1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/mempolicy.h>
30 #include <linux/ctype.h>
31 #include <linux/stackdepot.h>
32 #include <linux/debugobjects.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kfence.h>
35 #include <linux/memory.h>
36 #include <linux/math64.h>
37 #include <linux/fault-inject.h>
38 #include <linux/kmemleak.h>
39 #include <linux/stacktrace.h>
40 #include <linux/prefetch.h>
41 #include <linux/memcontrol.h>
42 #include <linux/random.h>
43 #include <kunit/test.h>
44 #include <kunit/test-bug.h>
45 #include <linux/sort.h>
46
47 #include <linux/debugfs.h>
48 #include <trace/events/kmem.h>
49
50 #include "internal.h"
51
52 /*
53 * Lock order:
54 * 1. slab_mutex (Global Mutex)
55 * 2. node->list_lock (Spinlock)
56 * 3. kmem_cache->cpu_slab->lock (Local lock)
57 * 4. slab_lock(slab) (Only on some arches)
58 * 5. object_map_lock (Only for debugging)
59 *
60 * slab_mutex
61 *
62 * The role of the slab_mutex is to protect the list of all the slabs
63 * and to synchronize major metadata changes to slab cache structures.
64 * Also synchronizes memory hotplug callbacks.
65 *
66 * slab_lock
67 *
68 * The slab_lock is a wrapper around the page lock, thus it is a bit
69 * spinlock.
70 *
71 * The slab_lock is only used on arches that do not have the ability
72 * to do a cmpxchg_double. It only protects:
73 *
74 * A. slab->freelist -> List of free objects in a slab
75 * B. slab->inuse -> Number of objects in use
76 * C. slab->objects -> Number of objects in slab
77 * D. slab->frozen -> frozen state
78 *
79 * Frozen slabs
80 *
81 * If a slab is frozen then it is exempt from list management. It is
82 * the cpu slab which is actively allocated from by the processor that
83 * froze it and it is not on any list. The processor that froze the
84 * slab is the one who can perform list operations on the slab. Other
85 * processors may put objects onto the freelist but the processor that
86 * froze the slab is the only one that can retrieve the objects from the
87 * slab's freelist.
88 *
89 * CPU partial slabs
90 *
91 * The partially empty slabs cached on the CPU partial list are used
92 * for performance reasons, which speeds up the allocation process.
93 * These slabs are not frozen, but are also exempt from list management,
94 * by clearing the PG_workingset flag when moving out of the node
95 * partial list. Please see __slab_free() for more details.
96 *
97 * To sum up, the current scheme is:
98 * - node partial slab: PG_Workingset && !frozen
99 * - cpu partial slab: !PG_Workingset && !frozen
100 * - cpu slab: !PG_Workingset && frozen
101 * - full slab: !PG_Workingset && !frozen
102 *
103 * list_lock
104 *
105 * The list_lock protects the partial and full list on each node and
106 * the partial slab counter. If taken then no new slabs may be added or
107 * removed from the lists nor make the number of partial slabs be modified.
108 * (Note that the total number of slabs is an atomic value that may be
109 * modified without taking the list lock).
110 *
111 * The list_lock is a centralized lock and thus we avoid taking it as
112 * much as possible. As long as SLUB does not have to handle partial
113 * slabs, operations can continue without any centralized lock. F.e.
114 * allocating a long series of objects that fill up slabs does not require
115 * the list lock.
116 *
117 * For debug caches, all allocations are forced to go through a list_lock
118 * protected region to serialize against concurrent validation.
119 *
120 * cpu_slab->lock local lock
121 *
122 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
123 * except the stat counters. This is a percpu structure manipulated only by
124 * the local cpu, so the lock protects against being preempted or interrupted
125 * by an irq. Fast path operations rely on lockless operations instead.
126 *
127 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
128 * which means the lockless fastpath cannot be used as it might interfere with
129 * an in-progress slow path operations. In this case the local lock is always
130 * taken but it still utilizes the freelist for the common operations.
131 *
132 * lockless fastpaths
133 *
134 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
135 * are fully lockless when satisfied from the percpu slab (and when
136 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
137 * They also don't disable preemption or migration or irqs. They rely on
138 * the transaction id (tid) field to detect being preempted or moved to
139 * another cpu.
140 *
141 * irq, preemption, migration considerations
142 *
143 * Interrupts are disabled as part of list_lock or local_lock operations, or
144 * around the slab_lock operation, in order to make the slab allocator safe
145 * to use in the context of an irq.
146 *
147 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
148 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
149 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
150 * doesn't have to be revalidated in each section protected by the local lock.
151 *
152 * SLUB assigns one slab for allocation to each processor.
153 * Allocations only occur from these slabs called cpu slabs.
154 *
155 * Slabs with free elements are kept on a partial list and during regular
156 * operations no list for full slabs is used. If an object in a full slab is
157 * freed then the slab will show up again on the partial lists.
158 * We track full slabs for debugging purposes though because otherwise we
159 * cannot scan all objects.
160 *
161 * Slabs are freed when they become empty. Teardown and setup is
162 * minimal so we rely on the page allocators per cpu caches for
163 * fast frees and allocs.
164 *
165 * slab->frozen The slab is frozen and exempt from list processing.
166 * This means that the slab is dedicated to a purpose
167 * such as satisfying allocations for a specific
168 * processor. Objects may be freed in the slab while
169 * it is frozen but slab_free will then skip the usual
170 * list operations. It is up to the processor holding
171 * the slab to integrate the slab into the slab lists
172 * when the slab is no longer needed.
173 *
174 * One use of this flag is to mark slabs that are
175 * used for allocations. Then such a slab becomes a cpu
176 * slab. The cpu slab may be equipped with an additional
177 * freelist that allows lockless access to
178 * free objects in addition to the regular freelist
179 * that requires the slab lock.
180 *
181 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
182 * options set. This moves slab handling out of
183 * the fast path and disables lockless freelists.
184 */
185
186 /*
187 * We could simply use migrate_disable()/enable() but as long as it's a
188 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 */
190 #ifndef CONFIG_PREEMPT_RT
191 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
192 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
193 #define USE_LOCKLESS_FAST_PATH() (true)
194 #else
195 #define slub_get_cpu_ptr(var) \
196 ({ \
197 migrate_disable(); \
198 this_cpu_ptr(var); \
199 })
200 #define slub_put_cpu_ptr(var) \
201 do { \
202 (void)(var); \
203 migrate_enable(); \
204 } while (0)
205 #define USE_LOCKLESS_FAST_PATH() (false)
206 #endif
207
208 #ifndef CONFIG_SLUB_TINY
209 #define __fastpath_inline __always_inline
210 #else
211 #define __fastpath_inline
212 #endif
213
214 #ifdef CONFIG_SLUB_DEBUG
215 #ifdef CONFIG_SLUB_DEBUG_ON
216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 #else
218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif
220 #endif /* CONFIG_SLUB_DEBUG */
221
222 #ifdef CONFIG_NUMA
223 static DEFINE_STATIC_KEY_FALSE(strict_numa);
224 #endif
225
226 /* Structure holding parameters for get_partial() call chain */
227 struct partial_context {
228 gfp_t flags;
229 unsigned int orig_size;
230 void *object;
231 };
232
kmem_cache_debug(struct kmem_cache * s)233 static inline bool kmem_cache_debug(struct kmem_cache *s)
234 {
235 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
236 }
237
fixup_red_left(struct kmem_cache * s,void * p)238 void *fixup_red_left(struct kmem_cache *s, void *p)
239 {
240 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
241 p += s->red_left_pad;
242
243 return p;
244 }
245
kmem_cache_has_cpu_partial(struct kmem_cache * s)246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
247 {
248 #ifdef CONFIG_SLUB_CPU_PARTIAL
249 return !kmem_cache_debug(s);
250 #else
251 return false;
252 #endif
253 }
254
255 /*
256 * Issues still to be resolved:
257 *
258 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
259 *
260 * - Variable sizing of the per node arrays
261 */
262
263 /* Enable to log cmpxchg failures */
264 #undef SLUB_DEBUG_CMPXCHG
265
266 #ifndef CONFIG_SLUB_TINY
267 /*
268 * Minimum number of partial slabs. These will be left on the partial
269 * lists even if they are empty. kmem_cache_shrink may reclaim them.
270 */
271 #define MIN_PARTIAL 5
272
273 /*
274 * Maximum number of desirable partial slabs.
275 * The existence of more partial slabs makes kmem_cache_shrink
276 * sort the partial list by the number of objects in use.
277 */
278 #define MAX_PARTIAL 10
279 #else
280 #define MIN_PARTIAL 0
281 #define MAX_PARTIAL 0
282 #endif
283
284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
285 SLAB_POISON | SLAB_STORE_USER)
286
287 /*
288 * These debug flags cannot use CMPXCHG because there might be consistency
289 * issues when checking or reading debug information
290 */
291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
292 SLAB_TRACE)
293
294
295 /*
296 * Debugging flags that require metadata to be stored in the slab. These get
297 * disabled when slab_debug=O is used and a cache's min order increases with
298 * metadata.
299 */
300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
301
302 #define OO_SHIFT 16
303 #define OO_MASK ((1 << OO_SHIFT) - 1)
304 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
305
306 /* Internal SLUB flags */
307 /* Poison object */
308 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
309 /* Use cmpxchg_double */
310
311 #ifdef system_has_freelist_aba
312 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
313 #else
314 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
315 #endif
316
317 /*
318 * Tracking user of a slab.
319 */
320 #define TRACK_ADDRS_COUNT 16
321 struct track {
322 unsigned long addr; /* Called from address */
323 #ifdef CONFIG_STACKDEPOT
324 depot_stack_handle_t handle;
325 #endif
326 int cpu; /* Was running on cpu */
327 int pid; /* Pid context */
328 unsigned long when; /* When did the operation occur */
329 };
330
331 enum track_item { TRACK_ALLOC, TRACK_FREE };
332
333 #ifdef SLAB_SUPPORTS_SYSFS
334 static int sysfs_slab_add(struct kmem_cache *);
335 static int sysfs_slab_alias(struct kmem_cache *, const char *);
336 #else
sysfs_slab_add(struct kmem_cache * s)337 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)338 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
339 { return 0; }
340 #endif
341
342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
343 static void debugfs_slab_add(struct kmem_cache *);
344 #else
debugfs_slab_add(struct kmem_cache * s)345 static inline void debugfs_slab_add(struct kmem_cache *s) { }
346 #endif
347
348 enum stat_item {
349 ALLOC_FASTPATH, /* Allocation from cpu slab */
350 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
351 FREE_FASTPATH, /* Free to cpu slab */
352 FREE_SLOWPATH, /* Freeing not to cpu slab */
353 FREE_FROZEN, /* Freeing to frozen slab */
354 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
355 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
356 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
357 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
358 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
359 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
360 FREE_SLAB, /* Slab freed to the page allocator */
361 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
362 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
363 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
364 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
365 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
366 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
367 DEACTIVATE_BYPASS, /* Implicit deactivation */
368 ORDER_FALLBACK, /* Number of times fallback was necessary */
369 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
370 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
371 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
372 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
373 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
374 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
375 NR_SLUB_STAT_ITEMS
376 };
377
378 #ifndef CONFIG_SLUB_TINY
379 /*
380 * When changing the layout, make sure freelist and tid are still compatible
381 * with this_cpu_cmpxchg_double() alignment requirements.
382 */
383 struct kmem_cache_cpu {
384 union {
385 struct {
386 void **freelist; /* Pointer to next available object */
387 unsigned long tid; /* Globally unique transaction id */
388 };
389 freelist_aba_t freelist_tid;
390 };
391 struct slab *slab; /* The slab from which we are allocating */
392 #ifdef CONFIG_SLUB_CPU_PARTIAL
393 struct slab *partial; /* Partially allocated slabs */
394 #endif
395 local_lock_t lock; /* Protects the fields above */
396 #ifdef CONFIG_SLUB_STATS
397 unsigned int stat[NR_SLUB_STAT_ITEMS];
398 #endif
399 };
400 #endif /* CONFIG_SLUB_TINY */
401
stat(const struct kmem_cache * s,enum stat_item si)402 static inline void stat(const struct kmem_cache *s, enum stat_item si)
403 {
404 #ifdef CONFIG_SLUB_STATS
405 /*
406 * The rmw is racy on a preemptible kernel but this is acceptable, so
407 * avoid this_cpu_add()'s irq-disable overhead.
408 */
409 raw_cpu_inc(s->cpu_slab->stat[si]);
410 #endif
411 }
412
413 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)414 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
415 {
416 #ifdef CONFIG_SLUB_STATS
417 raw_cpu_add(s->cpu_slab->stat[si], v);
418 #endif
419 }
420
421 /*
422 * The slab lists for all objects.
423 */
424 struct kmem_cache_node {
425 spinlock_t list_lock;
426 unsigned long nr_partial;
427 struct list_head partial;
428 #ifdef CONFIG_SLUB_DEBUG
429 atomic_long_t nr_slabs;
430 atomic_long_t total_objects;
431 struct list_head full;
432 #endif
433 };
434
get_node(struct kmem_cache * s,int node)435 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
436 {
437 return s->node[node];
438 }
439
440 /*
441 * Iterator over all nodes. The body will be executed for each node that has
442 * a kmem_cache_node structure allocated (which is true for all online nodes)
443 */
444 #define for_each_kmem_cache_node(__s, __node, __n) \
445 for (__node = 0; __node < nr_node_ids; __node++) \
446 if ((__n = get_node(__s, __node)))
447
448 /*
449 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
450 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
451 * differ during memory hotplug/hotremove operations.
452 * Protected by slab_mutex.
453 */
454 static nodemask_t slab_nodes;
455
456 #ifndef CONFIG_SLUB_TINY
457 /*
458 * Workqueue used for flush_cpu_slab().
459 */
460 static struct workqueue_struct *flushwq;
461 #endif
462
463 /********************************************************************
464 * Core slab cache functions
465 *******************************************************************/
466
467 /*
468 * Returns freelist pointer (ptr). With hardening, this is obfuscated
469 * with an XOR of the address where the pointer is held and a per-cache
470 * random number.
471 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)472 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
473 void *ptr, unsigned long ptr_addr)
474 {
475 unsigned long encoded;
476
477 #ifdef CONFIG_SLAB_FREELIST_HARDENED
478 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
479 #else
480 encoded = (unsigned long)ptr;
481 #endif
482 return (freeptr_t){.v = encoded};
483 }
484
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)485 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
486 freeptr_t ptr, unsigned long ptr_addr)
487 {
488 void *decoded;
489
490 #ifdef CONFIG_SLAB_FREELIST_HARDENED
491 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
492 #else
493 decoded = (void *)ptr.v;
494 #endif
495 return decoded;
496 }
497
get_freepointer(struct kmem_cache * s,void * object)498 static inline void *get_freepointer(struct kmem_cache *s, void *object)
499 {
500 unsigned long ptr_addr;
501 freeptr_t p;
502
503 object = kasan_reset_tag(object);
504 ptr_addr = (unsigned long)object + s->offset;
505 p = *(freeptr_t *)(ptr_addr);
506 return freelist_ptr_decode(s, p, ptr_addr);
507 }
508
509 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)510 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
511 {
512 prefetchw(object + s->offset);
513 }
514 #endif
515
516 /*
517 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
518 * pointer value in the case the current thread loses the race for the next
519 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
520 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
521 * KMSAN will still check all arguments of cmpxchg because of imperfect
522 * handling of inline assembly.
523 * To work around this problem, we apply __no_kmsan_checks to ensure that
524 * get_freepointer_safe() returns initialized memory.
525 */
526 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)527 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
528 {
529 unsigned long freepointer_addr;
530 freeptr_t p;
531
532 if (!debug_pagealloc_enabled_static())
533 return get_freepointer(s, object);
534
535 object = kasan_reset_tag(object);
536 freepointer_addr = (unsigned long)object + s->offset;
537 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
538 return freelist_ptr_decode(s, p, freepointer_addr);
539 }
540
set_freepointer(struct kmem_cache * s,void * object,void * fp)541 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
542 {
543 unsigned long freeptr_addr = (unsigned long)object + s->offset;
544
545 #ifdef CONFIG_SLAB_FREELIST_HARDENED
546 BUG_ON(object == fp); /* naive detection of double free or corruption */
547 #endif
548
549 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
550 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
551 }
552
553 /*
554 * See comment in calculate_sizes().
555 */
freeptr_outside_object(struct kmem_cache * s)556 static inline bool freeptr_outside_object(struct kmem_cache *s)
557 {
558 return s->offset >= s->inuse;
559 }
560
561 /*
562 * Return offset of the end of info block which is inuse + free pointer if
563 * not overlapping with object.
564 */
get_info_end(struct kmem_cache * s)565 static inline unsigned int get_info_end(struct kmem_cache *s)
566 {
567 if (freeptr_outside_object(s))
568 return s->inuse + sizeof(void *);
569 else
570 return s->inuse;
571 }
572
573 /* Loop over all objects in a slab */
574 #define for_each_object(__p, __s, __addr, __objects) \
575 for (__p = fixup_red_left(__s, __addr); \
576 __p < (__addr) + (__objects) * (__s)->size; \
577 __p += (__s)->size)
578
order_objects(unsigned int order,unsigned int size)579 static inline unsigned int order_objects(unsigned int order, unsigned int size)
580 {
581 return ((unsigned int)PAGE_SIZE << order) / size;
582 }
583
oo_make(unsigned int order,unsigned int size)584 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
585 unsigned int size)
586 {
587 struct kmem_cache_order_objects x = {
588 (order << OO_SHIFT) + order_objects(order, size)
589 };
590
591 return x;
592 }
593
oo_order(struct kmem_cache_order_objects x)594 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
595 {
596 return x.x >> OO_SHIFT;
597 }
598
oo_objects(struct kmem_cache_order_objects x)599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
600 {
601 return x.x & OO_MASK;
602 }
603
604 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)605 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
606 {
607 unsigned int nr_slabs;
608
609 s->cpu_partial = nr_objects;
610
611 /*
612 * We take the number of objects but actually limit the number of
613 * slabs on the per cpu partial list, in order to limit excessive
614 * growth of the list. For simplicity we assume that the slabs will
615 * be half-full.
616 */
617 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
618 s->cpu_partial_slabs = nr_slabs;
619 }
620
slub_get_cpu_partial(struct kmem_cache * s)621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
622 {
623 return s->cpu_partial_slabs;
624 }
625 #else
626 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)627 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
628 {
629 }
630
slub_get_cpu_partial(struct kmem_cache * s)631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
632 {
633 return 0;
634 }
635 #endif /* CONFIG_SLUB_CPU_PARTIAL */
636
637 /*
638 * Per slab locking using the pagelock
639 */
slab_lock(struct slab * slab)640 static __always_inline void slab_lock(struct slab *slab)
641 {
642 bit_spin_lock(PG_locked, &slab->__page_flags);
643 }
644
slab_unlock(struct slab * slab)645 static __always_inline void slab_unlock(struct slab *slab)
646 {
647 bit_spin_unlock(PG_locked, &slab->__page_flags);
648 }
649
650 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)651 __update_freelist_fast(struct slab *slab,
652 void *freelist_old, unsigned long counters_old,
653 void *freelist_new, unsigned long counters_new)
654 {
655 #ifdef system_has_freelist_aba
656 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
657 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
658
659 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
660 #else
661 return false;
662 #endif
663 }
664
665 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)666 __update_freelist_slow(struct slab *slab,
667 void *freelist_old, unsigned long counters_old,
668 void *freelist_new, unsigned long counters_new)
669 {
670 bool ret = false;
671
672 slab_lock(slab);
673 if (slab->freelist == freelist_old &&
674 slab->counters == counters_old) {
675 slab->freelist = freelist_new;
676 slab->counters = counters_new;
677 ret = true;
678 }
679 slab_unlock(slab);
680
681 return ret;
682 }
683
684 /*
685 * Interrupts must be disabled (for the fallback code to work right), typically
686 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
687 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
688 * allocation/ free operation in hardirq context. Therefore nothing can
689 * interrupt the operation.
690 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)691 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
692 void *freelist_old, unsigned long counters_old,
693 void *freelist_new, unsigned long counters_new,
694 const char *n)
695 {
696 bool ret;
697
698 if (USE_LOCKLESS_FAST_PATH())
699 lockdep_assert_irqs_disabled();
700
701 if (s->flags & __CMPXCHG_DOUBLE) {
702 ret = __update_freelist_fast(slab, freelist_old, counters_old,
703 freelist_new, counters_new);
704 } else {
705 ret = __update_freelist_slow(slab, freelist_old, counters_old,
706 freelist_new, counters_new);
707 }
708 if (likely(ret))
709 return true;
710
711 cpu_relax();
712 stat(s, CMPXCHG_DOUBLE_FAIL);
713
714 #ifdef SLUB_DEBUG_CMPXCHG
715 pr_info("%s %s: cmpxchg double redo ", n, s->name);
716 #endif
717
718 return false;
719 }
720
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)721 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
722 void *freelist_old, unsigned long counters_old,
723 void *freelist_new, unsigned long counters_new,
724 const char *n)
725 {
726 bool ret;
727
728 if (s->flags & __CMPXCHG_DOUBLE) {
729 ret = __update_freelist_fast(slab, freelist_old, counters_old,
730 freelist_new, counters_new);
731 } else {
732 unsigned long flags;
733
734 local_irq_save(flags);
735 ret = __update_freelist_slow(slab, freelist_old, counters_old,
736 freelist_new, counters_new);
737 local_irq_restore(flags);
738 }
739 if (likely(ret))
740 return true;
741
742 cpu_relax();
743 stat(s, CMPXCHG_DOUBLE_FAIL);
744
745 #ifdef SLUB_DEBUG_CMPXCHG
746 pr_info("%s %s: cmpxchg double redo ", n, s->name);
747 #endif
748
749 return false;
750 }
751
752 /*
753 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
754 * family will round up the real request size to these fixed ones, so
755 * there could be an extra area than what is requested. Save the original
756 * request size in the meta data area, for better debug and sanity check.
757 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)758 static inline void set_orig_size(struct kmem_cache *s,
759 void *object, unsigned int orig_size)
760 {
761 void *p = kasan_reset_tag(object);
762
763 if (!slub_debug_orig_size(s))
764 return;
765
766 p += get_info_end(s);
767 p += sizeof(struct track) * 2;
768
769 *(unsigned int *)p = orig_size;
770 }
771
get_orig_size(struct kmem_cache * s,void * object)772 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
773 {
774 void *p = kasan_reset_tag(object);
775
776 if (is_kfence_address(object))
777 return kfence_ksize(object);
778
779 if (!slub_debug_orig_size(s))
780 return s->object_size;
781
782 p += get_info_end(s);
783 p += sizeof(struct track) * 2;
784
785 return *(unsigned int *)p;
786 }
787
788 #ifdef CONFIG_SLUB_DEBUG
789 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
790 static DEFINE_SPINLOCK(object_map_lock);
791
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)792 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
793 struct slab *slab)
794 {
795 void *addr = slab_address(slab);
796 void *p;
797
798 bitmap_zero(obj_map, slab->objects);
799
800 for (p = slab->freelist; p; p = get_freepointer(s, p))
801 set_bit(__obj_to_index(s, addr, p), obj_map);
802 }
803
804 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)805 static bool slab_add_kunit_errors(void)
806 {
807 struct kunit_resource *resource;
808
809 if (!kunit_get_current_test())
810 return false;
811
812 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
813 if (!resource)
814 return false;
815
816 (*(int *)resource->data)++;
817 kunit_put_resource(resource);
818 return true;
819 }
820
slab_in_kunit_test(void)821 bool slab_in_kunit_test(void)
822 {
823 struct kunit_resource *resource;
824
825 if (!kunit_get_current_test())
826 return false;
827
828 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
829 if (!resource)
830 return false;
831
832 kunit_put_resource(resource);
833 return true;
834 }
835 #else
slab_add_kunit_errors(void)836 static inline bool slab_add_kunit_errors(void) { return false; }
837 #endif
838
size_from_object(struct kmem_cache * s)839 static inline unsigned int size_from_object(struct kmem_cache *s)
840 {
841 if (s->flags & SLAB_RED_ZONE)
842 return s->size - s->red_left_pad;
843
844 return s->size;
845 }
846
restore_red_left(struct kmem_cache * s,void * p)847 static inline void *restore_red_left(struct kmem_cache *s, void *p)
848 {
849 if (s->flags & SLAB_RED_ZONE)
850 p -= s->red_left_pad;
851
852 return p;
853 }
854
855 /*
856 * Debug settings:
857 */
858 #if defined(CONFIG_SLUB_DEBUG_ON)
859 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
860 #else
861 static slab_flags_t slub_debug;
862 #endif
863
864 static char *slub_debug_string;
865 static int disable_higher_order_debug;
866
867 /*
868 * slub is about to manipulate internal object metadata. This memory lies
869 * outside the range of the allocated object, so accessing it would normally
870 * be reported by kasan as a bounds error. metadata_access_enable() is used
871 * to tell kasan that these accesses are OK.
872 */
metadata_access_enable(void)873 static inline void metadata_access_enable(void)
874 {
875 kasan_disable_current();
876 kmsan_disable_current();
877 }
878
metadata_access_disable(void)879 static inline void metadata_access_disable(void)
880 {
881 kmsan_enable_current();
882 kasan_enable_current();
883 }
884
885 /*
886 * Object debugging
887 */
888
889 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)890 static inline int check_valid_pointer(struct kmem_cache *s,
891 struct slab *slab, void *object)
892 {
893 void *base;
894
895 if (!object)
896 return 1;
897
898 base = slab_address(slab);
899 object = kasan_reset_tag(object);
900 object = restore_red_left(s, object);
901 if (object < base || object >= base + slab->objects * s->size ||
902 (object - base) % s->size) {
903 return 0;
904 }
905
906 return 1;
907 }
908
print_section(char * level,char * text,u8 * addr,unsigned int length)909 static void print_section(char *level, char *text, u8 *addr,
910 unsigned int length)
911 {
912 metadata_access_enable();
913 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
914 16, 1, kasan_reset_tag((void *)addr), length, 1);
915 metadata_access_disable();
916 }
917
get_track(struct kmem_cache * s,void * object,enum track_item alloc)918 static struct track *get_track(struct kmem_cache *s, void *object,
919 enum track_item alloc)
920 {
921 struct track *p;
922
923 p = object + get_info_end(s);
924
925 return kasan_reset_tag(p + alloc);
926 }
927
928 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)929 static noinline depot_stack_handle_t set_track_prepare(void)
930 {
931 depot_stack_handle_t handle;
932 unsigned long entries[TRACK_ADDRS_COUNT];
933 unsigned int nr_entries;
934
935 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
936 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
937
938 return handle;
939 }
940 #else
set_track_prepare(void)941 static inline depot_stack_handle_t set_track_prepare(void)
942 {
943 return 0;
944 }
945 #endif
946
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)947 static void set_track_update(struct kmem_cache *s, void *object,
948 enum track_item alloc, unsigned long addr,
949 depot_stack_handle_t handle)
950 {
951 struct track *p = get_track(s, object, alloc);
952
953 #ifdef CONFIG_STACKDEPOT
954 p->handle = handle;
955 #endif
956 p->addr = addr;
957 p->cpu = smp_processor_id();
958 p->pid = current->pid;
959 p->when = jiffies;
960 }
961
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)962 static __always_inline void set_track(struct kmem_cache *s, void *object,
963 enum track_item alloc, unsigned long addr)
964 {
965 depot_stack_handle_t handle = set_track_prepare();
966
967 set_track_update(s, object, alloc, addr, handle);
968 }
969
init_tracking(struct kmem_cache * s,void * object)970 static void init_tracking(struct kmem_cache *s, void *object)
971 {
972 struct track *p;
973
974 if (!(s->flags & SLAB_STORE_USER))
975 return;
976
977 p = get_track(s, object, TRACK_ALLOC);
978 memset(p, 0, 2*sizeof(struct track));
979 }
980
print_track(const char * s,struct track * t,unsigned long pr_time)981 static void print_track(const char *s, struct track *t, unsigned long pr_time)
982 {
983 depot_stack_handle_t handle __maybe_unused;
984
985 if (!t->addr)
986 return;
987
988 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
989 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
990 #ifdef CONFIG_STACKDEPOT
991 handle = READ_ONCE(t->handle);
992 if (handle)
993 stack_depot_print(handle);
994 else
995 pr_err("object allocation/free stack trace missing\n");
996 #endif
997 }
998
print_tracking(struct kmem_cache * s,void * object)999 void print_tracking(struct kmem_cache *s, void *object)
1000 {
1001 unsigned long pr_time = jiffies;
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
1005 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1006 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1007 }
1008
print_slab_info(const struct slab * slab)1009 static void print_slab_info(const struct slab *slab)
1010 {
1011 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1012 slab, slab->objects, slab->inuse, slab->freelist,
1013 &slab->__page_flags);
1014 }
1015
skip_orig_size_check(struct kmem_cache * s,const void * object)1016 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 {
1018 set_orig_size(s, (void *)object, s->object_size);
1019 }
1020
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1021 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1022 {
1023 struct va_format vaf;
1024 va_list args;
1025
1026 va_copy(args, argsp);
1027 vaf.fmt = fmt;
1028 vaf.va = &args;
1029 pr_err("=============================================================================\n");
1030 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1031 pr_err("-----------------------------------------------------------------------------\n\n");
1032 va_end(args);
1033 }
1034
slab_bug(struct kmem_cache * s,const char * fmt,...)1035 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1036 {
1037 va_list args;
1038
1039 va_start(args, fmt);
1040 __slab_bug(s, fmt, args);
1041 va_end(args);
1042 }
1043
1044 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1045 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1046 {
1047 struct va_format vaf;
1048 va_list args;
1049
1050 if (slab_add_kunit_errors())
1051 return;
1052
1053 va_start(args, fmt);
1054 vaf.fmt = fmt;
1055 vaf.va = &args;
1056 pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 va_end(args);
1058 }
1059
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1061 {
1062 unsigned int off; /* Offset of last byte */
1063 u8 *addr = slab_address(slab);
1064
1065 print_tracking(s, p);
1066
1067 print_slab_info(slab);
1068
1069 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 p, p - addr, get_freepointer(s, p));
1071
1072 if (s->flags & SLAB_RED_ZONE)
1073 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1074 s->red_left_pad);
1075 else if (p > addr + 16)
1076 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1077
1078 print_section(KERN_ERR, "Object ", p,
1079 min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 if (s->flags & SLAB_RED_ZONE)
1081 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1082 s->inuse - s->object_size);
1083
1084 off = get_info_end(s);
1085
1086 if (s->flags & SLAB_STORE_USER)
1087 off += 2 * sizeof(struct track);
1088
1089 if (slub_debug_orig_size(s))
1090 off += sizeof(unsigned int);
1091
1092 off += kasan_metadata_size(s, false);
1093
1094 if (off != size_from_object(s))
1095 /* Beginning of the filler is the free pointer */
1096 print_section(KERN_ERR, "Padding ", p + off,
1097 size_from_object(s) - off);
1098 }
1099
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1100 static void object_err(struct kmem_cache *s, struct slab *slab,
1101 u8 *object, const char *reason)
1102 {
1103 if (slab_add_kunit_errors())
1104 return;
1105
1106 slab_bug(s, reason);
1107 print_trailer(s, slab, object);
1108 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1109
1110 WARN_ON(1);
1111 }
1112
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 void **freelist, void *nextfree)
1115 {
1116 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 object_err(s, slab, *freelist, "Freechain corrupt");
1119 *freelist = NULL;
1120 slab_fix(s, "Isolate corrupted freechain");
1121 return true;
1122 }
1123
1124 return false;
1125 }
1126
__slab_err(struct slab * slab)1127 static void __slab_err(struct slab *slab)
1128 {
1129 if (slab_in_kunit_test())
1130 return;
1131
1132 print_slab_info(slab);
1133 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1134
1135 WARN_ON(1);
1136 }
1137
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1138 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1139 const char *fmt, ...)
1140 {
1141 va_list args;
1142
1143 if (slab_add_kunit_errors())
1144 return;
1145
1146 va_start(args, fmt);
1147 __slab_bug(s, fmt, args);
1148 va_end(args);
1149
1150 __slab_err(slab);
1151 }
1152
init_object(struct kmem_cache * s,void * object,u8 val)1153 static void init_object(struct kmem_cache *s, void *object, u8 val)
1154 {
1155 u8 *p = kasan_reset_tag(object);
1156 unsigned int poison_size = s->object_size;
1157
1158 if (s->flags & SLAB_RED_ZONE) {
1159 /*
1160 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1161 * the shadow makes it possible to distinguish uninit-value
1162 * from use-after-free.
1163 */
1164 memset_no_sanitize_memory(p - s->red_left_pad, val,
1165 s->red_left_pad);
1166
1167 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1168 /*
1169 * Redzone the extra allocated space by kmalloc than
1170 * requested, and the poison size will be limited to
1171 * the original request size accordingly.
1172 */
1173 poison_size = get_orig_size(s, object);
1174 }
1175 }
1176
1177 if (s->flags & __OBJECT_POISON) {
1178 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1179 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1180 }
1181
1182 if (s->flags & SLAB_RED_ZONE)
1183 memset_no_sanitize_memory(p + poison_size, val,
1184 s->inuse - poison_size);
1185 }
1186
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1187 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1188 void *from, void *to)
1189 {
1190 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1191 memset(from, data, to - from);
1192 }
1193
1194 #ifdef CONFIG_KMSAN
1195 #define pad_check_attributes noinline __no_kmsan_checks
1196 #else
1197 #define pad_check_attributes
1198 #endif
1199
1200 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1201 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1202 u8 *object, const char *what, u8 *start, unsigned int value,
1203 unsigned int bytes, bool slab_obj_print)
1204 {
1205 u8 *fault;
1206 u8 *end;
1207 u8 *addr = slab_address(slab);
1208
1209 metadata_access_enable();
1210 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1211 metadata_access_disable();
1212 if (!fault)
1213 return 1;
1214
1215 end = start + bytes;
1216 while (end > fault && end[-1] == value)
1217 end--;
1218
1219 if (slab_add_kunit_errors())
1220 goto skip_bug_print;
1221
1222 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 what, fault, end - 1, fault - addr, fault[0], value);
1224
1225 if (slab_obj_print)
1226 object_err(s, slab, object, "Object corrupt");
1227
1228 skip_bug_print:
1229 restore_bytes(s, what, value, fault, end);
1230 return 0;
1231 }
1232
1233 /*
1234 * Object layout:
1235 *
1236 * object address
1237 * Bytes of the object to be managed.
1238 * If the freepointer may overlay the object then the free
1239 * pointer is at the middle of the object.
1240 *
1241 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1242 * 0xa5 (POISON_END)
1243 *
1244 * object + s->object_size
1245 * Padding to reach word boundary. This is also used for Redzoning.
1246 * Padding is extended by another word if Redzoning is enabled and
1247 * object_size == inuse.
1248 *
1249 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1250 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1251 *
1252 * object + s->inuse
1253 * Meta data starts here.
1254 *
1255 * A. Free pointer (if we cannot overwrite object on free)
1256 * B. Tracking data for SLAB_STORE_USER
1257 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1258 * D. Padding to reach required alignment boundary or at minimum
1259 * one word if debugging is on to be able to detect writes
1260 * before the word boundary.
1261 *
1262 * Padding is done using 0x5a (POISON_INUSE)
1263 *
1264 * object + s->size
1265 * Nothing is used beyond s->size.
1266 *
1267 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1268 * ignored. And therefore no slab options that rely on these boundaries
1269 * may be used with merged slabcaches.
1270 */
1271
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1272 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1273 {
1274 unsigned long off = get_info_end(s); /* The end of info */
1275
1276 if (s->flags & SLAB_STORE_USER) {
1277 /* We also have user information there */
1278 off += 2 * sizeof(struct track);
1279
1280 if (s->flags & SLAB_KMALLOC)
1281 off += sizeof(unsigned int);
1282 }
1283
1284 off += kasan_metadata_size(s, false);
1285
1286 if (size_from_object(s) == off)
1287 return 1;
1288
1289 return check_bytes_and_report(s, slab, p, "Object padding",
1290 p + off, POISON_INUSE, size_from_object(s) - off, true);
1291 }
1292
1293 /* Check the pad bytes at the end of a slab page */
1294 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1295 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1296 {
1297 u8 *start;
1298 u8 *fault;
1299 u8 *end;
1300 u8 *pad;
1301 int length;
1302 int remainder;
1303
1304 if (!(s->flags & SLAB_POISON))
1305 return;
1306
1307 start = slab_address(slab);
1308 length = slab_size(slab);
1309 end = start + length;
1310 remainder = length % s->size;
1311 if (!remainder)
1312 return;
1313
1314 pad = end - remainder;
1315 metadata_access_enable();
1316 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1317 metadata_access_disable();
1318 if (!fault)
1319 return;
1320 while (end > fault && end[-1] == POISON_INUSE)
1321 end--;
1322
1323 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1324 fault, end - 1, fault - start);
1325 print_section(KERN_ERR, "Padding ", pad, remainder);
1326 __slab_err(slab);
1327
1328 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1329 }
1330
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1331 static int check_object(struct kmem_cache *s, struct slab *slab,
1332 void *object, u8 val)
1333 {
1334 u8 *p = object;
1335 u8 *endobject = object + s->object_size;
1336 unsigned int orig_size, kasan_meta_size;
1337 int ret = 1;
1338
1339 if (s->flags & SLAB_RED_ZONE) {
1340 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1341 object - s->red_left_pad, val, s->red_left_pad, ret))
1342 ret = 0;
1343
1344 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1345 endobject, val, s->inuse - s->object_size, ret))
1346 ret = 0;
1347
1348 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1349 orig_size = get_orig_size(s, object);
1350
1351 if (s->object_size > orig_size &&
1352 !check_bytes_and_report(s, slab, object,
1353 "kmalloc Redzone", p + orig_size,
1354 val, s->object_size - orig_size, ret)) {
1355 ret = 0;
1356 }
1357 }
1358 } else {
1359 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1360 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1361 endobject, POISON_INUSE,
1362 s->inuse - s->object_size, ret))
1363 ret = 0;
1364 }
1365 }
1366
1367 if (s->flags & SLAB_POISON) {
1368 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1369 /*
1370 * KASAN can save its free meta data inside of the
1371 * object at offset 0. Thus, skip checking the part of
1372 * the redzone that overlaps with the meta data.
1373 */
1374 kasan_meta_size = kasan_metadata_size(s, true);
1375 if (kasan_meta_size < s->object_size - 1 &&
1376 !check_bytes_and_report(s, slab, p, "Poison",
1377 p + kasan_meta_size, POISON_FREE,
1378 s->object_size - kasan_meta_size - 1, ret))
1379 ret = 0;
1380 if (kasan_meta_size < s->object_size &&
1381 !check_bytes_and_report(s, slab, p, "End Poison",
1382 p + s->object_size - 1, POISON_END, 1, ret))
1383 ret = 0;
1384 }
1385 /*
1386 * check_pad_bytes cleans up on its own.
1387 */
1388 if (!check_pad_bytes(s, slab, p))
1389 ret = 0;
1390 }
1391
1392 /*
1393 * Cannot check freepointer while object is allocated if
1394 * object and freepointer overlap.
1395 */
1396 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1397 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1398 object_err(s, slab, p, "Freepointer corrupt");
1399 /*
1400 * No choice but to zap it and thus lose the remainder
1401 * of the free objects in this slab. May cause
1402 * another error because the object count is now wrong.
1403 */
1404 set_freepointer(s, p, NULL);
1405 ret = 0;
1406 }
1407
1408 return ret;
1409 }
1410
check_slab(struct kmem_cache * s,struct slab * slab)1411 static int check_slab(struct kmem_cache *s, struct slab *slab)
1412 {
1413 int maxobj;
1414
1415 if (!folio_test_slab(slab_folio(slab))) {
1416 slab_err(s, slab, "Not a valid slab page");
1417 return 0;
1418 }
1419
1420 maxobj = order_objects(slab_order(slab), s->size);
1421 if (slab->objects > maxobj) {
1422 slab_err(s, slab, "objects %u > max %u",
1423 slab->objects, maxobj);
1424 return 0;
1425 }
1426 if (slab->inuse > slab->objects) {
1427 slab_err(s, slab, "inuse %u > max %u",
1428 slab->inuse, slab->objects);
1429 return 0;
1430 }
1431 if (slab->frozen) {
1432 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1433 return 0;
1434 }
1435
1436 /* Slab_pad_check fixes things up after itself */
1437 slab_pad_check(s, slab);
1438 return 1;
1439 }
1440
1441 /*
1442 * Determine if a certain object in a slab is on the freelist. Must hold the
1443 * slab lock to guarantee that the chains are in a consistent state.
1444 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1445 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1446 {
1447 int nr = 0;
1448 void *fp;
1449 void *object = NULL;
1450 int max_objects;
1451
1452 fp = slab->freelist;
1453 while (fp && nr <= slab->objects) {
1454 if (fp == search)
1455 return true;
1456 if (!check_valid_pointer(s, slab, fp)) {
1457 if (object) {
1458 object_err(s, slab, object,
1459 "Freechain corrupt");
1460 set_freepointer(s, object, NULL);
1461 break;
1462 } else {
1463 slab_err(s, slab, "Freepointer corrupt");
1464 slab->freelist = NULL;
1465 slab->inuse = slab->objects;
1466 slab_fix(s, "Freelist cleared");
1467 return false;
1468 }
1469 }
1470 object = fp;
1471 fp = get_freepointer(s, object);
1472 nr++;
1473 }
1474
1475 if (nr > slab->objects) {
1476 slab_err(s, slab, "Freelist cycle detected");
1477 slab->freelist = NULL;
1478 slab->inuse = slab->objects;
1479 slab_fix(s, "Freelist cleared");
1480 return false;
1481 }
1482
1483 max_objects = order_objects(slab_order(slab), s->size);
1484 if (max_objects > MAX_OBJS_PER_PAGE)
1485 max_objects = MAX_OBJS_PER_PAGE;
1486
1487 if (slab->objects != max_objects) {
1488 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1489 slab->objects, max_objects);
1490 slab->objects = max_objects;
1491 slab_fix(s, "Number of objects adjusted");
1492 }
1493 if (slab->inuse != slab->objects - nr) {
1494 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1495 slab->inuse, slab->objects - nr);
1496 slab->inuse = slab->objects - nr;
1497 slab_fix(s, "Object count adjusted");
1498 }
1499 return search == NULL;
1500 }
1501
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1502 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1503 int alloc)
1504 {
1505 if (s->flags & SLAB_TRACE) {
1506 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1507 s->name,
1508 alloc ? "alloc" : "free",
1509 object, slab->inuse,
1510 slab->freelist);
1511
1512 if (!alloc)
1513 print_section(KERN_INFO, "Object ", (void *)object,
1514 s->object_size);
1515
1516 dump_stack();
1517 }
1518 }
1519
1520 /*
1521 * Tracking of fully allocated slabs for debugging purposes.
1522 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1523 static void add_full(struct kmem_cache *s,
1524 struct kmem_cache_node *n, struct slab *slab)
1525 {
1526 if (!(s->flags & SLAB_STORE_USER))
1527 return;
1528
1529 lockdep_assert_held(&n->list_lock);
1530 list_add(&slab->slab_list, &n->full);
1531 }
1532
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1533 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1534 {
1535 if (!(s->flags & SLAB_STORE_USER))
1536 return;
1537
1538 lockdep_assert_held(&n->list_lock);
1539 list_del(&slab->slab_list);
1540 }
1541
node_nr_slabs(struct kmem_cache_node * n)1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1543 {
1544 return atomic_long_read(&n->nr_slabs);
1545 }
1546
inc_slabs_node(struct kmem_cache * s,int node,int objects)1547 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1548 {
1549 struct kmem_cache_node *n = get_node(s, node);
1550
1551 atomic_long_inc(&n->nr_slabs);
1552 atomic_long_add(objects, &n->total_objects);
1553 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1554 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1555 {
1556 struct kmem_cache_node *n = get_node(s, node);
1557
1558 atomic_long_dec(&n->nr_slabs);
1559 atomic_long_sub(objects, &n->total_objects);
1560 }
1561
1562 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1563 static void setup_object_debug(struct kmem_cache *s, void *object)
1564 {
1565 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1566 return;
1567
1568 init_object(s, object, SLUB_RED_INACTIVE);
1569 init_tracking(s, object);
1570 }
1571
1572 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1573 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1574 {
1575 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1576 return;
1577
1578 metadata_access_enable();
1579 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1580 metadata_access_disable();
1581 }
1582
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1583 static inline int alloc_consistency_checks(struct kmem_cache *s,
1584 struct slab *slab, void *object)
1585 {
1586 if (!check_slab(s, slab))
1587 return 0;
1588
1589 if (!check_valid_pointer(s, slab, object)) {
1590 object_err(s, slab, object, "Freelist Pointer check fails");
1591 return 0;
1592 }
1593
1594 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1595 return 0;
1596
1597 return 1;
1598 }
1599
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1600 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1601 struct slab *slab, void *object, int orig_size)
1602 {
1603 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1604 if (!alloc_consistency_checks(s, slab, object))
1605 goto bad;
1606 }
1607
1608 /* Success. Perform special debug activities for allocs */
1609 trace(s, slab, object, 1);
1610 set_orig_size(s, object, orig_size);
1611 init_object(s, object, SLUB_RED_ACTIVE);
1612 return true;
1613
1614 bad:
1615 if (folio_test_slab(slab_folio(slab))) {
1616 /*
1617 * If this is a slab page then lets do the best we can
1618 * to avoid issues in the future. Marking all objects
1619 * as used avoids touching the remaining objects.
1620 */
1621 slab_fix(s, "Marking all objects used");
1622 slab->inuse = slab->objects;
1623 slab->freelist = NULL;
1624 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1625 }
1626 return false;
1627 }
1628
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1629 static inline int free_consistency_checks(struct kmem_cache *s,
1630 struct slab *slab, void *object, unsigned long addr)
1631 {
1632 if (!check_valid_pointer(s, slab, object)) {
1633 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1634 return 0;
1635 }
1636
1637 if (on_freelist(s, slab, object)) {
1638 object_err(s, slab, object, "Object already free");
1639 return 0;
1640 }
1641
1642 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1643 return 0;
1644
1645 if (unlikely(s != slab->slab_cache)) {
1646 if (!folio_test_slab(slab_folio(slab))) {
1647 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1648 object);
1649 } else if (!slab->slab_cache) {
1650 slab_err(NULL, slab, "No slab cache for object 0x%p",
1651 object);
1652 } else {
1653 object_err(s, slab, object,
1654 "page slab pointer corrupt.");
1655 }
1656 return 0;
1657 }
1658 return 1;
1659 }
1660
1661 /*
1662 * Parse a block of slab_debug options. Blocks are delimited by ';'
1663 *
1664 * @str: start of block
1665 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1666 * @slabs: return start of list of slabs, or NULL when there's no list
1667 * @init: assume this is initial parsing and not per-kmem-create parsing
1668 *
1669 * returns the start of next block if there's any, or NULL
1670 */
1671 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1672 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1673 {
1674 bool higher_order_disable = false;
1675
1676 /* Skip any completely empty blocks */
1677 while (*str && *str == ';')
1678 str++;
1679
1680 if (*str == ',') {
1681 /*
1682 * No options but restriction on slabs. This means full
1683 * debugging for slabs matching a pattern.
1684 */
1685 *flags = DEBUG_DEFAULT_FLAGS;
1686 goto check_slabs;
1687 }
1688 *flags = 0;
1689
1690 /* Determine which debug features should be switched on */
1691 for (; *str && *str != ',' && *str != ';'; str++) {
1692 switch (tolower(*str)) {
1693 case '-':
1694 *flags = 0;
1695 break;
1696 case 'f':
1697 *flags |= SLAB_CONSISTENCY_CHECKS;
1698 break;
1699 case 'z':
1700 *flags |= SLAB_RED_ZONE;
1701 break;
1702 case 'p':
1703 *flags |= SLAB_POISON;
1704 break;
1705 case 'u':
1706 *flags |= SLAB_STORE_USER;
1707 break;
1708 case 't':
1709 *flags |= SLAB_TRACE;
1710 break;
1711 case 'a':
1712 *flags |= SLAB_FAILSLAB;
1713 break;
1714 case 'o':
1715 /*
1716 * Avoid enabling debugging on caches if its minimum
1717 * order would increase as a result.
1718 */
1719 higher_order_disable = true;
1720 break;
1721 default:
1722 if (init)
1723 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1724 }
1725 }
1726 check_slabs:
1727 if (*str == ',')
1728 *slabs = ++str;
1729 else
1730 *slabs = NULL;
1731
1732 /* Skip over the slab list */
1733 while (*str && *str != ';')
1734 str++;
1735
1736 /* Skip any completely empty blocks */
1737 while (*str && *str == ';')
1738 str++;
1739
1740 if (init && higher_order_disable)
1741 disable_higher_order_debug = 1;
1742
1743 if (*str)
1744 return str;
1745 else
1746 return NULL;
1747 }
1748
setup_slub_debug(char * str)1749 static int __init setup_slub_debug(char *str)
1750 {
1751 slab_flags_t flags;
1752 slab_flags_t global_flags;
1753 char *saved_str;
1754 char *slab_list;
1755 bool global_slub_debug_changed = false;
1756 bool slab_list_specified = false;
1757
1758 global_flags = DEBUG_DEFAULT_FLAGS;
1759 if (*str++ != '=' || !*str)
1760 /*
1761 * No options specified. Switch on full debugging.
1762 */
1763 goto out;
1764
1765 saved_str = str;
1766 while (str) {
1767 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1768
1769 if (!slab_list) {
1770 global_flags = flags;
1771 global_slub_debug_changed = true;
1772 } else {
1773 slab_list_specified = true;
1774 if (flags & SLAB_STORE_USER)
1775 stack_depot_request_early_init();
1776 }
1777 }
1778
1779 /*
1780 * For backwards compatibility, a single list of flags with list of
1781 * slabs means debugging is only changed for those slabs, so the global
1782 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1783 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1784 * long as there is no option specifying flags without a slab list.
1785 */
1786 if (slab_list_specified) {
1787 if (!global_slub_debug_changed)
1788 global_flags = slub_debug;
1789 slub_debug_string = saved_str;
1790 }
1791 out:
1792 slub_debug = global_flags;
1793 if (slub_debug & SLAB_STORE_USER)
1794 stack_depot_request_early_init();
1795 if (slub_debug != 0 || slub_debug_string)
1796 static_branch_enable(&slub_debug_enabled);
1797 else
1798 static_branch_disable(&slub_debug_enabled);
1799 if ((static_branch_unlikely(&init_on_alloc) ||
1800 static_branch_unlikely(&init_on_free)) &&
1801 (slub_debug & SLAB_POISON))
1802 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1803 return 1;
1804 }
1805
1806 __setup("slab_debug", setup_slub_debug);
1807 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1808
1809 /*
1810 * kmem_cache_flags - apply debugging options to the cache
1811 * @flags: flags to set
1812 * @name: name of the cache
1813 *
1814 * Debug option(s) are applied to @flags. In addition to the debug
1815 * option(s), if a slab name (or multiple) is specified i.e.
1816 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1817 * then only the select slabs will receive the debug option(s).
1818 */
kmem_cache_flags(slab_flags_t flags,const char * name)1819 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1820 {
1821 char *iter;
1822 size_t len;
1823 char *next_block;
1824 slab_flags_t block_flags;
1825 slab_flags_t slub_debug_local = slub_debug;
1826
1827 if (flags & SLAB_NO_USER_FLAGS)
1828 return flags;
1829
1830 /*
1831 * If the slab cache is for debugging (e.g. kmemleak) then
1832 * don't store user (stack trace) information by default,
1833 * but let the user enable it via the command line below.
1834 */
1835 if (flags & SLAB_NOLEAKTRACE)
1836 slub_debug_local &= ~SLAB_STORE_USER;
1837
1838 len = strlen(name);
1839 next_block = slub_debug_string;
1840 /* Go through all blocks of debug options, see if any matches our slab's name */
1841 while (next_block) {
1842 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1843 if (!iter)
1844 continue;
1845 /* Found a block that has a slab list, search it */
1846 while (*iter) {
1847 char *end, *glob;
1848 size_t cmplen;
1849
1850 end = strchrnul(iter, ',');
1851 if (next_block && next_block < end)
1852 end = next_block - 1;
1853
1854 glob = strnchr(iter, end - iter, '*');
1855 if (glob)
1856 cmplen = glob - iter;
1857 else
1858 cmplen = max_t(size_t, len, (end - iter));
1859
1860 if (!strncmp(name, iter, cmplen)) {
1861 flags |= block_flags;
1862 return flags;
1863 }
1864
1865 if (!*end || *end == ';')
1866 break;
1867 iter = end + 1;
1868 }
1869 }
1870
1871 return flags | slub_debug_local;
1872 }
1873 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1874 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1875 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1876 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1877
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1878 static inline bool alloc_debug_processing(struct kmem_cache *s,
1879 struct slab *slab, void *object, int orig_size) { return true; }
1880
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1881 static inline bool free_debug_processing(struct kmem_cache *s,
1882 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1883 unsigned long addr, depot_stack_handle_t handle) { return true; }
1884
slab_pad_check(struct kmem_cache * s,struct slab * slab)1885 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1886 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1887 void *object, u8 val) { return 1; }
set_track_prepare(void)1888 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1889 static inline void set_track(struct kmem_cache *s, void *object,
1890 enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1891 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1892 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1893 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1894 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1895 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1896 {
1897 return flags;
1898 }
1899 #define slub_debug 0
1900
1901 #define disable_higher_order_debug 0
1902
node_nr_slabs(struct kmem_cache_node * n)1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1904 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1905 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1906 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1907 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1908 int objects) {}
1909 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1910 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1911 void **freelist, void *nextfree)
1912 {
1913 return false;
1914 }
1915 #endif
1916 #endif /* CONFIG_SLUB_DEBUG */
1917
1918 #ifdef CONFIG_SLAB_OBJ_EXT
1919
1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1921
mark_objexts_empty(struct slabobj_ext * obj_exts)1922 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1923 {
1924 struct slabobj_ext *slab_exts;
1925 struct slab *obj_exts_slab;
1926
1927 obj_exts_slab = virt_to_slab(obj_exts);
1928 slab_exts = slab_obj_exts(obj_exts_slab);
1929 if (slab_exts) {
1930 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1931 obj_exts_slab, obj_exts);
1932 /* codetag should be NULL */
1933 WARN_ON(slab_exts[offs].ref.ct);
1934 set_codetag_empty(&slab_exts[offs].ref);
1935 }
1936 }
1937
mark_failed_objexts_alloc(struct slab * slab)1938 static inline void mark_failed_objexts_alloc(struct slab *slab)
1939 {
1940 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1941 }
1942
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1944 struct slabobj_ext *vec, unsigned int objects)
1945 {
1946 /*
1947 * If vector previously failed to allocate then we have live
1948 * objects with no tag reference. Mark all references in this
1949 * vector as empty to avoid warnings later on.
1950 */
1951 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1952 unsigned int i;
1953
1954 for (i = 0; i < objects; i++)
1955 set_codetag_empty(&vec[i].ref);
1956 }
1957 }
1958
1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1960
mark_objexts_empty(struct slabobj_ext * obj_exts)1961 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)1962 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1964 struct slabobj_ext *vec, unsigned int objects) {}
1965
1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1967
1968 /*
1969 * The allocated objcg pointers array is not accounted directly.
1970 * Moreover, it should not come from DMA buffer and is not readily
1971 * reclaimable. So those GFP bits should be masked off.
1972 */
1973 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1974 __GFP_ACCOUNT | __GFP_NOFAIL)
1975
init_slab_obj_exts(struct slab * slab)1976 static inline void init_slab_obj_exts(struct slab *slab)
1977 {
1978 slab->obj_exts = 0;
1979 }
1980
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)1981 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1982 gfp_t gfp, bool new_slab)
1983 {
1984 unsigned int objects = objs_per_slab(s, slab);
1985 unsigned long new_exts;
1986 unsigned long old_exts;
1987 struct slabobj_ext *vec;
1988
1989 gfp &= ~OBJCGS_CLEAR_MASK;
1990 /* Prevent recursive extension vector allocation */
1991 gfp |= __GFP_NO_OBJ_EXT;
1992 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1993 slab_nid(slab));
1994 if (!vec) {
1995 /* Mark vectors which failed to allocate */
1996 if (new_slab)
1997 mark_failed_objexts_alloc(slab);
1998
1999 return -ENOMEM;
2000 }
2001
2002 new_exts = (unsigned long)vec;
2003 #ifdef CONFIG_MEMCG
2004 new_exts |= MEMCG_DATA_OBJEXTS;
2005 #endif
2006 old_exts = READ_ONCE(slab->obj_exts);
2007 handle_failed_objexts_alloc(old_exts, vec, objects);
2008 if (new_slab) {
2009 /*
2010 * If the slab is brand new and nobody can yet access its
2011 * obj_exts, no synchronization is required and obj_exts can
2012 * be simply assigned.
2013 */
2014 slab->obj_exts = new_exts;
2015 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2016 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2017 /*
2018 * If the slab is already in use, somebody can allocate and
2019 * assign slabobj_exts in parallel. In this case the existing
2020 * objcg vector should be reused.
2021 */
2022 mark_objexts_empty(vec);
2023 kfree(vec);
2024 return 0;
2025 }
2026
2027 kmemleak_not_leak(vec);
2028 return 0;
2029 }
2030
free_slab_obj_exts(struct slab * slab)2031 static inline void free_slab_obj_exts(struct slab *slab)
2032 {
2033 struct slabobj_ext *obj_exts;
2034
2035 obj_exts = slab_obj_exts(slab);
2036 if (!obj_exts)
2037 return;
2038
2039 /*
2040 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2041 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2042 * warning if slab has extensions but the extension of an object is
2043 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2044 * the extension for obj_exts is expected to be NULL.
2045 */
2046 mark_objexts_empty(obj_exts);
2047 kfree(obj_exts);
2048 slab->obj_exts = 0;
2049 }
2050
2051 #else /* CONFIG_SLAB_OBJ_EXT */
2052
init_slab_obj_exts(struct slab * slab)2053 static inline void init_slab_obj_exts(struct slab *slab)
2054 {
2055 }
2056
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2057 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2058 gfp_t gfp, bool new_slab)
2059 {
2060 return 0;
2061 }
2062
free_slab_obj_exts(struct slab * slab)2063 static inline void free_slab_obj_exts(struct slab *slab)
2064 {
2065 }
2066
2067 #endif /* CONFIG_SLAB_OBJ_EXT */
2068
2069 #ifdef CONFIG_MEM_ALLOC_PROFILING
2070
2071 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2072 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2073 {
2074 struct slab *slab;
2075
2076 if (!p)
2077 return NULL;
2078
2079 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2080 return NULL;
2081
2082 if (flags & __GFP_NO_OBJ_EXT)
2083 return NULL;
2084
2085 slab = virt_to_slab(p);
2086 if (!slab_obj_exts(slab) &&
2087 alloc_slab_obj_exts(slab, s, flags, false)) {
2088 pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2089 __func__, s->name);
2090 return NULL;
2091 }
2092
2093 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2094 }
2095
2096 /* Should be called only if mem_alloc_profiling_enabled() */
2097 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2098 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2099 {
2100 struct slabobj_ext *obj_exts;
2101
2102 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2103 /*
2104 * Currently obj_exts is used only for allocation profiling.
2105 * If other users appear then mem_alloc_profiling_enabled()
2106 * check should be added before alloc_tag_add().
2107 */
2108 if (likely(obj_exts))
2109 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2110 }
2111
2112 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2113 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2114 {
2115 if (mem_alloc_profiling_enabled())
2116 __alloc_tagging_slab_alloc_hook(s, object, flags);
2117 }
2118
2119 /* Should be called only if mem_alloc_profiling_enabled() */
2120 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2121 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2122 int objects)
2123 {
2124 struct slabobj_ext *obj_exts;
2125 int i;
2126
2127 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2128 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2129 return;
2130
2131 obj_exts = slab_obj_exts(slab);
2132 if (!obj_exts)
2133 return;
2134
2135 for (i = 0; i < objects; i++) {
2136 unsigned int off = obj_to_index(s, slab, p[i]);
2137
2138 alloc_tag_sub(&obj_exts[off].ref, s->size);
2139 }
2140 }
2141
2142 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2143 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2144 int objects)
2145 {
2146 if (mem_alloc_profiling_enabled())
2147 __alloc_tagging_slab_free_hook(s, slab, p, objects);
2148 }
2149
2150 #else /* CONFIG_MEM_ALLOC_PROFILING */
2151
2152 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2153 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2154 {
2155 }
2156
2157 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2158 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2159 int objects)
2160 {
2161 }
2162
2163 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2164
2165
2166 #ifdef CONFIG_MEMCG
2167
2168 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2169
2170 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2171 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2172 gfp_t flags, size_t size, void **p)
2173 {
2174 if (likely(!memcg_kmem_online()))
2175 return true;
2176
2177 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2178 return true;
2179
2180 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2181 return true;
2182
2183 if (likely(size == 1)) {
2184 memcg_alloc_abort_single(s, *p);
2185 *p = NULL;
2186 } else {
2187 kmem_cache_free_bulk(s, size, p);
2188 }
2189
2190 return false;
2191 }
2192
2193 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2194 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2195 int objects)
2196 {
2197 struct slabobj_ext *obj_exts;
2198
2199 if (!memcg_kmem_online())
2200 return;
2201
2202 obj_exts = slab_obj_exts(slab);
2203 if (likely(!obj_exts))
2204 return;
2205
2206 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2207 }
2208
2209 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2210 bool memcg_slab_post_charge(void *p, gfp_t flags)
2211 {
2212 struct slabobj_ext *slab_exts;
2213 struct kmem_cache *s;
2214 struct folio *folio;
2215 struct slab *slab;
2216 unsigned long off;
2217
2218 folio = virt_to_folio(p);
2219 if (!folio_test_slab(folio)) {
2220 int size;
2221
2222 if (folio_memcg_kmem(folio))
2223 return true;
2224
2225 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2226 folio_order(folio)))
2227 return false;
2228
2229 /*
2230 * This folio has already been accounted in the global stats but
2231 * not in the memcg stats. So, subtract from the global and use
2232 * the interface which adds to both global and memcg stats.
2233 */
2234 size = folio_size(folio);
2235 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2236 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2237 return true;
2238 }
2239
2240 slab = folio_slab(folio);
2241 s = slab->slab_cache;
2242
2243 /*
2244 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2245 * of slab_obj_exts being allocated from the same slab and thus the slab
2246 * becoming effectively unfreeable.
2247 */
2248 if (is_kmalloc_normal(s))
2249 return true;
2250
2251 /* Ignore already charged objects. */
2252 slab_exts = slab_obj_exts(slab);
2253 if (slab_exts) {
2254 off = obj_to_index(s, slab, p);
2255 if (unlikely(slab_exts[off].objcg))
2256 return true;
2257 }
2258
2259 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2260 }
2261
2262 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2263 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2264 struct list_lru *lru,
2265 gfp_t flags, size_t size,
2266 void **p)
2267 {
2268 return true;
2269 }
2270
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2271 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2272 void **p, int objects)
2273 {
2274 }
2275
memcg_slab_post_charge(void * p,gfp_t flags)2276 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2277 {
2278 return true;
2279 }
2280 #endif /* CONFIG_MEMCG */
2281
2282 #ifdef CONFIG_SLUB_RCU_DEBUG
2283 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2284
2285 struct rcu_delayed_free {
2286 struct rcu_head head;
2287 void *object;
2288 };
2289 #endif
2290
2291 /*
2292 * Hooks for other subsystems that check memory allocations. In a typical
2293 * production configuration these hooks all should produce no code at all.
2294 *
2295 * Returns true if freeing of the object can proceed, false if its reuse
2296 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2297 * to KFENCE.
2298 */
2299 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2300 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2301 bool after_rcu_delay)
2302 {
2303 /* Are the object contents still accessible? */
2304 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2305
2306 kmemleak_free_recursive(x, s->flags);
2307 kmsan_slab_free(s, x);
2308
2309 debug_check_no_locks_freed(x, s->object_size);
2310
2311 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2312 debug_check_no_obj_freed(x, s->object_size);
2313
2314 /* Use KCSAN to help debug racy use-after-free. */
2315 if (!still_accessible)
2316 __kcsan_check_access(x, s->object_size,
2317 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2318
2319 if (kfence_free(x))
2320 return false;
2321
2322 /*
2323 * Give KASAN a chance to notice an invalid free operation before we
2324 * modify the object.
2325 */
2326 if (kasan_slab_pre_free(s, x))
2327 return false;
2328
2329 #ifdef CONFIG_SLUB_RCU_DEBUG
2330 if (still_accessible) {
2331 struct rcu_delayed_free *delayed_free;
2332
2333 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2334 if (delayed_free) {
2335 /*
2336 * Let KASAN track our call stack as a "related work
2337 * creation", just like if the object had been freed
2338 * normally via kfree_rcu().
2339 * We have to do this manually because the rcu_head is
2340 * not located inside the object.
2341 */
2342 kasan_record_aux_stack(x);
2343
2344 delayed_free->object = x;
2345 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2346 return false;
2347 }
2348 }
2349 #endif /* CONFIG_SLUB_RCU_DEBUG */
2350
2351 /*
2352 * As memory initialization might be integrated into KASAN,
2353 * kasan_slab_free and initialization memset's must be
2354 * kept together to avoid discrepancies in behavior.
2355 *
2356 * The initialization memset's clear the object and the metadata,
2357 * but don't touch the SLAB redzone.
2358 *
2359 * The object's freepointer is also avoided if stored outside the
2360 * object.
2361 */
2362 if (unlikely(init)) {
2363 int rsize;
2364 unsigned int inuse, orig_size;
2365
2366 inuse = get_info_end(s);
2367 orig_size = get_orig_size(s, x);
2368 if (!kasan_has_integrated_init())
2369 memset(kasan_reset_tag(x), 0, orig_size);
2370 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2371 memset((char *)kasan_reset_tag(x) + inuse, 0,
2372 s->size - inuse - rsize);
2373 /*
2374 * Restore orig_size, otherwize kmalloc redzone overwritten
2375 * would be reported
2376 */
2377 set_orig_size(s, x, orig_size);
2378
2379 }
2380 /* KASAN might put x into memory quarantine, delaying its reuse. */
2381 return !kasan_slab_free(s, x, init, still_accessible);
2382 }
2383
2384 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2385 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2386 int *cnt)
2387 {
2388
2389 void *object;
2390 void *next = *head;
2391 void *old_tail = *tail;
2392 bool init;
2393
2394 if (is_kfence_address(next)) {
2395 slab_free_hook(s, next, false, false);
2396 return false;
2397 }
2398
2399 /* Head and tail of the reconstructed freelist */
2400 *head = NULL;
2401 *tail = NULL;
2402
2403 init = slab_want_init_on_free(s);
2404
2405 do {
2406 object = next;
2407 next = get_freepointer(s, object);
2408
2409 /* If object's reuse doesn't have to be delayed */
2410 if (likely(slab_free_hook(s, object, init, false))) {
2411 /* Move object to the new freelist */
2412 set_freepointer(s, object, *head);
2413 *head = object;
2414 if (!*tail)
2415 *tail = object;
2416 } else {
2417 /*
2418 * Adjust the reconstructed freelist depth
2419 * accordingly if object's reuse is delayed.
2420 */
2421 --(*cnt);
2422 }
2423 } while (object != old_tail);
2424
2425 return *head != NULL;
2426 }
2427
setup_object(struct kmem_cache * s,void * object)2428 static void *setup_object(struct kmem_cache *s, void *object)
2429 {
2430 setup_object_debug(s, object);
2431 object = kasan_init_slab_obj(s, object);
2432 if (unlikely(s->ctor)) {
2433 kasan_unpoison_new_object(s, object);
2434 s->ctor(object);
2435 kasan_poison_new_object(s, object);
2436 }
2437 return object;
2438 }
2439
2440 /*
2441 * Slab allocation and freeing
2442 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2443 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2444 struct kmem_cache_order_objects oo)
2445 {
2446 struct folio *folio;
2447 struct slab *slab;
2448 unsigned int order = oo_order(oo);
2449
2450 if (node == NUMA_NO_NODE)
2451 folio = (struct folio *)alloc_frozen_pages(flags, order);
2452 else
2453 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2454
2455 if (!folio)
2456 return NULL;
2457
2458 slab = folio_slab(folio);
2459 __folio_set_slab(folio);
2460 if (folio_is_pfmemalloc(folio))
2461 slab_set_pfmemalloc(slab);
2462
2463 return slab;
2464 }
2465
2466 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2467 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2468 static int init_cache_random_seq(struct kmem_cache *s)
2469 {
2470 unsigned int count = oo_objects(s->oo);
2471 int err;
2472
2473 /* Bailout if already initialised */
2474 if (s->random_seq)
2475 return 0;
2476
2477 err = cache_random_seq_create(s, count, GFP_KERNEL);
2478 if (err) {
2479 pr_err("SLUB: Unable to initialize free list for %s\n",
2480 s->name);
2481 return err;
2482 }
2483
2484 /* Transform to an offset on the set of pages */
2485 if (s->random_seq) {
2486 unsigned int i;
2487
2488 for (i = 0; i < count; i++)
2489 s->random_seq[i] *= s->size;
2490 }
2491 return 0;
2492 }
2493
2494 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2495 static void __init init_freelist_randomization(void)
2496 {
2497 struct kmem_cache *s;
2498
2499 mutex_lock(&slab_mutex);
2500
2501 list_for_each_entry(s, &slab_caches, list)
2502 init_cache_random_seq(s);
2503
2504 mutex_unlock(&slab_mutex);
2505 }
2506
2507 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2508 static void *next_freelist_entry(struct kmem_cache *s,
2509 unsigned long *pos, void *start,
2510 unsigned long page_limit,
2511 unsigned long freelist_count)
2512 {
2513 unsigned int idx;
2514
2515 /*
2516 * If the target page allocation failed, the number of objects on the
2517 * page might be smaller than the usual size defined by the cache.
2518 */
2519 do {
2520 idx = s->random_seq[*pos];
2521 *pos += 1;
2522 if (*pos >= freelist_count)
2523 *pos = 0;
2524 } while (unlikely(idx >= page_limit));
2525
2526 return (char *)start + idx;
2527 }
2528
2529 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2530 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2531 {
2532 void *start;
2533 void *cur;
2534 void *next;
2535 unsigned long idx, pos, page_limit, freelist_count;
2536
2537 if (slab->objects < 2 || !s->random_seq)
2538 return false;
2539
2540 freelist_count = oo_objects(s->oo);
2541 pos = get_random_u32_below(freelist_count);
2542
2543 page_limit = slab->objects * s->size;
2544 start = fixup_red_left(s, slab_address(slab));
2545
2546 /* First entry is used as the base of the freelist */
2547 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2548 cur = setup_object(s, cur);
2549 slab->freelist = cur;
2550
2551 for (idx = 1; idx < slab->objects; idx++) {
2552 next = next_freelist_entry(s, &pos, start, page_limit,
2553 freelist_count);
2554 next = setup_object(s, next);
2555 set_freepointer(s, cur, next);
2556 cur = next;
2557 }
2558 set_freepointer(s, cur, NULL);
2559
2560 return true;
2561 }
2562 #else
init_cache_random_seq(struct kmem_cache * s)2563 static inline int init_cache_random_seq(struct kmem_cache *s)
2564 {
2565 return 0;
2566 }
init_freelist_randomization(void)2567 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2568 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2569 {
2570 return false;
2571 }
2572 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2573
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2574 static __always_inline void account_slab(struct slab *slab, int order,
2575 struct kmem_cache *s, gfp_t gfp)
2576 {
2577 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2578 alloc_slab_obj_exts(slab, s, gfp, true);
2579
2580 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2581 PAGE_SIZE << order);
2582 }
2583
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2584 static __always_inline void unaccount_slab(struct slab *slab, int order,
2585 struct kmem_cache *s)
2586 {
2587 /*
2588 * The slab object extensions should now be freed regardless of
2589 * whether mem_alloc_profiling_enabled() or not because profiling
2590 * might have been disabled after slab->obj_exts got allocated.
2591 */
2592 free_slab_obj_exts(slab);
2593
2594 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2595 -(PAGE_SIZE << order));
2596 }
2597
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2598 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2599 {
2600 struct slab *slab;
2601 struct kmem_cache_order_objects oo = s->oo;
2602 gfp_t alloc_gfp;
2603 void *start, *p, *next;
2604 int idx;
2605 bool shuffle;
2606
2607 flags &= gfp_allowed_mask;
2608
2609 flags |= s->allocflags;
2610
2611 /*
2612 * Let the initial higher-order allocation fail under memory pressure
2613 * so we fall-back to the minimum order allocation.
2614 */
2615 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2616 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2617 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2618
2619 slab = alloc_slab_page(alloc_gfp, node, oo);
2620 if (unlikely(!slab)) {
2621 oo = s->min;
2622 alloc_gfp = flags;
2623 /*
2624 * Allocation may have failed due to fragmentation.
2625 * Try a lower order alloc if possible
2626 */
2627 slab = alloc_slab_page(alloc_gfp, node, oo);
2628 if (unlikely(!slab))
2629 return NULL;
2630 stat(s, ORDER_FALLBACK);
2631 }
2632
2633 slab->objects = oo_objects(oo);
2634 slab->inuse = 0;
2635 slab->frozen = 0;
2636 init_slab_obj_exts(slab);
2637
2638 account_slab(slab, oo_order(oo), s, flags);
2639
2640 slab->slab_cache = s;
2641
2642 kasan_poison_slab(slab);
2643
2644 start = slab_address(slab);
2645
2646 setup_slab_debug(s, slab, start);
2647
2648 shuffle = shuffle_freelist(s, slab);
2649
2650 if (!shuffle) {
2651 start = fixup_red_left(s, start);
2652 start = setup_object(s, start);
2653 slab->freelist = start;
2654 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2655 next = p + s->size;
2656 next = setup_object(s, next);
2657 set_freepointer(s, p, next);
2658 p = next;
2659 }
2660 set_freepointer(s, p, NULL);
2661 }
2662
2663 return slab;
2664 }
2665
new_slab(struct kmem_cache * s,gfp_t flags,int node)2666 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2667 {
2668 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2669 flags = kmalloc_fix_flags(flags);
2670
2671 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2672
2673 return allocate_slab(s,
2674 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2675 }
2676
__free_slab(struct kmem_cache * s,struct slab * slab)2677 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2678 {
2679 struct folio *folio = slab_folio(slab);
2680 int order = folio_order(folio);
2681 int pages = 1 << order;
2682
2683 __slab_clear_pfmemalloc(slab);
2684 folio->mapping = NULL;
2685 __folio_clear_slab(folio);
2686 mm_account_reclaimed_pages(pages);
2687 unaccount_slab(slab, order, s);
2688 free_frozen_pages(&folio->page, order);
2689 }
2690
rcu_free_slab(struct rcu_head * h)2691 static void rcu_free_slab(struct rcu_head *h)
2692 {
2693 struct slab *slab = container_of(h, struct slab, rcu_head);
2694
2695 __free_slab(slab->slab_cache, slab);
2696 }
2697
free_slab(struct kmem_cache * s,struct slab * slab)2698 static void free_slab(struct kmem_cache *s, struct slab *slab)
2699 {
2700 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2701 void *p;
2702
2703 slab_pad_check(s, slab);
2704 for_each_object(p, s, slab_address(slab), slab->objects)
2705 check_object(s, slab, p, SLUB_RED_INACTIVE);
2706 }
2707
2708 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2709 call_rcu(&slab->rcu_head, rcu_free_slab);
2710 else
2711 __free_slab(s, slab);
2712 }
2713
discard_slab(struct kmem_cache * s,struct slab * slab)2714 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2715 {
2716 dec_slabs_node(s, slab_nid(slab), slab->objects);
2717 free_slab(s, slab);
2718 }
2719
2720 /*
2721 * SLUB reuses PG_workingset bit to keep track of whether it's on
2722 * the per-node partial list.
2723 */
slab_test_node_partial(const struct slab * slab)2724 static inline bool slab_test_node_partial(const struct slab *slab)
2725 {
2726 return folio_test_workingset(slab_folio(slab));
2727 }
2728
slab_set_node_partial(struct slab * slab)2729 static inline void slab_set_node_partial(struct slab *slab)
2730 {
2731 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2732 }
2733
slab_clear_node_partial(struct slab * slab)2734 static inline void slab_clear_node_partial(struct slab *slab)
2735 {
2736 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2737 }
2738
2739 /*
2740 * Management of partially allocated slabs.
2741 */
2742 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2743 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2744 {
2745 n->nr_partial++;
2746 if (tail == DEACTIVATE_TO_TAIL)
2747 list_add_tail(&slab->slab_list, &n->partial);
2748 else
2749 list_add(&slab->slab_list, &n->partial);
2750 slab_set_node_partial(slab);
2751 }
2752
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2753 static inline void add_partial(struct kmem_cache_node *n,
2754 struct slab *slab, int tail)
2755 {
2756 lockdep_assert_held(&n->list_lock);
2757 __add_partial(n, slab, tail);
2758 }
2759
remove_partial(struct kmem_cache_node * n,struct slab * slab)2760 static inline void remove_partial(struct kmem_cache_node *n,
2761 struct slab *slab)
2762 {
2763 lockdep_assert_held(&n->list_lock);
2764 list_del(&slab->slab_list);
2765 slab_clear_node_partial(slab);
2766 n->nr_partial--;
2767 }
2768
2769 /*
2770 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2771 * slab from the n->partial list. Remove only a single object from the slab, do
2772 * the alloc_debug_processing() checks and leave the slab on the list, or move
2773 * it to full list if it was the last free object.
2774 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2775 static void *alloc_single_from_partial(struct kmem_cache *s,
2776 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2777 {
2778 void *object;
2779
2780 lockdep_assert_held(&n->list_lock);
2781
2782 object = slab->freelist;
2783 slab->freelist = get_freepointer(s, object);
2784 slab->inuse++;
2785
2786 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2787 if (folio_test_slab(slab_folio(slab)))
2788 remove_partial(n, slab);
2789 return NULL;
2790 }
2791
2792 if (slab->inuse == slab->objects) {
2793 remove_partial(n, slab);
2794 add_full(s, n, slab);
2795 }
2796
2797 return object;
2798 }
2799
2800 /*
2801 * Called only for kmem_cache_debug() caches to allocate from a freshly
2802 * allocated slab. Allocate a single object instead of whole freelist
2803 * and put the slab to the partial (or full) list.
2804 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2805 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2806 struct slab *slab, int orig_size)
2807 {
2808 int nid = slab_nid(slab);
2809 struct kmem_cache_node *n = get_node(s, nid);
2810 unsigned long flags;
2811 void *object;
2812
2813
2814 object = slab->freelist;
2815 slab->freelist = get_freepointer(s, object);
2816 slab->inuse = 1;
2817
2818 if (!alloc_debug_processing(s, slab, object, orig_size))
2819 /*
2820 * It's not really expected that this would fail on a
2821 * freshly allocated slab, but a concurrent memory
2822 * corruption in theory could cause that.
2823 */
2824 return NULL;
2825
2826 spin_lock_irqsave(&n->list_lock, flags);
2827
2828 if (slab->inuse == slab->objects)
2829 add_full(s, n, slab);
2830 else
2831 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2832
2833 inc_slabs_node(s, nid, slab->objects);
2834 spin_unlock_irqrestore(&n->list_lock, flags);
2835
2836 return object;
2837 }
2838
2839 #ifdef CONFIG_SLUB_CPU_PARTIAL
2840 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2841 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2842 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2843 int drain) { }
2844 #endif
2845 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2846
2847 /*
2848 * Try to allocate a partial slab from a specific node.
2849 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2850 static struct slab *get_partial_node(struct kmem_cache *s,
2851 struct kmem_cache_node *n,
2852 struct partial_context *pc)
2853 {
2854 struct slab *slab, *slab2, *partial = NULL;
2855 unsigned long flags;
2856 unsigned int partial_slabs = 0;
2857
2858 /*
2859 * Racy check. If we mistakenly see no partial slabs then we
2860 * just allocate an empty slab. If we mistakenly try to get a
2861 * partial slab and there is none available then get_partial()
2862 * will return NULL.
2863 */
2864 if (!n || !n->nr_partial)
2865 return NULL;
2866
2867 spin_lock_irqsave(&n->list_lock, flags);
2868 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2869 if (!pfmemalloc_match(slab, pc->flags))
2870 continue;
2871
2872 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2873 void *object = alloc_single_from_partial(s, n, slab,
2874 pc->orig_size);
2875 if (object) {
2876 partial = slab;
2877 pc->object = object;
2878 break;
2879 }
2880 continue;
2881 }
2882
2883 remove_partial(n, slab);
2884
2885 if (!partial) {
2886 partial = slab;
2887 stat(s, ALLOC_FROM_PARTIAL);
2888
2889 if ((slub_get_cpu_partial(s) == 0)) {
2890 break;
2891 }
2892 } else {
2893 put_cpu_partial(s, slab, 0);
2894 stat(s, CPU_PARTIAL_NODE);
2895
2896 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2897 break;
2898 }
2899 }
2900 }
2901 spin_unlock_irqrestore(&n->list_lock, flags);
2902 return partial;
2903 }
2904
2905 /*
2906 * Get a slab from somewhere. Search in increasing NUMA distances.
2907 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2908 static struct slab *get_any_partial(struct kmem_cache *s,
2909 struct partial_context *pc)
2910 {
2911 #ifdef CONFIG_NUMA
2912 struct zonelist *zonelist;
2913 struct zoneref *z;
2914 struct zone *zone;
2915 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2916 struct slab *slab;
2917 unsigned int cpuset_mems_cookie;
2918
2919 /*
2920 * The defrag ratio allows a configuration of the tradeoffs between
2921 * inter node defragmentation and node local allocations. A lower
2922 * defrag_ratio increases the tendency to do local allocations
2923 * instead of attempting to obtain partial slabs from other nodes.
2924 *
2925 * If the defrag_ratio is set to 0 then kmalloc() always
2926 * returns node local objects. If the ratio is higher then kmalloc()
2927 * may return off node objects because partial slabs are obtained
2928 * from other nodes and filled up.
2929 *
2930 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2931 * (which makes defrag_ratio = 1000) then every (well almost)
2932 * allocation will first attempt to defrag slab caches on other nodes.
2933 * This means scanning over all nodes to look for partial slabs which
2934 * may be expensive if we do it every time we are trying to find a slab
2935 * with available objects.
2936 */
2937 if (!s->remote_node_defrag_ratio ||
2938 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2939 return NULL;
2940
2941 do {
2942 cpuset_mems_cookie = read_mems_allowed_begin();
2943 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2944 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2945 struct kmem_cache_node *n;
2946
2947 n = get_node(s, zone_to_nid(zone));
2948
2949 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2950 n->nr_partial > s->min_partial) {
2951 slab = get_partial_node(s, n, pc);
2952 if (slab) {
2953 /*
2954 * Don't check read_mems_allowed_retry()
2955 * here - if mems_allowed was updated in
2956 * parallel, that was a harmless race
2957 * between allocation and the cpuset
2958 * update
2959 */
2960 return slab;
2961 }
2962 }
2963 }
2964 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2965 #endif /* CONFIG_NUMA */
2966 return NULL;
2967 }
2968
2969 /*
2970 * Get a partial slab, lock it and return it.
2971 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2972 static struct slab *get_partial(struct kmem_cache *s, int node,
2973 struct partial_context *pc)
2974 {
2975 struct slab *slab;
2976 int searchnode = node;
2977
2978 if (node == NUMA_NO_NODE)
2979 searchnode = numa_mem_id();
2980
2981 slab = get_partial_node(s, get_node(s, searchnode), pc);
2982 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2983 return slab;
2984
2985 return get_any_partial(s, pc);
2986 }
2987
2988 #ifndef CONFIG_SLUB_TINY
2989
2990 #ifdef CONFIG_PREEMPTION
2991 /*
2992 * Calculate the next globally unique transaction for disambiguation
2993 * during cmpxchg. The transactions start with the cpu number and are then
2994 * incremented by CONFIG_NR_CPUS.
2995 */
2996 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2997 #else
2998 /*
2999 * No preemption supported therefore also no need to check for
3000 * different cpus.
3001 */
3002 #define TID_STEP 1
3003 #endif /* CONFIG_PREEMPTION */
3004
next_tid(unsigned long tid)3005 static inline unsigned long next_tid(unsigned long tid)
3006 {
3007 return tid + TID_STEP;
3008 }
3009
3010 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3011 static inline unsigned int tid_to_cpu(unsigned long tid)
3012 {
3013 return tid % TID_STEP;
3014 }
3015
tid_to_event(unsigned long tid)3016 static inline unsigned long tid_to_event(unsigned long tid)
3017 {
3018 return tid / TID_STEP;
3019 }
3020 #endif
3021
init_tid(int cpu)3022 static inline unsigned int init_tid(int cpu)
3023 {
3024 return cpu;
3025 }
3026
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3027 static inline void note_cmpxchg_failure(const char *n,
3028 const struct kmem_cache *s, unsigned long tid)
3029 {
3030 #ifdef SLUB_DEBUG_CMPXCHG
3031 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3032
3033 pr_info("%s %s: cmpxchg redo ", n, s->name);
3034
3035 #ifdef CONFIG_PREEMPTION
3036 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3037 pr_warn("due to cpu change %d -> %d\n",
3038 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3039 else
3040 #endif
3041 if (tid_to_event(tid) != tid_to_event(actual_tid))
3042 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3043 tid_to_event(tid), tid_to_event(actual_tid));
3044 else
3045 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3046 actual_tid, tid, next_tid(tid));
3047 #endif
3048 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3049 }
3050
init_kmem_cache_cpus(struct kmem_cache * s)3051 static void init_kmem_cache_cpus(struct kmem_cache *s)
3052 {
3053 int cpu;
3054 struct kmem_cache_cpu *c;
3055
3056 for_each_possible_cpu(cpu) {
3057 c = per_cpu_ptr(s->cpu_slab, cpu);
3058 local_lock_init(&c->lock);
3059 c->tid = init_tid(cpu);
3060 }
3061 }
3062
3063 /*
3064 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3065 * unfreezes the slabs and puts it on the proper list.
3066 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3067 * by the caller.
3068 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3069 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3070 void *freelist)
3071 {
3072 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3073 int free_delta = 0;
3074 void *nextfree, *freelist_iter, *freelist_tail;
3075 int tail = DEACTIVATE_TO_HEAD;
3076 unsigned long flags = 0;
3077 struct slab new;
3078 struct slab old;
3079
3080 if (READ_ONCE(slab->freelist)) {
3081 stat(s, DEACTIVATE_REMOTE_FREES);
3082 tail = DEACTIVATE_TO_TAIL;
3083 }
3084
3085 /*
3086 * Stage one: Count the objects on cpu's freelist as free_delta and
3087 * remember the last object in freelist_tail for later splicing.
3088 */
3089 freelist_tail = NULL;
3090 freelist_iter = freelist;
3091 while (freelist_iter) {
3092 nextfree = get_freepointer(s, freelist_iter);
3093
3094 /*
3095 * If 'nextfree' is invalid, it is possible that the object at
3096 * 'freelist_iter' is already corrupted. So isolate all objects
3097 * starting at 'freelist_iter' by skipping them.
3098 */
3099 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3100 break;
3101
3102 freelist_tail = freelist_iter;
3103 free_delta++;
3104
3105 freelist_iter = nextfree;
3106 }
3107
3108 /*
3109 * Stage two: Unfreeze the slab while splicing the per-cpu
3110 * freelist to the head of slab's freelist.
3111 */
3112 do {
3113 old.freelist = READ_ONCE(slab->freelist);
3114 old.counters = READ_ONCE(slab->counters);
3115 VM_BUG_ON(!old.frozen);
3116
3117 /* Determine target state of the slab */
3118 new.counters = old.counters;
3119 new.frozen = 0;
3120 if (freelist_tail) {
3121 new.inuse -= free_delta;
3122 set_freepointer(s, freelist_tail, old.freelist);
3123 new.freelist = freelist;
3124 } else {
3125 new.freelist = old.freelist;
3126 }
3127 } while (!slab_update_freelist(s, slab,
3128 old.freelist, old.counters,
3129 new.freelist, new.counters,
3130 "unfreezing slab"));
3131
3132 /*
3133 * Stage three: Manipulate the slab list based on the updated state.
3134 */
3135 if (!new.inuse && n->nr_partial >= s->min_partial) {
3136 stat(s, DEACTIVATE_EMPTY);
3137 discard_slab(s, slab);
3138 stat(s, FREE_SLAB);
3139 } else if (new.freelist) {
3140 spin_lock_irqsave(&n->list_lock, flags);
3141 add_partial(n, slab, tail);
3142 spin_unlock_irqrestore(&n->list_lock, flags);
3143 stat(s, tail);
3144 } else {
3145 stat(s, DEACTIVATE_FULL);
3146 }
3147 }
3148
3149 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3150 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3151 {
3152 struct kmem_cache_node *n = NULL, *n2 = NULL;
3153 struct slab *slab, *slab_to_discard = NULL;
3154 unsigned long flags = 0;
3155
3156 while (partial_slab) {
3157 slab = partial_slab;
3158 partial_slab = slab->next;
3159
3160 n2 = get_node(s, slab_nid(slab));
3161 if (n != n2) {
3162 if (n)
3163 spin_unlock_irqrestore(&n->list_lock, flags);
3164
3165 n = n2;
3166 spin_lock_irqsave(&n->list_lock, flags);
3167 }
3168
3169 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3170 slab->next = slab_to_discard;
3171 slab_to_discard = slab;
3172 } else {
3173 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3174 stat(s, FREE_ADD_PARTIAL);
3175 }
3176 }
3177
3178 if (n)
3179 spin_unlock_irqrestore(&n->list_lock, flags);
3180
3181 while (slab_to_discard) {
3182 slab = slab_to_discard;
3183 slab_to_discard = slab_to_discard->next;
3184
3185 stat(s, DEACTIVATE_EMPTY);
3186 discard_slab(s, slab);
3187 stat(s, FREE_SLAB);
3188 }
3189 }
3190
3191 /*
3192 * Put all the cpu partial slabs to the node partial list.
3193 */
put_partials(struct kmem_cache * s)3194 static void put_partials(struct kmem_cache *s)
3195 {
3196 struct slab *partial_slab;
3197 unsigned long flags;
3198
3199 local_lock_irqsave(&s->cpu_slab->lock, flags);
3200 partial_slab = this_cpu_read(s->cpu_slab->partial);
3201 this_cpu_write(s->cpu_slab->partial, NULL);
3202 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3203
3204 if (partial_slab)
3205 __put_partials(s, partial_slab);
3206 }
3207
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3208 static void put_partials_cpu(struct kmem_cache *s,
3209 struct kmem_cache_cpu *c)
3210 {
3211 struct slab *partial_slab;
3212
3213 partial_slab = slub_percpu_partial(c);
3214 c->partial = NULL;
3215
3216 if (partial_slab)
3217 __put_partials(s, partial_slab);
3218 }
3219
3220 /*
3221 * Put a slab into a partial slab slot if available.
3222 *
3223 * If we did not find a slot then simply move all the partials to the
3224 * per node partial list.
3225 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3226 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3227 {
3228 struct slab *oldslab;
3229 struct slab *slab_to_put = NULL;
3230 unsigned long flags;
3231 int slabs = 0;
3232
3233 local_lock_irqsave(&s->cpu_slab->lock, flags);
3234
3235 oldslab = this_cpu_read(s->cpu_slab->partial);
3236
3237 if (oldslab) {
3238 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3239 /*
3240 * Partial array is full. Move the existing set to the
3241 * per node partial list. Postpone the actual unfreezing
3242 * outside of the critical section.
3243 */
3244 slab_to_put = oldslab;
3245 oldslab = NULL;
3246 } else {
3247 slabs = oldslab->slabs;
3248 }
3249 }
3250
3251 slabs++;
3252
3253 slab->slabs = slabs;
3254 slab->next = oldslab;
3255
3256 this_cpu_write(s->cpu_slab->partial, slab);
3257
3258 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3259
3260 if (slab_to_put) {
3261 __put_partials(s, slab_to_put);
3262 stat(s, CPU_PARTIAL_DRAIN);
3263 }
3264 }
3265
3266 #else /* CONFIG_SLUB_CPU_PARTIAL */
3267
put_partials(struct kmem_cache * s)3268 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3269 static inline void put_partials_cpu(struct kmem_cache *s,
3270 struct kmem_cache_cpu *c) { }
3271
3272 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3273
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3274 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3275 {
3276 unsigned long flags;
3277 struct slab *slab;
3278 void *freelist;
3279
3280 local_lock_irqsave(&s->cpu_slab->lock, flags);
3281
3282 slab = c->slab;
3283 freelist = c->freelist;
3284
3285 c->slab = NULL;
3286 c->freelist = NULL;
3287 c->tid = next_tid(c->tid);
3288
3289 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3290
3291 if (slab) {
3292 deactivate_slab(s, slab, freelist);
3293 stat(s, CPUSLAB_FLUSH);
3294 }
3295 }
3296
__flush_cpu_slab(struct kmem_cache * s,int cpu)3297 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3298 {
3299 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3300 void *freelist = c->freelist;
3301 struct slab *slab = c->slab;
3302
3303 c->slab = NULL;
3304 c->freelist = NULL;
3305 c->tid = next_tid(c->tid);
3306
3307 if (slab) {
3308 deactivate_slab(s, slab, freelist);
3309 stat(s, CPUSLAB_FLUSH);
3310 }
3311
3312 put_partials_cpu(s, c);
3313 }
3314
3315 struct slub_flush_work {
3316 struct work_struct work;
3317 struct kmem_cache *s;
3318 bool skip;
3319 };
3320
3321 /*
3322 * Flush cpu slab.
3323 *
3324 * Called from CPU work handler with migration disabled.
3325 */
flush_cpu_slab(struct work_struct * w)3326 static void flush_cpu_slab(struct work_struct *w)
3327 {
3328 struct kmem_cache *s;
3329 struct kmem_cache_cpu *c;
3330 struct slub_flush_work *sfw;
3331
3332 sfw = container_of(w, struct slub_flush_work, work);
3333
3334 s = sfw->s;
3335 c = this_cpu_ptr(s->cpu_slab);
3336
3337 if (c->slab)
3338 flush_slab(s, c);
3339
3340 put_partials(s);
3341 }
3342
has_cpu_slab(int cpu,struct kmem_cache * s)3343 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3344 {
3345 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3346
3347 return c->slab || slub_percpu_partial(c);
3348 }
3349
3350 static DEFINE_MUTEX(flush_lock);
3351 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3352
flush_all_cpus_locked(struct kmem_cache * s)3353 static void flush_all_cpus_locked(struct kmem_cache *s)
3354 {
3355 struct slub_flush_work *sfw;
3356 unsigned int cpu;
3357
3358 lockdep_assert_cpus_held();
3359 mutex_lock(&flush_lock);
3360
3361 for_each_online_cpu(cpu) {
3362 sfw = &per_cpu(slub_flush, cpu);
3363 if (!has_cpu_slab(cpu, s)) {
3364 sfw->skip = true;
3365 continue;
3366 }
3367 INIT_WORK(&sfw->work, flush_cpu_slab);
3368 sfw->skip = false;
3369 sfw->s = s;
3370 queue_work_on(cpu, flushwq, &sfw->work);
3371 }
3372
3373 for_each_online_cpu(cpu) {
3374 sfw = &per_cpu(slub_flush, cpu);
3375 if (sfw->skip)
3376 continue;
3377 flush_work(&sfw->work);
3378 }
3379
3380 mutex_unlock(&flush_lock);
3381 }
3382
flush_all(struct kmem_cache * s)3383 static void flush_all(struct kmem_cache *s)
3384 {
3385 cpus_read_lock();
3386 flush_all_cpus_locked(s);
3387 cpus_read_unlock();
3388 }
3389
3390 /*
3391 * Use the cpu notifier to insure that the cpu slabs are flushed when
3392 * necessary.
3393 */
slub_cpu_dead(unsigned int cpu)3394 static int slub_cpu_dead(unsigned int cpu)
3395 {
3396 struct kmem_cache *s;
3397
3398 mutex_lock(&slab_mutex);
3399 list_for_each_entry(s, &slab_caches, list)
3400 __flush_cpu_slab(s, cpu);
3401 mutex_unlock(&slab_mutex);
3402 return 0;
3403 }
3404
3405 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3406 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3407 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3408 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3409 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3410 #endif /* CONFIG_SLUB_TINY */
3411
3412 /*
3413 * Check if the objects in a per cpu structure fit numa
3414 * locality expectations.
3415 */
node_match(struct slab * slab,int node)3416 static inline int node_match(struct slab *slab, int node)
3417 {
3418 #ifdef CONFIG_NUMA
3419 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3420 return 0;
3421 #endif
3422 return 1;
3423 }
3424
3425 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3426 static int count_free(struct slab *slab)
3427 {
3428 return slab->objects - slab->inuse;
3429 }
3430
node_nr_objs(struct kmem_cache_node * n)3431 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3432 {
3433 return atomic_long_read(&n->total_objects);
3434 }
3435
3436 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3437 static inline bool free_debug_processing(struct kmem_cache *s,
3438 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3439 unsigned long addr, depot_stack_handle_t handle)
3440 {
3441 bool checks_ok = false;
3442 void *object = head;
3443 int cnt = 0;
3444
3445 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3446 if (!check_slab(s, slab))
3447 goto out;
3448 }
3449
3450 if (slab->inuse < *bulk_cnt) {
3451 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3452 slab->inuse, *bulk_cnt);
3453 goto out;
3454 }
3455
3456 next_object:
3457
3458 if (++cnt > *bulk_cnt)
3459 goto out_cnt;
3460
3461 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3462 if (!free_consistency_checks(s, slab, object, addr))
3463 goto out;
3464 }
3465
3466 if (s->flags & SLAB_STORE_USER)
3467 set_track_update(s, object, TRACK_FREE, addr, handle);
3468 trace(s, slab, object, 0);
3469 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3470 init_object(s, object, SLUB_RED_INACTIVE);
3471
3472 /* Reached end of constructed freelist yet? */
3473 if (object != tail) {
3474 object = get_freepointer(s, object);
3475 goto next_object;
3476 }
3477 checks_ok = true;
3478
3479 out_cnt:
3480 if (cnt != *bulk_cnt) {
3481 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3482 *bulk_cnt, cnt);
3483 *bulk_cnt = cnt;
3484 }
3485
3486 out:
3487
3488 if (!checks_ok)
3489 slab_fix(s, "Object at 0x%p not freed", object);
3490
3491 return checks_ok;
3492 }
3493 #endif /* CONFIG_SLUB_DEBUG */
3494
3495 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3496 static unsigned long count_partial(struct kmem_cache_node *n,
3497 int (*get_count)(struct slab *))
3498 {
3499 unsigned long flags;
3500 unsigned long x = 0;
3501 struct slab *slab;
3502
3503 spin_lock_irqsave(&n->list_lock, flags);
3504 list_for_each_entry(slab, &n->partial, slab_list)
3505 x += get_count(slab);
3506 spin_unlock_irqrestore(&n->list_lock, flags);
3507 return x;
3508 }
3509 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3510
3511 #ifdef CONFIG_SLUB_DEBUG
3512 #define MAX_PARTIAL_TO_SCAN 10000
3513
count_partial_free_approx(struct kmem_cache_node * n)3514 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3515 {
3516 unsigned long flags;
3517 unsigned long x = 0;
3518 struct slab *slab;
3519
3520 spin_lock_irqsave(&n->list_lock, flags);
3521 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3522 list_for_each_entry(slab, &n->partial, slab_list)
3523 x += slab->objects - slab->inuse;
3524 } else {
3525 /*
3526 * For a long list, approximate the total count of objects in
3527 * it to meet the limit on the number of slabs to scan.
3528 * Scan from both the list's head and tail for better accuracy.
3529 */
3530 unsigned long scanned = 0;
3531
3532 list_for_each_entry(slab, &n->partial, slab_list) {
3533 x += slab->objects - slab->inuse;
3534 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3535 break;
3536 }
3537 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3538 x += slab->objects - slab->inuse;
3539 if (++scanned == MAX_PARTIAL_TO_SCAN)
3540 break;
3541 }
3542 x = mult_frac(x, n->nr_partial, scanned);
3543 x = min(x, node_nr_objs(n));
3544 }
3545 spin_unlock_irqrestore(&n->list_lock, flags);
3546 return x;
3547 }
3548
3549 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3550 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3551 {
3552 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3553 DEFAULT_RATELIMIT_BURST);
3554 int cpu = raw_smp_processor_id();
3555 int node;
3556 struct kmem_cache_node *n;
3557
3558 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3559 return;
3560
3561 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3562 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3563 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3564 s->name, s->object_size, s->size, oo_order(s->oo),
3565 oo_order(s->min));
3566
3567 if (oo_order(s->min) > get_order(s->object_size))
3568 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3569 s->name);
3570
3571 for_each_kmem_cache_node(s, node, n) {
3572 unsigned long nr_slabs;
3573 unsigned long nr_objs;
3574 unsigned long nr_free;
3575
3576 nr_free = count_partial_free_approx(n);
3577 nr_slabs = node_nr_slabs(n);
3578 nr_objs = node_nr_objs(n);
3579
3580 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3581 node, nr_slabs, nr_objs, nr_free);
3582 }
3583 }
3584 #else /* CONFIG_SLUB_DEBUG */
3585 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3586 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3587 #endif
3588
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3589 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3590 {
3591 if (unlikely(slab_test_pfmemalloc(slab)))
3592 return gfp_pfmemalloc_allowed(gfpflags);
3593
3594 return true;
3595 }
3596
3597 #ifndef CONFIG_SLUB_TINY
3598 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3599 __update_cpu_freelist_fast(struct kmem_cache *s,
3600 void *freelist_old, void *freelist_new,
3601 unsigned long tid)
3602 {
3603 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3604 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3605
3606 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3607 &old.full, new.full);
3608 }
3609
3610 /*
3611 * Check the slab->freelist and either transfer the freelist to the
3612 * per cpu freelist or deactivate the slab.
3613 *
3614 * The slab is still frozen if the return value is not NULL.
3615 *
3616 * If this function returns NULL then the slab has been unfrozen.
3617 */
get_freelist(struct kmem_cache * s,struct slab * slab)3618 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3619 {
3620 struct slab new;
3621 unsigned long counters;
3622 void *freelist;
3623
3624 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3625
3626 do {
3627 freelist = slab->freelist;
3628 counters = slab->counters;
3629
3630 new.counters = counters;
3631
3632 new.inuse = slab->objects;
3633 new.frozen = freelist != NULL;
3634
3635 } while (!__slab_update_freelist(s, slab,
3636 freelist, counters,
3637 NULL, new.counters,
3638 "get_freelist"));
3639
3640 return freelist;
3641 }
3642
3643 /*
3644 * Freeze the partial slab and return the pointer to the freelist.
3645 */
freeze_slab(struct kmem_cache * s,struct slab * slab)3646 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3647 {
3648 struct slab new;
3649 unsigned long counters;
3650 void *freelist;
3651
3652 do {
3653 freelist = slab->freelist;
3654 counters = slab->counters;
3655
3656 new.counters = counters;
3657 VM_BUG_ON(new.frozen);
3658
3659 new.inuse = slab->objects;
3660 new.frozen = 1;
3661
3662 } while (!slab_update_freelist(s, slab,
3663 freelist, counters,
3664 NULL, new.counters,
3665 "freeze_slab"));
3666
3667 return freelist;
3668 }
3669
3670 /*
3671 * Slow path. The lockless freelist is empty or we need to perform
3672 * debugging duties.
3673 *
3674 * Processing is still very fast if new objects have been freed to the
3675 * regular freelist. In that case we simply take over the regular freelist
3676 * as the lockless freelist and zap the regular freelist.
3677 *
3678 * If that is not working then we fall back to the partial lists. We take the
3679 * first element of the freelist as the object to allocate now and move the
3680 * rest of the freelist to the lockless freelist.
3681 *
3682 * And if we were unable to get a new slab from the partial slab lists then
3683 * we need to allocate a new slab. This is the slowest path since it involves
3684 * a call to the page allocator and the setup of a new slab.
3685 *
3686 * Version of __slab_alloc to use when we know that preemption is
3687 * already disabled (which is the case for bulk allocation).
3688 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3689 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3690 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3691 {
3692 void *freelist;
3693 struct slab *slab;
3694 unsigned long flags;
3695 struct partial_context pc;
3696 bool try_thisnode = true;
3697
3698 stat(s, ALLOC_SLOWPATH);
3699
3700 reread_slab:
3701
3702 slab = READ_ONCE(c->slab);
3703 if (!slab) {
3704 /*
3705 * if the node is not online or has no normal memory, just
3706 * ignore the node constraint
3707 */
3708 if (unlikely(node != NUMA_NO_NODE &&
3709 !node_isset(node, slab_nodes)))
3710 node = NUMA_NO_NODE;
3711 goto new_slab;
3712 }
3713
3714 if (unlikely(!node_match(slab, node))) {
3715 /*
3716 * same as above but node_match() being false already
3717 * implies node != NUMA_NO_NODE
3718 */
3719 if (!node_isset(node, slab_nodes)) {
3720 node = NUMA_NO_NODE;
3721 } else {
3722 stat(s, ALLOC_NODE_MISMATCH);
3723 goto deactivate_slab;
3724 }
3725 }
3726
3727 /*
3728 * By rights, we should be searching for a slab page that was
3729 * PFMEMALLOC but right now, we are losing the pfmemalloc
3730 * information when the page leaves the per-cpu allocator
3731 */
3732 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3733 goto deactivate_slab;
3734
3735 /* must check again c->slab in case we got preempted and it changed */
3736 local_lock_irqsave(&s->cpu_slab->lock, flags);
3737 if (unlikely(slab != c->slab)) {
3738 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3739 goto reread_slab;
3740 }
3741 freelist = c->freelist;
3742 if (freelist)
3743 goto load_freelist;
3744
3745 freelist = get_freelist(s, slab);
3746
3747 if (!freelist) {
3748 c->slab = NULL;
3749 c->tid = next_tid(c->tid);
3750 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3751 stat(s, DEACTIVATE_BYPASS);
3752 goto new_slab;
3753 }
3754
3755 stat(s, ALLOC_REFILL);
3756
3757 load_freelist:
3758
3759 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3760
3761 /*
3762 * freelist is pointing to the list of objects to be used.
3763 * slab is pointing to the slab from which the objects are obtained.
3764 * That slab must be frozen for per cpu allocations to work.
3765 */
3766 VM_BUG_ON(!c->slab->frozen);
3767 c->freelist = get_freepointer(s, freelist);
3768 c->tid = next_tid(c->tid);
3769 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3770 return freelist;
3771
3772 deactivate_slab:
3773
3774 local_lock_irqsave(&s->cpu_slab->lock, flags);
3775 if (slab != c->slab) {
3776 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3777 goto reread_slab;
3778 }
3779 freelist = c->freelist;
3780 c->slab = NULL;
3781 c->freelist = NULL;
3782 c->tid = next_tid(c->tid);
3783 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3784 deactivate_slab(s, slab, freelist);
3785
3786 new_slab:
3787
3788 #ifdef CONFIG_SLUB_CPU_PARTIAL
3789 while (slub_percpu_partial(c)) {
3790 local_lock_irqsave(&s->cpu_slab->lock, flags);
3791 if (unlikely(c->slab)) {
3792 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3793 goto reread_slab;
3794 }
3795 if (unlikely(!slub_percpu_partial(c))) {
3796 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3797 /* we were preempted and partial list got empty */
3798 goto new_objects;
3799 }
3800
3801 slab = slub_percpu_partial(c);
3802 slub_set_percpu_partial(c, slab);
3803
3804 if (likely(node_match(slab, node) &&
3805 pfmemalloc_match(slab, gfpflags))) {
3806 c->slab = slab;
3807 freelist = get_freelist(s, slab);
3808 VM_BUG_ON(!freelist);
3809 stat(s, CPU_PARTIAL_ALLOC);
3810 goto load_freelist;
3811 }
3812
3813 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3814
3815 slab->next = NULL;
3816 __put_partials(s, slab);
3817 }
3818 #endif
3819
3820 new_objects:
3821
3822 pc.flags = gfpflags;
3823 /*
3824 * When a preferred node is indicated but no __GFP_THISNODE
3825 *
3826 * 1) try to get a partial slab from target node only by having
3827 * __GFP_THISNODE in pc.flags for get_partial()
3828 * 2) if 1) failed, try to allocate a new slab from target node with
3829 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3830 * 3) if 2) failed, retry with original gfpflags which will allow
3831 * get_partial() try partial lists of other nodes before potentially
3832 * allocating new page from other nodes
3833 */
3834 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3835 && try_thisnode))
3836 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3837
3838 pc.orig_size = orig_size;
3839 slab = get_partial(s, node, &pc);
3840 if (slab) {
3841 if (kmem_cache_debug(s)) {
3842 freelist = pc.object;
3843 /*
3844 * For debug caches here we had to go through
3845 * alloc_single_from_partial() so just store the
3846 * tracking info and return the object.
3847 */
3848 if (s->flags & SLAB_STORE_USER)
3849 set_track(s, freelist, TRACK_ALLOC, addr);
3850
3851 return freelist;
3852 }
3853
3854 freelist = freeze_slab(s, slab);
3855 goto retry_load_slab;
3856 }
3857
3858 slub_put_cpu_ptr(s->cpu_slab);
3859 slab = new_slab(s, pc.flags, node);
3860 c = slub_get_cpu_ptr(s->cpu_slab);
3861
3862 if (unlikely(!slab)) {
3863 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3864 && try_thisnode) {
3865 try_thisnode = false;
3866 goto new_objects;
3867 }
3868 slab_out_of_memory(s, gfpflags, node);
3869 return NULL;
3870 }
3871
3872 stat(s, ALLOC_SLAB);
3873
3874 if (kmem_cache_debug(s)) {
3875 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3876
3877 if (unlikely(!freelist))
3878 goto new_objects;
3879
3880 if (s->flags & SLAB_STORE_USER)
3881 set_track(s, freelist, TRACK_ALLOC, addr);
3882
3883 return freelist;
3884 }
3885
3886 /*
3887 * No other reference to the slab yet so we can
3888 * muck around with it freely without cmpxchg
3889 */
3890 freelist = slab->freelist;
3891 slab->freelist = NULL;
3892 slab->inuse = slab->objects;
3893 slab->frozen = 1;
3894
3895 inc_slabs_node(s, slab_nid(slab), slab->objects);
3896
3897 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3898 /*
3899 * For !pfmemalloc_match() case we don't load freelist so that
3900 * we don't make further mismatched allocations easier.
3901 */
3902 deactivate_slab(s, slab, get_freepointer(s, freelist));
3903 return freelist;
3904 }
3905
3906 retry_load_slab:
3907
3908 local_lock_irqsave(&s->cpu_slab->lock, flags);
3909 if (unlikely(c->slab)) {
3910 void *flush_freelist = c->freelist;
3911 struct slab *flush_slab = c->slab;
3912
3913 c->slab = NULL;
3914 c->freelist = NULL;
3915 c->tid = next_tid(c->tid);
3916
3917 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3918
3919 deactivate_slab(s, flush_slab, flush_freelist);
3920
3921 stat(s, CPUSLAB_FLUSH);
3922
3923 goto retry_load_slab;
3924 }
3925 c->slab = slab;
3926
3927 goto load_freelist;
3928 }
3929
3930 /*
3931 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3932 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3933 * pointer.
3934 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3935 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3936 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3937 {
3938 void *p;
3939
3940 #ifdef CONFIG_PREEMPT_COUNT
3941 /*
3942 * We may have been preempted and rescheduled on a different
3943 * cpu before disabling preemption. Need to reload cpu area
3944 * pointer.
3945 */
3946 c = slub_get_cpu_ptr(s->cpu_slab);
3947 #endif
3948
3949 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3950 #ifdef CONFIG_PREEMPT_COUNT
3951 slub_put_cpu_ptr(s->cpu_slab);
3952 #endif
3953 return p;
3954 }
3955
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3956 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3957 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3958 {
3959 struct kmem_cache_cpu *c;
3960 struct slab *slab;
3961 unsigned long tid;
3962 void *object;
3963
3964 redo:
3965 /*
3966 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3967 * enabled. We may switch back and forth between cpus while
3968 * reading from one cpu area. That does not matter as long
3969 * as we end up on the original cpu again when doing the cmpxchg.
3970 *
3971 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3972 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3973 * the tid. If we are preempted and switched to another cpu between the
3974 * two reads, it's OK as the two are still associated with the same cpu
3975 * and cmpxchg later will validate the cpu.
3976 */
3977 c = raw_cpu_ptr(s->cpu_slab);
3978 tid = READ_ONCE(c->tid);
3979
3980 /*
3981 * Irqless object alloc/free algorithm used here depends on sequence
3982 * of fetching cpu_slab's data. tid should be fetched before anything
3983 * on c to guarantee that object and slab associated with previous tid
3984 * won't be used with current tid. If we fetch tid first, object and
3985 * slab could be one associated with next tid and our alloc/free
3986 * request will be failed. In this case, we will retry. So, no problem.
3987 */
3988 barrier();
3989
3990 /*
3991 * The transaction ids are globally unique per cpu and per operation on
3992 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3993 * occurs on the right processor and that there was no operation on the
3994 * linked list in between.
3995 */
3996
3997 object = c->freelist;
3998 slab = c->slab;
3999
4000 #ifdef CONFIG_NUMA
4001 if (static_branch_unlikely(&strict_numa) &&
4002 node == NUMA_NO_NODE) {
4003
4004 struct mempolicy *mpol = current->mempolicy;
4005
4006 if (mpol) {
4007 /*
4008 * Special BIND rule support. If existing slab
4009 * is in permitted set then do not redirect
4010 * to a particular node.
4011 * Otherwise we apply the memory policy to get
4012 * the node we need to allocate on.
4013 */
4014 if (mpol->mode != MPOL_BIND || !slab ||
4015 !node_isset(slab_nid(slab), mpol->nodes))
4016
4017 node = mempolicy_slab_node();
4018 }
4019 }
4020 #endif
4021
4022 if (!USE_LOCKLESS_FAST_PATH() ||
4023 unlikely(!object || !slab || !node_match(slab, node))) {
4024 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4025 } else {
4026 void *next_object = get_freepointer_safe(s, object);
4027
4028 /*
4029 * The cmpxchg will only match if there was no additional
4030 * operation and if we are on the right processor.
4031 *
4032 * The cmpxchg does the following atomically (without lock
4033 * semantics!)
4034 * 1. Relocate first pointer to the current per cpu area.
4035 * 2. Verify that tid and freelist have not been changed
4036 * 3. If they were not changed replace tid and freelist
4037 *
4038 * Since this is without lock semantics the protection is only
4039 * against code executing on this cpu *not* from access by
4040 * other cpus.
4041 */
4042 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4043 note_cmpxchg_failure("slab_alloc", s, tid);
4044 goto redo;
4045 }
4046 prefetch_freepointer(s, next_object);
4047 stat(s, ALLOC_FASTPATH);
4048 }
4049
4050 return object;
4051 }
4052 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4053 static void *__slab_alloc_node(struct kmem_cache *s,
4054 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4055 {
4056 struct partial_context pc;
4057 struct slab *slab;
4058 void *object;
4059
4060 pc.flags = gfpflags;
4061 pc.orig_size = orig_size;
4062 slab = get_partial(s, node, &pc);
4063
4064 if (slab)
4065 return pc.object;
4066
4067 slab = new_slab(s, gfpflags, node);
4068 if (unlikely(!slab)) {
4069 slab_out_of_memory(s, gfpflags, node);
4070 return NULL;
4071 }
4072
4073 object = alloc_single_from_new_slab(s, slab, orig_size);
4074
4075 return object;
4076 }
4077 #endif /* CONFIG_SLUB_TINY */
4078
4079 /*
4080 * If the object has been wiped upon free, make sure it's fully initialized by
4081 * zeroing out freelist pointer.
4082 *
4083 * Note that we also wipe custom freelist pointers.
4084 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4085 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4086 void *obj)
4087 {
4088 if (unlikely(slab_want_init_on_free(s)) && obj &&
4089 !freeptr_outside_object(s))
4090 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4091 0, sizeof(void *));
4092 }
4093
4094 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4095 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4096 {
4097 flags &= gfp_allowed_mask;
4098
4099 might_alloc(flags);
4100
4101 if (unlikely(should_failslab(s, flags)))
4102 return NULL;
4103
4104 return s;
4105 }
4106
4107 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4108 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4109 gfp_t flags, size_t size, void **p, bool init,
4110 unsigned int orig_size)
4111 {
4112 unsigned int zero_size = s->object_size;
4113 bool kasan_init = init;
4114 size_t i;
4115 gfp_t init_flags = flags & gfp_allowed_mask;
4116
4117 /*
4118 * For kmalloc object, the allocated memory size(object_size) is likely
4119 * larger than the requested size(orig_size). If redzone check is
4120 * enabled for the extra space, don't zero it, as it will be redzoned
4121 * soon. The redzone operation for this extra space could be seen as a
4122 * replacement of current poisoning under certain debug option, and
4123 * won't break other sanity checks.
4124 */
4125 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4126 (s->flags & SLAB_KMALLOC))
4127 zero_size = orig_size;
4128
4129 /*
4130 * When slab_debug is enabled, avoid memory initialization integrated
4131 * into KASAN and instead zero out the memory via the memset below with
4132 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4133 * cause false-positive reports. This does not lead to a performance
4134 * penalty on production builds, as slab_debug is not intended to be
4135 * enabled there.
4136 */
4137 if (__slub_debug_enabled())
4138 kasan_init = false;
4139
4140 /*
4141 * As memory initialization might be integrated into KASAN,
4142 * kasan_slab_alloc and initialization memset must be
4143 * kept together to avoid discrepancies in behavior.
4144 *
4145 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4146 */
4147 for (i = 0; i < size; i++) {
4148 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4149 if (p[i] && init && (!kasan_init ||
4150 !kasan_has_integrated_init()))
4151 memset(p[i], 0, zero_size);
4152 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4153 s->flags, init_flags);
4154 kmsan_slab_alloc(s, p[i], init_flags);
4155 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4156 }
4157
4158 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4159 }
4160
4161 /*
4162 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4163 * have the fastpath folded into their functions. So no function call
4164 * overhead for requests that can be satisfied on the fastpath.
4165 *
4166 * The fastpath works by first checking if the lockless freelist can be used.
4167 * If not then __slab_alloc is called for slow processing.
4168 *
4169 * Otherwise we can simply pick the next object from the lockless free list.
4170 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4171 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4172 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4173 {
4174 void *object;
4175 bool init = false;
4176
4177 s = slab_pre_alloc_hook(s, gfpflags);
4178 if (unlikely(!s))
4179 return NULL;
4180
4181 object = kfence_alloc(s, orig_size, gfpflags);
4182 if (unlikely(object))
4183 goto out;
4184
4185 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4186
4187 maybe_wipe_obj_freeptr(s, object);
4188 init = slab_want_init_on_alloc(gfpflags, s);
4189
4190 out:
4191 /*
4192 * When init equals 'true', like for kzalloc() family, only
4193 * @orig_size bytes might be zeroed instead of s->object_size
4194 * In case this fails due to memcg_slab_post_alloc_hook(),
4195 * object is set to NULL
4196 */
4197 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4198
4199 return object;
4200 }
4201
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4202 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4203 {
4204 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4205 s->object_size);
4206
4207 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4208
4209 return ret;
4210 }
4211 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4212
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4213 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4214 gfp_t gfpflags)
4215 {
4216 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4217 s->object_size);
4218
4219 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4220
4221 return ret;
4222 }
4223 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4224
kmem_cache_charge(void * objp,gfp_t gfpflags)4225 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4226 {
4227 if (!memcg_kmem_online())
4228 return true;
4229
4230 return memcg_slab_post_charge(objp, gfpflags);
4231 }
4232 EXPORT_SYMBOL(kmem_cache_charge);
4233
4234 /**
4235 * kmem_cache_alloc_node - Allocate an object on the specified node
4236 * @s: The cache to allocate from.
4237 * @gfpflags: See kmalloc().
4238 * @node: node number of the target node.
4239 *
4240 * Identical to kmem_cache_alloc but it will allocate memory on the given
4241 * node, which can improve the performance for cpu bound structures.
4242 *
4243 * Fallback to other node is possible if __GFP_THISNODE is not set.
4244 *
4245 * Return: pointer to the new object or %NULL in case of error
4246 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4247 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4248 {
4249 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4250
4251 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4252
4253 return ret;
4254 }
4255 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4256
4257 /*
4258 * To avoid unnecessary overhead, we pass through large allocation requests
4259 * directly to the page allocator. We use __GFP_COMP, because we will need to
4260 * know the allocation order to free the pages properly in kfree.
4261 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4262 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4263 {
4264 struct folio *folio;
4265 void *ptr = NULL;
4266 unsigned int order = get_order(size);
4267
4268 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4269 flags = kmalloc_fix_flags(flags);
4270
4271 flags |= __GFP_COMP;
4272 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4273 if (folio) {
4274 ptr = folio_address(folio);
4275 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4276 PAGE_SIZE << order);
4277 __folio_set_large_kmalloc(folio);
4278 }
4279
4280 ptr = kasan_kmalloc_large(ptr, size, flags);
4281 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4282 kmemleak_alloc(ptr, size, 1, flags);
4283 kmsan_kmalloc_large(ptr, size, flags);
4284
4285 return ptr;
4286 }
4287
__kmalloc_large_noprof(size_t size,gfp_t flags)4288 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4289 {
4290 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4291
4292 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4293 flags, NUMA_NO_NODE);
4294 return ret;
4295 }
4296 EXPORT_SYMBOL(__kmalloc_large_noprof);
4297
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4298 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4299 {
4300 void *ret = ___kmalloc_large_node(size, flags, node);
4301
4302 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4303 flags, node);
4304 return ret;
4305 }
4306 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4307
4308 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4309 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4310 unsigned long caller)
4311 {
4312 struct kmem_cache *s;
4313 void *ret;
4314
4315 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4316 ret = __kmalloc_large_node_noprof(size, flags, node);
4317 trace_kmalloc(caller, ret, size,
4318 PAGE_SIZE << get_order(size), flags, node);
4319 return ret;
4320 }
4321
4322 if (unlikely(!size))
4323 return ZERO_SIZE_PTR;
4324
4325 s = kmalloc_slab(size, b, flags, caller);
4326
4327 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4328 ret = kasan_kmalloc(s, ret, size, flags);
4329 trace_kmalloc(caller, ret, size, s->size, flags, node);
4330 return ret;
4331 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4332 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4333 {
4334 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4335 }
4336 EXPORT_SYMBOL(__kmalloc_node_noprof);
4337
__kmalloc_noprof(size_t size,gfp_t flags)4338 void *__kmalloc_noprof(size_t size, gfp_t flags)
4339 {
4340 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4341 }
4342 EXPORT_SYMBOL(__kmalloc_noprof);
4343
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4344 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4345 int node, unsigned long caller)
4346 {
4347 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4348
4349 }
4350 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4351
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4352 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4353 {
4354 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4355 _RET_IP_, size);
4356
4357 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4358
4359 ret = kasan_kmalloc(s, ret, size, gfpflags);
4360 return ret;
4361 }
4362 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4363
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4364 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4365 int node, size_t size)
4366 {
4367 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4368
4369 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4370
4371 ret = kasan_kmalloc(s, ret, size, gfpflags);
4372 return ret;
4373 }
4374 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4375
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4376 static noinline void free_to_partial_list(
4377 struct kmem_cache *s, struct slab *slab,
4378 void *head, void *tail, int bulk_cnt,
4379 unsigned long addr)
4380 {
4381 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4382 struct slab *slab_free = NULL;
4383 int cnt = bulk_cnt;
4384 unsigned long flags;
4385 depot_stack_handle_t handle = 0;
4386
4387 if (s->flags & SLAB_STORE_USER)
4388 handle = set_track_prepare();
4389
4390 spin_lock_irqsave(&n->list_lock, flags);
4391
4392 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4393 void *prior = slab->freelist;
4394
4395 /* Perform the actual freeing while we still hold the locks */
4396 slab->inuse -= cnt;
4397 set_freepointer(s, tail, prior);
4398 slab->freelist = head;
4399
4400 /*
4401 * If the slab is empty, and node's partial list is full,
4402 * it should be discarded anyway no matter it's on full or
4403 * partial list.
4404 */
4405 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4406 slab_free = slab;
4407
4408 if (!prior) {
4409 /* was on full list */
4410 remove_full(s, n, slab);
4411 if (!slab_free) {
4412 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4413 stat(s, FREE_ADD_PARTIAL);
4414 }
4415 } else if (slab_free) {
4416 remove_partial(n, slab);
4417 stat(s, FREE_REMOVE_PARTIAL);
4418 }
4419 }
4420
4421 if (slab_free) {
4422 /*
4423 * Update the counters while still holding n->list_lock to
4424 * prevent spurious validation warnings
4425 */
4426 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4427 }
4428
4429 spin_unlock_irqrestore(&n->list_lock, flags);
4430
4431 if (slab_free) {
4432 stat(s, FREE_SLAB);
4433 free_slab(s, slab_free);
4434 }
4435 }
4436
4437 /*
4438 * Slow path handling. This may still be called frequently since objects
4439 * have a longer lifetime than the cpu slabs in most processing loads.
4440 *
4441 * So we still attempt to reduce cache line usage. Just take the slab
4442 * lock and free the item. If there is no additional partial slab
4443 * handling required then we can return immediately.
4444 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4445 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4446 void *head, void *tail, int cnt,
4447 unsigned long addr)
4448
4449 {
4450 void *prior;
4451 int was_frozen;
4452 struct slab new;
4453 unsigned long counters;
4454 struct kmem_cache_node *n = NULL;
4455 unsigned long flags;
4456 bool on_node_partial;
4457
4458 stat(s, FREE_SLOWPATH);
4459
4460 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4461 free_to_partial_list(s, slab, head, tail, cnt, addr);
4462 return;
4463 }
4464
4465 do {
4466 if (unlikely(n)) {
4467 spin_unlock_irqrestore(&n->list_lock, flags);
4468 n = NULL;
4469 }
4470 prior = slab->freelist;
4471 counters = slab->counters;
4472 set_freepointer(s, tail, prior);
4473 new.counters = counters;
4474 was_frozen = new.frozen;
4475 new.inuse -= cnt;
4476 if ((!new.inuse || !prior) && !was_frozen) {
4477 /* Needs to be taken off a list */
4478 if (!kmem_cache_has_cpu_partial(s) || prior) {
4479
4480 n = get_node(s, slab_nid(slab));
4481 /*
4482 * Speculatively acquire the list_lock.
4483 * If the cmpxchg does not succeed then we may
4484 * drop the list_lock without any processing.
4485 *
4486 * Otherwise the list_lock will synchronize with
4487 * other processors updating the list of slabs.
4488 */
4489 spin_lock_irqsave(&n->list_lock, flags);
4490
4491 on_node_partial = slab_test_node_partial(slab);
4492 }
4493 }
4494
4495 } while (!slab_update_freelist(s, slab,
4496 prior, counters,
4497 head, new.counters,
4498 "__slab_free"));
4499
4500 if (likely(!n)) {
4501
4502 if (likely(was_frozen)) {
4503 /*
4504 * The list lock was not taken therefore no list
4505 * activity can be necessary.
4506 */
4507 stat(s, FREE_FROZEN);
4508 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4509 /*
4510 * If we started with a full slab then put it onto the
4511 * per cpu partial list.
4512 */
4513 put_cpu_partial(s, slab, 1);
4514 stat(s, CPU_PARTIAL_FREE);
4515 }
4516
4517 return;
4518 }
4519
4520 /*
4521 * This slab was partially empty but not on the per-node partial list,
4522 * in which case we shouldn't manipulate its list, just return.
4523 */
4524 if (prior && !on_node_partial) {
4525 spin_unlock_irqrestore(&n->list_lock, flags);
4526 return;
4527 }
4528
4529 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4530 goto slab_empty;
4531
4532 /*
4533 * Objects left in the slab. If it was not on the partial list before
4534 * then add it.
4535 */
4536 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4537 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4538 stat(s, FREE_ADD_PARTIAL);
4539 }
4540 spin_unlock_irqrestore(&n->list_lock, flags);
4541 return;
4542
4543 slab_empty:
4544 if (prior) {
4545 /*
4546 * Slab on the partial list.
4547 */
4548 remove_partial(n, slab);
4549 stat(s, FREE_REMOVE_PARTIAL);
4550 }
4551
4552 spin_unlock_irqrestore(&n->list_lock, flags);
4553 stat(s, FREE_SLAB);
4554 discard_slab(s, slab);
4555 }
4556
4557 #ifndef CONFIG_SLUB_TINY
4558 /*
4559 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4560 * can perform fastpath freeing without additional function calls.
4561 *
4562 * The fastpath is only possible if we are freeing to the current cpu slab
4563 * of this processor. This typically the case if we have just allocated
4564 * the item before.
4565 *
4566 * If fastpath is not possible then fall back to __slab_free where we deal
4567 * with all sorts of special processing.
4568 *
4569 * Bulk free of a freelist with several objects (all pointing to the
4570 * same slab) possible by specifying head and tail ptr, plus objects
4571 * count (cnt). Bulk free indicated by tail pointer being set.
4572 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4573 static __always_inline void do_slab_free(struct kmem_cache *s,
4574 struct slab *slab, void *head, void *tail,
4575 int cnt, unsigned long addr)
4576 {
4577 struct kmem_cache_cpu *c;
4578 unsigned long tid;
4579 void **freelist;
4580
4581 redo:
4582 /*
4583 * Determine the currently cpus per cpu slab.
4584 * The cpu may change afterward. However that does not matter since
4585 * data is retrieved via this pointer. If we are on the same cpu
4586 * during the cmpxchg then the free will succeed.
4587 */
4588 c = raw_cpu_ptr(s->cpu_slab);
4589 tid = READ_ONCE(c->tid);
4590
4591 /* Same with comment on barrier() in __slab_alloc_node() */
4592 barrier();
4593
4594 if (unlikely(slab != c->slab)) {
4595 __slab_free(s, slab, head, tail, cnt, addr);
4596 return;
4597 }
4598
4599 if (USE_LOCKLESS_FAST_PATH()) {
4600 freelist = READ_ONCE(c->freelist);
4601
4602 set_freepointer(s, tail, freelist);
4603
4604 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4605 note_cmpxchg_failure("slab_free", s, tid);
4606 goto redo;
4607 }
4608 } else {
4609 /* Update the free list under the local lock */
4610 local_lock(&s->cpu_slab->lock);
4611 c = this_cpu_ptr(s->cpu_slab);
4612 if (unlikely(slab != c->slab)) {
4613 local_unlock(&s->cpu_slab->lock);
4614 goto redo;
4615 }
4616 tid = c->tid;
4617 freelist = c->freelist;
4618
4619 set_freepointer(s, tail, freelist);
4620 c->freelist = head;
4621 c->tid = next_tid(tid);
4622
4623 local_unlock(&s->cpu_slab->lock);
4624 }
4625 stat_add(s, FREE_FASTPATH, cnt);
4626 }
4627 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4628 static void do_slab_free(struct kmem_cache *s,
4629 struct slab *slab, void *head, void *tail,
4630 int cnt, unsigned long addr)
4631 {
4632 __slab_free(s, slab, head, tail, cnt, addr);
4633 }
4634 #endif /* CONFIG_SLUB_TINY */
4635
4636 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4637 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4638 unsigned long addr)
4639 {
4640 memcg_slab_free_hook(s, slab, &object, 1);
4641 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4642
4643 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4644 do_slab_free(s, slab, object, object, 1, addr);
4645 }
4646
4647 #ifdef CONFIG_MEMCG
4648 /* Do not inline the rare memcg charging failed path into the allocation path */
4649 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4650 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4651 {
4652 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4653 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4654 }
4655 #endif
4656
4657 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4658 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4659 void *tail, void **p, int cnt, unsigned long addr)
4660 {
4661 memcg_slab_free_hook(s, slab, p, cnt);
4662 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4663 /*
4664 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4665 * to remove objects, whose reuse must be delayed.
4666 */
4667 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4668 do_slab_free(s, slab, head, tail, cnt, addr);
4669 }
4670
4671 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4672 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4673 {
4674 struct rcu_delayed_free *delayed_free =
4675 container_of(rcu_head, struct rcu_delayed_free, head);
4676 void *object = delayed_free->object;
4677 struct slab *slab = virt_to_slab(object);
4678 struct kmem_cache *s;
4679
4680 kfree(delayed_free);
4681
4682 if (WARN_ON(is_kfence_address(object)))
4683 return;
4684
4685 /* find the object and the cache again */
4686 if (WARN_ON(!slab))
4687 return;
4688 s = slab->slab_cache;
4689 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4690 return;
4691
4692 /* resume freeing */
4693 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4694 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4695 }
4696 #endif /* CONFIG_SLUB_RCU_DEBUG */
4697
4698 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4699 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4700 {
4701 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4702 }
4703 #endif
4704
virt_to_cache(const void * obj)4705 static inline struct kmem_cache *virt_to_cache(const void *obj)
4706 {
4707 struct slab *slab;
4708
4709 slab = virt_to_slab(obj);
4710 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4711 return NULL;
4712 return slab->slab_cache;
4713 }
4714
cache_from_obj(struct kmem_cache * s,void * x)4715 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4716 {
4717 struct kmem_cache *cachep;
4718
4719 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4720 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4721 return s;
4722
4723 cachep = virt_to_cache(x);
4724 if (WARN(cachep && cachep != s,
4725 "%s: Wrong slab cache. %s but object is from %s\n",
4726 __func__, s->name, cachep->name))
4727 print_tracking(cachep, x);
4728 return cachep;
4729 }
4730
4731 /**
4732 * kmem_cache_free - Deallocate an object
4733 * @s: The cache the allocation was from.
4734 * @x: The previously allocated object.
4735 *
4736 * Free an object which was previously allocated from this
4737 * cache.
4738 */
kmem_cache_free(struct kmem_cache * s,void * x)4739 void kmem_cache_free(struct kmem_cache *s, void *x)
4740 {
4741 s = cache_from_obj(s, x);
4742 if (!s)
4743 return;
4744 trace_kmem_cache_free(_RET_IP_, x, s);
4745 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4746 }
4747 EXPORT_SYMBOL(kmem_cache_free);
4748
free_large_kmalloc(struct folio * folio,void * object)4749 static void free_large_kmalloc(struct folio *folio, void *object)
4750 {
4751 unsigned int order = folio_order(folio);
4752
4753 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4754 dump_page(&folio->page, "Not a kmalloc allocation");
4755 return;
4756 }
4757
4758 if (WARN_ON_ONCE(order == 0))
4759 pr_warn_once("object pointer: 0x%p\n", object);
4760
4761 kmemleak_free(object);
4762 kasan_kfree_large(object);
4763 kmsan_kfree_large(object);
4764
4765 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4766 -(PAGE_SIZE << order));
4767 __folio_clear_large_kmalloc(folio);
4768 folio_put(folio);
4769 }
4770
4771 /*
4772 * Given an rcu_head embedded within an object obtained from kvmalloc at an
4773 * offset < 4k, free the object in question.
4774 */
kvfree_rcu_cb(struct rcu_head * head)4775 void kvfree_rcu_cb(struct rcu_head *head)
4776 {
4777 void *obj = head;
4778 struct folio *folio;
4779 struct slab *slab;
4780 struct kmem_cache *s;
4781 void *slab_addr;
4782
4783 if (is_vmalloc_addr(obj)) {
4784 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4785 vfree(obj);
4786 return;
4787 }
4788
4789 folio = virt_to_folio(obj);
4790 if (!folio_test_slab(folio)) {
4791 /*
4792 * rcu_head offset can be only less than page size so no need to
4793 * consider folio order
4794 */
4795 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4796 free_large_kmalloc(folio, obj);
4797 return;
4798 }
4799
4800 slab = folio_slab(folio);
4801 s = slab->slab_cache;
4802 slab_addr = folio_address(folio);
4803
4804 if (is_kfence_address(obj)) {
4805 obj = kfence_object_start(obj);
4806 } else {
4807 unsigned int idx = __obj_to_index(s, slab_addr, obj);
4808
4809 obj = slab_addr + s->size * idx;
4810 obj = fixup_red_left(s, obj);
4811 }
4812
4813 slab_free(s, slab, obj, _RET_IP_);
4814 }
4815
4816 /**
4817 * kfree - free previously allocated memory
4818 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4819 *
4820 * If @object is NULL, no operation is performed.
4821 */
kfree(const void * object)4822 void kfree(const void *object)
4823 {
4824 struct folio *folio;
4825 struct slab *slab;
4826 struct kmem_cache *s;
4827 void *x = (void *)object;
4828
4829 trace_kfree(_RET_IP_, object);
4830
4831 if (unlikely(ZERO_OR_NULL_PTR(object)))
4832 return;
4833
4834 folio = virt_to_folio(object);
4835 if (unlikely(!folio_test_slab(folio))) {
4836 free_large_kmalloc(folio, (void *)object);
4837 return;
4838 }
4839
4840 slab = folio_slab(folio);
4841 s = slab->slab_cache;
4842 slab_free(s, slab, x, _RET_IP_);
4843 }
4844 EXPORT_SYMBOL(kfree);
4845
4846 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)4847 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4848 {
4849 void *ret;
4850 size_t ks = 0;
4851 int orig_size = 0;
4852 struct kmem_cache *s = NULL;
4853
4854 if (unlikely(ZERO_OR_NULL_PTR(p)))
4855 goto alloc_new;
4856
4857 /* Check for double-free. */
4858 if (!kasan_check_byte(p))
4859 return NULL;
4860
4861 if (is_kfence_address(p)) {
4862 ks = orig_size = kfence_ksize(p);
4863 } else {
4864 struct folio *folio;
4865
4866 folio = virt_to_folio(p);
4867 if (unlikely(!folio_test_slab(folio))) {
4868 /* Big kmalloc object */
4869 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4870 WARN_ON(p != folio_address(folio));
4871 ks = folio_size(folio);
4872 } else {
4873 s = folio_slab(folio)->slab_cache;
4874 orig_size = get_orig_size(s, (void *)p);
4875 ks = s->object_size;
4876 }
4877 }
4878
4879 /* If the old object doesn't fit, allocate a bigger one */
4880 if (new_size > ks)
4881 goto alloc_new;
4882
4883 /* Zero out spare memory. */
4884 if (want_init_on_alloc(flags)) {
4885 kasan_disable_current();
4886 if (orig_size && orig_size < new_size)
4887 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4888 else
4889 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4890 kasan_enable_current();
4891 }
4892
4893 /* Setup kmalloc redzone when needed */
4894 if (s && slub_debug_orig_size(s)) {
4895 set_orig_size(s, (void *)p, new_size);
4896 if (s->flags & SLAB_RED_ZONE && new_size < ks)
4897 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4898 SLUB_RED_ACTIVE, ks - new_size);
4899 }
4900
4901 p = kasan_krealloc(p, new_size, flags);
4902 return (void *)p;
4903
4904 alloc_new:
4905 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4906 if (ret && p) {
4907 /* Disable KASAN checks as the object's redzone is accessed. */
4908 kasan_disable_current();
4909 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4910 kasan_enable_current();
4911 }
4912
4913 return ret;
4914 }
4915
4916 /**
4917 * krealloc - reallocate memory. The contents will remain unchanged.
4918 * @p: object to reallocate memory for.
4919 * @new_size: how many bytes of memory are required.
4920 * @flags: the type of memory to allocate.
4921 *
4922 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4923 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4924 *
4925 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4926 * initial memory allocation, every subsequent call to this API for the same
4927 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4928 * __GFP_ZERO is not fully honored by this API.
4929 *
4930 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4931 * size of an allocation (but not the exact size it was allocated with) and
4932 * hence implements the following semantics for shrinking and growing buffers
4933 * with __GFP_ZERO.
4934 *
4935 * new bucket
4936 * 0 size size
4937 * |--------|----------------|
4938 * | keep | zero |
4939 *
4940 * Otherwise, the original allocation size 'orig_size' could be used to
4941 * precisely clear the requested size, and the new size will also be stored
4942 * as the new 'orig_size'.
4943 *
4944 * In any case, the contents of the object pointed to are preserved up to the
4945 * lesser of the new and old sizes.
4946 *
4947 * Return: pointer to the allocated memory or %NULL in case of error
4948 */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)4949 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4950 {
4951 void *ret;
4952
4953 if (unlikely(!new_size)) {
4954 kfree(p);
4955 return ZERO_SIZE_PTR;
4956 }
4957
4958 ret = __do_krealloc(p, new_size, flags);
4959 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4960 kfree(p);
4961
4962 return ret;
4963 }
4964 EXPORT_SYMBOL(krealloc_noprof);
4965
kmalloc_gfp_adjust(gfp_t flags,size_t size)4966 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
4967 {
4968 /*
4969 * We want to attempt a large physically contiguous block first because
4970 * it is less likely to fragment multiple larger blocks and therefore
4971 * contribute to a long term fragmentation less than vmalloc fallback.
4972 * However make sure that larger requests are not too disruptive - i.e.
4973 * do not direct reclaim unless physically continuous memory is preferred
4974 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
4975 * start working in the background
4976 */
4977 if (size > PAGE_SIZE) {
4978 flags |= __GFP_NOWARN;
4979
4980 if (!(flags & __GFP_RETRY_MAYFAIL))
4981 flags &= ~__GFP_DIRECT_RECLAIM;
4982
4983 /* nofail semantic is implemented by the vmalloc fallback */
4984 flags &= ~__GFP_NOFAIL;
4985 }
4986
4987 return flags;
4988 }
4989
4990 /**
4991 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
4992 * failure, fall back to non-contiguous (vmalloc) allocation.
4993 * @size: size of the request.
4994 * @b: which set of kmalloc buckets to allocate from.
4995 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
4996 * @node: numa node to allocate from
4997 *
4998 * Uses kmalloc to get the memory but if the allocation fails then falls back
4999 * to the vmalloc allocator. Use kvfree for freeing the memory.
5000 *
5001 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
5002 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5003 * preferable to the vmalloc fallback, due to visible performance drawbacks.
5004 *
5005 * Return: pointer to the allocated memory of %NULL in case of failure
5006 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5007 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5008 {
5009 void *ret;
5010
5011 /*
5012 * It doesn't really make sense to fallback to vmalloc for sub page
5013 * requests
5014 */
5015 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5016 kmalloc_gfp_adjust(flags, size),
5017 node, _RET_IP_);
5018 if (ret || size <= PAGE_SIZE)
5019 return ret;
5020
5021 /* non-sleeping allocations are not supported by vmalloc */
5022 if (!gfpflags_allow_blocking(flags))
5023 return NULL;
5024
5025 /* Don't even allow crazy sizes */
5026 if (unlikely(size > INT_MAX)) {
5027 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5028 return NULL;
5029 }
5030
5031 /*
5032 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5033 * since the callers already cannot assume anything
5034 * about the resulting pointer, and cannot play
5035 * protection games.
5036 */
5037 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5038 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5039 node, __builtin_return_address(0));
5040 }
5041 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5042
5043 /**
5044 * kvfree() - Free memory.
5045 * @addr: Pointer to allocated memory.
5046 *
5047 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5048 * It is slightly more efficient to use kfree() or vfree() if you are certain
5049 * that you know which one to use.
5050 *
5051 * Context: Either preemptible task context or not-NMI interrupt.
5052 */
kvfree(const void * addr)5053 void kvfree(const void *addr)
5054 {
5055 if (is_vmalloc_addr(addr))
5056 vfree(addr);
5057 else
5058 kfree(addr);
5059 }
5060 EXPORT_SYMBOL(kvfree);
5061
5062 /**
5063 * kvfree_sensitive - Free a data object containing sensitive information.
5064 * @addr: address of the data object to be freed.
5065 * @len: length of the data object.
5066 *
5067 * Use the special memzero_explicit() function to clear the content of a
5068 * kvmalloc'ed object containing sensitive data to make sure that the
5069 * compiler won't optimize out the data clearing.
5070 */
kvfree_sensitive(const void * addr,size_t len)5071 void kvfree_sensitive(const void *addr, size_t len)
5072 {
5073 if (likely(!ZERO_OR_NULL_PTR(addr))) {
5074 memzero_explicit((void *)addr, len);
5075 kvfree(addr);
5076 }
5077 }
5078 EXPORT_SYMBOL(kvfree_sensitive);
5079
5080 /**
5081 * kvrealloc - reallocate memory; contents remain unchanged
5082 * @p: object to reallocate memory for
5083 * @size: the size to reallocate
5084 * @flags: the flags for the page level allocator
5085 *
5086 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5087 * and @p is not a %NULL pointer, the object pointed to is freed.
5088 *
5089 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5090 * initial memory allocation, every subsequent call to this API for the same
5091 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5092 * __GFP_ZERO is not fully honored by this API.
5093 *
5094 * In any case, the contents of the object pointed to are preserved up to the
5095 * lesser of the new and old sizes.
5096 *
5097 * This function must not be called concurrently with itself or kvfree() for the
5098 * same memory allocation.
5099 *
5100 * Return: pointer to the allocated memory or %NULL in case of error
5101 */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)5102 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5103 {
5104 void *n;
5105
5106 if (is_vmalloc_addr(p))
5107 return vrealloc_noprof(p, size, flags);
5108
5109 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5110 if (!n) {
5111 /* We failed to krealloc(), fall back to kvmalloc(). */
5112 n = kvmalloc_noprof(size, flags);
5113 if (!n)
5114 return NULL;
5115
5116 if (p) {
5117 /* We already know that `p` is not a vmalloc address. */
5118 kasan_disable_current();
5119 memcpy(n, kasan_reset_tag(p), ksize(p));
5120 kasan_enable_current();
5121
5122 kfree(p);
5123 }
5124 }
5125
5126 return n;
5127 }
5128 EXPORT_SYMBOL(kvrealloc_noprof);
5129
5130 struct detached_freelist {
5131 struct slab *slab;
5132 void *tail;
5133 void *freelist;
5134 int cnt;
5135 struct kmem_cache *s;
5136 };
5137
5138 /*
5139 * This function progressively scans the array with free objects (with
5140 * a limited look ahead) and extract objects belonging to the same
5141 * slab. It builds a detached freelist directly within the given
5142 * slab/objects. This can happen without any need for
5143 * synchronization, because the objects are owned by running process.
5144 * The freelist is build up as a single linked list in the objects.
5145 * The idea is, that this detached freelist can then be bulk
5146 * transferred to the real freelist(s), but only requiring a single
5147 * synchronization primitive. Look ahead in the array is limited due
5148 * to performance reasons.
5149 */
5150 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)5151 int build_detached_freelist(struct kmem_cache *s, size_t size,
5152 void **p, struct detached_freelist *df)
5153 {
5154 int lookahead = 3;
5155 void *object;
5156 struct folio *folio;
5157 size_t same;
5158
5159 object = p[--size];
5160 folio = virt_to_folio(object);
5161 if (!s) {
5162 /* Handle kalloc'ed objects */
5163 if (unlikely(!folio_test_slab(folio))) {
5164 free_large_kmalloc(folio, object);
5165 df->slab = NULL;
5166 return size;
5167 }
5168 /* Derive kmem_cache from object */
5169 df->slab = folio_slab(folio);
5170 df->s = df->slab->slab_cache;
5171 } else {
5172 df->slab = folio_slab(folio);
5173 df->s = cache_from_obj(s, object); /* Support for memcg */
5174 }
5175
5176 /* Start new detached freelist */
5177 df->tail = object;
5178 df->freelist = object;
5179 df->cnt = 1;
5180
5181 if (is_kfence_address(object))
5182 return size;
5183
5184 set_freepointer(df->s, object, NULL);
5185
5186 same = size;
5187 while (size) {
5188 object = p[--size];
5189 /* df->slab is always set at this point */
5190 if (df->slab == virt_to_slab(object)) {
5191 /* Opportunity build freelist */
5192 set_freepointer(df->s, object, df->freelist);
5193 df->freelist = object;
5194 df->cnt++;
5195 same--;
5196 if (size != same)
5197 swap(p[size], p[same]);
5198 continue;
5199 }
5200
5201 /* Limit look ahead search */
5202 if (!--lookahead)
5203 break;
5204 }
5205
5206 return same;
5207 }
5208
5209 /*
5210 * Internal bulk free of objects that were not initialised by the post alloc
5211 * hooks and thus should not be processed by the free hooks
5212 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5213 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5214 {
5215 if (!size)
5216 return;
5217
5218 do {
5219 struct detached_freelist df;
5220
5221 size = build_detached_freelist(s, size, p, &df);
5222 if (!df.slab)
5223 continue;
5224
5225 if (kfence_free(df.freelist))
5226 continue;
5227
5228 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5229 _RET_IP_);
5230 } while (likely(size));
5231 }
5232
5233 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5234 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5235 {
5236 if (!size)
5237 return;
5238
5239 do {
5240 struct detached_freelist df;
5241
5242 size = build_detached_freelist(s, size, p, &df);
5243 if (!df.slab)
5244 continue;
5245
5246 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5247 df.cnt, _RET_IP_);
5248 } while (likely(size));
5249 }
5250 EXPORT_SYMBOL(kmem_cache_free_bulk);
5251
5252 #ifndef CONFIG_SLUB_TINY
5253 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5254 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5255 void **p)
5256 {
5257 struct kmem_cache_cpu *c;
5258 unsigned long irqflags;
5259 int i;
5260
5261 /*
5262 * Drain objects in the per cpu slab, while disabling local
5263 * IRQs, which protects against PREEMPT and interrupts
5264 * handlers invoking normal fastpath.
5265 */
5266 c = slub_get_cpu_ptr(s->cpu_slab);
5267 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5268
5269 for (i = 0; i < size; i++) {
5270 void *object = kfence_alloc(s, s->object_size, flags);
5271
5272 if (unlikely(object)) {
5273 p[i] = object;
5274 continue;
5275 }
5276
5277 object = c->freelist;
5278 if (unlikely(!object)) {
5279 /*
5280 * We may have removed an object from c->freelist using
5281 * the fastpath in the previous iteration; in that case,
5282 * c->tid has not been bumped yet.
5283 * Since ___slab_alloc() may reenable interrupts while
5284 * allocating memory, we should bump c->tid now.
5285 */
5286 c->tid = next_tid(c->tid);
5287
5288 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5289
5290 /*
5291 * Invoking slow path likely have side-effect
5292 * of re-populating per CPU c->freelist
5293 */
5294 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5295 _RET_IP_, c, s->object_size);
5296 if (unlikely(!p[i]))
5297 goto error;
5298
5299 c = this_cpu_ptr(s->cpu_slab);
5300 maybe_wipe_obj_freeptr(s, p[i]);
5301
5302 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5303
5304 continue; /* goto for-loop */
5305 }
5306 c->freelist = get_freepointer(s, object);
5307 p[i] = object;
5308 maybe_wipe_obj_freeptr(s, p[i]);
5309 stat(s, ALLOC_FASTPATH);
5310 }
5311 c->tid = next_tid(c->tid);
5312 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5313 slub_put_cpu_ptr(s->cpu_slab);
5314
5315 return i;
5316
5317 error:
5318 slub_put_cpu_ptr(s->cpu_slab);
5319 __kmem_cache_free_bulk(s, i, p);
5320 return 0;
5321
5322 }
5323 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5324 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5325 size_t size, void **p)
5326 {
5327 int i;
5328
5329 for (i = 0; i < size; i++) {
5330 void *object = kfence_alloc(s, s->object_size, flags);
5331
5332 if (unlikely(object)) {
5333 p[i] = object;
5334 continue;
5335 }
5336
5337 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5338 _RET_IP_, s->object_size);
5339 if (unlikely(!p[i]))
5340 goto error;
5341
5342 maybe_wipe_obj_freeptr(s, p[i]);
5343 }
5344
5345 return i;
5346
5347 error:
5348 __kmem_cache_free_bulk(s, i, p);
5349 return 0;
5350 }
5351 #endif /* CONFIG_SLUB_TINY */
5352
5353 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5354 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5355 void **p)
5356 {
5357 int i;
5358
5359 if (!size)
5360 return 0;
5361
5362 s = slab_pre_alloc_hook(s, flags);
5363 if (unlikely(!s))
5364 return 0;
5365
5366 i = __kmem_cache_alloc_bulk(s, flags, size, p);
5367 if (unlikely(i == 0))
5368 return 0;
5369
5370 /*
5371 * memcg and kmem_cache debug support and memory initialization.
5372 * Done outside of the IRQ disabled fastpath loop.
5373 */
5374 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5375 slab_want_init_on_alloc(flags, s), s->object_size))) {
5376 return 0;
5377 }
5378 return i;
5379 }
5380 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5381
5382
5383 /*
5384 * Object placement in a slab is made very easy because we always start at
5385 * offset 0. If we tune the size of the object to the alignment then we can
5386 * get the required alignment by putting one properly sized object after
5387 * another.
5388 *
5389 * Notice that the allocation order determines the sizes of the per cpu
5390 * caches. Each processor has always one slab available for allocations.
5391 * Increasing the allocation order reduces the number of times that slabs
5392 * must be moved on and off the partial lists and is therefore a factor in
5393 * locking overhead.
5394 */
5395
5396 /*
5397 * Minimum / Maximum order of slab pages. This influences locking overhead
5398 * and slab fragmentation. A higher order reduces the number of partial slabs
5399 * and increases the number of allocations possible without having to
5400 * take the list_lock.
5401 */
5402 static unsigned int slub_min_order;
5403 static unsigned int slub_max_order =
5404 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5405 static unsigned int slub_min_objects;
5406
5407 /*
5408 * Calculate the order of allocation given an slab object size.
5409 *
5410 * The order of allocation has significant impact on performance and other
5411 * system components. Generally order 0 allocations should be preferred since
5412 * order 0 does not cause fragmentation in the page allocator. Larger objects
5413 * be problematic to put into order 0 slabs because there may be too much
5414 * unused space left. We go to a higher order if more than 1/16th of the slab
5415 * would be wasted.
5416 *
5417 * In order to reach satisfactory performance we must ensure that a minimum
5418 * number of objects is in one slab. Otherwise we may generate too much
5419 * activity on the partial lists which requires taking the list_lock. This is
5420 * less a concern for large slabs though which are rarely used.
5421 *
5422 * slab_max_order specifies the order where we begin to stop considering the
5423 * number of objects in a slab as critical. If we reach slab_max_order then
5424 * we try to keep the page order as low as possible. So we accept more waste
5425 * of space in favor of a small page order.
5426 *
5427 * Higher order allocations also allow the placement of more objects in a
5428 * slab and thereby reduce object handling overhead. If the user has
5429 * requested a higher minimum order then we start with that one instead of
5430 * the smallest order which will fit the object.
5431 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5432 static inline unsigned int calc_slab_order(unsigned int size,
5433 unsigned int min_order, unsigned int max_order,
5434 unsigned int fract_leftover)
5435 {
5436 unsigned int order;
5437
5438 for (order = min_order; order <= max_order; order++) {
5439
5440 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5441 unsigned int rem;
5442
5443 rem = slab_size % size;
5444
5445 if (rem <= slab_size / fract_leftover)
5446 break;
5447 }
5448
5449 return order;
5450 }
5451
calculate_order(unsigned int size)5452 static inline int calculate_order(unsigned int size)
5453 {
5454 unsigned int order;
5455 unsigned int min_objects;
5456 unsigned int max_objects;
5457 unsigned int min_order;
5458
5459 min_objects = slub_min_objects;
5460 if (!min_objects) {
5461 /*
5462 * Some architectures will only update present cpus when
5463 * onlining them, so don't trust the number if it's just 1. But
5464 * we also don't want to use nr_cpu_ids always, as on some other
5465 * architectures, there can be many possible cpus, but never
5466 * onlined. Here we compromise between trying to avoid too high
5467 * order on systems that appear larger than they are, and too
5468 * low order on systems that appear smaller than they are.
5469 */
5470 unsigned int nr_cpus = num_present_cpus();
5471 if (nr_cpus <= 1)
5472 nr_cpus = nr_cpu_ids;
5473 min_objects = 4 * (fls(nr_cpus) + 1);
5474 }
5475 /* min_objects can't be 0 because get_order(0) is undefined */
5476 max_objects = max(order_objects(slub_max_order, size), 1U);
5477 min_objects = min(min_objects, max_objects);
5478
5479 min_order = max_t(unsigned int, slub_min_order,
5480 get_order(min_objects * size));
5481 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5482 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5483
5484 /*
5485 * Attempt to find best configuration for a slab. This works by first
5486 * attempting to generate a layout with the best possible configuration
5487 * and backing off gradually.
5488 *
5489 * We start with accepting at most 1/16 waste and try to find the
5490 * smallest order from min_objects-derived/slab_min_order up to
5491 * slab_max_order that will satisfy the constraint. Note that increasing
5492 * the order can only result in same or less fractional waste, not more.
5493 *
5494 * If that fails, we increase the acceptable fraction of waste and try
5495 * again. The last iteration with fraction of 1/2 would effectively
5496 * accept any waste and give us the order determined by min_objects, as
5497 * long as at least single object fits within slab_max_order.
5498 */
5499 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5500 order = calc_slab_order(size, min_order, slub_max_order,
5501 fraction);
5502 if (order <= slub_max_order)
5503 return order;
5504 }
5505
5506 /*
5507 * Doh this slab cannot be placed using slab_max_order.
5508 */
5509 order = get_order(size);
5510 if (order <= MAX_PAGE_ORDER)
5511 return order;
5512 return -ENOSYS;
5513 }
5514
5515 static void
init_kmem_cache_node(struct kmem_cache_node * n)5516 init_kmem_cache_node(struct kmem_cache_node *n)
5517 {
5518 n->nr_partial = 0;
5519 spin_lock_init(&n->list_lock);
5520 INIT_LIST_HEAD(&n->partial);
5521 #ifdef CONFIG_SLUB_DEBUG
5522 atomic_long_set(&n->nr_slabs, 0);
5523 atomic_long_set(&n->total_objects, 0);
5524 INIT_LIST_HEAD(&n->full);
5525 #endif
5526 }
5527
5528 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5529 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5530 {
5531 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5532 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5533 sizeof(struct kmem_cache_cpu));
5534
5535 /*
5536 * Must align to double word boundary for the double cmpxchg
5537 * instructions to work; see __pcpu_double_call_return_bool().
5538 */
5539 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5540 2 * sizeof(void *));
5541
5542 if (!s->cpu_slab)
5543 return 0;
5544
5545 init_kmem_cache_cpus(s);
5546
5547 return 1;
5548 }
5549 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5550 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5551 {
5552 return 1;
5553 }
5554 #endif /* CONFIG_SLUB_TINY */
5555
5556 static struct kmem_cache *kmem_cache_node;
5557
5558 /*
5559 * No kmalloc_node yet so do it by hand. We know that this is the first
5560 * slab on the node for this slabcache. There are no concurrent accesses
5561 * possible.
5562 *
5563 * Note that this function only works on the kmem_cache_node
5564 * when allocating for the kmem_cache_node. This is used for bootstrapping
5565 * memory on a fresh node that has no slab structures yet.
5566 */
early_kmem_cache_node_alloc(int node)5567 static void early_kmem_cache_node_alloc(int node)
5568 {
5569 struct slab *slab;
5570 struct kmem_cache_node *n;
5571
5572 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5573
5574 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5575
5576 BUG_ON(!slab);
5577 if (slab_nid(slab) != node) {
5578 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5579 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5580 }
5581
5582 n = slab->freelist;
5583 BUG_ON(!n);
5584 #ifdef CONFIG_SLUB_DEBUG
5585 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5586 #endif
5587 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5588 slab->freelist = get_freepointer(kmem_cache_node, n);
5589 slab->inuse = 1;
5590 kmem_cache_node->node[node] = n;
5591 init_kmem_cache_node(n);
5592 inc_slabs_node(kmem_cache_node, node, slab->objects);
5593
5594 /*
5595 * No locks need to be taken here as it has just been
5596 * initialized and there is no concurrent access.
5597 */
5598 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5599 }
5600
free_kmem_cache_nodes(struct kmem_cache * s)5601 static void free_kmem_cache_nodes(struct kmem_cache *s)
5602 {
5603 int node;
5604 struct kmem_cache_node *n;
5605
5606 for_each_kmem_cache_node(s, node, n) {
5607 s->node[node] = NULL;
5608 kmem_cache_free(kmem_cache_node, n);
5609 }
5610 }
5611
__kmem_cache_release(struct kmem_cache * s)5612 void __kmem_cache_release(struct kmem_cache *s)
5613 {
5614 cache_random_seq_destroy(s);
5615 #ifndef CONFIG_SLUB_TINY
5616 free_percpu(s->cpu_slab);
5617 #endif
5618 free_kmem_cache_nodes(s);
5619 }
5620
init_kmem_cache_nodes(struct kmem_cache * s)5621 static int init_kmem_cache_nodes(struct kmem_cache *s)
5622 {
5623 int node;
5624
5625 for_each_node_mask(node, slab_nodes) {
5626 struct kmem_cache_node *n;
5627
5628 if (slab_state == DOWN) {
5629 early_kmem_cache_node_alloc(node);
5630 continue;
5631 }
5632 n = kmem_cache_alloc_node(kmem_cache_node,
5633 GFP_KERNEL, node);
5634
5635 if (!n) {
5636 free_kmem_cache_nodes(s);
5637 return 0;
5638 }
5639
5640 init_kmem_cache_node(n);
5641 s->node[node] = n;
5642 }
5643 return 1;
5644 }
5645
set_cpu_partial(struct kmem_cache * s)5646 static void set_cpu_partial(struct kmem_cache *s)
5647 {
5648 #ifdef CONFIG_SLUB_CPU_PARTIAL
5649 unsigned int nr_objects;
5650
5651 /*
5652 * cpu_partial determined the maximum number of objects kept in the
5653 * per cpu partial lists of a processor.
5654 *
5655 * Per cpu partial lists mainly contain slabs that just have one
5656 * object freed. If they are used for allocation then they can be
5657 * filled up again with minimal effort. The slab will never hit the
5658 * per node partial lists and therefore no locking will be required.
5659 *
5660 * For backwards compatibility reasons, this is determined as number
5661 * of objects, even though we now limit maximum number of pages, see
5662 * slub_set_cpu_partial()
5663 */
5664 if (!kmem_cache_has_cpu_partial(s))
5665 nr_objects = 0;
5666 else if (s->size >= PAGE_SIZE)
5667 nr_objects = 6;
5668 else if (s->size >= 1024)
5669 nr_objects = 24;
5670 else if (s->size >= 256)
5671 nr_objects = 52;
5672 else
5673 nr_objects = 120;
5674
5675 slub_set_cpu_partial(s, nr_objects);
5676 #endif
5677 }
5678
5679 /*
5680 * calculate_sizes() determines the order and the distribution of data within
5681 * a slab object.
5682 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5683 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5684 {
5685 slab_flags_t flags = s->flags;
5686 unsigned int size = s->object_size;
5687 unsigned int order;
5688
5689 /*
5690 * Round up object size to the next word boundary. We can only
5691 * place the free pointer at word boundaries and this determines
5692 * the possible location of the free pointer.
5693 */
5694 size = ALIGN(size, sizeof(void *));
5695
5696 #ifdef CONFIG_SLUB_DEBUG
5697 /*
5698 * Determine if we can poison the object itself. If the user of
5699 * the slab may touch the object after free or before allocation
5700 * then we should never poison the object itself.
5701 */
5702 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5703 !s->ctor)
5704 s->flags |= __OBJECT_POISON;
5705 else
5706 s->flags &= ~__OBJECT_POISON;
5707
5708
5709 /*
5710 * If we are Redzoning then check if there is some space between the
5711 * end of the object and the free pointer. If not then add an
5712 * additional word to have some bytes to store Redzone information.
5713 */
5714 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5715 size += sizeof(void *);
5716 #endif
5717
5718 /*
5719 * With that we have determined the number of bytes in actual use
5720 * by the object and redzoning.
5721 */
5722 s->inuse = size;
5723
5724 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5725 (flags & SLAB_POISON) || s->ctor ||
5726 ((flags & SLAB_RED_ZONE) &&
5727 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5728 /*
5729 * Relocate free pointer after the object if it is not
5730 * permitted to overwrite the first word of the object on
5731 * kmem_cache_free.
5732 *
5733 * This is the case if we do RCU, have a constructor or
5734 * destructor, are poisoning the objects, or are
5735 * redzoning an object smaller than sizeof(void *) or are
5736 * redzoning an object with slub_debug_orig_size() enabled,
5737 * in which case the right redzone may be extended.
5738 *
5739 * The assumption that s->offset >= s->inuse means free
5740 * pointer is outside of the object is used in the
5741 * freeptr_outside_object() function. If that is no
5742 * longer true, the function needs to be modified.
5743 */
5744 s->offset = size;
5745 size += sizeof(void *);
5746 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5747 s->offset = args->freeptr_offset;
5748 } else {
5749 /*
5750 * Store freelist pointer near middle of object to keep
5751 * it away from the edges of the object to avoid small
5752 * sized over/underflows from neighboring allocations.
5753 */
5754 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5755 }
5756
5757 #ifdef CONFIG_SLUB_DEBUG
5758 if (flags & SLAB_STORE_USER) {
5759 /*
5760 * Need to store information about allocs and frees after
5761 * the object.
5762 */
5763 size += 2 * sizeof(struct track);
5764
5765 /* Save the original kmalloc request size */
5766 if (flags & SLAB_KMALLOC)
5767 size += sizeof(unsigned int);
5768 }
5769 #endif
5770
5771 kasan_cache_create(s, &size, &s->flags);
5772 #ifdef CONFIG_SLUB_DEBUG
5773 if (flags & SLAB_RED_ZONE) {
5774 /*
5775 * Add some empty padding so that we can catch
5776 * overwrites from earlier objects rather than let
5777 * tracking information or the free pointer be
5778 * corrupted if a user writes before the start
5779 * of the object.
5780 */
5781 size += sizeof(void *);
5782
5783 s->red_left_pad = sizeof(void *);
5784 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5785 size += s->red_left_pad;
5786 }
5787 #endif
5788
5789 /*
5790 * SLUB stores one object immediately after another beginning from
5791 * offset 0. In order to align the objects we have to simply size
5792 * each object to conform to the alignment.
5793 */
5794 size = ALIGN(size, s->align);
5795 s->size = size;
5796 s->reciprocal_size = reciprocal_value(size);
5797 order = calculate_order(size);
5798
5799 if ((int)order < 0)
5800 return 0;
5801
5802 s->allocflags = __GFP_COMP;
5803
5804 if (s->flags & SLAB_CACHE_DMA)
5805 s->allocflags |= GFP_DMA;
5806
5807 if (s->flags & SLAB_CACHE_DMA32)
5808 s->allocflags |= GFP_DMA32;
5809
5810 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5811 s->allocflags |= __GFP_RECLAIMABLE;
5812
5813 /*
5814 * Determine the number of objects per slab
5815 */
5816 s->oo = oo_make(order, size);
5817 s->min = oo_make(get_order(size), size);
5818
5819 return !!oo_objects(s->oo);
5820 }
5821
list_slab_objects(struct kmem_cache * s,struct slab * slab)5822 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5823 {
5824 #ifdef CONFIG_SLUB_DEBUG
5825 void *addr = slab_address(slab);
5826 void *p;
5827
5828 if (!slab_add_kunit_errors())
5829 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5830
5831 spin_lock(&object_map_lock);
5832 __fill_map(object_map, s, slab);
5833
5834 for_each_object(p, s, addr, slab->objects) {
5835
5836 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5837 if (slab_add_kunit_errors())
5838 continue;
5839 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5840 print_tracking(s, p);
5841 }
5842 }
5843 spin_unlock(&object_map_lock);
5844
5845 __slab_err(slab);
5846 #endif
5847 }
5848
5849 /*
5850 * Attempt to free all partial slabs on a node.
5851 * This is called from __kmem_cache_shutdown(). We must take list_lock
5852 * because sysfs file might still access partial list after the shutdowning.
5853 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5854 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5855 {
5856 LIST_HEAD(discard);
5857 struct slab *slab, *h;
5858
5859 BUG_ON(irqs_disabled());
5860 spin_lock_irq(&n->list_lock);
5861 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5862 if (!slab->inuse) {
5863 remove_partial(n, slab);
5864 list_add(&slab->slab_list, &discard);
5865 } else {
5866 list_slab_objects(s, slab);
5867 }
5868 }
5869 spin_unlock_irq(&n->list_lock);
5870
5871 list_for_each_entry_safe(slab, h, &discard, slab_list)
5872 discard_slab(s, slab);
5873 }
5874
__kmem_cache_empty(struct kmem_cache * s)5875 bool __kmem_cache_empty(struct kmem_cache *s)
5876 {
5877 int node;
5878 struct kmem_cache_node *n;
5879
5880 for_each_kmem_cache_node(s, node, n)
5881 if (n->nr_partial || node_nr_slabs(n))
5882 return false;
5883 return true;
5884 }
5885
5886 /*
5887 * Release all resources used by a slab cache.
5888 */
__kmem_cache_shutdown(struct kmem_cache * s)5889 int __kmem_cache_shutdown(struct kmem_cache *s)
5890 {
5891 int node;
5892 struct kmem_cache_node *n;
5893
5894 flush_all_cpus_locked(s);
5895 /* Attempt to free all objects */
5896 for_each_kmem_cache_node(s, node, n) {
5897 free_partial(s, n);
5898 if (n->nr_partial || node_nr_slabs(n))
5899 return 1;
5900 }
5901 return 0;
5902 }
5903
5904 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5905 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5906 {
5907 void *base;
5908 int __maybe_unused i;
5909 unsigned int objnr;
5910 void *objp;
5911 void *objp0;
5912 struct kmem_cache *s = slab->slab_cache;
5913 struct track __maybe_unused *trackp;
5914
5915 kpp->kp_ptr = object;
5916 kpp->kp_slab = slab;
5917 kpp->kp_slab_cache = s;
5918 base = slab_address(slab);
5919 objp0 = kasan_reset_tag(object);
5920 #ifdef CONFIG_SLUB_DEBUG
5921 objp = restore_red_left(s, objp0);
5922 #else
5923 objp = objp0;
5924 #endif
5925 objnr = obj_to_index(s, slab, objp);
5926 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5927 objp = base + s->size * objnr;
5928 kpp->kp_objp = objp;
5929 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5930 || (objp - base) % s->size) ||
5931 !(s->flags & SLAB_STORE_USER))
5932 return;
5933 #ifdef CONFIG_SLUB_DEBUG
5934 objp = fixup_red_left(s, objp);
5935 trackp = get_track(s, objp, TRACK_ALLOC);
5936 kpp->kp_ret = (void *)trackp->addr;
5937 #ifdef CONFIG_STACKDEPOT
5938 {
5939 depot_stack_handle_t handle;
5940 unsigned long *entries;
5941 unsigned int nr_entries;
5942
5943 handle = READ_ONCE(trackp->handle);
5944 if (handle) {
5945 nr_entries = stack_depot_fetch(handle, &entries);
5946 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5947 kpp->kp_stack[i] = (void *)entries[i];
5948 }
5949
5950 trackp = get_track(s, objp, TRACK_FREE);
5951 handle = READ_ONCE(trackp->handle);
5952 if (handle) {
5953 nr_entries = stack_depot_fetch(handle, &entries);
5954 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5955 kpp->kp_free_stack[i] = (void *)entries[i];
5956 }
5957 }
5958 #endif
5959 #endif
5960 }
5961 #endif
5962
5963 /********************************************************************
5964 * Kmalloc subsystem
5965 *******************************************************************/
5966
setup_slub_min_order(char * str)5967 static int __init setup_slub_min_order(char *str)
5968 {
5969 get_option(&str, (int *)&slub_min_order);
5970
5971 if (slub_min_order > slub_max_order)
5972 slub_max_order = slub_min_order;
5973
5974 return 1;
5975 }
5976
5977 __setup("slab_min_order=", setup_slub_min_order);
5978 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5979
5980
setup_slub_max_order(char * str)5981 static int __init setup_slub_max_order(char *str)
5982 {
5983 get_option(&str, (int *)&slub_max_order);
5984 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5985
5986 if (slub_min_order > slub_max_order)
5987 slub_min_order = slub_max_order;
5988
5989 return 1;
5990 }
5991
5992 __setup("slab_max_order=", setup_slub_max_order);
5993 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5994
setup_slub_min_objects(char * str)5995 static int __init setup_slub_min_objects(char *str)
5996 {
5997 get_option(&str, (int *)&slub_min_objects);
5998
5999 return 1;
6000 }
6001
6002 __setup("slab_min_objects=", setup_slub_min_objects);
6003 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
6004
6005 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)6006 static int __init setup_slab_strict_numa(char *str)
6007 {
6008 if (nr_node_ids > 1) {
6009 static_branch_enable(&strict_numa);
6010 pr_info("SLUB: Strict NUMA enabled.\n");
6011 } else {
6012 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6013 }
6014
6015 return 1;
6016 }
6017
6018 __setup("slab_strict_numa", setup_slab_strict_numa);
6019 #endif
6020
6021
6022 #ifdef CONFIG_HARDENED_USERCOPY
6023 /*
6024 * Rejects incorrectly sized objects and objects that are to be copied
6025 * to/from userspace but do not fall entirely within the containing slab
6026 * cache's usercopy region.
6027 *
6028 * Returns NULL if check passes, otherwise const char * to name of cache
6029 * to indicate an error.
6030 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)6031 void __check_heap_object(const void *ptr, unsigned long n,
6032 const struct slab *slab, bool to_user)
6033 {
6034 struct kmem_cache *s;
6035 unsigned int offset;
6036 bool is_kfence = is_kfence_address(ptr);
6037
6038 ptr = kasan_reset_tag(ptr);
6039
6040 /* Find object and usable object size. */
6041 s = slab->slab_cache;
6042
6043 /* Reject impossible pointers. */
6044 if (ptr < slab_address(slab))
6045 usercopy_abort("SLUB object not in SLUB page?!", NULL,
6046 to_user, 0, n);
6047
6048 /* Find offset within object. */
6049 if (is_kfence)
6050 offset = ptr - kfence_object_start(ptr);
6051 else
6052 offset = (ptr - slab_address(slab)) % s->size;
6053
6054 /* Adjust for redzone and reject if within the redzone. */
6055 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6056 if (offset < s->red_left_pad)
6057 usercopy_abort("SLUB object in left red zone",
6058 s->name, to_user, offset, n);
6059 offset -= s->red_left_pad;
6060 }
6061
6062 /* Allow address range falling entirely within usercopy region. */
6063 if (offset >= s->useroffset &&
6064 offset - s->useroffset <= s->usersize &&
6065 n <= s->useroffset - offset + s->usersize)
6066 return;
6067
6068 usercopy_abort("SLUB object", s->name, to_user, offset, n);
6069 }
6070 #endif /* CONFIG_HARDENED_USERCOPY */
6071
6072 #define SHRINK_PROMOTE_MAX 32
6073
6074 /*
6075 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6076 * up most to the head of the partial lists. New allocations will then
6077 * fill those up and thus they can be removed from the partial lists.
6078 *
6079 * The slabs with the least items are placed last. This results in them
6080 * being allocated from last increasing the chance that the last objects
6081 * are freed in them.
6082 */
__kmem_cache_do_shrink(struct kmem_cache * s)6083 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6084 {
6085 int node;
6086 int i;
6087 struct kmem_cache_node *n;
6088 struct slab *slab;
6089 struct slab *t;
6090 struct list_head discard;
6091 struct list_head promote[SHRINK_PROMOTE_MAX];
6092 unsigned long flags;
6093 int ret = 0;
6094
6095 for_each_kmem_cache_node(s, node, n) {
6096 INIT_LIST_HEAD(&discard);
6097 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6098 INIT_LIST_HEAD(promote + i);
6099
6100 spin_lock_irqsave(&n->list_lock, flags);
6101
6102 /*
6103 * Build lists of slabs to discard or promote.
6104 *
6105 * Note that concurrent frees may occur while we hold the
6106 * list_lock. slab->inuse here is the upper limit.
6107 */
6108 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6109 int free = slab->objects - slab->inuse;
6110
6111 /* Do not reread slab->inuse */
6112 barrier();
6113
6114 /* We do not keep full slabs on the list */
6115 BUG_ON(free <= 0);
6116
6117 if (free == slab->objects) {
6118 list_move(&slab->slab_list, &discard);
6119 slab_clear_node_partial(slab);
6120 n->nr_partial--;
6121 dec_slabs_node(s, node, slab->objects);
6122 } else if (free <= SHRINK_PROMOTE_MAX)
6123 list_move(&slab->slab_list, promote + free - 1);
6124 }
6125
6126 /*
6127 * Promote the slabs filled up most to the head of the
6128 * partial list.
6129 */
6130 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6131 list_splice(promote + i, &n->partial);
6132
6133 spin_unlock_irqrestore(&n->list_lock, flags);
6134
6135 /* Release empty slabs */
6136 list_for_each_entry_safe(slab, t, &discard, slab_list)
6137 free_slab(s, slab);
6138
6139 if (node_nr_slabs(n))
6140 ret = 1;
6141 }
6142
6143 return ret;
6144 }
6145
__kmem_cache_shrink(struct kmem_cache * s)6146 int __kmem_cache_shrink(struct kmem_cache *s)
6147 {
6148 flush_all(s);
6149 return __kmem_cache_do_shrink(s);
6150 }
6151
slab_mem_going_offline_callback(void * arg)6152 static int slab_mem_going_offline_callback(void *arg)
6153 {
6154 struct kmem_cache *s;
6155
6156 mutex_lock(&slab_mutex);
6157 list_for_each_entry(s, &slab_caches, list) {
6158 flush_all_cpus_locked(s);
6159 __kmem_cache_do_shrink(s);
6160 }
6161 mutex_unlock(&slab_mutex);
6162
6163 return 0;
6164 }
6165
slab_mem_offline_callback(void * arg)6166 static void slab_mem_offline_callback(void *arg)
6167 {
6168 struct memory_notify *marg = arg;
6169 int offline_node;
6170
6171 offline_node = marg->status_change_nid_normal;
6172
6173 /*
6174 * If the node still has available memory. we need kmem_cache_node
6175 * for it yet.
6176 */
6177 if (offline_node < 0)
6178 return;
6179
6180 mutex_lock(&slab_mutex);
6181 node_clear(offline_node, slab_nodes);
6182 /*
6183 * We no longer free kmem_cache_node structures here, as it would be
6184 * racy with all get_node() users, and infeasible to protect them with
6185 * slab_mutex.
6186 */
6187 mutex_unlock(&slab_mutex);
6188 }
6189
slab_mem_going_online_callback(void * arg)6190 static int slab_mem_going_online_callback(void *arg)
6191 {
6192 struct kmem_cache_node *n;
6193 struct kmem_cache *s;
6194 struct memory_notify *marg = arg;
6195 int nid = marg->status_change_nid_normal;
6196 int ret = 0;
6197
6198 /*
6199 * If the node's memory is already available, then kmem_cache_node is
6200 * already created. Nothing to do.
6201 */
6202 if (nid < 0)
6203 return 0;
6204
6205 /*
6206 * We are bringing a node online. No memory is available yet. We must
6207 * allocate a kmem_cache_node structure in order to bring the node
6208 * online.
6209 */
6210 mutex_lock(&slab_mutex);
6211 list_for_each_entry(s, &slab_caches, list) {
6212 /*
6213 * The structure may already exist if the node was previously
6214 * onlined and offlined.
6215 */
6216 if (get_node(s, nid))
6217 continue;
6218 /*
6219 * XXX: kmem_cache_alloc_node will fallback to other nodes
6220 * since memory is not yet available from the node that
6221 * is brought up.
6222 */
6223 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6224 if (!n) {
6225 ret = -ENOMEM;
6226 goto out;
6227 }
6228 init_kmem_cache_node(n);
6229 s->node[nid] = n;
6230 }
6231 /*
6232 * Any cache created after this point will also have kmem_cache_node
6233 * initialized for the new node.
6234 */
6235 node_set(nid, slab_nodes);
6236 out:
6237 mutex_unlock(&slab_mutex);
6238 return ret;
6239 }
6240
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)6241 static int slab_memory_callback(struct notifier_block *self,
6242 unsigned long action, void *arg)
6243 {
6244 int ret = 0;
6245
6246 switch (action) {
6247 case MEM_GOING_ONLINE:
6248 ret = slab_mem_going_online_callback(arg);
6249 break;
6250 case MEM_GOING_OFFLINE:
6251 ret = slab_mem_going_offline_callback(arg);
6252 break;
6253 case MEM_OFFLINE:
6254 case MEM_CANCEL_ONLINE:
6255 slab_mem_offline_callback(arg);
6256 break;
6257 case MEM_ONLINE:
6258 case MEM_CANCEL_OFFLINE:
6259 break;
6260 }
6261 if (ret)
6262 ret = notifier_from_errno(ret);
6263 else
6264 ret = NOTIFY_OK;
6265 return ret;
6266 }
6267
6268 /********************************************************************
6269 * Basic setup of slabs
6270 *******************************************************************/
6271
6272 /*
6273 * Used for early kmem_cache structures that were allocated using
6274 * the page allocator. Allocate them properly then fix up the pointers
6275 * that may be pointing to the wrong kmem_cache structure.
6276 */
6277
bootstrap(struct kmem_cache * static_cache)6278 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6279 {
6280 int node;
6281 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6282 struct kmem_cache_node *n;
6283
6284 memcpy(s, static_cache, kmem_cache->object_size);
6285
6286 /*
6287 * This runs very early, and only the boot processor is supposed to be
6288 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6289 * IPIs around.
6290 */
6291 __flush_cpu_slab(s, smp_processor_id());
6292 for_each_kmem_cache_node(s, node, n) {
6293 struct slab *p;
6294
6295 list_for_each_entry(p, &n->partial, slab_list)
6296 p->slab_cache = s;
6297
6298 #ifdef CONFIG_SLUB_DEBUG
6299 list_for_each_entry(p, &n->full, slab_list)
6300 p->slab_cache = s;
6301 #endif
6302 }
6303 list_add(&s->list, &slab_caches);
6304 return s;
6305 }
6306
kmem_cache_init(void)6307 void __init kmem_cache_init(void)
6308 {
6309 static __initdata struct kmem_cache boot_kmem_cache,
6310 boot_kmem_cache_node;
6311 int node;
6312
6313 if (debug_guardpage_minorder())
6314 slub_max_order = 0;
6315
6316 /* Print slub debugging pointers without hashing */
6317 if (__slub_debug_enabled())
6318 no_hash_pointers_enable(NULL);
6319
6320 kmem_cache_node = &boot_kmem_cache_node;
6321 kmem_cache = &boot_kmem_cache;
6322
6323 /*
6324 * Initialize the nodemask for which we will allocate per node
6325 * structures. Here we don't need taking slab_mutex yet.
6326 */
6327 for_each_node_state(node, N_NORMAL_MEMORY)
6328 node_set(node, slab_nodes);
6329
6330 create_boot_cache(kmem_cache_node, "kmem_cache_node",
6331 sizeof(struct kmem_cache_node),
6332 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6333
6334 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6335
6336 /* Able to allocate the per node structures */
6337 slab_state = PARTIAL;
6338
6339 create_boot_cache(kmem_cache, "kmem_cache",
6340 offsetof(struct kmem_cache, node) +
6341 nr_node_ids * sizeof(struct kmem_cache_node *),
6342 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6343
6344 kmem_cache = bootstrap(&boot_kmem_cache);
6345 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6346
6347 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6348 setup_kmalloc_cache_index_table();
6349 create_kmalloc_caches();
6350
6351 /* Setup random freelists for each cache */
6352 init_freelist_randomization();
6353
6354 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6355 slub_cpu_dead);
6356
6357 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6358 cache_line_size(),
6359 slub_min_order, slub_max_order, slub_min_objects,
6360 nr_cpu_ids, nr_node_ids);
6361 }
6362
kmem_cache_init_late(void)6363 void __init kmem_cache_init_late(void)
6364 {
6365 #ifndef CONFIG_SLUB_TINY
6366 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6367 WARN_ON(!flushwq);
6368 #endif
6369 }
6370
6371 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6372 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6373 slab_flags_t flags, void (*ctor)(void *))
6374 {
6375 struct kmem_cache *s;
6376
6377 s = find_mergeable(size, align, flags, name, ctor);
6378 if (s) {
6379 if (sysfs_slab_alias(s, name))
6380 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6381 name);
6382
6383 s->refcount++;
6384
6385 /*
6386 * Adjust the object sizes so that we clear
6387 * the complete object on kzalloc.
6388 */
6389 s->object_size = max(s->object_size, size);
6390 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6391 }
6392
6393 return s;
6394 }
6395
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6396 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6397 unsigned int size, struct kmem_cache_args *args,
6398 slab_flags_t flags)
6399 {
6400 int err = -EINVAL;
6401
6402 s->name = name;
6403 s->size = s->object_size = size;
6404
6405 s->flags = kmem_cache_flags(flags, s->name);
6406 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6407 s->random = get_random_long();
6408 #endif
6409 s->align = args->align;
6410 s->ctor = args->ctor;
6411 #ifdef CONFIG_HARDENED_USERCOPY
6412 s->useroffset = args->useroffset;
6413 s->usersize = args->usersize;
6414 #endif
6415
6416 if (!calculate_sizes(args, s))
6417 goto out;
6418 if (disable_higher_order_debug) {
6419 /*
6420 * Disable debugging flags that store metadata if the min slab
6421 * order increased.
6422 */
6423 if (get_order(s->size) > get_order(s->object_size)) {
6424 s->flags &= ~DEBUG_METADATA_FLAGS;
6425 s->offset = 0;
6426 if (!calculate_sizes(args, s))
6427 goto out;
6428 }
6429 }
6430
6431 #ifdef system_has_freelist_aba
6432 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6433 /* Enable fast mode */
6434 s->flags |= __CMPXCHG_DOUBLE;
6435 }
6436 #endif
6437
6438 /*
6439 * The larger the object size is, the more slabs we want on the partial
6440 * list to avoid pounding the page allocator excessively.
6441 */
6442 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6443 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6444
6445 set_cpu_partial(s);
6446
6447 #ifdef CONFIG_NUMA
6448 s->remote_node_defrag_ratio = 1000;
6449 #endif
6450
6451 /* Initialize the pre-computed randomized freelist if slab is up */
6452 if (slab_state >= UP) {
6453 if (init_cache_random_seq(s))
6454 goto out;
6455 }
6456
6457 if (!init_kmem_cache_nodes(s))
6458 goto out;
6459
6460 if (!alloc_kmem_cache_cpus(s))
6461 goto out;
6462
6463 err = 0;
6464
6465 /* Mutex is not taken during early boot */
6466 if (slab_state <= UP)
6467 goto out;
6468
6469 /*
6470 * Failing to create sysfs files is not critical to SLUB functionality.
6471 * If it fails, proceed with cache creation without these files.
6472 */
6473 if (sysfs_slab_add(s))
6474 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6475
6476 if (s->flags & SLAB_STORE_USER)
6477 debugfs_slab_add(s);
6478
6479 out:
6480 if (err)
6481 __kmem_cache_release(s);
6482 return err;
6483 }
6484
6485 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6486 static int count_inuse(struct slab *slab)
6487 {
6488 return slab->inuse;
6489 }
6490
count_total(struct slab * slab)6491 static int count_total(struct slab *slab)
6492 {
6493 return slab->objects;
6494 }
6495 #endif
6496
6497 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6498 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6499 unsigned long *obj_map)
6500 {
6501 void *p;
6502 void *addr = slab_address(slab);
6503
6504 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6505 return;
6506
6507 /* Now we know that a valid freelist exists */
6508 __fill_map(obj_map, s, slab);
6509 for_each_object(p, s, addr, slab->objects) {
6510 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6511 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6512
6513 if (!check_object(s, slab, p, val))
6514 break;
6515 }
6516 }
6517
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6518 static int validate_slab_node(struct kmem_cache *s,
6519 struct kmem_cache_node *n, unsigned long *obj_map)
6520 {
6521 unsigned long count = 0;
6522 struct slab *slab;
6523 unsigned long flags;
6524
6525 spin_lock_irqsave(&n->list_lock, flags);
6526
6527 list_for_each_entry(slab, &n->partial, slab_list) {
6528 validate_slab(s, slab, obj_map);
6529 count++;
6530 }
6531 if (count != n->nr_partial) {
6532 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6533 s->name, count, n->nr_partial);
6534 slab_add_kunit_errors();
6535 }
6536
6537 if (!(s->flags & SLAB_STORE_USER))
6538 goto out;
6539
6540 list_for_each_entry(slab, &n->full, slab_list) {
6541 validate_slab(s, slab, obj_map);
6542 count++;
6543 }
6544 if (count != node_nr_slabs(n)) {
6545 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6546 s->name, count, node_nr_slabs(n));
6547 slab_add_kunit_errors();
6548 }
6549
6550 out:
6551 spin_unlock_irqrestore(&n->list_lock, flags);
6552 return count;
6553 }
6554
validate_slab_cache(struct kmem_cache * s)6555 long validate_slab_cache(struct kmem_cache *s)
6556 {
6557 int node;
6558 unsigned long count = 0;
6559 struct kmem_cache_node *n;
6560 unsigned long *obj_map;
6561
6562 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6563 if (!obj_map)
6564 return -ENOMEM;
6565
6566 flush_all(s);
6567 for_each_kmem_cache_node(s, node, n)
6568 count += validate_slab_node(s, n, obj_map);
6569
6570 bitmap_free(obj_map);
6571
6572 return count;
6573 }
6574 EXPORT_SYMBOL(validate_slab_cache);
6575
6576 #ifdef CONFIG_DEBUG_FS
6577 /*
6578 * Generate lists of code addresses where slabcache objects are allocated
6579 * and freed.
6580 */
6581
6582 struct location {
6583 depot_stack_handle_t handle;
6584 unsigned long count;
6585 unsigned long addr;
6586 unsigned long waste;
6587 long long sum_time;
6588 long min_time;
6589 long max_time;
6590 long min_pid;
6591 long max_pid;
6592 DECLARE_BITMAP(cpus, NR_CPUS);
6593 nodemask_t nodes;
6594 };
6595
6596 struct loc_track {
6597 unsigned long max;
6598 unsigned long count;
6599 struct location *loc;
6600 loff_t idx;
6601 };
6602
6603 static struct dentry *slab_debugfs_root;
6604
free_loc_track(struct loc_track * t)6605 static void free_loc_track(struct loc_track *t)
6606 {
6607 if (t->max)
6608 free_pages((unsigned long)t->loc,
6609 get_order(sizeof(struct location) * t->max));
6610 }
6611
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6612 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6613 {
6614 struct location *l;
6615 int order;
6616
6617 order = get_order(sizeof(struct location) * max);
6618
6619 l = (void *)__get_free_pages(flags, order);
6620 if (!l)
6621 return 0;
6622
6623 if (t->count) {
6624 memcpy(l, t->loc, sizeof(struct location) * t->count);
6625 free_loc_track(t);
6626 }
6627 t->max = max;
6628 t->loc = l;
6629 return 1;
6630 }
6631
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6632 static int add_location(struct loc_track *t, struct kmem_cache *s,
6633 const struct track *track,
6634 unsigned int orig_size)
6635 {
6636 long start, end, pos;
6637 struct location *l;
6638 unsigned long caddr, chandle, cwaste;
6639 unsigned long age = jiffies - track->when;
6640 depot_stack_handle_t handle = 0;
6641 unsigned int waste = s->object_size - orig_size;
6642
6643 #ifdef CONFIG_STACKDEPOT
6644 handle = READ_ONCE(track->handle);
6645 #endif
6646 start = -1;
6647 end = t->count;
6648
6649 for ( ; ; ) {
6650 pos = start + (end - start + 1) / 2;
6651
6652 /*
6653 * There is nothing at "end". If we end up there
6654 * we need to add something to before end.
6655 */
6656 if (pos == end)
6657 break;
6658
6659 l = &t->loc[pos];
6660 caddr = l->addr;
6661 chandle = l->handle;
6662 cwaste = l->waste;
6663 if ((track->addr == caddr) && (handle == chandle) &&
6664 (waste == cwaste)) {
6665
6666 l->count++;
6667 if (track->when) {
6668 l->sum_time += age;
6669 if (age < l->min_time)
6670 l->min_time = age;
6671 if (age > l->max_time)
6672 l->max_time = age;
6673
6674 if (track->pid < l->min_pid)
6675 l->min_pid = track->pid;
6676 if (track->pid > l->max_pid)
6677 l->max_pid = track->pid;
6678
6679 cpumask_set_cpu(track->cpu,
6680 to_cpumask(l->cpus));
6681 }
6682 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6683 return 1;
6684 }
6685
6686 if (track->addr < caddr)
6687 end = pos;
6688 else if (track->addr == caddr && handle < chandle)
6689 end = pos;
6690 else if (track->addr == caddr && handle == chandle &&
6691 waste < cwaste)
6692 end = pos;
6693 else
6694 start = pos;
6695 }
6696
6697 /*
6698 * Not found. Insert new tracking element.
6699 */
6700 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6701 return 0;
6702
6703 l = t->loc + pos;
6704 if (pos < t->count)
6705 memmove(l + 1, l,
6706 (t->count - pos) * sizeof(struct location));
6707 t->count++;
6708 l->count = 1;
6709 l->addr = track->addr;
6710 l->sum_time = age;
6711 l->min_time = age;
6712 l->max_time = age;
6713 l->min_pid = track->pid;
6714 l->max_pid = track->pid;
6715 l->handle = handle;
6716 l->waste = waste;
6717 cpumask_clear(to_cpumask(l->cpus));
6718 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6719 nodes_clear(l->nodes);
6720 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6721 return 1;
6722 }
6723
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6724 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6725 struct slab *slab, enum track_item alloc,
6726 unsigned long *obj_map)
6727 {
6728 void *addr = slab_address(slab);
6729 bool is_alloc = (alloc == TRACK_ALLOC);
6730 void *p;
6731
6732 __fill_map(obj_map, s, slab);
6733
6734 for_each_object(p, s, addr, slab->objects)
6735 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6736 add_location(t, s, get_track(s, p, alloc),
6737 is_alloc ? get_orig_size(s, p) :
6738 s->object_size);
6739 }
6740 #endif /* CONFIG_DEBUG_FS */
6741 #endif /* CONFIG_SLUB_DEBUG */
6742
6743 #ifdef SLAB_SUPPORTS_SYSFS
6744 enum slab_stat_type {
6745 SL_ALL, /* All slabs */
6746 SL_PARTIAL, /* Only partially allocated slabs */
6747 SL_CPU, /* Only slabs used for cpu caches */
6748 SL_OBJECTS, /* Determine allocated objects not slabs */
6749 SL_TOTAL /* Determine object capacity not slabs */
6750 };
6751
6752 #define SO_ALL (1 << SL_ALL)
6753 #define SO_PARTIAL (1 << SL_PARTIAL)
6754 #define SO_CPU (1 << SL_CPU)
6755 #define SO_OBJECTS (1 << SL_OBJECTS)
6756 #define SO_TOTAL (1 << SL_TOTAL)
6757
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6758 static ssize_t show_slab_objects(struct kmem_cache *s,
6759 char *buf, unsigned long flags)
6760 {
6761 unsigned long total = 0;
6762 int node;
6763 int x;
6764 unsigned long *nodes;
6765 int len = 0;
6766
6767 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6768 if (!nodes)
6769 return -ENOMEM;
6770
6771 if (flags & SO_CPU) {
6772 int cpu;
6773
6774 for_each_possible_cpu(cpu) {
6775 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6776 cpu);
6777 int node;
6778 struct slab *slab;
6779
6780 slab = READ_ONCE(c->slab);
6781 if (!slab)
6782 continue;
6783
6784 node = slab_nid(slab);
6785 if (flags & SO_TOTAL)
6786 x = slab->objects;
6787 else if (flags & SO_OBJECTS)
6788 x = slab->inuse;
6789 else
6790 x = 1;
6791
6792 total += x;
6793 nodes[node] += x;
6794
6795 #ifdef CONFIG_SLUB_CPU_PARTIAL
6796 slab = slub_percpu_partial_read_once(c);
6797 if (slab) {
6798 node = slab_nid(slab);
6799 if (flags & SO_TOTAL)
6800 WARN_ON_ONCE(1);
6801 else if (flags & SO_OBJECTS)
6802 WARN_ON_ONCE(1);
6803 else
6804 x = data_race(slab->slabs);
6805 total += x;
6806 nodes[node] += x;
6807 }
6808 #endif
6809 }
6810 }
6811
6812 /*
6813 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6814 * already held which will conflict with an existing lock order:
6815 *
6816 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6817 *
6818 * We don't really need mem_hotplug_lock (to hold off
6819 * slab_mem_going_offline_callback) here because slab's memory hot
6820 * unplug code doesn't destroy the kmem_cache->node[] data.
6821 */
6822
6823 #ifdef CONFIG_SLUB_DEBUG
6824 if (flags & SO_ALL) {
6825 struct kmem_cache_node *n;
6826
6827 for_each_kmem_cache_node(s, node, n) {
6828
6829 if (flags & SO_TOTAL)
6830 x = node_nr_objs(n);
6831 else if (flags & SO_OBJECTS)
6832 x = node_nr_objs(n) - count_partial(n, count_free);
6833 else
6834 x = node_nr_slabs(n);
6835 total += x;
6836 nodes[node] += x;
6837 }
6838
6839 } else
6840 #endif
6841 if (flags & SO_PARTIAL) {
6842 struct kmem_cache_node *n;
6843
6844 for_each_kmem_cache_node(s, node, n) {
6845 if (flags & SO_TOTAL)
6846 x = count_partial(n, count_total);
6847 else if (flags & SO_OBJECTS)
6848 x = count_partial(n, count_inuse);
6849 else
6850 x = n->nr_partial;
6851 total += x;
6852 nodes[node] += x;
6853 }
6854 }
6855
6856 len += sysfs_emit_at(buf, len, "%lu", total);
6857 #ifdef CONFIG_NUMA
6858 for (node = 0; node < nr_node_ids; node++) {
6859 if (nodes[node])
6860 len += sysfs_emit_at(buf, len, " N%d=%lu",
6861 node, nodes[node]);
6862 }
6863 #endif
6864 len += sysfs_emit_at(buf, len, "\n");
6865 kfree(nodes);
6866
6867 return len;
6868 }
6869
6870 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6871 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6872
6873 struct slab_attribute {
6874 struct attribute attr;
6875 ssize_t (*show)(struct kmem_cache *s, char *buf);
6876 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6877 };
6878
6879 #define SLAB_ATTR_RO(_name) \
6880 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6881
6882 #define SLAB_ATTR(_name) \
6883 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6884
slab_size_show(struct kmem_cache * s,char * buf)6885 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6886 {
6887 return sysfs_emit(buf, "%u\n", s->size);
6888 }
6889 SLAB_ATTR_RO(slab_size);
6890
align_show(struct kmem_cache * s,char * buf)6891 static ssize_t align_show(struct kmem_cache *s, char *buf)
6892 {
6893 return sysfs_emit(buf, "%u\n", s->align);
6894 }
6895 SLAB_ATTR_RO(align);
6896
object_size_show(struct kmem_cache * s,char * buf)6897 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6898 {
6899 return sysfs_emit(buf, "%u\n", s->object_size);
6900 }
6901 SLAB_ATTR_RO(object_size);
6902
objs_per_slab_show(struct kmem_cache * s,char * buf)6903 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6904 {
6905 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6906 }
6907 SLAB_ATTR_RO(objs_per_slab);
6908
order_show(struct kmem_cache * s,char * buf)6909 static ssize_t order_show(struct kmem_cache *s, char *buf)
6910 {
6911 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6912 }
6913 SLAB_ATTR_RO(order);
6914
min_partial_show(struct kmem_cache * s,char * buf)6915 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6916 {
6917 return sysfs_emit(buf, "%lu\n", s->min_partial);
6918 }
6919
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6920 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6921 size_t length)
6922 {
6923 unsigned long min;
6924 int err;
6925
6926 err = kstrtoul(buf, 10, &min);
6927 if (err)
6928 return err;
6929
6930 s->min_partial = min;
6931 return length;
6932 }
6933 SLAB_ATTR(min_partial);
6934
cpu_partial_show(struct kmem_cache * s,char * buf)6935 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6936 {
6937 unsigned int nr_partial = 0;
6938 #ifdef CONFIG_SLUB_CPU_PARTIAL
6939 nr_partial = s->cpu_partial;
6940 #endif
6941
6942 return sysfs_emit(buf, "%u\n", nr_partial);
6943 }
6944
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6945 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6946 size_t length)
6947 {
6948 unsigned int objects;
6949 int err;
6950
6951 err = kstrtouint(buf, 10, &objects);
6952 if (err)
6953 return err;
6954 if (objects && !kmem_cache_has_cpu_partial(s))
6955 return -EINVAL;
6956
6957 slub_set_cpu_partial(s, objects);
6958 flush_all(s);
6959 return length;
6960 }
6961 SLAB_ATTR(cpu_partial);
6962
ctor_show(struct kmem_cache * s,char * buf)6963 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6964 {
6965 if (!s->ctor)
6966 return 0;
6967 return sysfs_emit(buf, "%pS\n", s->ctor);
6968 }
6969 SLAB_ATTR_RO(ctor);
6970
aliases_show(struct kmem_cache * s,char * buf)6971 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6972 {
6973 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6974 }
6975 SLAB_ATTR_RO(aliases);
6976
partial_show(struct kmem_cache * s,char * buf)6977 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6978 {
6979 return show_slab_objects(s, buf, SO_PARTIAL);
6980 }
6981 SLAB_ATTR_RO(partial);
6982
cpu_slabs_show(struct kmem_cache * s,char * buf)6983 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6984 {
6985 return show_slab_objects(s, buf, SO_CPU);
6986 }
6987 SLAB_ATTR_RO(cpu_slabs);
6988
objects_partial_show(struct kmem_cache * s,char * buf)6989 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6990 {
6991 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6992 }
6993 SLAB_ATTR_RO(objects_partial);
6994
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6995 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6996 {
6997 int objects = 0;
6998 int slabs = 0;
6999 int cpu __maybe_unused;
7000 int len = 0;
7001
7002 #ifdef CONFIG_SLUB_CPU_PARTIAL
7003 for_each_online_cpu(cpu) {
7004 struct slab *slab;
7005
7006 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7007
7008 if (slab)
7009 slabs += data_race(slab->slabs);
7010 }
7011 #endif
7012
7013 /* Approximate half-full slabs, see slub_set_cpu_partial() */
7014 objects = (slabs * oo_objects(s->oo)) / 2;
7015 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7016
7017 #ifdef CONFIG_SLUB_CPU_PARTIAL
7018 for_each_online_cpu(cpu) {
7019 struct slab *slab;
7020
7021 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7022 if (slab) {
7023 slabs = data_race(slab->slabs);
7024 objects = (slabs * oo_objects(s->oo)) / 2;
7025 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7026 cpu, objects, slabs);
7027 }
7028 }
7029 #endif
7030 len += sysfs_emit_at(buf, len, "\n");
7031
7032 return len;
7033 }
7034 SLAB_ATTR_RO(slabs_cpu_partial);
7035
reclaim_account_show(struct kmem_cache * s,char * buf)7036 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7037 {
7038 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7039 }
7040 SLAB_ATTR_RO(reclaim_account);
7041
hwcache_align_show(struct kmem_cache * s,char * buf)7042 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7043 {
7044 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7045 }
7046 SLAB_ATTR_RO(hwcache_align);
7047
7048 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)7049 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7050 {
7051 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7052 }
7053 SLAB_ATTR_RO(cache_dma);
7054 #endif
7055
7056 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)7057 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7058 {
7059 return sysfs_emit(buf, "%u\n", s->usersize);
7060 }
7061 SLAB_ATTR_RO(usersize);
7062 #endif
7063
destroy_by_rcu_show(struct kmem_cache * s,char * buf)7064 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7065 {
7066 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7067 }
7068 SLAB_ATTR_RO(destroy_by_rcu);
7069
7070 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)7071 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7072 {
7073 return show_slab_objects(s, buf, SO_ALL);
7074 }
7075 SLAB_ATTR_RO(slabs);
7076
total_objects_show(struct kmem_cache * s,char * buf)7077 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7078 {
7079 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7080 }
7081 SLAB_ATTR_RO(total_objects);
7082
objects_show(struct kmem_cache * s,char * buf)7083 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7084 {
7085 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7086 }
7087 SLAB_ATTR_RO(objects);
7088
sanity_checks_show(struct kmem_cache * s,char * buf)7089 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7090 {
7091 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7092 }
7093 SLAB_ATTR_RO(sanity_checks);
7094
trace_show(struct kmem_cache * s,char * buf)7095 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7096 {
7097 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7098 }
7099 SLAB_ATTR_RO(trace);
7100
red_zone_show(struct kmem_cache * s,char * buf)7101 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7102 {
7103 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7104 }
7105
7106 SLAB_ATTR_RO(red_zone);
7107
poison_show(struct kmem_cache * s,char * buf)7108 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7109 {
7110 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7111 }
7112
7113 SLAB_ATTR_RO(poison);
7114
store_user_show(struct kmem_cache * s,char * buf)7115 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7116 {
7117 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7118 }
7119
7120 SLAB_ATTR_RO(store_user);
7121
validate_show(struct kmem_cache * s,char * buf)7122 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7123 {
7124 return 0;
7125 }
7126
validate_store(struct kmem_cache * s,const char * buf,size_t length)7127 static ssize_t validate_store(struct kmem_cache *s,
7128 const char *buf, size_t length)
7129 {
7130 int ret = -EINVAL;
7131
7132 if (buf[0] == '1' && kmem_cache_debug(s)) {
7133 ret = validate_slab_cache(s);
7134 if (ret >= 0)
7135 ret = length;
7136 }
7137 return ret;
7138 }
7139 SLAB_ATTR(validate);
7140
7141 #endif /* CONFIG_SLUB_DEBUG */
7142
7143 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)7144 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7145 {
7146 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7147 }
7148
failslab_store(struct kmem_cache * s,const char * buf,size_t length)7149 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7150 size_t length)
7151 {
7152 if (s->refcount > 1)
7153 return -EINVAL;
7154
7155 if (buf[0] == '1')
7156 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7157 else
7158 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7159
7160 return length;
7161 }
7162 SLAB_ATTR(failslab);
7163 #endif
7164
shrink_show(struct kmem_cache * s,char * buf)7165 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7166 {
7167 return 0;
7168 }
7169
shrink_store(struct kmem_cache * s,const char * buf,size_t length)7170 static ssize_t shrink_store(struct kmem_cache *s,
7171 const char *buf, size_t length)
7172 {
7173 if (buf[0] == '1')
7174 kmem_cache_shrink(s);
7175 else
7176 return -EINVAL;
7177 return length;
7178 }
7179 SLAB_ATTR(shrink);
7180
7181 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)7182 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7183 {
7184 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7185 }
7186
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)7187 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7188 const char *buf, size_t length)
7189 {
7190 unsigned int ratio;
7191 int err;
7192
7193 err = kstrtouint(buf, 10, &ratio);
7194 if (err)
7195 return err;
7196 if (ratio > 100)
7197 return -ERANGE;
7198
7199 s->remote_node_defrag_ratio = ratio * 10;
7200
7201 return length;
7202 }
7203 SLAB_ATTR(remote_node_defrag_ratio);
7204 #endif
7205
7206 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)7207 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7208 {
7209 unsigned long sum = 0;
7210 int cpu;
7211 int len = 0;
7212 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7213
7214 if (!data)
7215 return -ENOMEM;
7216
7217 for_each_online_cpu(cpu) {
7218 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7219
7220 data[cpu] = x;
7221 sum += x;
7222 }
7223
7224 len += sysfs_emit_at(buf, len, "%lu", sum);
7225
7226 #ifdef CONFIG_SMP
7227 for_each_online_cpu(cpu) {
7228 if (data[cpu])
7229 len += sysfs_emit_at(buf, len, " C%d=%u",
7230 cpu, data[cpu]);
7231 }
7232 #endif
7233 kfree(data);
7234 len += sysfs_emit_at(buf, len, "\n");
7235
7236 return len;
7237 }
7238
clear_stat(struct kmem_cache * s,enum stat_item si)7239 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7240 {
7241 int cpu;
7242
7243 for_each_online_cpu(cpu)
7244 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7245 }
7246
7247 #define STAT_ATTR(si, text) \
7248 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7249 { \
7250 return show_stat(s, buf, si); \
7251 } \
7252 static ssize_t text##_store(struct kmem_cache *s, \
7253 const char *buf, size_t length) \
7254 { \
7255 if (buf[0] != '0') \
7256 return -EINVAL; \
7257 clear_stat(s, si); \
7258 return length; \
7259 } \
7260 SLAB_ATTR(text); \
7261
7262 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7263 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7264 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7265 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7266 STAT_ATTR(FREE_FROZEN, free_frozen);
7267 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7268 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7269 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7270 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7271 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7272 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7273 STAT_ATTR(FREE_SLAB, free_slab);
7274 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7275 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7276 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7277 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7278 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7279 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7280 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7281 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7282 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7283 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7284 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7285 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7286 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7287 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7288 #endif /* CONFIG_SLUB_STATS */
7289
7290 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)7291 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7292 {
7293 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7294 }
7295
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)7296 static ssize_t skip_kfence_store(struct kmem_cache *s,
7297 const char *buf, size_t length)
7298 {
7299 int ret = length;
7300
7301 if (buf[0] == '0')
7302 s->flags &= ~SLAB_SKIP_KFENCE;
7303 else if (buf[0] == '1')
7304 s->flags |= SLAB_SKIP_KFENCE;
7305 else
7306 ret = -EINVAL;
7307
7308 return ret;
7309 }
7310 SLAB_ATTR(skip_kfence);
7311 #endif
7312
7313 static struct attribute *slab_attrs[] = {
7314 &slab_size_attr.attr,
7315 &object_size_attr.attr,
7316 &objs_per_slab_attr.attr,
7317 &order_attr.attr,
7318 &min_partial_attr.attr,
7319 &cpu_partial_attr.attr,
7320 &objects_partial_attr.attr,
7321 &partial_attr.attr,
7322 &cpu_slabs_attr.attr,
7323 &ctor_attr.attr,
7324 &aliases_attr.attr,
7325 &align_attr.attr,
7326 &hwcache_align_attr.attr,
7327 &reclaim_account_attr.attr,
7328 &destroy_by_rcu_attr.attr,
7329 &shrink_attr.attr,
7330 &slabs_cpu_partial_attr.attr,
7331 #ifdef CONFIG_SLUB_DEBUG
7332 &total_objects_attr.attr,
7333 &objects_attr.attr,
7334 &slabs_attr.attr,
7335 &sanity_checks_attr.attr,
7336 &trace_attr.attr,
7337 &red_zone_attr.attr,
7338 &poison_attr.attr,
7339 &store_user_attr.attr,
7340 &validate_attr.attr,
7341 #endif
7342 #ifdef CONFIG_ZONE_DMA
7343 &cache_dma_attr.attr,
7344 #endif
7345 #ifdef CONFIG_NUMA
7346 &remote_node_defrag_ratio_attr.attr,
7347 #endif
7348 #ifdef CONFIG_SLUB_STATS
7349 &alloc_fastpath_attr.attr,
7350 &alloc_slowpath_attr.attr,
7351 &free_fastpath_attr.attr,
7352 &free_slowpath_attr.attr,
7353 &free_frozen_attr.attr,
7354 &free_add_partial_attr.attr,
7355 &free_remove_partial_attr.attr,
7356 &alloc_from_partial_attr.attr,
7357 &alloc_slab_attr.attr,
7358 &alloc_refill_attr.attr,
7359 &alloc_node_mismatch_attr.attr,
7360 &free_slab_attr.attr,
7361 &cpuslab_flush_attr.attr,
7362 &deactivate_full_attr.attr,
7363 &deactivate_empty_attr.attr,
7364 &deactivate_to_head_attr.attr,
7365 &deactivate_to_tail_attr.attr,
7366 &deactivate_remote_frees_attr.attr,
7367 &deactivate_bypass_attr.attr,
7368 &order_fallback_attr.attr,
7369 &cmpxchg_double_fail_attr.attr,
7370 &cmpxchg_double_cpu_fail_attr.attr,
7371 &cpu_partial_alloc_attr.attr,
7372 &cpu_partial_free_attr.attr,
7373 &cpu_partial_node_attr.attr,
7374 &cpu_partial_drain_attr.attr,
7375 #endif
7376 #ifdef CONFIG_FAILSLAB
7377 &failslab_attr.attr,
7378 #endif
7379 #ifdef CONFIG_HARDENED_USERCOPY
7380 &usersize_attr.attr,
7381 #endif
7382 #ifdef CONFIG_KFENCE
7383 &skip_kfence_attr.attr,
7384 #endif
7385
7386 NULL
7387 };
7388
7389 static const struct attribute_group slab_attr_group = {
7390 .attrs = slab_attrs,
7391 };
7392
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7393 static ssize_t slab_attr_show(struct kobject *kobj,
7394 struct attribute *attr,
7395 char *buf)
7396 {
7397 struct slab_attribute *attribute;
7398 struct kmem_cache *s;
7399
7400 attribute = to_slab_attr(attr);
7401 s = to_slab(kobj);
7402
7403 if (!attribute->show)
7404 return -EIO;
7405
7406 return attribute->show(s, buf);
7407 }
7408
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7409 static ssize_t slab_attr_store(struct kobject *kobj,
7410 struct attribute *attr,
7411 const char *buf, size_t len)
7412 {
7413 struct slab_attribute *attribute;
7414 struct kmem_cache *s;
7415
7416 attribute = to_slab_attr(attr);
7417 s = to_slab(kobj);
7418
7419 if (!attribute->store)
7420 return -EIO;
7421
7422 return attribute->store(s, buf, len);
7423 }
7424
kmem_cache_release(struct kobject * k)7425 static void kmem_cache_release(struct kobject *k)
7426 {
7427 slab_kmem_cache_release(to_slab(k));
7428 }
7429
7430 static const struct sysfs_ops slab_sysfs_ops = {
7431 .show = slab_attr_show,
7432 .store = slab_attr_store,
7433 };
7434
7435 static const struct kobj_type slab_ktype = {
7436 .sysfs_ops = &slab_sysfs_ops,
7437 .release = kmem_cache_release,
7438 };
7439
7440 static struct kset *slab_kset;
7441
cache_kset(struct kmem_cache * s)7442 static inline struct kset *cache_kset(struct kmem_cache *s)
7443 {
7444 return slab_kset;
7445 }
7446
7447 #define ID_STR_LENGTH 32
7448
7449 /* Create a unique string id for a slab cache:
7450 *
7451 * Format :[flags-]size
7452 */
create_unique_id(struct kmem_cache * s)7453 static char *create_unique_id(struct kmem_cache *s)
7454 {
7455 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7456 char *p = name;
7457
7458 if (!name)
7459 return ERR_PTR(-ENOMEM);
7460
7461 *p++ = ':';
7462 /*
7463 * First flags affecting slabcache operations. We will only
7464 * get here for aliasable slabs so we do not need to support
7465 * too many flags. The flags here must cover all flags that
7466 * are matched during merging to guarantee that the id is
7467 * unique.
7468 */
7469 if (s->flags & SLAB_CACHE_DMA)
7470 *p++ = 'd';
7471 if (s->flags & SLAB_CACHE_DMA32)
7472 *p++ = 'D';
7473 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7474 *p++ = 'a';
7475 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7476 *p++ = 'F';
7477 if (s->flags & SLAB_ACCOUNT)
7478 *p++ = 'A';
7479 if (p != name + 1)
7480 *p++ = '-';
7481 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7482
7483 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7484 kfree(name);
7485 return ERR_PTR(-EINVAL);
7486 }
7487 kmsan_unpoison_memory(name, p - name);
7488 return name;
7489 }
7490
sysfs_slab_add(struct kmem_cache * s)7491 static int sysfs_slab_add(struct kmem_cache *s)
7492 {
7493 int err;
7494 const char *name;
7495 struct kset *kset = cache_kset(s);
7496 int unmergeable = slab_unmergeable(s);
7497
7498 if (!unmergeable && disable_higher_order_debug &&
7499 (slub_debug & DEBUG_METADATA_FLAGS))
7500 unmergeable = 1;
7501
7502 if (unmergeable) {
7503 /*
7504 * Slabcache can never be merged so we can use the name proper.
7505 * This is typically the case for debug situations. In that
7506 * case we can catch duplicate names easily.
7507 */
7508 sysfs_remove_link(&slab_kset->kobj, s->name);
7509 name = s->name;
7510 } else {
7511 /*
7512 * Create a unique name for the slab as a target
7513 * for the symlinks.
7514 */
7515 name = create_unique_id(s);
7516 if (IS_ERR(name))
7517 return PTR_ERR(name);
7518 }
7519
7520 s->kobj.kset = kset;
7521 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7522 if (err)
7523 goto out;
7524
7525 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7526 if (err)
7527 goto out_del_kobj;
7528
7529 if (!unmergeable) {
7530 /* Setup first alias */
7531 sysfs_slab_alias(s, s->name);
7532 }
7533 out:
7534 if (!unmergeable)
7535 kfree(name);
7536 return err;
7537 out_del_kobj:
7538 kobject_del(&s->kobj);
7539 goto out;
7540 }
7541
sysfs_slab_unlink(struct kmem_cache * s)7542 void sysfs_slab_unlink(struct kmem_cache *s)
7543 {
7544 if (s->kobj.state_in_sysfs)
7545 kobject_del(&s->kobj);
7546 }
7547
sysfs_slab_release(struct kmem_cache * s)7548 void sysfs_slab_release(struct kmem_cache *s)
7549 {
7550 kobject_put(&s->kobj);
7551 }
7552
7553 /*
7554 * Need to buffer aliases during bootup until sysfs becomes
7555 * available lest we lose that information.
7556 */
7557 struct saved_alias {
7558 struct kmem_cache *s;
7559 const char *name;
7560 struct saved_alias *next;
7561 };
7562
7563 static struct saved_alias *alias_list;
7564
sysfs_slab_alias(struct kmem_cache * s,const char * name)7565 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7566 {
7567 struct saved_alias *al;
7568
7569 if (slab_state == FULL) {
7570 /*
7571 * If we have a leftover link then remove it.
7572 */
7573 sysfs_remove_link(&slab_kset->kobj, name);
7574 /*
7575 * The original cache may have failed to generate sysfs file.
7576 * In that case, sysfs_create_link() returns -ENOENT and
7577 * symbolic link creation is skipped.
7578 */
7579 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7580 }
7581
7582 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7583 if (!al)
7584 return -ENOMEM;
7585
7586 al->s = s;
7587 al->name = name;
7588 al->next = alias_list;
7589 alias_list = al;
7590 kmsan_unpoison_memory(al, sizeof(*al));
7591 return 0;
7592 }
7593
slab_sysfs_init(void)7594 static int __init slab_sysfs_init(void)
7595 {
7596 struct kmem_cache *s;
7597 int err;
7598
7599 mutex_lock(&slab_mutex);
7600
7601 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7602 if (!slab_kset) {
7603 mutex_unlock(&slab_mutex);
7604 pr_err("Cannot register slab subsystem.\n");
7605 return -ENOMEM;
7606 }
7607
7608 slab_state = FULL;
7609
7610 list_for_each_entry(s, &slab_caches, list) {
7611 err = sysfs_slab_add(s);
7612 if (err)
7613 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7614 s->name);
7615 }
7616
7617 while (alias_list) {
7618 struct saved_alias *al = alias_list;
7619
7620 alias_list = alias_list->next;
7621 err = sysfs_slab_alias(al->s, al->name);
7622 if (err)
7623 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7624 al->name);
7625 kfree(al);
7626 }
7627
7628 mutex_unlock(&slab_mutex);
7629 return 0;
7630 }
7631 late_initcall(slab_sysfs_init);
7632 #endif /* SLAB_SUPPORTS_SYSFS */
7633
7634 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7635 static int slab_debugfs_show(struct seq_file *seq, void *v)
7636 {
7637 struct loc_track *t = seq->private;
7638 struct location *l;
7639 unsigned long idx;
7640
7641 idx = (unsigned long) t->idx;
7642 if (idx < t->count) {
7643 l = &t->loc[idx];
7644
7645 seq_printf(seq, "%7ld ", l->count);
7646
7647 if (l->addr)
7648 seq_printf(seq, "%pS", (void *)l->addr);
7649 else
7650 seq_puts(seq, "<not-available>");
7651
7652 if (l->waste)
7653 seq_printf(seq, " waste=%lu/%lu",
7654 l->count * l->waste, l->waste);
7655
7656 if (l->sum_time != l->min_time) {
7657 seq_printf(seq, " age=%ld/%llu/%ld",
7658 l->min_time, div_u64(l->sum_time, l->count),
7659 l->max_time);
7660 } else
7661 seq_printf(seq, " age=%ld", l->min_time);
7662
7663 if (l->min_pid != l->max_pid)
7664 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7665 else
7666 seq_printf(seq, " pid=%ld",
7667 l->min_pid);
7668
7669 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7670 seq_printf(seq, " cpus=%*pbl",
7671 cpumask_pr_args(to_cpumask(l->cpus)));
7672
7673 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7674 seq_printf(seq, " nodes=%*pbl",
7675 nodemask_pr_args(&l->nodes));
7676
7677 #ifdef CONFIG_STACKDEPOT
7678 {
7679 depot_stack_handle_t handle;
7680 unsigned long *entries;
7681 unsigned int nr_entries, j;
7682
7683 handle = READ_ONCE(l->handle);
7684 if (handle) {
7685 nr_entries = stack_depot_fetch(handle, &entries);
7686 seq_puts(seq, "\n");
7687 for (j = 0; j < nr_entries; j++)
7688 seq_printf(seq, " %pS\n", (void *)entries[j]);
7689 }
7690 }
7691 #endif
7692 seq_puts(seq, "\n");
7693 }
7694
7695 if (!idx && !t->count)
7696 seq_puts(seq, "No data\n");
7697
7698 return 0;
7699 }
7700
slab_debugfs_stop(struct seq_file * seq,void * v)7701 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7702 {
7703 }
7704
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7705 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7706 {
7707 struct loc_track *t = seq->private;
7708
7709 t->idx = ++(*ppos);
7710 if (*ppos <= t->count)
7711 return ppos;
7712
7713 return NULL;
7714 }
7715
cmp_loc_by_count(const void * a,const void * b,const void * data)7716 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7717 {
7718 struct location *loc1 = (struct location *)a;
7719 struct location *loc2 = (struct location *)b;
7720
7721 if (loc1->count > loc2->count)
7722 return -1;
7723 else
7724 return 1;
7725 }
7726
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7727 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7728 {
7729 struct loc_track *t = seq->private;
7730
7731 t->idx = *ppos;
7732 return ppos;
7733 }
7734
7735 static const struct seq_operations slab_debugfs_sops = {
7736 .start = slab_debugfs_start,
7737 .next = slab_debugfs_next,
7738 .stop = slab_debugfs_stop,
7739 .show = slab_debugfs_show,
7740 };
7741
slab_debug_trace_open(struct inode * inode,struct file * filep)7742 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7743 {
7744
7745 struct kmem_cache_node *n;
7746 enum track_item alloc;
7747 int node;
7748 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7749 sizeof(struct loc_track));
7750 struct kmem_cache *s = file_inode(filep)->i_private;
7751 unsigned long *obj_map;
7752
7753 if (!t)
7754 return -ENOMEM;
7755
7756 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7757 if (!obj_map) {
7758 seq_release_private(inode, filep);
7759 return -ENOMEM;
7760 }
7761
7762 alloc = debugfs_get_aux_num(filep);
7763
7764 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7765 bitmap_free(obj_map);
7766 seq_release_private(inode, filep);
7767 return -ENOMEM;
7768 }
7769
7770 for_each_kmem_cache_node(s, node, n) {
7771 unsigned long flags;
7772 struct slab *slab;
7773
7774 if (!node_nr_slabs(n))
7775 continue;
7776
7777 spin_lock_irqsave(&n->list_lock, flags);
7778 list_for_each_entry(slab, &n->partial, slab_list)
7779 process_slab(t, s, slab, alloc, obj_map);
7780 list_for_each_entry(slab, &n->full, slab_list)
7781 process_slab(t, s, slab, alloc, obj_map);
7782 spin_unlock_irqrestore(&n->list_lock, flags);
7783 }
7784
7785 /* Sort locations by count */
7786 sort_r(t->loc, t->count, sizeof(struct location),
7787 cmp_loc_by_count, NULL, NULL);
7788
7789 bitmap_free(obj_map);
7790 return 0;
7791 }
7792
slab_debug_trace_release(struct inode * inode,struct file * file)7793 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7794 {
7795 struct seq_file *seq = file->private_data;
7796 struct loc_track *t = seq->private;
7797
7798 free_loc_track(t);
7799 return seq_release_private(inode, file);
7800 }
7801
7802 static const struct file_operations slab_debugfs_fops = {
7803 .open = slab_debug_trace_open,
7804 .read = seq_read,
7805 .llseek = seq_lseek,
7806 .release = slab_debug_trace_release,
7807 };
7808
debugfs_slab_add(struct kmem_cache * s)7809 static void debugfs_slab_add(struct kmem_cache *s)
7810 {
7811 struct dentry *slab_cache_dir;
7812
7813 if (unlikely(!slab_debugfs_root))
7814 return;
7815
7816 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7817
7818 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7819 TRACK_ALLOC, &slab_debugfs_fops);
7820
7821 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7822 TRACK_FREE, &slab_debugfs_fops);
7823 }
7824
debugfs_slab_release(struct kmem_cache * s)7825 void debugfs_slab_release(struct kmem_cache *s)
7826 {
7827 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7828 }
7829
slab_debugfs_init(void)7830 static int __init slab_debugfs_init(void)
7831 {
7832 struct kmem_cache *s;
7833
7834 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7835
7836 list_for_each_entry(s, &slab_caches, list)
7837 if (s->flags & SLAB_STORE_USER)
7838 debugfs_slab_add(s);
7839
7840 return 0;
7841
7842 }
7843 __initcall(slab_debugfs_init);
7844 #endif
7845 /*
7846 * The /proc/slabinfo ABI
7847 */
7848 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7849 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7850 {
7851 unsigned long nr_slabs = 0;
7852 unsigned long nr_objs = 0;
7853 unsigned long nr_free = 0;
7854 int node;
7855 struct kmem_cache_node *n;
7856
7857 for_each_kmem_cache_node(s, node, n) {
7858 nr_slabs += node_nr_slabs(n);
7859 nr_objs += node_nr_objs(n);
7860 nr_free += count_partial_free_approx(n);
7861 }
7862
7863 sinfo->active_objs = nr_objs - nr_free;
7864 sinfo->num_objs = nr_objs;
7865 sinfo->active_slabs = nr_slabs;
7866 sinfo->num_slabs = nr_slabs;
7867 sinfo->objects_per_slab = oo_objects(s->oo);
7868 sinfo->cache_order = oo_order(s->oo);
7869 }
7870 #endif /* CONFIG_SLUB_DEBUG */
7871