xref: /linux/arch/arm64/kvm/arm.c (revision e669e322c52c49c161e46492963e64319fbb53a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_nested.h>
41 #include <asm/kvm_pkvm.h>
42 #include <asm/kvm_ptrauth.h>
43 #include <asm/sections.h>
44 
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48 
49 #include "sys_regs.h"
50 
51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
52 
53 enum kvm_wfx_trap_policy {
54 	KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
55 	KVM_WFX_NOTRAP,
56 	KVM_WFX_TRAP,
57 };
58 
59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
61 
62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
63 
64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
66 
67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
68 
69 static bool vgic_present, kvm_arm_initialised;
70 
71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
72 
is_kvm_arm_initialised(void)73 bool is_kvm_arm_initialised(void)
74 {
75 	return kvm_arm_initialised;
76 }
77 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
79 {
80 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
81 }
82 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r = -EINVAL;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
92 		return -EINVAL;
93 
94 	switch (cap->cap) {
95 	case KVM_CAP_ARM_NISV_TO_USER:
96 		r = 0;
97 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
98 			&kvm->arch.flags);
99 		break;
100 	case KVM_CAP_ARM_MTE:
101 		mutex_lock(&kvm->lock);
102 		if (system_supports_mte() && !kvm->created_vcpus) {
103 			r = 0;
104 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
105 		}
106 		mutex_unlock(&kvm->lock);
107 		break;
108 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
109 		r = 0;
110 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
111 		break;
112 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
113 		mutex_lock(&kvm->slots_lock);
114 		/*
115 		 * To keep things simple, allow changing the chunk
116 		 * size only when no memory slots have been created.
117 		 */
118 		if (kvm_are_all_memslots_empty(kvm)) {
119 			u64 new_cap = cap->args[0];
120 
121 			if (!new_cap || kvm_is_block_size_supported(new_cap)) {
122 				r = 0;
123 				kvm->arch.mmu.split_page_chunk_size = new_cap;
124 			}
125 		}
126 		mutex_unlock(&kvm->slots_lock);
127 		break;
128 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
129 		mutex_lock(&kvm->lock);
130 		if (!kvm->created_vcpus) {
131 			r = 0;
132 			set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
133 		}
134 		mutex_unlock(&kvm->lock);
135 		break;
136 	default:
137 		break;
138 	}
139 
140 	return r;
141 }
142 
kvm_arm_default_max_vcpus(void)143 static int kvm_arm_default_max_vcpus(void)
144 {
145 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146 }
147 
148 /**
149  * kvm_arch_init_vm - initializes a VM data structure
150  * @kvm:	pointer to the KVM struct
151  * @type:	kvm device type
152  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)153 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
154 {
155 	int ret;
156 
157 	mutex_init(&kvm->arch.config_lock);
158 
159 #ifdef CONFIG_LOCKDEP
160 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
161 	mutex_lock(&kvm->lock);
162 	mutex_lock(&kvm->arch.config_lock);
163 	mutex_unlock(&kvm->arch.config_lock);
164 	mutex_unlock(&kvm->lock);
165 #endif
166 
167 	kvm_init_nested(kvm);
168 
169 	ret = kvm_share_hyp(kvm, kvm + 1);
170 	if (ret)
171 		return ret;
172 
173 	ret = pkvm_init_host_vm(kvm);
174 	if (ret)
175 		goto err_unshare_kvm;
176 
177 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
178 		ret = -ENOMEM;
179 		goto err_unshare_kvm;
180 	}
181 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
182 
183 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
184 	if (ret)
185 		goto err_free_cpumask;
186 
187 	kvm_vgic_early_init(kvm);
188 
189 	kvm_timer_init_vm(kvm);
190 
191 	/* The maximum number of VCPUs is limited by the host's GIC model */
192 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
193 
194 	kvm_arm_init_hypercalls(kvm);
195 
196 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
197 
198 	return 0;
199 
200 err_free_cpumask:
201 	free_cpumask_var(kvm->arch.supported_cpus);
202 err_unshare_kvm:
203 	kvm_unshare_hyp(kvm, kvm + 1);
204 	return ret;
205 }
206 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)207 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
208 {
209 	return VM_FAULT_SIGBUS;
210 }
211 
kvm_arch_create_vm_debugfs(struct kvm * kvm)212 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
213 {
214 	kvm_sys_regs_create_debugfs(kvm);
215 	kvm_s2_ptdump_create_debugfs(kvm);
216 }
217 
kvm_destroy_mpidr_data(struct kvm * kvm)218 static void kvm_destroy_mpidr_data(struct kvm *kvm)
219 {
220 	struct kvm_mpidr_data *data;
221 
222 	mutex_lock(&kvm->arch.config_lock);
223 
224 	data = rcu_dereference_protected(kvm->arch.mpidr_data,
225 					 lockdep_is_held(&kvm->arch.config_lock));
226 	if (data) {
227 		rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
228 		synchronize_rcu();
229 		kfree(data);
230 	}
231 
232 	mutex_unlock(&kvm->arch.config_lock);
233 }
234 
235 /**
236  * kvm_arch_destroy_vm - destroy the VM data structure
237  * @kvm:	pointer to the KVM struct
238  */
kvm_arch_destroy_vm(struct kvm * kvm)239 void kvm_arch_destroy_vm(struct kvm *kvm)
240 {
241 	bitmap_free(kvm->arch.pmu_filter);
242 	free_cpumask_var(kvm->arch.supported_cpus);
243 
244 	kvm_vgic_destroy(kvm);
245 
246 	if (is_protected_kvm_enabled())
247 		pkvm_destroy_hyp_vm(kvm);
248 
249 	kvm_destroy_mpidr_data(kvm);
250 
251 	kfree(kvm->arch.sysreg_masks);
252 	kvm_destroy_vcpus(kvm);
253 
254 	kvm_unshare_hyp(kvm, kvm + 1);
255 
256 	kvm_arm_teardown_hypercalls(kvm);
257 }
258 
kvm_has_full_ptr_auth(void)259 static bool kvm_has_full_ptr_auth(void)
260 {
261 	bool apa, gpa, api, gpi, apa3, gpa3;
262 	u64 isar1, isar2, val;
263 
264 	/*
265 	 * Check that:
266 	 *
267 	 * - both Address and Generic auth are implemented for a given
268          *   algorithm (Q5, IMPDEF or Q3)
269 	 * - only a single algorithm is implemented.
270 	 */
271 	if (!system_has_full_ptr_auth())
272 		return false;
273 
274 	isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
275 	isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
276 
277 	apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
278 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
279 	gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
280 
281 	api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
282 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
283 	gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
284 
285 	apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
286 	val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
287 	gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
288 
289 	return (apa == gpa && api == gpi && apa3 == gpa3 &&
290 		(apa + api + apa3) == 1);
291 }
292 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)293 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
294 {
295 	int r;
296 
297 	if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
298 		return 0;
299 
300 	switch (ext) {
301 	case KVM_CAP_IRQCHIP:
302 		r = vgic_present;
303 		break;
304 	case KVM_CAP_IOEVENTFD:
305 	case KVM_CAP_USER_MEMORY:
306 	case KVM_CAP_SYNC_MMU:
307 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
308 	case KVM_CAP_ONE_REG:
309 	case KVM_CAP_ARM_PSCI:
310 	case KVM_CAP_ARM_PSCI_0_2:
311 	case KVM_CAP_READONLY_MEM:
312 	case KVM_CAP_MP_STATE:
313 	case KVM_CAP_IMMEDIATE_EXIT:
314 	case KVM_CAP_VCPU_EVENTS:
315 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
316 	case KVM_CAP_ARM_NISV_TO_USER:
317 	case KVM_CAP_ARM_INJECT_EXT_DABT:
318 	case KVM_CAP_SET_GUEST_DEBUG:
319 	case KVM_CAP_VCPU_ATTRIBUTES:
320 	case KVM_CAP_PTP_KVM:
321 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
322 	case KVM_CAP_IRQFD_RESAMPLE:
323 	case KVM_CAP_COUNTER_OFFSET:
324 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
325 		r = 1;
326 		break;
327 	case KVM_CAP_SET_GUEST_DEBUG2:
328 		return KVM_GUESTDBG_VALID_MASK;
329 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
330 		r = 1;
331 		break;
332 	case KVM_CAP_NR_VCPUS:
333 		/*
334 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
335 		 * architectures, as it does not always bound it to
336 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
337 		 * this is just an advisory value.
338 		 */
339 		r = min_t(unsigned int, num_online_cpus(),
340 			  kvm_arm_default_max_vcpus());
341 		break;
342 	case KVM_CAP_MAX_VCPUS:
343 	case KVM_CAP_MAX_VCPU_ID:
344 		if (kvm)
345 			r = kvm->max_vcpus;
346 		else
347 			r = kvm_arm_default_max_vcpus();
348 		break;
349 	case KVM_CAP_MSI_DEVID:
350 		if (!kvm)
351 			r = -EINVAL;
352 		else
353 			r = kvm->arch.vgic.msis_require_devid;
354 		break;
355 	case KVM_CAP_ARM_USER_IRQ:
356 		/*
357 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
358 		 * (bump this number if adding more devices)
359 		 */
360 		r = 1;
361 		break;
362 	case KVM_CAP_ARM_MTE:
363 		r = system_supports_mte();
364 		break;
365 	case KVM_CAP_STEAL_TIME:
366 		r = kvm_arm_pvtime_supported();
367 		break;
368 	case KVM_CAP_ARM_EL1_32BIT:
369 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
370 		break;
371 	case KVM_CAP_ARM_EL2:
372 		r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
373 		break;
374 	case KVM_CAP_ARM_EL2_E2H0:
375 		r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
376 		break;
377 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
378 		r = get_num_brps();
379 		break;
380 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
381 		r = get_num_wrps();
382 		break;
383 	case KVM_CAP_ARM_PMU_V3:
384 		r = kvm_supports_guest_pmuv3();
385 		break;
386 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
387 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
388 		break;
389 	case KVM_CAP_ARM_VM_IPA_SIZE:
390 		r = get_kvm_ipa_limit();
391 		break;
392 	case KVM_CAP_ARM_SVE:
393 		r = system_supports_sve();
394 		break;
395 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
396 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
397 		r = kvm_has_full_ptr_auth();
398 		break;
399 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
400 		if (kvm)
401 			r = kvm->arch.mmu.split_page_chunk_size;
402 		else
403 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
404 		break;
405 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
406 		r = kvm_supported_block_sizes();
407 		break;
408 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
409 		r = BIT(0);
410 		break;
411 	default:
412 		r = 0;
413 	}
414 
415 	return r;
416 }
417 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)418 long kvm_arch_dev_ioctl(struct file *filp,
419 			unsigned int ioctl, unsigned long arg)
420 {
421 	return -EINVAL;
422 }
423 
kvm_arch_alloc_vm(void)424 struct kvm *kvm_arch_alloc_vm(void)
425 {
426 	size_t sz = sizeof(struct kvm);
427 
428 	if (!has_vhe())
429 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
430 
431 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
432 }
433 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)434 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
435 {
436 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
437 		return -EBUSY;
438 
439 	if (id >= kvm->max_vcpus)
440 		return -EINVAL;
441 
442 	return 0;
443 }
444 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)445 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
446 {
447 	int err;
448 
449 	spin_lock_init(&vcpu->arch.mp_state_lock);
450 
451 #ifdef CONFIG_LOCKDEP
452 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
453 	mutex_lock(&vcpu->mutex);
454 	mutex_lock(&vcpu->kvm->arch.config_lock);
455 	mutex_unlock(&vcpu->kvm->arch.config_lock);
456 	mutex_unlock(&vcpu->mutex);
457 #endif
458 
459 	/* Force users to call KVM_ARM_VCPU_INIT */
460 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
461 
462 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
463 
464 	/* Set up the timer */
465 	kvm_timer_vcpu_init(vcpu);
466 
467 	kvm_pmu_vcpu_init(vcpu);
468 
469 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
470 
471 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
472 
473 	/*
474 	 * This vCPU may have been created after mpidr_data was initialized.
475 	 * Throw out the pre-computed mappings if that is the case which forces
476 	 * KVM to fall back to iteratively searching the vCPUs.
477 	 */
478 	kvm_destroy_mpidr_data(vcpu->kvm);
479 
480 	err = kvm_vgic_vcpu_init(vcpu);
481 	if (err)
482 		return err;
483 
484 	err = kvm_share_hyp(vcpu, vcpu + 1);
485 	if (err)
486 		kvm_vgic_vcpu_destroy(vcpu);
487 
488 	return err;
489 }
490 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)491 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
492 {
493 }
494 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)495 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
496 {
497 	if (!is_protected_kvm_enabled())
498 		kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
499 	else
500 		free_hyp_memcache(&vcpu->arch.pkvm_memcache);
501 	kvm_timer_vcpu_terminate(vcpu);
502 	kvm_pmu_vcpu_destroy(vcpu);
503 	kvm_vgic_vcpu_destroy(vcpu);
504 	kvm_arm_vcpu_destroy(vcpu);
505 }
506 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)507 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
508 {
509 
510 }
511 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)512 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
513 {
514 
515 }
516 
vcpu_set_pauth_traps(struct kvm_vcpu * vcpu)517 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
518 {
519 	if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
520 		/*
521 		 * Either we're running an L2 guest, and the API/APK bits come
522 		 * from L1's HCR_EL2, or API/APK are both set.
523 		 */
524 		if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) {
525 			u64 val;
526 
527 			val = __vcpu_sys_reg(vcpu, HCR_EL2);
528 			val &= (HCR_API | HCR_APK);
529 			vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
530 			vcpu->arch.hcr_el2 |= val;
531 		} else {
532 			vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
533 		}
534 
535 		/*
536 		 * Save the host keys if there is any chance for the guest
537 		 * to use pauth, as the entry code will reload the guest
538 		 * keys in that case.
539 		 */
540 		if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
541 			struct kvm_cpu_context *ctxt;
542 
543 			ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
544 			ptrauth_save_keys(ctxt);
545 		}
546 	}
547 }
548 
kvm_vcpu_should_clear_twi(struct kvm_vcpu * vcpu)549 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
550 {
551 	if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
552 		return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
553 
554 	return single_task_running() &&
555 	       (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
556 		vcpu->kvm->arch.vgic.nassgireq);
557 }
558 
kvm_vcpu_should_clear_twe(struct kvm_vcpu * vcpu)559 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
560 {
561 	if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
562 		return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
563 
564 	return single_task_running();
565 }
566 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)567 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
568 {
569 	struct kvm_s2_mmu *mmu;
570 	int *last_ran;
571 
572 	if (is_protected_kvm_enabled())
573 		goto nommu;
574 
575 	if (vcpu_has_nv(vcpu))
576 		kvm_vcpu_load_hw_mmu(vcpu);
577 
578 	mmu = vcpu->arch.hw_mmu;
579 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
580 
581 	/*
582 	 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
583 	 * which happens eagerly in VHE.
584 	 *
585 	 * Also, the VMID allocator only preserves VMIDs that are active at the
586 	 * time of rollover, so KVM might need to grab a new VMID for the MMU if
587 	 * this is called from kvm_sched_in().
588 	 */
589 	kvm_arm_vmid_update(&mmu->vmid);
590 
591 	/*
592 	 * We guarantee that both TLBs and I-cache are private to each
593 	 * vcpu. If detecting that a vcpu from the same VM has
594 	 * previously run on the same physical CPU, call into the
595 	 * hypervisor code to nuke the relevant contexts.
596 	 *
597 	 * We might get preempted before the vCPU actually runs, but
598 	 * over-invalidation doesn't affect correctness.
599 	 */
600 	if (*last_ran != vcpu->vcpu_idx) {
601 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
602 		*last_ran = vcpu->vcpu_idx;
603 	}
604 
605 nommu:
606 	vcpu->cpu = cpu;
607 
608 	/*
609 	 * The timer must be loaded before the vgic to correctly set up physical
610 	 * interrupt deactivation in nested state (e.g. timer interrupt).
611 	 */
612 	kvm_timer_vcpu_load(vcpu);
613 	kvm_vgic_load(vcpu);
614 	kvm_vcpu_load_debug(vcpu);
615 	if (has_vhe())
616 		kvm_vcpu_load_vhe(vcpu);
617 	kvm_arch_vcpu_load_fp(vcpu);
618 	kvm_vcpu_pmu_restore_guest(vcpu);
619 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
620 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
621 
622 	if (kvm_vcpu_should_clear_twe(vcpu))
623 		vcpu->arch.hcr_el2 &= ~HCR_TWE;
624 	else
625 		vcpu->arch.hcr_el2 |= HCR_TWE;
626 
627 	if (kvm_vcpu_should_clear_twi(vcpu))
628 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
629 	else
630 		vcpu->arch.hcr_el2 |= HCR_TWI;
631 
632 	vcpu_set_pauth_traps(vcpu);
633 
634 	if (is_protected_kvm_enabled()) {
635 		kvm_call_hyp_nvhe(__pkvm_vcpu_load,
636 				  vcpu->kvm->arch.pkvm.handle,
637 				  vcpu->vcpu_idx, vcpu->arch.hcr_el2);
638 		kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
639 			     &vcpu->arch.vgic_cpu.vgic_v3);
640 	}
641 
642 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
643 		vcpu_set_on_unsupported_cpu(vcpu);
644 }
645 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)646 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
647 {
648 	if (is_protected_kvm_enabled()) {
649 		kvm_call_hyp(__vgic_v3_save_vmcr_aprs,
650 			     &vcpu->arch.vgic_cpu.vgic_v3);
651 		kvm_call_hyp_nvhe(__pkvm_vcpu_put);
652 	}
653 
654 	kvm_vcpu_put_debug(vcpu);
655 	kvm_arch_vcpu_put_fp(vcpu);
656 	if (has_vhe())
657 		kvm_vcpu_put_vhe(vcpu);
658 	kvm_timer_vcpu_put(vcpu);
659 	kvm_vgic_put(vcpu);
660 	kvm_vcpu_pmu_restore_host(vcpu);
661 	if (vcpu_has_nv(vcpu))
662 		kvm_vcpu_put_hw_mmu(vcpu);
663 	kvm_arm_vmid_clear_active();
664 
665 	vcpu_clear_on_unsupported_cpu(vcpu);
666 	vcpu->cpu = -1;
667 }
668 
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)669 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
670 {
671 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
672 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
673 	kvm_vcpu_kick(vcpu);
674 }
675 
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)676 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
677 {
678 	spin_lock(&vcpu->arch.mp_state_lock);
679 	__kvm_arm_vcpu_power_off(vcpu);
680 	spin_unlock(&vcpu->arch.mp_state_lock);
681 }
682 
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)683 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
684 {
685 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
686 }
687 
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)688 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
689 {
690 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
691 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
692 	kvm_vcpu_kick(vcpu);
693 }
694 
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)695 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
696 {
697 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
698 }
699 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)700 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
701 				    struct kvm_mp_state *mp_state)
702 {
703 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
704 
705 	return 0;
706 }
707 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)708 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
709 				    struct kvm_mp_state *mp_state)
710 {
711 	int ret = 0;
712 
713 	spin_lock(&vcpu->arch.mp_state_lock);
714 
715 	switch (mp_state->mp_state) {
716 	case KVM_MP_STATE_RUNNABLE:
717 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
718 		break;
719 	case KVM_MP_STATE_STOPPED:
720 		__kvm_arm_vcpu_power_off(vcpu);
721 		break;
722 	case KVM_MP_STATE_SUSPENDED:
723 		kvm_arm_vcpu_suspend(vcpu);
724 		break;
725 	default:
726 		ret = -EINVAL;
727 	}
728 
729 	spin_unlock(&vcpu->arch.mp_state_lock);
730 
731 	return ret;
732 }
733 
734 /**
735  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
736  * @v:		The VCPU pointer
737  *
738  * If the guest CPU is not waiting for interrupts or an interrupt line is
739  * asserted, the CPU is by definition runnable.
740  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)741 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
742 {
743 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
744 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
745 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
746 }
747 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)748 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
749 {
750 	return vcpu_mode_priv(vcpu);
751 }
752 
753 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)754 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
755 {
756 	return *vcpu_pc(vcpu);
757 }
758 #endif
759 
kvm_init_mpidr_data(struct kvm * kvm)760 static void kvm_init_mpidr_data(struct kvm *kvm)
761 {
762 	struct kvm_mpidr_data *data = NULL;
763 	unsigned long c, mask, nr_entries;
764 	u64 aff_set = 0, aff_clr = ~0UL;
765 	struct kvm_vcpu *vcpu;
766 
767 	mutex_lock(&kvm->arch.config_lock);
768 
769 	if (rcu_access_pointer(kvm->arch.mpidr_data) ||
770 	    atomic_read(&kvm->online_vcpus) == 1)
771 		goto out;
772 
773 	kvm_for_each_vcpu(c, vcpu, kvm) {
774 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
775 		aff_set |= aff;
776 		aff_clr &= aff;
777 	}
778 
779 	/*
780 	 * A significant bit can be either 0 or 1, and will only appear in
781 	 * aff_set. Use aff_clr to weed out the useless stuff.
782 	 */
783 	mask = aff_set ^ aff_clr;
784 	nr_entries = BIT_ULL(hweight_long(mask));
785 
786 	/*
787 	 * Don't let userspace fool us. If we need more than a single page
788 	 * to describe the compressed MPIDR array, just fall back to the
789 	 * iterative method. Single vcpu VMs do not need this either.
790 	 */
791 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
792 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
793 			       GFP_KERNEL_ACCOUNT);
794 
795 	if (!data)
796 		goto out;
797 
798 	data->mpidr_mask = mask;
799 
800 	kvm_for_each_vcpu(c, vcpu, kvm) {
801 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
802 		u16 index = kvm_mpidr_index(data, aff);
803 
804 		data->cmpidr_to_idx[index] = c;
805 	}
806 
807 	rcu_assign_pointer(kvm->arch.mpidr_data, data);
808 out:
809 	mutex_unlock(&kvm->arch.config_lock);
810 }
811 
812 /*
813  * Handle both the initialisation that is being done when the vcpu is
814  * run for the first time, as well as the updates that must be
815  * performed each time we get a new thread dealing with this vcpu.
816  */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)817 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
818 {
819 	struct kvm *kvm = vcpu->kvm;
820 	int ret;
821 
822 	if (!kvm_vcpu_initialized(vcpu))
823 		return -ENOEXEC;
824 
825 	if (!kvm_arm_vcpu_is_finalized(vcpu))
826 		return -EPERM;
827 
828 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
829 	if (ret)
830 		return ret;
831 
832 	if (likely(vcpu_has_run_once(vcpu)))
833 		return 0;
834 
835 	kvm_init_mpidr_data(kvm);
836 
837 	if (likely(irqchip_in_kernel(kvm))) {
838 		/*
839 		 * Map the VGIC hardware resources before running a vcpu the
840 		 * first time on this VM.
841 		 */
842 		ret = kvm_vgic_map_resources(kvm);
843 		if (ret)
844 			return ret;
845 	}
846 
847 	ret = kvm_finalize_sys_regs(vcpu);
848 	if (ret)
849 		return ret;
850 
851 	if (vcpu_has_nv(vcpu)) {
852 		ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
853 		if (ret)
854 			return ret;
855 
856 		ret = kvm_vgic_vcpu_nv_init(vcpu);
857 		if (ret)
858 			return ret;
859 	}
860 
861 	/*
862 	 * This needs to happen after any restriction has been applied
863 	 * to the feature set.
864 	 */
865 	kvm_calculate_traps(vcpu);
866 
867 	ret = kvm_timer_enable(vcpu);
868 	if (ret)
869 		return ret;
870 
871 	if (kvm_vcpu_has_pmu(vcpu)) {
872 		ret = kvm_arm_pmu_v3_enable(vcpu);
873 		if (ret)
874 			return ret;
875 	}
876 
877 	if (is_protected_kvm_enabled()) {
878 		ret = pkvm_create_hyp_vm(kvm);
879 		if (ret)
880 			return ret;
881 
882 		ret = pkvm_create_hyp_vcpu(vcpu);
883 		if (ret)
884 			return ret;
885 	}
886 
887 	mutex_lock(&kvm->arch.config_lock);
888 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
889 	mutex_unlock(&kvm->arch.config_lock);
890 
891 	return ret;
892 }
893 
kvm_arch_intc_initialized(struct kvm * kvm)894 bool kvm_arch_intc_initialized(struct kvm *kvm)
895 {
896 	return vgic_initialized(kvm);
897 }
898 
kvm_arm_halt_guest(struct kvm * kvm)899 void kvm_arm_halt_guest(struct kvm *kvm)
900 {
901 	unsigned long i;
902 	struct kvm_vcpu *vcpu;
903 
904 	kvm_for_each_vcpu(i, vcpu, kvm)
905 		vcpu->arch.pause = true;
906 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
907 }
908 
kvm_arm_resume_guest(struct kvm * kvm)909 void kvm_arm_resume_guest(struct kvm *kvm)
910 {
911 	unsigned long i;
912 	struct kvm_vcpu *vcpu;
913 
914 	kvm_for_each_vcpu(i, vcpu, kvm) {
915 		vcpu->arch.pause = false;
916 		__kvm_vcpu_wake_up(vcpu);
917 	}
918 }
919 
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)920 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
921 {
922 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
923 
924 	rcuwait_wait_event(wait,
925 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
926 			   TASK_INTERRUPTIBLE);
927 
928 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
929 		/* Awaken to handle a signal, request we sleep again later. */
930 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
931 	}
932 
933 	/*
934 	 * Make sure we will observe a potential reset request if we've
935 	 * observed a change to the power state. Pairs with the smp_wmb() in
936 	 * kvm_psci_vcpu_on().
937 	 */
938 	smp_rmb();
939 }
940 
941 /**
942  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
943  * @vcpu:	The VCPU pointer
944  *
945  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
946  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
947  * on when a wake event arrives, e.g. there may already be a pending wake event.
948  */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)949 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
950 {
951 	/*
952 	 * Sync back the state of the GIC CPU interface so that we have
953 	 * the latest PMR and group enables. This ensures that
954 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
955 	 * we have pending interrupts, e.g. when determining if the
956 	 * vCPU should block.
957 	 *
958 	 * For the same reason, we want to tell GICv4 that we need
959 	 * doorbells to be signalled, should an interrupt become pending.
960 	 */
961 	preempt_disable();
962 	vcpu_set_flag(vcpu, IN_WFI);
963 	kvm_vgic_put(vcpu);
964 	preempt_enable();
965 
966 	kvm_vcpu_halt(vcpu);
967 	vcpu_clear_flag(vcpu, IN_WFIT);
968 
969 	preempt_disable();
970 	vcpu_clear_flag(vcpu, IN_WFI);
971 	kvm_vgic_load(vcpu);
972 	preempt_enable();
973 }
974 
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)975 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
976 {
977 	if (!kvm_arm_vcpu_suspended(vcpu))
978 		return 1;
979 
980 	kvm_vcpu_wfi(vcpu);
981 
982 	/*
983 	 * The suspend state is sticky; we do not leave it until userspace
984 	 * explicitly marks the vCPU as runnable. Request that we suspend again
985 	 * later.
986 	 */
987 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
988 
989 	/*
990 	 * Check to make sure the vCPU is actually runnable. If so, exit to
991 	 * userspace informing it of the wakeup condition.
992 	 */
993 	if (kvm_arch_vcpu_runnable(vcpu)) {
994 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
995 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
996 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
997 		return 0;
998 	}
999 
1000 	/*
1001 	 * Otherwise, we were unblocked to process a different event, such as a
1002 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1003 	 * process the event.
1004 	 */
1005 	return 1;
1006 }
1007 
1008 /**
1009  * check_vcpu_requests - check and handle pending vCPU requests
1010  * @vcpu:	the VCPU pointer
1011  *
1012  * Return: 1 if we should enter the guest
1013  *	   0 if we should exit to userspace
1014  *	   < 0 if we should exit to userspace, where the return value indicates
1015  *	   an error
1016  */
check_vcpu_requests(struct kvm_vcpu * vcpu)1017 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1018 {
1019 	if (kvm_request_pending(vcpu)) {
1020 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1021 			return -EIO;
1022 
1023 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1024 			kvm_vcpu_sleep(vcpu);
1025 
1026 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1027 			kvm_reset_vcpu(vcpu);
1028 
1029 		/*
1030 		 * Clear IRQ_PENDING requests that were made to guarantee
1031 		 * that a VCPU sees new virtual interrupts.
1032 		 */
1033 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1034 
1035 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1036 			kvm_update_stolen_time(vcpu);
1037 
1038 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1039 			/* The distributor enable bits were changed */
1040 			preempt_disable();
1041 			vgic_v4_put(vcpu);
1042 			vgic_v4_load(vcpu);
1043 			preempt_enable();
1044 		}
1045 
1046 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1047 			kvm_vcpu_reload_pmu(vcpu);
1048 
1049 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1050 			kvm_vcpu_pmu_restore_guest(vcpu);
1051 
1052 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1053 			return kvm_vcpu_suspend(vcpu);
1054 
1055 		if (kvm_dirty_ring_check_request(vcpu))
1056 			return 0;
1057 
1058 		check_nested_vcpu_requests(vcpu);
1059 	}
1060 
1061 	return 1;
1062 }
1063 
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)1064 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1065 {
1066 	if (likely(!vcpu_mode_is_32bit(vcpu)))
1067 		return false;
1068 
1069 	if (vcpu_has_nv(vcpu))
1070 		return true;
1071 
1072 	return !kvm_supports_32bit_el0();
1073 }
1074 
1075 /**
1076  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1077  * @vcpu:	The VCPU pointer
1078  * @ret:	Pointer to write optional return code
1079  *
1080  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1081  *	    and skip guest entry.
1082  *
1083  * This function disambiguates between two different types of exits: exits to a
1084  * preemptible + interruptible kernel context and exits to userspace. For an
1085  * exit to userspace, this function will write the return code to ret and return
1086  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1087  * for pending work and re-enter), return true without writing to ret.
1088  */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)1089 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1090 {
1091 	struct kvm_run *run = vcpu->run;
1092 
1093 	/*
1094 	 * If we're using a userspace irqchip, then check if we need
1095 	 * to tell a userspace irqchip about timer or PMU level
1096 	 * changes and if so, exit to userspace (the actual level
1097 	 * state gets updated in kvm_timer_update_run and
1098 	 * kvm_pmu_update_run below).
1099 	 */
1100 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1101 		if (kvm_timer_should_notify_user(vcpu) ||
1102 		    kvm_pmu_should_notify_user(vcpu)) {
1103 			*ret = -EINTR;
1104 			run->exit_reason = KVM_EXIT_INTR;
1105 			return true;
1106 		}
1107 	}
1108 
1109 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1110 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1111 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1112 		run->fail_entry.cpu = smp_processor_id();
1113 		*ret = 0;
1114 		return true;
1115 	}
1116 
1117 	return kvm_request_pending(vcpu) ||
1118 			xfer_to_guest_mode_work_pending();
1119 }
1120 
1121 /*
1122  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1123  * the vCPU is running.
1124  *
1125  * This must be noinstr as instrumentation may make use of RCU, and this is not
1126  * safe during the EQS.
1127  */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)1128 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1129 {
1130 	int ret;
1131 
1132 	guest_state_enter_irqoff();
1133 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1134 	guest_state_exit_irqoff();
1135 
1136 	return ret;
1137 }
1138 
1139 /**
1140  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1141  * @vcpu:	The VCPU pointer
1142  *
1143  * This function is called through the VCPU_RUN ioctl called from user space. It
1144  * will execute VM code in a loop until the time slice for the process is used
1145  * or some emulation is needed from user space in which case the function will
1146  * return with return value 0 and with the kvm_run structure filled in with the
1147  * required data for the requested emulation.
1148  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1149 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1150 {
1151 	struct kvm_run *run = vcpu->run;
1152 	int ret;
1153 
1154 	if (run->exit_reason == KVM_EXIT_MMIO) {
1155 		ret = kvm_handle_mmio_return(vcpu);
1156 		if (ret <= 0)
1157 			return ret;
1158 	}
1159 
1160 	vcpu_load(vcpu);
1161 
1162 	if (!vcpu->wants_to_run) {
1163 		ret = -EINTR;
1164 		goto out;
1165 	}
1166 
1167 	kvm_sigset_activate(vcpu);
1168 
1169 	ret = 1;
1170 	run->exit_reason = KVM_EXIT_UNKNOWN;
1171 	run->flags = 0;
1172 	while (ret > 0) {
1173 		/*
1174 		 * Check conditions before entering the guest
1175 		 */
1176 		ret = xfer_to_guest_mode_handle_work(vcpu);
1177 		if (!ret)
1178 			ret = 1;
1179 
1180 		if (ret > 0)
1181 			ret = check_vcpu_requests(vcpu);
1182 
1183 		/*
1184 		 * Preparing the interrupts to be injected also
1185 		 * involves poking the GIC, which must be done in a
1186 		 * non-preemptible context.
1187 		 */
1188 		preempt_disable();
1189 
1190 		if (kvm_vcpu_has_pmu(vcpu))
1191 			kvm_pmu_flush_hwstate(vcpu);
1192 
1193 		local_irq_disable();
1194 
1195 		kvm_vgic_flush_hwstate(vcpu);
1196 
1197 		kvm_pmu_update_vcpu_events(vcpu);
1198 
1199 		/*
1200 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1201 		 * interrupts and before the final VCPU requests check.
1202 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1203 		 * Documentation/virt/kvm/vcpu-requests.rst
1204 		 */
1205 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1206 
1207 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1208 			vcpu->mode = OUTSIDE_GUEST_MODE;
1209 			isb(); /* Ensure work in x_flush_hwstate is committed */
1210 			if (kvm_vcpu_has_pmu(vcpu))
1211 				kvm_pmu_sync_hwstate(vcpu);
1212 			if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1213 				kvm_timer_sync_user(vcpu);
1214 			kvm_vgic_sync_hwstate(vcpu);
1215 			local_irq_enable();
1216 			preempt_enable();
1217 			continue;
1218 		}
1219 
1220 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1221 
1222 		/**************************************************************
1223 		 * Enter the guest
1224 		 */
1225 		trace_kvm_entry(*vcpu_pc(vcpu));
1226 		guest_timing_enter_irqoff();
1227 
1228 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1229 
1230 		vcpu->mode = OUTSIDE_GUEST_MODE;
1231 		vcpu->stat.exits++;
1232 		/*
1233 		 * Back from guest
1234 		 *************************************************************/
1235 
1236 		/*
1237 		 * We must sync the PMU state before the vgic state so
1238 		 * that the vgic can properly sample the updated state of the
1239 		 * interrupt line.
1240 		 */
1241 		if (kvm_vcpu_has_pmu(vcpu))
1242 			kvm_pmu_sync_hwstate(vcpu);
1243 
1244 		/*
1245 		 * Sync the vgic state before syncing the timer state because
1246 		 * the timer code needs to know if the virtual timer
1247 		 * interrupts are active.
1248 		 */
1249 		kvm_vgic_sync_hwstate(vcpu);
1250 
1251 		/*
1252 		 * Sync the timer hardware state before enabling interrupts as
1253 		 * we don't want vtimer interrupts to race with syncing the
1254 		 * timer virtual interrupt state.
1255 		 */
1256 		if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1257 			kvm_timer_sync_user(vcpu);
1258 
1259 		if (is_hyp_ctxt(vcpu))
1260 			kvm_timer_sync_nested(vcpu);
1261 
1262 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1263 
1264 		/*
1265 		 * We must ensure that any pending interrupts are taken before
1266 		 * we exit guest timing so that timer ticks are accounted as
1267 		 * guest time. Transiently unmask interrupts so that any
1268 		 * pending interrupts are taken.
1269 		 *
1270 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1271 		 * context synchronization event) is necessary to ensure that
1272 		 * pending interrupts are taken.
1273 		 */
1274 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1275 			local_irq_enable();
1276 			isb();
1277 			local_irq_disable();
1278 		}
1279 
1280 		guest_timing_exit_irqoff();
1281 
1282 		local_irq_enable();
1283 
1284 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1285 
1286 		/* Exit types that need handling before we can be preempted */
1287 		handle_exit_early(vcpu, ret);
1288 
1289 		preempt_enable();
1290 
1291 		/*
1292 		 * The ARMv8 architecture doesn't give the hypervisor
1293 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1294 		 * if implemented by the CPU. If we spot the guest in such
1295 		 * state and that we decided it wasn't supposed to do so (like
1296 		 * with the asymmetric AArch32 case), return to userspace with
1297 		 * a fatal error.
1298 		 */
1299 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1300 			/*
1301 			 * As we have caught the guest red-handed, decide that
1302 			 * it isn't fit for purpose anymore by making the vcpu
1303 			 * invalid. The VMM can try and fix it by issuing  a
1304 			 * KVM_ARM_VCPU_INIT if it really wants to.
1305 			 */
1306 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1307 			ret = ARM_EXCEPTION_IL;
1308 		}
1309 
1310 		ret = handle_exit(vcpu, ret);
1311 	}
1312 
1313 	/* Tell userspace about in-kernel device output levels */
1314 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1315 		kvm_timer_update_run(vcpu);
1316 		kvm_pmu_update_run(vcpu);
1317 	}
1318 
1319 	kvm_sigset_deactivate(vcpu);
1320 
1321 out:
1322 	/*
1323 	 * In the unlikely event that we are returning to userspace
1324 	 * with pending exceptions or PC adjustment, commit these
1325 	 * adjustments in order to give userspace a consistent view of
1326 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1327 	 * being preempt-safe on VHE.
1328 	 */
1329 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1330 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1331 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1332 
1333 	vcpu_put(vcpu);
1334 	return ret;
1335 }
1336 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1337 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1338 {
1339 	int bit_index;
1340 	bool set;
1341 	unsigned long *hcr;
1342 
1343 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1344 		bit_index = __ffs(HCR_VI);
1345 	else /* KVM_ARM_IRQ_CPU_FIQ */
1346 		bit_index = __ffs(HCR_VF);
1347 
1348 	hcr = vcpu_hcr(vcpu);
1349 	if (level)
1350 		set = test_and_set_bit(bit_index, hcr);
1351 	else
1352 		set = test_and_clear_bit(bit_index, hcr);
1353 
1354 	/*
1355 	 * If we didn't change anything, no need to wake up or kick other CPUs
1356 	 */
1357 	if (set == level)
1358 		return 0;
1359 
1360 	/*
1361 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1362 	 * trigger a world-switch round on the running physical CPU to set the
1363 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1364 	 */
1365 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1366 	kvm_vcpu_kick(vcpu);
1367 
1368 	return 0;
1369 }
1370 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1371 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1372 			  bool line_status)
1373 {
1374 	u32 irq = irq_level->irq;
1375 	unsigned int irq_type, vcpu_id, irq_num;
1376 	struct kvm_vcpu *vcpu = NULL;
1377 	bool level = irq_level->level;
1378 
1379 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1380 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1381 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1382 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1383 
1384 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1385 
1386 	switch (irq_type) {
1387 	case KVM_ARM_IRQ_TYPE_CPU:
1388 		if (irqchip_in_kernel(kvm))
1389 			return -ENXIO;
1390 
1391 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1392 		if (!vcpu)
1393 			return -EINVAL;
1394 
1395 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1396 			return -EINVAL;
1397 
1398 		return vcpu_interrupt_line(vcpu, irq_num, level);
1399 	case KVM_ARM_IRQ_TYPE_PPI:
1400 		if (!irqchip_in_kernel(kvm))
1401 			return -ENXIO;
1402 
1403 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1404 		if (!vcpu)
1405 			return -EINVAL;
1406 
1407 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1408 			return -EINVAL;
1409 
1410 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1411 	case KVM_ARM_IRQ_TYPE_SPI:
1412 		if (!irqchip_in_kernel(kvm))
1413 			return -ENXIO;
1414 
1415 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1416 			return -EINVAL;
1417 
1418 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1419 	}
1420 
1421 	return -EINVAL;
1422 }
1423 
system_supported_vcpu_features(void)1424 static unsigned long system_supported_vcpu_features(void)
1425 {
1426 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1427 
1428 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1429 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1430 
1431 	if (!kvm_supports_guest_pmuv3())
1432 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1433 
1434 	if (!system_supports_sve())
1435 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1436 
1437 	if (!kvm_has_full_ptr_auth()) {
1438 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1439 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1440 	}
1441 
1442 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1443 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1444 
1445 	return features;
1446 }
1447 
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1448 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1449 					const struct kvm_vcpu_init *init)
1450 {
1451 	unsigned long features = init->features[0];
1452 	int i;
1453 
1454 	if (features & ~KVM_VCPU_VALID_FEATURES)
1455 		return -ENOENT;
1456 
1457 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1458 		if (init->features[i])
1459 			return -ENOENT;
1460 	}
1461 
1462 	if (features & ~system_supported_vcpu_features())
1463 		return -EINVAL;
1464 
1465 	/*
1466 	 * For now make sure that both address/generic pointer authentication
1467 	 * features are requested by the userspace together.
1468 	 */
1469 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1470 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1471 		return -EINVAL;
1472 
1473 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1474 		return 0;
1475 
1476 	/* MTE is incompatible with AArch32 */
1477 	if (kvm_has_mte(vcpu->kvm))
1478 		return -EINVAL;
1479 
1480 	/* NV is incompatible with AArch32 */
1481 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1482 		return -EINVAL;
1483 
1484 	return 0;
1485 }
1486 
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1487 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1488 				  const struct kvm_vcpu_init *init)
1489 {
1490 	unsigned long features = init->features[0];
1491 
1492 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1493 			     KVM_VCPU_MAX_FEATURES);
1494 }
1495 
kvm_setup_vcpu(struct kvm_vcpu * vcpu)1496 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1497 {
1498 	struct kvm *kvm = vcpu->kvm;
1499 	int ret = 0;
1500 
1501 	/*
1502 	 * When the vCPU has a PMU, but no PMU is set for the guest
1503 	 * yet, set the default one.
1504 	 */
1505 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1506 		ret = kvm_arm_set_default_pmu(kvm);
1507 
1508 	/* Prepare for nested if required */
1509 	if (!ret && vcpu_has_nv(vcpu))
1510 		ret = kvm_vcpu_init_nested(vcpu);
1511 
1512 	return ret;
1513 }
1514 
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1515 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1516 				 const struct kvm_vcpu_init *init)
1517 {
1518 	unsigned long features = init->features[0];
1519 	struct kvm *kvm = vcpu->kvm;
1520 	int ret = -EINVAL;
1521 
1522 	mutex_lock(&kvm->arch.config_lock);
1523 
1524 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1525 	    kvm_vcpu_init_changed(vcpu, init))
1526 		goto out_unlock;
1527 
1528 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1529 
1530 	ret = kvm_setup_vcpu(vcpu);
1531 	if (ret)
1532 		goto out_unlock;
1533 
1534 	/* Now we know what it is, we can reset it. */
1535 	kvm_reset_vcpu(vcpu);
1536 
1537 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1538 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1539 	ret = 0;
1540 out_unlock:
1541 	mutex_unlock(&kvm->arch.config_lock);
1542 	return ret;
1543 }
1544 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1545 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1546 			       const struct kvm_vcpu_init *init)
1547 {
1548 	int ret;
1549 
1550 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1551 	    init->target != kvm_target_cpu())
1552 		return -EINVAL;
1553 
1554 	ret = kvm_vcpu_init_check_features(vcpu, init);
1555 	if (ret)
1556 		return ret;
1557 
1558 	if (!kvm_vcpu_initialized(vcpu))
1559 		return __kvm_vcpu_set_target(vcpu, init);
1560 
1561 	if (kvm_vcpu_init_changed(vcpu, init))
1562 		return -EINVAL;
1563 
1564 	kvm_reset_vcpu(vcpu);
1565 	return 0;
1566 }
1567 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1568 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1569 					 struct kvm_vcpu_init *init)
1570 {
1571 	bool power_off = false;
1572 	int ret;
1573 
1574 	/*
1575 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1576 	 * reflecting it in the finalized feature set, thus limiting its scope
1577 	 * to a single KVM_ARM_VCPU_INIT call.
1578 	 */
1579 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1580 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1581 		power_off = true;
1582 	}
1583 
1584 	ret = kvm_vcpu_set_target(vcpu, init);
1585 	if (ret)
1586 		return ret;
1587 
1588 	/*
1589 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1590 	 * guest MMU is turned off and flush the caches as needed.
1591 	 *
1592 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1593 	 * ensuring that the data side is always coherent. We still
1594 	 * need to invalidate the I-cache though, as FWB does *not*
1595 	 * imply CTR_EL0.DIC.
1596 	 */
1597 	if (vcpu_has_run_once(vcpu)) {
1598 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1599 			stage2_unmap_vm(vcpu->kvm);
1600 		else
1601 			icache_inval_all_pou();
1602 	}
1603 
1604 	vcpu_reset_hcr(vcpu);
1605 
1606 	/*
1607 	 * Handle the "start in power-off" case.
1608 	 */
1609 	spin_lock(&vcpu->arch.mp_state_lock);
1610 
1611 	if (power_off)
1612 		__kvm_arm_vcpu_power_off(vcpu);
1613 	else
1614 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1615 
1616 	spin_unlock(&vcpu->arch.mp_state_lock);
1617 
1618 	return 0;
1619 }
1620 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1621 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1622 				 struct kvm_device_attr *attr)
1623 {
1624 	int ret = -ENXIO;
1625 
1626 	switch (attr->group) {
1627 	default:
1628 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1629 		break;
1630 	}
1631 
1632 	return ret;
1633 }
1634 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1635 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1636 				 struct kvm_device_attr *attr)
1637 {
1638 	int ret = -ENXIO;
1639 
1640 	switch (attr->group) {
1641 	default:
1642 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1643 		break;
1644 	}
1645 
1646 	return ret;
1647 }
1648 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1649 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1650 				 struct kvm_device_attr *attr)
1651 {
1652 	int ret = -ENXIO;
1653 
1654 	switch (attr->group) {
1655 	default:
1656 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1657 		break;
1658 	}
1659 
1660 	return ret;
1661 }
1662 
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1663 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1664 				   struct kvm_vcpu_events *events)
1665 {
1666 	memset(events, 0, sizeof(*events));
1667 
1668 	return __kvm_arm_vcpu_get_events(vcpu, events);
1669 }
1670 
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1671 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1672 				   struct kvm_vcpu_events *events)
1673 {
1674 	int i;
1675 
1676 	/* check whether the reserved field is zero */
1677 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1678 		if (events->reserved[i])
1679 			return -EINVAL;
1680 
1681 	/* check whether the pad field is zero */
1682 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1683 		if (events->exception.pad[i])
1684 			return -EINVAL;
1685 
1686 	return __kvm_arm_vcpu_set_events(vcpu, events);
1687 }
1688 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1689 long kvm_arch_vcpu_ioctl(struct file *filp,
1690 			 unsigned int ioctl, unsigned long arg)
1691 {
1692 	struct kvm_vcpu *vcpu = filp->private_data;
1693 	void __user *argp = (void __user *)arg;
1694 	struct kvm_device_attr attr;
1695 	long r;
1696 
1697 	switch (ioctl) {
1698 	case KVM_ARM_VCPU_INIT: {
1699 		struct kvm_vcpu_init init;
1700 
1701 		r = -EFAULT;
1702 		if (copy_from_user(&init, argp, sizeof(init)))
1703 			break;
1704 
1705 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1706 		break;
1707 	}
1708 	case KVM_SET_ONE_REG:
1709 	case KVM_GET_ONE_REG: {
1710 		struct kvm_one_reg reg;
1711 
1712 		r = -ENOEXEC;
1713 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1714 			break;
1715 
1716 		r = -EFAULT;
1717 		if (copy_from_user(&reg, argp, sizeof(reg)))
1718 			break;
1719 
1720 		/*
1721 		 * We could owe a reset due to PSCI. Handle the pending reset
1722 		 * here to ensure userspace register accesses are ordered after
1723 		 * the reset.
1724 		 */
1725 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1726 			kvm_reset_vcpu(vcpu);
1727 
1728 		if (ioctl == KVM_SET_ONE_REG)
1729 			r = kvm_arm_set_reg(vcpu, &reg);
1730 		else
1731 			r = kvm_arm_get_reg(vcpu, &reg);
1732 		break;
1733 	}
1734 	case KVM_GET_REG_LIST: {
1735 		struct kvm_reg_list __user *user_list = argp;
1736 		struct kvm_reg_list reg_list;
1737 		unsigned n;
1738 
1739 		r = -ENOEXEC;
1740 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1741 			break;
1742 
1743 		r = -EPERM;
1744 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1745 			break;
1746 
1747 		r = -EFAULT;
1748 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1749 			break;
1750 		n = reg_list.n;
1751 		reg_list.n = kvm_arm_num_regs(vcpu);
1752 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1753 			break;
1754 		r = -E2BIG;
1755 		if (n < reg_list.n)
1756 			break;
1757 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1758 		break;
1759 	}
1760 	case KVM_SET_DEVICE_ATTR: {
1761 		r = -EFAULT;
1762 		if (copy_from_user(&attr, argp, sizeof(attr)))
1763 			break;
1764 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1765 		break;
1766 	}
1767 	case KVM_GET_DEVICE_ATTR: {
1768 		r = -EFAULT;
1769 		if (copy_from_user(&attr, argp, sizeof(attr)))
1770 			break;
1771 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1772 		break;
1773 	}
1774 	case KVM_HAS_DEVICE_ATTR: {
1775 		r = -EFAULT;
1776 		if (copy_from_user(&attr, argp, sizeof(attr)))
1777 			break;
1778 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1779 		break;
1780 	}
1781 	case KVM_GET_VCPU_EVENTS: {
1782 		struct kvm_vcpu_events events;
1783 
1784 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1785 			return -EINVAL;
1786 
1787 		if (copy_to_user(argp, &events, sizeof(events)))
1788 			return -EFAULT;
1789 
1790 		return 0;
1791 	}
1792 	case KVM_SET_VCPU_EVENTS: {
1793 		struct kvm_vcpu_events events;
1794 
1795 		if (copy_from_user(&events, argp, sizeof(events)))
1796 			return -EFAULT;
1797 
1798 		return kvm_arm_vcpu_set_events(vcpu, &events);
1799 	}
1800 	case KVM_ARM_VCPU_FINALIZE: {
1801 		int what;
1802 
1803 		if (!kvm_vcpu_initialized(vcpu))
1804 			return -ENOEXEC;
1805 
1806 		if (get_user(what, (const int __user *)argp))
1807 			return -EFAULT;
1808 
1809 		return kvm_arm_vcpu_finalize(vcpu, what);
1810 	}
1811 	default:
1812 		r = -EINVAL;
1813 	}
1814 
1815 	return r;
1816 }
1817 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1818 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1819 {
1820 
1821 }
1822 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1823 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1824 					struct kvm_arm_device_addr *dev_addr)
1825 {
1826 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1827 	case KVM_ARM_DEVICE_VGIC_V2:
1828 		if (!vgic_present)
1829 			return -ENXIO;
1830 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1831 	default:
1832 		return -ENODEV;
1833 	}
1834 }
1835 
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1836 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1837 {
1838 	switch (attr->group) {
1839 	case KVM_ARM_VM_SMCCC_CTRL:
1840 		return kvm_vm_smccc_has_attr(kvm, attr);
1841 	default:
1842 		return -ENXIO;
1843 	}
1844 }
1845 
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1846 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1847 {
1848 	switch (attr->group) {
1849 	case KVM_ARM_VM_SMCCC_CTRL:
1850 		return kvm_vm_smccc_set_attr(kvm, attr);
1851 	default:
1852 		return -ENXIO;
1853 	}
1854 }
1855 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1856 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1857 {
1858 	struct kvm *kvm = filp->private_data;
1859 	void __user *argp = (void __user *)arg;
1860 	struct kvm_device_attr attr;
1861 
1862 	switch (ioctl) {
1863 	case KVM_CREATE_IRQCHIP: {
1864 		int ret;
1865 		if (!vgic_present)
1866 			return -ENXIO;
1867 		mutex_lock(&kvm->lock);
1868 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1869 		mutex_unlock(&kvm->lock);
1870 		return ret;
1871 	}
1872 	case KVM_ARM_SET_DEVICE_ADDR: {
1873 		struct kvm_arm_device_addr dev_addr;
1874 
1875 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1876 			return -EFAULT;
1877 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1878 	}
1879 	case KVM_ARM_PREFERRED_TARGET: {
1880 		struct kvm_vcpu_init init = {
1881 			.target = KVM_ARM_TARGET_GENERIC_V8,
1882 		};
1883 
1884 		if (copy_to_user(argp, &init, sizeof(init)))
1885 			return -EFAULT;
1886 
1887 		return 0;
1888 	}
1889 	case KVM_ARM_MTE_COPY_TAGS: {
1890 		struct kvm_arm_copy_mte_tags copy_tags;
1891 
1892 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1893 			return -EFAULT;
1894 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1895 	}
1896 	case KVM_ARM_SET_COUNTER_OFFSET: {
1897 		struct kvm_arm_counter_offset offset;
1898 
1899 		if (copy_from_user(&offset, argp, sizeof(offset)))
1900 			return -EFAULT;
1901 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1902 	}
1903 	case KVM_HAS_DEVICE_ATTR: {
1904 		if (copy_from_user(&attr, argp, sizeof(attr)))
1905 			return -EFAULT;
1906 
1907 		return kvm_vm_has_attr(kvm, &attr);
1908 	}
1909 	case KVM_SET_DEVICE_ATTR: {
1910 		if (copy_from_user(&attr, argp, sizeof(attr)))
1911 			return -EFAULT;
1912 
1913 		return kvm_vm_set_attr(kvm, &attr);
1914 	}
1915 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1916 		struct reg_mask_range range;
1917 
1918 		if (copy_from_user(&range, argp, sizeof(range)))
1919 			return -EFAULT;
1920 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1921 	}
1922 	default:
1923 		return -EINVAL;
1924 	}
1925 }
1926 
nvhe_percpu_size(void)1927 static unsigned long nvhe_percpu_size(void)
1928 {
1929 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1930 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1931 }
1932 
nvhe_percpu_order(void)1933 static unsigned long nvhe_percpu_order(void)
1934 {
1935 	unsigned long size = nvhe_percpu_size();
1936 
1937 	return size ? get_order(size) : 0;
1938 }
1939 
pkvm_host_sve_state_order(void)1940 static size_t pkvm_host_sve_state_order(void)
1941 {
1942 	return get_order(pkvm_host_sve_state_size());
1943 }
1944 
1945 /* A lookup table holding the hypervisor VA for each vector slot */
1946 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1947 
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1948 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1949 {
1950 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1951 }
1952 
kvm_init_vector_slots(void)1953 static int kvm_init_vector_slots(void)
1954 {
1955 	int err;
1956 	void *base;
1957 
1958 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1959 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1960 
1961 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1962 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1963 
1964 	if (kvm_system_needs_idmapped_vectors() &&
1965 	    !is_protected_kvm_enabled()) {
1966 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1967 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1968 		if (err)
1969 			return err;
1970 	}
1971 
1972 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1973 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1974 	return 0;
1975 }
1976 
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)1977 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1978 {
1979 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1980 	unsigned long tcr;
1981 
1982 	/*
1983 	 * Calculate the raw per-cpu offset without a translation from the
1984 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1985 	 * so that we can use adr_l to access per-cpu variables in EL2.
1986 	 * Also drop the KASAN tag which gets in the way...
1987 	 */
1988 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1989 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1990 
1991 	params->mair_el2 = read_sysreg(mair_el1);
1992 
1993 	tcr = read_sysreg(tcr_el1);
1994 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1995 		tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
1996 		tcr |= TCR_EPD1_MASK;
1997 	} else {
1998 		unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
1999 
2000 		tcr &= TCR_EL2_MASK;
2001 		tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2002 		if (lpa2_is_enabled())
2003 			tcr |= TCR_EL2_DS;
2004 	}
2005 	tcr |= TCR_T0SZ(hyp_va_bits);
2006 	params->tcr_el2 = tcr;
2007 
2008 	params->pgd_pa = kvm_mmu_get_httbr();
2009 	if (is_protected_kvm_enabled())
2010 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2011 	else
2012 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2013 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
2014 		params->hcr_el2 |= HCR_E2H;
2015 	params->vttbr = params->vtcr = 0;
2016 
2017 	/*
2018 	 * Flush the init params from the data cache because the struct will
2019 	 * be read while the MMU is off.
2020 	 */
2021 	kvm_flush_dcache_to_poc(params, sizeof(*params));
2022 }
2023 
hyp_install_host_vector(void)2024 static void hyp_install_host_vector(void)
2025 {
2026 	struct kvm_nvhe_init_params *params;
2027 	struct arm_smccc_res res;
2028 
2029 	/* Switch from the HYP stub to our own HYP init vector */
2030 	__hyp_set_vectors(kvm_get_idmap_vector());
2031 
2032 	/*
2033 	 * Call initialization code, and switch to the full blown HYP code.
2034 	 * If the cpucaps haven't been finalized yet, something has gone very
2035 	 * wrong, and hyp will crash and burn when it uses any
2036 	 * cpus_have_*_cap() wrapper.
2037 	 */
2038 	BUG_ON(!system_capabilities_finalized());
2039 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2040 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2041 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2042 }
2043 
cpu_init_hyp_mode(void)2044 static void cpu_init_hyp_mode(void)
2045 {
2046 	hyp_install_host_vector();
2047 
2048 	/*
2049 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2050 	 * at EL2.
2051 	 */
2052 	if (this_cpu_has_cap(ARM64_SSBS) &&
2053 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2054 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2055 	}
2056 }
2057 
cpu_hyp_reset(void)2058 static void cpu_hyp_reset(void)
2059 {
2060 	if (!is_kernel_in_hyp_mode())
2061 		__hyp_reset_vectors();
2062 }
2063 
2064 /*
2065  * EL2 vectors can be mapped and rerouted in a number of ways,
2066  * depending on the kernel configuration and CPU present:
2067  *
2068  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2069  *   placed in one of the vector slots, which is executed before jumping
2070  *   to the real vectors.
2071  *
2072  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2073  *   containing the hardening sequence is mapped next to the idmap page,
2074  *   and executed before jumping to the real vectors.
2075  *
2076  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2077  *   empty slot is selected, mapped next to the idmap page, and
2078  *   executed before jumping to the real vectors.
2079  *
2080  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2081  * VHE, as we don't have hypervisor-specific mappings. If the system
2082  * is VHE and yet selects this capability, it will be ignored.
2083  */
cpu_set_hyp_vector(void)2084 static void cpu_set_hyp_vector(void)
2085 {
2086 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2087 	void *vector = hyp_spectre_vector_selector[data->slot];
2088 
2089 	if (!is_protected_kvm_enabled())
2090 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2091 	else
2092 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2093 }
2094 
cpu_hyp_init_context(void)2095 static void cpu_hyp_init_context(void)
2096 {
2097 	kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2098 	kvm_init_host_debug_data();
2099 
2100 	if (!is_kernel_in_hyp_mode())
2101 		cpu_init_hyp_mode();
2102 }
2103 
cpu_hyp_init_features(void)2104 static void cpu_hyp_init_features(void)
2105 {
2106 	cpu_set_hyp_vector();
2107 
2108 	if (is_kernel_in_hyp_mode())
2109 		kvm_timer_init_vhe();
2110 
2111 	if (vgic_present)
2112 		kvm_vgic_init_cpu_hardware();
2113 }
2114 
cpu_hyp_reinit(void)2115 static void cpu_hyp_reinit(void)
2116 {
2117 	cpu_hyp_reset();
2118 	cpu_hyp_init_context();
2119 	cpu_hyp_init_features();
2120 }
2121 
cpu_hyp_init(void * discard)2122 static void cpu_hyp_init(void *discard)
2123 {
2124 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2125 		cpu_hyp_reinit();
2126 		__this_cpu_write(kvm_hyp_initialized, 1);
2127 	}
2128 }
2129 
cpu_hyp_uninit(void * discard)2130 static void cpu_hyp_uninit(void *discard)
2131 {
2132 	if (__this_cpu_read(kvm_hyp_initialized)) {
2133 		cpu_hyp_reset();
2134 		__this_cpu_write(kvm_hyp_initialized, 0);
2135 	}
2136 }
2137 
kvm_arch_enable_virtualization_cpu(void)2138 int kvm_arch_enable_virtualization_cpu(void)
2139 {
2140 	/*
2141 	 * Most calls to this function are made with migration
2142 	 * disabled, but not with preemption disabled. The former is
2143 	 * enough to ensure correctness, but most of the helpers
2144 	 * expect the later and will throw a tantrum otherwise.
2145 	 */
2146 	preempt_disable();
2147 
2148 	cpu_hyp_init(NULL);
2149 
2150 	kvm_vgic_cpu_up();
2151 	kvm_timer_cpu_up();
2152 
2153 	preempt_enable();
2154 
2155 	return 0;
2156 }
2157 
kvm_arch_disable_virtualization_cpu(void)2158 void kvm_arch_disable_virtualization_cpu(void)
2159 {
2160 	kvm_timer_cpu_down();
2161 	kvm_vgic_cpu_down();
2162 
2163 	if (!is_protected_kvm_enabled())
2164 		cpu_hyp_uninit(NULL);
2165 }
2166 
2167 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2168 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2169 				    unsigned long cmd,
2170 				    void *v)
2171 {
2172 	/*
2173 	 * kvm_hyp_initialized is left with its old value over
2174 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2175 	 * re-enable hyp.
2176 	 */
2177 	switch (cmd) {
2178 	case CPU_PM_ENTER:
2179 		if (__this_cpu_read(kvm_hyp_initialized))
2180 			/*
2181 			 * don't update kvm_hyp_initialized here
2182 			 * so that the hyp will be re-enabled
2183 			 * when we resume. See below.
2184 			 */
2185 			cpu_hyp_reset();
2186 
2187 		return NOTIFY_OK;
2188 	case CPU_PM_ENTER_FAILED:
2189 	case CPU_PM_EXIT:
2190 		if (__this_cpu_read(kvm_hyp_initialized))
2191 			/* The hyp was enabled before suspend. */
2192 			cpu_hyp_reinit();
2193 
2194 		return NOTIFY_OK;
2195 
2196 	default:
2197 		return NOTIFY_DONE;
2198 	}
2199 }
2200 
2201 static struct notifier_block hyp_init_cpu_pm_nb = {
2202 	.notifier_call = hyp_init_cpu_pm_notifier,
2203 };
2204 
hyp_cpu_pm_init(void)2205 static void __init hyp_cpu_pm_init(void)
2206 {
2207 	if (!is_protected_kvm_enabled())
2208 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2209 }
hyp_cpu_pm_exit(void)2210 static void __init hyp_cpu_pm_exit(void)
2211 {
2212 	if (!is_protected_kvm_enabled())
2213 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2214 }
2215 #else
hyp_cpu_pm_init(void)2216 static inline void __init hyp_cpu_pm_init(void)
2217 {
2218 }
hyp_cpu_pm_exit(void)2219 static inline void __init hyp_cpu_pm_exit(void)
2220 {
2221 }
2222 #endif
2223 
init_cpu_logical_map(void)2224 static void __init init_cpu_logical_map(void)
2225 {
2226 	unsigned int cpu;
2227 
2228 	/*
2229 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2230 	 * Only copy the set of online CPUs whose features have been checked
2231 	 * against the finalized system capabilities. The hypervisor will not
2232 	 * allow any other CPUs from the `possible` set to boot.
2233 	 */
2234 	for_each_online_cpu(cpu)
2235 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2236 }
2237 
2238 #define init_psci_0_1_impl_state(config, what)	\
2239 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2240 
init_psci_relay(void)2241 static bool __init init_psci_relay(void)
2242 {
2243 	/*
2244 	 * If PSCI has not been initialized, protected KVM cannot install
2245 	 * itself on newly booted CPUs.
2246 	 */
2247 	if (!psci_ops.get_version) {
2248 		kvm_err("Cannot initialize protected mode without PSCI\n");
2249 		return false;
2250 	}
2251 
2252 	kvm_host_psci_config.version = psci_ops.get_version();
2253 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2254 
2255 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2256 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2257 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2258 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2259 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2260 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2261 	}
2262 	return true;
2263 }
2264 
init_subsystems(void)2265 static int __init init_subsystems(void)
2266 {
2267 	int err = 0;
2268 
2269 	/*
2270 	 * Enable hardware so that subsystem initialisation can access EL2.
2271 	 */
2272 	on_each_cpu(cpu_hyp_init, NULL, 1);
2273 
2274 	/*
2275 	 * Register CPU lower-power notifier
2276 	 */
2277 	hyp_cpu_pm_init();
2278 
2279 	/*
2280 	 * Init HYP view of VGIC
2281 	 */
2282 	err = kvm_vgic_hyp_init();
2283 	switch (err) {
2284 	case 0:
2285 		vgic_present = true;
2286 		break;
2287 	case -ENODEV:
2288 	case -ENXIO:
2289 		/*
2290 		 * No VGIC? No pKVM for you.
2291 		 *
2292 		 * Protected mode assumes that VGICv3 is present, so no point
2293 		 * in trying to hobble along if vgic initialization fails.
2294 		 */
2295 		if (is_protected_kvm_enabled())
2296 			goto out;
2297 
2298 		/*
2299 		 * Otherwise, userspace could choose to implement a GIC for its
2300 		 * guest on non-cooperative hardware.
2301 		 */
2302 		vgic_present = false;
2303 		err = 0;
2304 		break;
2305 	default:
2306 		goto out;
2307 	}
2308 
2309 	if (kvm_mode == KVM_MODE_NV &&
2310 	   !(vgic_present && kvm_vgic_global_state.type == VGIC_V3)) {
2311 		kvm_err("NV support requires GICv3, giving up\n");
2312 		err = -EINVAL;
2313 		goto out;
2314 	}
2315 
2316 	/*
2317 	 * Init HYP architected timer support
2318 	 */
2319 	err = kvm_timer_hyp_init(vgic_present);
2320 	if (err)
2321 		goto out;
2322 
2323 	kvm_register_perf_callbacks(NULL);
2324 
2325 out:
2326 	if (err)
2327 		hyp_cpu_pm_exit();
2328 
2329 	if (err || !is_protected_kvm_enabled())
2330 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2331 
2332 	return err;
2333 }
2334 
teardown_subsystems(void)2335 static void __init teardown_subsystems(void)
2336 {
2337 	kvm_unregister_perf_callbacks();
2338 	hyp_cpu_pm_exit();
2339 }
2340 
teardown_hyp_mode(void)2341 static void __init teardown_hyp_mode(void)
2342 {
2343 	bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2344 	int cpu;
2345 
2346 	free_hyp_pgds();
2347 	for_each_possible_cpu(cpu) {
2348 		free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2349 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2350 
2351 		if (free_sve) {
2352 			struct cpu_sve_state *sve_state;
2353 
2354 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2355 			free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2356 		}
2357 	}
2358 }
2359 
do_pkvm_init(u32 hyp_va_bits)2360 static int __init do_pkvm_init(u32 hyp_va_bits)
2361 {
2362 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2363 	int ret;
2364 
2365 	preempt_disable();
2366 	cpu_hyp_init_context();
2367 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2368 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2369 				hyp_va_bits);
2370 	cpu_hyp_init_features();
2371 
2372 	/*
2373 	 * The stub hypercalls are now disabled, so set our local flag to
2374 	 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2375 	 */
2376 	__this_cpu_write(kvm_hyp_initialized, 1);
2377 	preempt_enable();
2378 
2379 	return ret;
2380 }
2381 
get_hyp_id_aa64pfr0_el1(void)2382 static u64 get_hyp_id_aa64pfr0_el1(void)
2383 {
2384 	/*
2385 	 * Track whether the system isn't affected by spectre/meltdown in the
2386 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2387 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2388 	 * to have to worry about vcpu migration.
2389 	 *
2390 	 * Unlike for non-protected VMs, userspace cannot override this for
2391 	 * protected VMs.
2392 	 */
2393 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2394 
2395 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2396 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2397 
2398 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2399 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2400 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2401 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2402 
2403 	return val;
2404 }
2405 
kvm_hyp_init_symbols(void)2406 static void kvm_hyp_init_symbols(void)
2407 {
2408 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2409 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2410 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2411 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2412 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2413 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2414 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2415 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2416 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2417 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2418 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2419 
2420 	/* Propagate the FGT state to the the nVHE side */
2421 	kvm_nvhe_sym(hfgrtr_masks)  = hfgrtr_masks;
2422 	kvm_nvhe_sym(hfgwtr_masks)  = hfgwtr_masks;
2423 	kvm_nvhe_sym(hfgitr_masks)  = hfgitr_masks;
2424 	kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2425 	kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2426 	kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2427 	kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2428 	kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2429 	kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2430 	kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2431 	kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2432 
2433 	/*
2434 	 * Flush entire BSS since part of its data containing init symbols is read
2435 	 * while the MMU is off.
2436 	 */
2437 	kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2438 				kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2439 }
2440 
kvm_hyp_init_protection(u32 hyp_va_bits)2441 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2442 {
2443 	void *addr = phys_to_virt(hyp_mem_base);
2444 	int ret;
2445 
2446 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2447 	if (ret)
2448 		return ret;
2449 
2450 	ret = do_pkvm_init(hyp_va_bits);
2451 	if (ret)
2452 		return ret;
2453 
2454 	free_hyp_pgds();
2455 
2456 	return 0;
2457 }
2458 
init_pkvm_host_sve_state(void)2459 static int init_pkvm_host_sve_state(void)
2460 {
2461 	int cpu;
2462 
2463 	if (!system_supports_sve())
2464 		return 0;
2465 
2466 	/* Allocate pages for host sve state in protected mode. */
2467 	for_each_possible_cpu(cpu) {
2468 		struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2469 
2470 		if (!page)
2471 			return -ENOMEM;
2472 
2473 		per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2474 	}
2475 
2476 	/*
2477 	 * Don't map the pages in hyp since these are only used in protected
2478 	 * mode, which will (re)create its own mapping when initialized.
2479 	 */
2480 
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Finalizes the initialization of hyp mode, once everything else is initialized
2486  * and the initialziation process cannot fail.
2487  */
finalize_init_hyp_mode(void)2488 static void finalize_init_hyp_mode(void)
2489 {
2490 	int cpu;
2491 
2492 	if (system_supports_sve() && is_protected_kvm_enabled()) {
2493 		for_each_possible_cpu(cpu) {
2494 			struct cpu_sve_state *sve_state;
2495 
2496 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2497 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2498 				kern_hyp_va(sve_state);
2499 		}
2500 	}
2501 }
2502 
pkvm_hyp_init_ptrauth(void)2503 static void pkvm_hyp_init_ptrauth(void)
2504 {
2505 	struct kvm_cpu_context *hyp_ctxt;
2506 	int cpu;
2507 
2508 	for_each_possible_cpu(cpu) {
2509 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2510 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2511 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2512 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2513 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2514 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2515 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2516 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2517 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2518 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2519 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2520 	}
2521 }
2522 
2523 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2524 static int __init init_hyp_mode(void)
2525 {
2526 	u32 hyp_va_bits;
2527 	int cpu;
2528 	int err = -ENOMEM;
2529 
2530 	/*
2531 	 * The protected Hyp-mode cannot be initialized if the memory pool
2532 	 * allocation has failed.
2533 	 */
2534 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2535 		goto out_err;
2536 
2537 	/*
2538 	 * Allocate Hyp PGD and setup Hyp identity mapping
2539 	 */
2540 	err = kvm_mmu_init(&hyp_va_bits);
2541 	if (err)
2542 		goto out_err;
2543 
2544 	/*
2545 	 * Allocate stack pages for Hypervisor-mode
2546 	 */
2547 	for_each_possible_cpu(cpu) {
2548 		unsigned long stack_base;
2549 
2550 		stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2551 		if (!stack_base) {
2552 			err = -ENOMEM;
2553 			goto out_err;
2554 		}
2555 
2556 		per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2557 	}
2558 
2559 	/*
2560 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2561 	 */
2562 	for_each_possible_cpu(cpu) {
2563 		struct page *page;
2564 		void *page_addr;
2565 
2566 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2567 		if (!page) {
2568 			err = -ENOMEM;
2569 			goto out_err;
2570 		}
2571 
2572 		page_addr = page_address(page);
2573 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2574 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2575 	}
2576 
2577 	/*
2578 	 * Map the Hyp-code called directly from the host
2579 	 */
2580 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2581 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2582 	if (err) {
2583 		kvm_err("Cannot map world-switch code\n");
2584 		goto out_err;
2585 	}
2586 
2587 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2588 				  kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2589 	if (err) {
2590 		kvm_err("Cannot map .hyp.data section\n");
2591 		goto out_err;
2592 	}
2593 
2594 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2595 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2596 	if (err) {
2597 		kvm_err("Cannot map .hyp.rodata section\n");
2598 		goto out_err;
2599 	}
2600 
2601 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2602 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2603 	if (err) {
2604 		kvm_err("Cannot map rodata section\n");
2605 		goto out_err;
2606 	}
2607 
2608 	/*
2609 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2610 	 * section thanks to an assertion in the linker script. Map it RW and
2611 	 * the rest of .bss RO.
2612 	 */
2613 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2614 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2615 	if (err) {
2616 		kvm_err("Cannot map hyp bss section: %d\n", err);
2617 		goto out_err;
2618 	}
2619 
2620 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2621 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2622 	if (err) {
2623 		kvm_err("Cannot map bss section\n");
2624 		goto out_err;
2625 	}
2626 
2627 	/*
2628 	 * Map the Hyp stack pages
2629 	 */
2630 	for_each_possible_cpu(cpu) {
2631 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2632 		char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2633 
2634 		err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2635 		if (err) {
2636 			kvm_err("Cannot map hyp stack\n");
2637 			goto out_err;
2638 		}
2639 
2640 		/*
2641 		 * Save the stack PA in nvhe_init_params. This will be needed
2642 		 * to recreate the stack mapping in protected nVHE mode.
2643 		 * __hyp_pa() won't do the right thing there, since the stack
2644 		 * has been mapped in the flexible private VA space.
2645 		 */
2646 		params->stack_pa = __pa(stack_base);
2647 	}
2648 
2649 	for_each_possible_cpu(cpu) {
2650 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2651 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2652 
2653 		/* Map Hyp percpu pages */
2654 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2655 		if (err) {
2656 			kvm_err("Cannot map hyp percpu region\n");
2657 			goto out_err;
2658 		}
2659 
2660 		/* Prepare the CPU initialization parameters */
2661 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2662 	}
2663 
2664 	kvm_hyp_init_symbols();
2665 
2666 	if (is_protected_kvm_enabled()) {
2667 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2668 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2669 			pkvm_hyp_init_ptrauth();
2670 
2671 		init_cpu_logical_map();
2672 
2673 		if (!init_psci_relay()) {
2674 			err = -ENODEV;
2675 			goto out_err;
2676 		}
2677 
2678 		err = init_pkvm_host_sve_state();
2679 		if (err)
2680 			goto out_err;
2681 
2682 		err = kvm_hyp_init_protection(hyp_va_bits);
2683 		if (err) {
2684 			kvm_err("Failed to init hyp memory protection\n");
2685 			goto out_err;
2686 		}
2687 	}
2688 
2689 	return 0;
2690 
2691 out_err:
2692 	teardown_hyp_mode();
2693 	kvm_err("error initializing Hyp mode: %d\n", err);
2694 	return err;
2695 }
2696 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2697 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2698 {
2699 	struct kvm_vcpu *vcpu = NULL;
2700 	struct kvm_mpidr_data *data;
2701 	unsigned long i;
2702 
2703 	mpidr &= MPIDR_HWID_BITMASK;
2704 
2705 	rcu_read_lock();
2706 	data = rcu_dereference(kvm->arch.mpidr_data);
2707 
2708 	if (data) {
2709 		u16 idx = kvm_mpidr_index(data, mpidr);
2710 
2711 		vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2712 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2713 			vcpu = NULL;
2714 	}
2715 
2716 	rcu_read_unlock();
2717 
2718 	if (vcpu)
2719 		return vcpu;
2720 
2721 	kvm_for_each_vcpu(i, vcpu, kvm) {
2722 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2723 			return vcpu;
2724 	}
2725 	return NULL;
2726 }
2727 
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2728 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2729 {
2730 	return irqchip_in_kernel(kvm);
2731 }
2732 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2733 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2734 				      struct irq_bypass_producer *prod)
2735 {
2736 	struct kvm_kernel_irqfd *irqfd =
2737 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2738 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2739 
2740 	/*
2741 	 * The only thing we have a chance of directly-injecting is LPIs. Maybe
2742 	 * one day...
2743 	 */
2744 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2745 		return 0;
2746 
2747 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2748 					  &irqfd->irq_entry);
2749 }
2750 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2751 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2752 				      struct irq_bypass_producer *prod)
2753 {
2754 	struct kvm_kernel_irqfd *irqfd =
2755 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2756 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2757 
2758 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2759 		return;
2760 
2761 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2762 }
2763 
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)2764 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
2765 				  struct kvm_kernel_irq_routing_entry *new)
2766 {
2767 	if (old->type != KVM_IRQ_ROUTING_MSI ||
2768 	    new->type != KVM_IRQ_ROUTING_MSI)
2769 		return true;
2770 
2771 	return memcmp(&old->msi, &new->msi, sizeof(new->msi));
2772 }
2773 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)2774 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2775 				  uint32_t guest_irq, bool set)
2776 {
2777 	/*
2778 	 * Remapping the vLPI requires taking the its_lock mutex to resolve
2779 	 * the new translation. We're in spinlock land at this point, so no
2780 	 * chance of resolving the translation.
2781 	 *
2782 	 * Unmap the vLPI and fall back to software LPI injection.
2783 	 */
2784 	return kvm_vgic_v4_unset_forwarding(kvm, host_irq);
2785 }
2786 
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2787 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2788 {
2789 	struct kvm_kernel_irqfd *irqfd =
2790 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2791 
2792 	kvm_arm_halt_guest(irqfd->kvm);
2793 }
2794 
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2795 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2796 {
2797 	struct kvm_kernel_irqfd *irqfd =
2798 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2799 
2800 	kvm_arm_resume_guest(irqfd->kvm);
2801 }
2802 
2803 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2804 static __init int kvm_arm_init(void)
2805 {
2806 	int err;
2807 	bool in_hyp_mode;
2808 
2809 	if (!is_hyp_mode_available()) {
2810 		kvm_info("HYP mode not available\n");
2811 		return -ENODEV;
2812 	}
2813 
2814 	if (kvm_get_mode() == KVM_MODE_NONE) {
2815 		kvm_info("KVM disabled from command line\n");
2816 		return -ENODEV;
2817 	}
2818 
2819 	err = kvm_sys_reg_table_init();
2820 	if (err) {
2821 		kvm_info("Error initializing system register tables");
2822 		return err;
2823 	}
2824 
2825 	in_hyp_mode = is_kernel_in_hyp_mode();
2826 
2827 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2828 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2829 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2830 			 "Only trusted guests should be used on this system.\n");
2831 
2832 	err = kvm_set_ipa_limit();
2833 	if (err)
2834 		return err;
2835 
2836 	err = kvm_arm_init_sve();
2837 	if (err)
2838 		return err;
2839 
2840 	err = kvm_arm_vmid_alloc_init();
2841 	if (err) {
2842 		kvm_err("Failed to initialize VMID allocator.\n");
2843 		return err;
2844 	}
2845 
2846 	if (!in_hyp_mode) {
2847 		err = init_hyp_mode();
2848 		if (err)
2849 			goto out_err;
2850 	}
2851 
2852 	err = kvm_init_vector_slots();
2853 	if (err) {
2854 		kvm_err("Cannot initialise vector slots\n");
2855 		goto out_hyp;
2856 	}
2857 
2858 	err = init_subsystems();
2859 	if (err)
2860 		goto out_hyp;
2861 
2862 	kvm_info("%s%sVHE%s mode initialized successfully\n",
2863 		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2864 				     "Protected " : "Hyp "),
2865 		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2866 				     "h" : "n"),
2867 		 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2868 
2869 	/*
2870 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2871 	 * hypervisor protection is finalized.
2872 	 */
2873 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2874 	if (err)
2875 		goto out_subs;
2876 
2877 	/*
2878 	 * This should be called after initialization is done and failure isn't
2879 	 * possible anymore.
2880 	 */
2881 	if (!in_hyp_mode)
2882 		finalize_init_hyp_mode();
2883 
2884 	kvm_arm_initialised = true;
2885 
2886 	return 0;
2887 
2888 out_subs:
2889 	teardown_subsystems();
2890 out_hyp:
2891 	if (!in_hyp_mode)
2892 		teardown_hyp_mode();
2893 out_err:
2894 	kvm_arm_vmid_alloc_free();
2895 	return err;
2896 }
2897 
early_kvm_mode_cfg(char * arg)2898 static int __init early_kvm_mode_cfg(char *arg)
2899 {
2900 	if (!arg)
2901 		return -EINVAL;
2902 
2903 	if (strcmp(arg, "none") == 0) {
2904 		kvm_mode = KVM_MODE_NONE;
2905 		return 0;
2906 	}
2907 
2908 	if (!is_hyp_mode_available()) {
2909 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2910 		return 0;
2911 	}
2912 
2913 	if (strcmp(arg, "protected") == 0) {
2914 		if (!is_kernel_in_hyp_mode())
2915 			kvm_mode = KVM_MODE_PROTECTED;
2916 		else
2917 			pr_warn_once("Protected KVM not available with VHE\n");
2918 
2919 		return 0;
2920 	}
2921 
2922 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2923 		kvm_mode = KVM_MODE_DEFAULT;
2924 		return 0;
2925 	}
2926 
2927 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2928 		kvm_mode = KVM_MODE_NV;
2929 		return 0;
2930 	}
2931 
2932 	return -EINVAL;
2933 }
2934 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2935 
early_kvm_wfx_trap_policy_cfg(char * arg,enum kvm_wfx_trap_policy * p)2936 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2937 {
2938 	if (!arg)
2939 		return -EINVAL;
2940 
2941 	if (strcmp(arg, "trap") == 0) {
2942 		*p = KVM_WFX_TRAP;
2943 		return 0;
2944 	}
2945 
2946 	if (strcmp(arg, "notrap") == 0) {
2947 		*p = KVM_WFX_NOTRAP;
2948 		return 0;
2949 	}
2950 
2951 	return -EINVAL;
2952 }
2953 
early_kvm_wfi_trap_policy_cfg(char * arg)2954 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2955 {
2956 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2957 }
2958 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2959 
early_kvm_wfe_trap_policy_cfg(char * arg)2960 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2961 {
2962 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2963 }
2964 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2965 
kvm_get_mode(void)2966 enum kvm_mode kvm_get_mode(void)
2967 {
2968 	return kvm_mode;
2969 }
2970 
2971 module_init(kvm_arm_init);
2972