1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/cpufeature.h> 27 #include <linux/random.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/vmalloc.h> 31 #include <linux/bitmap.h> 32 #include <linux/sched/signal.h> 33 #include <linux/string.h> 34 #include <linux/pgtable.h> 35 #include <linux/mmu_notifier.h> 36 37 #include <asm/access-regs.h> 38 #include <asm/asm-offsets.h> 39 #include <asm/lowcore.h> 40 #include <asm/machine.h> 41 #include <asm/stp.h> 42 #include <asm/gmap.h> 43 #include <asm/nmi.h> 44 #include <asm/isc.h> 45 #include <asm/sclp.h> 46 #include <asm/cpacf.h> 47 #include <asm/timex.h> 48 #include <asm/asm.h> 49 #include <asm/fpu.h> 50 #include <asm/ap.h> 51 #include <asm/uv.h> 52 #include "kvm-s390.h" 53 #include "gaccess.h" 54 #include "pci.h" 55 #include "gmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include "trace.h" 59 #include "trace-s390.h" 60 61 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 62 #define LOCAL_IRQS 32 63 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 64 (KVM_MAX_VCPUS + LOCAL_IRQS)) 65 66 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 67 KVM_GENERIC_VM_STATS(), 68 STATS_DESC_COUNTER(VM, inject_io), 69 STATS_DESC_COUNTER(VM, inject_float_mchk), 70 STATS_DESC_COUNTER(VM, inject_pfault_done), 71 STATS_DESC_COUNTER(VM, inject_service_signal), 72 STATS_DESC_COUNTER(VM, inject_virtio), 73 STATS_DESC_COUNTER(VM, aen_forward), 74 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 75 STATS_DESC_COUNTER(VM, gmap_shadow_create), 76 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 77 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 78 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 79 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 80 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 81 }; 82 83 const struct kvm_stats_header kvm_vm_stats_header = { 84 .name_size = KVM_STATS_NAME_SIZE, 85 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 86 .id_offset = sizeof(struct kvm_stats_header), 87 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 88 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 89 sizeof(kvm_vm_stats_desc), 90 }; 91 92 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 93 KVM_GENERIC_VCPU_STATS(), 94 STATS_DESC_COUNTER(VCPU, exit_userspace), 95 STATS_DESC_COUNTER(VCPU, exit_null), 96 STATS_DESC_COUNTER(VCPU, exit_external_request), 97 STATS_DESC_COUNTER(VCPU, exit_io_request), 98 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 99 STATS_DESC_COUNTER(VCPU, exit_stop_request), 100 STATS_DESC_COUNTER(VCPU, exit_validity), 101 STATS_DESC_COUNTER(VCPU, exit_instruction), 102 STATS_DESC_COUNTER(VCPU, exit_pei), 103 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 104 STATS_DESC_COUNTER(VCPU, instruction_lctl), 105 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 106 STATS_DESC_COUNTER(VCPU, instruction_stctl), 107 STATS_DESC_COUNTER(VCPU, instruction_stctg), 108 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 109 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 110 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 111 STATS_DESC_COUNTER(VCPU, deliver_ckc), 112 STATS_DESC_COUNTER(VCPU, deliver_cputm), 113 STATS_DESC_COUNTER(VCPU, deliver_external_call), 114 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_virtio), 117 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 118 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 119 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 120 STATS_DESC_COUNTER(VCPU, deliver_program), 121 STATS_DESC_COUNTER(VCPU, deliver_io), 122 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 123 STATS_DESC_COUNTER(VCPU, exit_wait_state), 124 STATS_DESC_COUNTER(VCPU, inject_ckc), 125 STATS_DESC_COUNTER(VCPU, inject_cputm), 126 STATS_DESC_COUNTER(VCPU, inject_external_call), 127 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 128 STATS_DESC_COUNTER(VCPU, inject_mchk), 129 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 130 STATS_DESC_COUNTER(VCPU, inject_program), 131 STATS_DESC_COUNTER(VCPU, inject_restart), 132 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 133 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 134 STATS_DESC_COUNTER(VCPU, instruction_epsw), 135 STATS_DESC_COUNTER(VCPU, instruction_gs), 136 STATS_DESC_COUNTER(VCPU, instruction_io_other), 137 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 138 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 139 STATS_DESC_COUNTER(VCPU, instruction_lpswey), 140 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 141 STATS_DESC_COUNTER(VCPU, instruction_ptff), 142 STATS_DESC_COUNTER(VCPU, instruction_sck), 143 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 144 STATS_DESC_COUNTER(VCPU, instruction_stidp), 145 STATS_DESC_COUNTER(VCPU, instruction_spx), 146 STATS_DESC_COUNTER(VCPU, instruction_stpx), 147 STATS_DESC_COUNTER(VCPU, instruction_stap), 148 STATS_DESC_COUNTER(VCPU, instruction_iske), 149 STATS_DESC_COUNTER(VCPU, instruction_ri), 150 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 151 STATS_DESC_COUNTER(VCPU, instruction_sske), 152 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 153 STATS_DESC_COUNTER(VCPU, instruction_stsi), 154 STATS_DESC_COUNTER(VCPU, instruction_stfl), 155 STATS_DESC_COUNTER(VCPU, instruction_tb), 156 STATS_DESC_COUNTER(VCPU, instruction_tpi), 157 STATS_DESC_COUNTER(VCPU, instruction_tprot), 158 STATS_DESC_COUNTER(VCPU, instruction_tsch), 159 STATS_DESC_COUNTER(VCPU, instruction_sie), 160 STATS_DESC_COUNTER(VCPU, instruction_essa), 161 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 173 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 174 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 175 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 176 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 177 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 181 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 182 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 183 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 184 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 185 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 186 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 187 STATS_DESC_COUNTER(VCPU, pfault_sync) 188 }; 189 190 const struct kvm_stats_header kvm_vcpu_stats_header = { 191 .name_size = KVM_STATS_NAME_SIZE, 192 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 193 .id_offset = sizeof(struct kvm_stats_header), 194 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 195 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 196 sizeof(kvm_vcpu_stats_desc), 197 }; 198 199 /* allow nested virtualization in KVM (if enabled by user space) */ 200 static int nested; 201 module_param(nested, int, S_IRUGO); 202 MODULE_PARM_DESC(nested, "Nested virtualization support"); 203 204 /* allow 1m huge page guest backing, if !nested */ 205 static int hpage; 206 module_param(hpage, int, 0444); 207 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 208 209 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 210 static u8 halt_poll_max_steal = 10; 211 module_param(halt_poll_max_steal, byte, 0644); 212 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 213 214 /* if set to true, the GISA will be initialized and used if available */ 215 static bool use_gisa = true; 216 module_param(use_gisa, bool, 0644); 217 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 218 219 /* maximum diag9c forwarding per second */ 220 unsigned int diag9c_forwarding_hz; 221 module_param(diag9c_forwarding_hz, uint, 0644); 222 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 223 224 /* 225 * allow asynchronous deinit for protected guests; enable by default since 226 * the feature is opt-in anyway 227 */ 228 static int async_destroy = 1; 229 module_param(async_destroy, int, 0444); 230 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 231 232 /* 233 * For now we handle at most 16 double words as this is what the s390 base 234 * kernel handles and stores in the prefix page. If we ever need to go beyond 235 * this, this requires changes to code, but the external uapi can stay. 236 */ 237 #define SIZE_INTERNAL 16 238 239 /* 240 * Base feature mask that defines default mask for facilities. Consists of the 241 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 242 */ 243 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 244 /* 245 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 246 * and defines the facilities that can be enabled via a cpu model. 247 */ 248 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 249 250 static unsigned long kvm_s390_fac_size(void) 251 { 252 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 253 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 254 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 255 sizeof(stfle_fac_list)); 256 257 return SIZE_INTERNAL; 258 } 259 260 /* available cpu features supported by kvm */ 261 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 262 /* available subfunctions indicated via query / "test bit" */ 263 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 264 265 static struct gmap_notifier gmap_notifier; 266 static struct gmap_notifier vsie_gmap_notifier; 267 debug_info_t *kvm_s390_dbf; 268 debug_info_t *kvm_s390_dbf_uv; 269 270 /* Section: not file related */ 271 /* forward declarations */ 272 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 273 unsigned long end); 274 static int sca_switch_to_extended(struct kvm *kvm); 275 276 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 277 { 278 u8 delta_idx = 0; 279 280 /* 281 * The TOD jumps by delta, we have to compensate this by adding 282 * -delta to the epoch. 283 */ 284 delta = -delta; 285 286 /* sign-extension - we're adding to signed values below */ 287 if ((s64)delta < 0) 288 delta_idx = -1; 289 290 scb->epoch += delta; 291 if (scb->ecd & ECD_MEF) { 292 scb->epdx += delta_idx; 293 if (scb->epoch < delta) 294 scb->epdx += 1; 295 } 296 } 297 298 /* 299 * This callback is executed during stop_machine(). All CPUs are therefore 300 * temporarily stopped. In order not to change guest behavior, we have to 301 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 302 * so a CPU won't be stopped while calculating with the epoch. 303 */ 304 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 305 void *v) 306 { 307 struct kvm *kvm; 308 struct kvm_vcpu *vcpu; 309 unsigned long i; 310 unsigned long long *delta = v; 311 312 list_for_each_entry(kvm, &vm_list, vm_list) { 313 kvm_for_each_vcpu(i, vcpu, kvm) { 314 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 315 if (i == 0) { 316 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 317 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 318 } 319 if (vcpu->arch.cputm_enabled) 320 vcpu->arch.cputm_start += *delta; 321 if (vcpu->arch.vsie_block) 322 kvm_clock_sync_scb(vcpu->arch.vsie_block, 323 *delta); 324 } 325 } 326 return NOTIFY_OK; 327 } 328 329 static struct notifier_block kvm_clock_notifier = { 330 .notifier_call = kvm_clock_sync, 331 }; 332 333 static void allow_cpu_feat(unsigned long nr) 334 { 335 set_bit_inv(nr, kvm_s390_available_cpu_feat); 336 } 337 338 static inline int plo_test_bit(unsigned char nr) 339 { 340 unsigned long function = (unsigned long)nr | 0x100; 341 int cc; 342 343 asm volatile( 344 " lgr 0,%[function]\n" 345 /* Parameter registers are ignored for "test bit" */ 346 " plo 0,0,0,0(0)\n" 347 CC_IPM(cc) 348 : CC_OUT(cc, cc) 349 : [function] "d" (function) 350 : CC_CLOBBER_LIST("0")); 351 return CC_TRANSFORM(cc) == 0; 352 } 353 354 static __always_inline void pfcr_query(u8 (*query)[16]) 355 { 356 asm volatile( 357 " lghi 0,0\n" 358 " .insn rsy,0xeb0000000016,0,0,%[query]\n" 359 : [query] "=QS" (*query) 360 : 361 : "cc", "0"); 362 } 363 364 static __always_inline void __sortl_query(u8 (*query)[32]) 365 { 366 asm volatile( 367 " lghi 0,0\n" 368 " la 1,%[query]\n" 369 /* Parameter registers are ignored */ 370 " .insn rre,0xb9380000,2,4\n" 371 : [query] "=R" (*query) 372 : 373 : "cc", "0", "1"); 374 } 375 376 static __always_inline void __dfltcc_query(u8 (*query)[32]) 377 { 378 asm volatile( 379 " lghi 0,0\n" 380 " la 1,%[query]\n" 381 /* Parameter registers are ignored */ 382 " .insn rrf,0xb9390000,2,4,6,0\n" 383 : [query] "=R" (*query) 384 : 385 : "cc", "0", "1"); 386 } 387 388 static void __init kvm_s390_cpu_feat_init(void) 389 { 390 int i; 391 392 for (i = 0; i < 256; ++i) { 393 if (plo_test_bit(i)) 394 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 395 } 396 397 if (test_facility(28)) /* TOD-clock steering */ 398 ptff(kvm_s390_available_subfunc.ptff, 399 sizeof(kvm_s390_available_subfunc.ptff), 400 PTFF_QAF); 401 402 if (test_facility(17)) { /* MSA */ 403 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 404 kvm_s390_available_subfunc.kmac); 405 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 406 kvm_s390_available_subfunc.kmc); 407 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 408 kvm_s390_available_subfunc.km); 409 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 410 kvm_s390_available_subfunc.kimd); 411 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 412 kvm_s390_available_subfunc.klmd); 413 } 414 if (test_facility(76)) /* MSA3 */ 415 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 416 kvm_s390_available_subfunc.pckmo); 417 if (test_facility(77)) { /* MSA4 */ 418 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 419 kvm_s390_available_subfunc.kmctr); 420 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 421 kvm_s390_available_subfunc.kmf); 422 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 423 kvm_s390_available_subfunc.kmo); 424 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 425 kvm_s390_available_subfunc.pcc); 426 } 427 if (test_facility(57)) /* MSA5 */ 428 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 429 kvm_s390_available_subfunc.ppno); 430 431 if (test_facility(146)) /* MSA8 */ 432 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 433 kvm_s390_available_subfunc.kma); 434 435 if (test_facility(155)) /* MSA9 */ 436 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 437 kvm_s390_available_subfunc.kdsa); 438 439 if (test_facility(150)) /* SORTL */ 440 __sortl_query(&kvm_s390_available_subfunc.sortl); 441 442 if (test_facility(151)) /* DFLTCC */ 443 __dfltcc_query(&kvm_s390_available_subfunc.dfltcc); 444 445 if (test_facility(201)) /* PFCR */ 446 pfcr_query(&kvm_s390_available_subfunc.pfcr); 447 448 if (machine_has_esop()) 449 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 450 /* 451 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 452 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 453 */ 454 if (!sclp.has_sief2 || !machine_has_esop() || !sclp.has_64bscao || 455 !test_facility(3) || !nested) 456 return; 457 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 458 if (sclp.has_64bscao) 459 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 460 if (sclp.has_siif) 461 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 462 if (sclp.has_gpere) 463 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 464 if (sclp.has_gsls) 465 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 466 if (sclp.has_ib) 467 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 468 if (sclp.has_cei) 469 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 470 if (sclp.has_ibs) 471 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 472 if (sclp.has_kss) 473 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 474 /* 475 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 476 * all skey handling functions read/set the skey from the PGSTE 477 * instead of the real storage key. 478 * 479 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 480 * pages being detected as preserved although they are resident. 481 * 482 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 483 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 484 * 485 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 486 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 487 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 488 * 489 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 490 * cannot easily shadow the SCA because of the ipte lock. 491 */ 492 } 493 494 static int __init __kvm_s390_init(void) 495 { 496 int rc = -ENOMEM; 497 498 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 499 if (!kvm_s390_dbf) 500 return -ENOMEM; 501 502 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 503 if (!kvm_s390_dbf_uv) 504 goto err_kvm_uv; 505 506 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 507 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 508 goto err_debug_view; 509 510 kvm_s390_cpu_feat_init(); 511 512 /* Register floating interrupt controller interface. */ 513 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 514 if (rc) { 515 pr_err("A FLIC registration call failed with rc=%d\n", rc); 516 goto err_flic; 517 } 518 519 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 520 rc = kvm_s390_pci_init(); 521 if (rc) { 522 pr_err("Unable to allocate AIFT for PCI\n"); 523 goto err_pci; 524 } 525 } 526 527 rc = kvm_s390_gib_init(GAL_ISC); 528 if (rc) 529 goto err_gib; 530 531 gmap_notifier.notifier_call = kvm_gmap_notifier; 532 gmap_register_pte_notifier(&gmap_notifier); 533 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 534 gmap_register_pte_notifier(&vsie_gmap_notifier); 535 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 536 &kvm_clock_notifier); 537 538 return 0; 539 540 err_gib: 541 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 542 kvm_s390_pci_exit(); 543 err_pci: 544 err_flic: 545 err_debug_view: 546 debug_unregister(kvm_s390_dbf_uv); 547 err_kvm_uv: 548 debug_unregister(kvm_s390_dbf); 549 return rc; 550 } 551 552 static void __kvm_s390_exit(void) 553 { 554 gmap_unregister_pte_notifier(&gmap_notifier); 555 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 556 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 557 &kvm_clock_notifier); 558 559 kvm_s390_gib_destroy(); 560 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 561 kvm_s390_pci_exit(); 562 debug_unregister(kvm_s390_dbf); 563 debug_unregister(kvm_s390_dbf_uv); 564 } 565 566 /* Section: device related */ 567 long kvm_arch_dev_ioctl(struct file *filp, 568 unsigned int ioctl, unsigned long arg) 569 { 570 if (ioctl == KVM_S390_ENABLE_SIE) 571 return s390_enable_sie(); 572 return -EINVAL; 573 } 574 575 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 576 { 577 int r; 578 579 switch (ext) { 580 case KVM_CAP_S390_PSW: 581 case KVM_CAP_S390_GMAP: 582 case KVM_CAP_SYNC_MMU: 583 #ifdef CONFIG_KVM_S390_UCONTROL 584 case KVM_CAP_S390_UCONTROL: 585 #endif 586 case KVM_CAP_ASYNC_PF: 587 case KVM_CAP_SYNC_REGS: 588 case KVM_CAP_ONE_REG: 589 case KVM_CAP_ENABLE_CAP: 590 case KVM_CAP_S390_CSS_SUPPORT: 591 case KVM_CAP_IOEVENTFD: 592 case KVM_CAP_S390_IRQCHIP: 593 case KVM_CAP_VM_ATTRIBUTES: 594 case KVM_CAP_MP_STATE: 595 case KVM_CAP_IMMEDIATE_EXIT: 596 case KVM_CAP_S390_INJECT_IRQ: 597 case KVM_CAP_S390_USER_SIGP: 598 case KVM_CAP_S390_USER_STSI: 599 case KVM_CAP_S390_SKEYS: 600 case KVM_CAP_S390_IRQ_STATE: 601 case KVM_CAP_S390_USER_INSTR0: 602 case KVM_CAP_S390_CMMA_MIGRATION: 603 case KVM_CAP_S390_AIS: 604 case KVM_CAP_S390_AIS_MIGRATION: 605 case KVM_CAP_S390_VCPU_RESETS: 606 case KVM_CAP_SET_GUEST_DEBUG: 607 case KVM_CAP_S390_DIAG318: 608 case KVM_CAP_IRQFD_RESAMPLE: 609 r = 1; 610 break; 611 case KVM_CAP_SET_GUEST_DEBUG2: 612 r = KVM_GUESTDBG_VALID_MASK; 613 break; 614 case KVM_CAP_S390_HPAGE_1M: 615 r = 0; 616 if (hpage && !(kvm && kvm_is_ucontrol(kvm))) 617 r = 1; 618 break; 619 case KVM_CAP_S390_MEM_OP: 620 r = MEM_OP_MAX_SIZE; 621 break; 622 case KVM_CAP_S390_MEM_OP_EXTENSION: 623 /* 624 * Flag bits indicating which extensions are supported. 625 * If r > 0, the base extension must also be supported/indicated, 626 * in order to maintain backwards compatibility. 627 */ 628 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 629 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 630 break; 631 case KVM_CAP_NR_VCPUS: 632 case KVM_CAP_MAX_VCPUS: 633 case KVM_CAP_MAX_VCPU_ID: 634 r = KVM_S390_BSCA_CPU_SLOTS; 635 if (!kvm_s390_use_sca_entries()) 636 r = KVM_MAX_VCPUS; 637 else if (sclp.has_esca && sclp.has_64bscao) 638 r = KVM_S390_ESCA_CPU_SLOTS; 639 if (ext == KVM_CAP_NR_VCPUS) 640 r = min_t(unsigned int, num_online_cpus(), r); 641 break; 642 case KVM_CAP_S390_COW: 643 r = machine_has_esop(); 644 break; 645 case KVM_CAP_S390_VECTOR_REGISTERS: 646 r = test_facility(129); 647 break; 648 case KVM_CAP_S390_RI: 649 r = test_facility(64); 650 break; 651 case KVM_CAP_S390_GS: 652 r = test_facility(133); 653 break; 654 case KVM_CAP_S390_BPB: 655 r = test_facility(82); 656 break; 657 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 658 r = async_destroy && is_prot_virt_host(); 659 break; 660 case KVM_CAP_S390_PROTECTED: 661 r = is_prot_virt_host(); 662 break; 663 case KVM_CAP_S390_PROTECTED_DUMP: { 664 u64 pv_cmds_dump[] = { 665 BIT_UVC_CMD_DUMP_INIT, 666 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 667 BIT_UVC_CMD_DUMP_CPU, 668 BIT_UVC_CMD_DUMP_COMPLETE, 669 }; 670 int i; 671 672 r = is_prot_virt_host(); 673 674 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 675 if (!test_bit_inv(pv_cmds_dump[i], 676 (unsigned long *)&uv_info.inst_calls_list)) { 677 r = 0; 678 break; 679 } 680 } 681 break; 682 } 683 case KVM_CAP_S390_ZPCI_OP: 684 r = kvm_s390_pci_interp_allowed(); 685 break; 686 case KVM_CAP_S390_CPU_TOPOLOGY: 687 r = test_facility(11); 688 break; 689 default: 690 r = 0; 691 } 692 return r; 693 } 694 695 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 696 { 697 int i; 698 gfn_t cur_gfn, last_gfn; 699 unsigned long gaddr, vmaddr; 700 struct gmap *gmap = kvm->arch.gmap; 701 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 702 703 /* Loop over all guest segments */ 704 cur_gfn = memslot->base_gfn; 705 last_gfn = memslot->base_gfn + memslot->npages; 706 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 707 gaddr = gfn_to_gpa(cur_gfn); 708 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 709 if (kvm_is_error_hva(vmaddr)) 710 continue; 711 712 bitmap_zero(bitmap, _PAGE_ENTRIES); 713 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 714 for (i = 0; i < _PAGE_ENTRIES; i++) { 715 if (test_bit(i, bitmap)) 716 mark_page_dirty(kvm, cur_gfn + i); 717 } 718 719 if (fatal_signal_pending(current)) 720 return; 721 cond_resched(); 722 } 723 } 724 725 /* Section: vm related */ 726 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 727 728 /* 729 * Get (and clear) the dirty memory log for a memory slot. 730 */ 731 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 732 struct kvm_dirty_log *log) 733 { 734 int r; 735 unsigned long n; 736 struct kvm_memory_slot *memslot; 737 int is_dirty; 738 739 if (kvm_is_ucontrol(kvm)) 740 return -EINVAL; 741 742 mutex_lock(&kvm->slots_lock); 743 744 r = -EINVAL; 745 if (log->slot >= KVM_USER_MEM_SLOTS) 746 goto out; 747 748 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 749 if (r) 750 goto out; 751 752 /* Clear the dirty log */ 753 if (is_dirty) { 754 n = kvm_dirty_bitmap_bytes(memslot); 755 memset(memslot->dirty_bitmap, 0, n); 756 } 757 r = 0; 758 out: 759 mutex_unlock(&kvm->slots_lock); 760 return r; 761 } 762 763 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 764 { 765 unsigned long i; 766 struct kvm_vcpu *vcpu; 767 768 kvm_for_each_vcpu(i, vcpu, kvm) { 769 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 770 } 771 } 772 773 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 774 { 775 int r; 776 777 if (cap->flags) 778 return -EINVAL; 779 780 switch (cap->cap) { 781 case KVM_CAP_S390_IRQCHIP: 782 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 783 kvm->arch.use_irqchip = 1; 784 r = 0; 785 break; 786 case KVM_CAP_S390_USER_SIGP: 787 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 788 kvm->arch.user_sigp = 1; 789 r = 0; 790 break; 791 case KVM_CAP_S390_VECTOR_REGISTERS: 792 mutex_lock(&kvm->lock); 793 if (kvm->created_vcpus) { 794 r = -EBUSY; 795 } else if (cpu_has_vx()) { 796 set_kvm_facility(kvm->arch.model.fac_mask, 129); 797 set_kvm_facility(kvm->arch.model.fac_list, 129); 798 if (test_facility(134)) { 799 set_kvm_facility(kvm->arch.model.fac_mask, 134); 800 set_kvm_facility(kvm->arch.model.fac_list, 134); 801 } 802 if (test_facility(135)) { 803 set_kvm_facility(kvm->arch.model.fac_mask, 135); 804 set_kvm_facility(kvm->arch.model.fac_list, 135); 805 } 806 if (test_facility(148)) { 807 set_kvm_facility(kvm->arch.model.fac_mask, 148); 808 set_kvm_facility(kvm->arch.model.fac_list, 148); 809 } 810 if (test_facility(152)) { 811 set_kvm_facility(kvm->arch.model.fac_mask, 152); 812 set_kvm_facility(kvm->arch.model.fac_list, 152); 813 } 814 if (test_facility(192)) { 815 set_kvm_facility(kvm->arch.model.fac_mask, 192); 816 set_kvm_facility(kvm->arch.model.fac_list, 192); 817 } 818 if (test_facility(198)) { 819 set_kvm_facility(kvm->arch.model.fac_mask, 198); 820 set_kvm_facility(kvm->arch.model.fac_list, 198); 821 } 822 if (test_facility(199)) { 823 set_kvm_facility(kvm->arch.model.fac_mask, 199); 824 set_kvm_facility(kvm->arch.model.fac_list, 199); 825 } 826 r = 0; 827 } else 828 r = -EINVAL; 829 mutex_unlock(&kvm->lock); 830 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 831 r ? "(not available)" : "(success)"); 832 break; 833 case KVM_CAP_S390_RI: 834 r = -EINVAL; 835 mutex_lock(&kvm->lock); 836 if (kvm->created_vcpus) { 837 r = -EBUSY; 838 } else if (test_facility(64)) { 839 set_kvm_facility(kvm->arch.model.fac_mask, 64); 840 set_kvm_facility(kvm->arch.model.fac_list, 64); 841 r = 0; 842 } 843 mutex_unlock(&kvm->lock); 844 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 845 r ? "(not available)" : "(success)"); 846 break; 847 case KVM_CAP_S390_AIS: 848 mutex_lock(&kvm->lock); 849 if (kvm->created_vcpus) { 850 r = -EBUSY; 851 } else { 852 set_kvm_facility(kvm->arch.model.fac_mask, 72); 853 set_kvm_facility(kvm->arch.model.fac_list, 72); 854 r = 0; 855 } 856 mutex_unlock(&kvm->lock); 857 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 858 r ? "(not available)" : "(success)"); 859 break; 860 case KVM_CAP_S390_GS: 861 r = -EINVAL; 862 mutex_lock(&kvm->lock); 863 if (kvm->created_vcpus) { 864 r = -EBUSY; 865 } else if (test_facility(133)) { 866 set_kvm_facility(kvm->arch.model.fac_mask, 133); 867 set_kvm_facility(kvm->arch.model.fac_list, 133); 868 r = 0; 869 } 870 mutex_unlock(&kvm->lock); 871 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 872 r ? "(not available)" : "(success)"); 873 break; 874 case KVM_CAP_S390_HPAGE_1M: 875 mutex_lock(&kvm->lock); 876 if (kvm->created_vcpus) 877 r = -EBUSY; 878 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 879 r = -EINVAL; 880 else { 881 r = 0; 882 mmap_write_lock(kvm->mm); 883 kvm->mm->context.allow_gmap_hpage_1m = 1; 884 mmap_write_unlock(kvm->mm); 885 /* 886 * We might have to create fake 4k page 887 * tables. To avoid that the hardware works on 888 * stale PGSTEs, we emulate these instructions. 889 */ 890 kvm->arch.use_skf = 0; 891 kvm->arch.use_pfmfi = 0; 892 } 893 mutex_unlock(&kvm->lock); 894 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 895 r ? "(not available)" : "(success)"); 896 break; 897 case KVM_CAP_S390_USER_STSI: 898 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 899 kvm->arch.user_stsi = 1; 900 r = 0; 901 break; 902 case KVM_CAP_S390_USER_INSTR0: 903 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 904 kvm->arch.user_instr0 = 1; 905 icpt_operexc_on_all_vcpus(kvm); 906 r = 0; 907 break; 908 case KVM_CAP_S390_CPU_TOPOLOGY: 909 r = -EINVAL; 910 mutex_lock(&kvm->lock); 911 if (kvm->created_vcpus) { 912 r = -EBUSY; 913 } else if (test_facility(11)) { 914 set_kvm_facility(kvm->arch.model.fac_mask, 11); 915 set_kvm_facility(kvm->arch.model.fac_list, 11); 916 r = 0; 917 } 918 mutex_unlock(&kvm->lock); 919 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 920 r ? "(not available)" : "(success)"); 921 break; 922 default: 923 r = -EINVAL; 924 break; 925 } 926 return r; 927 } 928 929 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 930 { 931 int ret; 932 933 switch (attr->attr) { 934 case KVM_S390_VM_MEM_LIMIT_SIZE: 935 ret = 0; 936 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 937 kvm->arch.mem_limit); 938 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 939 ret = -EFAULT; 940 break; 941 default: 942 ret = -ENXIO; 943 break; 944 } 945 return ret; 946 } 947 948 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 949 { 950 int ret; 951 unsigned int idx; 952 switch (attr->attr) { 953 case KVM_S390_VM_MEM_ENABLE_CMMA: 954 ret = -ENXIO; 955 if (!sclp.has_cmma) 956 break; 957 958 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 959 mutex_lock(&kvm->lock); 960 if (kvm->created_vcpus) 961 ret = -EBUSY; 962 else if (kvm->mm->context.allow_gmap_hpage_1m) 963 ret = -EINVAL; 964 else { 965 kvm->arch.use_cmma = 1; 966 /* Not compatible with cmma. */ 967 kvm->arch.use_pfmfi = 0; 968 ret = 0; 969 } 970 mutex_unlock(&kvm->lock); 971 break; 972 case KVM_S390_VM_MEM_CLR_CMMA: 973 ret = -ENXIO; 974 if (!sclp.has_cmma) 975 break; 976 ret = -EINVAL; 977 if (!kvm->arch.use_cmma) 978 break; 979 980 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 981 mutex_lock(&kvm->lock); 982 idx = srcu_read_lock(&kvm->srcu); 983 s390_reset_cmma(kvm->arch.gmap->mm); 984 srcu_read_unlock(&kvm->srcu, idx); 985 mutex_unlock(&kvm->lock); 986 ret = 0; 987 break; 988 case KVM_S390_VM_MEM_LIMIT_SIZE: { 989 unsigned long new_limit; 990 991 if (kvm_is_ucontrol(kvm)) 992 return -EINVAL; 993 994 if (get_user(new_limit, (u64 __user *)attr->addr)) 995 return -EFAULT; 996 997 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 998 new_limit > kvm->arch.mem_limit) 999 return -E2BIG; 1000 1001 if (!new_limit) 1002 return -EINVAL; 1003 1004 /* gmap_create takes last usable address */ 1005 if (new_limit != KVM_S390_NO_MEM_LIMIT) 1006 new_limit -= 1; 1007 1008 ret = -EBUSY; 1009 mutex_lock(&kvm->lock); 1010 if (!kvm->created_vcpus) { 1011 /* gmap_create will round the limit up */ 1012 struct gmap *new = gmap_create(current->mm, new_limit); 1013 1014 if (!new) { 1015 ret = -ENOMEM; 1016 } else { 1017 gmap_remove(kvm->arch.gmap); 1018 new->private = kvm; 1019 kvm->arch.gmap = new; 1020 ret = 0; 1021 } 1022 } 1023 mutex_unlock(&kvm->lock); 1024 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 1025 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 1026 (void *) kvm->arch.gmap->asce); 1027 break; 1028 } 1029 default: 1030 ret = -ENXIO; 1031 break; 1032 } 1033 return ret; 1034 } 1035 1036 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1037 1038 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1039 { 1040 struct kvm_vcpu *vcpu; 1041 unsigned long i; 1042 1043 kvm_s390_vcpu_block_all(kvm); 1044 1045 kvm_for_each_vcpu(i, vcpu, kvm) { 1046 kvm_s390_vcpu_crypto_setup(vcpu); 1047 /* recreate the shadow crycb by leaving the VSIE handler */ 1048 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1049 } 1050 1051 kvm_s390_vcpu_unblock_all(kvm); 1052 } 1053 1054 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1055 { 1056 mutex_lock(&kvm->lock); 1057 switch (attr->attr) { 1058 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1059 if (!test_kvm_facility(kvm, 76)) { 1060 mutex_unlock(&kvm->lock); 1061 return -EINVAL; 1062 } 1063 get_random_bytes( 1064 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1065 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1066 kvm->arch.crypto.aes_kw = 1; 1067 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1068 break; 1069 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1070 if (!test_kvm_facility(kvm, 76)) { 1071 mutex_unlock(&kvm->lock); 1072 return -EINVAL; 1073 } 1074 get_random_bytes( 1075 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1076 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1077 kvm->arch.crypto.dea_kw = 1; 1078 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1079 break; 1080 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1081 if (!test_kvm_facility(kvm, 76)) { 1082 mutex_unlock(&kvm->lock); 1083 return -EINVAL; 1084 } 1085 kvm->arch.crypto.aes_kw = 0; 1086 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1087 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1088 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1089 break; 1090 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1091 if (!test_kvm_facility(kvm, 76)) { 1092 mutex_unlock(&kvm->lock); 1093 return -EINVAL; 1094 } 1095 kvm->arch.crypto.dea_kw = 0; 1096 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1097 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1098 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1099 break; 1100 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1101 if (!ap_instructions_available()) { 1102 mutex_unlock(&kvm->lock); 1103 return -EOPNOTSUPP; 1104 } 1105 kvm->arch.crypto.apie = 1; 1106 break; 1107 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1108 if (!ap_instructions_available()) { 1109 mutex_unlock(&kvm->lock); 1110 return -EOPNOTSUPP; 1111 } 1112 kvm->arch.crypto.apie = 0; 1113 break; 1114 default: 1115 mutex_unlock(&kvm->lock); 1116 return -ENXIO; 1117 } 1118 1119 kvm_s390_vcpu_crypto_reset_all(kvm); 1120 mutex_unlock(&kvm->lock); 1121 return 0; 1122 } 1123 1124 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1125 { 1126 /* Only set the ECB bits after guest requests zPCI interpretation */ 1127 if (!vcpu->kvm->arch.use_zpci_interp) 1128 return; 1129 1130 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1131 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1132 } 1133 1134 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1135 { 1136 struct kvm_vcpu *vcpu; 1137 unsigned long i; 1138 1139 lockdep_assert_held(&kvm->lock); 1140 1141 if (!kvm_s390_pci_interp_allowed()) 1142 return; 1143 1144 /* 1145 * If host is configured for PCI and the necessary facilities are 1146 * available, turn on interpretation for the life of this guest 1147 */ 1148 kvm->arch.use_zpci_interp = 1; 1149 1150 kvm_s390_vcpu_block_all(kvm); 1151 1152 kvm_for_each_vcpu(i, vcpu, kvm) { 1153 kvm_s390_vcpu_pci_setup(vcpu); 1154 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1155 } 1156 1157 kvm_s390_vcpu_unblock_all(kvm); 1158 } 1159 1160 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1161 { 1162 unsigned long cx; 1163 struct kvm_vcpu *vcpu; 1164 1165 kvm_for_each_vcpu(cx, vcpu, kvm) 1166 kvm_s390_sync_request(req, vcpu); 1167 } 1168 1169 /* 1170 * Must be called with kvm->srcu held to avoid races on memslots, and with 1171 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1172 */ 1173 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1174 { 1175 struct kvm_memory_slot *ms; 1176 struct kvm_memslots *slots; 1177 unsigned long ram_pages = 0; 1178 int bkt; 1179 1180 /* migration mode already enabled */ 1181 if (kvm->arch.migration_mode) 1182 return 0; 1183 slots = kvm_memslots(kvm); 1184 if (!slots || kvm_memslots_empty(slots)) 1185 return -EINVAL; 1186 1187 if (!kvm->arch.use_cmma) { 1188 kvm->arch.migration_mode = 1; 1189 return 0; 1190 } 1191 /* mark all the pages in active slots as dirty */ 1192 kvm_for_each_memslot(ms, bkt, slots) { 1193 if (!ms->dirty_bitmap) 1194 return -EINVAL; 1195 /* 1196 * The second half of the bitmap is only used on x86, 1197 * and would be wasted otherwise, so we put it to good 1198 * use here to keep track of the state of the storage 1199 * attributes. 1200 */ 1201 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1202 ram_pages += ms->npages; 1203 } 1204 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1205 kvm->arch.migration_mode = 1; 1206 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1207 return 0; 1208 } 1209 1210 /* 1211 * Must be called with kvm->slots_lock to avoid races with ourselves and 1212 * kvm_s390_vm_start_migration. 1213 */ 1214 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1215 { 1216 /* migration mode already disabled */ 1217 if (!kvm->arch.migration_mode) 1218 return 0; 1219 kvm->arch.migration_mode = 0; 1220 if (kvm->arch.use_cmma) 1221 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1222 return 0; 1223 } 1224 1225 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1226 struct kvm_device_attr *attr) 1227 { 1228 int res = -ENXIO; 1229 1230 mutex_lock(&kvm->slots_lock); 1231 switch (attr->attr) { 1232 case KVM_S390_VM_MIGRATION_START: 1233 res = kvm_s390_vm_start_migration(kvm); 1234 break; 1235 case KVM_S390_VM_MIGRATION_STOP: 1236 res = kvm_s390_vm_stop_migration(kvm); 1237 break; 1238 default: 1239 break; 1240 } 1241 mutex_unlock(&kvm->slots_lock); 1242 1243 return res; 1244 } 1245 1246 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1247 struct kvm_device_attr *attr) 1248 { 1249 u64 mig = kvm->arch.migration_mode; 1250 1251 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1252 return -ENXIO; 1253 1254 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1255 return -EFAULT; 1256 return 0; 1257 } 1258 1259 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1260 1261 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1262 { 1263 struct kvm_s390_vm_tod_clock gtod; 1264 1265 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1266 return -EFAULT; 1267 1268 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1269 return -EINVAL; 1270 __kvm_s390_set_tod_clock(kvm, >od); 1271 1272 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1273 gtod.epoch_idx, gtod.tod); 1274 1275 return 0; 1276 } 1277 1278 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1279 { 1280 u8 gtod_high; 1281 1282 if (copy_from_user(>od_high, (void __user *)attr->addr, 1283 sizeof(gtod_high))) 1284 return -EFAULT; 1285 1286 if (gtod_high != 0) 1287 return -EINVAL; 1288 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1289 1290 return 0; 1291 } 1292 1293 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1294 { 1295 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1296 1297 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1298 sizeof(gtod.tod))) 1299 return -EFAULT; 1300 1301 __kvm_s390_set_tod_clock(kvm, >od); 1302 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1303 return 0; 1304 } 1305 1306 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1307 { 1308 int ret; 1309 1310 if (attr->flags) 1311 return -EINVAL; 1312 1313 mutex_lock(&kvm->lock); 1314 /* 1315 * For protected guests, the TOD is managed by the ultravisor, so trying 1316 * to change it will never bring the expected results. 1317 */ 1318 if (kvm_s390_pv_is_protected(kvm)) { 1319 ret = -EOPNOTSUPP; 1320 goto out_unlock; 1321 } 1322 1323 switch (attr->attr) { 1324 case KVM_S390_VM_TOD_EXT: 1325 ret = kvm_s390_set_tod_ext(kvm, attr); 1326 break; 1327 case KVM_S390_VM_TOD_HIGH: 1328 ret = kvm_s390_set_tod_high(kvm, attr); 1329 break; 1330 case KVM_S390_VM_TOD_LOW: 1331 ret = kvm_s390_set_tod_low(kvm, attr); 1332 break; 1333 default: 1334 ret = -ENXIO; 1335 break; 1336 } 1337 1338 out_unlock: 1339 mutex_unlock(&kvm->lock); 1340 return ret; 1341 } 1342 1343 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1344 struct kvm_s390_vm_tod_clock *gtod) 1345 { 1346 union tod_clock clk; 1347 1348 preempt_disable(); 1349 1350 store_tod_clock_ext(&clk); 1351 1352 gtod->tod = clk.tod + kvm->arch.epoch; 1353 gtod->epoch_idx = 0; 1354 if (test_kvm_facility(kvm, 139)) { 1355 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1356 if (gtod->tod < clk.tod) 1357 gtod->epoch_idx += 1; 1358 } 1359 1360 preempt_enable(); 1361 } 1362 1363 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1364 { 1365 struct kvm_s390_vm_tod_clock gtod; 1366 1367 memset(>od, 0, sizeof(gtod)); 1368 kvm_s390_get_tod_clock(kvm, >od); 1369 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1370 return -EFAULT; 1371 1372 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1373 gtod.epoch_idx, gtod.tod); 1374 return 0; 1375 } 1376 1377 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1378 { 1379 u8 gtod_high = 0; 1380 1381 if (copy_to_user((void __user *)attr->addr, >od_high, 1382 sizeof(gtod_high))) 1383 return -EFAULT; 1384 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1385 1386 return 0; 1387 } 1388 1389 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1390 { 1391 u64 gtod; 1392 1393 gtod = kvm_s390_get_tod_clock_fast(kvm); 1394 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1395 return -EFAULT; 1396 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1397 1398 return 0; 1399 } 1400 1401 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1402 { 1403 int ret; 1404 1405 if (attr->flags) 1406 return -EINVAL; 1407 1408 switch (attr->attr) { 1409 case KVM_S390_VM_TOD_EXT: 1410 ret = kvm_s390_get_tod_ext(kvm, attr); 1411 break; 1412 case KVM_S390_VM_TOD_HIGH: 1413 ret = kvm_s390_get_tod_high(kvm, attr); 1414 break; 1415 case KVM_S390_VM_TOD_LOW: 1416 ret = kvm_s390_get_tod_low(kvm, attr); 1417 break; 1418 default: 1419 ret = -ENXIO; 1420 break; 1421 } 1422 return ret; 1423 } 1424 1425 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1426 { 1427 struct kvm_s390_vm_cpu_processor *proc; 1428 u16 lowest_ibc, unblocked_ibc; 1429 int ret = 0; 1430 1431 mutex_lock(&kvm->lock); 1432 if (kvm->created_vcpus) { 1433 ret = -EBUSY; 1434 goto out; 1435 } 1436 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1437 if (!proc) { 1438 ret = -ENOMEM; 1439 goto out; 1440 } 1441 if (!copy_from_user(proc, (void __user *)attr->addr, 1442 sizeof(*proc))) { 1443 kvm->arch.model.cpuid = proc->cpuid; 1444 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1445 unblocked_ibc = sclp.ibc & 0xfff; 1446 if (lowest_ibc && proc->ibc) { 1447 if (proc->ibc > unblocked_ibc) 1448 kvm->arch.model.ibc = unblocked_ibc; 1449 else if (proc->ibc < lowest_ibc) 1450 kvm->arch.model.ibc = lowest_ibc; 1451 else 1452 kvm->arch.model.ibc = proc->ibc; 1453 } 1454 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1455 S390_ARCH_FAC_LIST_SIZE_BYTE); 1456 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1457 kvm->arch.model.ibc, 1458 kvm->arch.model.cpuid); 1459 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1460 kvm->arch.model.fac_list[0], 1461 kvm->arch.model.fac_list[1], 1462 kvm->arch.model.fac_list[2]); 1463 } else 1464 ret = -EFAULT; 1465 kfree(proc); 1466 out: 1467 mutex_unlock(&kvm->lock); 1468 return ret; 1469 } 1470 1471 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1472 struct kvm_device_attr *attr) 1473 { 1474 struct kvm_s390_vm_cpu_feat data; 1475 1476 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1477 return -EFAULT; 1478 if (!bitmap_subset((unsigned long *) data.feat, 1479 kvm_s390_available_cpu_feat, 1480 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1481 return -EINVAL; 1482 1483 mutex_lock(&kvm->lock); 1484 if (kvm->created_vcpus) { 1485 mutex_unlock(&kvm->lock); 1486 return -EBUSY; 1487 } 1488 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1489 mutex_unlock(&kvm->lock); 1490 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1491 data.feat[0], 1492 data.feat[1], 1493 data.feat[2]); 1494 return 0; 1495 } 1496 1497 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1498 struct kvm_device_attr *attr) 1499 { 1500 mutex_lock(&kvm->lock); 1501 if (kvm->created_vcpus) { 1502 mutex_unlock(&kvm->lock); 1503 return -EBUSY; 1504 } 1505 1506 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1507 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1508 mutex_unlock(&kvm->lock); 1509 return -EFAULT; 1510 } 1511 mutex_unlock(&kvm->lock); 1512 1513 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1514 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1515 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1516 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1517 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1518 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1519 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1520 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1521 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1522 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1524 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1525 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1526 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1527 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1528 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1530 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1531 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1532 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1533 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1534 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1536 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1537 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1538 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1539 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1540 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1541 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1542 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1543 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1544 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1545 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1546 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1547 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1548 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1549 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1550 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1551 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1552 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1553 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1554 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1555 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1556 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1557 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1558 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1559 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1560 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1561 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1562 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1563 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1564 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1565 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1566 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1567 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1568 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1569 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1570 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1571 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1572 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1573 1574 return 0; 1575 } 1576 1577 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1578 ( \ 1579 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1580 .ap = 1, \ 1581 .ap_intr = 1, \ 1582 }) \ 1583 .feat \ 1584 ) 1585 1586 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1587 { 1588 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1589 unsigned long data, filter; 1590 1591 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1592 if (get_user(data, &ptr->feat)) 1593 return -EFAULT; 1594 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1595 return -EINVAL; 1596 1597 mutex_lock(&kvm->lock); 1598 if (kvm->created_vcpus) { 1599 mutex_unlock(&kvm->lock); 1600 return -EBUSY; 1601 } 1602 kvm->arch.model.uv_feat_guest.feat = data; 1603 mutex_unlock(&kvm->lock); 1604 1605 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1606 1607 return 0; 1608 } 1609 1610 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1611 { 1612 int ret = -ENXIO; 1613 1614 switch (attr->attr) { 1615 case KVM_S390_VM_CPU_PROCESSOR: 1616 ret = kvm_s390_set_processor(kvm, attr); 1617 break; 1618 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1619 ret = kvm_s390_set_processor_feat(kvm, attr); 1620 break; 1621 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1622 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1623 break; 1624 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1625 ret = kvm_s390_set_uv_feat(kvm, attr); 1626 break; 1627 } 1628 return ret; 1629 } 1630 1631 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1632 { 1633 struct kvm_s390_vm_cpu_processor *proc; 1634 int ret = 0; 1635 1636 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1637 if (!proc) { 1638 ret = -ENOMEM; 1639 goto out; 1640 } 1641 proc->cpuid = kvm->arch.model.cpuid; 1642 proc->ibc = kvm->arch.model.ibc; 1643 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1644 S390_ARCH_FAC_LIST_SIZE_BYTE); 1645 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1646 kvm->arch.model.ibc, 1647 kvm->arch.model.cpuid); 1648 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1649 kvm->arch.model.fac_list[0], 1650 kvm->arch.model.fac_list[1], 1651 kvm->arch.model.fac_list[2]); 1652 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1653 ret = -EFAULT; 1654 kfree(proc); 1655 out: 1656 return ret; 1657 } 1658 1659 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1660 { 1661 struct kvm_s390_vm_cpu_machine *mach; 1662 int ret = 0; 1663 1664 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1665 if (!mach) { 1666 ret = -ENOMEM; 1667 goto out; 1668 } 1669 get_cpu_id((struct cpuid *) &mach->cpuid); 1670 mach->ibc = sclp.ibc; 1671 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1672 S390_ARCH_FAC_LIST_SIZE_BYTE); 1673 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1674 sizeof(stfle_fac_list)); 1675 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1676 kvm->arch.model.ibc, 1677 kvm->arch.model.cpuid); 1678 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1679 mach->fac_mask[0], 1680 mach->fac_mask[1], 1681 mach->fac_mask[2]); 1682 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1683 mach->fac_list[0], 1684 mach->fac_list[1], 1685 mach->fac_list[2]); 1686 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1687 ret = -EFAULT; 1688 kfree(mach); 1689 out: 1690 return ret; 1691 } 1692 1693 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1694 struct kvm_device_attr *attr) 1695 { 1696 struct kvm_s390_vm_cpu_feat data; 1697 1698 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1699 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1700 return -EFAULT; 1701 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1702 data.feat[0], 1703 data.feat[1], 1704 data.feat[2]); 1705 return 0; 1706 } 1707 1708 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1709 struct kvm_device_attr *attr) 1710 { 1711 struct kvm_s390_vm_cpu_feat data; 1712 1713 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1714 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1715 return -EFAULT; 1716 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1717 data.feat[0], 1718 data.feat[1], 1719 data.feat[2]); 1720 return 0; 1721 } 1722 1723 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1724 struct kvm_device_attr *attr) 1725 { 1726 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1727 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1728 return -EFAULT; 1729 1730 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1731 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1732 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1733 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1734 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1735 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1736 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1737 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1738 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1739 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1741 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1742 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1743 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1744 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1745 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1746 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1747 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1748 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1750 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1751 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1752 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1753 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1754 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1755 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1756 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1757 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1758 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1759 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1760 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1761 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1762 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1763 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1764 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1765 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1766 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1767 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1768 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1769 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1770 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1771 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1772 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1773 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1774 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1775 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1776 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1777 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1778 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1779 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1780 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1781 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1782 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1783 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1784 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1785 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1786 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1787 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1788 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1789 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1790 1791 return 0; 1792 } 1793 1794 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1795 struct kvm_device_attr *attr) 1796 { 1797 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1798 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1799 return -EFAULT; 1800 1801 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1802 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1803 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1804 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1805 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1806 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1807 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1808 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1809 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1810 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1811 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1812 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1813 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1814 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1815 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1816 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1817 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1818 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1819 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1820 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1821 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1822 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1823 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1824 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1825 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1826 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1827 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1828 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1829 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1830 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1831 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1832 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1833 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1834 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1835 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1836 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1837 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1838 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1839 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1840 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1841 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1842 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1843 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1844 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1845 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1846 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1847 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1848 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1849 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1850 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1851 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1852 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1853 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1854 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1855 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1856 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1857 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1858 VM_EVENT(kvm, 3, "GET: host PFCR subfunc 0x%16.16lx.%16.16lx", 1859 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1860 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1861 1862 return 0; 1863 } 1864 1865 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1866 { 1867 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1868 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1869 1870 if (put_user(feat, &dst->feat)) 1871 return -EFAULT; 1872 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1873 1874 return 0; 1875 } 1876 1877 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1878 { 1879 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1880 unsigned long feat; 1881 1882 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1883 1884 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1885 if (put_user(feat, &dst->feat)) 1886 return -EFAULT; 1887 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1888 1889 return 0; 1890 } 1891 1892 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1893 { 1894 int ret = -ENXIO; 1895 1896 switch (attr->attr) { 1897 case KVM_S390_VM_CPU_PROCESSOR: 1898 ret = kvm_s390_get_processor(kvm, attr); 1899 break; 1900 case KVM_S390_VM_CPU_MACHINE: 1901 ret = kvm_s390_get_machine(kvm, attr); 1902 break; 1903 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1904 ret = kvm_s390_get_processor_feat(kvm, attr); 1905 break; 1906 case KVM_S390_VM_CPU_MACHINE_FEAT: 1907 ret = kvm_s390_get_machine_feat(kvm, attr); 1908 break; 1909 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1910 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1911 break; 1912 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1913 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1914 break; 1915 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1916 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1917 break; 1918 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1919 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1920 break; 1921 } 1922 return ret; 1923 } 1924 1925 /** 1926 * kvm_s390_update_topology_change_report - update CPU topology change report 1927 * @kvm: guest KVM description 1928 * @val: set or clear the MTCR bit 1929 * 1930 * Updates the Multiprocessor Topology-Change-Report bit to signal 1931 * the guest with a topology change. 1932 * This is only relevant if the topology facility is present. 1933 * 1934 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1935 */ 1936 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1937 { 1938 union sca_utility new, old; 1939 struct bsca_block *sca; 1940 1941 read_lock(&kvm->arch.sca_lock); 1942 sca = kvm->arch.sca; 1943 old = READ_ONCE(sca->utility); 1944 do { 1945 new = old; 1946 new.mtcr = val; 1947 } while (!try_cmpxchg(&sca->utility.val, &old.val, new.val)); 1948 read_unlock(&kvm->arch.sca_lock); 1949 } 1950 1951 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1952 struct kvm_device_attr *attr) 1953 { 1954 if (!test_kvm_facility(kvm, 11)) 1955 return -ENXIO; 1956 1957 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1958 return 0; 1959 } 1960 1961 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1962 struct kvm_device_attr *attr) 1963 { 1964 u8 topo; 1965 1966 if (!test_kvm_facility(kvm, 11)) 1967 return -ENXIO; 1968 1969 read_lock(&kvm->arch.sca_lock); 1970 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1971 read_unlock(&kvm->arch.sca_lock); 1972 1973 return put_user(topo, (u8 __user *)attr->addr); 1974 } 1975 1976 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1977 { 1978 int ret; 1979 1980 switch (attr->group) { 1981 case KVM_S390_VM_MEM_CTRL: 1982 ret = kvm_s390_set_mem_control(kvm, attr); 1983 break; 1984 case KVM_S390_VM_TOD: 1985 ret = kvm_s390_set_tod(kvm, attr); 1986 break; 1987 case KVM_S390_VM_CPU_MODEL: 1988 ret = kvm_s390_set_cpu_model(kvm, attr); 1989 break; 1990 case KVM_S390_VM_CRYPTO: 1991 ret = kvm_s390_vm_set_crypto(kvm, attr); 1992 break; 1993 case KVM_S390_VM_MIGRATION: 1994 ret = kvm_s390_vm_set_migration(kvm, attr); 1995 break; 1996 case KVM_S390_VM_CPU_TOPOLOGY: 1997 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1998 break; 1999 default: 2000 ret = -ENXIO; 2001 break; 2002 } 2003 2004 return ret; 2005 } 2006 2007 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2008 { 2009 int ret; 2010 2011 switch (attr->group) { 2012 case KVM_S390_VM_MEM_CTRL: 2013 ret = kvm_s390_get_mem_control(kvm, attr); 2014 break; 2015 case KVM_S390_VM_TOD: 2016 ret = kvm_s390_get_tod(kvm, attr); 2017 break; 2018 case KVM_S390_VM_CPU_MODEL: 2019 ret = kvm_s390_get_cpu_model(kvm, attr); 2020 break; 2021 case KVM_S390_VM_MIGRATION: 2022 ret = kvm_s390_vm_get_migration(kvm, attr); 2023 break; 2024 case KVM_S390_VM_CPU_TOPOLOGY: 2025 ret = kvm_s390_get_topo_change_indication(kvm, attr); 2026 break; 2027 default: 2028 ret = -ENXIO; 2029 break; 2030 } 2031 2032 return ret; 2033 } 2034 2035 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2036 { 2037 int ret; 2038 2039 switch (attr->group) { 2040 case KVM_S390_VM_MEM_CTRL: 2041 switch (attr->attr) { 2042 case KVM_S390_VM_MEM_ENABLE_CMMA: 2043 case KVM_S390_VM_MEM_CLR_CMMA: 2044 ret = sclp.has_cmma ? 0 : -ENXIO; 2045 break; 2046 case KVM_S390_VM_MEM_LIMIT_SIZE: 2047 ret = 0; 2048 break; 2049 default: 2050 ret = -ENXIO; 2051 break; 2052 } 2053 break; 2054 case KVM_S390_VM_TOD: 2055 switch (attr->attr) { 2056 case KVM_S390_VM_TOD_LOW: 2057 case KVM_S390_VM_TOD_HIGH: 2058 ret = 0; 2059 break; 2060 default: 2061 ret = -ENXIO; 2062 break; 2063 } 2064 break; 2065 case KVM_S390_VM_CPU_MODEL: 2066 switch (attr->attr) { 2067 case KVM_S390_VM_CPU_PROCESSOR: 2068 case KVM_S390_VM_CPU_MACHINE: 2069 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2070 case KVM_S390_VM_CPU_MACHINE_FEAT: 2071 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2072 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2073 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2074 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2075 ret = 0; 2076 break; 2077 default: 2078 ret = -ENXIO; 2079 break; 2080 } 2081 break; 2082 case KVM_S390_VM_CRYPTO: 2083 switch (attr->attr) { 2084 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2085 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2086 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2087 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2088 ret = 0; 2089 break; 2090 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2091 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2092 ret = ap_instructions_available() ? 0 : -ENXIO; 2093 break; 2094 default: 2095 ret = -ENXIO; 2096 break; 2097 } 2098 break; 2099 case KVM_S390_VM_MIGRATION: 2100 ret = 0; 2101 break; 2102 case KVM_S390_VM_CPU_TOPOLOGY: 2103 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2104 break; 2105 default: 2106 ret = -ENXIO; 2107 break; 2108 } 2109 2110 return ret; 2111 } 2112 2113 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2114 { 2115 uint8_t *keys; 2116 uint64_t hva; 2117 int srcu_idx, i, r = 0; 2118 2119 if (args->flags != 0) 2120 return -EINVAL; 2121 2122 /* Is this guest using storage keys? */ 2123 if (!mm_uses_skeys(current->mm)) 2124 return KVM_S390_GET_SKEYS_NONE; 2125 2126 /* Enforce sane limit on memory allocation */ 2127 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2128 return -EINVAL; 2129 2130 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2131 if (!keys) 2132 return -ENOMEM; 2133 2134 mmap_read_lock(current->mm); 2135 srcu_idx = srcu_read_lock(&kvm->srcu); 2136 for (i = 0; i < args->count; i++) { 2137 hva = gfn_to_hva(kvm, args->start_gfn + i); 2138 if (kvm_is_error_hva(hva)) { 2139 r = -EFAULT; 2140 break; 2141 } 2142 2143 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2144 if (r) 2145 break; 2146 } 2147 srcu_read_unlock(&kvm->srcu, srcu_idx); 2148 mmap_read_unlock(current->mm); 2149 2150 if (!r) { 2151 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2152 sizeof(uint8_t) * args->count); 2153 if (r) 2154 r = -EFAULT; 2155 } 2156 2157 kvfree(keys); 2158 return r; 2159 } 2160 2161 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2162 { 2163 uint8_t *keys; 2164 uint64_t hva; 2165 int srcu_idx, i, r = 0; 2166 bool unlocked; 2167 2168 if (args->flags != 0) 2169 return -EINVAL; 2170 2171 /* Enforce sane limit on memory allocation */ 2172 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2173 return -EINVAL; 2174 2175 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2176 if (!keys) 2177 return -ENOMEM; 2178 2179 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2180 sizeof(uint8_t) * args->count); 2181 if (r) { 2182 r = -EFAULT; 2183 goto out; 2184 } 2185 2186 /* Enable storage key handling for the guest */ 2187 r = s390_enable_skey(); 2188 if (r) 2189 goto out; 2190 2191 i = 0; 2192 mmap_read_lock(current->mm); 2193 srcu_idx = srcu_read_lock(&kvm->srcu); 2194 while (i < args->count) { 2195 unlocked = false; 2196 hva = gfn_to_hva(kvm, args->start_gfn + i); 2197 if (kvm_is_error_hva(hva)) { 2198 r = -EFAULT; 2199 break; 2200 } 2201 2202 /* Lowest order bit is reserved */ 2203 if (keys[i] & 0x01) { 2204 r = -EINVAL; 2205 break; 2206 } 2207 2208 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2209 if (r) { 2210 r = fixup_user_fault(current->mm, hva, 2211 FAULT_FLAG_WRITE, &unlocked); 2212 if (r) 2213 break; 2214 } 2215 if (!r) 2216 i++; 2217 } 2218 srcu_read_unlock(&kvm->srcu, srcu_idx); 2219 mmap_read_unlock(current->mm); 2220 out: 2221 kvfree(keys); 2222 return r; 2223 } 2224 2225 /* 2226 * Base address and length must be sent at the start of each block, therefore 2227 * it's cheaper to send some clean data, as long as it's less than the size of 2228 * two longs. 2229 */ 2230 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2231 /* for consistency */ 2232 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2233 2234 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2235 u8 *res, unsigned long bufsize) 2236 { 2237 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2238 2239 args->count = 0; 2240 while (args->count < bufsize) { 2241 hva = gfn_to_hva(kvm, cur_gfn); 2242 /* 2243 * We return an error if the first value was invalid, but we 2244 * return successfully if at least one value was copied. 2245 */ 2246 if (kvm_is_error_hva(hva)) 2247 return args->count ? 0 : -EFAULT; 2248 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2249 pgstev = 0; 2250 res[args->count++] = (pgstev >> 24) & 0x43; 2251 cur_gfn++; 2252 } 2253 2254 return 0; 2255 } 2256 2257 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2258 gfn_t gfn) 2259 { 2260 return ____gfn_to_memslot(slots, gfn, true); 2261 } 2262 2263 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2264 unsigned long cur_gfn) 2265 { 2266 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2267 unsigned long ofs = cur_gfn - ms->base_gfn; 2268 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2269 2270 if (ms->base_gfn + ms->npages <= cur_gfn) { 2271 mnode = rb_next(mnode); 2272 /* If we are above the highest slot, wrap around */ 2273 if (!mnode) 2274 mnode = rb_first(&slots->gfn_tree); 2275 2276 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2277 ofs = 0; 2278 } 2279 2280 if (cur_gfn < ms->base_gfn) 2281 ofs = 0; 2282 2283 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2284 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2285 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2286 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2287 } 2288 return ms->base_gfn + ofs; 2289 } 2290 2291 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2292 u8 *res, unsigned long bufsize) 2293 { 2294 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2295 struct kvm_memslots *slots = kvm_memslots(kvm); 2296 struct kvm_memory_slot *ms; 2297 2298 if (unlikely(kvm_memslots_empty(slots))) 2299 return 0; 2300 2301 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2302 ms = gfn_to_memslot(kvm, cur_gfn); 2303 args->count = 0; 2304 args->start_gfn = cur_gfn; 2305 if (!ms) 2306 return 0; 2307 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2308 mem_end = kvm_s390_get_gfn_end(slots); 2309 2310 while (args->count < bufsize) { 2311 hva = gfn_to_hva(kvm, cur_gfn); 2312 if (kvm_is_error_hva(hva)) 2313 return 0; 2314 /* Decrement only if we actually flipped the bit to 0 */ 2315 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2316 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2317 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2318 pgstev = 0; 2319 /* Save the value */ 2320 res[args->count++] = (pgstev >> 24) & 0x43; 2321 /* If the next bit is too far away, stop. */ 2322 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2323 return 0; 2324 /* If we reached the previous "next", find the next one */ 2325 if (cur_gfn == next_gfn) 2326 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2327 /* Reached the end of memory or of the buffer, stop */ 2328 if ((next_gfn >= mem_end) || 2329 (next_gfn - args->start_gfn >= bufsize)) 2330 return 0; 2331 cur_gfn++; 2332 /* Reached the end of the current memslot, take the next one. */ 2333 if (cur_gfn - ms->base_gfn >= ms->npages) { 2334 ms = gfn_to_memslot(kvm, cur_gfn); 2335 if (!ms) 2336 return 0; 2337 } 2338 } 2339 return 0; 2340 } 2341 2342 /* 2343 * This function searches for the next page with dirty CMMA attributes, and 2344 * saves the attributes in the buffer up to either the end of the buffer or 2345 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2346 * no trailing clean bytes are saved. 2347 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2348 * output buffer will indicate 0 as length. 2349 */ 2350 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2351 struct kvm_s390_cmma_log *args) 2352 { 2353 unsigned long bufsize; 2354 int srcu_idx, peek, ret; 2355 u8 *values; 2356 2357 if (!kvm->arch.use_cmma) 2358 return -ENXIO; 2359 /* Invalid/unsupported flags were specified */ 2360 if (args->flags & ~KVM_S390_CMMA_PEEK) 2361 return -EINVAL; 2362 /* Migration mode query, and we are not doing a migration */ 2363 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2364 if (!peek && !kvm->arch.migration_mode) 2365 return -EINVAL; 2366 /* CMMA is disabled or was not used, or the buffer has length zero */ 2367 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2368 if (!bufsize || !kvm->mm->context.uses_cmm) { 2369 memset(args, 0, sizeof(*args)); 2370 return 0; 2371 } 2372 /* We are not peeking, and there are no dirty pages */ 2373 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2374 memset(args, 0, sizeof(*args)); 2375 return 0; 2376 } 2377 2378 values = vmalloc(bufsize); 2379 if (!values) 2380 return -ENOMEM; 2381 2382 mmap_read_lock(kvm->mm); 2383 srcu_idx = srcu_read_lock(&kvm->srcu); 2384 if (peek) 2385 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2386 else 2387 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2388 srcu_read_unlock(&kvm->srcu, srcu_idx); 2389 mmap_read_unlock(kvm->mm); 2390 2391 if (kvm->arch.migration_mode) 2392 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2393 else 2394 args->remaining = 0; 2395 2396 if (copy_to_user((void __user *)args->values, values, args->count)) 2397 ret = -EFAULT; 2398 2399 vfree(values); 2400 return ret; 2401 } 2402 2403 /* 2404 * This function sets the CMMA attributes for the given pages. If the input 2405 * buffer has zero length, no action is taken, otherwise the attributes are 2406 * set and the mm->context.uses_cmm flag is set. 2407 */ 2408 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2409 const struct kvm_s390_cmma_log *args) 2410 { 2411 unsigned long hva, mask, pgstev, i; 2412 uint8_t *bits; 2413 int srcu_idx, r = 0; 2414 2415 mask = args->mask; 2416 2417 if (!kvm->arch.use_cmma) 2418 return -ENXIO; 2419 /* invalid/unsupported flags */ 2420 if (args->flags != 0) 2421 return -EINVAL; 2422 /* Enforce sane limit on memory allocation */ 2423 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2424 return -EINVAL; 2425 /* Nothing to do */ 2426 if (args->count == 0) 2427 return 0; 2428 2429 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2430 if (!bits) 2431 return -ENOMEM; 2432 2433 r = copy_from_user(bits, (void __user *)args->values, args->count); 2434 if (r) { 2435 r = -EFAULT; 2436 goto out; 2437 } 2438 2439 mmap_read_lock(kvm->mm); 2440 srcu_idx = srcu_read_lock(&kvm->srcu); 2441 for (i = 0; i < args->count; i++) { 2442 hva = gfn_to_hva(kvm, args->start_gfn + i); 2443 if (kvm_is_error_hva(hva)) { 2444 r = -EFAULT; 2445 break; 2446 } 2447 2448 pgstev = bits[i]; 2449 pgstev = pgstev << 24; 2450 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2451 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2452 } 2453 srcu_read_unlock(&kvm->srcu, srcu_idx); 2454 mmap_read_unlock(kvm->mm); 2455 2456 if (!kvm->mm->context.uses_cmm) { 2457 mmap_write_lock(kvm->mm); 2458 kvm->mm->context.uses_cmm = 1; 2459 mmap_write_unlock(kvm->mm); 2460 } 2461 out: 2462 vfree(bits); 2463 return r; 2464 } 2465 2466 /** 2467 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2468 * non protected. 2469 * @kvm: the VM whose protected vCPUs are to be converted 2470 * @rc: return value for the RC field of the UVC (in case of error) 2471 * @rrc: return value for the RRC field of the UVC (in case of error) 2472 * 2473 * Does not stop in case of error, tries to convert as many 2474 * CPUs as possible. In case of error, the RC and RRC of the last error are 2475 * returned. 2476 * 2477 * Return: 0 in case of success, otherwise -EIO 2478 */ 2479 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2480 { 2481 struct kvm_vcpu *vcpu; 2482 unsigned long i; 2483 u16 _rc, _rrc; 2484 int ret = 0; 2485 2486 /* 2487 * We ignore failures and try to destroy as many CPUs as possible. 2488 * At the same time we must not free the assigned resources when 2489 * this fails, as the ultravisor has still access to that memory. 2490 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2491 * behind. 2492 * We want to return the first failure rc and rrc, though. 2493 */ 2494 kvm_for_each_vcpu(i, vcpu, kvm) { 2495 mutex_lock(&vcpu->mutex); 2496 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2497 *rc = _rc; 2498 *rrc = _rrc; 2499 ret = -EIO; 2500 } 2501 mutex_unlock(&vcpu->mutex); 2502 } 2503 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2504 if (use_gisa) 2505 kvm_s390_gisa_enable(kvm); 2506 return ret; 2507 } 2508 2509 /** 2510 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2511 * to protected. 2512 * @kvm: the VM whose protected vCPUs are to be converted 2513 * @rc: return value for the RC field of the UVC (in case of error) 2514 * @rrc: return value for the RRC field of the UVC (in case of error) 2515 * 2516 * Tries to undo the conversion in case of error. 2517 * 2518 * Return: 0 in case of success, otherwise -EIO 2519 */ 2520 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2521 { 2522 unsigned long i; 2523 int r = 0; 2524 u16 dummy; 2525 2526 struct kvm_vcpu *vcpu; 2527 2528 /* Disable the GISA if the ultravisor does not support AIV. */ 2529 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2530 kvm_s390_gisa_disable(kvm); 2531 2532 kvm_for_each_vcpu(i, vcpu, kvm) { 2533 mutex_lock(&vcpu->mutex); 2534 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2535 mutex_unlock(&vcpu->mutex); 2536 if (r) 2537 break; 2538 } 2539 if (r) 2540 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2541 return r; 2542 } 2543 2544 /* 2545 * Here we provide user space with a direct interface to query UV 2546 * related data like UV maxima and available features as well as 2547 * feature specific data. 2548 * 2549 * To facilitate future extension of the data structures we'll try to 2550 * write data up to the maximum requested length. 2551 */ 2552 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2553 { 2554 ssize_t len_min; 2555 2556 switch (info->header.id) { 2557 case KVM_PV_INFO_VM: { 2558 len_min = sizeof(info->header) + sizeof(info->vm); 2559 2560 if (info->header.len_max < len_min) 2561 return -EINVAL; 2562 2563 memcpy(info->vm.inst_calls_list, 2564 uv_info.inst_calls_list, 2565 sizeof(uv_info.inst_calls_list)); 2566 2567 /* It's max cpuid not max cpus, so it's off by one */ 2568 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2569 info->vm.max_guests = uv_info.max_num_sec_conf; 2570 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2571 info->vm.feature_indication = uv_info.uv_feature_indications; 2572 2573 return len_min; 2574 } 2575 case KVM_PV_INFO_DUMP: { 2576 len_min = sizeof(info->header) + sizeof(info->dump); 2577 2578 if (info->header.len_max < len_min) 2579 return -EINVAL; 2580 2581 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2582 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2583 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2584 return len_min; 2585 } 2586 default: 2587 return -EINVAL; 2588 } 2589 } 2590 2591 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2592 struct kvm_s390_pv_dmp dmp) 2593 { 2594 int r = -EINVAL; 2595 void __user *result_buff = (void __user *)dmp.buff_addr; 2596 2597 switch (dmp.subcmd) { 2598 case KVM_PV_DUMP_INIT: { 2599 if (kvm->arch.pv.dumping) 2600 break; 2601 2602 /* 2603 * Block SIE entry as concurrent dump UVCs could lead 2604 * to validities. 2605 */ 2606 kvm_s390_vcpu_block_all(kvm); 2607 2608 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2609 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2610 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2611 cmd->rc, cmd->rrc); 2612 if (!r) { 2613 kvm->arch.pv.dumping = true; 2614 } else { 2615 kvm_s390_vcpu_unblock_all(kvm); 2616 r = -EINVAL; 2617 } 2618 break; 2619 } 2620 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2621 if (!kvm->arch.pv.dumping) 2622 break; 2623 2624 /* 2625 * gaddr is an output parameter since we might stop 2626 * early. As dmp will be copied back in our caller, we 2627 * don't need to do it ourselves. 2628 */ 2629 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2630 &cmd->rc, &cmd->rrc); 2631 break; 2632 } 2633 case KVM_PV_DUMP_COMPLETE: { 2634 if (!kvm->arch.pv.dumping) 2635 break; 2636 2637 r = -EINVAL; 2638 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2639 break; 2640 2641 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2642 &cmd->rc, &cmd->rrc); 2643 break; 2644 } 2645 default: 2646 r = -ENOTTY; 2647 break; 2648 } 2649 2650 return r; 2651 } 2652 2653 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2654 { 2655 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2656 void __user *argp = (void __user *)cmd->data; 2657 int r = 0; 2658 u16 dummy; 2659 2660 if (need_lock) 2661 mutex_lock(&kvm->lock); 2662 2663 switch (cmd->cmd) { 2664 case KVM_PV_ENABLE: { 2665 r = -EINVAL; 2666 if (kvm_s390_pv_is_protected(kvm)) 2667 break; 2668 2669 /* 2670 * FMT 4 SIE needs esca. As we never switch back to bsca from 2671 * esca, we need no cleanup in the error cases below 2672 */ 2673 r = sca_switch_to_extended(kvm); 2674 if (r) 2675 break; 2676 2677 r = s390_disable_cow_sharing(); 2678 if (r) 2679 break; 2680 2681 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2682 if (r) 2683 break; 2684 2685 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2686 if (r) 2687 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2688 2689 /* we need to block service interrupts from now on */ 2690 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2691 break; 2692 } 2693 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2694 r = -EINVAL; 2695 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2696 break; 2697 2698 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2699 /* 2700 * If a CPU could not be destroyed, destroy VM will also fail. 2701 * There is no point in trying to destroy it. Instead return 2702 * the rc and rrc from the first CPU that failed destroying. 2703 */ 2704 if (r) 2705 break; 2706 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2707 2708 /* no need to block service interrupts any more */ 2709 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2710 break; 2711 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2712 r = -EINVAL; 2713 if (!async_destroy) 2714 break; 2715 /* kvm->lock must not be held; this is asserted inside the function. */ 2716 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2717 break; 2718 case KVM_PV_DISABLE: { 2719 r = -EINVAL; 2720 if (!kvm_s390_pv_is_protected(kvm)) 2721 break; 2722 2723 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2724 /* 2725 * If a CPU could not be destroyed, destroy VM will also fail. 2726 * There is no point in trying to destroy it. Instead return 2727 * the rc and rrc from the first CPU that failed destroying. 2728 */ 2729 if (r) 2730 break; 2731 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2732 2733 /* no need to block service interrupts any more */ 2734 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2735 break; 2736 } 2737 case KVM_PV_SET_SEC_PARMS: { 2738 struct kvm_s390_pv_sec_parm parms = {}; 2739 void *hdr; 2740 2741 r = -EINVAL; 2742 if (!kvm_s390_pv_is_protected(kvm)) 2743 break; 2744 2745 r = -EFAULT; 2746 if (copy_from_user(&parms, argp, sizeof(parms))) 2747 break; 2748 2749 /* Currently restricted to 8KB */ 2750 r = -EINVAL; 2751 if (parms.length > PAGE_SIZE * 2) 2752 break; 2753 2754 r = -ENOMEM; 2755 hdr = vmalloc(parms.length); 2756 if (!hdr) 2757 break; 2758 2759 r = -EFAULT; 2760 if (!copy_from_user(hdr, (void __user *)parms.origin, 2761 parms.length)) 2762 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2763 &cmd->rc, &cmd->rrc); 2764 2765 vfree(hdr); 2766 break; 2767 } 2768 case KVM_PV_UNPACK: { 2769 struct kvm_s390_pv_unp unp = {}; 2770 2771 r = -EINVAL; 2772 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2773 break; 2774 2775 r = -EFAULT; 2776 if (copy_from_user(&unp, argp, sizeof(unp))) 2777 break; 2778 2779 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2780 &cmd->rc, &cmd->rrc); 2781 break; 2782 } 2783 case KVM_PV_VERIFY: { 2784 r = -EINVAL; 2785 if (!kvm_s390_pv_is_protected(kvm)) 2786 break; 2787 2788 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2789 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2790 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2791 cmd->rrc); 2792 break; 2793 } 2794 case KVM_PV_PREP_RESET: { 2795 r = -EINVAL; 2796 if (!kvm_s390_pv_is_protected(kvm)) 2797 break; 2798 2799 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2800 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2801 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2802 cmd->rc, cmd->rrc); 2803 break; 2804 } 2805 case KVM_PV_UNSHARE_ALL: { 2806 r = -EINVAL; 2807 if (!kvm_s390_pv_is_protected(kvm)) 2808 break; 2809 2810 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2811 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2812 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2813 cmd->rc, cmd->rrc); 2814 break; 2815 } 2816 case KVM_PV_INFO: { 2817 struct kvm_s390_pv_info info = {}; 2818 ssize_t data_len; 2819 2820 /* 2821 * No need to check the VM protection here. 2822 * 2823 * Maybe user space wants to query some of the data 2824 * when the VM is still unprotected. If we see the 2825 * need to fence a new data command we can still 2826 * return an error in the info handler. 2827 */ 2828 2829 r = -EFAULT; 2830 if (copy_from_user(&info, argp, sizeof(info.header))) 2831 break; 2832 2833 r = -EINVAL; 2834 if (info.header.len_max < sizeof(info.header)) 2835 break; 2836 2837 data_len = kvm_s390_handle_pv_info(&info); 2838 if (data_len < 0) { 2839 r = data_len; 2840 break; 2841 } 2842 /* 2843 * If a data command struct is extended (multiple 2844 * times) this can be used to determine how much of it 2845 * is valid. 2846 */ 2847 info.header.len_written = data_len; 2848 2849 r = -EFAULT; 2850 if (copy_to_user(argp, &info, data_len)) 2851 break; 2852 2853 r = 0; 2854 break; 2855 } 2856 case KVM_PV_DUMP: { 2857 struct kvm_s390_pv_dmp dmp; 2858 2859 r = -EINVAL; 2860 if (!kvm_s390_pv_is_protected(kvm)) 2861 break; 2862 2863 r = -EFAULT; 2864 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2865 break; 2866 2867 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2868 if (r) 2869 break; 2870 2871 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2872 r = -EFAULT; 2873 break; 2874 } 2875 2876 break; 2877 } 2878 default: 2879 r = -ENOTTY; 2880 } 2881 if (need_lock) 2882 mutex_unlock(&kvm->lock); 2883 2884 return r; 2885 } 2886 2887 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2888 { 2889 if (mop->flags & ~supported_flags || !mop->size) 2890 return -EINVAL; 2891 if (mop->size > MEM_OP_MAX_SIZE) 2892 return -E2BIG; 2893 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2894 if (mop->key > 0xf) 2895 return -EINVAL; 2896 } else { 2897 mop->key = 0; 2898 } 2899 return 0; 2900 } 2901 2902 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2903 { 2904 void __user *uaddr = (void __user *)mop->buf; 2905 enum gacc_mode acc_mode; 2906 void *tmpbuf = NULL; 2907 int r, srcu_idx; 2908 2909 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2910 KVM_S390_MEMOP_F_CHECK_ONLY); 2911 if (r) 2912 return r; 2913 2914 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2915 tmpbuf = vmalloc(mop->size); 2916 if (!tmpbuf) 2917 return -ENOMEM; 2918 } 2919 2920 srcu_idx = srcu_read_lock(&kvm->srcu); 2921 2922 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2923 r = PGM_ADDRESSING; 2924 goto out_unlock; 2925 } 2926 2927 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2928 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2929 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2930 goto out_unlock; 2931 } 2932 if (acc_mode == GACC_FETCH) { 2933 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2934 mop->size, GACC_FETCH, mop->key); 2935 if (r) 2936 goto out_unlock; 2937 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2938 r = -EFAULT; 2939 } else { 2940 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2941 r = -EFAULT; 2942 goto out_unlock; 2943 } 2944 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2945 mop->size, GACC_STORE, mop->key); 2946 } 2947 2948 out_unlock: 2949 srcu_read_unlock(&kvm->srcu, srcu_idx); 2950 2951 vfree(tmpbuf); 2952 return r; 2953 } 2954 2955 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2956 { 2957 void __user *uaddr = (void __user *)mop->buf; 2958 void __user *old_addr = (void __user *)mop->old_addr; 2959 union { 2960 __uint128_t quad; 2961 char raw[sizeof(__uint128_t)]; 2962 } old = { .quad = 0}, new = { .quad = 0 }; 2963 unsigned int off_in_quad = sizeof(new) - mop->size; 2964 int r, srcu_idx; 2965 bool success; 2966 2967 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2968 if (r) 2969 return r; 2970 /* 2971 * This validates off_in_quad. Checking that size is a power 2972 * of two is not necessary, as cmpxchg_guest_abs_with_key 2973 * takes care of that 2974 */ 2975 if (mop->size > sizeof(new)) 2976 return -EINVAL; 2977 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2978 return -EFAULT; 2979 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2980 return -EFAULT; 2981 2982 srcu_idx = srcu_read_lock(&kvm->srcu); 2983 2984 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2985 r = PGM_ADDRESSING; 2986 goto out_unlock; 2987 } 2988 2989 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2990 new.quad, mop->key, &success); 2991 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2992 r = -EFAULT; 2993 2994 out_unlock: 2995 srcu_read_unlock(&kvm->srcu, srcu_idx); 2996 return r; 2997 } 2998 2999 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 3000 { 3001 /* 3002 * This is technically a heuristic only, if the kvm->lock is not 3003 * taken, it is not guaranteed that the vm is/remains non-protected. 3004 * This is ok from a kernel perspective, wrongdoing is detected 3005 * on the access, -EFAULT is returned and the vm may crash the 3006 * next time it accesses the memory in question. 3007 * There is no sane usecase to do switching and a memop on two 3008 * different CPUs at the same time. 3009 */ 3010 if (kvm_s390_pv_get_handle(kvm)) 3011 return -EINVAL; 3012 3013 switch (mop->op) { 3014 case KVM_S390_MEMOP_ABSOLUTE_READ: 3015 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 3016 return kvm_s390_vm_mem_op_abs(kvm, mop); 3017 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 3018 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 3019 default: 3020 return -EINVAL; 3021 } 3022 } 3023 3024 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 3025 { 3026 struct kvm *kvm = filp->private_data; 3027 void __user *argp = (void __user *)arg; 3028 struct kvm_device_attr attr; 3029 int r; 3030 3031 switch (ioctl) { 3032 case KVM_S390_INTERRUPT: { 3033 struct kvm_s390_interrupt s390int; 3034 3035 r = -EFAULT; 3036 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3037 break; 3038 r = kvm_s390_inject_vm(kvm, &s390int); 3039 break; 3040 } 3041 case KVM_CREATE_IRQCHIP: { 3042 r = -EINVAL; 3043 if (kvm->arch.use_irqchip) 3044 r = 0; 3045 break; 3046 } 3047 case KVM_SET_DEVICE_ATTR: { 3048 r = -EFAULT; 3049 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3050 break; 3051 r = kvm_s390_vm_set_attr(kvm, &attr); 3052 break; 3053 } 3054 case KVM_GET_DEVICE_ATTR: { 3055 r = -EFAULT; 3056 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3057 break; 3058 r = kvm_s390_vm_get_attr(kvm, &attr); 3059 break; 3060 } 3061 case KVM_HAS_DEVICE_ATTR: { 3062 r = -EFAULT; 3063 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3064 break; 3065 r = kvm_s390_vm_has_attr(kvm, &attr); 3066 break; 3067 } 3068 case KVM_S390_GET_SKEYS: { 3069 struct kvm_s390_skeys args; 3070 3071 r = -EFAULT; 3072 if (copy_from_user(&args, argp, 3073 sizeof(struct kvm_s390_skeys))) 3074 break; 3075 r = kvm_s390_get_skeys(kvm, &args); 3076 break; 3077 } 3078 case KVM_S390_SET_SKEYS: { 3079 struct kvm_s390_skeys args; 3080 3081 r = -EFAULT; 3082 if (copy_from_user(&args, argp, 3083 sizeof(struct kvm_s390_skeys))) 3084 break; 3085 r = kvm_s390_set_skeys(kvm, &args); 3086 break; 3087 } 3088 case KVM_S390_GET_CMMA_BITS: { 3089 struct kvm_s390_cmma_log args; 3090 3091 r = -EFAULT; 3092 if (copy_from_user(&args, argp, sizeof(args))) 3093 break; 3094 mutex_lock(&kvm->slots_lock); 3095 r = kvm_s390_get_cmma_bits(kvm, &args); 3096 mutex_unlock(&kvm->slots_lock); 3097 if (!r) { 3098 r = copy_to_user(argp, &args, sizeof(args)); 3099 if (r) 3100 r = -EFAULT; 3101 } 3102 break; 3103 } 3104 case KVM_S390_SET_CMMA_BITS: { 3105 struct kvm_s390_cmma_log args; 3106 3107 r = -EFAULT; 3108 if (copy_from_user(&args, argp, sizeof(args))) 3109 break; 3110 mutex_lock(&kvm->slots_lock); 3111 r = kvm_s390_set_cmma_bits(kvm, &args); 3112 mutex_unlock(&kvm->slots_lock); 3113 break; 3114 } 3115 case KVM_S390_PV_COMMAND: { 3116 struct kvm_pv_cmd args; 3117 3118 /* protvirt means user cpu state */ 3119 kvm_s390_set_user_cpu_state_ctrl(kvm); 3120 r = 0; 3121 if (!is_prot_virt_host()) { 3122 r = -EINVAL; 3123 break; 3124 } 3125 if (copy_from_user(&args, argp, sizeof(args))) { 3126 r = -EFAULT; 3127 break; 3128 } 3129 if (args.flags) { 3130 r = -EINVAL; 3131 break; 3132 } 3133 /* must be called without kvm->lock */ 3134 r = kvm_s390_handle_pv(kvm, &args); 3135 if (copy_to_user(argp, &args, sizeof(args))) { 3136 r = -EFAULT; 3137 break; 3138 } 3139 break; 3140 } 3141 case KVM_S390_MEM_OP: { 3142 struct kvm_s390_mem_op mem_op; 3143 3144 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3145 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3146 else 3147 r = -EFAULT; 3148 break; 3149 } 3150 case KVM_S390_ZPCI_OP: { 3151 struct kvm_s390_zpci_op args; 3152 3153 r = -EINVAL; 3154 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3155 break; 3156 if (copy_from_user(&args, argp, sizeof(args))) { 3157 r = -EFAULT; 3158 break; 3159 } 3160 r = kvm_s390_pci_zpci_op(kvm, &args); 3161 break; 3162 } 3163 default: 3164 r = -ENOTTY; 3165 } 3166 3167 return r; 3168 } 3169 3170 static int kvm_s390_apxa_installed(void) 3171 { 3172 struct ap_config_info info; 3173 3174 if (ap_instructions_available()) { 3175 if (ap_qci(&info) == 0) 3176 return info.apxa; 3177 } 3178 3179 return 0; 3180 } 3181 3182 /* 3183 * The format of the crypto control block (CRYCB) is specified in the 3 low 3184 * order bits of the CRYCB designation (CRYCBD) field as follows: 3185 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3186 * AP extended addressing (APXA) facility are installed. 3187 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3188 * Format 2: Both the APXA and MSAX3 facilities are installed 3189 */ 3190 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3191 { 3192 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb); 3193 3194 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3195 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3196 3197 /* Check whether MSAX3 is installed */ 3198 if (!test_kvm_facility(kvm, 76)) 3199 return; 3200 3201 if (kvm_s390_apxa_installed()) 3202 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3203 else 3204 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3205 } 3206 3207 /* 3208 * kvm_arch_crypto_set_masks 3209 * 3210 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3211 * to be set. 3212 * @apm: the mask identifying the accessible AP adapters 3213 * @aqm: the mask identifying the accessible AP domains 3214 * @adm: the mask identifying the accessible AP control domains 3215 * 3216 * Set the masks that identify the adapters, domains and control domains to 3217 * which the KVM guest is granted access. 3218 * 3219 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3220 * function. 3221 */ 3222 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3223 unsigned long *aqm, unsigned long *adm) 3224 { 3225 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3226 3227 kvm_s390_vcpu_block_all(kvm); 3228 3229 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3230 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3231 memcpy(crycb->apcb1.apm, apm, 32); 3232 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3233 apm[0], apm[1], apm[2], apm[3]); 3234 memcpy(crycb->apcb1.aqm, aqm, 32); 3235 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3236 aqm[0], aqm[1], aqm[2], aqm[3]); 3237 memcpy(crycb->apcb1.adm, adm, 32); 3238 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3239 adm[0], adm[1], adm[2], adm[3]); 3240 break; 3241 case CRYCB_FORMAT1: 3242 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3243 memcpy(crycb->apcb0.apm, apm, 8); 3244 memcpy(crycb->apcb0.aqm, aqm, 2); 3245 memcpy(crycb->apcb0.adm, adm, 2); 3246 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3247 apm[0], *((unsigned short *)aqm), 3248 *((unsigned short *)adm)); 3249 break; 3250 default: /* Can not happen */ 3251 break; 3252 } 3253 3254 /* recreate the shadow crycb for each vcpu */ 3255 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3256 kvm_s390_vcpu_unblock_all(kvm); 3257 } 3258 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3259 3260 /* 3261 * kvm_arch_crypto_clear_masks 3262 * 3263 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3264 * to be cleared. 3265 * 3266 * Clear the masks that identify the adapters, domains and control domains to 3267 * which the KVM guest is granted access. 3268 * 3269 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3270 * function. 3271 */ 3272 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3273 { 3274 kvm_s390_vcpu_block_all(kvm); 3275 3276 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3277 sizeof(kvm->arch.crypto.crycb->apcb0)); 3278 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3279 sizeof(kvm->arch.crypto.crycb->apcb1)); 3280 3281 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3282 /* recreate the shadow crycb for each vcpu */ 3283 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3284 kvm_s390_vcpu_unblock_all(kvm); 3285 } 3286 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3287 3288 static u64 kvm_s390_get_initial_cpuid(void) 3289 { 3290 struct cpuid cpuid; 3291 3292 get_cpu_id(&cpuid); 3293 cpuid.version = 0xff; 3294 return *((u64 *) &cpuid); 3295 } 3296 3297 static void kvm_s390_crypto_init(struct kvm *kvm) 3298 { 3299 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3300 kvm_s390_set_crycb_format(kvm); 3301 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3302 3303 if (!test_kvm_facility(kvm, 76)) 3304 return; 3305 3306 /* Enable AES/DEA protected key functions by default */ 3307 kvm->arch.crypto.aes_kw = 1; 3308 kvm->arch.crypto.dea_kw = 1; 3309 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3310 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3311 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3312 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3313 } 3314 3315 static void sca_dispose(struct kvm *kvm) 3316 { 3317 if (kvm->arch.use_esca) 3318 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3319 else 3320 free_page((unsigned long)(kvm->arch.sca)); 3321 kvm->arch.sca = NULL; 3322 } 3323 3324 void kvm_arch_free_vm(struct kvm *kvm) 3325 { 3326 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3327 kvm_s390_pci_clear_list(kvm); 3328 3329 __kvm_arch_free_vm(kvm); 3330 } 3331 3332 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3333 { 3334 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3335 int i, rc; 3336 char debug_name[16]; 3337 static unsigned long sca_offset; 3338 3339 rc = -EINVAL; 3340 #ifdef CONFIG_KVM_S390_UCONTROL 3341 if (type & ~KVM_VM_S390_UCONTROL) 3342 goto out_err; 3343 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3344 goto out_err; 3345 #else 3346 if (type) 3347 goto out_err; 3348 #endif 3349 3350 rc = s390_enable_sie(); 3351 if (rc) 3352 goto out_err; 3353 3354 rc = -ENOMEM; 3355 3356 if (!sclp.has_64bscao) 3357 alloc_flags |= GFP_DMA; 3358 rwlock_init(&kvm->arch.sca_lock); 3359 /* start with basic SCA */ 3360 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3361 if (!kvm->arch.sca) 3362 goto out_err; 3363 mutex_lock(&kvm_lock); 3364 sca_offset += 16; 3365 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3366 sca_offset = 0; 3367 kvm->arch.sca = (struct bsca_block *) 3368 ((char *) kvm->arch.sca + sca_offset); 3369 mutex_unlock(&kvm_lock); 3370 3371 sprintf(debug_name, "kvm-%u", current->pid); 3372 3373 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3374 if (!kvm->arch.dbf) 3375 goto out_err; 3376 3377 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3378 kvm->arch.sie_page2 = 3379 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3380 if (!kvm->arch.sie_page2) 3381 goto out_err; 3382 3383 kvm->arch.sie_page2->kvm = kvm; 3384 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3385 3386 for (i = 0; i < kvm_s390_fac_size(); i++) { 3387 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3388 (kvm_s390_fac_base[i] | 3389 kvm_s390_fac_ext[i]); 3390 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3391 kvm_s390_fac_base[i]; 3392 } 3393 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3394 3395 /* we are always in czam mode - even on pre z14 machines */ 3396 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3397 set_kvm_facility(kvm->arch.model.fac_list, 138); 3398 /* we emulate STHYI in kvm */ 3399 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3400 set_kvm_facility(kvm->arch.model.fac_list, 74); 3401 if (machine_has_tlb_guest()) { 3402 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3403 set_kvm_facility(kvm->arch.model.fac_list, 147); 3404 } 3405 3406 if (css_general_characteristics.aiv && test_facility(65)) 3407 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3408 3409 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3410 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3411 3412 kvm->arch.model.uv_feat_guest.feat = 0; 3413 3414 kvm_s390_crypto_init(kvm); 3415 3416 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3417 mutex_lock(&kvm->lock); 3418 kvm_s390_pci_init_list(kvm); 3419 kvm_s390_vcpu_pci_enable_interp(kvm); 3420 mutex_unlock(&kvm->lock); 3421 } 3422 3423 mutex_init(&kvm->arch.float_int.ais_lock); 3424 spin_lock_init(&kvm->arch.float_int.lock); 3425 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3426 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3427 init_waitqueue_head(&kvm->arch.ipte_wq); 3428 mutex_init(&kvm->arch.ipte_mutex); 3429 3430 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3431 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3432 3433 if (type & KVM_VM_S390_UCONTROL) { 3434 struct kvm_userspace_memory_region2 fake_memslot = { 3435 .slot = KVM_S390_UCONTROL_MEMSLOT, 3436 .guest_phys_addr = 0, 3437 .userspace_addr = 0, 3438 .memory_size = ALIGN_DOWN(TASK_SIZE, _SEGMENT_SIZE), 3439 .flags = 0, 3440 }; 3441 3442 kvm->arch.gmap = NULL; 3443 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3444 /* one flat fake memslot covering the whole address-space */ 3445 mutex_lock(&kvm->slots_lock); 3446 KVM_BUG_ON(kvm_set_internal_memslot(kvm, &fake_memslot), kvm); 3447 mutex_unlock(&kvm->slots_lock); 3448 } else { 3449 if (sclp.hamax == U64_MAX) 3450 kvm->arch.mem_limit = TASK_SIZE_MAX; 3451 else 3452 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3453 sclp.hamax + 1); 3454 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3455 if (!kvm->arch.gmap) 3456 goto out_err; 3457 kvm->arch.gmap->private = kvm; 3458 kvm->arch.gmap->pfault_enabled = 0; 3459 } 3460 3461 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3462 kvm->arch.use_skf = sclp.has_skey; 3463 spin_lock_init(&kvm->arch.start_stop_lock); 3464 kvm_s390_vsie_init(kvm); 3465 if (use_gisa) 3466 kvm_s390_gisa_init(kvm); 3467 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3468 kvm->arch.pv.set_aside = NULL; 3469 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3470 3471 return 0; 3472 out_err: 3473 free_page((unsigned long)kvm->arch.sie_page2); 3474 debug_unregister(kvm->arch.dbf); 3475 sca_dispose(kvm); 3476 KVM_EVENT(3, "creation of vm failed: %d", rc); 3477 return rc; 3478 } 3479 3480 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3481 { 3482 u16 rc, rrc; 3483 3484 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3485 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3486 kvm_s390_clear_local_irqs(vcpu); 3487 kvm_clear_async_pf_completion_queue(vcpu); 3488 if (!kvm_is_ucontrol(vcpu->kvm)) 3489 sca_del_vcpu(vcpu); 3490 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3491 3492 if (kvm_is_ucontrol(vcpu->kvm)) 3493 gmap_remove(vcpu->arch.gmap); 3494 3495 if (vcpu->kvm->arch.use_cmma) 3496 kvm_s390_vcpu_unsetup_cmma(vcpu); 3497 /* We can not hold the vcpu mutex here, we are already dying */ 3498 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3499 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3500 free_page((unsigned long)(vcpu->arch.sie_block)); 3501 } 3502 3503 void kvm_arch_destroy_vm(struct kvm *kvm) 3504 { 3505 u16 rc, rrc; 3506 3507 kvm_destroy_vcpus(kvm); 3508 sca_dispose(kvm); 3509 kvm_s390_gisa_destroy(kvm); 3510 /* 3511 * We are already at the end of life and kvm->lock is not taken. 3512 * This is ok as the file descriptor is closed by now and nobody 3513 * can mess with the pv state. 3514 */ 3515 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3516 /* 3517 * Remove the mmu notifier only when the whole KVM VM is torn down, 3518 * and only if one was registered to begin with. If the VM is 3519 * currently not protected, but has been previously been protected, 3520 * then it's possible that the notifier is still registered. 3521 */ 3522 if (kvm->arch.pv.mmu_notifier.ops) 3523 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3524 3525 debug_unregister(kvm->arch.dbf); 3526 free_page((unsigned long)kvm->arch.sie_page2); 3527 if (!kvm_is_ucontrol(kvm)) 3528 gmap_remove(kvm->arch.gmap); 3529 kvm_s390_destroy_adapters(kvm); 3530 kvm_s390_clear_float_irqs(kvm); 3531 kvm_s390_vsie_destroy(kvm); 3532 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3533 } 3534 3535 /* Section: vcpu related */ 3536 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3537 { 3538 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3539 if (!vcpu->arch.gmap) 3540 return -ENOMEM; 3541 vcpu->arch.gmap->private = vcpu->kvm; 3542 3543 return 0; 3544 } 3545 3546 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3547 { 3548 if (!kvm_s390_use_sca_entries()) 3549 return; 3550 read_lock(&vcpu->kvm->arch.sca_lock); 3551 if (vcpu->kvm->arch.use_esca) { 3552 struct esca_block *sca = vcpu->kvm->arch.sca; 3553 3554 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3555 sca->cpu[vcpu->vcpu_id].sda = 0; 3556 } else { 3557 struct bsca_block *sca = vcpu->kvm->arch.sca; 3558 3559 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3560 sca->cpu[vcpu->vcpu_id].sda = 0; 3561 } 3562 read_unlock(&vcpu->kvm->arch.sca_lock); 3563 } 3564 3565 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3566 { 3567 if (!kvm_s390_use_sca_entries()) { 3568 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3569 3570 /* we still need the basic sca for the ipte control */ 3571 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3572 vcpu->arch.sie_block->scaol = sca_phys; 3573 return; 3574 } 3575 read_lock(&vcpu->kvm->arch.sca_lock); 3576 if (vcpu->kvm->arch.use_esca) { 3577 struct esca_block *sca = vcpu->kvm->arch.sca; 3578 phys_addr_t sca_phys = virt_to_phys(sca); 3579 3580 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3581 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3582 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3583 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3584 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3585 } else { 3586 struct bsca_block *sca = vcpu->kvm->arch.sca; 3587 phys_addr_t sca_phys = virt_to_phys(sca); 3588 3589 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3590 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3591 vcpu->arch.sie_block->scaol = sca_phys; 3592 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3593 } 3594 read_unlock(&vcpu->kvm->arch.sca_lock); 3595 } 3596 3597 /* Basic SCA to Extended SCA data copy routines */ 3598 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3599 { 3600 d->sda = s->sda; 3601 d->sigp_ctrl.c = s->sigp_ctrl.c; 3602 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3603 } 3604 3605 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3606 { 3607 int i; 3608 3609 d->ipte_control = s->ipte_control; 3610 d->mcn[0] = s->mcn; 3611 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3612 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3613 } 3614 3615 static int sca_switch_to_extended(struct kvm *kvm) 3616 { 3617 struct bsca_block *old_sca = kvm->arch.sca; 3618 struct esca_block *new_sca; 3619 struct kvm_vcpu *vcpu; 3620 unsigned long vcpu_idx; 3621 u32 scaol, scaoh; 3622 phys_addr_t new_sca_phys; 3623 3624 if (kvm->arch.use_esca) 3625 return 0; 3626 3627 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3628 if (!new_sca) 3629 return -ENOMEM; 3630 3631 new_sca_phys = virt_to_phys(new_sca); 3632 scaoh = new_sca_phys >> 32; 3633 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3634 3635 kvm_s390_vcpu_block_all(kvm); 3636 write_lock(&kvm->arch.sca_lock); 3637 3638 sca_copy_b_to_e(new_sca, old_sca); 3639 3640 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3641 vcpu->arch.sie_block->scaoh = scaoh; 3642 vcpu->arch.sie_block->scaol = scaol; 3643 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3644 } 3645 kvm->arch.sca = new_sca; 3646 kvm->arch.use_esca = 1; 3647 3648 write_unlock(&kvm->arch.sca_lock); 3649 kvm_s390_vcpu_unblock_all(kvm); 3650 3651 free_page((unsigned long)old_sca); 3652 3653 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3654 old_sca, kvm->arch.sca); 3655 return 0; 3656 } 3657 3658 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3659 { 3660 int rc; 3661 3662 if (!kvm_s390_use_sca_entries()) { 3663 if (id < KVM_MAX_VCPUS) 3664 return true; 3665 return false; 3666 } 3667 if (id < KVM_S390_BSCA_CPU_SLOTS) 3668 return true; 3669 if (!sclp.has_esca || !sclp.has_64bscao) 3670 return false; 3671 3672 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3673 3674 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3675 } 3676 3677 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3678 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3679 { 3680 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3681 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3682 vcpu->arch.cputm_start = get_tod_clock_fast(); 3683 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3684 } 3685 3686 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3687 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3688 { 3689 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3690 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3691 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3692 vcpu->arch.cputm_start = 0; 3693 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3694 } 3695 3696 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3697 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3698 { 3699 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3700 vcpu->arch.cputm_enabled = true; 3701 __start_cpu_timer_accounting(vcpu); 3702 } 3703 3704 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3705 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3706 { 3707 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3708 __stop_cpu_timer_accounting(vcpu); 3709 vcpu->arch.cputm_enabled = false; 3710 } 3711 3712 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3713 { 3714 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3715 __enable_cpu_timer_accounting(vcpu); 3716 preempt_enable(); 3717 } 3718 3719 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3720 { 3721 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3722 __disable_cpu_timer_accounting(vcpu); 3723 preempt_enable(); 3724 } 3725 3726 /* set the cpu timer - may only be called from the VCPU thread itself */ 3727 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3728 { 3729 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3730 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3731 if (vcpu->arch.cputm_enabled) 3732 vcpu->arch.cputm_start = get_tod_clock_fast(); 3733 vcpu->arch.sie_block->cputm = cputm; 3734 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3735 preempt_enable(); 3736 } 3737 3738 /* update and get the cpu timer - can also be called from other VCPU threads */ 3739 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3740 { 3741 unsigned int seq; 3742 __u64 value; 3743 3744 if (unlikely(!vcpu->arch.cputm_enabled)) 3745 return vcpu->arch.sie_block->cputm; 3746 3747 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3748 do { 3749 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3750 /* 3751 * If the writer would ever execute a read in the critical 3752 * section, e.g. in irq context, we have a deadlock. 3753 */ 3754 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3755 value = vcpu->arch.sie_block->cputm; 3756 /* if cputm_start is 0, accounting is being started/stopped */ 3757 if (likely(vcpu->arch.cputm_start)) 3758 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3759 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3760 preempt_enable(); 3761 return value; 3762 } 3763 3764 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3765 { 3766 3767 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3768 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3769 __start_cpu_timer_accounting(vcpu); 3770 vcpu->cpu = cpu; 3771 } 3772 3773 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3774 { 3775 vcpu->cpu = -1; 3776 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3777 __stop_cpu_timer_accounting(vcpu); 3778 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3779 3780 } 3781 3782 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3783 { 3784 mutex_lock(&vcpu->kvm->lock); 3785 preempt_disable(); 3786 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3787 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3788 preempt_enable(); 3789 mutex_unlock(&vcpu->kvm->lock); 3790 if (!kvm_is_ucontrol(vcpu->kvm)) { 3791 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3792 sca_add_vcpu(vcpu); 3793 } 3794 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3795 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3796 } 3797 3798 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3799 { 3800 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3801 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3802 return true; 3803 return false; 3804 } 3805 3806 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3807 { 3808 /* At least one ECC subfunction must be present */ 3809 return kvm_has_pckmo_subfunc(kvm, 32) || 3810 kvm_has_pckmo_subfunc(kvm, 33) || 3811 kvm_has_pckmo_subfunc(kvm, 34) || 3812 kvm_has_pckmo_subfunc(kvm, 40) || 3813 kvm_has_pckmo_subfunc(kvm, 41); 3814 3815 } 3816 3817 static bool kvm_has_pckmo_hmac(struct kvm *kvm) 3818 { 3819 /* At least one HMAC subfunction must be present */ 3820 return kvm_has_pckmo_subfunc(kvm, 118) || 3821 kvm_has_pckmo_subfunc(kvm, 122); 3822 } 3823 3824 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3825 { 3826 /* 3827 * If the AP instructions are not being interpreted and the MSAX3 3828 * facility is not configured for the guest, there is nothing to set up. 3829 */ 3830 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3831 return; 3832 3833 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3834 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3835 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3836 vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC); 3837 3838 if (vcpu->kvm->arch.crypto.apie) 3839 vcpu->arch.sie_block->eca |= ECA_APIE; 3840 3841 /* Set up protected key support */ 3842 if (vcpu->kvm->arch.crypto.aes_kw) { 3843 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3844 /* ecc/hmac is also wrapped with AES key */ 3845 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3846 vcpu->arch.sie_block->ecd |= ECD_ECC; 3847 if (kvm_has_pckmo_hmac(vcpu->kvm)) 3848 vcpu->arch.sie_block->ecd |= ECD_HMAC; 3849 } 3850 3851 if (vcpu->kvm->arch.crypto.dea_kw) 3852 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3853 } 3854 3855 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3856 { 3857 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3858 vcpu->arch.sie_block->cbrlo = 0; 3859 } 3860 3861 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3862 { 3863 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3864 3865 if (!cbrlo_page) 3866 return -ENOMEM; 3867 3868 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3869 return 0; 3870 } 3871 3872 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3873 { 3874 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3875 3876 vcpu->arch.sie_block->ibc = model->ibc; 3877 if (test_kvm_facility(vcpu->kvm, 7)) 3878 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3879 } 3880 3881 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3882 { 3883 int rc = 0; 3884 u16 uvrc, uvrrc; 3885 3886 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3887 CPUSTAT_SM | 3888 CPUSTAT_STOPPED); 3889 3890 if (test_kvm_facility(vcpu->kvm, 78)) 3891 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3892 else if (test_kvm_facility(vcpu->kvm, 8)) 3893 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3894 3895 kvm_s390_vcpu_setup_model(vcpu); 3896 3897 /* pgste_set_pte has special handling for !machine_has_esop() */ 3898 if (machine_has_esop()) 3899 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3900 if (test_kvm_facility(vcpu->kvm, 9)) 3901 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3902 if (test_kvm_facility(vcpu->kvm, 11)) 3903 vcpu->arch.sie_block->ecb |= ECB_PTF; 3904 if (test_kvm_facility(vcpu->kvm, 73)) 3905 vcpu->arch.sie_block->ecb |= ECB_TE; 3906 if (!kvm_is_ucontrol(vcpu->kvm)) 3907 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3908 3909 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3910 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3911 if (test_kvm_facility(vcpu->kvm, 130)) 3912 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3913 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3914 if (sclp.has_cei) 3915 vcpu->arch.sie_block->eca |= ECA_CEI; 3916 if (sclp.has_ib) 3917 vcpu->arch.sie_block->eca |= ECA_IB; 3918 if (sclp.has_siif) 3919 vcpu->arch.sie_block->eca |= ECA_SII; 3920 if (sclp.has_sigpif) 3921 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3922 if (test_kvm_facility(vcpu->kvm, 129)) { 3923 vcpu->arch.sie_block->eca |= ECA_VX; 3924 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3925 } 3926 if (test_kvm_facility(vcpu->kvm, 139)) 3927 vcpu->arch.sie_block->ecd |= ECD_MEF; 3928 if (test_kvm_facility(vcpu->kvm, 156)) 3929 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3930 if (vcpu->arch.sie_block->gd) { 3931 vcpu->arch.sie_block->eca |= ECA_AIV; 3932 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3933 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3934 } 3935 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3936 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3937 3938 if (sclp.has_kss) 3939 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3940 else 3941 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3942 3943 if (vcpu->kvm->arch.use_cmma) { 3944 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3945 if (rc) 3946 return rc; 3947 } 3948 hrtimer_setup(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup, CLOCK_MONOTONIC, 3949 HRTIMER_MODE_REL); 3950 3951 vcpu->arch.sie_block->hpid = HPID_KVM; 3952 3953 kvm_s390_vcpu_crypto_setup(vcpu); 3954 3955 kvm_s390_vcpu_pci_setup(vcpu); 3956 3957 mutex_lock(&vcpu->kvm->lock); 3958 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3959 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3960 if (rc) 3961 kvm_s390_vcpu_unsetup_cmma(vcpu); 3962 } 3963 mutex_unlock(&vcpu->kvm->lock); 3964 3965 return rc; 3966 } 3967 3968 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3969 { 3970 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3971 return -EINVAL; 3972 return 0; 3973 } 3974 3975 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3976 { 3977 struct sie_page *sie_page; 3978 int rc; 3979 3980 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3981 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3982 if (!sie_page) 3983 return -ENOMEM; 3984 3985 vcpu->arch.sie_block = &sie_page->sie_block; 3986 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3987 3988 /* the real guest size will always be smaller than msl */ 3989 vcpu->arch.sie_block->mso = 0; 3990 vcpu->arch.sie_block->msl = sclp.hamax; 3991 3992 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3993 spin_lock_init(&vcpu->arch.local_int.lock); 3994 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3995 seqcount_init(&vcpu->arch.cputm_seqcount); 3996 3997 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3998 kvm_clear_async_pf_completion_queue(vcpu); 3999 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 4000 KVM_SYNC_GPRS | 4001 KVM_SYNC_ACRS | 4002 KVM_SYNC_CRS | 4003 KVM_SYNC_ARCH0 | 4004 KVM_SYNC_PFAULT | 4005 KVM_SYNC_DIAG318; 4006 vcpu->arch.acrs_loaded = false; 4007 kvm_s390_set_prefix(vcpu, 0); 4008 if (test_kvm_facility(vcpu->kvm, 64)) 4009 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 4010 if (test_kvm_facility(vcpu->kvm, 82)) 4011 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 4012 if (test_kvm_facility(vcpu->kvm, 133)) 4013 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 4014 if (test_kvm_facility(vcpu->kvm, 156)) 4015 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 4016 /* fprs can be synchronized via vrs, even if the guest has no vx. With 4017 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format. 4018 */ 4019 if (cpu_has_vx()) 4020 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 4021 else 4022 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 4023 4024 if (kvm_is_ucontrol(vcpu->kvm)) { 4025 rc = __kvm_ucontrol_vcpu_init(vcpu); 4026 if (rc) 4027 goto out_free_sie_block; 4028 } 4029 4030 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 4031 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4032 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4033 4034 rc = kvm_s390_vcpu_setup(vcpu); 4035 if (rc) 4036 goto out_ucontrol_uninit; 4037 4038 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 4039 return 0; 4040 4041 out_ucontrol_uninit: 4042 if (kvm_is_ucontrol(vcpu->kvm)) 4043 gmap_remove(vcpu->arch.gmap); 4044 out_free_sie_block: 4045 free_page((unsigned long)(vcpu->arch.sie_block)); 4046 return rc; 4047 } 4048 4049 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 4050 { 4051 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4052 return kvm_s390_vcpu_has_irq(vcpu, 0); 4053 } 4054 4055 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4056 { 4057 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4058 } 4059 4060 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4061 { 4062 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4063 exit_sie(vcpu); 4064 } 4065 4066 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4067 { 4068 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4069 } 4070 4071 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4072 { 4073 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4074 exit_sie(vcpu); 4075 } 4076 4077 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4078 { 4079 return atomic_read(&vcpu->arch.sie_block->prog20) & 4080 (PROG_BLOCK_SIE | PROG_REQUEST); 4081 } 4082 4083 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4084 { 4085 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4086 } 4087 4088 /* 4089 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4090 * If the CPU is not running (e.g. waiting as idle) the function will 4091 * return immediately. */ 4092 void exit_sie(struct kvm_vcpu *vcpu) 4093 { 4094 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4095 kvm_s390_vsie_kick(vcpu); 4096 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4097 cpu_relax(); 4098 } 4099 4100 /* Kick a guest cpu out of SIE to process a request synchronously */ 4101 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4102 { 4103 __kvm_make_request(req, vcpu); 4104 kvm_s390_vcpu_request(vcpu); 4105 } 4106 4107 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4108 unsigned long end) 4109 { 4110 struct kvm *kvm = gmap->private; 4111 struct kvm_vcpu *vcpu; 4112 unsigned long prefix; 4113 unsigned long i; 4114 4115 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap)); 4116 4117 if (gmap_is_shadow(gmap)) 4118 return; 4119 if (start >= 1UL << 31) 4120 /* We are only interested in prefix pages */ 4121 return; 4122 kvm_for_each_vcpu(i, vcpu, kvm) { 4123 /* match against both prefix pages */ 4124 prefix = kvm_s390_get_prefix(vcpu); 4125 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4126 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4127 start, end); 4128 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4129 } 4130 } 4131 } 4132 4133 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4134 { 4135 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4136 if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >= 4137 READ_ONCE(halt_poll_max_steal)) { 4138 vcpu->stat.halt_no_poll_steal++; 4139 return true; 4140 } 4141 return false; 4142 } 4143 4144 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4145 { 4146 /* kvm common code refers to this, but never calls it */ 4147 BUG(); 4148 return 0; 4149 } 4150 4151 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4152 struct kvm_one_reg *reg) 4153 { 4154 int r = -EINVAL; 4155 4156 switch (reg->id) { 4157 case KVM_REG_S390_TODPR: 4158 r = put_user(vcpu->arch.sie_block->todpr, 4159 (u32 __user *)reg->addr); 4160 break; 4161 case KVM_REG_S390_EPOCHDIFF: 4162 r = put_user(vcpu->arch.sie_block->epoch, 4163 (u64 __user *)reg->addr); 4164 break; 4165 case KVM_REG_S390_CPU_TIMER: 4166 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4167 (u64 __user *)reg->addr); 4168 break; 4169 case KVM_REG_S390_CLOCK_COMP: 4170 r = put_user(vcpu->arch.sie_block->ckc, 4171 (u64 __user *)reg->addr); 4172 break; 4173 case KVM_REG_S390_PFTOKEN: 4174 r = put_user(vcpu->arch.pfault_token, 4175 (u64 __user *)reg->addr); 4176 break; 4177 case KVM_REG_S390_PFCOMPARE: 4178 r = put_user(vcpu->arch.pfault_compare, 4179 (u64 __user *)reg->addr); 4180 break; 4181 case KVM_REG_S390_PFSELECT: 4182 r = put_user(vcpu->arch.pfault_select, 4183 (u64 __user *)reg->addr); 4184 break; 4185 case KVM_REG_S390_PP: 4186 r = put_user(vcpu->arch.sie_block->pp, 4187 (u64 __user *)reg->addr); 4188 break; 4189 case KVM_REG_S390_GBEA: 4190 r = put_user(vcpu->arch.sie_block->gbea, 4191 (u64 __user *)reg->addr); 4192 break; 4193 default: 4194 break; 4195 } 4196 4197 return r; 4198 } 4199 4200 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4201 struct kvm_one_reg *reg) 4202 { 4203 int r = -EINVAL; 4204 __u64 val; 4205 4206 switch (reg->id) { 4207 case KVM_REG_S390_TODPR: 4208 r = get_user(vcpu->arch.sie_block->todpr, 4209 (u32 __user *)reg->addr); 4210 break; 4211 case KVM_REG_S390_EPOCHDIFF: 4212 r = get_user(vcpu->arch.sie_block->epoch, 4213 (u64 __user *)reg->addr); 4214 break; 4215 case KVM_REG_S390_CPU_TIMER: 4216 r = get_user(val, (u64 __user *)reg->addr); 4217 if (!r) 4218 kvm_s390_set_cpu_timer(vcpu, val); 4219 break; 4220 case KVM_REG_S390_CLOCK_COMP: 4221 r = get_user(vcpu->arch.sie_block->ckc, 4222 (u64 __user *)reg->addr); 4223 break; 4224 case KVM_REG_S390_PFTOKEN: 4225 r = get_user(vcpu->arch.pfault_token, 4226 (u64 __user *)reg->addr); 4227 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4228 kvm_clear_async_pf_completion_queue(vcpu); 4229 break; 4230 case KVM_REG_S390_PFCOMPARE: 4231 r = get_user(vcpu->arch.pfault_compare, 4232 (u64 __user *)reg->addr); 4233 break; 4234 case KVM_REG_S390_PFSELECT: 4235 r = get_user(vcpu->arch.pfault_select, 4236 (u64 __user *)reg->addr); 4237 break; 4238 case KVM_REG_S390_PP: 4239 r = get_user(vcpu->arch.sie_block->pp, 4240 (u64 __user *)reg->addr); 4241 break; 4242 case KVM_REG_S390_GBEA: 4243 r = get_user(vcpu->arch.sie_block->gbea, 4244 (u64 __user *)reg->addr); 4245 break; 4246 default: 4247 break; 4248 } 4249 4250 return r; 4251 } 4252 4253 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4254 { 4255 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4256 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4257 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4258 4259 kvm_clear_async_pf_completion_queue(vcpu); 4260 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4261 kvm_s390_vcpu_stop(vcpu); 4262 kvm_s390_clear_local_irqs(vcpu); 4263 } 4264 4265 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4266 { 4267 /* Initial reset is a superset of the normal reset */ 4268 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4269 4270 /* 4271 * This equals initial cpu reset in pop, but we don't switch to ESA. 4272 * We do not only reset the internal data, but also ... 4273 */ 4274 vcpu->arch.sie_block->gpsw.mask = 0; 4275 vcpu->arch.sie_block->gpsw.addr = 0; 4276 kvm_s390_set_prefix(vcpu, 0); 4277 kvm_s390_set_cpu_timer(vcpu, 0); 4278 vcpu->arch.sie_block->ckc = 0; 4279 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4280 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4281 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4282 4283 /* ... the data in sync regs */ 4284 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4285 vcpu->run->s.regs.ckc = 0; 4286 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4287 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4288 vcpu->run->psw_addr = 0; 4289 vcpu->run->psw_mask = 0; 4290 vcpu->run->s.regs.todpr = 0; 4291 vcpu->run->s.regs.cputm = 0; 4292 vcpu->run->s.regs.ckc = 0; 4293 vcpu->run->s.regs.pp = 0; 4294 vcpu->run->s.regs.gbea = 1; 4295 vcpu->run->s.regs.fpc = 0; 4296 /* 4297 * Do not reset these registers in the protected case, as some of 4298 * them are overlaid and they are not accessible in this case 4299 * anyway. 4300 */ 4301 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4302 vcpu->arch.sie_block->gbea = 1; 4303 vcpu->arch.sie_block->pp = 0; 4304 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4305 vcpu->arch.sie_block->todpr = 0; 4306 } 4307 } 4308 4309 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4310 { 4311 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4312 4313 /* Clear reset is a superset of the initial reset */ 4314 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4315 4316 memset(®s->gprs, 0, sizeof(regs->gprs)); 4317 memset(®s->vrs, 0, sizeof(regs->vrs)); 4318 memset(®s->acrs, 0, sizeof(regs->acrs)); 4319 memset(®s->gscb, 0, sizeof(regs->gscb)); 4320 4321 regs->etoken = 0; 4322 regs->etoken_extension = 0; 4323 } 4324 4325 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4326 { 4327 vcpu_load(vcpu); 4328 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4329 vcpu_put(vcpu); 4330 return 0; 4331 } 4332 4333 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4334 { 4335 vcpu_load(vcpu); 4336 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4337 vcpu_put(vcpu); 4338 return 0; 4339 } 4340 4341 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4342 struct kvm_sregs *sregs) 4343 { 4344 vcpu_load(vcpu); 4345 4346 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4347 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4348 4349 vcpu_put(vcpu); 4350 return 0; 4351 } 4352 4353 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4354 struct kvm_sregs *sregs) 4355 { 4356 vcpu_load(vcpu); 4357 4358 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4359 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4360 4361 vcpu_put(vcpu); 4362 return 0; 4363 } 4364 4365 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4366 { 4367 int ret = 0; 4368 4369 vcpu_load(vcpu); 4370 4371 vcpu->run->s.regs.fpc = fpu->fpc; 4372 if (cpu_has_vx()) 4373 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4374 (freg_t *) fpu->fprs); 4375 else 4376 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4377 4378 vcpu_put(vcpu); 4379 return ret; 4380 } 4381 4382 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4383 { 4384 vcpu_load(vcpu); 4385 4386 if (cpu_has_vx()) 4387 convert_vx_to_fp((freg_t *) fpu->fprs, 4388 (__vector128 *) vcpu->run->s.regs.vrs); 4389 else 4390 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4391 fpu->fpc = vcpu->run->s.regs.fpc; 4392 4393 vcpu_put(vcpu); 4394 return 0; 4395 } 4396 4397 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4398 { 4399 int rc = 0; 4400 4401 if (!is_vcpu_stopped(vcpu)) 4402 rc = -EBUSY; 4403 else { 4404 vcpu->run->psw_mask = psw.mask; 4405 vcpu->run->psw_addr = psw.addr; 4406 } 4407 return rc; 4408 } 4409 4410 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4411 struct kvm_translation *tr) 4412 { 4413 return -EINVAL; /* not implemented yet */ 4414 } 4415 4416 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4417 KVM_GUESTDBG_USE_HW_BP | \ 4418 KVM_GUESTDBG_ENABLE) 4419 4420 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4421 struct kvm_guest_debug *dbg) 4422 { 4423 int rc = 0; 4424 4425 vcpu_load(vcpu); 4426 4427 vcpu->guest_debug = 0; 4428 kvm_s390_clear_bp_data(vcpu); 4429 4430 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4431 rc = -EINVAL; 4432 goto out; 4433 } 4434 if (!sclp.has_gpere) { 4435 rc = -EINVAL; 4436 goto out; 4437 } 4438 4439 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4440 vcpu->guest_debug = dbg->control; 4441 /* enforce guest PER */ 4442 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4443 4444 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4445 rc = kvm_s390_import_bp_data(vcpu, dbg); 4446 } else { 4447 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4448 vcpu->arch.guestdbg.last_bp = 0; 4449 } 4450 4451 if (rc) { 4452 vcpu->guest_debug = 0; 4453 kvm_s390_clear_bp_data(vcpu); 4454 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4455 } 4456 4457 out: 4458 vcpu_put(vcpu); 4459 return rc; 4460 } 4461 4462 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4463 struct kvm_mp_state *mp_state) 4464 { 4465 int ret; 4466 4467 vcpu_load(vcpu); 4468 4469 /* CHECK_STOP and LOAD are not supported yet */ 4470 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4471 KVM_MP_STATE_OPERATING; 4472 4473 vcpu_put(vcpu); 4474 return ret; 4475 } 4476 4477 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4478 struct kvm_mp_state *mp_state) 4479 { 4480 int rc = 0; 4481 4482 vcpu_load(vcpu); 4483 4484 /* user space knows about this interface - let it control the state */ 4485 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4486 4487 switch (mp_state->mp_state) { 4488 case KVM_MP_STATE_STOPPED: 4489 rc = kvm_s390_vcpu_stop(vcpu); 4490 break; 4491 case KVM_MP_STATE_OPERATING: 4492 rc = kvm_s390_vcpu_start(vcpu); 4493 break; 4494 case KVM_MP_STATE_LOAD: 4495 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4496 rc = -ENXIO; 4497 break; 4498 } 4499 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4500 break; 4501 case KVM_MP_STATE_CHECK_STOP: 4502 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4503 default: 4504 rc = -ENXIO; 4505 } 4506 4507 vcpu_put(vcpu); 4508 return rc; 4509 } 4510 4511 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4512 { 4513 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4514 } 4515 4516 static int __kvm_s390_fixup_fault_sync(struct gmap *gmap, gpa_t gaddr, unsigned int flags) 4517 { 4518 struct kvm *kvm = gmap->private; 4519 gfn_t gfn = gpa_to_gfn(gaddr); 4520 bool unlocked; 4521 hva_t vmaddr; 4522 gpa_t tmp; 4523 int rc; 4524 4525 if (kvm_is_ucontrol(kvm)) { 4526 tmp = __gmap_translate(gmap, gaddr); 4527 gfn = gpa_to_gfn(tmp); 4528 } 4529 4530 vmaddr = gfn_to_hva(kvm, gfn); 4531 rc = fixup_user_fault(gmap->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked); 4532 if (!rc) 4533 rc = __gmap_link(gmap, gaddr, vmaddr); 4534 return rc; 4535 } 4536 4537 /** 4538 * __kvm_s390_mprotect_many() - Apply specified protection to guest pages 4539 * @gmap: the gmap of the guest 4540 * @gpa: the starting guest address 4541 * @npages: how many pages to protect 4542 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 4543 * @bits: pgste notification bits to set 4544 * 4545 * Returns: 0 in case of success, < 0 in case of error - see gmap_protect_one() 4546 * 4547 * Context: kvm->srcu and gmap->mm need to be held in read mode 4548 */ 4549 int __kvm_s390_mprotect_many(struct gmap *gmap, gpa_t gpa, u8 npages, unsigned int prot, 4550 unsigned long bits) 4551 { 4552 unsigned int fault_flag = (prot & PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 4553 gpa_t end = gpa + npages * PAGE_SIZE; 4554 int rc; 4555 4556 for (; gpa < end; gpa = ALIGN(gpa + 1, rc)) { 4557 rc = gmap_protect_one(gmap, gpa, prot, bits); 4558 if (rc == -EAGAIN) { 4559 __kvm_s390_fixup_fault_sync(gmap, gpa, fault_flag); 4560 rc = gmap_protect_one(gmap, gpa, prot, bits); 4561 } 4562 if (rc < 0) 4563 return rc; 4564 } 4565 4566 return 0; 4567 } 4568 4569 static int kvm_s390_mprotect_notify_prefix(struct kvm_vcpu *vcpu) 4570 { 4571 gpa_t gaddr = kvm_s390_get_prefix(vcpu); 4572 int idx, rc; 4573 4574 idx = srcu_read_lock(&vcpu->kvm->srcu); 4575 mmap_read_lock(vcpu->arch.gmap->mm); 4576 4577 rc = __kvm_s390_mprotect_many(vcpu->arch.gmap, gaddr, 2, PROT_WRITE, GMAP_NOTIFY_MPROT); 4578 4579 mmap_read_unlock(vcpu->arch.gmap->mm); 4580 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4581 4582 return rc; 4583 } 4584 4585 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4586 { 4587 retry: 4588 kvm_s390_vcpu_request_handled(vcpu); 4589 if (!kvm_request_pending(vcpu)) 4590 return 0; 4591 /* 4592 * If the guest prefix changed, re-arm the ipte notifier for the 4593 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4594 * This ensures that the ipte instruction for this request has 4595 * already finished. We might race against a second unmapper that 4596 * wants to set the blocking bit. Lets just retry the request loop. 4597 */ 4598 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4599 int rc; 4600 4601 rc = kvm_s390_mprotect_notify_prefix(vcpu); 4602 if (rc) { 4603 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4604 return rc; 4605 } 4606 goto retry; 4607 } 4608 4609 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4610 vcpu->arch.sie_block->ihcpu = 0xffff; 4611 goto retry; 4612 } 4613 4614 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4615 if (!ibs_enabled(vcpu)) { 4616 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4617 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4618 } 4619 goto retry; 4620 } 4621 4622 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4623 if (ibs_enabled(vcpu)) { 4624 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4625 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4626 } 4627 goto retry; 4628 } 4629 4630 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4631 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4632 goto retry; 4633 } 4634 4635 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4636 /* 4637 * Disable CMM virtualization; we will emulate the ESSA 4638 * instruction manually, in order to provide additional 4639 * functionalities needed for live migration. 4640 */ 4641 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4642 goto retry; 4643 } 4644 4645 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4646 /* 4647 * Re-enable CMM virtualization if CMMA is available and 4648 * CMM has been used. 4649 */ 4650 if ((vcpu->kvm->arch.use_cmma) && 4651 (vcpu->kvm->mm->context.uses_cmm)) 4652 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4653 goto retry; 4654 } 4655 4656 /* we left the vsie handler, nothing to do, just clear the request */ 4657 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4658 4659 return 0; 4660 } 4661 4662 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4663 { 4664 struct kvm_vcpu *vcpu; 4665 union tod_clock clk; 4666 unsigned long i; 4667 4668 preempt_disable(); 4669 4670 store_tod_clock_ext(&clk); 4671 4672 kvm->arch.epoch = gtod->tod - clk.tod; 4673 kvm->arch.epdx = 0; 4674 if (test_kvm_facility(kvm, 139)) { 4675 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4676 if (kvm->arch.epoch > gtod->tod) 4677 kvm->arch.epdx -= 1; 4678 } 4679 4680 kvm_s390_vcpu_block_all(kvm); 4681 kvm_for_each_vcpu(i, vcpu, kvm) { 4682 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4683 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4684 } 4685 4686 kvm_s390_vcpu_unblock_all(kvm); 4687 preempt_enable(); 4688 } 4689 4690 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4691 { 4692 if (!mutex_trylock(&kvm->lock)) 4693 return 0; 4694 __kvm_s390_set_tod_clock(kvm, gtod); 4695 mutex_unlock(&kvm->lock); 4696 return 1; 4697 } 4698 4699 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4700 unsigned long token) 4701 { 4702 struct kvm_s390_interrupt inti; 4703 struct kvm_s390_irq irq; 4704 4705 if (start_token) { 4706 irq.u.ext.ext_params2 = token; 4707 irq.type = KVM_S390_INT_PFAULT_INIT; 4708 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4709 } else { 4710 inti.type = KVM_S390_INT_PFAULT_DONE; 4711 inti.parm64 = token; 4712 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4713 } 4714 } 4715 4716 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4717 struct kvm_async_pf *work) 4718 { 4719 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4720 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4721 4722 return true; 4723 } 4724 4725 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4726 struct kvm_async_pf *work) 4727 { 4728 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4729 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4730 } 4731 4732 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4733 struct kvm_async_pf *work) 4734 { 4735 /* s390 will always inject the page directly */ 4736 } 4737 4738 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4739 { 4740 /* 4741 * s390 will always inject the page directly, 4742 * but we still want check_async_completion to cleanup 4743 */ 4744 return true; 4745 } 4746 4747 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4748 { 4749 hva_t hva; 4750 struct kvm_arch_async_pf arch; 4751 4752 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4753 return false; 4754 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4755 vcpu->arch.pfault_compare) 4756 return false; 4757 if (psw_extint_disabled(vcpu)) 4758 return false; 4759 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4760 return false; 4761 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4762 return false; 4763 if (!vcpu->arch.gmap->pfault_enabled) 4764 return false; 4765 4766 hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr); 4767 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4768 return false; 4769 4770 return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch); 4771 } 4772 4773 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4774 { 4775 int rc, cpuflags; 4776 4777 /* 4778 * On s390 notifications for arriving pages will be delivered directly 4779 * to the guest but the house keeping for completed pfaults is 4780 * handled outside the worker. 4781 */ 4782 kvm_check_async_pf_completion(vcpu); 4783 4784 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4785 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4786 4787 if (need_resched()) 4788 schedule(); 4789 4790 if (!kvm_is_ucontrol(vcpu->kvm)) { 4791 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4792 if (rc || guestdbg_exit_pending(vcpu)) 4793 return rc; 4794 } 4795 4796 rc = kvm_s390_handle_requests(vcpu); 4797 if (rc) 4798 return rc; 4799 4800 if (guestdbg_enabled(vcpu)) { 4801 kvm_s390_backup_guest_per_regs(vcpu); 4802 kvm_s390_patch_guest_per_regs(vcpu); 4803 } 4804 4805 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4806 4807 vcpu->arch.sie_block->icptcode = 0; 4808 current->thread.gmap_int_code = 0; 4809 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4810 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4811 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4812 4813 return 0; 4814 } 4815 4816 static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu) 4817 { 4818 struct kvm_s390_pgm_info pgm_info = { 4819 .code = PGM_ADDRESSING, 4820 }; 4821 u8 opcode, ilen; 4822 int rc; 4823 4824 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4825 trace_kvm_s390_sie_fault(vcpu); 4826 4827 /* 4828 * We want to inject an addressing exception, which is defined as a 4829 * suppressing or terminating exception. However, since we came here 4830 * by a DAT access exception, the PSW still points to the faulting 4831 * instruction since DAT exceptions are nullifying. So we've got 4832 * to look up the current opcode to get the length of the instruction 4833 * to be able to forward the PSW. 4834 */ 4835 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4836 ilen = insn_length(opcode); 4837 if (rc < 0) { 4838 return rc; 4839 } else if (rc) { 4840 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4841 * Forward by arbitrary ilc, injection will take care of 4842 * nullification if necessary. 4843 */ 4844 pgm_info = vcpu->arch.pgm; 4845 ilen = 4; 4846 } 4847 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4848 kvm_s390_forward_psw(vcpu, ilen); 4849 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4850 } 4851 4852 static void kvm_s390_assert_primary_as(struct kvm_vcpu *vcpu) 4853 { 4854 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm, 4855 "Unexpected program interrupt 0x%x, TEID 0x%016lx", 4856 current->thread.gmap_int_code, current->thread.gmap_teid.val); 4857 } 4858 4859 /* 4860 * __kvm_s390_handle_dat_fault() - handle a dat fault for the gmap of a vcpu 4861 * @vcpu: the vCPU whose gmap is to be fixed up 4862 * @gfn: the guest frame number used for memslots (including fake memslots) 4863 * @gaddr: the gmap address, does not have to match @gfn for ucontrol gmaps 4864 * @flags: FOLL_* flags 4865 * 4866 * Return: 0 on success, < 0 in case of error. 4867 * Context: The mm lock must not be held before calling. May sleep. 4868 */ 4869 int __kvm_s390_handle_dat_fault(struct kvm_vcpu *vcpu, gfn_t gfn, gpa_t gaddr, unsigned int flags) 4870 { 4871 struct kvm_memory_slot *slot; 4872 unsigned int fault_flags; 4873 bool writable, unlocked; 4874 unsigned long vmaddr; 4875 struct page *page; 4876 kvm_pfn_t pfn; 4877 int rc; 4878 4879 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 4880 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 4881 return vcpu_post_run_addressing_exception(vcpu); 4882 4883 fault_flags = flags & FOLL_WRITE ? FAULT_FLAG_WRITE : 0; 4884 if (vcpu->arch.gmap->pfault_enabled) 4885 flags |= FOLL_NOWAIT; 4886 vmaddr = __gfn_to_hva_memslot(slot, gfn); 4887 4888 try_again: 4889 pfn = __kvm_faultin_pfn(slot, gfn, flags, &writable, &page); 4890 4891 /* Access outside memory, inject addressing exception */ 4892 if (is_noslot_pfn(pfn)) 4893 return vcpu_post_run_addressing_exception(vcpu); 4894 /* Signal pending: try again */ 4895 if (pfn == KVM_PFN_ERR_SIGPENDING) 4896 return -EAGAIN; 4897 4898 /* Needs I/O, try to setup async pfault (only possible with FOLL_NOWAIT) */ 4899 if (pfn == KVM_PFN_ERR_NEEDS_IO) { 4900 trace_kvm_s390_major_guest_pfault(vcpu); 4901 if (kvm_arch_setup_async_pf(vcpu)) 4902 return 0; 4903 vcpu->stat.pfault_sync++; 4904 /* Could not setup async pfault, try again synchronously */ 4905 flags &= ~FOLL_NOWAIT; 4906 goto try_again; 4907 } 4908 /* Any other error */ 4909 if (is_error_pfn(pfn)) 4910 return -EFAULT; 4911 4912 /* Success */ 4913 mmap_read_lock(vcpu->arch.gmap->mm); 4914 /* Mark the userspace PTEs as young and/or dirty, to avoid page fault loops */ 4915 rc = fixup_user_fault(vcpu->arch.gmap->mm, vmaddr, fault_flags, &unlocked); 4916 if (!rc) 4917 rc = __gmap_link(vcpu->arch.gmap, gaddr, vmaddr); 4918 scoped_guard(spinlock, &vcpu->kvm->mmu_lock) { 4919 kvm_release_faultin_page(vcpu->kvm, page, false, writable); 4920 } 4921 mmap_read_unlock(vcpu->arch.gmap->mm); 4922 return rc; 4923 } 4924 4925 static int vcpu_dat_fault_handler(struct kvm_vcpu *vcpu, unsigned long gaddr, unsigned int flags) 4926 { 4927 unsigned long gaddr_tmp; 4928 gfn_t gfn; 4929 4930 gfn = gpa_to_gfn(gaddr); 4931 if (kvm_is_ucontrol(vcpu->kvm)) { 4932 /* 4933 * This translates the per-vCPU guest address into a 4934 * fake guest address, which can then be used with the 4935 * fake memslots that are identity mapping userspace. 4936 * This allows ucontrol VMs to use the normal fault 4937 * resolution path, like normal VMs. 4938 */ 4939 mmap_read_lock(vcpu->arch.gmap->mm); 4940 gaddr_tmp = __gmap_translate(vcpu->arch.gmap, gaddr); 4941 mmap_read_unlock(vcpu->arch.gmap->mm); 4942 if (gaddr_tmp == -EFAULT) { 4943 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4944 vcpu->run->s390_ucontrol.trans_exc_code = gaddr; 4945 vcpu->run->s390_ucontrol.pgm_code = PGM_SEGMENT_TRANSLATION; 4946 return -EREMOTE; 4947 } 4948 gfn = gpa_to_gfn(gaddr_tmp); 4949 } 4950 return __kvm_s390_handle_dat_fault(vcpu, gfn, gaddr, flags); 4951 } 4952 4953 static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu) 4954 { 4955 unsigned int flags = 0; 4956 unsigned long gaddr; 4957 int rc; 4958 4959 gaddr = current->thread.gmap_teid.addr * PAGE_SIZE; 4960 if (kvm_s390_cur_gmap_fault_is_write()) 4961 flags = FAULT_FLAG_WRITE; 4962 4963 switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) { 4964 case 0: 4965 vcpu->stat.exit_null++; 4966 break; 4967 case PGM_SECURE_STORAGE_ACCESS: 4968 case PGM_SECURE_STORAGE_VIOLATION: 4969 kvm_s390_assert_primary_as(vcpu); 4970 /* 4971 * This can happen after a reboot with asynchronous teardown; 4972 * the new guest (normal or protected) will run on top of the 4973 * previous protected guest. The old pages need to be destroyed 4974 * so the new guest can use them. 4975 */ 4976 if (gmap_destroy_page(vcpu->arch.gmap, gaddr)) { 4977 /* 4978 * Either KVM messed up the secure guest mapping or the 4979 * same page is mapped into multiple secure guests. 4980 * 4981 * This exception is only triggered when a guest 2 is 4982 * running and can therefore never occur in kernel 4983 * context. 4984 */ 4985 pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n", 4986 current->thread.gmap_int_code, current->comm, 4987 current->pid); 4988 send_sig(SIGSEGV, current, 0); 4989 } 4990 break; 4991 case PGM_NON_SECURE_STORAGE_ACCESS: 4992 kvm_s390_assert_primary_as(vcpu); 4993 /* 4994 * This is normal operation; a page belonging to a protected 4995 * guest has not been imported yet. Try to import the page into 4996 * the protected guest. 4997 */ 4998 rc = gmap_convert_to_secure(vcpu->arch.gmap, gaddr); 4999 if (rc == -EINVAL) 5000 send_sig(SIGSEGV, current, 0); 5001 if (rc != -ENXIO) 5002 break; 5003 flags = FAULT_FLAG_WRITE; 5004 fallthrough; 5005 case PGM_PROTECTION: 5006 case PGM_SEGMENT_TRANSLATION: 5007 case PGM_PAGE_TRANSLATION: 5008 case PGM_ASCE_TYPE: 5009 case PGM_REGION_FIRST_TRANS: 5010 case PGM_REGION_SECOND_TRANS: 5011 case PGM_REGION_THIRD_TRANS: 5012 kvm_s390_assert_primary_as(vcpu); 5013 return vcpu_dat_fault_handler(vcpu, gaddr, flags); 5014 default: 5015 KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx", 5016 current->thread.gmap_int_code, current->thread.gmap_teid.val); 5017 send_sig(SIGSEGV, current, 0); 5018 break; 5019 } 5020 return 0; 5021 } 5022 5023 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 5024 { 5025 struct mcck_volatile_info *mcck_info; 5026 struct sie_page *sie_page; 5027 int rc; 5028 5029 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 5030 vcpu->arch.sie_block->icptcode); 5031 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 5032 5033 if (guestdbg_enabled(vcpu)) 5034 kvm_s390_restore_guest_per_regs(vcpu); 5035 5036 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 5037 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 5038 5039 if (exit_reason == -EINTR) { 5040 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 5041 sie_page = container_of(vcpu->arch.sie_block, 5042 struct sie_page, sie_block); 5043 mcck_info = &sie_page->mcck_info; 5044 kvm_s390_reinject_machine_check(vcpu, mcck_info); 5045 return 0; 5046 } 5047 5048 if (vcpu->arch.sie_block->icptcode > 0) { 5049 rc = kvm_handle_sie_intercept(vcpu); 5050 5051 if (rc != -EOPNOTSUPP) 5052 return rc; 5053 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 5054 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 5055 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 5056 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 5057 return -EREMOTE; 5058 } 5059 5060 return vcpu_post_run_handle_fault(vcpu); 5061 } 5062 5063 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 5064 static int __vcpu_run(struct kvm_vcpu *vcpu) 5065 { 5066 int rc, exit_reason; 5067 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 5068 5069 /* 5070 * We try to hold kvm->srcu during most of vcpu_run (except when run- 5071 * ning the guest), so that memslots (and other stuff) are protected 5072 */ 5073 kvm_vcpu_srcu_read_lock(vcpu); 5074 5075 do { 5076 rc = vcpu_pre_run(vcpu); 5077 if (rc || guestdbg_exit_pending(vcpu)) 5078 break; 5079 5080 kvm_vcpu_srcu_read_unlock(vcpu); 5081 /* 5082 * As PF_VCPU will be used in fault handler, between 5083 * guest_enter and guest_exit should be no uaccess. 5084 */ 5085 local_irq_disable(); 5086 guest_enter_irqoff(); 5087 __disable_cpu_timer_accounting(vcpu); 5088 local_irq_enable(); 5089 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5090 memcpy(sie_page->pv_grregs, 5091 vcpu->run->s.regs.gprs, 5092 sizeof(sie_page->pv_grregs)); 5093 } 5094 exit_reason = sie64a(vcpu->arch.sie_block, 5095 vcpu->run->s.regs.gprs, 5096 vcpu->arch.gmap->asce); 5097 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5098 memcpy(vcpu->run->s.regs.gprs, 5099 sie_page->pv_grregs, 5100 sizeof(sie_page->pv_grregs)); 5101 /* 5102 * We're not allowed to inject interrupts on intercepts 5103 * that leave the guest state in an "in-between" state 5104 * where the next SIE entry will do a continuation. 5105 * Fence interrupts in our "internal" PSW. 5106 */ 5107 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 5108 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 5109 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5110 } 5111 } 5112 local_irq_disable(); 5113 __enable_cpu_timer_accounting(vcpu); 5114 guest_exit_irqoff(); 5115 local_irq_enable(); 5116 kvm_vcpu_srcu_read_lock(vcpu); 5117 5118 rc = vcpu_post_run(vcpu, exit_reason); 5119 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 5120 5121 kvm_vcpu_srcu_read_unlock(vcpu); 5122 return rc; 5123 } 5124 5125 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 5126 { 5127 struct kvm_run *kvm_run = vcpu->run; 5128 struct runtime_instr_cb *riccb; 5129 struct gs_cb *gscb; 5130 5131 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 5132 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 5133 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 5134 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 5135 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 5136 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 5137 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 5138 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 5139 } 5140 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 5141 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 5142 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 5143 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 5144 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 5145 kvm_clear_async_pf_completion_queue(vcpu); 5146 } 5147 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 5148 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 5149 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 5150 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 5151 } 5152 /* 5153 * If userspace sets the riccb (e.g. after migration) to a valid state, 5154 * we should enable RI here instead of doing the lazy enablement. 5155 */ 5156 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 5157 test_kvm_facility(vcpu->kvm, 64) && 5158 riccb->v && 5159 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 5160 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 5161 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 5162 } 5163 /* 5164 * If userspace sets the gscb (e.g. after migration) to non-zero, 5165 * we should enable GS here instead of doing the lazy enablement. 5166 */ 5167 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 5168 test_kvm_facility(vcpu->kvm, 133) && 5169 gscb->gssm && 5170 !vcpu->arch.gs_enabled) { 5171 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 5172 vcpu->arch.sie_block->ecb |= ECB_GS; 5173 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 5174 vcpu->arch.gs_enabled = 1; 5175 } 5176 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 5177 test_kvm_facility(vcpu->kvm, 82)) { 5178 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 5179 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 5180 } 5181 if (cpu_has_gs()) { 5182 preempt_disable(); 5183 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5184 if (current->thread.gs_cb) { 5185 vcpu->arch.host_gscb = current->thread.gs_cb; 5186 save_gs_cb(vcpu->arch.host_gscb); 5187 } 5188 if (vcpu->arch.gs_enabled) { 5189 current->thread.gs_cb = (struct gs_cb *) 5190 &vcpu->run->s.regs.gscb; 5191 restore_gs_cb(current->thread.gs_cb); 5192 } 5193 preempt_enable(); 5194 } 5195 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 5196 } 5197 5198 static void sync_regs(struct kvm_vcpu *vcpu) 5199 { 5200 struct kvm_run *kvm_run = vcpu->run; 5201 5202 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 5203 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 5204 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 5205 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 5206 /* some control register changes require a tlb flush */ 5207 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5208 } 5209 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 5210 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 5211 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 5212 } 5213 save_access_regs(vcpu->arch.host_acrs); 5214 restore_access_regs(vcpu->run->s.regs.acrs); 5215 vcpu->arch.acrs_loaded = true; 5216 kvm_s390_fpu_load(vcpu->run); 5217 /* Sync fmt2 only data */ 5218 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 5219 sync_regs_fmt2(vcpu); 5220 } else { 5221 /* 5222 * In several places we have to modify our internal view to 5223 * not do things that are disallowed by the ultravisor. For 5224 * example we must not inject interrupts after specific exits 5225 * (e.g. 112 prefix page not secure). We do this by turning 5226 * off the machine check, external and I/O interrupt bits 5227 * of our PSW copy. To avoid getting validity intercepts, we 5228 * do only accept the condition code from userspace. 5229 */ 5230 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 5231 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 5232 PSW_MASK_CC; 5233 } 5234 5235 kvm_run->kvm_dirty_regs = 0; 5236 } 5237 5238 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 5239 { 5240 struct kvm_run *kvm_run = vcpu->run; 5241 5242 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 5243 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 5244 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 5245 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 5246 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 5247 if (cpu_has_gs()) { 5248 preempt_disable(); 5249 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5250 if (vcpu->arch.gs_enabled) 5251 save_gs_cb(current->thread.gs_cb); 5252 current->thread.gs_cb = vcpu->arch.host_gscb; 5253 restore_gs_cb(vcpu->arch.host_gscb); 5254 if (!vcpu->arch.host_gscb) 5255 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT); 5256 vcpu->arch.host_gscb = NULL; 5257 preempt_enable(); 5258 } 5259 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5260 } 5261 5262 static void store_regs(struct kvm_vcpu *vcpu) 5263 { 5264 struct kvm_run *kvm_run = vcpu->run; 5265 5266 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5267 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5268 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5269 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5270 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5271 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5272 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5273 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5274 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5275 save_access_regs(vcpu->run->s.regs.acrs); 5276 restore_access_regs(vcpu->arch.host_acrs); 5277 vcpu->arch.acrs_loaded = false; 5278 kvm_s390_fpu_store(vcpu->run); 5279 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5280 store_regs_fmt2(vcpu); 5281 } 5282 5283 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5284 { 5285 struct kvm_run *kvm_run = vcpu->run; 5286 DECLARE_KERNEL_FPU_ONSTACK32(fpu); 5287 int rc; 5288 5289 /* 5290 * Running a VM while dumping always has the potential to 5291 * produce inconsistent dump data. But for PV vcpus a SIE 5292 * entry while dumping could also lead to a fatal validity 5293 * intercept which we absolutely want to avoid. 5294 */ 5295 if (vcpu->kvm->arch.pv.dumping) 5296 return -EINVAL; 5297 5298 if (!vcpu->wants_to_run) 5299 return -EINTR; 5300 5301 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5302 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5303 return -EINVAL; 5304 5305 vcpu_load(vcpu); 5306 5307 if (guestdbg_exit_pending(vcpu)) { 5308 kvm_s390_prepare_debug_exit(vcpu); 5309 rc = 0; 5310 goto out; 5311 } 5312 5313 kvm_sigset_activate(vcpu); 5314 5315 /* 5316 * no need to check the return value of vcpu_start as it can only have 5317 * an error for protvirt, but protvirt means user cpu state 5318 */ 5319 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5320 kvm_s390_vcpu_start(vcpu); 5321 } else if (is_vcpu_stopped(vcpu)) { 5322 pr_err_ratelimited("can't run stopped vcpu %d\n", 5323 vcpu->vcpu_id); 5324 rc = -EINVAL; 5325 goto out; 5326 } 5327 5328 kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR); 5329 sync_regs(vcpu); 5330 enable_cpu_timer_accounting(vcpu); 5331 5332 might_fault(); 5333 rc = __vcpu_run(vcpu); 5334 5335 if (signal_pending(current) && !rc) { 5336 kvm_run->exit_reason = KVM_EXIT_INTR; 5337 rc = -EINTR; 5338 } 5339 5340 if (guestdbg_exit_pending(vcpu) && !rc) { 5341 kvm_s390_prepare_debug_exit(vcpu); 5342 rc = 0; 5343 } 5344 5345 if (rc == -EREMOTE) { 5346 /* userspace support is needed, kvm_run has been prepared */ 5347 rc = 0; 5348 } 5349 5350 disable_cpu_timer_accounting(vcpu); 5351 store_regs(vcpu); 5352 kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR); 5353 5354 kvm_sigset_deactivate(vcpu); 5355 5356 vcpu->stat.exit_userspace++; 5357 out: 5358 vcpu_put(vcpu); 5359 return rc; 5360 } 5361 5362 /* 5363 * store status at address 5364 * we use have two special cases: 5365 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5366 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5367 */ 5368 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5369 { 5370 unsigned char archmode = 1; 5371 freg_t fprs[NUM_FPRS]; 5372 unsigned int px; 5373 u64 clkcomp, cputm; 5374 int rc; 5375 5376 px = kvm_s390_get_prefix(vcpu); 5377 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5378 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5379 return -EFAULT; 5380 gpa = 0; 5381 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5382 if (write_guest_real(vcpu, 163, &archmode, 1)) 5383 return -EFAULT; 5384 gpa = px; 5385 } else 5386 gpa -= __LC_FPREGS_SAVE_AREA; 5387 5388 /* manually convert vector registers if necessary */ 5389 if (cpu_has_vx()) { 5390 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5391 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5392 fprs, 128); 5393 } else { 5394 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5395 vcpu->run->s.regs.fprs, 128); 5396 } 5397 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5398 vcpu->run->s.regs.gprs, 128); 5399 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5400 &vcpu->arch.sie_block->gpsw, 16); 5401 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5402 &px, 4); 5403 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5404 &vcpu->run->s.regs.fpc, 4); 5405 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5406 &vcpu->arch.sie_block->todpr, 4); 5407 cputm = kvm_s390_get_cpu_timer(vcpu); 5408 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5409 &cputm, 8); 5410 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5411 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5412 &clkcomp, 8); 5413 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5414 &vcpu->run->s.regs.acrs, 64); 5415 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5416 &vcpu->arch.sie_block->gcr, 128); 5417 return rc ? -EFAULT : 0; 5418 } 5419 5420 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5421 { 5422 /* 5423 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5424 * switch in the run ioctl. Let's update our copies before we save 5425 * it into the save area 5426 */ 5427 kvm_s390_fpu_store(vcpu->run); 5428 save_access_regs(vcpu->run->s.regs.acrs); 5429 5430 return kvm_s390_store_status_unloaded(vcpu, addr); 5431 } 5432 5433 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5434 { 5435 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5436 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5437 } 5438 5439 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5440 { 5441 unsigned long i; 5442 struct kvm_vcpu *vcpu; 5443 5444 kvm_for_each_vcpu(i, vcpu, kvm) { 5445 __disable_ibs_on_vcpu(vcpu); 5446 } 5447 } 5448 5449 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5450 { 5451 if (!sclp.has_ibs) 5452 return; 5453 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5454 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5455 } 5456 5457 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5458 { 5459 int i, online_vcpus, r = 0, started_vcpus = 0; 5460 5461 if (!is_vcpu_stopped(vcpu)) 5462 return 0; 5463 5464 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5465 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5466 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5467 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5468 5469 /* Let's tell the UV that we want to change into the operating state */ 5470 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5471 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5472 if (r) { 5473 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5474 return r; 5475 } 5476 } 5477 5478 for (i = 0; i < online_vcpus; i++) { 5479 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5480 started_vcpus++; 5481 } 5482 5483 if (started_vcpus == 0) { 5484 /* we're the only active VCPU -> speed it up */ 5485 __enable_ibs_on_vcpu(vcpu); 5486 } else if (started_vcpus == 1) { 5487 /* 5488 * As we are starting a second VCPU, we have to disable 5489 * the IBS facility on all VCPUs to remove potentially 5490 * outstanding ENABLE requests. 5491 */ 5492 __disable_ibs_on_all_vcpus(vcpu->kvm); 5493 } 5494 5495 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5496 /* 5497 * The real PSW might have changed due to a RESTART interpreted by the 5498 * ultravisor. We block all interrupts and let the next sie exit 5499 * refresh our view. 5500 */ 5501 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5502 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5503 /* 5504 * Another VCPU might have used IBS while we were offline. 5505 * Let's play safe and flush the VCPU at startup. 5506 */ 5507 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5508 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5509 return 0; 5510 } 5511 5512 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5513 { 5514 int i, online_vcpus, r = 0, started_vcpus = 0; 5515 struct kvm_vcpu *started_vcpu = NULL; 5516 5517 if (is_vcpu_stopped(vcpu)) 5518 return 0; 5519 5520 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5521 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5522 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5523 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5524 5525 /* Let's tell the UV that we want to change into the stopped state */ 5526 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5527 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5528 if (r) { 5529 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5530 return r; 5531 } 5532 } 5533 5534 /* 5535 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5536 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5537 * have been fully processed. This will ensure that the VCPU 5538 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5539 */ 5540 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5541 kvm_s390_clear_stop_irq(vcpu); 5542 5543 __disable_ibs_on_vcpu(vcpu); 5544 5545 for (i = 0; i < online_vcpus; i++) { 5546 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5547 5548 if (!is_vcpu_stopped(tmp)) { 5549 started_vcpus++; 5550 started_vcpu = tmp; 5551 } 5552 } 5553 5554 if (started_vcpus == 1) { 5555 /* 5556 * As we only have one VCPU left, we want to enable the 5557 * IBS facility for that VCPU to speed it up. 5558 */ 5559 __enable_ibs_on_vcpu(started_vcpu); 5560 } 5561 5562 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5563 return 0; 5564 } 5565 5566 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5567 struct kvm_enable_cap *cap) 5568 { 5569 int r; 5570 5571 if (cap->flags) 5572 return -EINVAL; 5573 5574 switch (cap->cap) { 5575 case KVM_CAP_S390_CSS_SUPPORT: 5576 if (!vcpu->kvm->arch.css_support) { 5577 vcpu->kvm->arch.css_support = 1; 5578 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5579 trace_kvm_s390_enable_css(vcpu->kvm); 5580 } 5581 r = 0; 5582 break; 5583 default: 5584 r = -EINVAL; 5585 break; 5586 } 5587 return r; 5588 } 5589 5590 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5591 struct kvm_s390_mem_op *mop) 5592 { 5593 void __user *uaddr = (void __user *)mop->buf; 5594 void *sida_addr; 5595 int r = 0; 5596 5597 if (mop->flags || !mop->size) 5598 return -EINVAL; 5599 if (mop->size + mop->sida_offset < mop->size) 5600 return -EINVAL; 5601 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5602 return -E2BIG; 5603 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5604 return -EINVAL; 5605 5606 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5607 5608 switch (mop->op) { 5609 case KVM_S390_MEMOP_SIDA_READ: 5610 if (copy_to_user(uaddr, sida_addr, mop->size)) 5611 r = -EFAULT; 5612 5613 break; 5614 case KVM_S390_MEMOP_SIDA_WRITE: 5615 if (copy_from_user(sida_addr, uaddr, mop->size)) 5616 r = -EFAULT; 5617 break; 5618 } 5619 return r; 5620 } 5621 5622 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5623 struct kvm_s390_mem_op *mop) 5624 { 5625 void __user *uaddr = (void __user *)mop->buf; 5626 enum gacc_mode acc_mode; 5627 void *tmpbuf = NULL; 5628 int r; 5629 5630 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5631 KVM_S390_MEMOP_F_CHECK_ONLY | 5632 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5633 if (r) 5634 return r; 5635 if (mop->ar >= NUM_ACRS) 5636 return -EINVAL; 5637 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5638 return -EINVAL; 5639 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5640 tmpbuf = vmalloc(mop->size); 5641 if (!tmpbuf) 5642 return -ENOMEM; 5643 } 5644 5645 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5646 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5647 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5648 acc_mode, mop->key); 5649 goto out_inject; 5650 } 5651 if (acc_mode == GACC_FETCH) { 5652 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5653 mop->size, mop->key); 5654 if (r) 5655 goto out_inject; 5656 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5657 r = -EFAULT; 5658 goto out_free; 5659 } 5660 } else { 5661 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5662 r = -EFAULT; 5663 goto out_free; 5664 } 5665 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5666 mop->size, mop->key); 5667 } 5668 5669 out_inject: 5670 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5671 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5672 5673 out_free: 5674 vfree(tmpbuf); 5675 return r; 5676 } 5677 5678 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5679 struct kvm_s390_mem_op *mop) 5680 { 5681 int r, srcu_idx; 5682 5683 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5684 5685 switch (mop->op) { 5686 case KVM_S390_MEMOP_LOGICAL_READ: 5687 case KVM_S390_MEMOP_LOGICAL_WRITE: 5688 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5689 break; 5690 case KVM_S390_MEMOP_SIDA_READ: 5691 case KVM_S390_MEMOP_SIDA_WRITE: 5692 /* we are locked against sida going away by the vcpu->mutex */ 5693 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5694 break; 5695 default: 5696 r = -EINVAL; 5697 } 5698 5699 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5700 return r; 5701 } 5702 5703 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5704 unsigned int ioctl, unsigned long arg) 5705 { 5706 struct kvm_vcpu *vcpu = filp->private_data; 5707 void __user *argp = (void __user *)arg; 5708 int rc; 5709 5710 switch (ioctl) { 5711 case KVM_S390_IRQ: { 5712 struct kvm_s390_irq s390irq; 5713 5714 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5715 return -EFAULT; 5716 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5717 break; 5718 } 5719 case KVM_S390_INTERRUPT: { 5720 struct kvm_s390_interrupt s390int; 5721 struct kvm_s390_irq s390irq = {}; 5722 5723 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5724 return -EFAULT; 5725 if (s390int_to_s390irq(&s390int, &s390irq)) 5726 return -EINVAL; 5727 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5728 break; 5729 } 5730 default: 5731 rc = -ENOIOCTLCMD; 5732 break; 5733 } 5734 5735 /* 5736 * To simplify single stepping of userspace-emulated instructions, 5737 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5738 * should_handle_per_ifetch()). However, if userspace emulation injects 5739 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5740 * after (and not before) the interrupt delivery. 5741 */ 5742 if (!rc) 5743 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5744 5745 return rc; 5746 } 5747 5748 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5749 struct kvm_pv_cmd *cmd) 5750 { 5751 struct kvm_s390_pv_dmp dmp; 5752 void *data; 5753 int ret; 5754 5755 /* Dump initialization is a prerequisite */ 5756 if (!vcpu->kvm->arch.pv.dumping) 5757 return -EINVAL; 5758 5759 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5760 return -EFAULT; 5761 5762 /* We only handle this subcmd right now */ 5763 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5764 return -EINVAL; 5765 5766 /* CPU dump length is the same as create cpu storage donation. */ 5767 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5768 return -EINVAL; 5769 5770 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5771 if (!data) 5772 return -ENOMEM; 5773 5774 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5775 5776 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5777 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5778 5779 if (ret) 5780 ret = -EINVAL; 5781 5782 /* On success copy over the dump data */ 5783 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5784 ret = -EFAULT; 5785 5786 kvfree(data); 5787 return ret; 5788 } 5789 5790 long kvm_arch_vcpu_ioctl(struct file *filp, 5791 unsigned int ioctl, unsigned long arg) 5792 { 5793 struct kvm_vcpu *vcpu = filp->private_data; 5794 void __user *argp = (void __user *)arg; 5795 int idx; 5796 long r; 5797 u16 rc, rrc; 5798 5799 vcpu_load(vcpu); 5800 5801 switch (ioctl) { 5802 case KVM_S390_STORE_STATUS: 5803 idx = srcu_read_lock(&vcpu->kvm->srcu); 5804 r = kvm_s390_store_status_unloaded(vcpu, arg); 5805 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5806 break; 5807 case KVM_S390_SET_INITIAL_PSW: { 5808 psw_t psw; 5809 5810 r = -EFAULT; 5811 if (copy_from_user(&psw, argp, sizeof(psw))) 5812 break; 5813 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5814 break; 5815 } 5816 case KVM_S390_CLEAR_RESET: 5817 r = 0; 5818 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5819 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5820 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5821 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5822 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5823 rc, rrc); 5824 } 5825 break; 5826 case KVM_S390_INITIAL_RESET: 5827 r = 0; 5828 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5829 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5830 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5831 UVC_CMD_CPU_RESET_INITIAL, 5832 &rc, &rrc); 5833 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5834 rc, rrc); 5835 } 5836 break; 5837 case KVM_S390_NORMAL_RESET: 5838 r = 0; 5839 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5840 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5841 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5842 UVC_CMD_CPU_RESET, &rc, &rrc); 5843 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5844 rc, rrc); 5845 } 5846 break; 5847 case KVM_SET_ONE_REG: 5848 case KVM_GET_ONE_REG: { 5849 struct kvm_one_reg reg; 5850 r = -EINVAL; 5851 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5852 break; 5853 r = -EFAULT; 5854 if (copy_from_user(®, argp, sizeof(reg))) 5855 break; 5856 if (ioctl == KVM_SET_ONE_REG) 5857 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5858 else 5859 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5860 break; 5861 } 5862 #ifdef CONFIG_KVM_S390_UCONTROL 5863 case KVM_S390_UCAS_MAP: { 5864 struct kvm_s390_ucas_mapping ucasmap; 5865 5866 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5867 r = -EFAULT; 5868 break; 5869 } 5870 5871 if (!kvm_is_ucontrol(vcpu->kvm)) { 5872 r = -EINVAL; 5873 break; 5874 } 5875 5876 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5877 ucasmap.vcpu_addr, ucasmap.length); 5878 break; 5879 } 5880 case KVM_S390_UCAS_UNMAP: { 5881 struct kvm_s390_ucas_mapping ucasmap; 5882 5883 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5884 r = -EFAULT; 5885 break; 5886 } 5887 5888 if (!kvm_is_ucontrol(vcpu->kvm)) { 5889 r = -EINVAL; 5890 break; 5891 } 5892 5893 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5894 ucasmap.length); 5895 break; 5896 } 5897 #endif 5898 case KVM_S390_VCPU_FAULT: { 5899 idx = srcu_read_lock(&vcpu->kvm->srcu); 5900 r = vcpu_dat_fault_handler(vcpu, arg, 0); 5901 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5902 break; 5903 } 5904 case KVM_ENABLE_CAP: 5905 { 5906 struct kvm_enable_cap cap; 5907 r = -EFAULT; 5908 if (copy_from_user(&cap, argp, sizeof(cap))) 5909 break; 5910 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5911 break; 5912 } 5913 case KVM_S390_MEM_OP: { 5914 struct kvm_s390_mem_op mem_op; 5915 5916 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5917 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5918 else 5919 r = -EFAULT; 5920 break; 5921 } 5922 case KVM_S390_SET_IRQ_STATE: { 5923 struct kvm_s390_irq_state irq_state; 5924 5925 r = -EFAULT; 5926 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5927 break; 5928 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5929 irq_state.len == 0 || 5930 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5931 r = -EINVAL; 5932 break; 5933 } 5934 /* do not use irq_state.flags, it will break old QEMUs */ 5935 r = kvm_s390_set_irq_state(vcpu, 5936 (void __user *) irq_state.buf, 5937 irq_state.len); 5938 break; 5939 } 5940 case KVM_S390_GET_IRQ_STATE: { 5941 struct kvm_s390_irq_state irq_state; 5942 5943 r = -EFAULT; 5944 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5945 break; 5946 if (irq_state.len == 0) { 5947 r = -EINVAL; 5948 break; 5949 } 5950 /* do not use irq_state.flags, it will break old QEMUs */ 5951 r = kvm_s390_get_irq_state(vcpu, 5952 (__u8 __user *) irq_state.buf, 5953 irq_state.len); 5954 break; 5955 } 5956 case KVM_S390_PV_CPU_COMMAND: { 5957 struct kvm_pv_cmd cmd; 5958 5959 r = -EINVAL; 5960 if (!is_prot_virt_host()) 5961 break; 5962 5963 r = -EFAULT; 5964 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5965 break; 5966 5967 r = -EINVAL; 5968 if (cmd.flags) 5969 break; 5970 5971 /* We only handle this cmd right now */ 5972 if (cmd.cmd != KVM_PV_DUMP) 5973 break; 5974 5975 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5976 5977 /* Always copy over UV rc / rrc data */ 5978 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5979 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5980 r = -EFAULT; 5981 break; 5982 } 5983 default: 5984 r = -ENOTTY; 5985 } 5986 5987 vcpu_put(vcpu); 5988 return r; 5989 } 5990 5991 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5992 { 5993 #ifdef CONFIG_KVM_S390_UCONTROL 5994 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5995 && (kvm_is_ucontrol(vcpu->kvm))) { 5996 vmf->page = virt_to_page(vcpu->arch.sie_block); 5997 get_page(vmf->page); 5998 return 0; 5999 } 6000 #endif 6001 return VM_FAULT_SIGBUS; 6002 } 6003 6004 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 6005 { 6006 return true; 6007 } 6008 6009 /* Section: memory related */ 6010 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6011 const struct kvm_memory_slot *old, 6012 struct kvm_memory_slot *new, 6013 enum kvm_mr_change change) 6014 { 6015 gpa_t size; 6016 6017 if (kvm_is_ucontrol(kvm) && new->id < KVM_USER_MEM_SLOTS) 6018 return -EINVAL; 6019 6020 /* When we are protected, we should not change the memory slots */ 6021 if (kvm_s390_pv_get_handle(kvm)) 6022 return -EINVAL; 6023 6024 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 6025 /* 6026 * A few sanity checks. We can have memory slots which have to be 6027 * located/ended at a segment boundary (1MB). The memory in userland is 6028 * ok to be fragmented into various different vmas. It is okay to mmap() 6029 * and munmap() stuff in this slot after doing this call at any time 6030 */ 6031 6032 if (new->userspace_addr & 0xffffful) 6033 return -EINVAL; 6034 6035 size = new->npages * PAGE_SIZE; 6036 if (size & 0xffffful) 6037 return -EINVAL; 6038 6039 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 6040 return -EINVAL; 6041 } 6042 6043 if (!kvm->arch.migration_mode) 6044 return 0; 6045 6046 /* 6047 * Turn off migration mode when: 6048 * - userspace creates a new memslot with dirty logging off, 6049 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 6050 * dirty logging is turned off. 6051 * Migration mode expects dirty page logging being enabled to store 6052 * its dirty bitmap. 6053 */ 6054 if (change != KVM_MR_DELETE && 6055 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 6056 WARN(kvm_s390_vm_stop_migration(kvm), 6057 "Failed to stop migration mode"); 6058 6059 return 0; 6060 } 6061 6062 void kvm_arch_commit_memory_region(struct kvm *kvm, 6063 struct kvm_memory_slot *old, 6064 const struct kvm_memory_slot *new, 6065 enum kvm_mr_change change) 6066 { 6067 int rc = 0; 6068 6069 if (kvm_is_ucontrol(kvm)) 6070 return; 6071 6072 switch (change) { 6073 case KVM_MR_DELETE: 6074 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 6075 old->npages * PAGE_SIZE); 6076 break; 6077 case KVM_MR_MOVE: 6078 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 6079 old->npages * PAGE_SIZE); 6080 if (rc) 6081 break; 6082 fallthrough; 6083 case KVM_MR_CREATE: 6084 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 6085 new->base_gfn * PAGE_SIZE, 6086 new->npages * PAGE_SIZE); 6087 break; 6088 case KVM_MR_FLAGS_ONLY: 6089 break; 6090 default: 6091 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 6092 } 6093 if (rc) 6094 pr_warn("failed to commit memory region\n"); 6095 return; 6096 } 6097 6098 static inline unsigned long nonhyp_mask(int i) 6099 { 6100 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 6101 6102 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 6103 } 6104 6105 static int __init kvm_s390_init(void) 6106 { 6107 int i, r; 6108 6109 if (!sclp.has_sief2) { 6110 pr_info("SIE is not available\n"); 6111 return -ENODEV; 6112 } 6113 6114 if (nested && hpage) { 6115 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 6116 return -EINVAL; 6117 } 6118 6119 for (i = 0; i < 16; i++) 6120 kvm_s390_fac_base[i] |= 6121 stfle_fac_list[i] & nonhyp_mask(i); 6122 6123 r = __kvm_s390_init(); 6124 if (r) 6125 return r; 6126 6127 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 6128 if (r) { 6129 __kvm_s390_exit(); 6130 return r; 6131 } 6132 return 0; 6133 } 6134 6135 static void __exit kvm_s390_exit(void) 6136 { 6137 kvm_exit(); 6138 6139 __kvm_s390_exit(); 6140 } 6141 6142 module_init(kvm_s390_init); 6143 module_exit(kvm_s390_exit); 6144 6145 /* 6146 * Enable autoloading of the kvm module. 6147 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 6148 * since x86 takes a different approach. 6149 */ 6150 #include <linux/miscdevice.h> 6151 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6152 MODULE_ALIAS("devname:kvm"); 6153