEM_SRC_SHARED_HUGETLB);
1035
1036 region->mmap_start = kvm_mmap(region->mmap_size, PROT_READ | PROT_WRITE,
1037 vm_mem_backing_src_alias(src_type)->flag,
1038 region->fd);
1039
1040 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1041 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1042 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1043 region->mmap_start, backing_src_pagesz);
1044
1045 /* Align host address */
1046 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1047
1048 /* As needed perform madvise */
1049 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1050 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1051 ret = madvise(region->host_mem, mem_size,
1052 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1053 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1054 region->host_mem, mem_size,
1055 vm_mem_backing_src_alias(src_type)->name);
1056 }
1057
1058 region->backing_src_type = src_type;
1059
1060 if (flags & KVM_MEM_GUEST_MEMFD) {
1061 if (guest_memfd < 0) {
1062 uint32_t guest_memfd_flags = 0;
1063 TEST_ASSERT(!guest_memfd_offset,
1064 "Offset must be zero when creating new guest_memfd");
1065 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1066 } else {
1067 /*
1068 * Install a unique fd for each memslot so that the fd
1069 * can be closed when the region is deleted without
1070 * needing to track if the fd is owned by the framework
1071 * or by the caller.
1072 */
1073 guest_memfd = kvm_dup(guest_memfd);
1074 }
1075
1076 region->region.guest_memfd = guest_memfd;
1077 region->region.guest_memfd_offset = guest_memfd_offset;
1078 } else {
1079 region->region.guest_memfd = -1;
1080 }
1081
1082 region->unused_phy_pages = sparsebit_alloc();
1083 if (vm_arch_has_protected_memory(vm))
1084 region->protected_phy_pages = sparsebit_alloc();
1085 sparsebit_set_num(region->unused_phy_pages, gpa >> vm->page_shift, npages);
1086 region->region.slot = slot;
1087 region->region.flags = flags;
1088 region->region.guest_phys_addr = gpa;
1089 region->region.memory_size = npages * vm->page_size;
1090 region->region.userspace_addr = (uintptr_t) region->host_mem;
1091 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1092 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1093 " rc: %i errno: %i\n"
1094 " slot: %u flags: 0x%x\n"
1095 " guest_phys_addr: 0x%lx size: 0x%llx guest_memfd: %d",
1096 ret, errno, slot, flags, gpa, region->region.memory_size,
1097 region->region.guest_memfd);
1098
1099 /* Add to quick lookup data structures */
1100 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1101 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1102 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1103
1104 /* If shared memory, create an alias. */
1105 if (region->fd >= 0) {
1106 region->mmap_alias = kvm_mmap(region->mmap_size,
1107 PROT_READ | PROT_WRITE,
1108 vm_mem_backing_src_alias(src_type)->flag,
1109 region->fd);
1110
1111 /* Align host alias address */
1112 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1113 }
1114 }
1115
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t gpa,uint32_t slot,uint64_t npages,uint32_t flags)1116 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1117 enum vm_mem_backing_src_type src_type,
1118 uint64_t gpa, uint32_t slot, uint64_t npages,
1119 uint32_t flags)
1120 {
1121 vm_mem_add(vm, src_type, gpa, slot, npages, flags, -1, 0);
1122 }
1123
1124 /*
1125 * Memslot to region
1126 *
1127 * Input Args:
1128 * vm - Virtual Machine
1129 * memslot - KVM memory slot ID
1130 *
1131 * Output Args: None
1132 *
1133 * Return:
1134 * Pointer to memory region structure that describe memory region
1135 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1136 * on error (e.g. currently no memory region using memslot as a KVM
1137 * memory slot ID).
1138 */
1139 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1140 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1141 {
1142 struct userspace_mem_region *region;
1143
1144 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1145 memslot)
1146 if (region->region.slot == memslot)
1147 return region;
1148
1149 fprintf(stderr, "No mem region with the requested slot found,\n"
1150 " requested slot: %u\n", memslot);
1151 fputs("---- vm dump ----\n", stderr);
1152 vm_dump(stderr, vm, 2);
1153 TEST_FAIL("Mem region not found");
1154 return NULL;
1155 }
1156
1157 /*
1158 * VM Memory Region Flags Set
1159 *
1160 * Input Args:
1161 * vm - Virtual Machine
1162 * flags - Starting guest physical address
1163 *
1164 * Output Args: None
1165 *
1166 * Return: None
1167 *
1168 * Sets the flags of the memory region specified by the value of slot,
1169 * to the values given by flags.
1170 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1171 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1172 {
1173 int ret;
1174 struct userspace_mem_region *region;
1175
1176 region = memslot2region(vm, slot);
1177
1178 region->region.flags = flags;
1179
1180 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1181
1182 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1183 " rc: %i errno: %i slot: %u flags: 0x%x",
1184 ret, errno, slot, flags);
1185 }
1186
vm_mem_region_reload(struct kvm_vm * vm,uint32_t slot)1187 void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot)
1188 {
1189 struct userspace_mem_region *region = memslot2region(vm, slot);
1190 struct kvm_userspace_memory_region2 tmp = region->region;
1191
1192 tmp.memory_size = 0;
1193 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &tmp);
1194 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1195 }
1196
1197 /*
1198 * VM Memory Region Move
1199 *
1200 * Input Args:
1201 * vm - Virtual Machine
1202 * slot - Slot of the memory region to move
1203 * new_gpa - Starting guest physical address
1204 *
1205 * Output Args: None
1206 *
1207 * Return: None
1208 *
1209 * Change the gpa of a memory region.
1210 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1211 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1212 {
1213 struct userspace_mem_region *region;
1214 int ret;
1215
1216 region = memslot2region(vm, slot);
1217
1218 region->region.guest_phys_addr = new_gpa;
1219
1220 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1221
1222 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1223 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1224 ret, errno, slot, new_gpa);
1225 }
1226
1227 /*
1228 * VM Memory Region Delete
1229 *
1230 * Input Args:
1231 * vm - Virtual Machine
1232 * slot - Slot of the memory region to delete
1233 *
1234 * Output Args: None
1235 *
1236 * Return: None
1237 *
1238 * Delete a memory region.
1239 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1240 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1241 {
1242 struct userspace_mem_region *region = memslot2region(vm, slot);
1243
1244 region->region.memory_size = 0;
1245 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1246
1247 __vm_mem_region_delete(vm, region);
1248 }
1249
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1250 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1251 bool punch_hole)
1252 {
1253 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1254 struct userspace_mem_region *region;
1255 uint64_t end = base + size;
1256 uint64_t gpa, len;
1257 off_t fd_offset;
1258 int ret;
1259
1260 for (gpa = base; gpa < end; gpa += len) {
1261 uint64_t offset;
1262
1263 region = userspace_mem_region_find(vm, gpa, gpa);
1264 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1265 "Private memory region not found for GPA 0x%lx", gpa);
1266
1267 offset = gpa - region->region.guest_phys_addr;
1268 fd_offset = region->region.guest_memfd_offset + offset;
1269 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1270
1271 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1272 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1273 punch_hole ? "punch hole" : "allocate", gpa, len,
1274 region->region.guest_memfd, mode, fd_offset);
1275 }
1276 }
1277
1278 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1279 static size_t vcpu_mmap_sz(void)
1280 {
1281 int dev_fd, ret;
1282
1283 dev_fd = open_kvm_dev_path_or_exit();
1284
1285 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1286 TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run),
1287 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1288
1289 close(dev_fd);
1290
1291 return ret;
1292 }
1293
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1294 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1295 {
1296 struct kvm_vcpu *vcpu;
1297
1298 list_for_each_entry(vcpu, &vm->vcpus, list) {
1299 if (vcpu->id == vcpu_id)
1300 return true;
1301 }
1302
1303 return false;
1304 }
1305
1306 /*
1307 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1308 * No additional vCPU setup is done. Returns the vCPU.
1309 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1310 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1311 {
1312 struct kvm_vcpu *vcpu;
1313
1314 /* Confirm a vcpu with the specified id doesn't already exist. */
1315 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1316
1317 /* Allocate and initialize new vcpu structure. */
1318 vcpu = calloc(1, sizeof(*vcpu));
1319 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1320
1321 vcpu->vm = vm;
1322 vcpu->id = vcpu_id;
1323 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1324 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1325
1326 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1327 "smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi",
1328 vcpu_mmap_sz(), sizeof(*vcpu->run));
1329 vcpu->run = kvm_mmap(vcpu_mmap_sz(), PROT_READ | PROT_WRITE,
1330 MAP_SHARED, vcpu->fd);
1331
1332 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1333 vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1334 else
1335 vcpu->stats.fd = -1;
1336
1337 /* Add to linked-list of VCPUs. */
1338 list_add(&vcpu->list, &vm->vcpus);
1339
1340 return vcpu;
1341 }
1342
1343 /*
1344 * VM Virtual Address Unused Gap
1345 *
1346 * Input Args:
1347 * vm - Virtual Machine
1348 * sz - Size (bytes)
1349 * vaddr_min - Minimum Virtual Address
1350 *
1351 * Output Args: None
1352 *
1353 * Return:
1354 * Lowest virtual address at or below vaddr_min, with at least
1355 * sz unused bytes. TEST_ASSERT failure if no area of at least
1356 * size sz is available.
1357 *
1358 * Within the VM specified by vm, locates the lowest starting virtual
1359 * address >= vaddr_min, that has at least sz unallocated bytes. A
1360 * TEST_ASSERT failure occurs for invalid input or no area of at least
1361 * sz unallocated bytes >= vaddr_min is available.
1362 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1363 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1364 vm_vaddr_t vaddr_min)
1365 {
1366 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1367
1368 /* Determine lowest permitted virtual page index. */
1369 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1370 if ((pgidx_start * vm->page_size) < vaddr_min)
1371 goto no_va_found;
1372
1373 /* Loop over section with enough valid virtual page indexes. */
1374 if (!sparsebit_is_set_num(vm->vpages_valid,
1375 pgidx_start, pages))
1376 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1377 pgidx_start, pages);
1378 do {
1379 /*
1380 * Are there enough unused virtual pages available at
1381 * the currently proposed starting virtual page index.
1382 * If not, adjust proposed starting index to next
1383 * possible.
1384 */
1385 if (sparsebit_is_clear_num(vm->vpages_mapped,
1386 pgidx_start, pages))
1387 goto va_found;
1388 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1389 pgidx_start, pages);
1390 if (pgidx_start == 0)
1391 goto no_va_found;
1392
1393 /*
1394 * If needed, adjust proposed starting virtual address,
1395 * to next range of valid virtual addresses.
1396 */
1397 if (!sparsebit_is_set_num(vm->vpages_valid,
1398 pgidx_start, pages)) {
1399 pgidx_start = sparsebit_next_set_num(
1400 vm->vpages_valid, pgidx_start, pages);
1401 if (pgidx_start == 0)
1402 goto no_va_found;
1403 }
1404 } while (pgidx_start != 0);
1405
1406 no_va_found:
1407 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1408
1409 /* NOT REACHED */
1410 return -1;
1411
1412 va_found:
1413 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1414 pgidx_start, pages),
1415 "Unexpected, invalid virtual page index range,\n"
1416 " pgidx_start: 0x%lx\n"
1417 " pages: 0x%lx",
1418 pgidx_start, pages);
1419 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1420 pgidx_start, pages),
1421 "Unexpected, pages already mapped,\n"
1422 " pgidx_start: 0x%lx\n"
1423 " pages: 0x%lx",
1424 pgidx_start, pages);
1425
1426 return pgidx_start * vm->page_size;
1427 }
1428
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1429 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1430 vm_vaddr_t vaddr_min,
1431 enum kvm_mem_region_type type,
1432 bool protected)
1433 {
1434 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1435
1436 virt_pgd_alloc(vm);
1437 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1438 KVM_UTIL_MIN_PFN * vm->page_size,
1439 vm->memslots[type], protected);
1440
1441 /*
1442 * Find an unused range of virtual page addresses of at least
1443 * pages in length.
1444 */
1445 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1446
1447 /* Map the virtual pages. */
1448 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1449 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1450
1451 virt_pg_map(vm, vaddr, paddr);
1452 }
1453
1454 return vaddr_start;
1455 }
1456
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1457 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1458 enum kvm_mem_region_type type)
1459 {
1460 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1461 vm_arch_has_protected_memory(vm));
1462 }
1463
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1464 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1465 vm_vaddr_t vaddr_min,
1466 enum kvm_mem_region_type type)
1467 {
1468 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1469 }
1470
1471 /*
1472 * VM Virtual Address Allocate
1473 *
1474 * Input Args:
1475 * vm - Virtual Machine
1476 * sz - Size in bytes
1477 * vaddr_min - Minimum starting virtual address
1478 *
1479 * Output Args: None
1480 *
1481 * Return:
1482 * Starting guest virtual address
1483 *
1484 * Allocates at least sz bytes within the virtual address space of the vm
1485 * given by vm. The allocated bytes are mapped to a virtual address >=
1486 * the address given by vaddr_min. Note that each allocation uses a
1487 * a unique set of pages, with the minimum real allocation being at least
1488 * a page. The allocated physical space comes from the TEST_DATA memory region.
1489 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1490 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1491 {
1492 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1493 }
1494
1495 /*
1496 * VM Virtual Address Allocate Pages
1497 *
1498 * Input Args:
1499 * vm - Virtual Machine
1500 *
1501 * Output Args: None
1502 *
1503 * Return:
1504 * Starting guest virtual address
1505 *
1506 * Allocates at least N system pages worth of bytes within the virtual address
1507 * space of the vm.
1508 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1509 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1510 {
1511 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1512 }
1513
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1514 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1515 {
1516 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1517 }
1518
1519 /*
1520 * VM Virtual Address Allocate Page
1521 *
1522 * Input Args:
1523 * vm - Virtual Machine
1524 *
1525 * Output Args: None
1526 *
1527 * Return:
1528 * Starting guest virtual address
1529 *
1530 * Allocates at least one system page worth of bytes within the virtual address
1531 * space of the vm.
1532 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1533 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1534 {
1535 return vm_vaddr_alloc_pages(vm, 1);
1536 }
1537
1538 /*
1539 * Map a range of VM virtual address to the VM's physical address
1540 *
1541 * Input Args:
1542 * vm - Virtual Machine
1543 * vaddr - Virtuall address to map
1544 * paddr - VM Physical Address
1545 * npages - The number of pages to map
1546 *
1547 * Output Args: None
1548 *
1549 * Return: None
1550 *
1551 * Within the VM given by @vm, creates a virtual translation for
1552 * @npages starting at @vaddr to the page range starting at @paddr.
1553 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1554 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1555 unsigned int npages)
1556 {
1557 size_t page_size = vm->page_size;
1558 size_t size = npages * page_size;
1559
1560 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1561 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1562
1563 while (npages--) {
1564 virt_pg_map(vm, vaddr, paddr);
1565
1566 vaddr += page_size;
1567 paddr += page_size;
1568 }
1569 }
1570
1571 /*
1572 * Address VM Physical to Host Virtual
1573 *
1574 * Input Args:
1575 * vm - Virtual Machine
1576 * gpa - VM physical address
1577 *
1578 * Output Args: None
1579 *
1580 * Return:
1581 * Equivalent host virtual address
1582 *
1583 * Locates the memory region containing the VM physical address given
1584 * by gpa, within the VM given by vm. When found, the host virtual
1585 * address providing the memory to the vm physical address is returned.
1586 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1587 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1588 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1589 {
1590 struct userspace_mem_region *region;
1591
1592 gpa = vm_untag_gpa(vm, gpa);
1593
1594 region = userspace_mem_region_find(vm, gpa, gpa);
1595 if (!region) {
1596 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1597 return NULL;
1598 }
1599
1600 return (void *)((uintptr_t)region->host_mem
1601 + (gpa - region->region.guest_phys_addr));
1602 }
1603
1604 /*
1605 * Address Host Virtual to VM Physical
1606 *
1607 * Input Args:
1608 * vm - Virtual Machine
1609 * hva - Host virtual address
1610 *
1611 * Output Args: None
1612 *
1613 * Return:
1614 * Equivalent VM physical address
1615 *
1616 * Locates the memory region containing the host virtual address given
1617 * by hva, within the VM given by vm. When found, the equivalent
1618 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1619 * region containing hva exists.
1620 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1621 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1622 {
1623 struct rb_node *node;
1624
1625 for (node = vm->regions.hva_tree.rb_node; node; ) {
1626 struct userspace_mem_region *region =
1627 container_of(node, struct userspace_mem_region, hva_node);
1628
1629 if (hva >= region->host_mem) {
1630 if (hva <= (region->host_mem
1631 + region->region.memory_size - 1))
1632 return (vm_paddr_t)((uintptr_t)
1633 region->region.guest_phys_addr
1634 + (hva - (uintptr_t)region->host_mem));
1635
1636 node = node->rb_right;
1637 } else
1638 node = node->rb_left;
1639 }
1640
1641 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1642 return -1;
1643 }
1644
1645 /*
1646 * Address VM physical to Host Virtual *alias*.
1647 *
1648 * Input Args:
1649 * vm - Virtual Machine
1650 * gpa - VM physical address
1651 *
1652 * Output Args: None
1653 *
1654 * Return:
1655 * Equivalent address within the host virtual *alias* area, or NULL
1656 * (without failing the test) if the guest memory is not shared (so
1657 * no alias exists).
1658 *
1659 * Create a writable, shared virtual=>physical alias for the specific GPA.
1660 * The primary use case is to allow the host selftest to manipulate guest
1661 * memory without mapping said memory in the guest's address space. And, for
1662 * userfaultfd-based demand paging, to do so without triggering userfaults.
1663 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1664 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1665 {
1666 struct userspace_mem_region *region;
1667 uintptr_t offset;
1668
1669 region = userspace_mem_region_find(vm, gpa, gpa);
1670 if (!region)
1671 return NULL;
1672
1673 if (!region->host_alias)
1674 return NULL;
1675
1676 offset = gpa - region->region.guest_phys_addr;
1677 return (void *) ((uintptr_t) region->host_alias + offset);
1678 }
1679
1680 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1681 void vm_create_irqchip(struct kvm_vm *vm)
1682 {
1683 int r;
1684
1685 /*
1686 * Allocate a fully in-kernel IRQ chip by default, but fall back to a
1687 * split model (x86 only) if that fails (KVM x86 allows compiling out
1688 * support for KVM_CREATE_IRQCHIP).
1689 */
1690 r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1691 if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP))
1692 vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24);
1693 else
1694 TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm);
1695
1696 vm->has_irqchip = true;
1697 }
1698
_vcpu_run(struct kvm_vcpu * vcpu)1699 int _vcpu_run(struct kvm_vcpu *vcpu)
1700 {
1701 int rc;
1702
1703 do {
1704 rc = __vcpu_run(vcpu);
1705 } while (rc == -1 && errno == EINTR);
1706
1707 if (!rc)
1708 assert_on_unhandled_exception(vcpu);
1709
1710 return rc;
1711 }
1712
1713 /*
1714 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1715 * Assert if the KVM returns an error (other than -EINTR).
1716 */
vcpu_run(struct kvm_vcpu * vcpu)1717 void vcpu_run(struct kvm_vcpu *vcpu)
1718 {
1719 int ret = _vcpu_run(vcpu);
1720
1721 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1722 }
1723
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1724 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1725 {
1726 int ret;
1727
1728 vcpu->run->immediate_exit = 1;
1729 ret = __vcpu_run(vcpu);
1730 vcpu->run->immediate_exit = 0;
1731
1732 TEST_ASSERT(ret == -1 && errno == EINTR,
1733 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1734 ret, errno);
1735 }
1736
1737 /*
1738 * Get the list of guest registers which are supported for
1739 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1740 * it is the caller's responsibility to free the list.
1741 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1742 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1743 {
1744 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1745 int ret;
1746
1747 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1748 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1749
1750 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1751 reg_list->n = reg_list_n.n;
1752 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1753 return reg_list;
1754 }
1755
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1756 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1757 {
1758 uint32_t page_size = getpagesize();
1759 uint32_t size = vcpu->vm->dirty_ring_size;
1760
1761 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1762
1763 if (!vcpu->dirty_gfns) {
1764 void *addr;
1765
1766 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1767 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1768 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1769
1770 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1771 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1772 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1773
1774 addr = __kvm_mmap(size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1775 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1776
1777 vcpu->dirty_gfns = addr;
1778 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1779 }
1780
1781 return vcpu->dirty_gfns;
1782 }
1783
1784 /*
1785 * Device Ioctl
1786 */
1787
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1788 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1789 {
1790 struct kvm_device_attr attribute = {
1791 .group = group,
1792 .attr = attr,
1793 .flags = 0,
1794 };
1795
1796 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1797 }
1798
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1799 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1800 {
1801 struct kvm_create_device create_dev = {
1802 .type = type,
1803 .flags = KVM_CREATE_DEVICE_TEST,
1804 };
1805
1806 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1807 }
1808
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1809 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1810 {
1811 struct kvm_create_device create_dev = {
1812 .type = type,
1813 .fd = -1,
1814 .flags = 0,
1815 };
1816 int err;
1817
1818 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1819 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1820 return err ? : create_dev.fd;
1821 }
1822
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1823 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1824 {
1825 struct kvm_device_attr kvmattr = {
1826 .group = group,
1827 .attr = attr,
1828 .flags = 0,
1829 .addr = (uintptr_t)val,
1830 };
1831
1832 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1833 }
1834
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1835 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1836 {
1837 struct kvm_device_attr kvmattr = {
1838 .group = group,
1839 .attr = attr,
1840 .flags = 0,
1841 .addr = (uintptr_t)val,
1842 };
1843
1844 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1845 }
1846
1847 /*
1848 * IRQ related functions.
1849 */
1850
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1851 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1852 {
1853 struct kvm_irq_level irq_level = {
1854 .irq = irq,
1855 .level = level,
1856 };
1857
1858 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1859 }
1860
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1861 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1862 {
1863 int ret = _kvm_irq_line(vm, irq, level);
1864
1865 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1866 }
1867
kvm_gsi_routing_create(void)1868 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1869 {
1870 struct kvm_irq_routing *routing;
1871 size_t size;
1872
1873 size = sizeof(struct kvm_irq_routing);
1874 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1875 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1876 routing = calloc(1, size);
1877 assert(routing);
1878
1879 return routing;
1880 }
1881
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1882 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1883 uint32_t gsi, uint32_t pin)
1884 {
1885 int i;
1886
1887 assert(routing);
1888 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1889
1890 i = routing->nr;
1891 routing->entries[i].gsi = gsi;
1892 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1893 routing->entries[i].flags = 0;
1894 routing->entries[i].u.irqchip.irqchip = 0;
1895 routing->entries[i].u.irqchip.pin = pin;
1896 routing->nr++;
1897 }
1898
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1899 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1900 {
1901 int ret;
1902
1903 assert(routing);
1904 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1905 free(routing);
1906
1907 return ret;
1908 }
1909
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1910 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1911 {
1912 int ret;
1913
1914 ret = _kvm_gsi_routing_write(vm, routing);
1915 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1916 }
1917
1918 /*
1919 * VM Dump
1920 *
1921 * Input Args:
1922 * vm - Virtual Machine
1923 * indent - Left margin indent amount
1924 *
1925 * Output Args:
1926 * stream - Output FILE stream
1927 *
1928 * Return: None
1929 *
1930 * Dumps the current state of the VM given by vm, to the FILE stream
1931 * given by stream.
1932 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1933 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1934 {
1935 int ctr;
1936 struct userspace_mem_region *region;
1937 struct kvm_vcpu *vcpu;
1938
1939 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1940 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1941 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1942 fprintf(stream, "%*sMem Regions:\n", indent, "");
1943 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1944 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1945 "host_virt: %p\n", indent + 2, "",
1946 (uint64_t) region->region.guest_phys_addr,
1947 (uint64_t) region->region.memory_size,
1948 region->host_mem);
1949 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1950 sparsebit_dump(stream, region->unused_phy_pages, 0);
1951 if (region->protected_phy_pages) {
1952 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1953 sparsebit_dump(stream, region->protected_phy_pages, 0);
1954 }
1955 }
1956 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1957 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1958 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1959 vm->pgd_created);
1960 if (vm->pgd_created) {
1961 fprintf(stream, "%*sVirtual Translation Tables:\n",
1962 indent + 2, "");
1963 virt_dump(stream, vm, indent + 4);
1964 }
1965 fprintf(stream, "%*sVCPUs:\n", indent, "");
1966
1967 list_for_each_entry(vcpu, &vm->vcpus, list)
1968 vcpu_dump(stream, vcpu, indent + 2);
1969 }
1970
1971 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1972
1973 /* Known KVM exit reasons */
1974 static struct exit_reason {
1975 unsigned int reason;
1976 const char *name;
1977 } exit_reasons_known[] = {
1978 KVM_EXIT_STRING(UNKNOWN),
1979 KVM_EXIT_STRING(EXCEPTION),
1980 KVM_EXIT_STRING(IO),
1981 KVM_EXIT_STRING(HYPERCALL),
1982 KVM_EXIT_STRING(DEBUG),
1983 KVM_EXIT_STRING(HLT),
1984 KVM_EXIT_STRING(MMIO),
1985 KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1986 KVM_EXIT_STRING(SHUTDOWN),
1987 KVM_EXIT_STRING(FAIL_ENTRY),
1988 KVM_EXIT_STRING(INTR),
1989 KVM_EXIT_STRING(SET_TPR),
1990 KVM_EXIT_STRING(TPR_ACCESS),
1991 KVM_EXIT_STRING(S390_SIEIC),
1992 KVM_EXIT_STRING(S390_RESET),
1993 KVM_EXIT_STRING(DCR),
1994 KVM_EXIT_STRING(NMI),
1995 KVM_EXIT_STRING(INTERNAL_ERROR),
1996 KVM_EXIT_STRING(OSI),
1997 KVM_EXIT_STRING(PAPR_HCALL),
1998 KVM_EXIT_STRING(S390_UCONTROL),
1999 KVM_EXIT_STRING(WATCHDOG),
2000 KVM_EXIT_STRING(S390_TSCH),
2001 KVM_EXIT_STRING(EPR),
2002 KVM_EXIT_STRING(SYSTEM_EVENT),
2003 KVM_EXIT_STRING(S390_STSI),
2004 KVM_EXIT_STRING(IOAPIC_EOI),
2005 KVM_EXIT_STRING(HYPERV),
2006 KVM_EXIT_STRING(ARM_NISV),
2007 KVM_EXIT_STRING(X86_RDMSR),
2008 KVM_EXIT_STRING(X86_WRMSR),
2009 KVM_EXIT_STRING(DIRTY_RING_FULL),
2010 KVM_EXIT_STRING(AP_RESET_HOLD),
2011 KVM_EXIT_STRING(X86_BUS_LOCK),
2012 KVM_EXIT_STRING(XEN),
2013 KVM_EXIT_STRING(RISCV_SBI),
2014 KVM_EXIT_STRING(RISCV_CSR),
2015 KVM_EXIT_STRING(NOTIFY),
2016 KVM_EXIT_STRING(LOONGARCH_IOCSR),
2017 KVM_EXIT_STRING(MEMORY_FAULT),
2018 KVM_EXIT_STRING(ARM_SEA),
2019 };
2020
2021 /*
2022 * Exit Reason String
2023 *
2024 * Input Args:
2025 * exit_reason - Exit reason
2026 *
2027 * Output Args: None
2028 *
2029 * Return:
2030 * Constant string pointer describing the exit reason.
2031 *
2032 * Locates and returns a constant string that describes the KVM exit
2033 * reason given by exit_reason. If no such string is found, a constant
2034 * string of "Unknown" is returned.
2035 */
exit_reason_str(unsigned int exit_reason)2036 const char *exit_reason_str(unsigned int exit_reason)
2037 {
2038 unsigned int n1;
2039
2040 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2041 if (exit_reason == exit_reasons_known[n1].reason)
2042 return exit_reasons_known[n1].name;
2043 }
2044
2045 return "Unknown";
2046 }
2047
2048 /*
2049 * Physical Contiguous Page Allocator
2050 *
2051 * Input Args:
2052 * vm - Virtual Machine
2053 * num - number of pages
2054 * paddr_min - Physical address minimum
2055 * memslot - Memory region to allocate page from
2056 * protected - True if the pages will be used as protected/private memory
2057 *
2058 * Output Args: None
2059 *
2060 * Return:
2061 * Starting physical address
2062 *
2063 * Within the VM specified by vm, locates a range of available physical
2064 * pages at or above paddr_min. If found, the pages are marked as in use
2065 * and their base address is returned. A TEST_ASSERT failure occurs if
2066 * not enough pages are available at or above paddr_min.
2067 */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2068 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2069 vm_paddr_t paddr_min, uint32_t memslot,
2070 bool protected)
2071 {
2072 struct userspace_mem_region *region;
2073 sparsebit_idx_t pg, base;
2074
2075 TEST_ASSERT(num > 0, "Must allocate at least one page");
2076
2077 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2078 "not divisible by page size.\n"
2079 " paddr_min: 0x%lx page_size: 0x%x",
2080 paddr_min, vm->page_size);
2081
2082 region = memslot2region(vm, memslot);
2083 TEST_ASSERT(!protected || region->protected_phy_pages,
2084 "Region doesn't support protected memory");
2085
2086 base = pg = paddr_min >> vm->page_shift;
2087 do {
2088 for (; pg < base + num; ++pg) {
2089 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2090 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2091 break;
2092 }
2093 }
2094 } while (pg && pg != base + num);
2095
2096 if (pg == 0) {
2097 fprintf(stderr, "No guest physical page available, "
2098 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2099 paddr_min, vm->page_size, memslot);
2100 fputs("---- vm dump ----\n", stderr);
2101 vm_dump(stderr, vm, 2);
2102 abort();
2103 }
2104
2105 for (pg = base; pg < base + num; ++pg) {
2106 sparsebit_clear(region->unused_phy_pages, pg);
2107 if (protected)
2108 sparsebit_set(region->protected_phy_pages, pg);
2109 }
2110
2111 return base * vm->page_size;
2112 }
2113
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2114 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2115 uint32_t memslot)
2116 {
2117 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2118 }
2119
vm_alloc_page_table(struct kvm_vm * vm)2120 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2121 {
2122 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2123 vm->memslots[MEM_REGION_PT]);
2124 }
2125
2126 /*
2127 * Address Guest Virtual to Host Virtual
2128 *
2129 * Input Args:
2130 * vm - Virtual Machine
2131 * gva - VM virtual address
2132 *
2133 * Output Args: None
2134 *
2135 * Return:
2136 * Equivalent host virtual address
2137 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2138 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2139 {
2140 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2141 }
2142
vm_compute_max_gfn(struct kvm_vm * vm)2143 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2144 {
2145 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2146 }
2147
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2148 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2149 unsigned int page_shift,
2150 unsigned int new_page_shift,
2151 bool ceil)
2152 {
2153 unsigned int n = 1 << (new_page_shift - page_shift);
2154
2155 if (page_shift >= new_page_shift)
2156 return num_pages * (1 << (page_shift - new_page_shift));
2157
2158 return num_pages / n + !!(ceil && num_pages % n);
2159 }
2160
getpageshift(void)2161 static inline int getpageshift(void)
2162 {
2163 return __builtin_ffs(getpagesize()) - 1;
2164 }
2165
2166 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2167 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2168 {
2169 return vm_calc_num_pages(num_guest_pages,
2170 vm_guest_mode_params[mode].page_shift,
2171 getpageshift(), true);
2172 }
2173
2174 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2175 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2176 {
2177 return vm_calc_num_pages(num_host_pages, getpageshift(),
2178 vm_guest_mode_params[mode].page_shift, false);
2179 }
2180
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2181 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2182 {
2183 unsigned int n;
2184 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2185 return vm_adjust_num_guest_pages(mode, n);
2186 }
2187
2188 /*
2189 * Read binary stats descriptors
2190 *
2191 * Input Args:
2192 * stats_fd - the file descriptor for the binary stats file from which to read
2193 * header - the binary stats metadata header corresponding to the given FD
2194 *
2195 * Output Args: None
2196 *
2197 * Return:
2198 * A pointer to a newly allocated series of stat descriptors.
2199 * Caller is responsible for freeing the returned kvm_stats_desc.
2200 *
2201 * Read the stats descriptors from the binary stats interface.
2202 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2203 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2204 struct kvm_stats_header *header)
2205 {
2206 struct kvm_stats_desc *stats_desc;
2207 ssize_t desc_size, total_size, ret;
2208
2209 desc_size = get_stats_descriptor_size(header);
2210 total_size = header->num_desc * desc_size;
2211
2212 stats_desc = calloc(header->num_desc, desc_size);
2213 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2214
2215 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2216 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2217
2218 return stats_desc;
2219 }
2220
2221 /*
2222 * Read stat data for a particular stat
2223 *
2224 * Input Args:
2225 * stats_fd - the file descriptor for the binary stats file from which to read
2226 * header - the binary stats metadata header corresponding to the given FD
2227 * desc - the binary stat metadata for the particular stat to be read
2228 * max_elements - the maximum number of 8-byte values to read into data
2229 *
2230 * Output Args:
2231 * data - the buffer into which stat data should be read
2232 *
2233 * Read the data values of a specified stat from the binary stats interface.
2234 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2235 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2236 struct kvm_stats_desc *desc, uint64_t *data,
2237 size_t max_elements)
2238 {
2239 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2240 size_t size = nr_elements * sizeof(*data);
2241 ssize_t ret;
2242
2243 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2244 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2245
2246 ret = pread(stats_fd, data, size,
2247 header->data_offset + desc->offset);
2248
2249 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2250 desc->name, errno, strerror(errno));
2251 TEST_ASSERT(ret == size,
2252 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2253 desc->name, size, ret);
2254 }
2255
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2256 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2257 uint64_t *data, size_t max_elements)
2258 {
2259 struct kvm_stats_desc *desc;
2260 size_t size_desc;
2261 int i;
2262
2263 if (!stats->desc) {
2264 read_stats_header(stats->fd, &stats->header);
2265 stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2266 }
2267
2268 size_desc = get_stats_descriptor_size(&stats->header);
2269
2270 for (i = 0; i < stats->header.num_desc; ++i) {
2271 desc = (void *)stats->desc + (i * size_desc);
2272
2273 if (strcmp(desc->name, name))
2274 continue;
2275
2276 read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2277 return;
2278 }
2279
2280 TEST_FAIL("Unable to find stat '%s'", name);
2281 }
2282
kvm_arch_vm_post_create(struct kvm_vm * vm,unsigned int nr_vcpus)2283 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
2284 {
2285 }
2286
kvm_arch_vm_finalize_vcpus(struct kvm_vm * vm)2287 __weak void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
2288 {
2289 }
2290
kvm_arch_vm_release(struct kvm_vm * vm)2291 __weak void kvm_arch_vm_release(struct kvm_vm *vm)
2292 {
2293 }
2294
kvm_selftest_arch_init(void)2295 __weak void kvm_selftest_arch_init(void)
2296 {
2297 }
2298
report_unexpected_signal(int signum)2299 static void report_unexpected_signal(int signum)
2300 {
2301 #define KVM_CASE_SIGNUM(sig) \
2302 case sig: TEST_FAIL("Unexpected " #sig " (%d)\n", signum)
2303
2304 switch (signum) {
2305 KVM_CASE_SIGNUM(SIGBUS);
2306 KVM_CASE_SIGNUM(SIGSEGV);
2307 KVM_CASE_SIGNUM(SIGILL);
2308 KVM_CASE_SIGNUM(SIGFPE);
2309 default:
2310 TEST_FAIL("Unexpected signal %d\n", signum);
2311 }
2312 }
2313
kvm_selftest_init(void)2314 void __attribute((constructor)) kvm_selftest_init(void)
2315 {
2316 struct sigaction sig_sa = {
2317 .sa_handler = report_unexpected_signal,
2318 };
2319
2320 /* Tell stdout not to buffer its content. */
2321 setbuf(stdout, NULL);
2322
2323 sigaction(SIGBUS, &sig_sa, NULL);
2324 sigaction(SIGSEGV, &sig_sa, NULL);
2325 sigaction(SIGILL, &sig_sa, NULL);
2326 sigaction(SIGFPE, &sig_sa, NULL);
2327
2328 guest_random_seed = last_guest_seed = random();
2329 pr_info("Random seed: 0x%x\n", guest_random_seed);
2330
2331 kvm_selftest_arch_init();
2332 }
2333
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2334 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2335 {
2336 sparsebit_idx_t pg = 0;
2337 struct userspace_mem_region *region;
2338
2339 if (!vm_arch_has_protected_memory(vm))
2340 return false;
2341
2342 region = userspace_mem_region_find(vm, paddr, paddr);
2343 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2344
2345 pg = paddr >> vm->page_shift;
2346 return sparsebit_is_set(region->protected_phy_pages, pg);
2347 }
2348
kvm_arch_has_default_irqchip(void)2349 __weak bool kvm_arch_has_default_irqchip(void)
2350 {
2351 return false;
2352 }
2353