1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * tools/testing/selftests/kvm/include/x86_64/processor.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17
18 #include <linux/kvm_para.h>
19 #include <linux/stringify.h>
20
21 #include "kvm_util.h"
22 #include "ucall_common.h"
23
24 extern bool host_cpu_is_intel;
25 extern bool host_cpu_is_amd;
26 extern uint64_t guest_tsc_khz;
27
28 #ifndef MAX_NR_CPUID_ENTRIES
29 #define MAX_NR_CPUID_ENTRIES 100
30 #endif
31
32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34
35 #define NMI_VECTOR 0x02
36
37 #define X86_EFLAGS_FIXED (1u << 1)
38
39 #define X86_CR4_VME (1ul << 0)
40 #define X86_CR4_PVI (1ul << 1)
41 #define X86_CR4_TSD (1ul << 2)
42 #define X86_CR4_DE (1ul << 3)
43 #define X86_CR4_PSE (1ul << 4)
44 #define X86_CR4_PAE (1ul << 5)
45 #define X86_CR4_MCE (1ul << 6)
46 #define X86_CR4_PGE (1ul << 7)
47 #define X86_CR4_PCE (1ul << 8)
48 #define X86_CR4_OSFXSR (1ul << 9)
49 #define X86_CR4_OSXMMEXCPT (1ul << 10)
50 #define X86_CR4_UMIP (1ul << 11)
51 #define X86_CR4_LA57 (1ul << 12)
52 #define X86_CR4_VMXE (1ul << 13)
53 #define X86_CR4_SMXE (1ul << 14)
54 #define X86_CR4_FSGSBASE (1ul << 16)
55 #define X86_CR4_PCIDE (1ul << 17)
56 #define X86_CR4_OSXSAVE (1ul << 18)
57 #define X86_CR4_SMEP (1ul << 20)
58 #define X86_CR4_SMAP (1ul << 21)
59 #define X86_CR4_PKE (1ul << 22)
60
61 struct xstate_header {
62 u64 xstate_bv;
63 u64 xcomp_bv;
64 u64 reserved[6];
65 } __attribute__((packed));
66
67 struct xstate {
68 u8 i387[512];
69 struct xstate_header header;
70 u8 extended_state_area[0];
71 } __attribute__ ((packed, aligned (64)));
72
73 #define XFEATURE_MASK_FP BIT_ULL(0)
74 #define XFEATURE_MASK_SSE BIT_ULL(1)
75 #define XFEATURE_MASK_YMM BIT_ULL(2)
76 #define XFEATURE_MASK_BNDREGS BIT_ULL(3)
77 #define XFEATURE_MASK_BNDCSR BIT_ULL(4)
78 #define XFEATURE_MASK_OPMASK BIT_ULL(5)
79 #define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
80 #define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
81 #define XFEATURE_MASK_PT BIT_ULL(8)
82 #define XFEATURE_MASK_PKRU BIT_ULL(9)
83 #define XFEATURE_MASK_PASID BIT_ULL(10)
84 #define XFEATURE_MASK_CET_USER BIT_ULL(11)
85 #define XFEATURE_MASK_CET_KERNEL BIT_ULL(12)
86 #define XFEATURE_MASK_LBR BIT_ULL(15)
87 #define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
88 #define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
89
90 #define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
91 XFEATURE_MASK_ZMM_Hi256 | \
92 XFEATURE_MASK_Hi16_ZMM)
93 #define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
94 XFEATURE_MASK_XTILE_CFG)
95
96 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
97 enum cpuid_output_regs {
98 KVM_CPUID_EAX,
99 KVM_CPUID_EBX,
100 KVM_CPUID_ECX,
101 KVM_CPUID_EDX
102 };
103
104 /*
105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106 * passed by value with no overhead.
107 */
108 struct kvm_x86_cpu_feature {
109 u32 function;
110 u16 index;
111 u8 reg;
112 u8 bit;
113 };
114 #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
115 ({ \
116 struct kvm_x86_cpu_feature feature = { \
117 .function = fn, \
118 .index = idx, \
119 .reg = KVM_CPUID_##gpr, \
120 .bit = __bit, \
121 }; \
122 \
123 kvm_static_assert((fn & 0xc0000000) == 0 || \
124 (fn & 0xc0000000) == 0x40000000 || \
125 (fn & 0xc0000000) == 0x80000000 || \
126 (fn & 0xc0000000) == 0xc0000000); \
127 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
128 feature; \
129 })
130
131 /*
132 * Basic Leafs, a.k.a. Intel defined
133 */
134 #define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135 #define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136 #define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137 #define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138 #define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139 #define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140 #define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141 #define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142 #define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143 #define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144 #define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145 #define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146 #define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147 #define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148 #define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149 #define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150 #define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151 #define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152 #define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153 #define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154 #define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155 #define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156 #define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157 #define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158 #define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159 #define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160 #define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161 #define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162 #define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163 #define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164 #define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165 #define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166 #define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167 #define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168 #define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169 #define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170 #define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171 #define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172 #define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173 #define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174 #define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175 #define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176 #define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177 #define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178 #define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179 #define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180 #define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181
182 /*
183 * Extended Leafs, a.k.a. AMD defined
184 */
185 #define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186 #define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187 #define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188 #define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189 #define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190 #define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191 #define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192 #define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193 #define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194 #define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195 #define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196 #define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197 #define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198 #define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199 #define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200 #define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
201 #define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
202
203 /*
204 * KVM defined paravirt features.
205 */
206 #define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
207 #define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
208 #define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
209 #define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
210 #define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
211 #define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
212 #define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
213 #define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
214 /* Bit 8 apparently isn't used?!?! */
215 #define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
216 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
217 #define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
218 #define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
219 #define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
220 #define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
221 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
222 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
223 #define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
224
225 /*
226 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
227 * value/property as opposed to a single-bit feature. Again, pack the info
228 * into a 64-bit value to pass by value with no overhead.
229 */
230 struct kvm_x86_cpu_property {
231 u32 function;
232 u8 index;
233 u8 reg;
234 u8 lo_bit;
235 u8 hi_bit;
236 };
237 #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
238 ({ \
239 struct kvm_x86_cpu_property property = { \
240 .function = fn, \
241 .index = idx, \
242 .reg = KVM_CPUID_##gpr, \
243 .lo_bit = low_bit, \
244 .hi_bit = high_bit, \
245 }; \
246 \
247 kvm_static_assert(low_bit < high_bit); \
248 kvm_static_assert((fn & 0xc0000000) == 0 || \
249 (fn & 0xc0000000) == 0x40000000 || \
250 (fn & 0xc0000000) == 0x80000000 || \
251 (fn & 0xc0000000) == 0xc0000000); \
252 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
253 property; \
254 })
255
256 #define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
257 #define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
258 #define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
259 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
260 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
261 #define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
262 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
263 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
264 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
265
266 #define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
267 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
268 #define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
269 #define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
270
271 #define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
272 #define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
273 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
274 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
275 #define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
276 #define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
277 #define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
278 #define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
279
280 #define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
281
282 #define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
283 #define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
284 #define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
285 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
286 #define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
287 #define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
288
289 #define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
290
291 /*
292 * Intel's architectural PMU events are bizarre. They have a "feature" bit
293 * that indicates the feature is _not_ supported, and a property that states
294 * the length of the bit mask of unsupported features. A feature is supported
295 * if the size of the bit mask is larger than the "unavailable" bit, and said
296 * bit is not set. Fixed counters also bizarre enumeration, but inverted from
297 * arch events for general purpose counters. Fixed counters are supported if a
298 * feature flag is set **OR** the total number of fixed counters is greater
299 * than index of the counter.
300 *
301 * Wrap the events for general purpose and fixed counters to simplify checking
302 * whether or not a given architectural event is supported.
303 */
304 struct kvm_x86_pmu_feature {
305 struct kvm_x86_cpu_feature f;
306 };
307 #define KVM_X86_PMU_FEATURE(__reg, __bit) \
308 ({ \
309 struct kvm_x86_pmu_feature feature = { \
310 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \
311 }; \
312 \
313 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \
314 KVM_CPUID_##__reg == KVM_CPUID_ECX); \
315 feature; \
316 })
317
318 #define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0)
319 #define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1)
320 #define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2)
321 #define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3)
322 #define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4)
323 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5)
324 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6)
325 #define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7)
326
327 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0)
328 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1)
329 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2)
330 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3)
331
x86_family(unsigned int eax)332 static inline unsigned int x86_family(unsigned int eax)
333 {
334 unsigned int x86;
335
336 x86 = (eax >> 8) & 0xf;
337
338 if (x86 == 0xf)
339 x86 += (eax >> 20) & 0xff;
340
341 return x86;
342 }
343
x86_model(unsigned int eax)344 static inline unsigned int x86_model(unsigned int eax)
345 {
346 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
347 }
348
349 /* Page table bitfield declarations */
350 #define PTE_PRESENT_MASK BIT_ULL(0)
351 #define PTE_WRITABLE_MASK BIT_ULL(1)
352 #define PTE_USER_MASK BIT_ULL(2)
353 #define PTE_ACCESSED_MASK BIT_ULL(5)
354 #define PTE_DIRTY_MASK BIT_ULL(6)
355 #define PTE_LARGE_MASK BIT_ULL(7)
356 #define PTE_GLOBAL_MASK BIT_ULL(8)
357 #define PTE_NX_MASK BIT_ULL(63)
358
359 #define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
360
361 #define PAGE_SHIFT 12
362 #define PAGE_SIZE (1ULL << PAGE_SHIFT)
363 #define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
364
365 #define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
366 #define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
367 #define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
368
369 #define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
370 #define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
371
372 /* General Registers in 64-Bit Mode */
373 struct gpr64_regs {
374 u64 rax;
375 u64 rcx;
376 u64 rdx;
377 u64 rbx;
378 u64 rsp;
379 u64 rbp;
380 u64 rsi;
381 u64 rdi;
382 u64 r8;
383 u64 r9;
384 u64 r10;
385 u64 r11;
386 u64 r12;
387 u64 r13;
388 u64 r14;
389 u64 r15;
390 };
391
392 struct desc64 {
393 uint16_t limit0;
394 uint16_t base0;
395 unsigned base1:8, type:4, s:1, dpl:2, p:1;
396 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
397 uint32_t base3;
398 uint32_t zero1;
399 } __attribute__((packed));
400
401 struct desc_ptr {
402 uint16_t size;
403 uint64_t address;
404 } __attribute__((packed));
405
406 struct kvm_x86_state {
407 struct kvm_xsave *xsave;
408 struct kvm_vcpu_events events;
409 struct kvm_mp_state mp_state;
410 struct kvm_regs regs;
411 struct kvm_xcrs xcrs;
412 struct kvm_sregs sregs;
413 struct kvm_debugregs debugregs;
414 union {
415 struct kvm_nested_state nested;
416 char nested_[16384];
417 };
418 struct kvm_msrs msrs;
419 };
420
get_desc64_base(const struct desc64 * desc)421 static inline uint64_t get_desc64_base(const struct desc64 *desc)
422 {
423 return ((uint64_t)desc->base3 << 32) |
424 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
425 }
426
rdtsc(void)427 static inline uint64_t rdtsc(void)
428 {
429 uint32_t eax, edx;
430 uint64_t tsc_val;
431 /*
432 * The lfence is to wait (on Intel CPUs) until all previous
433 * instructions have been executed. If software requires RDTSC to be
434 * executed prior to execution of any subsequent instruction, it can
435 * execute LFENCE immediately after RDTSC
436 */
437 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
438 tsc_val = ((uint64_t)edx) << 32 | eax;
439 return tsc_val;
440 }
441
rdtscp(uint32_t * aux)442 static inline uint64_t rdtscp(uint32_t *aux)
443 {
444 uint32_t eax, edx;
445
446 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
447 return ((uint64_t)edx) << 32 | eax;
448 }
449
rdmsr(uint32_t msr)450 static inline uint64_t rdmsr(uint32_t msr)
451 {
452 uint32_t a, d;
453
454 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
455
456 return a | ((uint64_t) d << 32);
457 }
458
wrmsr(uint32_t msr,uint64_t value)459 static inline void wrmsr(uint32_t msr, uint64_t value)
460 {
461 uint32_t a = value;
462 uint32_t d = value >> 32;
463
464 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
465 }
466
467
inw(uint16_t port)468 static inline uint16_t inw(uint16_t port)
469 {
470 uint16_t tmp;
471
472 __asm__ __volatile__("in %%dx, %%ax"
473 : /* output */ "=a" (tmp)
474 : /* input */ "d" (port));
475
476 return tmp;
477 }
478
get_es(void)479 static inline uint16_t get_es(void)
480 {
481 uint16_t es;
482
483 __asm__ __volatile__("mov %%es, %[es]"
484 : /* output */ [es]"=rm"(es));
485 return es;
486 }
487
get_cs(void)488 static inline uint16_t get_cs(void)
489 {
490 uint16_t cs;
491
492 __asm__ __volatile__("mov %%cs, %[cs]"
493 : /* output */ [cs]"=rm"(cs));
494 return cs;
495 }
496
get_ss(void)497 static inline uint16_t get_ss(void)
498 {
499 uint16_t ss;
500
501 __asm__ __volatile__("mov %%ss, %[ss]"
502 : /* output */ [ss]"=rm"(ss));
503 return ss;
504 }
505
get_ds(void)506 static inline uint16_t get_ds(void)
507 {
508 uint16_t ds;
509
510 __asm__ __volatile__("mov %%ds, %[ds]"
511 : /* output */ [ds]"=rm"(ds));
512 return ds;
513 }
514
get_fs(void)515 static inline uint16_t get_fs(void)
516 {
517 uint16_t fs;
518
519 __asm__ __volatile__("mov %%fs, %[fs]"
520 : /* output */ [fs]"=rm"(fs));
521 return fs;
522 }
523
get_gs(void)524 static inline uint16_t get_gs(void)
525 {
526 uint16_t gs;
527
528 __asm__ __volatile__("mov %%gs, %[gs]"
529 : /* output */ [gs]"=rm"(gs));
530 return gs;
531 }
532
get_tr(void)533 static inline uint16_t get_tr(void)
534 {
535 uint16_t tr;
536
537 __asm__ __volatile__("str %[tr]"
538 : /* output */ [tr]"=rm"(tr));
539 return tr;
540 }
541
get_cr0(void)542 static inline uint64_t get_cr0(void)
543 {
544 uint64_t cr0;
545
546 __asm__ __volatile__("mov %%cr0, %[cr0]"
547 : /* output */ [cr0]"=r"(cr0));
548 return cr0;
549 }
550
get_cr3(void)551 static inline uint64_t get_cr3(void)
552 {
553 uint64_t cr3;
554
555 __asm__ __volatile__("mov %%cr3, %[cr3]"
556 : /* output */ [cr3]"=r"(cr3));
557 return cr3;
558 }
559
get_cr4(void)560 static inline uint64_t get_cr4(void)
561 {
562 uint64_t cr4;
563
564 __asm__ __volatile__("mov %%cr4, %[cr4]"
565 : /* output */ [cr4]"=r"(cr4));
566 return cr4;
567 }
568
set_cr4(uint64_t val)569 static inline void set_cr4(uint64_t val)
570 {
571 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
572 }
573
xgetbv(u32 index)574 static inline u64 xgetbv(u32 index)
575 {
576 u32 eax, edx;
577
578 __asm__ __volatile__("xgetbv;"
579 : "=a" (eax), "=d" (edx)
580 : "c" (index));
581 return eax | ((u64)edx << 32);
582 }
583
xsetbv(u32 index,u64 value)584 static inline void xsetbv(u32 index, u64 value)
585 {
586 u32 eax = value;
587 u32 edx = value >> 32;
588
589 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
590 }
591
wrpkru(u32 pkru)592 static inline void wrpkru(u32 pkru)
593 {
594 /* Note, ECX and EDX are architecturally required to be '0'. */
595 asm volatile(".byte 0x0f,0x01,0xef\n\t"
596 : : "a" (pkru), "c"(0), "d"(0));
597 }
598
get_gdt(void)599 static inline struct desc_ptr get_gdt(void)
600 {
601 struct desc_ptr gdt;
602 __asm__ __volatile__("sgdt %[gdt]"
603 : /* output */ [gdt]"=m"(gdt));
604 return gdt;
605 }
606
get_idt(void)607 static inline struct desc_ptr get_idt(void)
608 {
609 struct desc_ptr idt;
610 __asm__ __volatile__("sidt %[idt]"
611 : /* output */ [idt]"=m"(idt));
612 return idt;
613 }
614
outl(uint16_t port,uint32_t value)615 static inline void outl(uint16_t port, uint32_t value)
616 {
617 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
618 }
619
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)620 static inline void __cpuid(uint32_t function, uint32_t index,
621 uint32_t *eax, uint32_t *ebx,
622 uint32_t *ecx, uint32_t *edx)
623 {
624 *eax = function;
625 *ecx = index;
626
627 asm volatile("cpuid"
628 : "=a" (*eax),
629 "=b" (*ebx),
630 "=c" (*ecx),
631 "=d" (*edx)
632 : "0" (*eax), "2" (*ecx)
633 : "memory");
634 }
635
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)636 static inline void cpuid(uint32_t function,
637 uint32_t *eax, uint32_t *ebx,
638 uint32_t *ecx, uint32_t *edx)
639 {
640 return __cpuid(function, 0, eax, ebx, ecx, edx);
641 }
642
this_cpu_fms(void)643 static inline uint32_t this_cpu_fms(void)
644 {
645 uint32_t eax, ebx, ecx, edx;
646
647 cpuid(1, &eax, &ebx, &ecx, &edx);
648 return eax;
649 }
650
this_cpu_family(void)651 static inline uint32_t this_cpu_family(void)
652 {
653 return x86_family(this_cpu_fms());
654 }
655
this_cpu_model(void)656 static inline uint32_t this_cpu_model(void)
657 {
658 return x86_model(this_cpu_fms());
659 }
660
this_cpu_vendor_string_is(const char * vendor)661 static inline bool this_cpu_vendor_string_is(const char *vendor)
662 {
663 const uint32_t *chunk = (const uint32_t *)vendor;
664 uint32_t eax, ebx, ecx, edx;
665
666 cpuid(0, &eax, &ebx, &ecx, &edx);
667 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
668 }
669
this_cpu_is_intel(void)670 static inline bool this_cpu_is_intel(void)
671 {
672 return this_cpu_vendor_string_is("GenuineIntel");
673 }
674
675 /*
676 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
677 */
this_cpu_is_amd(void)678 static inline bool this_cpu_is_amd(void)
679 {
680 return this_cpu_vendor_string_is("AuthenticAMD");
681 }
682
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)683 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
684 uint8_t reg, uint8_t lo, uint8_t hi)
685 {
686 uint32_t gprs[4];
687
688 __cpuid(function, index,
689 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
690 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
691
692 return (gprs[reg] & GENMASK(hi, lo)) >> lo;
693 }
694
this_cpu_has(struct kvm_x86_cpu_feature feature)695 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
696 {
697 return __this_cpu_has(feature.function, feature.index,
698 feature.reg, feature.bit, feature.bit);
699 }
700
this_cpu_property(struct kvm_x86_cpu_property property)701 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
702 {
703 return __this_cpu_has(property.function, property.index,
704 property.reg, property.lo_bit, property.hi_bit);
705 }
706
this_cpu_has_p(struct kvm_x86_cpu_property property)707 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
708 {
709 uint32_t max_leaf;
710
711 switch (property.function & 0xc0000000) {
712 case 0:
713 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
714 break;
715 case 0x40000000:
716 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
717 break;
718 case 0x80000000:
719 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
720 break;
721 case 0xc0000000:
722 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
723 }
724 return max_leaf >= property.function;
725 }
726
this_pmu_has(struct kvm_x86_pmu_feature feature)727 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
728 {
729 uint32_t nr_bits;
730
731 if (feature.f.reg == KVM_CPUID_EBX) {
732 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
733 return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
734 }
735
736 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
737 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
738 return nr_bits > feature.f.bit || this_cpu_has(feature.f);
739 }
740
this_cpu_supported_xcr0(void)741 static __always_inline uint64_t this_cpu_supported_xcr0(void)
742 {
743 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
744 return 0;
745
746 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
747 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
748 }
749
750 typedef u32 __attribute__((vector_size(16))) sse128_t;
751 #define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
752 #define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
753 #define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
754
read_sse_reg(int reg,sse128_t * data)755 static inline void read_sse_reg(int reg, sse128_t *data)
756 {
757 switch (reg) {
758 case 0:
759 asm("movdqa %%xmm0, %0" : "=m"(*data));
760 break;
761 case 1:
762 asm("movdqa %%xmm1, %0" : "=m"(*data));
763 break;
764 case 2:
765 asm("movdqa %%xmm2, %0" : "=m"(*data));
766 break;
767 case 3:
768 asm("movdqa %%xmm3, %0" : "=m"(*data));
769 break;
770 case 4:
771 asm("movdqa %%xmm4, %0" : "=m"(*data));
772 break;
773 case 5:
774 asm("movdqa %%xmm5, %0" : "=m"(*data));
775 break;
776 case 6:
777 asm("movdqa %%xmm6, %0" : "=m"(*data));
778 break;
779 case 7:
780 asm("movdqa %%xmm7, %0" : "=m"(*data));
781 break;
782 default:
783 BUG();
784 }
785 }
786
write_sse_reg(int reg,const sse128_t * data)787 static inline void write_sse_reg(int reg, const sse128_t *data)
788 {
789 switch (reg) {
790 case 0:
791 asm("movdqa %0, %%xmm0" : : "m"(*data));
792 break;
793 case 1:
794 asm("movdqa %0, %%xmm1" : : "m"(*data));
795 break;
796 case 2:
797 asm("movdqa %0, %%xmm2" : : "m"(*data));
798 break;
799 case 3:
800 asm("movdqa %0, %%xmm3" : : "m"(*data));
801 break;
802 case 4:
803 asm("movdqa %0, %%xmm4" : : "m"(*data));
804 break;
805 case 5:
806 asm("movdqa %0, %%xmm5" : : "m"(*data));
807 break;
808 case 6:
809 asm("movdqa %0, %%xmm6" : : "m"(*data));
810 break;
811 case 7:
812 asm("movdqa %0, %%xmm7" : : "m"(*data));
813 break;
814 default:
815 BUG();
816 }
817 }
818
cpu_relax(void)819 static inline void cpu_relax(void)
820 {
821 asm volatile("rep; nop" ::: "memory");
822 }
823
udelay(unsigned long usec)824 static inline void udelay(unsigned long usec)
825 {
826 uint64_t start, now, cycles;
827
828 GUEST_ASSERT(guest_tsc_khz);
829 cycles = guest_tsc_khz / 1000 * usec;
830
831 /*
832 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
833 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
834 */
835 start = rdtsc();
836 do {
837 now = rdtsc();
838 } while (now - start < cycles);
839 }
840
841 #define ud2() \
842 __asm__ __volatile__( \
843 "ud2\n" \
844 )
845
846 #define hlt() \
847 __asm__ __volatile__( \
848 "hlt\n" \
849 )
850
851 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
852 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
853 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
854
855 const struct kvm_msr_list *kvm_get_msr_index_list(void);
856 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
857 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
858 uint64_t kvm_get_feature_msr(uint64_t msr_index);
859
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)860 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
861 struct kvm_msrs *msrs)
862 {
863 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
864
865 TEST_ASSERT(r == msrs->nmsrs,
866 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
867 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
868 }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)869 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
870 {
871 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
872
873 TEST_ASSERT(r == msrs->nmsrs,
874 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
875 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
876 }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)877 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
878 struct kvm_debugregs *debugregs)
879 {
880 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
881 }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)882 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
883 struct kvm_debugregs *debugregs)
884 {
885 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
886 }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)887 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
888 struct kvm_xsave *xsave)
889 {
890 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
891 }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)892 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
893 struct kvm_xsave *xsave)
894 {
895 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
896 }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)897 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
898 struct kvm_xsave *xsave)
899 {
900 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
901 }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)902 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
903 struct kvm_xcrs *xcrs)
904 {
905 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
906 }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)907 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
908 {
909 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
910 }
911
912 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
913 uint32_t function, uint32_t index);
914 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
915
kvm_cpu_fms(void)916 static inline uint32_t kvm_cpu_fms(void)
917 {
918 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
919 }
920
kvm_cpu_family(void)921 static inline uint32_t kvm_cpu_family(void)
922 {
923 return x86_family(kvm_cpu_fms());
924 }
925
kvm_cpu_model(void)926 static inline uint32_t kvm_cpu_model(void)
927 {
928 return x86_model(kvm_cpu_fms());
929 }
930
931 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
932 struct kvm_x86_cpu_feature feature);
933
kvm_cpu_has(struct kvm_x86_cpu_feature feature)934 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
935 {
936 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
937 }
938
939 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
940 struct kvm_x86_cpu_property property);
941
kvm_cpu_property(struct kvm_x86_cpu_property property)942 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
943 {
944 return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
945 }
946
kvm_cpu_has_p(struct kvm_x86_cpu_property property)947 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
948 {
949 uint32_t max_leaf;
950
951 switch (property.function & 0xc0000000) {
952 case 0:
953 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
954 break;
955 case 0x40000000:
956 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
957 break;
958 case 0x80000000:
959 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
960 break;
961 case 0xc0000000:
962 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
963 }
964 return max_leaf >= property.function;
965 }
966
kvm_pmu_has(struct kvm_x86_pmu_feature feature)967 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
968 {
969 uint32_t nr_bits;
970
971 if (feature.f.reg == KVM_CPUID_EBX) {
972 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
973 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
974 }
975
976 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
977 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
978 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
979 }
980
kvm_cpu_supported_xcr0(void)981 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
982 {
983 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
984 return 0;
985
986 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
987 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
988 }
989
kvm_cpuid2_size(int nr_entries)990 static inline size_t kvm_cpuid2_size(int nr_entries)
991 {
992 return sizeof(struct kvm_cpuid2) +
993 sizeof(struct kvm_cpuid_entry2) * nr_entries;
994 }
995
996 /*
997 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
998 * entries sized to hold @nr_entries. The caller is responsible for freeing
999 * the struct.
1000 */
allocate_kvm_cpuid2(int nr_entries)1001 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1002 {
1003 struct kvm_cpuid2 *cpuid;
1004
1005 cpuid = malloc(kvm_cpuid2_size(nr_entries));
1006 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1007
1008 cpuid->nent = nr_entries;
1009
1010 return cpuid;
1011 }
1012
1013 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1014
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)1015 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1016 uint32_t function,
1017 uint32_t index)
1018 {
1019 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1020 function, index);
1021 }
1022
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)1023 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1024 uint32_t function)
1025 {
1026 return __vcpu_get_cpuid_entry(vcpu, function, 0);
1027 }
1028
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)1029 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1030 {
1031 int r;
1032
1033 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1034 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1035 if (r)
1036 return r;
1037
1038 /* On success, refresh the cache to pick up adjustments made by KVM. */
1039 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1040 return 0;
1041 }
1042
vcpu_set_cpuid(struct kvm_vcpu * vcpu)1043 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1044 {
1045 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1046 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1047
1048 /* Refresh the cache to pick up adjustments made by KVM. */
1049 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1050 }
1051
1052 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1053 struct kvm_x86_cpu_property property,
1054 uint32_t value);
1055 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1056
1057 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1058
vcpu_cpuid_has(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1059 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1060 struct kvm_x86_cpu_feature feature)
1061 {
1062 struct kvm_cpuid_entry2 *entry;
1063
1064 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1065 return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1066 }
1067
1068 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1069 struct kvm_x86_cpu_feature feature,
1070 bool set);
1071
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1072 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1073 struct kvm_x86_cpu_feature feature)
1074 {
1075 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1076
1077 }
1078
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1079 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1080 struct kvm_x86_cpu_feature feature)
1081 {
1082 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1083 }
1084
1085 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1086 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1087
1088 /*
1089 * Assert on an MSR access(es) and pretty print the MSR name when possible.
1090 * Note, the caller provides the stringified name so that the name of macro is
1091 * printed, not the value the macro resolves to (due to macro expansion).
1092 */
1093 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
1094 do { \
1095 if (__builtin_constant_p(msr)) { \
1096 TEST_ASSERT(cond, fmt, str, args); \
1097 } else if (!(cond)) { \
1098 char buf[16]; \
1099 \
1100 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
1101 TEST_ASSERT(cond, fmt, buf, args); \
1102 } \
1103 } while (0)
1104
1105 /*
1106 * Returns true if KVM should return the last written value when reading an MSR
1107 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1108 * is changing, etc. This is NOT an exhaustive list! The intent is to filter
1109 * out MSRs that are not durable _and_ that a selftest wants to write.
1110 */
is_durable_msr(uint32_t msr)1111 static inline bool is_durable_msr(uint32_t msr)
1112 {
1113 return msr != MSR_IA32_TSC;
1114 }
1115
1116 #define vcpu_set_msr(vcpu, msr, val) \
1117 do { \
1118 uint64_t r, v = val; \
1119 \
1120 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
1121 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
1122 if (!is_durable_msr(msr)) \
1123 break; \
1124 r = vcpu_get_msr(vcpu, msr); \
1125 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1126 } while (0)
1127
1128 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1129 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1130 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1131
1132 struct ex_regs {
1133 uint64_t rax, rcx, rdx, rbx;
1134 uint64_t rbp, rsi, rdi;
1135 uint64_t r8, r9, r10, r11;
1136 uint64_t r12, r13, r14, r15;
1137 uint64_t vector;
1138 uint64_t error_code;
1139 uint64_t rip;
1140 uint64_t cs;
1141 uint64_t rflags;
1142 };
1143
1144 struct idt_entry {
1145 uint16_t offset0;
1146 uint16_t selector;
1147 uint16_t ist : 3;
1148 uint16_t : 5;
1149 uint16_t type : 4;
1150 uint16_t : 1;
1151 uint16_t dpl : 2;
1152 uint16_t p : 1;
1153 uint16_t offset1;
1154 uint32_t offset2; uint32_t reserved;
1155 };
1156
1157 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1158 void (*handler)(struct ex_regs *));
1159
1160 /* If a toddler were to say "abracadabra". */
1161 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1162
1163 /*
1164 * KVM selftest exception fixup uses registers to coordinate with the exception
1165 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1166 * per-CPU data. Using only registers avoids having to map memory into the
1167 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1168 * for recursive faults when accessing memory in the handler. The downside to
1169 * using registers is that it restricts what registers can be used by the actual
1170 * instruction. But, selftests are 64-bit only, making register* pressure a
1171 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
1172 * by the callee, and except for r11 are not implicit parameters to any
1173 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
1174 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1175 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1176 *
1177 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1178 * is guaranteed to be non-zero on fault.
1179 *
1180 * REGISTER INPUTS:
1181 * r9 = MAGIC
1182 * r10 = RIP
1183 * r11 = new RIP on fault
1184 *
1185 * REGISTER OUTPUTS:
1186 * r9 = exception vector (non-zero)
1187 * r10 = error code
1188 */
1189 #define __KVM_ASM_SAFE(insn, fep) \
1190 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
1191 "lea 1f(%%rip), %%r10\n\t" \
1192 "lea 2f(%%rip), %%r11\n\t" \
1193 fep "1: " insn "\n\t" \
1194 "xor %%r9, %%r9\n\t" \
1195 "2:\n\t" \
1196 "mov %%r9b, %[vector]\n\t" \
1197 "mov %%r10, %[error_code]\n\t"
1198
1199 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1200 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1201
1202 #define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
1203 #define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
1204
1205 #define kvm_asm_safe(insn, inputs...) \
1206 ({ \
1207 uint64_t ign_error_code; \
1208 uint8_t vector; \
1209 \
1210 asm volatile(KVM_ASM_SAFE(insn) \
1211 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1212 : inputs \
1213 : KVM_ASM_SAFE_CLOBBERS); \
1214 vector; \
1215 })
1216
1217 #define kvm_asm_safe_ec(insn, error_code, inputs...) \
1218 ({ \
1219 uint8_t vector; \
1220 \
1221 asm volatile(KVM_ASM_SAFE(insn) \
1222 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1223 : inputs \
1224 : KVM_ASM_SAFE_CLOBBERS); \
1225 vector; \
1226 })
1227
1228 #define kvm_asm_safe_fep(insn, inputs...) \
1229 ({ \
1230 uint64_t ign_error_code; \
1231 uint8_t vector; \
1232 \
1233 asm volatile(KVM_ASM_SAFE(insn) \
1234 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1235 : inputs \
1236 : KVM_ASM_SAFE_CLOBBERS); \
1237 vector; \
1238 })
1239
1240 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \
1241 ({ \
1242 uint8_t vector; \
1243 \
1244 asm volatile(KVM_ASM_SAFE_FEP(insn) \
1245 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1246 : inputs \
1247 : KVM_ASM_SAFE_CLOBBERS); \
1248 vector; \
1249 })
1250
1251 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1252 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \
1253 { \
1254 uint64_t error_code; \
1255 uint8_t vector; \
1256 uint32_t a, d; \
1257 \
1258 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \
1259 : "=a"(a), "=d"(d), \
1260 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1261 : "c"(idx) \
1262 : KVM_ASM_SAFE_CLOBBERS); \
1263 \
1264 *val = (uint64_t)a | ((uint64_t)d << 32); \
1265 return vector; \
1266 }
1267
1268 /*
1269 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1270 * use ECX as in input index, and EDX:EAX as a 64-bit output.
1271 */
1272 #define BUILD_READ_U64_SAFE_HELPERS(insn) \
1273 BUILD_READ_U64_SAFE_HELPER(insn, , ) \
1274 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
1275
1276 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
BUILD_READ_U64_SAFE_HELPERS(rdpmc)1277 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1278 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1279
1280 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1281 {
1282 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1283 }
1284
xsetbv_safe(uint32_t index,uint64_t value)1285 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1286 {
1287 u32 eax = value;
1288 u32 edx = value >> 32;
1289
1290 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1291 }
1292
1293 bool kvm_is_tdp_enabled(void);
1294
kvm_is_pmu_enabled(void)1295 static inline bool kvm_is_pmu_enabled(void)
1296 {
1297 return get_kvm_param_bool("enable_pmu");
1298 }
1299
kvm_is_forced_emulation_enabled(void)1300 static inline bool kvm_is_forced_emulation_enabled(void)
1301 {
1302 return !!get_kvm_param_integer("force_emulation_prefix");
1303 }
1304
1305 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1306 int *level);
1307 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1308
1309 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1310 uint64_t a3);
1311 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1312 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1313
__kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1314 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1315 uint64_t size, uint64_t flags)
1316 {
1317 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1318 }
1319
kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1320 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1321 uint64_t flags)
1322 {
1323 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1324
1325 GUEST_ASSERT(!ret);
1326 }
1327
1328 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1329
1330 #define vm_xsave_require_permission(xfeature) \
1331 __vm_xsave_require_permission(xfeature, #xfeature)
1332
1333 enum pg_level {
1334 PG_LEVEL_NONE,
1335 PG_LEVEL_4K,
1336 PG_LEVEL_2M,
1337 PG_LEVEL_1G,
1338 PG_LEVEL_512G,
1339 PG_LEVEL_NUM
1340 };
1341
1342 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1343 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1344
1345 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1346 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1347 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1348
1349 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1350 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1351 uint64_t nr_bytes, int level);
1352
1353 /*
1354 * Basic CPU control in CR0
1355 */
1356 #define X86_CR0_PE (1UL<<0) /* Protection Enable */
1357 #define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
1358 #define X86_CR0_EM (1UL<<2) /* Emulation */
1359 #define X86_CR0_TS (1UL<<3) /* Task Switched */
1360 #define X86_CR0_ET (1UL<<4) /* Extension Type */
1361 #define X86_CR0_NE (1UL<<5) /* Numeric Error */
1362 #define X86_CR0_WP (1UL<<16) /* Write Protect */
1363 #define X86_CR0_AM (1UL<<18) /* Alignment Mask */
1364 #define X86_CR0_NW (1UL<<29) /* Not Write-through */
1365 #define X86_CR0_CD (1UL<<30) /* Cache Disable */
1366 #define X86_CR0_PG (1UL<<31) /* Paging */
1367
1368 #define PFERR_PRESENT_BIT 0
1369 #define PFERR_WRITE_BIT 1
1370 #define PFERR_USER_BIT 2
1371 #define PFERR_RSVD_BIT 3
1372 #define PFERR_FETCH_BIT 4
1373 #define PFERR_PK_BIT 5
1374 #define PFERR_SGX_BIT 15
1375 #define PFERR_GUEST_FINAL_BIT 32
1376 #define PFERR_GUEST_PAGE_BIT 33
1377 #define PFERR_IMPLICIT_ACCESS_BIT 48
1378
1379 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
1380 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
1381 #define PFERR_USER_MASK BIT(PFERR_USER_BIT)
1382 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
1383 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
1384 #define PFERR_PK_MASK BIT(PFERR_PK_BIT)
1385 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
1386 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
1387 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
1388 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1389
1390 bool sys_clocksource_is_based_on_tsc(void);
1391
1392 #endif /* SELFTEST_KVM_PROCESSOR_H */
1393