xref: /linux/arch/arm64/kvm/va_layout.c (revision 8e8eb10c107e67f22f87cd8c963d30ea73f04d5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <linux/random.h>
9 #include <linux/memblock.h>
10 #include <asm/alternative.h>
11 #include <asm/debug-monitors.h>
12 #include <asm/insn.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/memory.h>
15 
16 /*
17  * The LSB of the HYP VA tag
18  */
19 static u8 tag_lsb;
20 /*
21  * The HYP VA tag value with the region bit
22  */
23 static u64 tag_val;
24 static u64 va_mask;
25 
26 /*
27  * Compute HYP VA by using the same computation as kern_hyp_va().
28  */
29 static u64 __early_kern_hyp_va(u64 addr)
30 {
31 	addr &= va_mask;
32 	addr |= tag_val << tag_lsb;
33 	return addr;
34 }
35 
36 /*
37  * Store a hyp VA <-> PA offset into a EL2-owned variable.
38  */
39 static void init_hyp_physvirt_offset(void)
40 {
41 	u64 kern_va, hyp_va;
42 
43 	/* Compute the offset from the hyp VA and PA of a random symbol. */
44 	kern_va = (u64)lm_alias(__hyp_text_start);
45 	hyp_va = __early_kern_hyp_va(kern_va);
46 	hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
47 }
48 
49 /*
50  * Calculate the actual VA size used by the hypervisor
51  */
52 __init u32 kvm_hyp_va_bits(void)
53 {
54 	/*
55 	 * The ID map is always configured for 48 bits of translation, which may
56 	 * be different from the number of VA bits used by the regular kernel
57 	 * stage 1.
58 	 *
59 	 * At EL2, there is only one TTBR register, and we can't switch between
60 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
61 	 * line: we need to use the extended range with *both* our translation
62 	 * tables.
63 	 *
64 	 * So use the maximum of the idmap VA bits and the regular kernel stage
65 	 * 1 VA bits as the hypervisor VA size to assure that the hypervisor can
66 	 * both ID map its code page and map any kernel memory.
67 	 */
68 	return max(IDMAP_VA_BITS, vabits_actual);
69 }
70 
71 /*
72  * We want to generate a hyp VA with the following format (with V ==
73  * hypervisor VA bits):
74  *
75  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
76  *  ---------------------------------------------------------
77  * | 0000000 | hyp_va_msb |   random tag   |  kern linear VA |
78  *           |--------- tag_val -----------|----- va_mask ---|
79  *
80  * which does not conflict with the idmap regions.
81  */
82 __init void kvm_compute_layout(void)
83 {
84 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
85 	u64 hyp_va_msb;
86 	u32 hyp_va_bits = kvm_hyp_va_bits();
87 
88 	/* Where is my RAM region? */
89 	hyp_va_msb  = idmap_addr & BIT(hyp_va_bits - 1);
90 	hyp_va_msb ^= BIT(hyp_va_bits - 1);
91 
92 	tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
93 			(u64)(high_memory - 1));
94 
95 	va_mask = GENMASK_ULL(tag_lsb - 1, 0);
96 	tag_val = hyp_va_msb;
97 
98 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (hyp_va_bits - 1)) {
99 		/* We have some free bits to insert a random tag. */
100 		tag_val |= get_random_long() & GENMASK_ULL(hyp_va_bits - 2, tag_lsb);
101 	}
102 	tag_val >>= tag_lsb;
103 
104 	init_hyp_physvirt_offset();
105 }
106 
107 /*
108  * The .hyp.reloc ELF section contains a list of kimg positions that
109  * contains kimg VAs but will be accessed only in hyp execution context.
110  * Convert them to hyp VAs. See gen-hyprel.c for more details.
111  */
112 __init void kvm_apply_hyp_relocations(void)
113 {
114 	int32_t *rel;
115 	int32_t *begin = (int32_t *)__hyp_reloc_begin;
116 	int32_t *end = (int32_t *)__hyp_reloc_end;
117 
118 	for (rel = begin; rel < end; ++rel) {
119 		uintptr_t *ptr, kimg_va;
120 
121 		/*
122 		 * Each entry contains a 32-bit relative offset from itself
123 		 * to a kimg VA position.
124 		 */
125 		ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
126 
127 		/* Read the kimg VA value at the relocation address. */
128 		kimg_va = *ptr;
129 
130 		/* Convert to hyp VA and store back to the relocation address. */
131 		*ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
132 	}
133 }
134 
135 static u32 compute_instruction(int n, u32 rd, u32 rn)
136 {
137 	u32 insn = AARCH64_BREAK_FAULT;
138 
139 	switch (n) {
140 	case 0:
141 		insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
142 							  AARCH64_INSN_VARIANT_64BIT,
143 							  rn, rd, va_mask);
144 		break;
145 
146 	case 1:
147 		/* ROR is a variant of EXTR with Rm = Rn */
148 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
149 					     rn, rn, rd,
150 					     tag_lsb);
151 		break;
152 
153 	case 2:
154 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
155 						    tag_val & GENMASK(11, 0),
156 						    AARCH64_INSN_VARIANT_64BIT,
157 						    AARCH64_INSN_ADSB_ADD);
158 		break;
159 
160 	case 3:
161 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
162 						    tag_val & GENMASK(23, 12),
163 						    AARCH64_INSN_VARIANT_64BIT,
164 						    AARCH64_INSN_ADSB_ADD);
165 		break;
166 
167 	case 4:
168 		/* ROR is a variant of EXTR with Rm = Rn */
169 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
170 					     rn, rn, rd, 64 - tag_lsb);
171 		break;
172 	}
173 
174 	return insn;
175 }
176 
177 void __init kvm_update_va_mask(struct alt_instr *alt,
178 			       __le32 *origptr, __le32 *updptr, int nr_inst)
179 {
180 	int i;
181 
182 	BUG_ON(nr_inst != 5);
183 
184 	for (i = 0; i < nr_inst; i++) {
185 		u32 rd, rn, insn, oinsn;
186 
187 		/*
188 		 * VHE doesn't need any address translation, let's NOP
189 		 * everything.
190 		 *
191 		 * Alternatively, if the tag is zero (because the layout
192 		 * dictates it and we don't have any spare bits in the
193 		 * address), NOP everything after masking the kernel VA.
194 		 */
195 		if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) {
196 			updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
197 			continue;
198 		}
199 
200 		oinsn = le32_to_cpu(origptr[i]);
201 		rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
202 		rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
203 
204 		insn = compute_instruction(i, rd, rn);
205 		BUG_ON(insn == AARCH64_BREAK_FAULT);
206 
207 		updptr[i] = cpu_to_le32(insn);
208 	}
209 }
210 
211 void kvm_patch_vector_branch(struct alt_instr *alt,
212 			     __le32 *origptr, __le32 *updptr, int nr_inst)
213 {
214 	u64 addr;
215 	u32 insn;
216 
217 	BUG_ON(nr_inst != 4);
218 
219 	if (!cpus_have_cap(ARM64_SPECTRE_V3A) ||
220 	    WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)))
221 		return;
222 
223 	/*
224 	 * Compute HYP VA by using the same computation as kern_hyp_va()
225 	 */
226 	addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
227 
228 	/* Use PC[10:7] to branch to the same vector in KVM */
229 	addr |= ((u64)origptr & GENMASK_ULL(10, 7));
230 
231 	/*
232 	 * Branch over the preamble in order to avoid the initial store on
233 	 * the stack (which we already perform in the hardening vectors).
234 	 */
235 	addr += KVM_VECTOR_PREAMBLE;
236 
237 	/* movz x0, #(addr & 0xffff) */
238 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
239 					 (u16)addr,
240 					 0,
241 					 AARCH64_INSN_VARIANT_64BIT,
242 					 AARCH64_INSN_MOVEWIDE_ZERO);
243 	*updptr++ = cpu_to_le32(insn);
244 
245 	/* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
246 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
247 					 (u16)(addr >> 16),
248 					 16,
249 					 AARCH64_INSN_VARIANT_64BIT,
250 					 AARCH64_INSN_MOVEWIDE_KEEP);
251 	*updptr++ = cpu_to_le32(insn);
252 
253 	/* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
254 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
255 					 (u16)(addr >> 32),
256 					 32,
257 					 AARCH64_INSN_VARIANT_64BIT,
258 					 AARCH64_INSN_MOVEWIDE_KEEP);
259 	*updptr++ = cpu_to_le32(insn);
260 
261 	/* br x0 */
262 	insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
263 					   AARCH64_INSN_BRANCH_NOLINK);
264 	*updptr++ = cpu_to_le32(insn);
265 }
266 
267 static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
268 {
269 	u32 insn, oinsn, rd;
270 
271 	BUG_ON(nr_inst != 4);
272 
273 	/* Compute target register */
274 	oinsn = le32_to_cpu(*origptr);
275 	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
276 
277 	/* movz rd, #(val & 0xffff) */
278 	insn = aarch64_insn_gen_movewide(rd,
279 					 (u16)val,
280 					 0,
281 					 AARCH64_INSN_VARIANT_64BIT,
282 					 AARCH64_INSN_MOVEWIDE_ZERO);
283 	*updptr++ = cpu_to_le32(insn);
284 
285 	/* movk rd, #((val >> 16) & 0xffff), lsl #16 */
286 	insn = aarch64_insn_gen_movewide(rd,
287 					 (u16)(val >> 16),
288 					 16,
289 					 AARCH64_INSN_VARIANT_64BIT,
290 					 AARCH64_INSN_MOVEWIDE_KEEP);
291 	*updptr++ = cpu_to_le32(insn);
292 
293 	/* movk rd, #((val >> 32) & 0xffff), lsl #32 */
294 	insn = aarch64_insn_gen_movewide(rd,
295 					 (u16)(val >> 32),
296 					 32,
297 					 AARCH64_INSN_VARIANT_64BIT,
298 					 AARCH64_INSN_MOVEWIDE_KEEP);
299 	*updptr++ = cpu_to_le32(insn);
300 
301 	/* movk rd, #((val >> 48) & 0xffff), lsl #48 */
302 	insn = aarch64_insn_gen_movewide(rd,
303 					 (u16)(val >> 48),
304 					 48,
305 					 AARCH64_INSN_VARIANT_64BIT,
306 					 AARCH64_INSN_MOVEWIDE_KEEP);
307 	*updptr++ = cpu_to_le32(insn);
308 }
309 
310 void kvm_get_kimage_voffset(struct alt_instr *alt,
311 			    __le32 *origptr, __le32 *updptr, int nr_inst)
312 {
313 	generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
314 }
315 
316 void kvm_compute_final_ctr_el0(struct alt_instr *alt,
317 			       __le32 *origptr, __le32 *updptr, int nr_inst)
318 {
319 	generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
320 		       origptr, updptr, nr_inst);
321 }
322