xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision c2c2ccfd4ba72718266a56f3ecc34c989cb5b7a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2025 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <net/dsa.h>
28 #include <net/ieee8021q.h>
29 #include <net/pkt_cls.h>
30 #include <net/switchdev.h>
31 
32 #include "ksz_common.h"
33 #include "ksz_dcb.h"
34 #include "ksz_ptp.h"
35 #include "ksz8.h"
36 #include "ksz9477.h"
37 #include "lan937x.h"
38 
39 #define MIB_COUNTER_NUM 0x20
40 
41 struct ksz_stats_raw {
42 	u64 rx_hi;
43 	u64 rx_undersize;
44 	u64 rx_fragments;
45 	u64 rx_oversize;
46 	u64 rx_jabbers;
47 	u64 rx_symbol_err;
48 	u64 rx_crc_err;
49 	u64 rx_align_err;
50 	u64 rx_mac_ctrl;
51 	u64 rx_pause;
52 	u64 rx_bcast;
53 	u64 rx_mcast;
54 	u64 rx_ucast;
55 	u64 rx_64_or_less;
56 	u64 rx_65_127;
57 	u64 rx_128_255;
58 	u64 rx_256_511;
59 	u64 rx_512_1023;
60 	u64 rx_1024_1522;
61 	u64 rx_1523_2000;
62 	u64 rx_2001;
63 	u64 tx_hi;
64 	u64 tx_late_col;
65 	u64 tx_pause;
66 	u64 tx_bcast;
67 	u64 tx_mcast;
68 	u64 tx_ucast;
69 	u64 tx_deferred;
70 	u64 tx_total_col;
71 	u64 tx_exc_col;
72 	u64 tx_single_col;
73 	u64 tx_mult_col;
74 	u64 rx_total;
75 	u64 tx_total;
76 	u64 rx_discards;
77 	u64 tx_discards;
78 };
79 
80 struct ksz88xx_stats_raw {
81 	u64 rx;
82 	u64 rx_hi;
83 	u64 rx_undersize;
84 	u64 rx_fragments;
85 	u64 rx_oversize;
86 	u64 rx_jabbers;
87 	u64 rx_symbol_err;
88 	u64 rx_crc_err;
89 	u64 rx_align_err;
90 	u64 rx_mac_ctrl;
91 	u64 rx_pause;
92 	u64 rx_bcast;
93 	u64 rx_mcast;
94 	u64 rx_ucast;
95 	u64 rx_64_or_less;
96 	u64 rx_65_127;
97 	u64 rx_128_255;
98 	u64 rx_256_511;
99 	u64 rx_512_1023;
100 	u64 rx_1024_1522;
101 	u64 tx;
102 	u64 tx_hi;
103 	u64 tx_late_col;
104 	u64 tx_pause;
105 	u64 tx_bcast;
106 	u64 tx_mcast;
107 	u64 tx_ucast;
108 	u64 tx_deferred;
109 	u64 tx_total_col;
110 	u64 tx_exc_col;
111 	u64 tx_single_col;
112 	u64 tx_mult_col;
113 	u64 rx_discards;
114 	u64 tx_discards;
115 };
116 
117 static const struct ksz_mib_names ksz88xx_mib_names[] = {
118 	{ 0x00, "rx" },
119 	{ 0x01, "rx_hi" },
120 	{ 0x02, "rx_undersize" },
121 	{ 0x03, "rx_fragments" },
122 	{ 0x04, "rx_oversize" },
123 	{ 0x05, "rx_jabbers" },
124 	{ 0x06, "rx_symbol_err" },
125 	{ 0x07, "rx_crc_err" },
126 	{ 0x08, "rx_align_err" },
127 	{ 0x09, "rx_mac_ctrl" },
128 	{ 0x0a, "rx_pause" },
129 	{ 0x0b, "rx_bcast" },
130 	{ 0x0c, "rx_mcast" },
131 	{ 0x0d, "rx_ucast" },
132 	{ 0x0e, "rx_64_or_less" },
133 	{ 0x0f, "rx_65_127" },
134 	{ 0x10, "rx_128_255" },
135 	{ 0x11, "rx_256_511" },
136 	{ 0x12, "rx_512_1023" },
137 	{ 0x13, "rx_1024_1522" },
138 	{ 0x14, "tx" },
139 	{ 0x15, "tx_hi" },
140 	{ 0x16, "tx_late_col" },
141 	{ 0x17, "tx_pause" },
142 	{ 0x18, "tx_bcast" },
143 	{ 0x19, "tx_mcast" },
144 	{ 0x1a, "tx_ucast" },
145 	{ 0x1b, "tx_deferred" },
146 	{ 0x1c, "tx_total_col" },
147 	{ 0x1d, "tx_exc_col" },
148 	{ 0x1e, "tx_single_col" },
149 	{ 0x1f, "tx_mult_col" },
150 	{ 0x100, "rx_discards" },
151 	{ 0x101, "tx_discards" },
152 };
153 
154 static const struct ksz_mib_names ksz9477_mib_names[] = {
155 	{ 0x00, "rx_hi" },
156 	{ 0x01, "rx_undersize" },
157 	{ 0x02, "rx_fragments" },
158 	{ 0x03, "rx_oversize" },
159 	{ 0x04, "rx_jabbers" },
160 	{ 0x05, "rx_symbol_err" },
161 	{ 0x06, "rx_crc_err" },
162 	{ 0x07, "rx_align_err" },
163 	{ 0x08, "rx_mac_ctrl" },
164 	{ 0x09, "rx_pause" },
165 	{ 0x0A, "rx_bcast" },
166 	{ 0x0B, "rx_mcast" },
167 	{ 0x0C, "rx_ucast" },
168 	{ 0x0D, "rx_64_or_less" },
169 	{ 0x0E, "rx_65_127" },
170 	{ 0x0F, "rx_128_255" },
171 	{ 0x10, "rx_256_511" },
172 	{ 0x11, "rx_512_1023" },
173 	{ 0x12, "rx_1024_1522" },
174 	{ 0x13, "rx_1523_2000" },
175 	{ 0x14, "rx_2001" },
176 	{ 0x15, "tx_hi" },
177 	{ 0x16, "tx_late_col" },
178 	{ 0x17, "tx_pause" },
179 	{ 0x18, "tx_bcast" },
180 	{ 0x19, "tx_mcast" },
181 	{ 0x1A, "tx_ucast" },
182 	{ 0x1B, "tx_deferred" },
183 	{ 0x1C, "tx_total_col" },
184 	{ 0x1D, "tx_exc_col" },
185 	{ 0x1E, "tx_single_col" },
186 	{ 0x1F, "tx_mult_col" },
187 	{ 0x80, "rx_total" },
188 	{ 0x81, "tx_total" },
189 	{ 0x82, "rx_discards" },
190 	{ 0x83, "tx_discards" },
191 };
192 
193 struct ksz_driver_strength_prop {
194 	const char *name;
195 	int offset;
196 	int value;
197 };
198 
199 enum ksz_driver_strength_type {
200 	KSZ_DRIVER_STRENGTH_HI,
201 	KSZ_DRIVER_STRENGTH_LO,
202 	KSZ_DRIVER_STRENGTH_IO,
203 };
204 
205 /**
206  * struct ksz_drive_strength - drive strength mapping
207  * @reg_val:	register value
208  * @microamp:	microamp value
209  */
210 struct ksz_drive_strength {
211 	u32 reg_val;
212 	u32 microamp;
213 };
214 
215 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
216  *
217  * This values are not documented in KSZ9477 variants but confirmed by
218  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
219  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
220  *
221  * Documentation in KSZ8795CLX provides more information with some
222  * recommendations:
223  * - for high speed signals
224  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
225  *      2.5V or 3.3V VDDIO.
226  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
227  *      using 1.8V VDDIO.
228  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
229  *      or 3.3V VDDIO.
230  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
231  *   5. In same interface, the heavy loading should use higher one of the
232  *      drive current strength.
233  * - for low speed signals
234  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
235  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
236  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
237  *   4. If it is heavy loading, can use higher drive current strength.
238  */
239 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
240 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
241 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
242 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
243 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
244 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
245 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
246 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
247 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
248 };
249 
250 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
251  *			     variants.
252  * This values are documented in KSZ8873 and KSZ8863 datasheets.
253  */
254 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
255 	{ 0,  8000 },
256 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
257 };
258 
259 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
260 				       unsigned int mode,
261 				       const struct phylink_link_state *state);
262 static void ksz_phylink_mac_config(struct phylink_config *config,
263 				   unsigned int mode,
264 				   const struct phylink_link_state *state);
265 static void ksz_phylink_mac_link_down(struct phylink_config *config,
266 				      unsigned int mode,
267 				      phy_interface_t interface);
268 
269 /**
270  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
271  * @config: phylink config structure
272  *
273  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
274  * a detailed explanation of EEE/LPI handling in KSZ switches.
275  */
ksz_phylink_mac_disable_tx_lpi(struct phylink_config * config)276 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
277 {
278 }
279 
280 /**
281  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
282  * @config: phylink config structure
283  * @timer: timer value before entering LPI (unused)
284  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
285  *
286  * This function signals to phylink that the driver architecture supports
287  * LPI management, enabling phylink to control EEE advertisement during
288  * negotiation according to IEEE Std 802.3 (Clause 78).
289  *
290  * Hardware Management of EEE/LPI State:
291  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
292  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
293  * state transitions are managed autonomously by the hardware based on
294  * the auto-negotiation results. (Note: While the datasheet describes EEE
295  * operation based on negotiation, it doesn't explicitly detail the internal
296  * MAC/PHY interaction, so autonomous hardware management of the MAC state
297  * for LPI is inferred from observed behavior).
298  * This hardware control, consistent with the switch's ability to operate
299  * autonomously via strapping, means MAC-level software intervention is not
300  * required or exposed for managing the LPI state once EEE is negotiated.
301  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
302  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
303  * Straps).
304  *
305  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
306  * lack documented MAC-level LPI control.
307  *
308  * Therefore, this callback performs no action and serves primarily to inform
309  * phylink of LPI awareness and to document the inferred hardware behavior.
310  *
311  * Returns: 0 (Always success)
312  */
ksz_phylink_mac_enable_tx_lpi(struct phylink_config * config,u32 timer,bool tx_clock_stop)313 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
314 					 u32 timer, bool tx_clock_stop)
315 {
316 	return 0;
317 }
318 
319 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
320 	.mac_config	= ksz88x3_phylink_mac_config,
321 	.mac_link_down	= ksz_phylink_mac_link_down,
322 	.mac_link_up	= ksz8_phylink_mac_link_up,
323 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
324 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
325 };
326 
327 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
328 	.mac_config	= ksz_phylink_mac_config,
329 	.mac_link_down	= ksz_phylink_mac_link_down,
330 	.mac_link_up	= ksz8_phylink_mac_link_up,
331 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
332 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
333 };
334 
335 static const struct ksz_dev_ops ksz8463_dev_ops = {
336 	.setup = ksz8_setup,
337 	.get_port_addr = ksz8463_get_port_addr,
338 	.cfg_port_member = ksz8_cfg_port_member,
339 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
340 	.port_setup = ksz8_port_setup,
341 	.r_phy = ksz8463_r_phy,
342 	.w_phy = ksz8463_w_phy,
343 	.r_mib_cnt = ksz8_r_mib_cnt,
344 	.r_mib_pkt = ksz8_r_mib_pkt,
345 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
346 	.freeze_mib = ksz8_freeze_mib,
347 	.port_init_cnt = ksz8_port_init_cnt,
348 	.fdb_dump = ksz8_fdb_dump,
349 	.fdb_add = ksz8_fdb_add,
350 	.fdb_del = ksz8_fdb_del,
351 	.mdb_add = ksz8_mdb_add,
352 	.mdb_del = ksz8_mdb_del,
353 	.vlan_filtering = ksz8_port_vlan_filtering,
354 	.vlan_add = ksz8_port_vlan_add,
355 	.vlan_del = ksz8_port_vlan_del,
356 	.mirror_add = ksz8_port_mirror_add,
357 	.mirror_del = ksz8_port_mirror_del,
358 	.get_caps = ksz8_get_caps,
359 	.config_cpu_port = ksz8_config_cpu_port,
360 	.enable_stp_addr = ksz8_enable_stp_addr,
361 	.reset = ksz8_reset_switch,
362 	.init = ksz8_switch_init,
363 	.exit = ksz8_switch_exit,
364 	.change_mtu = ksz8_change_mtu,
365 };
366 
367 static const struct ksz_dev_ops ksz88xx_dev_ops = {
368 	.setup = ksz8_setup,
369 	.get_port_addr = ksz8_get_port_addr,
370 	.cfg_port_member = ksz8_cfg_port_member,
371 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
372 	.port_setup = ksz8_port_setup,
373 	.r_phy = ksz8_r_phy,
374 	.w_phy = ksz8_w_phy,
375 	.r_mib_cnt = ksz8_r_mib_cnt,
376 	.r_mib_pkt = ksz8_r_mib_pkt,
377 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
378 	.freeze_mib = ksz8_freeze_mib,
379 	.port_init_cnt = ksz8_port_init_cnt,
380 	.fdb_dump = ksz8_fdb_dump,
381 	.fdb_add = ksz8_fdb_add,
382 	.fdb_del = ksz8_fdb_del,
383 	.mdb_add = ksz8_mdb_add,
384 	.mdb_del = ksz8_mdb_del,
385 	.vlan_filtering = ksz8_port_vlan_filtering,
386 	.vlan_add = ksz8_port_vlan_add,
387 	.vlan_del = ksz8_port_vlan_del,
388 	.mirror_add = ksz8_port_mirror_add,
389 	.mirror_del = ksz8_port_mirror_del,
390 	.get_caps = ksz8_get_caps,
391 	.config_cpu_port = ksz8_config_cpu_port,
392 	.enable_stp_addr = ksz8_enable_stp_addr,
393 	.reset = ksz8_reset_switch,
394 	.init = ksz8_switch_init,
395 	.exit = ksz8_switch_exit,
396 	.change_mtu = ksz8_change_mtu,
397 	.pme_write8 = ksz8_pme_write8,
398 	.pme_pread8 = ksz8_pme_pread8,
399 	.pme_pwrite8 = ksz8_pme_pwrite8,
400 };
401 
402 static const struct ksz_dev_ops ksz87xx_dev_ops = {
403 	.setup = ksz8_setup,
404 	.get_port_addr = ksz8_get_port_addr,
405 	.cfg_port_member = ksz8_cfg_port_member,
406 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
407 	.port_setup = ksz8_port_setup,
408 	.r_phy = ksz8_r_phy,
409 	.w_phy = ksz8_w_phy,
410 	.r_mib_cnt = ksz8_r_mib_cnt,
411 	.r_mib_pkt = ksz8_r_mib_pkt,
412 	.r_mib_stat64 = ksz_r_mib_stats64,
413 	.freeze_mib = ksz8_freeze_mib,
414 	.port_init_cnt = ksz8_port_init_cnt,
415 	.fdb_dump = ksz8_fdb_dump,
416 	.fdb_add = ksz8_fdb_add,
417 	.fdb_del = ksz8_fdb_del,
418 	.mdb_add = ksz8_mdb_add,
419 	.mdb_del = ksz8_mdb_del,
420 	.vlan_filtering = ksz8_port_vlan_filtering,
421 	.vlan_add = ksz8_port_vlan_add,
422 	.vlan_del = ksz8_port_vlan_del,
423 	.mirror_add = ksz8_port_mirror_add,
424 	.mirror_del = ksz8_port_mirror_del,
425 	.get_caps = ksz8_get_caps,
426 	.config_cpu_port = ksz8_config_cpu_port,
427 	.enable_stp_addr = ksz8_enable_stp_addr,
428 	.reset = ksz8_reset_switch,
429 	.init = ksz8_switch_init,
430 	.exit = ksz8_switch_exit,
431 	.change_mtu = ksz8_change_mtu,
432 	.pme_write8 = ksz8_pme_write8,
433 	.pme_pread8 = ksz8_pme_pread8,
434 	.pme_pwrite8 = ksz8_pme_pwrite8,
435 };
436 
437 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
438 					struct phy_device *phydev,
439 					unsigned int mode,
440 					phy_interface_t interface,
441 					int speed, int duplex, bool tx_pause,
442 					bool rx_pause);
443 
444 static struct phylink_pcs *
ksz_phylink_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)445 ksz_phylink_mac_select_pcs(struct phylink_config *config,
446 			   phy_interface_t interface)
447 {
448 	struct dsa_port *dp = dsa_phylink_to_port(config);
449 	struct ksz_device *dev = dp->ds->priv;
450 	struct ksz_port *p = &dev->ports[dp->index];
451 
452 	if (ksz_is_sgmii_port(dev, dp->index) &&
453 	    (interface == PHY_INTERFACE_MODE_SGMII ||
454 	    interface == PHY_INTERFACE_MODE_1000BASEX))
455 		return p->pcs;
456 
457 	return NULL;
458 }
459 
460 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
461 	.mac_config	= ksz_phylink_mac_config,
462 	.mac_link_down	= ksz_phylink_mac_link_down,
463 	.mac_link_up	= ksz9477_phylink_mac_link_up,
464 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
465 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
466 	.mac_select_pcs	= ksz_phylink_mac_select_pcs,
467 };
468 
469 static const struct ksz_dev_ops ksz9477_dev_ops = {
470 	.setup = ksz9477_setup,
471 	.get_port_addr = ksz9477_get_port_addr,
472 	.cfg_port_member = ksz9477_cfg_port_member,
473 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
474 	.port_setup = ksz9477_port_setup,
475 	.set_ageing_time = ksz9477_set_ageing_time,
476 	.r_phy = ksz9477_r_phy,
477 	.w_phy = ksz9477_w_phy,
478 	.r_mib_cnt = ksz9477_r_mib_cnt,
479 	.r_mib_pkt = ksz9477_r_mib_pkt,
480 	.r_mib_stat64 = ksz_r_mib_stats64,
481 	.freeze_mib = ksz9477_freeze_mib,
482 	.port_init_cnt = ksz9477_port_init_cnt,
483 	.vlan_filtering = ksz9477_port_vlan_filtering,
484 	.vlan_add = ksz9477_port_vlan_add,
485 	.vlan_del = ksz9477_port_vlan_del,
486 	.mirror_add = ksz9477_port_mirror_add,
487 	.mirror_del = ksz9477_port_mirror_del,
488 	.get_caps = ksz9477_get_caps,
489 	.fdb_dump = ksz9477_fdb_dump,
490 	.fdb_add = ksz9477_fdb_add,
491 	.fdb_del = ksz9477_fdb_del,
492 	.mdb_add = ksz9477_mdb_add,
493 	.mdb_del = ksz9477_mdb_del,
494 	.change_mtu = ksz9477_change_mtu,
495 	.pme_write8 = ksz_write8,
496 	.pme_pread8 = ksz_pread8,
497 	.pme_pwrite8 = ksz_pwrite8,
498 	.config_cpu_port = ksz9477_config_cpu_port,
499 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
500 	.enable_stp_addr = ksz9477_enable_stp_addr,
501 	.reset = ksz9477_reset_switch,
502 	.init = ksz9477_switch_init,
503 	.exit = ksz9477_switch_exit,
504 	.pcs_create = ksz9477_pcs_create,
505 };
506 
507 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
508 	.mac_config	= ksz_phylink_mac_config,
509 	.mac_link_down	= ksz_phylink_mac_link_down,
510 	.mac_link_up	= ksz9477_phylink_mac_link_up,
511 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
512 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
513 };
514 
515 static const struct ksz_dev_ops lan937x_dev_ops = {
516 	.setup = lan937x_setup,
517 	.teardown = lan937x_teardown,
518 	.get_port_addr = ksz9477_get_port_addr,
519 	.cfg_port_member = ksz9477_cfg_port_member,
520 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
521 	.port_setup = lan937x_port_setup,
522 	.set_ageing_time = lan937x_set_ageing_time,
523 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
524 	.create_phy_addr_map = lan937x_create_phy_addr_map,
525 	.r_phy = lan937x_r_phy,
526 	.w_phy = lan937x_w_phy,
527 	.r_mib_cnt = ksz9477_r_mib_cnt,
528 	.r_mib_pkt = ksz9477_r_mib_pkt,
529 	.r_mib_stat64 = ksz_r_mib_stats64,
530 	.freeze_mib = ksz9477_freeze_mib,
531 	.port_init_cnt = ksz9477_port_init_cnt,
532 	.vlan_filtering = ksz9477_port_vlan_filtering,
533 	.vlan_add = ksz9477_port_vlan_add,
534 	.vlan_del = ksz9477_port_vlan_del,
535 	.mirror_add = ksz9477_port_mirror_add,
536 	.mirror_del = ksz9477_port_mirror_del,
537 	.get_caps = lan937x_phylink_get_caps,
538 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
539 	.fdb_dump = ksz9477_fdb_dump,
540 	.fdb_add = ksz9477_fdb_add,
541 	.fdb_del = ksz9477_fdb_del,
542 	.mdb_add = ksz9477_mdb_add,
543 	.mdb_del = ksz9477_mdb_del,
544 	.change_mtu = lan937x_change_mtu,
545 	.config_cpu_port = lan937x_config_cpu_port,
546 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
547 	.enable_stp_addr = ksz9477_enable_stp_addr,
548 	.reset = lan937x_reset_switch,
549 	.init = lan937x_switch_init,
550 	.exit = lan937x_switch_exit,
551 };
552 
553 static const u16 ksz8463_regs[] = {
554 	[REG_SW_MAC_ADDR]		= 0x10,
555 	[REG_IND_CTRL_0]		= 0x30,
556 	[REG_IND_DATA_8]		= 0x26,
557 	[REG_IND_DATA_CHECK]		= 0x26,
558 	[REG_IND_DATA_HI]		= 0x28,
559 	[REG_IND_DATA_LO]		= 0x2C,
560 	[REG_IND_MIB_CHECK]		= 0x2F,
561 	[P_FORCE_CTRL]			= 0x0C,
562 	[P_LINK_STATUS]			= 0x0E,
563 	[P_LOCAL_CTRL]			= 0x0C,
564 	[P_NEG_RESTART_CTRL]		= 0x0D,
565 	[P_REMOTE_STATUS]		= 0x0E,
566 	[P_SPEED_STATUS]		= 0x0F,
567 	[S_TAIL_TAG_CTRL]		= 0xAD,
568 	[P_STP_CTRL]			= 0x6F,
569 	[S_START_CTRL]			= 0x01,
570 	[S_BROADCAST_CTRL]		= 0x06,
571 	[S_MULTICAST_CTRL]		= 0x04,
572 };
573 
574 static const u32 ksz8463_masks[] = {
575 	[PORT_802_1P_REMAPPING]		= BIT(3),
576 	[SW_TAIL_TAG_ENABLE]		= BIT(0),
577 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
578 	[MIB_COUNTER_VALID]		= BIT(6),
579 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
580 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
581 	[VLAN_TABLE_VALID]		= BIT(19),
582 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
583 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
584 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
585 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
586 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
587 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
588 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
589 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
590 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
591 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
592 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
593 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
594 };
595 
596 static u8 ksz8463_shifts[] = {
597 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
598 	[STATIC_MAC_FWD_PORTS]		= 16,
599 	[STATIC_MAC_FID]		= 22,
600 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
601 	[DYNAMIC_MAC_ENTRIES]		= 24,
602 	[DYNAMIC_MAC_FID]		= 16,
603 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
604 	[DYNAMIC_MAC_SRC_PORT]		= 20,
605 };
606 
607 static const u16 ksz8795_regs[] = {
608 	[REG_SW_MAC_ADDR]		= 0x68,
609 	[REG_IND_CTRL_0]		= 0x6E,
610 	[REG_IND_DATA_8]		= 0x70,
611 	[REG_IND_DATA_CHECK]		= 0x72,
612 	[REG_IND_DATA_HI]		= 0x71,
613 	[REG_IND_DATA_LO]		= 0x75,
614 	[REG_IND_MIB_CHECK]		= 0x74,
615 	[REG_IND_BYTE]			= 0xA0,
616 	[P_FORCE_CTRL]			= 0x0C,
617 	[P_LINK_STATUS]			= 0x0E,
618 	[P_LOCAL_CTRL]			= 0x07,
619 	[P_NEG_RESTART_CTRL]		= 0x0D,
620 	[P_REMOTE_STATUS]		= 0x08,
621 	[P_SPEED_STATUS]		= 0x09,
622 	[S_TAIL_TAG_CTRL]		= 0x0C,
623 	[P_STP_CTRL]			= 0x02,
624 	[S_START_CTRL]			= 0x01,
625 	[S_BROADCAST_CTRL]		= 0x06,
626 	[S_MULTICAST_CTRL]		= 0x04,
627 	[P_XMII_CTRL_0]			= 0x06,
628 	[P_XMII_CTRL_1]			= 0x06,
629 	[REG_SW_PME_CTRL]		= 0x8003,
630 	[REG_PORT_PME_STATUS]		= 0x8003,
631 	[REG_PORT_PME_CTRL]		= 0x8007,
632 };
633 
634 static const u32 ksz8795_masks[] = {
635 	[PORT_802_1P_REMAPPING]		= BIT(7),
636 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
637 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
638 	[MIB_COUNTER_VALID]		= BIT(5),
639 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
640 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
641 	[VLAN_TABLE_VALID]		= BIT(12),
642 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
643 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
644 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
645 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
646 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
647 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
648 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
649 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
650 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
651 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
652 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
653 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
654 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
655 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
656 };
657 
658 static const u8 ksz8795_xmii_ctrl0[] = {
659 	[P_MII_100MBIT]			= 0,
660 	[P_MII_10MBIT]			= 1,
661 	[P_MII_FULL_DUPLEX]		= 0,
662 	[P_MII_HALF_DUPLEX]		= 1,
663 };
664 
665 static const u8 ksz8795_xmii_ctrl1[] = {
666 	[P_RGMII_SEL]			= 3,
667 	[P_GMII_SEL]			= 2,
668 	[P_RMII_SEL]			= 1,
669 	[P_MII_SEL]			= 0,
670 	[P_GMII_1GBIT]			= 1,
671 	[P_GMII_NOT_1GBIT]		= 0,
672 };
673 
674 static const u8 ksz8795_shifts[] = {
675 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
676 	[VLAN_TABLE]			= 16,
677 	[STATIC_MAC_FWD_PORTS]		= 16,
678 	[STATIC_MAC_FID]		= 24,
679 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
680 	[DYNAMIC_MAC_ENTRIES]		= 29,
681 	[DYNAMIC_MAC_FID]		= 16,
682 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
683 	[DYNAMIC_MAC_SRC_PORT]		= 24,
684 };
685 
686 static const u16 ksz8863_regs[] = {
687 	[REG_SW_MAC_ADDR]		= 0x70,
688 	[REG_IND_CTRL_0]		= 0x79,
689 	[REG_IND_DATA_8]		= 0x7B,
690 	[REG_IND_DATA_CHECK]		= 0x7B,
691 	[REG_IND_DATA_HI]		= 0x7C,
692 	[REG_IND_DATA_LO]		= 0x80,
693 	[REG_IND_MIB_CHECK]		= 0x80,
694 	[P_FORCE_CTRL]			= 0x0C,
695 	[P_LINK_STATUS]			= 0x0E,
696 	[P_LOCAL_CTRL]			= 0x0C,
697 	[P_NEG_RESTART_CTRL]		= 0x0D,
698 	[P_REMOTE_STATUS]		= 0x0E,
699 	[P_SPEED_STATUS]		= 0x0F,
700 	[S_TAIL_TAG_CTRL]		= 0x03,
701 	[P_STP_CTRL]			= 0x02,
702 	[S_START_CTRL]			= 0x01,
703 	[S_BROADCAST_CTRL]		= 0x06,
704 	[S_MULTICAST_CTRL]		= 0x04,
705 };
706 
707 static const u32 ksz8863_masks[] = {
708 	[PORT_802_1P_REMAPPING]		= BIT(3),
709 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
710 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
711 	[MIB_COUNTER_VALID]		= BIT(6),
712 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
713 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
714 	[VLAN_TABLE_VALID]		= BIT(19),
715 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
716 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
717 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
718 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
719 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
720 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
721 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
722 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
723 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
724 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
725 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
726 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
727 };
728 
729 static u8 ksz8863_shifts[] = {
730 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
731 	[STATIC_MAC_FWD_PORTS]		= 16,
732 	[STATIC_MAC_FID]		= 22,
733 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
734 	[DYNAMIC_MAC_ENTRIES]		= 24,
735 	[DYNAMIC_MAC_FID]		= 16,
736 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
737 	[DYNAMIC_MAC_SRC_PORT]		= 20,
738 };
739 
740 static const u16 ksz8895_regs[] = {
741 	[REG_SW_MAC_ADDR]		= 0x68,
742 	[REG_IND_CTRL_0]		= 0x6E,
743 	[REG_IND_DATA_8]		= 0x70,
744 	[REG_IND_DATA_CHECK]		= 0x72,
745 	[REG_IND_DATA_HI]		= 0x71,
746 	[REG_IND_DATA_LO]		= 0x75,
747 	[REG_IND_MIB_CHECK]		= 0x75,
748 	[P_FORCE_CTRL]			= 0x0C,
749 	[P_LINK_STATUS]			= 0x0E,
750 	[P_LOCAL_CTRL]			= 0x0C,
751 	[P_NEG_RESTART_CTRL]		= 0x0D,
752 	[P_REMOTE_STATUS]		= 0x0E,
753 	[P_SPEED_STATUS]		= 0x09,
754 	[S_TAIL_TAG_CTRL]		= 0x0C,
755 	[P_STP_CTRL]			= 0x02,
756 	[S_START_CTRL]			= 0x01,
757 	[S_BROADCAST_CTRL]		= 0x06,
758 	[S_MULTICAST_CTRL]		= 0x04,
759 };
760 
761 static const u32 ksz8895_masks[] = {
762 	[PORT_802_1P_REMAPPING]		= BIT(7),
763 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
764 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
765 	[MIB_COUNTER_VALID]		= BIT(6),
766 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
767 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
768 	[VLAN_TABLE_VALID]		= BIT(12),
769 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
770 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
771 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
772 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
773 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
774 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
775 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
776 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
777 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
778 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
779 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
780 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
781 };
782 
783 static const u8 ksz8895_shifts[] = {
784 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
785 	[VLAN_TABLE]			= 13,
786 	[STATIC_MAC_FWD_PORTS]		= 16,
787 	[STATIC_MAC_FID]		= 24,
788 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
789 	[DYNAMIC_MAC_ENTRIES]		= 29,
790 	[DYNAMIC_MAC_FID]		= 16,
791 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
792 	[DYNAMIC_MAC_SRC_PORT]		= 24,
793 };
794 
795 static const u16 ksz9477_regs[] = {
796 	[REG_SW_MAC_ADDR]		= 0x0302,
797 	[P_STP_CTRL]			= 0x0B04,
798 	[S_START_CTRL]			= 0x0300,
799 	[S_BROADCAST_CTRL]		= 0x0332,
800 	[S_MULTICAST_CTRL]		= 0x0331,
801 	[P_XMII_CTRL_0]			= 0x0300,
802 	[P_XMII_CTRL_1]			= 0x0301,
803 	[REG_SW_PME_CTRL]		= 0x0006,
804 	[REG_PORT_PME_STATUS]		= 0x0013,
805 	[REG_PORT_PME_CTRL]		= 0x0017,
806 };
807 
808 static const u32 ksz9477_masks[] = {
809 	[ALU_STAT_WRITE]		= 0,
810 	[ALU_STAT_READ]			= 1,
811 	[ALU_STAT_DIRECT]		= 0,
812 	[ALU_RESV_MCAST_ADDR]		= BIT(1),
813 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
814 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
815 };
816 
817 static const u8 ksz9477_shifts[] = {
818 	[ALU_STAT_INDEX]		= 16,
819 };
820 
821 static const u8 ksz9477_xmii_ctrl0[] = {
822 	[P_MII_100MBIT]			= 1,
823 	[P_MII_10MBIT]			= 0,
824 	[P_MII_FULL_DUPLEX]		= 1,
825 	[P_MII_HALF_DUPLEX]		= 0,
826 };
827 
828 static const u8 ksz9477_xmii_ctrl1[] = {
829 	[P_RGMII_SEL]			= 0,
830 	[P_RMII_SEL]			= 1,
831 	[P_GMII_SEL]			= 2,
832 	[P_MII_SEL]			= 3,
833 	[P_GMII_1GBIT]			= 0,
834 	[P_GMII_NOT_1GBIT]		= 1,
835 };
836 
837 static const u32 lan937x_masks[] = {
838 	[ALU_STAT_WRITE]		= 1,
839 	[ALU_STAT_READ]			= 2,
840 	[ALU_STAT_DIRECT]		= BIT(3),
841 	[ALU_RESV_MCAST_ADDR]		= BIT(2),
842 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
843 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
844 };
845 
846 static const u8 lan937x_shifts[] = {
847 	[ALU_STAT_INDEX]		= 8,
848 };
849 
850 static const struct regmap_range ksz8563_valid_regs[] = {
851 	regmap_reg_range(0x0000, 0x0003),
852 	regmap_reg_range(0x0006, 0x0006),
853 	regmap_reg_range(0x000f, 0x001f),
854 	regmap_reg_range(0x0100, 0x0100),
855 	regmap_reg_range(0x0104, 0x0107),
856 	regmap_reg_range(0x010d, 0x010d),
857 	regmap_reg_range(0x0110, 0x0113),
858 	regmap_reg_range(0x0120, 0x012b),
859 	regmap_reg_range(0x0201, 0x0201),
860 	regmap_reg_range(0x0210, 0x0213),
861 	regmap_reg_range(0x0300, 0x0300),
862 	regmap_reg_range(0x0302, 0x031b),
863 	regmap_reg_range(0x0320, 0x032b),
864 	regmap_reg_range(0x0330, 0x0336),
865 	regmap_reg_range(0x0338, 0x033e),
866 	regmap_reg_range(0x0340, 0x035f),
867 	regmap_reg_range(0x0370, 0x0370),
868 	regmap_reg_range(0x0378, 0x0378),
869 	regmap_reg_range(0x037c, 0x037d),
870 	regmap_reg_range(0x0390, 0x0393),
871 	regmap_reg_range(0x0400, 0x040e),
872 	regmap_reg_range(0x0410, 0x042f),
873 	regmap_reg_range(0x0500, 0x0519),
874 	regmap_reg_range(0x0520, 0x054b),
875 	regmap_reg_range(0x0550, 0x05b3),
876 
877 	/* port 1 */
878 	regmap_reg_range(0x1000, 0x1001),
879 	regmap_reg_range(0x1004, 0x100b),
880 	regmap_reg_range(0x1013, 0x1013),
881 	regmap_reg_range(0x1017, 0x1017),
882 	regmap_reg_range(0x101b, 0x101b),
883 	regmap_reg_range(0x101f, 0x1021),
884 	regmap_reg_range(0x1030, 0x1030),
885 	regmap_reg_range(0x1100, 0x1111),
886 	regmap_reg_range(0x111a, 0x111d),
887 	regmap_reg_range(0x1122, 0x1127),
888 	regmap_reg_range(0x112a, 0x112b),
889 	regmap_reg_range(0x1136, 0x1139),
890 	regmap_reg_range(0x113e, 0x113f),
891 	regmap_reg_range(0x1400, 0x1401),
892 	regmap_reg_range(0x1403, 0x1403),
893 	regmap_reg_range(0x1410, 0x1417),
894 	regmap_reg_range(0x1420, 0x1423),
895 	regmap_reg_range(0x1500, 0x1507),
896 	regmap_reg_range(0x1600, 0x1612),
897 	regmap_reg_range(0x1800, 0x180f),
898 	regmap_reg_range(0x1900, 0x1907),
899 	regmap_reg_range(0x1914, 0x191b),
900 	regmap_reg_range(0x1a00, 0x1a03),
901 	regmap_reg_range(0x1a04, 0x1a08),
902 	regmap_reg_range(0x1b00, 0x1b01),
903 	regmap_reg_range(0x1b04, 0x1b04),
904 	regmap_reg_range(0x1c00, 0x1c05),
905 	regmap_reg_range(0x1c08, 0x1c1b),
906 
907 	/* port 2 */
908 	regmap_reg_range(0x2000, 0x2001),
909 	regmap_reg_range(0x2004, 0x200b),
910 	regmap_reg_range(0x2013, 0x2013),
911 	regmap_reg_range(0x2017, 0x2017),
912 	regmap_reg_range(0x201b, 0x201b),
913 	regmap_reg_range(0x201f, 0x2021),
914 	regmap_reg_range(0x2030, 0x2030),
915 	regmap_reg_range(0x2100, 0x2111),
916 	regmap_reg_range(0x211a, 0x211d),
917 	regmap_reg_range(0x2122, 0x2127),
918 	regmap_reg_range(0x212a, 0x212b),
919 	regmap_reg_range(0x2136, 0x2139),
920 	regmap_reg_range(0x213e, 0x213f),
921 	regmap_reg_range(0x2400, 0x2401),
922 	regmap_reg_range(0x2403, 0x2403),
923 	regmap_reg_range(0x2410, 0x2417),
924 	regmap_reg_range(0x2420, 0x2423),
925 	regmap_reg_range(0x2500, 0x2507),
926 	regmap_reg_range(0x2600, 0x2612),
927 	regmap_reg_range(0x2800, 0x280f),
928 	regmap_reg_range(0x2900, 0x2907),
929 	regmap_reg_range(0x2914, 0x291b),
930 	regmap_reg_range(0x2a00, 0x2a03),
931 	regmap_reg_range(0x2a04, 0x2a08),
932 	regmap_reg_range(0x2b00, 0x2b01),
933 	regmap_reg_range(0x2b04, 0x2b04),
934 	regmap_reg_range(0x2c00, 0x2c05),
935 	regmap_reg_range(0x2c08, 0x2c1b),
936 
937 	/* port 3 */
938 	regmap_reg_range(0x3000, 0x3001),
939 	regmap_reg_range(0x3004, 0x300b),
940 	regmap_reg_range(0x3013, 0x3013),
941 	regmap_reg_range(0x3017, 0x3017),
942 	regmap_reg_range(0x301b, 0x301b),
943 	regmap_reg_range(0x301f, 0x3021),
944 	regmap_reg_range(0x3030, 0x3030),
945 	regmap_reg_range(0x3300, 0x3301),
946 	regmap_reg_range(0x3303, 0x3303),
947 	regmap_reg_range(0x3400, 0x3401),
948 	regmap_reg_range(0x3403, 0x3403),
949 	regmap_reg_range(0x3410, 0x3417),
950 	regmap_reg_range(0x3420, 0x3423),
951 	regmap_reg_range(0x3500, 0x3507),
952 	regmap_reg_range(0x3600, 0x3612),
953 	regmap_reg_range(0x3800, 0x380f),
954 	regmap_reg_range(0x3900, 0x3907),
955 	regmap_reg_range(0x3914, 0x391b),
956 	regmap_reg_range(0x3a00, 0x3a03),
957 	regmap_reg_range(0x3a04, 0x3a08),
958 	regmap_reg_range(0x3b00, 0x3b01),
959 	regmap_reg_range(0x3b04, 0x3b04),
960 	regmap_reg_range(0x3c00, 0x3c05),
961 	regmap_reg_range(0x3c08, 0x3c1b),
962 };
963 
964 static const struct regmap_access_table ksz8563_register_set = {
965 	.yes_ranges = ksz8563_valid_regs,
966 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
967 };
968 
969 static const struct regmap_range ksz9477_valid_regs[] = {
970 	regmap_reg_range(0x0000, 0x0003),
971 	regmap_reg_range(0x0006, 0x0006),
972 	regmap_reg_range(0x0010, 0x001f),
973 	regmap_reg_range(0x0100, 0x0100),
974 	regmap_reg_range(0x0103, 0x0107),
975 	regmap_reg_range(0x010d, 0x010d),
976 	regmap_reg_range(0x0110, 0x0113),
977 	regmap_reg_range(0x0120, 0x012b),
978 	regmap_reg_range(0x0201, 0x0201),
979 	regmap_reg_range(0x0210, 0x0213),
980 	regmap_reg_range(0x0300, 0x0300),
981 	regmap_reg_range(0x0302, 0x031b),
982 	regmap_reg_range(0x0320, 0x032b),
983 	regmap_reg_range(0x0330, 0x0336),
984 	regmap_reg_range(0x0338, 0x033b),
985 	regmap_reg_range(0x033e, 0x033e),
986 	regmap_reg_range(0x0340, 0x035f),
987 	regmap_reg_range(0x0370, 0x0370),
988 	regmap_reg_range(0x0378, 0x0378),
989 	regmap_reg_range(0x037c, 0x037d),
990 	regmap_reg_range(0x0390, 0x0393),
991 	regmap_reg_range(0x0400, 0x040e),
992 	regmap_reg_range(0x0410, 0x042f),
993 	regmap_reg_range(0x0444, 0x044b),
994 	regmap_reg_range(0x0450, 0x046f),
995 	regmap_reg_range(0x0500, 0x0519),
996 	regmap_reg_range(0x0520, 0x054b),
997 	regmap_reg_range(0x0550, 0x05b3),
998 	regmap_reg_range(0x0604, 0x060b),
999 	regmap_reg_range(0x0610, 0x0612),
1000 	regmap_reg_range(0x0614, 0x062c),
1001 	regmap_reg_range(0x0640, 0x0645),
1002 	regmap_reg_range(0x0648, 0x064d),
1003 
1004 	/* port 1 */
1005 	regmap_reg_range(0x1000, 0x1001),
1006 	regmap_reg_range(0x1013, 0x1013),
1007 	regmap_reg_range(0x1017, 0x1017),
1008 	regmap_reg_range(0x101b, 0x101b),
1009 	regmap_reg_range(0x101f, 0x1020),
1010 	regmap_reg_range(0x1030, 0x1030),
1011 	regmap_reg_range(0x1100, 0x1115),
1012 	regmap_reg_range(0x111a, 0x111f),
1013 	regmap_reg_range(0x1120, 0x112b),
1014 	regmap_reg_range(0x1134, 0x113b),
1015 	regmap_reg_range(0x113c, 0x113f),
1016 	regmap_reg_range(0x1400, 0x1401),
1017 	regmap_reg_range(0x1403, 0x1403),
1018 	regmap_reg_range(0x1410, 0x1417),
1019 	regmap_reg_range(0x1420, 0x1423),
1020 	regmap_reg_range(0x1500, 0x1507),
1021 	regmap_reg_range(0x1600, 0x1613),
1022 	regmap_reg_range(0x1800, 0x180f),
1023 	regmap_reg_range(0x1820, 0x1827),
1024 	regmap_reg_range(0x1830, 0x1837),
1025 	regmap_reg_range(0x1840, 0x184b),
1026 	regmap_reg_range(0x1900, 0x1907),
1027 	regmap_reg_range(0x1914, 0x191b),
1028 	regmap_reg_range(0x1920, 0x1920),
1029 	regmap_reg_range(0x1923, 0x1927),
1030 	regmap_reg_range(0x1a00, 0x1a03),
1031 	regmap_reg_range(0x1a04, 0x1a07),
1032 	regmap_reg_range(0x1b00, 0x1b01),
1033 	regmap_reg_range(0x1b04, 0x1b04),
1034 	regmap_reg_range(0x1c00, 0x1c05),
1035 	regmap_reg_range(0x1c08, 0x1c1b),
1036 
1037 	/* port 2 */
1038 	regmap_reg_range(0x2000, 0x2001),
1039 	regmap_reg_range(0x2013, 0x2013),
1040 	regmap_reg_range(0x2017, 0x2017),
1041 	regmap_reg_range(0x201b, 0x201b),
1042 	regmap_reg_range(0x201f, 0x2020),
1043 	regmap_reg_range(0x2030, 0x2030),
1044 	regmap_reg_range(0x2100, 0x2115),
1045 	regmap_reg_range(0x211a, 0x211f),
1046 	regmap_reg_range(0x2120, 0x212b),
1047 	regmap_reg_range(0x2134, 0x213b),
1048 	regmap_reg_range(0x213c, 0x213f),
1049 	regmap_reg_range(0x2400, 0x2401),
1050 	regmap_reg_range(0x2403, 0x2403),
1051 	regmap_reg_range(0x2410, 0x2417),
1052 	regmap_reg_range(0x2420, 0x2423),
1053 	regmap_reg_range(0x2500, 0x2507),
1054 	regmap_reg_range(0x2600, 0x2613),
1055 	regmap_reg_range(0x2800, 0x280f),
1056 	regmap_reg_range(0x2820, 0x2827),
1057 	regmap_reg_range(0x2830, 0x2837),
1058 	regmap_reg_range(0x2840, 0x284b),
1059 	regmap_reg_range(0x2900, 0x2907),
1060 	regmap_reg_range(0x2914, 0x291b),
1061 	regmap_reg_range(0x2920, 0x2920),
1062 	regmap_reg_range(0x2923, 0x2927),
1063 	regmap_reg_range(0x2a00, 0x2a03),
1064 	regmap_reg_range(0x2a04, 0x2a07),
1065 	regmap_reg_range(0x2b00, 0x2b01),
1066 	regmap_reg_range(0x2b04, 0x2b04),
1067 	regmap_reg_range(0x2c00, 0x2c05),
1068 	regmap_reg_range(0x2c08, 0x2c1b),
1069 
1070 	/* port 3 */
1071 	regmap_reg_range(0x3000, 0x3001),
1072 	regmap_reg_range(0x3013, 0x3013),
1073 	regmap_reg_range(0x3017, 0x3017),
1074 	regmap_reg_range(0x301b, 0x301b),
1075 	regmap_reg_range(0x301f, 0x3020),
1076 	regmap_reg_range(0x3030, 0x3030),
1077 	regmap_reg_range(0x3100, 0x3115),
1078 	regmap_reg_range(0x311a, 0x311f),
1079 	regmap_reg_range(0x3120, 0x312b),
1080 	regmap_reg_range(0x3134, 0x313b),
1081 	regmap_reg_range(0x313c, 0x313f),
1082 	regmap_reg_range(0x3400, 0x3401),
1083 	regmap_reg_range(0x3403, 0x3403),
1084 	regmap_reg_range(0x3410, 0x3417),
1085 	regmap_reg_range(0x3420, 0x3423),
1086 	regmap_reg_range(0x3500, 0x3507),
1087 	regmap_reg_range(0x3600, 0x3613),
1088 	regmap_reg_range(0x3800, 0x380f),
1089 	regmap_reg_range(0x3820, 0x3827),
1090 	regmap_reg_range(0x3830, 0x3837),
1091 	regmap_reg_range(0x3840, 0x384b),
1092 	regmap_reg_range(0x3900, 0x3907),
1093 	regmap_reg_range(0x3914, 0x391b),
1094 	regmap_reg_range(0x3920, 0x3920),
1095 	regmap_reg_range(0x3923, 0x3927),
1096 	regmap_reg_range(0x3a00, 0x3a03),
1097 	regmap_reg_range(0x3a04, 0x3a07),
1098 	regmap_reg_range(0x3b00, 0x3b01),
1099 	regmap_reg_range(0x3b04, 0x3b04),
1100 	regmap_reg_range(0x3c00, 0x3c05),
1101 	regmap_reg_range(0x3c08, 0x3c1b),
1102 
1103 	/* port 4 */
1104 	regmap_reg_range(0x4000, 0x4001),
1105 	regmap_reg_range(0x4013, 0x4013),
1106 	regmap_reg_range(0x4017, 0x4017),
1107 	regmap_reg_range(0x401b, 0x401b),
1108 	regmap_reg_range(0x401f, 0x4020),
1109 	regmap_reg_range(0x4030, 0x4030),
1110 	regmap_reg_range(0x4100, 0x4115),
1111 	regmap_reg_range(0x411a, 0x411f),
1112 	regmap_reg_range(0x4120, 0x412b),
1113 	regmap_reg_range(0x4134, 0x413b),
1114 	regmap_reg_range(0x413c, 0x413f),
1115 	regmap_reg_range(0x4400, 0x4401),
1116 	regmap_reg_range(0x4403, 0x4403),
1117 	regmap_reg_range(0x4410, 0x4417),
1118 	regmap_reg_range(0x4420, 0x4423),
1119 	regmap_reg_range(0x4500, 0x4507),
1120 	regmap_reg_range(0x4600, 0x4613),
1121 	regmap_reg_range(0x4800, 0x480f),
1122 	regmap_reg_range(0x4820, 0x4827),
1123 	regmap_reg_range(0x4830, 0x4837),
1124 	regmap_reg_range(0x4840, 0x484b),
1125 	regmap_reg_range(0x4900, 0x4907),
1126 	regmap_reg_range(0x4914, 0x491b),
1127 	regmap_reg_range(0x4920, 0x4920),
1128 	regmap_reg_range(0x4923, 0x4927),
1129 	regmap_reg_range(0x4a00, 0x4a03),
1130 	regmap_reg_range(0x4a04, 0x4a07),
1131 	regmap_reg_range(0x4b00, 0x4b01),
1132 	regmap_reg_range(0x4b04, 0x4b04),
1133 	regmap_reg_range(0x4c00, 0x4c05),
1134 	regmap_reg_range(0x4c08, 0x4c1b),
1135 
1136 	/* port 5 */
1137 	regmap_reg_range(0x5000, 0x5001),
1138 	regmap_reg_range(0x5013, 0x5013),
1139 	regmap_reg_range(0x5017, 0x5017),
1140 	regmap_reg_range(0x501b, 0x501b),
1141 	regmap_reg_range(0x501f, 0x5020),
1142 	regmap_reg_range(0x5030, 0x5030),
1143 	regmap_reg_range(0x5100, 0x5115),
1144 	regmap_reg_range(0x511a, 0x511f),
1145 	regmap_reg_range(0x5120, 0x512b),
1146 	regmap_reg_range(0x5134, 0x513b),
1147 	regmap_reg_range(0x513c, 0x513f),
1148 	regmap_reg_range(0x5400, 0x5401),
1149 	regmap_reg_range(0x5403, 0x5403),
1150 	regmap_reg_range(0x5410, 0x5417),
1151 	regmap_reg_range(0x5420, 0x5423),
1152 	regmap_reg_range(0x5500, 0x5507),
1153 	regmap_reg_range(0x5600, 0x5613),
1154 	regmap_reg_range(0x5800, 0x580f),
1155 	regmap_reg_range(0x5820, 0x5827),
1156 	regmap_reg_range(0x5830, 0x5837),
1157 	regmap_reg_range(0x5840, 0x584b),
1158 	regmap_reg_range(0x5900, 0x5907),
1159 	regmap_reg_range(0x5914, 0x591b),
1160 	regmap_reg_range(0x5920, 0x5920),
1161 	regmap_reg_range(0x5923, 0x5927),
1162 	regmap_reg_range(0x5a00, 0x5a03),
1163 	regmap_reg_range(0x5a04, 0x5a07),
1164 	regmap_reg_range(0x5b00, 0x5b01),
1165 	regmap_reg_range(0x5b04, 0x5b04),
1166 	regmap_reg_range(0x5c00, 0x5c05),
1167 	regmap_reg_range(0x5c08, 0x5c1b),
1168 
1169 	/* port 6 */
1170 	regmap_reg_range(0x6000, 0x6001),
1171 	regmap_reg_range(0x6013, 0x6013),
1172 	regmap_reg_range(0x6017, 0x6017),
1173 	regmap_reg_range(0x601b, 0x601b),
1174 	regmap_reg_range(0x601f, 0x6020),
1175 	regmap_reg_range(0x6030, 0x6030),
1176 	regmap_reg_range(0x6300, 0x6301),
1177 	regmap_reg_range(0x6400, 0x6401),
1178 	regmap_reg_range(0x6403, 0x6403),
1179 	regmap_reg_range(0x6410, 0x6417),
1180 	regmap_reg_range(0x6420, 0x6423),
1181 	regmap_reg_range(0x6500, 0x6507),
1182 	regmap_reg_range(0x6600, 0x6613),
1183 	regmap_reg_range(0x6800, 0x680f),
1184 	regmap_reg_range(0x6820, 0x6827),
1185 	regmap_reg_range(0x6830, 0x6837),
1186 	regmap_reg_range(0x6840, 0x684b),
1187 	regmap_reg_range(0x6900, 0x6907),
1188 	regmap_reg_range(0x6914, 0x691b),
1189 	regmap_reg_range(0x6920, 0x6920),
1190 	regmap_reg_range(0x6923, 0x6927),
1191 	regmap_reg_range(0x6a00, 0x6a03),
1192 	regmap_reg_range(0x6a04, 0x6a07),
1193 	regmap_reg_range(0x6b00, 0x6b01),
1194 	regmap_reg_range(0x6b04, 0x6b04),
1195 	regmap_reg_range(0x6c00, 0x6c05),
1196 	regmap_reg_range(0x6c08, 0x6c1b),
1197 
1198 	/* port 7 */
1199 	regmap_reg_range(0x7000, 0x7001),
1200 	regmap_reg_range(0x7013, 0x7013),
1201 	regmap_reg_range(0x7017, 0x7017),
1202 	regmap_reg_range(0x701b, 0x701b),
1203 	regmap_reg_range(0x701f, 0x7020),
1204 	regmap_reg_range(0x7030, 0x7030),
1205 	regmap_reg_range(0x7200, 0x7207),
1206 	regmap_reg_range(0x7300, 0x7301),
1207 	regmap_reg_range(0x7400, 0x7401),
1208 	regmap_reg_range(0x7403, 0x7403),
1209 	regmap_reg_range(0x7410, 0x7417),
1210 	regmap_reg_range(0x7420, 0x7423),
1211 	regmap_reg_range(0x7500, 0x7507),
1212 	regmap_reg_range(0x7600, 0x7613),
1213 	regmap_reg_range(0x7800, 0x780f),
1214 	regmap_reg_range(0x7820, 0x7827),
1215 	regmap_reg_range(0x7830, 0x7837),
1216 	regmap_reg_range(0x7840, 0x784b),
1217 	regmap_reg_range(0x7900, 0x7907),
1218 	regmap_reg_range(0x7914, 0x791b),
1219 	regmap_reg_range(0x7920, 0x7920),
1220 	regmap_reg_range(0x7923, 0x7927),
1221 	regmap_reg_range(0x7a00, 0x7a03),
1222 	regmap_reg_range(0x7a04, 0x7a07),
1223 	regmap_reg_range(0x7b00, 0x7b01),
1224 	regmap_reg_range(0x7b04, 0x7b04),
1225 	regmap_reg_range(0x7c00, 0x7c05),
1226 	regmap_reg_range(0x7c08, 0x7c1b),
1227 };
1228 
1229 static const struct regmap_access_table ksz9477_register_set = {
1230 	.yes_ranges = ksz9477_valid_regs,
1231 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1232 };
1233 
1234 static const struct regmap_range ksz9896_valid_regs[] = {
1235 	regmap_reg_range(0x0000, 0x0003),
1236 	regmap_reg_range(0x0006, 0x0006),
1237 	regmap_reg_range(0x0010, 0x001f),
1238 	regmap_reg_range(0x0100, 0x0100),
1239 	regmap_reg_range(0x0103, 0x0107),
1240 	regmap_reg_range(0x010d, 0x010d),
1241 	regmap_reg_range(0x0110, 0x0113),
1242 	regmap_reg_range(0x0120, 0x0127),
1243 	regmap_reg_range(0x0201, 0x0201),
1244 	regmap_reg_range(0x0210, 0x0213),
1245 	regmap_reg_range(0x0300, 0x0300),
1246 	regmap_reg_range(0x0302, 0x030b),
1247 	regmap_reg_range(0x0310, 0x031b),
1248 	regmap_reg_range(0x0320, 0x032b),
1249 	regmap_reg_range(0x0330, 0x0336),
1250 	regmap_reg_range(0x0338, 0x033b),
1251 	regmap_reg_range(0x033e, 0x033e),
1252 	regmap_reg_range(0x0340, 0x035f),
1253 	regmap_reg_range(0x0370, 0x0370),
1254 	regmap_reg_range(0x0378, 0x0378),
1255 	regmap_reg_range(0x037c, 0x037d),
1256 	regmap_reg_range(0x0390, 0x0393),
1257 	regmap_reg_range(0x0400, 0x040e),
1258 	regmap_reg_range(0x0410, 0x042f),
1259 
1260 	/* port 1 */
1261 	regmap_reg_range(0x1000, 0x1001),
1262 	regmap_reg_range(0x1013, 0x1013),
1263 	regmap_reg_range(0x1017, 0x1017),
1264 	regmap_reg_range(0x101b, 0x101b),
1265 	regmap_reg_range(0x101f, 0x1020),
1266 	regmap_reg_range(0x1030, 0x1030),
1267 	regmap_reg_range(0x1100, 0x1115),
1268 	regmap_reg_range(0x111a, 0x111f),
1269 	regmap_reg_range(0x1120, 0x112b),
1270 	regmap_reg_range(0x1134, 0x113b),
1271 	regmap_reg_range(0x113c, 0x113f),
1272 	regmap_reg_range(0x1400, 0x1401),
1273 	regmap_reg_range(0x1403, 0x1403),
1274 	regmap_reg_range(0x1410, 0x1417),
1275 	regmap_reg_range(0x1420, 0x1423),
1276 	regmap_reg_range(0x1500, 0x1507),
1277 	regmap_reg_range(0x1600, 0x1612),
1278 	regmap_reg_range(0x1800, 0x180f),
1279 	regmap_reg_range(0x1820, 0x1827),
1280 	regmap_reg_range(0x1830, 0x1837),
1281 	regmap_reg_range(0x1840, 0x184b),
1282 	regmap_reg_range(0x1900, 0x1907),
1283 	regmap_reg_range(0x1914, 0x1915),
1284 	regmap_reg_range(0x1a00, 0x1a03),
1285 	regmap_reg_range(0x1a04, 0x1a07),
1286 	regmap_reg_range(0x1b00, 0x1b01),
1287 	regmap_reg_range(0x1b04, 0x1b04),
1288 
1289 	/* port 2 */
1290 	regmap_reg_range(0x2000, 0x2001),
1291 	regmap_reg_range(0x2013, 0x2013),
1292 	regmap_reg_range(0x2017, 0x2017),
1293 	regmap_reg_range(0x201b, 0x201b),
1294 	regmap_reg_range(0x201f, 0x2020),
1295 	regmap_reg_range(0x2030, 0x2030),
1296 	regmap_reg_range(0x2100, 0x2115),
1297 	regmap_reg_range(0x211a, 0x211f),
1298 	regmap_reg_range(0x2120, 0x212b),
1299 	regmap_reg_range(0x2134, 0x213b),
1300 	regmap_reg_range(0x213c, 0x213f),
1301 	regmap_reg_range(0x2400, 0x2401),
1302 	regmap_reg_range(0x2403, 0x2403),
1303 	regmap_reg_range(0x2410, 0x2417),
1304 	regmap_reg_range(0x2420, 0x2423),
1305 	regmap_reg_range(0x2500, 0x2507),
1306 	regmap_reg_range(0x2600, 0x2612),
1307 	regmap_reg_range(0x2800, 0x280f),
1308 	regmap_reg_range(0x2820, 0x2827),
1309 	regmap_reg_range(0x2830, 0x2837),
1310 	regmap_reg_range(0x2840, 0x284b),
1311 	regmap_reg_range(0x2900, 0x2907),
1312 	regmap_reg_range(0x2914, 0x2915),
1313 	regmap_reg_range(0x2a00, 0x2a03),
1314 	regmap_reg_range(0x2a04, 0x2a07),
1315 	regmap_reg_range(0x2b00, 0x2b01),
1316 	regmap_reg_range(0x2b04, 0x2b04),
1317 
1318 	/* port 3 */
1319 	regmap_reg_range(0x3000, 0x3001),
1320 	regmap_reg_range(0x3013, 0x3013),
1321 	regmap_reg_range(0x3017, 0x3017),
1322 	regmap_reg_range(0x301b, 0x301b),
1323 	regmap_reg_range(0x301f, 0x3020),
1324 	regmap_reg_range(0x3030, 0x3030),
1325 	regmap_reg_range(0x3100, 0x3115),
1326 	regmap_reg_range(0x311a, 0x311f),
1327 	regmap_reg_range(0x3120, 0x312b),
1328 	regmap_reg_range(0x3134, 0x313b),
1329 	regmap_reg_range(0x313c, 0x313f),
1330 	regmap_reg_range(0x3400, 0x3401),
1331 	regmap_reg_range(0x3403, 0x3403),
1332 	regmap_reg_range(0x3410, 0x3417),
1333 	regmap_reg_range(0x3420, 0x3423),
1334 	regmap_reg_range(0x3500, 0x3507),
1335 	regmap_reg_range(0x3600, 0x3612),
1336 	regmap_reg_range(0x3800, 0x380f),
1337 	regmap_reg_range(0x3820, 0x3827),
1338 	regmap_reg_range(0x3830, 0x3837),
1339 	regmap_reg_range(0x3840, 0x384b),
1340 	regmap_reg_range(0x3900, 0x3907),
1341 	regmap_reg_range(0x3914, 0x3915),
1342 	regmap_reg_range(0x3a00, 0x3a03),
1343 	regmap_reg_range(0x3a04, 0x3a07),
1344 	regmap_reg_range(0x3b00, 0x3b01),
1345 	regmap_reg_range(0x3b04, 0x3b04),
1346 
1347 	/* port 4 */
1348 	regmap_reg_range(0x4000, 0x4001),
1349 	regmap_reg_range(0x4013, 0x4013),
1350 	regmap_reg_range(0x4017, 0x4017),
1351 	regmap_reg_range(0x401b, 0x401b),
1352 	regmap_reg_range(0x401f, 0x4020),
1353 	regmap_reg_range(0x4030, 0x4030),
1354 	regmap_reg_range(0x4100, 0x4115),
1355 	regmap_reg_range(0x411a, 0x411f),
1356 	regmap_reg_range(0x4120, 0x412b),
1357 	regmap_reg_range(0x4134, 0x413b),
1358 	regmap_reg_range(0x413c, 0x413f),
1359 	regmap_reg_range(0x4400, 0x4401),
1360 	regmap_reg_range(0x4403, 0x4403),
1361 	regmap_reg_range(0x4410, 0x4417),
1362 	regmap_reg_range(0x4420, 0x4423),
1363 	regmap_reg_range(0x4500, 0x4507),
1364 	regmap_reg_range(0x4600, 0x4612),
1365 	regmap_reg_range(0x4800, 0x480f),
1366 	regmap_reg_range(0x4820, 0x4827),
1367 	regmap_reg_range(0x4830, 0x4837),
1368 	regmap_reg_range(0x4840, 0x484b),
1369 	regmap_reg_range(0x4900, 0x4907),
1370 	regmap_reg_range(0x4914, 0x4915),
1371 	regmap_reg_range(0x4a00, 0x4a03),
1372 	regmap_reg_range(0x4a04, 0x4a07),
1373 	regmap_reg_range(0x4b00, 0x4b01),
1374 	regmap_reg_range(0x4b04, 0x4b04),
1375 
1376 	/* port 5 */
1377 	regmap_reg_range(0x5000, 0x5001),
1378 	regmap_reg_range(0x5013, 0x5013),
1379 	regmap_reg_range(0x5017, 0x5017),
1380 	regmap_reg_range(0x501b, 0x501b),
1381 	regmap_reg_range(0x501f, 0x5020),
1382 	regmap_reg_range(0x5030, 0x5030),
1383 	regmap_reg_range(0x5100, 0x5115),
1384 	regmap_reg_range(0x511a, 0x511f),
1385 	regmap_reg_range(0x5120, 0x512b),
1386 	regmap_reg_range(0x5134, 0x513b),
1387 	regmap_reg_range(0x513c, 0x513f),
1388 	regmap_reg_range(0x5400, 0x5401),
1389 	regmap_reg_range(0x5403, 0x5403),
1390 	regmap_reg_range(0x5410, 0x5417),
1391 	regmap_reg_range(0x5420, 0x5423),
1392 	regmap_reg_range(0x5500, 0x5507),
1393 	regmap_reg_range(0x5600, 0x5612),
1394 	regmap_reg_range(0x5800, 0x580f),
1395 	regmap_reg_range(0x5820, 0x5827),
1396 	regmap_reg_range(0x5830, 0x5837),
1397 	regmap_reg_range(0x5840, 0x584b),
1398 	regmap_reg_range(0x5900, 0x5907),
1399 	regmap_reg_range(0x5914, 0x5915),
1400 	regmap_reg_range(0x5a00, 0x5a03),
1401 	regmap_reg_range(0x5a04, 0x5a07),
1402 	regmap_reg_range(0x5b00, 0x5b01),
1403 	regmap_reg_range(0x5b04, 0x5b04),
1404 
1405 	/* port 6 */
1406 	regmap_reg_range(0x6000, 0x6001),
1407 	regmap_reg_range(0x6013, 0x6013),
1408 	regmap_reg_range(0x6017, 0x6017),
1409 	regmap_reg_range(0x601b, 0x601b),
1410 	regmap_reg_range(0x601f, 0x6020),
1411 	regmap_reg_range(0x6030, 0x6030),
1412 	regmap_reg_range(0x6100, 0x6115),
1413 	regmap_reg_range(0x611a, 0x611f),
1414 	regmap_reg_range(0x6120, 0x612b),
1415 	regmap_reg_range(0x6134, 0x613b),
1416 	regmap_reg_range(0x613c, 0x613f),
1417 	regmap_reg_range(0x6300, 0x6301),
1418 	regmap_reg_range(0x6400, 0x6401),
1419 	regmap_reg_range(0x6403, 0x6403),
1420 	regmap_reg_range(0x6410, 0x6417),
1421 	regmap_reg_range(0x6420, 0x6423),
1422 	regmap_reg_range(0x6500, 0x6507),
1423 	regmap_reg_range(0x6600, 0x6612),
1424 	regmap_reg_range(0x6800, 0x680f),
1425 	regmap_reg_range(0x6820, 0x6827),
1426 	regmap_reg_range(0x6830, 0x6837),
1427 	regmap_reg_range(0x6840, 0x684b),
1428 	regmap_reg_range(0x6900, 0x6907),
1429 	regmap_reg_range(0x6914, 0x6915),
1430 	regmap_reg_range(0x6a00, 0x6a03),
1431 	regmap_reg_range(0x6a04, 0x6a07),
1432 	regmap_reg_range(0x6b00, 0x6b01),
1433 	regmap_reg_range(0x6b04, 0x6b04),
1434 };
1435 
1436 static const struct regmap_access_table ksz9896_register_set = {
1437 	.yes_ranges = ksz9896_valid_regs,
1438 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1439 };
1440 
1441 static const struct regmap_range ksz8873_valid_regs[] = {
1442 	regmap_reg_range(0x00, 0x01),
1443 	/* global control register */
1444 	regmap_reg_range(0x02, 0x0f),
1445 
1446 	/* port registers */
1447 	regmap_reg_range(0x10, 0x1d),
1448 	regmap_reg_range(0x1e, 0x1f),
1449 	regmap_reg_range(0x20, 0x2d),
1450 	regmap_reg_range(0x2e, 0x2f),
1451 	regmap_reg_range(0x30, 0x39),
1452 	regmap_reg_range(0x3f, 0x3f),
1453 
1454 	/* advanced control registers */
1455 	regmap_reg_range(0x43, 0x43),
1456 	regmap_reg_range(0x60, 0x6f),
1457 	regmap_reg_range(0x70, 0x75),
1458 	regmap_reg_range(0x76, 0x78),
1459 	regmap_reg_range(0x79, 0x7a),
1460 	regmap_reg_range(0x7b, 0x83),
1461 	regmap_reg_range(0x8e, 0x99),
1462 	regmap_reg_range(0x9a, 0xa5),
1463 	regmap_reg_range(0xa6, 0xa6),
1464 	regmap_reg_range(0xa7, 0xaa),
1465 	regmap_reg_range(0xab, 0xae),
1466 	regmap_reg_range(0xaf, 0xba),
1467 	regmap_reg_range(0xbb, 0xbc),
1468 	regmap_reg_range(0xbd, 0xbd),
1469 	regmap_reg_range(0xc0, 0xc0),
1470 	regmap_reg_range(0xc2, 0xc2),
1471 	regmap_reg_range(0xc3, 0xc3),
1472 	regmap_reg_range(0xc4, 0xc4),
1473 	regmap_reg_range(0xc6, 0xc6),
1474 };
1475 
1476 static const struct regmap_access_table ksz8873_register_set = {
1477 	.yes_ranges = ksz8873_valid_regs,
1478 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1479 };
1480 
1481 const struct ksz_chip_data ksz_switch_chips[] = {
1482 	[KSZ8463] = {
1483 		.chip_id = KSZ8463_CHIP_ID,
1484 		.dev_name = "KSZ8463",
1485 		.num_vlans = 16,
1486 		.num_alus = 0,
1487 		.num_statics = 8,
1488 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1489 		.port_cnt = 3,
1490 		.num_tx_queues = 4,
1491 		.num_ipms = 4,
1492 		.ops = &ksz8463_dev_ops,
1493 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1494 		.mib_names = ksz88xx_mib_names,
1495 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1496 		.reg_mib_cnt = MIB_COUNTER_NUM,
1497 		.regs = ksz8463_regs,
1498 		.masks = ksz8463_masks,
1499 		.shifts = ksz8463_shifts,
1500 		.supports_mii = {false, false, true},
1501 		.supports_rmii = {false, false, true},
1502 		.internal_phy = {true, true, false},
1503 	},
1504 
1505 	[KSZ8563] = {
1506 		.chip_id = KSZ8563_CHIP_ID,
1507 		.dev_name = "KSZ8563",
1508 		.num_vlans = 4096,
1509 		.num_alus = 4096,
1510 		.num_statics = 16,
1511 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1512 		.port_cnt = 3,		/* total port count */
1513 		.port_nirqs = 3,
1514 		.num_tx_queues = 4,
1515 		.num_ipms = 8,
1516 		.tc_cbs_supported = true,
1517 		.ops = &ksz9477_dev_ops,
1518 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1519 		.mib_names = ksz9477_mib_names,
1520 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1521 		.reg_mib_cnt = MIB_COUNTER_NUM,
1522 		.regs = ksz9477_regs,
1523 		.masks = ksz9477_masks,
1524 		.shifts = ksz9477_shifts,
1525 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1526 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1527 		.supports_mii = {false, false, true},
1528 		.supports_rmii = {false, false, true},
1529 		.supports_rgmii = {false, false, true},
1530 		.internal_phy = {true, true, false},
1531 		.gbit_capable = {false, false, true},
1532 		.ptp_capable = true,
1533 		.wr_table = &ksz8563_register_set,
1534 		.rd_table = &ksz8563_register_set,
1535 	},
1536 
1537 	[KSZ8795] = {
1538 		.chip_id = KSZ8795_CHIP_ID,
1539 		.dev_name = "KSZ8795",
1540 		.num_vlans = 4096,
1541 		.num_alus = 0,
1542 		.num_statics = 32,
1543 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1544 		.port_cnt = 5,		/* total cpu and user ports */
1545 		.num_tx_queues = 4,
1546 		.num_ipms = 4,
1547 		.ops = &ksz87xx_dev_ops,
1548 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1549 		.ksz87xx_eee_link_erratum = true,
1550 		.mib_names = ksz9477_mib_names,
1551 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1552 		.reg_mib_cnt = MIB_COUNTER_NUM,
1553 		.regs = ksz8795_regs,
1554 		.masks = ksz8795_masks,
1555 		.shifts = ksz8795_shifts,
1556 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1557 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1558 		.supports_mii = {false, false, false, false, true},
1559 		.supports_rmii = {false, false, false, false, true},
1560 		.supports_rgmii = {false, false, false, false, true},
1561 		.internal_phy = {true, true, true, true, false},
1562 	},
1563 
1564 	[KSZ8794] = {
1565 		/* WARNING
1566 		 * =======
1567 		 * KSZ8794 is similar to KSZ8795, except the port map
1568 		 * contains a gap between external and CPU ports, the
1569 		 * port map is NOT continuous. The per-port register
1570 		 * map is shifted accordingly too, i.e. registers at
1571 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1572 		 * used on KSZ8795 for external port 3.
1573 		 *           external  cpu
1574 		 * KSZ8794   0,1,2      4
1575 		 * KSZ8795   0,1,2,3    4
1576 		 * KSZ8765   0,1,2,3    4
1577 		 * port_cnt is configured as 5, even though it is 4
1578 		 */
1579 		.chip_id = KSZ8794_CHIP_ID,
1580 		.dev_name = "KSZ8794",
1581 		.num_vlans = 4096,
1582 		.num_alus = 0,
1583 		.num_statics = 32,
1584 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1585 		.port_cnt = 5,		/* total cpu and user ports */
1586 		.num_tx_queues = 4,
1587 		.num_ipms = 4,
1588 		.ops = &ksz87xx_dev_ops,
1589 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1590 		.ksz87xx_eee_link_erratum = true,
1591 		.mib_names = ksz9477_mib_names,
1592 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1593 		.reg_mib_cnt = MIB_COUNTER_NUM,
1594 		.regs = ksz8795_regs,
1595 		.masks = ksz8795_masks,
1596 		.shifts = ksz8795_shifts,
1597 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1598 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1599 		.supports_mii = {false, false, false, false, true},
1600 		.supports_rmii = {false, false, false, false, true},
1601 		.supports_rgmii = {false, false, false, false, true},
1602 		.internal_phy = {true, true, true, false, false},
1603 	},
1604 
1605 	[KSZ8765] = {
1606 		.chip_id = KSZ8765_CHIP_ID,
1607 		.dev_name = "KSZ8765",
1608 		.num_vlans = 4096,
1609 		.num_alus = 0,
1610 		.num_statics = 32,
1611 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1612 		.port_cnt = 5,		/* total cpu and user ports */
1613 		.num_tx_queues = 4,
1614 		.num_ipms = 4,
1615 		.ops = &ksz87xx_dev_ops,
1616 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1617 		.ksz87xx_eee_link_erratum = true,
1618 		.mib_names = ksz9477_mib_names,
1619 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1620 		.reg_mib_cnt = MIB_COUNTER_NUM,
1621 		.regs = ksz8795_regs,
1622 		.masks = ksz8795_masks,
1623 		.shifts = ksz8795_shifts,
1624 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1625 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1626 		.supports_mii = {false, false, false, false, true},
1627 		.supports_rmii = {false, false, false, false, true},
1628 		.supports_rgmii = {false, false, false, false, true},
1629 		.internal_phy = {true, true, true, true, false},
1630 	},
1631 
1632 	[KSZ88X3] = {
1633 		.chip_id = KSZ88X3_CHIP_ID,
1634 		.dev_name = "KSZ8863/KSZ8873",
1635 		.num_vlans = 16,
1636 		.num_alus = 0,
1637 		.num_statics = 8,
1638 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1639 		.port_cnt = 3,
1640 		.num_tx_queues = 4,
1641 		.num_ipms = 4,
1642 		.ops = &ksz88xx_dev_ops,
1643 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1644 		.mib_names = ksz88xx_mib_names,
1645 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1646 		.reg_mib_cnt = MIB_COUNTER_NUM,
1647 		.regs = ksz8863_regs,
1648 		.masks = ksz8863_masks,
1649 		.shifts = ksz8863_shifts,
1650 		.supports_mii = {false, false, true},
1651 		.supports_rmii = {false, false, true},
1652 		.internal_phy = {true, true, false},
1653 		.wr_table = &ksz8873_register_set,
1654 		.rd_table = &ksz8873_register_set,
1655 	},
1656 
1657 	[KSZ8864] = {
1658 		/* WARNING
1659 		 * =======
1660 		 * KSZ8864 is similar to KSZ8895, except the first port
1661 		 * does not exist.
1662 		 *           external  cpu
1663 		 * KSZ8864   1,2,3      4
1664 		 * KSZ8895   0,1,2,3    4
1665 		 * port_cnt is configured as 5, even though it is 4
1666 		 */
1667 		.chip_id = KSZ8864_CHIP_ID,
1668 		.dev_name = "KSZ8864",
1669 		.num_vlans = 4096,
1670 		.num_alus = 0,
1671 		.num_statics = 32,
1672 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1673 		.port_cnt = 5,		/* total cpu and user ports */
1674 		.num_tx_queues = 4,
1675 		.num_ipms = 4,
1676 		.ops = &ksz88xx_dev_ops,
1677 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1678 		.mib_names = ksz88xx_mib_names,
1679 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1680 		.reg_mib_cnt = MIB_COUNTER_NUM,
1681 		.regs = ksz8895_regs,
1682 		.masks = ksz8895_masks,
1683 		.shifts = ksz8895_shifts,
1684 		.supports_mii = {false, false, false, false, true},
1685 		.supports_rmii = {false, false, false, false, true},
1686 		.internal_phy = {false, true, true, true, false},
1687 	},
1688 
1689 	[KSZ8895] = {
1690 		.chip_id = KSZ8895_CHIP_ID,
1691 		.dev_name = "KSZ8895",
1692 		.num_vlans = 4096,
1693 		.num_alus = 0,
1694 		.num_statics = 32,
1695 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1696 		.port_cnt = 5,		/* total cpu and user ports */
1697 		.num_tx_queues = 4,
1698 		.num_ipms = 4,
1699 		.ops = &ksz88xx_dev_ops,
1700 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1701 		.mib_names = ksz88xx_mib_names,
1702 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1703 		.reg_mib_cnt = MIB_COUNTER_NUM,
1704 		.regs = ksz8895_regs,
1705 		.masks = ksz8895_masks,
1706 		.shifts = ksz8895_shifts,
1707 		.supports_mii = {false, false, false, false, true},
1708 		.supports_rmii = {false, false, false, false, true},
1709 		.internal_phy = {true, true, true, true, false},
1710 	},
1711 
1712 	[KSZ9477] = {
1713 		.chip_id = KSZ9477_CHIP_ID,
1714 		.dev_name = "KSZ9477",
1715 		.num_vlans = 4096,
1716 		.num_alus = 4096,
1717 		.num_statics = 16,
1718 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1719 		.port_cnt = 7,		/* total physical port count */
1720 		.port_nirqs = 4,
1721 		.num_tx_queues = 4,
1722 		.num_ipms = 8,
1723 		.tc_cbs_supported = true,
1724 		.ops = &ksz9477_dev_ops,
1725 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1726 		.phy_errata_9477 = true,
1727 		.mib_names = ksz9477_mib_names,
1728 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1729 		.reg_mib_cnt = MIB_COUNTER_NUM,
1730 		.regs = ksz9477_regs,
1731 		.masks = ksz9477_masks,
1732 		.shifts = ksz9477_shifts,
1733 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1734 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1735 		.supports_mii	= {false, false, false, false,
1736 				   false, true, false},
1737 		.supports_rmii	= {false, false, false, false,
1738 				   false, true, false},
1739 		.supports_rgmii = {false, false, false, false,
1740 				   false, true, false},
1741 		.internal_phy	= {true, true, true, true,
1742 				   true, false, false},
1743 		.gbit_capable	= {true, true, true, true, true, true, true},
1744 		.ptp_capable = true,
1745 		.sgmii_port = 7,
1746 		.wr_table = &ksz9477_register_set,
1747 		.rd_table = &ksz9477_register_set,
1748 	},
1749 
1750 	[KSZ9896] = {
1751 		.chip_id = KSZ9896_CHIP_ID,
1752 		.dev_name = "KSZ9896",
1753 		.num_vlans = 4096,
1754 		.num_alus = 4096,
1755 		.num_statics = 16,
1756 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1757 		.port_cnt = 6,		/* total physical port count */
1758 		.port_nirqs = 2,
1759 		.num_tx_queues = 4,
1760 		.num_ipms = 8,
1761 		.ops = &ksz9477_dev_ops,
1762 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1763 		.phy_errata_9477 = true,
1764 		.mib_names = ksz9477_mib_names,
1765 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1766 		.reg_mib_cnt = MIB_COUNTER_NUM,
1767 		.regs = ksz9477_regs,
1768 		.masks = ksz9477_masks,
1769 		.shifts = ksz9477_shifts,
1770 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1771 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1772 		.supports_mii	= {false, false, false, false,
1773 				   false, true},
1774 		.supports_rmii	= {false, false, false, false,
1775 				   false, true},
1776 		.supports_rgmii = {false, false, false, false,
1777 				   false, true},
1778 		.internal_phy	= {true, true, true, true,
1779 				   true, false},
1780 		.gbit_capable	= {true, true, true, true, true, true},
1781 		.wr_table = &ksz9896_register_set,
1782 		.rd_table = &ksz9896_register_set,
1783 	},
1784 
1785 	[KSZ9897] = {
1786 		.chip_id = KSZ9897_CHIP_ID,
1787 		.dev_name = "KSZ9897",
1788 		.num_vlans = 4096,
1789 		.num_alus = 4096,
1790 		.num_statics = 16,
1791 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1792 		.port_cnt = 7,		/* total physical port count */
1793 		.port_nirqs = 2,
1794 		.num_tx_queues = 4,
1795 		.num_ipms = 8,
1796 		.ops = &ksz9477_dev_ops,
1797 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1798 		.phy_errata_9477 = true,
1799 		.mib_names = ksz9477_mib_names,
1800 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1801 		.reg_mib_cnt = MIB_COUNTER_NUM,
1802 		.regs = ksz9477_regs,
1803 		.masks = ksz9477_masks,
1804 		.shifts = ksz9477_shifts,
1805 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1806 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1807 		.supports_mii	= {false, false, false, false,
1808 				   false, true, true},
1809 		.supports_rmii	= {false, false, false, false,
1810 				   false, true, true},
1811 		.supports_rgmii = {false, false, false, false,
1812 				   false, true, true},
1813 		.internal_phy	= {true, true, true, true,
1814 				   true, false, false},
1815 		.gbit_capable	= {true, true, true, true, true, true, true},
1816 	},
1817 
1818 	[KSZ9893] = {
1819 		.chip_id = KSZ9893_CHIP_ID,
1820 		.dev_name = "KSZ9893",
1821 		.num_vlans = 4096,
1822 		.num_alus = 4096,
1823 		.num_statics = 16,
1824 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1825 		.port_cnt = 3,		/* total port count */
1826 		.port_nirqs = 2,
1827 		.num_tx_queues = 4,
1828 		.num_ipms = 8,
1829 		.ops = &ksz9477_dev_ops,
1830 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1831 		.mib_names = ksz9477_mib_names,
1832 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1833 		.reg_mib_cnt = MIB_COUNTER_NUM,
1834 		.regs = ksz9477_regs,
1835 		.masks = ksz9477_masks,
1836 		.shifts = ksz9477_shifts,
1837 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1838 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1839 		.supports_mii = {false, false, true},
1840 		.supports_rmii = {false, false, true},
1841 		.supports_rgmii = {false, false, true},
1842 		.internal_phy = {true, true, false},
1843 		.gbit_capable = {true, true, true},
1844 	},
1845 
1846 	[KSZ9563] = {
1847 		.chip_id = KSZ9563_CHIP_ID,
1848 		.dev_name = "KSZ9563",
1849 		.num_vlans = 4096,
1850 		.num_alus = 4096,
1851 		.num_statics = 16,
1852 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1853 		.port_cnt = 3,		/* total port count */
1854 		.port_nirqs = 3,
1855 		.num_tx_queues = 4,
1856 		.num_ipms = 8,
1857 		.tc_cbs_supported = true,
1858 		.ops = &ksz9477_dev_ops,
1859 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1860 		.mib_names = ksz9477_mib_names,
1861 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1862 		.reg_mib_cnt = MIB_COUNTER_NUM,
1863 		.regs = ksz9477_regs,
1864 		.masks = ksz9477_masks,
1865 		.shifts = ksz9477_shifts,
1866 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1867 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1868 		.supports_mii = {false, false, true},
1869 		.supports_rmii = {false, false, true},
1870 		.supports_rgmii = {false, false, true},
1871 		.internal_phy = {true, true, false},
1872 		.gbit_capable = {true, true, true},
1873 		.ptp_capable = true,
1874 	},
1875 
1876 	[KSZ8567] = {
1877 		.chip_id = KSZ8567_CHIP_ID,
1878 		.dev_name = "KSZ8567",
1879 		.num_vlans = 4096,
1880 		.num_alus = 4096,
1881 		.num_statics = 16,
1882 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1883 		.port_cnt = 7,		/* total port count */
1884 		.port_nirqs = 3,
1885 		.num_tx_queues = 4,
1886 		.num_ipms = 8,
1887 		.tc_cbs_supported = true,
1888 		.ops = &ksz9477_dev_ops,
1889 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1890 		.phy_errata_9477 = true,
1891 		.mib_names = ksz9477_mib_names,
1892 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1893 		.reg_mib_cnt = MIB_COUNTER_NUM,
1894 		.regs = ksz9477_regs,
1895 		.masks = ksz9477_masks,
1896 		.shifts = ksz9477_shifts,
1897 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1898 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1899 		.supports_mii	= {false, false, false, false,
1900 				   false, true, true},
1901 		.supports_rmii	= {false, false, false, false,
1902 				   false, true, true},
1903 		.supports_rgmii = {false, false, false, false,
1904 				   false, true, true},
1905 		.internal_phy	= {true, true, true, true,
1906 				   true, false, false},
1907 		.gbit_capable	= {false, false, false, false, false,
1908 				   true, true},
1909 		.ptp_capable = true,
1910 	},
1911 
1912 	[KSZ9567] = {
1913 		.chip_id = KSZ9567_CHIP_ID,
1914 		.dev_name = "KSZ9567",
1915 		.num_vlans = 4096,
1916 		.num_alus = 4096,
1917 		.num_statics = 16,
1918 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1919 		.port_cnt = 7,		/* total physical port count */
1920 		.port_nirqs = 3,
1921 		.num_tx_queues = 4,
1922 		.num_ipms = 8,
1923 		.tc_cbs_supported = true,
1924 		.ops = &ksz9477_dev_ops,
1925 		.mib_names = ksz9477_mib_names,
1926 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1927 		.reg_mib_cnt = MIB_COUNTER_NUM,
1928 		.regs = ksz9477_regs,
1929 		.masks = ksz9477_masks,
1930 		.shifts = ksz9477_shifts,
1931 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1932 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1933 		.supports_mii	= {false, false, false, false,
1934 				   false, true, true},
1935 		.supports_rmii	= {false, false, false, false,
1936 				   false, true, true},
1937 		.supports_rgmii = {false, false, false, false,
1938 				   false, true, true},
1939 		.internal_phy	= {true, true, true, true,
1940 				   true, false, false},
1941 		.gbit_capable	= {true, true, true, true, true, true, true},
1942 		.ptp_capable = true,
1943 	},
1944 
1945 	[LAN9370] = {
1946 		.chip_id = LAN9370_CHIP_ID,
1947 		.dev_name = "LAN9370",
1948 		.num_vlans = 4096,
1949 		.num_alus = 1024,
1950 		.num_statics = 256,
1951 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1952 		.port_cnt = 5,		/* total physical port count */
1953 		.port_nirqs = 6,
1954 		.num_tx_queues = 8,
1955 		.num_ipms = 8,
1956 		.tc_cbs_supported = true,
1957 		.phy_side_mdio_supported = true,
1958 		.ops = &lan937x_dev_ops,
1959 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1960 		.mib_names = ksz9477_mib_names,
1961 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1962 		.reg_mib_cnt = MIB_COUNTER_NUM,
1963 		.regs = ksz9477_regs,
1964 		.masks = lan937x_masks,
1965 		.shifts = lan937x_shifts,
1966 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1967 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1968 		.supports_mii = {false, false, false, false, true},
1969 		.supports_rmii = {false, false, false, false, true},
1970 		.supports_rgmii = {false, false, false, false, true},
1971 		.internal_phy = {true, true, true, true, false},
1972 		.ptp_capable = true,
1973 	},
1974 
1975 	[LAN9371] = {
1976 		.chip_id = LAN9371_CHIP_ID,
1977 		.dev_name = "LAN9371",
1978 		.num_vlans = 4096,
1979 		.num_alus = 1024,
1980 		.num_statics = 256,
1981 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1982 		.port_cnt = 6,		/* total physical port count */
1983 		.port_nirqs = 6,
1984 		.num_tx_queues = 8,
1985 		.num_ipms = 8,
1986 		.tc_cbs_supported = true,
1987 		.phy_side_mdio_supported = true,
1988 		.ops = &lan937x_dev_ops,
1989 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1990 		.mib_names = ksz9477_mib_names,
1991 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1992 		.reg_mib_cnt = MIB_COUNTER_NUM,
1993 		.regs = ksz9477_regs,
1994 		.masks = lan937x_masks,
1995 		.shifts = lan937x_shifts,
1996 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1997 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1998 		.supports_mii = {false, false, false, false, true, true},
1999 		.supports_rmii = {false, false, false, false, true, true},
2000 		.supports_rgmii = {false, false, false, false, true, true},
2001 		.internal_phy = {true, true, true, true, false, false},
2002 		.ptp_capable = true,
2003 	},
2004 
2005 	[LAN9372] = {
2006 		.chip_id = LAN9372_CHIP_ID,
2007 		.dev_name = "LAN9372",
2008 		.num_vlans = 4096,
2009 		.num_alus = 1024,
2010 		.num_statics = 256,
2011 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2012 		.port_cnt = 8,		/* total physical port count */
2013 		.port_nirqs = 6,
2014 		.num_tx_queues = 8,
2015 		.num_ipms = 8,
2016 		.tc_cbs_supported = true,
2017 		.phy_side_mdio_supported = true,
2018 		.ops = &lan937x_dev_ops,
2019 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2020 		.mib_names = ksz9477_mib_names,
2021 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2022 		.reg_mib_cnt = MIB_COUNTER_NUM,
2023 		.regs = ksz9477_regs,
2024 		.masks = lan937x_masks,
2025 		.shifts = lan937x_shifts,
2026 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2027 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2028 		.supports_mii	= {false, false, false, false,
2029 				   true, true, false, false},
2030 		.supports_rmii	= {false, false, false, false,
2031 				   true, true, false, false},
2032 		.supports_rgmii = {false, false, false, false,
2033 				   true, true, false, false},
2034 		.internal_phy	= {true, true, true, true,
2035 				   false, false, true, true},
2036 		.ptp_capable = true,
2037 	},
2038 
2039 	[LAN9373] = {
2040 		.chip_id = LAN9373_CHIP_ID,
2041 		.dev_name = "LAN9373",
2042 		.num_vlans = 4096,
2043 		.num_alus = 1024,
2044 		.num_statics = 256,
2045 		.cpu_ports = 0x38,	/* can be configured as cpu port */
2046 		.port_cnt = 5,		/* total physical port count */
2047 		.port_nirqs = 6,
2048 		.num_tx_queues = 8,
2049 		.num_ipms = 8,
2050 		.tc_cbs_supported = true,
2051 		.phy_side_mdio_supported = true,
2052 		.ops = &lan937x_dev_ops,
2053 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2054 		.mib_names = ksz9477_mib_names,
2055 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2056 		.reg_mib_cnt = MIB_COUNTER_NUM,
2057 		.regs = ksz9477_regs,
2058 		.masks = lan937x_masks,
2059 		.shifts = lan937x_shifts,
2060 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2061 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2062 		.supports_mii	= {false, false, false, false,
2063 				   true, true, false, false},
2064 		.supports_rmii	= {false, false, false, false,
2065 				   true, true, false, false},
2066 		.supports_rgmii = {false, false, false, false,
2067 				   true, true, false, false},
2068 		.internal_phy	= {true, true, true, false,
2069 				   false, false, true, true},
2070 		.ptp_capable = true,
2071 	},
2072 
2073 	[LAN9374] = {
2074 		.chip_id = LAN9374_CHIP_ID,
2075 		.dev_name = "LAN9374",
2076 		.num_vlans = 4096,
2077 		.num_alus = 1024,
2078 		.num_statics = 256,
2079 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2080 		.port_cnt = 8,		/* total physical port count */
2081 		.port_nirqs = 6,
2082 		.num_tx_queues = 8,
2083 		.num_ipms = 8,
2084 		.tc_cbs_supported = true,
2085 		.phy_side_mdio_supported = true,
2086 		.ops = &lan937x_dev_ops,
2087 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2088 		.mib_names = ksz9477_mib_names,
2089 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2090 		.reg_mib_cnt = MIB_COUNTER_NUM,
2091 		.regs = ksz9477_regs,
2092 		.masks = lan937x_masks,
2093 		.shifts = lan937x_shifts,
2094 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2095 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2096 		.supports_mii	= {false, false, false, false,
2097 				   true, true, false, false},
2098 		.supports_rmii	= {false, false, false, false,
2099 				   true, true, false, false},
2100 		.supports_rgmii = {false, false, false, false,
2101 				   true, true, false, false},
2102 		.internal_phy	= {true, true, true, true,
2103 				   false, false, true, true},
2104 		.ptp_capable = true,
2105 	},
2106 
2107 	[LAN9646] = {
2108 		.chip_id = LAN9646_CHIP_ID,
2109 		.dev_name = "LAN9646",
2110 		.num_vlans = 4096,
2111 		.num_alus = 4096,
2112 		.num_statics = 16,
2113 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
2114 		.port_cnt = 7,		/* total physical port count */
2115 		.port_nirqs = 4,
2116 		.num_tx_queues = 4,
2117 		.num_ipms = 8,
2118 		.ops = &ksz9477_dev_ops,
2119 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
2120 		.phy_errata_9477 = true,
2121 		.mib_names = ksz9477_mib_names,
2122 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2123 		.reg_mib_cnt = MIB_COUNTER_NUM,
2124 		.regs = ksz9477_regs,
2125 		.masks = ksz9477_masks,
2126 		.shifts = ksz9477_shifts,
2127 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2128 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2129 		.supports_mii	= {false, false, false, false,
2130 				   false, true, true},
2131 		.supports_rmii	= {false, false, false, false,
2132 				   false, true, true},
2133 		.supports_rgmii = {false, false, false, false,
2134 				   false, true, true},
2135 		.internal_phy	= {true, true, true, true,
2136 				   true, false, false},
2137 		.gbit_capable	= {true, true, true, true, true, true, true},
2138 		.sgmii_port = 7,
2139 		.wr_table = &ksz9477_register_set,
2140 		.rd_table = &ksz9477_register_set,
2141 	},
2142 };
2143 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2144 
ksz_lookup_info(unsigned int prod_num)2145 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2146 {
2147 	int i;
2148 
2149 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2150 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2151 
2152 		if (chip->chip_id == prod_num)
2153 			return chip;
2154 	}
2155 
2156 	return NULL;
2157 }
2158 
ksz_check_device_id(struct ksz_device * dev)2159 static int ksz_check_device_id(struct ksz_device *dev)
2160 {
2161 	const struct ksz_chip_data *expected_chip_data;
2162 	u32 expected_chip_id;
2163 
2164 	if (dev->pdata) {
2165 		expected_chip_id = dev->pdata->chip_id;
2166 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2167 		if (WARN_ON(!expected_chip_data))
2168 			return -ENODEV;
2169 	} else {
2170 		expected_chip_data = of_device_get_match_data(dev->dev);
2171 		expected_chip_id = expected_chip_data->chip_id;
2172 	}
2173 
2174 	if (expected_chip_id != dev->chip_id) {
2175 		dev_err(dev->dev,
2176 			"Device tree specifies chip %s but found %s, please fix it!\n",
2177 			expected_chip_data->dev_name, dev->info->dev_name);
2178 		return -ENODEV;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
ksz_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2184 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2185 				 struct phylink_config *config)
2186 {
2187 	struct ksz_device *dev = ds->priv;
2188 
2189 	if (dev->info->supports_mii[port])
2190 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2191 
2192 	if (dev->info->supports_rmii[port])
2193 		__set_bit(PHY_INTERFACE_MODE_RMII,
2194 			  config->supported_interfaces);
2195 
2196 	if (dev->info->supports_rgmii[port])
2197 		phy_interface_set_rgmii(config->supported_interfaces);
2198 
2199 	if (dev->info->internal_phy[port]) {
2200 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2201 			  config->supported_interfaces);
2202 		/* Compatibility for phylib's default interface type when the
2203 		 * phy-mode property is absent
2204 		 */
2205 		__set_bit(PHY_INTERFACE_MODE_GMII,
2206 			  config->supported_interfaces);
2207 	}
2208 
2209 	if (dev->dev_ops->get_caps)
2210 		dev->dev_ops->get_caps(dev, port, config);
2211 
2212 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2213 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2214 		       sizeof(config->lpi_interfaces));
2215 
2216 		config->lpi_capabilities = MAC_100FD;
2217 		if (dev->info->gbit_capable[port])
2218 			config->lpi_capabilities |= MAC_1000FD;
2219 
2220 		/* EEE is fully operational */
2221 		config->eee_enabled_default = true;
2222 	}
2223 }
2224 
ksz_r_mib_stats64(struct ksz_device * dev,int port)2225 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2226 {
2227 	struct ethtool_pause_stats *pstats;
2228 	struct rtnl_link_stats64 *stats;
2229 	struct ksz_stats_raw *raw;
2230 	struct ksz_port_mib *mib;
2231 	int ret;
2232 
2233 	mib = &dev->ports[port].mib;
2234 	stats = &mib->stats64;
2235 	pstats = &mib->pause_stats;
2236 	raw = (struct ksz_stats_raw *)mib->counters;
2237 
2238 	spin_lock(&mib->stats64_lock);
2239 
2240 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2241 		raw->rx_pause;
2242 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2243 		raw->tx_pause;
2244 
2245 	/* HW counters are counting bytes + FCS which is not acceptable
2246 	 * for rtnl_link_stats64 interface
2247 	 */
2248 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2249 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2250 
2251 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2252 		raw->rx_oversize;
2253 
2254 	stats->rx_crc_errors = raw->rx_crc_err;
2255 	stats->rx_frame_errors = raw->rx_align_err;
2256 	stats->rx_dropped = raw->rx_discards;
2257 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2258 		stats->rx_frame_errors  + stats->rx_dropped;
2259 
2260 	stats->tx_window_errors = raw->tx_late_col;
2261 	stats->tx_fifo_errors = raw->tx_discards;
2262 	stats->tx_aborted_errors = raw->tx_exc_col;
2263 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2264 		stats->tx_aborted_errors;
2265 
2266 	stats->multicast = raw->rx_mcast;
2267 	stats->collisions = raw->tx_total_col;
2268 
2269 	pstats->tx_pause_frames = raw->tx_pause;
2270 	pstats->rx_pause_frames = raw->rx_pause;
2271 
2272 	spin_unlock(&mib->stats64_lock);
2273 
2274 	if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) {
2275 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2276 		if (ret)
2277 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2278 	}
2279 }
2280 
ksz88xx_r_mib_stats64(struct ksz_device * dev,int port)2281 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2282 {
2283 	struct ethtool_pause_stats *pstats;
2284 	struct rtnl_link_stats64 *stats;
2285 	struct ksz88xx_stats_raw *raw;
2286 	struct ksz_port_mib *mib;
2287 
2288 	mib = &dev->ports[port].mib;
2289 	stats = &mib->stats64;
2290 	pstats = &mib->pause_stats;
2291 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2292 
2293 	spin_lock(&mib->stats64_lock);
2294 
2295 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2296 		raw->rx_pause;
2297 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2298 		raw->tx_pause;
2299 
2300 	/* HW counters are counting bytes + FCS which is not acceptable
2301 	 * for rtnl_link_stats64 interface
2302 	 */
2303 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2304 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2305 
2306 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2307 		raw->rx_oversize;
2308 
2309 	stats->rx_crc_errors = raw->rx_crc_err;
2310 	stats->rx_frame_errors = raw->rx_align_err;
2311 	stats->rx_dropped = raw->rx_discards;
2312 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2313 		stats->rx_frame_errors  + stats->rx_dropped;
2314 
2315 	stats->tx_window_errors = raw->tx_late_col;
2316 	stats->tx_fifo_errors = raw->tx_discards;
2317 	stats->tx_aborted_errors = raw->tx_exc_col;
2318 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2319 		stats->tx_aborted_errors;
2320 
2321 	stats->multicast = raw->rx_mcast;
2322 	stats->collisions = raw->tx_total_col;
2323 
2324 	pstats->tx_pause_frames = raw->tx_pause;
2325 	pstats->rx_pause_frames = raw->rx_pause;
2326 
2327 	spin_unlock(&mib->stats64_lock);
2328 }
2329 
ksz_get_stats64(struct dsa_switch * ds,int port,struct rtnl_link_stats64 * s)2330 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2331 			    struct rtnl_link_stats64 *s)
2332 {
2333 	struct ksz_device *dev = ds->priv;
2334 	struct ksz_port_mib *mib;
2335 
2336 	mib = &dev->ports[port].mib;
2337 
2338 	spin_lock(&mib->stats64_lock);
2339 	memcpy(s, &mib->stats64, sizeof(*s));
2340 	spin_unlock(&mib->stats64_lock);
2341 }
2342 
ksz_get_pause_stats(struct dsa_switch * ds,int port,struct ethtool_pause_stats * pause_stats)2343 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2344 				struct ethtool_pause_stats *pause_stats)
2345 {
2346 	struct ksz_device *dev = ds->priv;
2347 	struct ksz_port_mib *mib;
2348 
2349 	mib = &dev->ports[port].mib;
2350 
2351 	spin_lock(&mib->stats64_lock);
2352 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2353 	spin_unlock(&mib->stats64_lock);
2354 }
2355 
ksz_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * buf)2356 static void ksz_get_strings(struct dsa_switch *ds, int port,
2357 			    u32 stringset, uint8_t *buf)
2358 {
2359 	struct ksz_device *dev = ds->priv;
2360 	int i;
2361 
2362 	if (stringset != ETH_SS_STATS)
2363 		return;
2364 
2365 	for (i = 0; i < dev->info->mib_cnt; i++)
2366 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2367 }
2368 
2369 /**
2370  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2371  *			    isolation settings.
2372  * @dev: A pointer to the struct ksz_device representing the device.
2373  * @port: The port number to adjust.
2374  *
2375  * This function dynamically adjusts the port membership configuration for a
2376  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2377  * states and port isolation settings. Each port, including the CPU port, has a
2378  * membership register, represented as a bitfield, where each bit corresponds
2379  * to a port number. A set bit indicates permission to forward frames to that
2380  * port. This function iterates over all ports, updating the membership register
2381  * to reflect current forwarding permissions:
2382  *
2383  * 1. Forwards frames only to ports that are part of the same bridge group and
2384  *    in the BR_STATE_FORWARDING state.
2385  * 2. Takes into account the isolation status of ports; ports in the
2386  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2387  *    frames to each other, even if they are in the same bridge group.
2388  * 3. Ensures that the CPU port is included in the membership based on its
2389  *    upstream port configuration, allowing for management and control traffic
2390  *    to flow as required.
2391  */
ksz_update_port_member(struct ksz_device * dev,int port)2392 static void ksz_update_port_member(struct ksz_device *dev, int port)
2393 {
2394 	struct ksz_port *p = &dev->ports[port];
2395 	struct dsa_switch *ds = dev->ds;
2396 	u8 port_member = 0, cpu_port;
2397 	const struct dsa_port *dp;
2398 	int i, j;
2399 
2400 	if (!dsa_is_user_port(ds, port))
2401 		return;
2402 
2403 	dp = dsa_to_port(ds, port);
2404 	cpu_port = BIT(dsa_upstream_port(ds, port));
2405 
2406 	for (i = 0; i < ds->num_ports; i++) {
2407 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2408 		struct ksz_port *other_p = &dev->ports[i];
2409 		u8 val = 0;
2410 
2411 		if (!dsa_is_user_port(ds, i))
2412 			continue;
2413 		if (port == i)
2414 			continue;
2415 		if (!dsa_port_bridge_same(dp, other_dp))
2416 			continue;
2417 		if (other_p->stp_state != BR_STATE_FORWARDING)
2418 			continue;
2419 
2420 		/* At this point we know that "port" and "other" port [i] are in
2421 		 * the same bridge group and that "other" port [i] is in
2422 		 * forwarding stp state. If "port" is also in forwarding stp
2423 		 * state, we can allow forwarding from port [port] to port [i].
2424 		 * Except if both ports are isolated.
2425 		 */
2426 		if (p->stp_state == BR_STATE_FORWARDING &&
2427 		    !(p->isolated && other_p->isolated)) {
2428 			val |= BIT(port);
2429 			port_member |= BIT(i);
2430 		}
2431 
2432 		/* Retain port [i]'s relationship to other ports than [port] */
2433 		for (j = 0; j < ds->num_ports; j++) {
2434 			const struct dsa_port *third_dp;
2435 			struct ksz_port *third_p;
2436 
2437 			if (j == i)
2438 				continue;
2439 			if (j == port)
2440 				continue;
2441 			if (!dsa_is_user_port(ds, j))
2442 				continue;
2443 			third_p = &dev->ports[j];
2444 			if (third_p->stp_state != BR_STATE_FORWARDING)
2445 				continue;
2446 
2447 			third_dp = dsa_to_port(ds, j);
2448 
2449 			/* Now we updating relation of the "other" port [i] to
2450 			 * the "third" port [j]. We already know that "other"
2451 			 * port [i] is in forwarding stp state and that "third"
2452 			 * port [j] is in forwarding stp state too.
2453 			 * We need to check if "other" port [i] and "third" port
2454 			 * [j] are in the same bridge group and not isolated
2455 			 * before allowing forwarding from port [i] to port [j].
2456 			 */
2457 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2458 			    !(other_p->isolated && third_p->isolated))
2459 				val |= BIT(j);
2460 		}
2461 
2462 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2463 	}
2464 
2465 	/* HSR ports are setup once so need to use the assigned membership
2466 	 * when the port is enabled.
2467 	 */
2468 	if (!port_member && p->stp_state == BR_STATE_FORWARDING &&
2469 	    (dev->hsr_ports & BIT(port)))
2470 		port_member = dev->hsr_ports;
2471 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2472 }
2473 
ksz_sw_mdio_read(struct mii_bus * bus,int addr,int regnum)2474 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2475 {
2476 	struct ksz_device *dev = bus->priv;
2477 	u16 val;
2478 	int ret;
2479 
2480 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2481 	if (ret < 0)
2482 		return ret;
2483 
2484 	return val;
2485 }
2486 
ksz_sw_mdio_write(struct mii_bus * bus,int addr,int regnum,u16 val)2487 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2488 			     u16 val)
2489 {
2490 	struct ksz_device *dev = bus->priv;
2491 
2492 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2493 }
2494 
2495 /**
2496  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2497  * @bus: MDIO bus structure.
2498  * @addr: PHY address on the parent MDIO bus.
2499  * @regnum: Register number to read.
2500  *
2501  * This function provides a direct read operation on the parent MDIO bus for
2502  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2503  * to retrieve data from the PHY registers at the specified address and register
2504  * number.
2505  *
2506  * Return: Value of the PHY register, or a negative error code on failure.
2507  */
ksz_parent_mdio_read(struct mii_bus * bus,int addr,int regnum)2508 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2509 {
2510 	struct ksz_device *dev = bus->priv;
2511 
2512 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2513 }
2514 
2515 /**
2516  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2517  * @bus: MDIO bus structure.
2518  * @addr: PHY address on the parent MDIO bus.
2519  * @regnum: Register number to write to.
2520  * @val: Value to write to the PHY register.
2521  *
2522  * This function provides a direct write operation on the parent MDIO bus for
2523  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2524  * to modify the PHY register values at the specified address.
2525  *
2526  * Return: 0 on success, or a negative error code on failure.
2527  */
ksz_parent_mdio_write(struct mii_bus * bus,int addr,int regnum,u16 val)2528 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2529 				 u16 val)
2530 {
2531 	struct ksz_device *dev = bus->priv;
2532 
2533 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2534 }
2535 
2536 /**
2537  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2538  * @dev: Pointer to device structure.
2539  * @addr: PHY address to map to a port.
2540  *
2541  * This function finds the corresponding switch port for a given PHY address by
2542  * iterating over all user ports on the device. It checks if a port's PHY
2543  * address in `phy_addr_map` matches the specified address and if the port
2544  * contains an internal PHY. If a match is found, the index of the port is
2545  * returned.
2546  *
2547  * Return: Port index on success, or -EINVAL if no matching port is found.
2548  */
ksz_phy_addr_to_port(struct ksz_device * dev,int addr)2549 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2550 {
2551 	struct dsa_switch *ds = dev->ds;
2552 	struct dsa_port *dp;
2553 
2554 	dsa_switch_for_each_user_port(dp, ds) {
2555 		if (dev->info->internal_phy[dp->index] &&
2556 		    dev->phy_addr_map[dp->index] == addr)
2557 			return dp->index;
2558 	}
2559 
2560 	return -EINVAL;
2561 }
2562 
2563 /**
2564  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2565  * @dev: Pointer to the KSZ device structure.
2566  *
2567  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2568  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2569  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2570  *
2571  * Return: 0 on success, or a negative error code on failure.
2572  */
ksz_irq_phy_setup(struct ksz_device * dev)2573 static int ksz_irq_phy_setup(struct ksz_device *dev)
2574 {
2575 	struct dsa_switch *ds = dev->ds;
2576 	int phy, port;
2577 	int irq;
2578 	int ret;
2579 
2580 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2581 		if (BIT(phy) & ds->phys_mii_mask) {
2582 			port = ksz_phy_addr_to_port(dev, phy);
2583 			if (port < 0) {
2584 				ret = port;
2585 				goto out;
2586 			}
2587 
2588 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2589 					       PORT_SRC_PHY_INT);
2590 			if (irq < 0) {
2591 				ret = irq;
2592 				goto out;
2593 			}
2594 			ds->user_mii_bus->irq[phy] = irq;
2595 		}
2596 	}
2597 	return 0;
2598 out:
2599 	while (phy--)
2600 		if (BIT(phy) & ds->phys_mii_mask)
2601 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2602 
2603 	return ret;
2604 }
2605 
2606 /**
2607  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2608  * @dev: Pointer to the KSZ device structure.
2609  *
2610  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2611  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2612  */
ksz_irq_phy_free(struct ksz_device * dev)2613 static void ksz_irq_phy_free(struct ksz_device *dev)
2614 {
2615 	struct dsa_switch *ds = dev->ds;
2616 	int phy;
2617 
2618 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2619 		if (BIT(phy) & ds->phys_mii_mask)
2620 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2621 }
2622 
2623 /**
2624  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2625  * @dev: pointer to the KSZ device structure
2626  * @bus: pointer to the MII bus structure
2627  * @mdio_np: pointer to the MDIO node in the device tree
2628  *
2629  * This function parses and validates PHY configurations for each user port
2630  * defined in the device tree for a KSZ switch device. It verifies that the
2631  * `phy-handle` properties are correctly set and that the internal PHYs match
2632  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2633  * all validations pass. Logs error messages for any mismatches or missing data.
2634  *
2635  * Return: 0 on success, or a negative error code on failure.
2636  */
ksz_parse_dt_phy_config(struct ksz_device * dev,struct mii_bus * bus,struct device_node * mdio_np)2637 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2638 				   struct device_node *mdio_np)
2639 {
2640 	struct device_node *phy_node, *phy_parent_node;
2641 	bool phys_are_valid = true;
2642 	struct dsa_port *dp;
2643 	u32 phy_addr;
2644 	int ret;
2645 
2646 	dsa_switch_for_each_user_port(dp, dev->ds) {
2647 		if (!dev->info->internal_phy[dp->index])
2648 			continue;
2649 
2650 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2651 		if (!phy_node) {
2652 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2653 				dp->index);
2654 			phys_are_valid = false;
2655 			continue;
2656 		}
2657 
2658 		phy_parent_node = of_get_parent(phy_node);
2659 		if (!phy_parent_node) {
2660 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2661 				dp->index);
2662 			phys_are_valid = false;
2663 		} else if (phy_parent_node != mdio_np) {
2664 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2665 				dp->index, mdio_np, phy_parent_node);
2666 			phys_are_valid = false;
2667 		} else {
2668 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2669 			if (ret < 0) {
2670 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2671 					dp->index, ret);
2672 				phys_are_valid = false;
2673 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2674 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2675 					dp->index, dev->phy_addr_map[dp->index],
2676 					phy_addr);
2677 				phys_are_valid = false;
2678 			} else {
2679 				bus->phy_mask |= BIT(phy_addr);
2680 			}
2681 		}
2682 
2683 		of_node_put(phy_node);
2684 		of_node_put(phy_parent_node);
2685 	}
2686 
2687 	if (!phys_are_valid)
2688 		return -EINVAL;
2689 
2690 	return 0;
2691 }
2692 
2693 /**
2694  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2695  * @dev: Pointer to the KSZ device structure.
2696  *
2697  * This function sets up and registers an MDIO bus for the KSZ switch device,
2698  * allowing access to its internal PHYs. If the device supports side MDIO,
2699  * the function will configure the external MDIO controller specified by the
2700  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2701  * Otherwise, SPI or I2C access is set up for PHY access.
2702  *
2703  * Return: 0 on success, or a negative error code on failure.
2704  */
ksz_mdio_register(struct ksz_device * dev)2705 static int ksz_mdio_register(struct ksz_device *dev)
2706 {
2707 	struct device_node *parent_bus_node;
2708 	struct mii_bus *parent_bus = NULL;
2709 	struct dsa_switch *ds = dev->ds;
2710 	struct device_node *mdio_np;
2711 	struct mii_bus *bus;
2712 	int ret, i;
2713 
2714 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2715 	if (!mdio_np)
2716 		return 0;
2717 
2718 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2719 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2720 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2721 		ret = -EINVAL;
2722 
2723 		goto put_mdio_node;
2724 	} else if (parent_bus_node) {
2725 		parent_bus = of_mdio_find_bus(parent_bus_node);
2726 		if (!parent_bus) {
2727 			ret = -EPROBE_DEFER;
2728 
2729 			goto put_mdio_node;
2730 		}
2731 
2732 		dev->parent_mdio_bus = parent_bus;
2733 	}
2734 
2735 	bus = devm_mdiobus_alloc(ds->dev);
2736 	if (!bus) {
2737 		ret = -ENOMEM;
2738 		goto put_mdio_node;
2739 	}
2740 
2741 	if (dev->dev_ops->mdio_bus_preinit) {
2742 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2743 		if (ret)
2744 			goto put_mdio_node;
2745 	}
2746 
2747 	if (dev->dev_ops->create_phy_addr_map) {
2748 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2749 		if (ret)
2750 			goto put_mdio_node;
2751 	} else {
2752 		for (i = 0; i < dev->info->port_cnt; i++)
2753 			dev->phy_addr_map[i] = i;
2754 	}
2755 
2756 	bus->priv = dev;
2757 	if (parent_bus) {
2758 		bus->read = ksz_parent_mdio_read;
2759 		bus->write = ksz_parent_mdio_write;
2760 		bus->name = "KSZ side MDIO";
2761 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2762 			 ds->index);
2763 	} else {
2764 		bus->read = ksz_sw_mdio_read;
2765 		bus->write = ksz_sw_mdio_write;
2766 		bus->name = "ksz user smi";
2767 		if (ds->dst->index != 0) {
2768 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2769 		} else {
2770 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2771 		}
2772 	}
2773 
2774 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2775 	if (ret)
2776 		goto put_mdio_node;
2777 
2778 	ds->phys_mii_mask = bus->phy_mask;
2779 	bus->parent = ds->dev;
2780 
2781 	ds->user_mii_bus = bus;
2782 
2783 	if (dev->irq > 0) {
2784 		ret = ksz_irq_phy_setup(dev);
2785 		if (ret)
2786 			goto put_mdio_node;
2787 	}
2788 
2789 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2790 	if (ret) {
2791 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2792 			bus->id);
2793 		if (dev->irq > 0)
2794 			ksz_irq_phy_free(dev);
2795 	}
2796 
2797 put_mdio_node:
2798 	of_node_put(mdio_np);
2799 	of_node_put(parent_bus_node);
2800 
2801 	return ret;
2802 }
2803 
ksz_irq_mask(struct irq_data * d)2804 static void ksz_irq_mask(struct irq_data *d)
2805 {
2806 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2807 
2808 	kirq->masked |= BIT(d->hwirq);
2809 }
2810 
ksz_irq_unmask(struct irq_data * d)2811 static void ksz_irq_unmask(struct irq_data *d)
2812 {
2813 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2814 
2815 	kirq->masked &= ~BIT(d->hwirq);
2816 }
2817 
ksz_irq_bus_lock(struct irq_data * d)2818 static void ksz_irq_bus_lock(struct irq_data *d)
2819 {
2820 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2821 
2822 	mutex_lock(&kirq->dev->lock_irq);
2823 }
2824 
ksz_irq_bus_sync_unlock(struct irq_data * d)2825 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2826 {
2827 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2828 	struct ksz_device *dev = kirq->dev;
2829 	int ret;
2830 
2831 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2832 	if (ret)
2833 		dev_err(dev->dev, "failed to change IRQ mask\n");
2834 
2835 	mutex_unlock(&dev->lock_irq);
2836 }
2837 
2838 static const struct irq_chip ksz_irq_chip = {
2839 	.name			= "ksz-irq",
2840 	.irq_mask		= ksz_irq_mask,
2841 	.irq_unmask		= ksz_irq_unmask,
2842 	.irq_bus_lock		= ksz_irq_bus_lock,
2843 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2844 };
2845 
ksz_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)2846 static int ksz_irq_domain_map(struct irq_domain *d,
2847 			      unsigned int irq, irq_hw_number_t hwirq)
2848 {
2849 	irq_set_chip_data(irq, d->host_data);
2850 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2851 	irq_set_noprobe(irq);
2852 
2853 	return 0;
2854 }
2855 
2856 static const struct irq_domain_ops ksz_irq_domain_ops = {
2857 	.map	= ksz_irq_domain_map,
2858 	.xlate	= irq_domain_xlate_twocell,
2859 };
2860 
ksz_irq_free(struct ksz_irq * kirq)2861 static void ksz_irq_free(struct ksz_irq *kirq)
2862 {
2863 	int irq, virq;
2864 
2865 	free_irq(kirq->irq_num, kirq);
2866 
2867 	for (irq = 0; irq < kirq->nirqs; irq++) {
2868 		virq = irq_find_mapping(kirq->domain, irq);
2869 		irq_dispose_mapping(virq);
2870 	}
2871 
2872 	irq_domain_remove(kirq->domain);
2873 }
2874 
ksz_irq_thread_fn(int irq,void * dev_id)2875 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2876 {
2877 	struct ksz_irq *kirq = dev_id;
2878 	unsigned int nhandled = 0;
2879 	struct ksz_device *dev;
2880 	unsigned int sub_irq;
2881 	u8 data;
2882 	int ret;
2883 	u8 n;
2884 
2885 	dev = kirq->dev;
2886 
2887 	/* Read interrupt status register */
2888 	ret = ksz_read8(dev, kirq->reg_status, &data);
2889 	if (ret)
2890 		goto out;
2891 
2892 	for (n = 0; n < kirq->nirqs; ++n) {
2893 		if (data & BIT(n)) {
2894 			sub_irq = irq_find_mapping(kirq->domain, n);
2895 			handle_nested_irq(sub_irq);
2896 			++nhandled;
2897 		}
2898 	}
2899 out:
2900 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2901 }
2902 
ksz_irq_common_setup(struct ksz_device * dev,struct ksz_irq * kirq)2903 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2904 {
2905 	int ret, n;
2906 
2907 	kirq->dev = dev;
2908 	kirq->masked = ~0;
2909 
2910 	kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0,
2911 						&ksz_irq_domain_ops, kirq);
2912 	if (!kirq->domain)
2913 		return -ENOMEM;
2914 
2915 	for (n = 0; n < kirq->nirqs; n++)
2916 		irq_create_mapping(kirq->domain, n);
2917 
2918 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2919 				   IRQF_ONESHOT, kirq->name, kirq);
2920 	if (ret)
2921 		goto out;
2922 
2923 	return 0;
2924 
2925 out:
2926 	ksz_irq_free(kirq);
2927 
2928 	return ret;
2929 }
2930 
ksz_girq_setup(struct ksz_device * dev)2931 static int ksz_girq_setup(struct ksz_device *dev)
2932 {
2933 	struct ksz_irq *girq = &dev->girq;
2934 
2935 	girq->nirqs = dev->info->port_cnt;
2936 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2937 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2938 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2939 
2940 	girq->irq_num = dev->irq;
2941 
2942 	return ksz_irq_common_setup(dev, girq);
2943 }
2944 
ksz_pirq_setup(struct ksz_device * dev,u8 p)2945 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2946 {
2947 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2948 
2949 	pirq->nirqs = dev->info->port_nirqs;
2950 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2951 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2952 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2953 
2954 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2955 	if (pirq->irq_num < 0)
2956 		return pirq->irq_num;
2957 
2958 	return ksz_irq_common_setup(dev, pirq);
2959 }
2960 
2961 static int ksz_parse_drive_strength(struct ksz_device *dev);
2962 
ksz_setup(struct dsa_switch * ds)2963 static int ksz_setup(struct dsa_switch *ds)
2964 {
2965 	struct ksz_device *dev = ds->priv;
2966 	u16 storm_mask, storm_rate;
2967 	struct dsa_port *dp;
2968 	struct ksz_port *p;
2969 	const u16 *regs;
2970 	int ret;
2971 
2972 	regs = dev->info->regs;
2973 
2974 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2975 				       dev->info->num_vlans, GFP_KERNEL);
2976 	if (!dev->vlan_cache)
2977 		return -ENOMEM;
2978 
2979 	ret = dev->dev_ops->reset(dev);
2980 	if (ret) {
2981 		dev_err(ds->dev, "failed to reset switch\n");
2982 		return ret;
2983 	}
2984 
2985 	ret = ksz_parse_drive_strength(dev);
2986 	if (ret)
2987 		return ret;
2988 
2989 	if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) {
2990 		ret = dev->dev_ops->pcs_create(dev);
2991 		if (ret)
2992 			return ret;
2993 	}
2994 
2995 	/* set broadcast storm protection 10% rate */
2996 	storm_mask = BROADCAST_STORM_RATE;
2997 	storm_rate = (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
2998 	if (ksz_is_ksz8463(dev)) {
2999 		storm_mask = swab16(storm_mask);
3000 		storm_rate = swab16(storm_rate);
3001 	}
3002 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
3003 			   storm_mask, storm_rate);
3004 
3005 	dev->dev_ops->config_cpu_port(ds);
3006 
3007 	dev->dev_ops->enable_stp_addr(dev);
3008 
3009 	ds->num_tx_queues = dev->info->num_tx_queues;
3010 
3011 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
3012 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
3013 
3014 	ksz_init_mib_timer(dev);
3015 
3016 	ds->configure_vlan_while_not_filtering = false;
3017 	ds->dscp_prio_mapping_is_global = true;
3018 
3019 	if (dev->dev_ops->setup) {
3020 		ret = dev->dev_ops->setup(ds);
3021 		if (ret)
3022 			return ret;
3023 	}
3024 
3025 	/* Start with learning disabled on standalone user ports, and enabled
3026 	 * on the CPU port. In lack of other finer mechanisms, learning on the
3027 	 * CPU port will avoid flooding bridge local addresses on the network
3028 	 * in some cases.
3029 	 */
3030 	p = &dev->ports[dev->cpu_port];
3031 	p->learning = true;
3032 
3033 	if (dev->irq > 0) {
3034 		ret = ksz_girq_setup(dev);
3035 		if (ret)
3036 			return ret;
3037 
3038 		dsa_switch_for_each_user_port(dp, dev->ds) {
3039 			ret = ksz_pirq_setup(dev, dp->index);
3040 			if (ret)
3041 				goto out_girq;
3042 
3043 			if (dev->info->ptp_capable) {
3044 				ret = ksz_ptp_irq_setup(ds, dp->index);
3045 				if (ret)
3046 					goto out_pirq;
3047 			}
3048 		}
3049 	}
3050 
3051 	if (dev->info->ptp_capable) {
3052 		ret = ksz_ptp_clock_register(ds);
3053 		if (ret) {
3054 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
3055 				ret);
3056 			goto out_ptpirq;
3057 		}
3058 	}
3059 
3060 	ret = ksz_mdio_register(dev);
3061 	if (ret < 0) {
3062 		dev_err(dev->dev, "failed to register the mdio");
3063 		goto out_ptp_clock_unregister;
3064 	}
3065 
3066 	ret = ksz_dcb_init(dev);
3067 	if (ret)
3068 		goto out_ptp_clock_unregister;
3069 
3070 	/* start switch */
3071 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
3072 			   SW_START, SW_START);
3073 
3074 	return 0;
3075 
3076 out_ptp_clock_unregister:
3077 	if (dev->info->ptp_capable)
3078 		ksz_ptp_clock_unregister(ds);
3079 out_ptpirq:
3080 	if (dev->irq > 0 && dev->info->ptp_capable)
3081 		dsa_switch_for_each_user_port(dp, dev->ds)
3082 			ksz_ptp_irq_free(ds, dp->index);
3083 out_pirq:
3084 	if (dev->irq > 0)
3085 		dsa_switch_for_each_user_port(dp, dev->ds)
3086 			ksz_irq_free(&dev->ports[dp->index].pirq);
3087 out_girq:
3088 	if (dev->irq > 0)
3089 		ksz_irq_free(&dev->girq);
3090 
3091 	return ret;
3092 }
3093 
ksz_teardown(struct dsa_switch * ds)3094 static void ksz_teardown(struct dsa_switch *ds)
3095 {
3096 	struct ksz_device *dev = ds->priv;
3097 	struct dsa_port *dp;
3098 
3099 	if (dev->info->ptp_capable)
3100 		ksz_ptp_clock_unregister(ds);
3101 
3102 	if (dev->irq > 0) {
3103 		dsa_switch_for_each_user_port(dp, dev->ds) {
3104 			if (dev->info->ptp_capable)
3105 				ksz_ptp_irq_free(ds, dp->index);
3106 
3107 			ksz_irq_free(&dev->ports[dp->index].pirq);
3108 		}
3109 
3110 		ksz_irq_free(&dev->girq);
3111 	}
3112 
3113 	if (dev->dev_ops->teardown)
3114 		dev->dev_ops->teardown(ds);
3115 }
3116 
port_r_cnt(struct ksz_device * dev,int port)3117 static void port_r_cnt(struct ksz_device *dev, int port)
3118 {
3119 	struct ksz_port_mib *mib = &dev->ports[port].mib;
3120 	u64 *dropped;
3121 
3122 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
3123 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
3124 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
3125 					&mib->counters[mib->cnt_ptr]);
3126 		++mib->cnt_ptr;
3127 	}
3128 
3129 	/* last one in storage */
3130 	dropped = &mib->counters[dev->info->mib_cnt];
3131 
3132 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
3133 	while (mib->cnt_ptr < dev->info->mib_cnt) {
3134 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
3135 					dropped, &mib->counters[mib->cnt_ptr]);
3136 		++mib->cnt_ptr;
3137 	}
3138 	mib->cnt_ptr = 0;
3139 }
3140 
ksz_mib_read_work(struct work_struct * work)3141 static void ksz_mib_read_work(struct work_struct *work)
3142 {
3143 	struct ksz_device *dev = container_of(work, struct ksz_device,
3144 					      mib_read.work);
3145 	struct ksz_port_mib *mib;
3146 	struct ksz_port *p;
3147 	int i;
3148 
3149 	for (i = 0; i < dev->info->port_cnt; i++) {
3150 		if (dsa_is_unused_port(dev->ds, i))
3151 			continue;
3152 
3153 		p = &dev->ports[i];
3154 		mib = &p->mib;
3155 		mutex_lock(&mib->cnt_mutex);
3156 
3157 		/* Only read MIB counters when the port is told to do.
3158 		 * If not, read only dropped counters when link is not up.
3159 		 */
3160 		if (!p->read) {
3161 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3162 
3163 			if (!netif_carrier_ok(dp->user))
3164 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3165 		}
3166 		port_r_cnt(dev, i);
3167 		p->read = false;
3168 
3169 		if (dev->dev_ops->r_mib_stat64)
3170 			dev->dev_ops->r_mib_stat64(dev, i);
3171 
3172 		mutex_unlock(&mib->cnt_mutex);
3173 	}
3174 
3175 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3176 }
3177 
ksz_init_mib_timer(struct ksz_device * dev)3178 void ksz_init_mib_timer(struct ksz_device *dev)
3179 {
3180 	int i;
3181 
3182 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3183 
3184 	for (i = 0; i < dev->info->port_cnt; i++) {
3185 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3186 
3187 		dev->dev_ops->port_init_cnt(dev, i);
3188 
3189 		mib->cnt_ptr = 0;
3190 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3191 	}
3192 }
3193 
ksz_phy_read16(struct dsa_switch * ds,int addr,int reg)3194 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3195 {
3196 	struct ksz_device *dev = ds->priv;
3197 	u16 val = 0xffff;
3198 	int ret;
3199 
3200 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3201 	if (ret)
3202 		return ret;
3203 
3204 	return val;
3205 }
3206 
ksz_phy_write16(struct dsa_switch * ds,int addr,int reg,u16 val)3207 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3208 {
3209 	struct ksz_device *dev = ds->priv;
3210 	int ret;
3211 
3212 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3213 	if (ret)
3214 		return ret;
3215 
3216 	return 0;
3217 }
3218 
ksz_get_phy_flags(struct dsa_switch * ds,int port)3219 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3220 {
3221 	struct ksz_device *dev = ds->priv;
3222 
3223 	switch (dev->chip_id) {
3224 	case KSZ88X3_CHIP_ID:
3225 		/* Silicon Errata Sheet (DS80000830A):
3226 		 * Port 1 does not work with LinkMD Cable-Testing.
3227 		 * Port 1 does not respond to received PAUSE control frames.
3228 		 */
3229 		if (!port)
3230 			return MICREL_KSZ8_P1_ERRATA;
3231 		break;
3232 	}
3233 
3234 	return 0;
3235 }
3236 
ksz_phylink_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)3237 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3238 				      unsigned int mode,
3239 				      phy_interface_t interface)
3240 {
3241 	struct dsa_port *dp = dsa_phylink_to_port(config);
3242 	struct ksz_device *dev = dp->ds->priv;
3243 
3244 	/* Read all MIB counters when the link is going down. */
3245 	dev->ports[dp->index].read = true;
3246 	/* timer started */
3247 	if (dev->mib_read_interval)
3248 		schedule_delayed_work(&dev->mib_read, 0);
3249 }
3250 
ksz_sset_count(struct dsa_switch * ds,int port,int sset)3251 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3252 {
3253 	struct ksz_device *dev = ds->priv;
3254 
3255 	if (sset != ETH_SS_STATS)
3256 		return 0;
3257 
3258 	return dev->info->mib_cnt;
3259 }
3260 
ksz_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * buf)3261 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3262 				  uint64_t *buf)
3263 {
3264 	const struct dsa_port *dp = dsa_to_port(ds, port);
3265 	struct ksz_device *dev = ds->priv;
3266 	struct ksz_port_mib *mib;
3267 
3268 	mib = &dev->ports[port].mib;
3269 	mutex_lock(&mib->cnt_mutex);
3270 
3271 	/* Only read dropped counters if no link. */
3272 	if (!netif_carrier_ok(dp->user))
3273 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3274 	port_r_cnt(dev, port);
3275 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3276 	mutex_unlock(&mib->cnt_mutex);
3277 }
3278 
ksz_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)3279 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3280 				struct dsa_bridge bridge,
3281 				bool *tx_fwd_offload,
3282 				struct netlink_ext_ack *extack)
3283 {
3284 	/* port_stp_state_set() will be called after to put the port in
3285 	 * appropriate state so there is no need to do anything.
3286 	 */
3287 
3288 	return 0;
3289 }
3290 
ksz_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)3291 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3292 				  struct dsa_bridge bridge)
3293 {
3294 	/* port_stp_state_set() will be called after to put the port in
3295 	 * forwarding state so there is no need to do anything.
3296 	 */
3297 }
3298 
ksz_port_fast_age(struct dsa_switch * ds,int port)3299 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3300 {
3301 	struct ksz_device *dev = ds->priv;
3302 
3303 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3304 }
3305 
ksz_set_ageing_time(struct dsa_switch * ds,unsigned int msecs)3306 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3307 {
3308 	struct ksz_device *dev = ds->priv;
3309 
3310 	if (!dev->dev_ops->set_ageing_time)
3311 		return -EOPNOTSUPP;
3312 
3313 	return dev->dev_ops->set_ageing_time(dev, msecs);
3314 }
3315 
ksz_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)3316 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3317 			    const unsigned char *addr, u16 vid,
3318 			    struct dsa_db db)
3319 {
3320 	struct ksz_device *dev = ds->priv;
3321 
3322 	if (!dev->dev_ops->fdb_add)
3323 		return -EOPNOTSUPP;
3324 
3325 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3326 }
3327 
ksz_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)3328 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3329 			    const unsigned char *addr,
3330 			    u16 vid, struct dsa_db db)
3331 {
3332 	struct ksz_device *dev = ds->priv;
3333 
3334 	if (!dev->dev_ops->fdb_del)
3335 		return -EOPNOTSUPP;
3336 
3337 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3338 }
3339 
ksz_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)3340 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3341 			     dsa_fdb_dump_cb_t *cb, void *data)
3342 {
3343 	struct ksz_device *dev = ds->priv;
3344 
3345 	if (!dev->dev_ops->fdb_dump)
3346 		return -EOPNOTSUPP;
3347 
3348 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3349 }
3350 
ksz_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)3351 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3352 			    const struct switchdev_obj_port_mdb *mdb,
3353 			    struct dsa_db db)
3354 {
3355 	struct ksz_device *dev = ds->priv;
3356 
3357 	if (!dev->dev_ops->mdb_add)
3358 		return -EOPNOTSUPP;
3359 
3360 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3361 }
3362 
ksz_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)3363 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3364 			    const struct switchdev_obj_port_mdb *mdb,
3365 			    struct dsa_db db)
3366 {
3367 	struct ksz_device *dev = ds->priv;
3368 
3369 	if (!dev->dev_ops->mdb_del)
3370 		return -EOPNOTSUPP;
3371 
3372 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3373 }
3374 
ksz9477_set_default_prio_queue_mapping(struct ksz_device * dev,int port)3375 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3376 						  int port)
3377 {
3378 	u32 queue_map = 0;
3379 	int ipm;
3380 
3381 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3382 		int queue;
3383 
3384 		/* Traffic Type (TT) is corresponding to the Internal Priority
3385 		 * Map (IPM) in the switch. Traffic Class (TC) is
3386 		 * corresponding to the queue in the switch.
3387 		 */
3388 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3389 		if (queue < 0)
3390 			return queue;
3391 
3392 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3393 	}
3394 
3395 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3396 }
3397 
ksz_port_setup(struct dsa_switch * ds,int port)3398 static int ksz_port_setup(struct dsa_switch *ds, int port)
3399 {
3400 	struct ksz_device *dev = ds->priv;
3401 	int ret;
3402 
3403 	if (!dsa_is_user_port(ds, port))
3404 		return 0;
3405 
3406 	/* setup user port */
3407 	dev->dev_ops->port_setup(dev, port, false);
3408 
3409 	if (!is_ksz8(dev)) {
3410 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3411 		if (ret)
3412 			return ret;
3413 	}
3414 
3415 	/* port_stp_state_set() will be called after to enable the port so
3416 	 * there is no need to do anything.
3417 	 */
3418 
3419 	return ksz_dcb_init_port(dev, port);
3420 }
3421 
ksz_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)3422 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3423 {
3424 	struct ksz_device *dev = ds->priv;
3425 	struct ksz_port *p;
3426 	const u16 *regs;
3427 	u8 data;
3428 
3429 	regs = dev->info->regs;
3430 
3431 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3432 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3433 
3434 	p = &dev->ports[port];
3435 
3436 	switch (state) {
3437 	case BR_STATE_DISABLED:
3438 		data |= PORT_LEARN_DISABLE;
3439 		break;
3440 	case BR_STATE_LISTENING:
3441 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3442 		break;
3443 	case BR_STATE_LEARNING:
3444 		data |= PORT_RX_ENABLE;
3445 		if (!p->learning)
3446 			data |= PORT_LEARN_DISABLE;
3447 		break;
3448 	case BR_STATE_FORWARDING:
3449 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3450 		if (!p->learning)
3451 			data |= PORT_LEARN_DISABLE;
3452 		break;
3453 	case BR_STATE_BLOCKING:
3454 		data |= PORT_LEARN_DISABLE;
3455 		break;
3456 	default:
3457 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3458 		return;
3459 	}
3460 
3461 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3462 
3463 	p->stp_state = state;
3464 
3465 	ksz_update_port_member(dev, port);
3466 }
3467 
ksz_port_teardown(struct dsa_switch * ds,int port)3468 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3469 {
3470 	struct ksz_device *dev = ds->priv;
3471 
3472 	switch (dev->chip_id) {
3473 	case KSZ8563_CHIP_ID:
3474 	case KSZ8567_CHIP_ID:
3475 	case KSZ9477_CHIP_ID:
3476 	case KSZ9563_CHIP_ID:
3477 	case KSZ9567_CHIP_ID:
3478 	case KSZ9893_CHIP_ID:
3479 	case KSZ9896_CHIP_ID:
3480 	case KSZ9897_CHIP_ID:
3481 	case LAN9646_CHIP_ID:
3482 		if (dsa_is_user_port(ds, port))
3483 			ksz9477_port_acl_free(dev, port);
3484 	}
3485 }
3486 
ksz_port_pre_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)3487 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3488 				     struct switchdev_brport_flags flags,
3489 				     struct netlink_ext_ack *extack)
3490 {
3491 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3492 		return -EINVAL;
3493 
3494 	return 0;
3495 }
3496 
ksz_port_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)3497 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3498 				 struct switchdev_brport_flags flags,
3499 				 struct netlink_ext_ack *extack)
3500 {
3501 	struct ksz_device *dev = ds->priv;
3502 	struct ksz_port *p = &dev->ports[port];
3503 
3504 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3505 		if (flags.mask & BR_LEARNING)
3506 			p->learning = !!(flags.val & BR_LEARNING);
3507 
3508 		if (flags.mask & BR_ISOLATED)
3509 			p->isolated = !!(flags.val & BR_ISOLATED);
3510 
3511 		/* Make the change take effect immediately */
3512 		ksz_port_stp_state_set(ds, port, p->stp_state);
3513 	}
3514 
3515 	return 0;
3516 }
3517 
ksz_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)3518 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3519 						  int port,
3520 						  enum dsa_tag_protocol mp)
3521 {
3522 	struct ksz_device *dev = ds->priv;
3523 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3524 
3525 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3526 		proto = DSA_TAG_PROTO_KSZ8795;
3527 
3528 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3529 	    dev->chip_id == KSZ8463_CHIP_ID ||
3530 	    dev->chip_id == KSZ8563_CHIP_ID ||
3531 	    dev->chip_id == KSZ9893_CHIP_ID ||
3532 	    dev->chip_id == KSZ9563_CHIP_ID)
3533 		proto = DSA_TAG_PROTO_KSZ9893;
3534 
3535 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3536 	    dev->chip_id == KSZ9477_CHIP_ID ||
3537 	    dev->chip_id == KSZ9896_CHIP_ID ||
3538 	    dev->chip_id == KSZ9897_CHIP_ID ||
3539 	    dev->chip_id == KSZ9567_CHIP_ID ||
3540 	    dev->chip_id == LAN9646_CHIP_ID)
3541 		proto = DSA_TAG_PROTO_KSZ9477;
3542 
3543 	if (is_lan937x(dev))
3544 		proto = DSA_TAG_PROTO_LAN937X;
3545 
3546 	return proto;
3547 }
3548 
ksz_connect_tag_protocol(struct dsa_switch * ds,enum dsa_tag_protocol proto)3549 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3550 				    enum dsa_tag_protocol proto)
3551 {
3552 	struct ksz_tagger_data *tagger_data;
3553 
3554 	switch (proto) {
3555 	case DSA_TAG_PROTO_KSZ8795:
3556 		return 0;
3557 	case DSA_TAG_PROTO_KSZ9893:
3558 	case DSA_TAG_PROTO_KSZ9477:
3559 	case DSA_TAG_PROTO_LAN937X:
3560 		tagger_data = ksz_tagger_data(ds);
3561 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3562 		return 0;
3563 	default:
3564 		return -EPROTONOSUPPORT;
3565 	}
3566 }
3567 
ksz_port_vlan_filtering(struct dsa_switch * ds,int port,bool flag,struct netlink_ext_ack * extack)3568 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3569 				   bool flag, struct netlink_ext_ack *extack)
3570 {
3571 	struct ksz_device *dev = ds->priv;
3572 
3573 	if (!dev->dev_ops->vlan_filtering)
3574 		return -EOPNOTSUPP;
3575 
3576 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3577 }
3578 
ksz_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)3579 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3580 			     const struct switchdev_obj_port_vlan *vlan,
3581 			     struct netlink_ext_ack *extack)
3582 {
3583 	struct ksz_device *dev = ds->priv;
3584 
3585 	if (!dev->dev_ops->vlan_add)
3586 		return -EOPNOTSUPP;
3587 
3588 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3589 }
3590 
ksz_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)3591 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3592 			     const struct switchdev_obj_port_vlan *vlan)
3593 {
3594 	struct ksz_device *dev = ds->priv;
3595 
3596 	if (!dev->dev_ops->vlan_del)
3597 		return -EOPNOTSUPP;
3598 
3599 	return dev->dev_ops->vlan_del(dev, port, vlan);
3600 }
3601 
ksz_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)3602 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3603 			       struct dsa_mall_mirror_tc_entry *mirror,
3604 			       bool ingress, struct netlink_ext_ack *extack)
3605 {
3606 	struct ksz_device *dev = ds->priv;
3607 
3608 	if (!dev->dev_ops->mirror_add)
3609 		return -EOPNOTSUPP;
3610 
3611 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3612 }
3613 
ksz_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)3614 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3615 				struct dsa_mall_mirror_tc_entry *mirror)
3616 {
3617 	struct ksz_device *dev = ds->priv;
3618 
3619 	if (dev->dev_ops->mirror_del)
3620 		dev->dev_ops->mirror_del(dev, port, mirror);
3621 }
3622 
ksz_change_mtu(struct dsa_switch * ds,int port,int mtu)3623 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3624 {
3625 	struct ksz_device *dev = ds->priv;
3626 
3627 	if (!dev->dev_ops->change_mtu)
3628 		return -EOPNOTSUPP;
3629 
3630 	return dev->dev_ops->change_mtu(dev, port, mtu);
3631 }
3632 
ksz_max_mtu(struct dsa_switch * ds,int port)3633 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3634 {
3635 	struct ksz_device *dev = ds->priv;
3636 
3637 	switch (dev->chip_id) {
3638 	case KSZ8795_CHIP_ID:
3639 	case KSZ8794_CHIP_ID:
3640 	case KSZ8765_CHIP_ID:
3641 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3642 	case KSZ8463_CHIP_ID:
3643 	case KSZ88X3_CHIP_ID:
3644 	case KSZ8864_CHIP_ID:
3645 	case KSZ8895_CHIP_ID:
3646 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3647 	case KSZ8563_CHIP_ID:
3648 	case KSZ8567_CHIP_ID:
3649 	case KSZ9477_CHIP_ID:
3650 	case KSZ9563_CHIP_ID:
3651 	case KSZ9567_CHIP_ID:
3652 	case KSZ9893_CHIP_ID:
3653 	case KSZ9896_CHIP_ID:
3654 	case KSZ9897_CHIP_ID:
3655 	case LAN9370_CHIP_ID:
3656 	case LAN9371_CHIP_ID:
3657 	case LAN9372_CHIP_ID:
3658 	case LAN9373_CHIP_ID:
3659 	case LAN9374_CHIP_ID:
3660 	case LAN9646_CHIP_ID:
3661 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3662 	}
3663 
3664 	return -EOPNOTSUPP;
3665 }
3666 
3667 /**
3668  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3669  *                   port
3670  * @ds: Pointer to the DSA switch structure
3671  * @port: Port number to check
3672  *
3673  * This function also documents devices where EEE was initially advertised but
3674  * later withdrawn due to reliability issues, as described in official errata
3675  * documents. These devices are explicitly listed to record known limitations,
3676  * even if there is no technical necessity for runtime checks.
3677  *
3678  * Returns: true if the internal PHY on the given port supports fully
3679  * operational EEE, false otherwise.
3680  */
ksz_support_eee(struct dsa_switch * ds,int port)3681 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3682 {
3683 	struct ksz_device *dev = ds->priv;
3684 
3685 	if (!dev->info->internal_phy[port])
3686 		return false;
3687 
3688 	switch (dev->chip_id) {
3689 	case KSZ8563_CHIP_ID:
3690 	case KSZ9563_CHIP_ID:
3691 	case KSZ9893_CHIP_ID:
3692 		return true;
3693 	case KSZ8567_CHIP_ID:
3694 		/* KSZ8567R Errata DS80000752C Module 4 */
3695 	case KSZ8765_CHIP_ID:
3696 	case KSZ8794_CHIP_ID:
3697 	case KSZ8795_CHIP_ID:
3698 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3699 	case KSZ9477_CHIP_ID:
3700 		/* KSZ9477S Errata DS80000754A Module 4 */
3701 	case KSZ9567_CHIP_ID:
3702 		/* KSZ9567S Errata DS80000756A Module 4 */
3703 	case KSZ9896_CHIP_ID:
3704 		/* KSZ9896C Errata DS80000757A Module 3 */
3705 	case KSZ9897_CHIP_ID:
3706 	case LAN9646_CHIP_ID:
3707 		/* KSZ9897R Errata DS80000758C Module 4 */
3708 		/* Energy Efficient Ethernet (EEE) feature select must be
3709 		 * manually disabled
3710 		 *   The EEE feature is enabled by default, but it is not fully
3711 		 *   operational. It must be manually disabled through register
3712 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3713 		 *   to enable EEE, and this feature can cause link drops when
3714 		 *   linked to another device supporting EEE.
3715 		 *
3716 		 * The same item appears in the errata for all switches above.
3717 		 */
3718 		break;
3719 	}
3720 
3721 	return false;
3722 }
3723 
ksz_set_mac_eee(struct dsa_switch * ds,int port,struct ethtool_keee * e)3724 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3725 			   struct ethtool_keee *e)
3726 {
3727 	struct ksz_device *dev = ds->priv;
3728 
3729 	if (!e->tx_lpi_enabled) {
3730 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3731 		return -EINVAL;
3732 	}
3733 
3734 	if (e->tx_lpi_timer) {
3735 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3736 		return -EINVAL;
3737 	}
3738 
3739 	return 0;
3740 }
3741 
ksz_set_xmii(struct ksz_device * dev,int port,phy_interface_t interface)3742 static void ksz_set_xmii(struct ksz_device *dev, int port,
3743 			 phy_interface_t interface)
3744 {
3745 	const u8 *bitval = dev->info->xmii_ctrl1;
3746 	struct ksz_port *p = &dev->ports[port];
3747 	const u16 *regs = dev->info->regs;
3748 	u8 data8;
3749 
3750 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3751 
3752 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3753 		   P_RGMII_ID_EG_ENABLE);
3754 
3755 	switch (interface) {
3756 	case PHY_INTERFACE_MODE_MII:
3757 		data8 |= bitval[P_MII_SEL];
3758 		break;
3759 	case PHY_INTERFACE_MODE_RMII:
3760 		data8 |= bitval[P_RMII_SEL];
3761 		break;
3762 	case PHY_INTERFACE_MODE_GMII:
3763 		data8 |= bitval[P_GMII_SEL];
3764 		break;
3765 	case PHY_INTERFACE_MODE_RGMII:
3766 	case PHY_INTERFACE_MODE_RGMII_ID:
3767 	case PHY_INTERFACE_MODE_RGMII_TXID:
3768 	case PHY_INTERFACE_MODE_RGMII_RXID:
3769 		data8 |= bitval[P_RGMII_SEL];
3770 		/* On KSZ9893, disable RGMII in-band status support */
3771 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3772 		    dev->chip_id == KSZ8563_CHIP_ID ||
3773 		    dev->chip_id == KSZ9563_CHIP_ID ||
3774 		    is_lan937x(dev))
3775 			data8 &= ~P_MII_MAC_MODE;
3776 		break;
3777 	default:
3778 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3779 			phy_modes(interface), port);
3780 		return;
3781 	}
3782 
3783 	if (p->rgmii_tx_val)
3784 		data8 |= P_RGMII_ID_EG_ENABLE;
3785 
3786 	if (p->rgmii_rx_val)
3787 		data8 |= P_RGMII_ID_IG_ENABLE;
3788 
3789 	/* Write the updated value */
3790 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3791 }
3792 
ksz_get_xmii(struct ksz_device * dev,int port,bool gbit)3793 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3794 {
3795 	const u8 *bitval = dev->info->xmii_ctrl1;
3796 	const u16 *regs = dev->info->regs;
3797 	phy_interface_t interface;
3798 	u8 data8;
3799 	u8 val;
3800 
3801 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3802 
3803 	val = FIELD_GET(P_MII_SEL_M, data8);
3804 
3805 	if (val == bitval[P_MII_SEL]) {
3806 		if (gbit)
3807 			interface = PHY_INTERFACE_MODE_GMII;
3808 		else
3809 			interface = PHY_INTERFACE_MODE_MII;
3810 	} else if (val == bitval[P_RMII_SEL]) {
3811 		interface = PHY_INTERFACE_MODE_RMII;
3812 	} else {
3813 		interface = PHY_INTERFACE_MODE_RGMII;
3814 		if (data8 & P_RGMII_ID_EG_ENABLE)
3815 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3816 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3817 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3818 			if (data8 & P_RGMII_ID_EG_ENABLE)
3819 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3820 		}
3821 	}
3822 
3823 	return interface;
3824 }
3825 
ksz88x3_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)3826 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3827 				       unsigned int mode,
3828 				       const struct phylink_link_state *state)
3829 {
3830 	struct dsa_port *dp = dsa_phylink_to_port(config);
3831 	struct ksz_device *dev = dp->ds->priv;
3832 
3833 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3834 }
3835 
ksz_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)3836 static void ksz_phylink_mac_config(struct phylink_config *config,
3837 				   unsigned int mode,
3838 				   const struct phylink_link_state *state)
3839 {
3840 	struct dsa_port *dp = dsa_phylink_to_port(config);
3841 	struct ksz_device *dev = dp->ds->priv;
3842 	int port = dp->index;
3843 
3844 	/* Internal PHYs */
3845 	if (dev->info->internal_phy[port])
3846 		return;
3847 
3848 	/* No need to configure XMII control register when using SGMII. */
3849 	if (ksz_is_sgmii_port(dev, port))
3850 		return;
3851 
3852 	if (phylink_autoneg_inband(mode)) {
3853 		dev_err(dev->dev, "In-band AN not supported!\n");
3854 		return;
3855 	}
3856 
3857 	ksz_set_xmii(dev, port, state->interface);
3858 
3859 	if (dev->dev_ops->setup_rgmii_delay)
3860 		dev->dev_ops->setup_rgmii_delay(dev, port);
3861 }
3862 
ksz_get_gbit(struct ksz_device * dev,int port)3863 bool ksz_get_gbit(struct ksz_device *dev, int port)
3864 {
3865 	const u8 *bitval = dev->info->xmii_ctrl1;
3866 	const u16 *regs = dev->info->regs;
3867 	bool gbit = false;
3868 	u8 data8;
3869 	bool val;
3870 
3871 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3872 
3873 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3874 
3875 	if (val == bitval[P_GMII_1GBIT])
3876 		gbit = true;
3877 
3878 	return gbit;
3879 }
3880 
ksz_set_gbit(struct ksz_device * dev,int port,bool gbit)3881 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3882 {
3883 	const u8 *bitval = dev->info->xmii_ctrl1;
3884 	const u16 *regs = dev->info->regs;
3885 	u8 data8;
3886 
3887 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3888 
3889 	data8 &= ~P_GMII_1GBIT_M;
3890 
3891 	if (gbit)
3892 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3893 	else
3894 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3895 
3896 	/* Write the updated value */
3897 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3898 }
3899 
ksz_set_100_10mbit(struct ksz_device * dev,int port,int speed)3900 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3901 {
3902 	const u8 *bitval = dev->info->xmii_ctrl0;
3903 	const u16 *regs = dev->info->regs;
3904 	u8 data8;
3905 
3906 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3907 
3908 	data8 &= ~P_MII_100MBIT_M;
3909 
3910 	if (speed == SPEED_100)
3911 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3912 	else
3913 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3914 
3915 	/* Write the updated value */
3916 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3917 }
3918 
ksz_port_set_xmii_speed(struct ksz_device * dev,int port,int speed)3919 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3920 {
3921 	if (speed == SPEED_1000)
3922 		ksz_set_gbit(dev, port, true);
3923 	else
3924 		ksz_set_gbit(dev, port, false);
3925 
3926 	if (speed == SPEED_100 || speed == SPEED_10)
3927 		ksz_set_100_10mbit(dev, port, speed);
3928 }
3929 
ksz_duplex_flowctrl(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)3930 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3931 				bool tx_pause, bool rx_pause)
3932 {
3933 	const u8 *bitval = dev->info->xmii_ctrl0;
3934 	const u32 *masks = dev->info->masks;
3935 	const u16 *regs = dev->info->regs;
3936 	u8 mask;
3937 	u8 val;
3938 
3939 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3940 	       masks[P_MII_RX_FLOW_CTRL];
3941 
3942 	if (duplex == DUPLEX_FULL)
3943 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3944 	else
3945 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3946 
3947 	if (tx_pause)
3948 		val |= masks[P_MII_TX_FLOW_CTRL];
3949 
3950 	if (rx_pause)
3951 		val |= masks[P_MII_RX_FLOW_CTRL];
3952 
3953 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3954 }
3955 
ksz9477_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)3956 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3957 					struct phy_device *phydev,
3958 					unsigned int mode,
3959 					phy_interface_t interface,
3960 					int speed, int duplex, bool tx_pause,
3961 					bool rx_pause)
3962 {
3963 	struct dsa_port *dp = dsa_phylink_to_port(config);
3964 	struct ksz_device *dev = dp->ds->priv;
3965 	int port = dp->index;
3966 	struct ksz_port *p;
3967 
3968 	p = &dev->ports[port];
3969 
3970 	/* Internal PHYs */
3971 	if (dev->info->internal_phy[port])
3972 		return;
3973 
3974 	p->phydev.speed = speed;
3975 
3976 	ksz_port_set_xmii_speed(dev, port, speed);
3977 
3978 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3979 }
3980 
ksz_switch_detect(struct ksz_device * dev)3981 static int ksz_switch_detect(struct ksz_device *dev)
3982 {
3983 	u8 id1, id2, id4;
3984 	u16 id16;
3985 	u32 id32;
3986 	int ret;
3987 
3988 	/* read chip id */
3989 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3990 	if (ret)
3991 		return ret;
3992 
3993 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3994 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3995 
3996 	switch (id1) {
3997 	case KSZ84_FAMILY_ID:
3998 		dev->chip_id = KSZ8463_CHIP_ID;
3999 		break;
4000 	case KSZ87_FAMILY_ID:
4001 		if (id2 == KSZ87_CHIP_ID_95) {
4002 			u8 val;
4003 
4004 			dev->chip_id = KSZ8795_CHIP_ID;
4005 
4006 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
4007 			if (val & KSZ8_PORT_FIBER_MODE)
4008 				dev->chip_id = KSZ8765_CHIP_ID;
4009 		} else if (id2 == KSZ87_CHIP_ID_94) {
4010 			dev->chip_id = KSZ8794_CHIP_ID;
4011 		} else {
4012 			return -ENODEV;
4013 		}
4014 		break;
4015 	case KSZ88_FAMILY_ID:
4016 		if (id2 == KSZ88_CHIP_ID_63)
4017 			dev->chip_id = KSZ88X3_CHIP_ID;
4018 		else
4019 			return -ENODEV;
4020 		break;
4021 	case KSZ8895_FAMILY_ID:
4022 		if (id2 == KSZ8895_CHIP_ID_95 ||
4023 		    id2 == KSZ8895_CHIP_ID_95R)
4024 			dev->chip_id = KSZ8895_CHIP_ID;
4025 		else
4026 			return -ENODEV;
4027 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
4028 		if (ret)
4029 			return ret;
4030 		if (id4 & SW_KSZ8864)
4031 			dev->chip_id = KSZ8864_CHIP_ID;
4032 		break;
4033 	default:
4034 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
4035 		if (ret)
4036 			return ret;
4037 
4038 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
4039 		id32 &= ~0xFF;
4040 
4041 		switch (id32) {
4042 		case KSZ9477_CHIP_ID:
4043 		case KSZ9896_CHIP_ID:
4044 		case KSZ9897_CHIP_ID:
4045 		case KSZ9567_CHIP_ID:
4046 		case KSZ8567_CHIP_ID:
4047 		case LAN9370_CHIP_ID:
4048 		case LAN9371_CHIP_ID:
4049 		case LAN9372_CHIP_ID:
4050 		case LAN9373_CHIP_ID:
4051 		case LAN9374_CHIP_ID:
4052 
4053 			/* LAN9646 does not have its own chip id. */
4054 			if (dev->chip_id != LAN9646_CHIP_ID)
4055 				dev->chip_id = id32;
4056 			break;
4057 		case KSZ9893_CHIP_ID:
4058 			ret = ksz_read8(dev, REG_CHIP_ID4,
4059 					&id4);
4060 			if (ret)
4061 				return ret;
4062 
4063 			if (id4 == SKU_ID_KSZ8563)
4064 				dev->chip_id = KSZ8563_CHIP_ID;
4065 			else if (id4 == SKU_ID_KSZ9563)
4066 				dev->chip_id = KSZ9563_CHIP_ID;
4067 			else
4068 				dev->chip_id = KSZ9893_CHIP_ID;
4069 
4070 			break;
4071 		default:
4072 			dev_err(dev->dev,
4073 				"unsupported switch detected %x)\n", id32);
4074 			return -ENODEV;
4075 		}
4076 	}
4077 	return 0;
4078 }
4079 
ksz_cls_flower_add(struct dsa_switch * ds,int port,struct flow_cls_offload * cls,bool ingress)4080 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
4081 			      struct flow_cls_offload *cls, bool ingress)
4082 {
4083 	struct ksz_device *dev = ds->priv;
4084 
4085 	switch (dev->chip_id) {
4086 	case KSZ8563_CHIP_ID:
4087 	case KSZ8567_CHIP_ID:
4088 	case KSZ9477_CHIP_ID:
4089 	case KSZ9563_CHIP_ID:
4090 	case KSZ9567_CHIP_ID:
4091 	case KSZ9893_CHIP_ID:
4092 	case KSZ9896_CHIP_ID:
4093 	case KSZ9897_CHIP_ID:
4094 	case LAN9646_CHIP_ID:
4095 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
4096 	}
4097 
4098 	return -EOPNOTSUPP;
4099 }
4100 
ksz_cls_flower_del(struct dsa_switch * ds,int port,struct flow_cls_offload * cls,bool ingress)4101 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
4102 			      struct flow_cls_offload *cls, bool ingress)
4103 {
4104 	struct ksz_device *dev = ds->priv;
4105 
4106 	switch (dev->chip_id) {
4107 	case KSZ8563_CHIP_ID:
4108 	case KSZ8567_CHIP_ID:
4109 	case KSZ9477_CHIP_ID:
4110 	case KSZ9563_CHIP_ID:
4111 	case KSZ9567_CHIP_ID:
4112 	case KSZ9893_CHIP_ID:
4113 	case KSZ9896_CHIP_ID:
4114 	case KSZ9897_CHIP_ID:
4115 	case LAN9646_CHIP_ID:
4116 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
4117 	}
4118 
4119 	return -EOPNOTSUPP;
4120 }
4121 
4122 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
4123  * is converted to Hex-decimal using the successive multiplication method. On
4124  * every step, integer part is taken and decimal part is carry forwarded.
4125  */
cinc_cal(s32 idle_slope,s32 send_slope,u32 * bw)4126 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
4127 {
4128 	u32 cinc = 0;
4129 	u32 txrate;
4130 	u32 rate;
4131 	u8 temp;
4132 	u8 i;
4133 
4134 	txrate = idle_slope - send_slope;
4135 
4136 	if (!txrate)
4137 		return -EINVAL;
4138 
4139 	rate = idle_slope;
4140 
4141 	/* 24 bit register */
4142 	for (i = 0; i < 6; i++) {
4143 		rate = rate * 16;
4144 
4145 		temp = rate / txrate;
4146 
4147 		rate %= txrate;
4148 
4149 		cinc = ((cinc << 4) | temp);
4150 	}
4151 
4152 	*bw = cinc;
4153 
4154 	return 0;
4155 }
4156 
ksz_setup_tc_mode(struct ksz_device * dev,int port,u8 scheduler,u8 shaper)4157 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
4158 			     u8 shaper)
4159 {
4160 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4161 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4162 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4163 }
4164 
ksz_setup_tc_cbs(struct dsa_switch * ds,int port,struct tc_cbs_qopt_offload * qopt)4165 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4166 			    struct tc_cbs_qopt_offload *qopt)
4167 {
4168 	struct ksz_device *dev = ds->priv;
4169 	int ret;
4170 	u32 bw;
4171 
4172 	if (!dev->info->tc_cbs_supported)
4173 		return -EOPNOTSUPP;
4174 
4175 	if (qopt->queue > dev->info->num_tx_queues)
4176 		return -EINVAL;
4177 
4178 	/* Queue Selection */
4179 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4180 	if (ret)
4181 		return ret;
4182 
4183 	if (!qopt->enable)
4184 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4185 					 MTI_SHAPING_OFF);
4186 
4187 	/* High Credit */
4188 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4189 			   qopt->hicredit);
4190 	if (ret)
4191 		return ret;
4192 
4193 	/* Low Credit */
4194 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4195 			   qopt->locredit);
4196 	if (ret)
4197 		return ret;
4198 
4199 	/* Credit Increment Register */
4200 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4201 	if (ret)
4202 		return ret;
4203 
4204 	if (dev->dev_ops->tc_cbs_set_cinc) {
4205 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4206 		if (ret)
4207 			return ret;
4208 	}
4209 
4210 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4211 				 MTI_SHAPING_SRP);
4212 }
4213 
ksz_disable_egress_rate_limit(struct ksz_device * dev,int port)4214 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4215 {
4216 	int queue, ret;
4217 
4218 	/* Configuration will not take effect until the last Port Queue X
4219 	 * Egress Limit Control Register is written.
4220 	 */
4221 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4222 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4223 				  KSZ9477_OUT_RATE_NO_LIMIT);
4224 		if (ret)
4225 			return ret;
4226 	}
4227 
4228 	return 0;
4229 }
4230 
ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params * p,int band)4231 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4232 				 int band)
4233 {
4234 	/* Compared to queues, bands prioritize packets differently. In strict
4235 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4236 	 * highest priority is given to Band 0.
4237 	 */
4238 	return p->bands - 1 - band;
4239 }
4240 
ksz8463_tc_ctrl(int port,int queue)4241 static u8 ksz8463_tc_ctrl(int port, int queue)
4242 {
4243 	u8 reg;
4244 
4245 	reg = 0xC8 + port * 4;
4246 	reg += ((3 - queue) / 2) * 2;
4247 	reg++;
4248 	reg -= (queue & 1);
4249 	return reg;
4250 }
4251 
4252 /**
4253  * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection)
4254  *                      for a port on KSZ88x3 switch
4255  * @dev: Pointer to the KSZ switch device structure
4256  * @port: Port number to configure
4257  * @p: Pointer to offload replace parameters describing ETS bands and mapping
4258  *
4259  * The KSZ88x3 supports two scheduling modes: Strict Priority and
4260  * Weighted Fair Queuing (WFQ). Both modes have fixed behavior:
4261  *   - No configurable queue-to-priority mapping
4262  *   - No weight adjustment in WFQ mode
4263  *
4264  * This function configures the switch to use strict priority mode by
4265  * clearing the WFQ enable bit for all queues associated with ETS bands.
4266  * If strict priority is not explicitly requested, the switch will default
4267  * to WFQ mode.
4268  *
4269  * Return: 0 on success, or a negative error code on failure
4270  */
ksz88x3_tc_ets_add(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4271 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port,
4272 			      struct tc_ets_qopt_offload_replace_params *p)
4273 {
4274 	int ret, band;
4275 
4276 	/* Only strict priority mode is supported for now.
4277 	 * WFQ is implicitly enabled when strict mode is disabled.
4278 	 */
4279 	for (band = 0; band < p->bands; band++) {
4280 		int queue = ksz_ets_band_to_queue(p, band);
4281 		u8 reg;
4282 
4283 		/* Calculate TXQ Split Control register address for this
4284 		 * port/queue
4285 		 */
4286 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4287 		if (ksz_is_ksz8463(dev))
4288 			reg = ksz8463_tc_ctrl(port, queue);
4289 
4290 		/* Clear WFQ enable bit to select strict priority scheduling */
4291 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0);
4292 		if (ret)
4293 			return ret;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 /**
4300  * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config
4301  *                      for a port on KSZ88x3 switch
4302  * @dev: Pointer to the KSZ switch device structure
4303  * @port: Port number to reset
4304  *
4305  * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or
4306  * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or
4307  * queue mapping. This function resets the port’s scheduling mode to
4308  * the default, which is WFQ, by enabling the WFQ bit for all queues.
4309  *
4310  * Return: 0 on success, or a negative error code on failure
4311  */
ksz88x3_tc_ets_del(struct ksz_device * dev,int port)4312 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port)
4313 {
4314 	int ret, queue;
4315 
4316 	/* Iterate over all transmit queues for this port */
4317 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4318 		u8 reg;
4319 
4320 		/* Calculate TXQ Split Control register address for this
4321 		 * port/queue
4322 		 */
4323 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4324 		if (ksz_is_ksz8463(dev))
4325 			reg = ksz8463_tc_ctrl(port, queue);
4326 
4327 		/* Set WFQ enable bit to revert back to default scheduling
4328 		 * mode
4329 		 */
4330 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE,
4331 			       KSZ8873_TXQ_WFQ_ENABLE);
4332 		if (ret)
4333 			return ret;
4334 	}
4335 
4336 	return 0;
4337 }
4338 
ksz_queue_set_strict(struct ksz_device * dev,int port,int queue)4339 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4340 {
4341 	int ret;
4342 
4343 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4344 	if (ret)
4345 		return ret;
4346 
4347 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4348 				 MTI_SHAPING_OFF);
4349 }
4350 
ksz_queue_set_wrr(struct ksz_device * dev,int port,int queue,int weight)4351 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4352 			     int weight)
4353 {
4354 	int ret;
4355 
4356 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4357 	if (ret)
4358 		return ret;
4359 
4360 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4361 				MTI_SHAPING_OFF);
4362 	if (ret)
4363 		return ret;
4364 
4365 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4366 }
4367 
ksz_tc_ets_add(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4368 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4369 			  struct tc_ets_qopt_offload_replace_params *p)
4370 {
4371 	int ret, band, tc_prio;
4372 	u32 queue_map = 0;
4373 
4374 	/* In order to ensure proper prioritization, it is necessary to set the
4375 	 * rate limit for the related queue to zero. Otherwise strict priority
4376 	 * or WRR mode will not work. This is a hardware limitation.
4377 	 */
4378 	ret = ksz_disable_egress_rate_limit(dev, port);
4379 	if (ret)
4380 		return ret;
4381 
4382 	/* Configure queue scheduling mode for all bands. Currently only strict
4383 	 * prio mode is supported.
4384 	 */
4385 	for (band = 0; band < p->bands; band++) {
4386 		int queue = ksz_ets_band_to_queue(p, band);
4387 
4388 		ret = ksz_queue_set_strict(dev, port, queue);
4389 		if (ret)
4390 			return ret;
4391 	}
4392 
4393 	/* Configure the mapping between traffic classes and queues. Note:
4394 	 * priomap variable support 16 traffic classes, but the chip can handle
4395 	 * only 8 classes.
4396 	 */
4397 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4398 		int queue;
4399 
4400 		if (tc_prio >= dev->info->num_ipms)
4401 			break;
4402 
4403 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4404 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4405 	}
4406 
4407 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4408 }
4409 
ksz_tc_ets_del(struct ksz_device * dev,int port)4410 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4411 {
4412 	int ret, queue;
4413 
4414 	/* To restore the default chip configuration, set all queues to use the
4415 	 * WRR scheduler with a weight of 1.
4416 	 */
4417 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4418 		ret = ksz_queue_set_wrr(dev, port, queue,
4419 					KSZ9477_DEFAULT_WRR_WEIGHT);
4420 
4421 		if (ret)
4422 			return ret;
4423 	}
4424 
4425 	/* Revert the queue mapping for TC-priority to its default setting on
4426 	 * the chip.
4427 	 */
4428 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4429 }
4430 
ksz_tc_ets_validate(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4431 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4432 			       struct tc_ets_qopt_offload_replace_params *p)
4433 {
4434 	int band;
4435 
4436 	/* Since it is not feasible to share one port among multiple qdisc,
4437 	 * the user must configure all available queues appropriately.
4438 	 */
4439 	if (p->bands != dev->info->num_tx_queues) {
4440 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4441 			dev->info->num_tx_queues);
4442 		return -EOPNOTSUPP;
4443 	}
4444 
4445 	for (band = 0; band < p->bands; ++band) {
4446 		/* The KSZ switches utilize a weighted round robin configuration
4447 		 * where a certain number of packets can be transmitted from a
4448 		 * queue before the next queue is serviced. For more information
4449 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4450 		 * documentation on the Port Transmit Queue Control 1 Register.
4451 		 * However, the current ETS Qdisc implementation (as of February
4452 		 * 2023) assigns a weight to each queue based on the number of
4453 		 * bytes or extrapolated bandwidth in percentages. Since this
4454 		 * differs from the KSZ switches' method and we don't want to
4455 		 * fake support by converting bytes to packets, it is better to
4456 		 * return an error instead.
4457 		 */
4458 		if (p->quanta[band]) {
4459 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4460 			return -EOPNOTSUPP;
4461 		}
4462 	}
4463 
4464 	return 0;
4465 }
4466 
ksz_tc_setup_qdisc_ets(struct dsa_switch * ds,int port,struct tc_ets_qopt_offload * qopt)4467 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4468 				  struct tc_ets_qopt_offload *qopt)
4469 {
4470 	struct ksz_device *dev = ds->priv;
4471 	int ret;
4472 
4473 	if (is_ksz8(dev) && !(ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)))
4474 		return -EOPNOTSUPP;
4475 
4476 	if (qopt->parent != TC_H_ROOT) {
4477 		dev_err(dev->dev, "Parent should be \"root\"\n");
4478 		return -EOPNOTSUPP;
4479 	}
4480 
4481 	switch (qopt->command) {
4482 	case TC_ETS_REPLACE:
4483 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4484 		if (ret)
4485 			return ret;
4486 
4487 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4488 			return ksz88x3_tc_ets_add(dev, port,
4489 						  &qopt->replace_params);
4490 		else
4491 			return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4492 	case TC_ETS_DESTROY:
4493 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4494 			return ksz88x3_tc_ets_del(dev, port);
4495 		else
4496 			return ksz_tc_ets_del(dev, port);
4497 	case TC_ETS_STATS:
4498 	case TC_ETS_GRAFT:
4499 		return -EOPNOTSUPP;
4500 	}
4501 
4502 	return -EOPNOTSUPP;
4503 }
4504 
ksz_setup_tc(struct dsa_switch * ds,int port,enum tc_setup_type type,void * type_data)4505 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4506 			enum tc_setup_type type, void *type_data)
4507 {
4508 	switch (type) {
4509 	case TC_SETUP_QDISC_CBS:
4510 		return ksz_setup_tc_cbs(ds, port, type_data);
4511 	case TC_SETUP_QDISC_ETS:
4512 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4513 	default:
4514 		return -EOPNOTSUPP;
4515 	}
4516 }
4517 
4518 /**
4519  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4520  * @dev: The device structure.
4521  * @port: The port number.
4522  *
4523  * This function reads the PME (Power Management Event) status register of a
4524  * specified port to determine the wake reason. If there is no wake event, it
4525  * returns early. Otherwise, it logs the wake reason which could be due to a
4526  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4527  * is then cleared to acknowledge the handling of the wake event.
4528  *
4529  * Return: 0 on success, or an error code on failure.
4530  */
ksz_handle_wake_reason(struct ksz_device * dev,int port)4531 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4532 {
4533 	const struct ksz_dev_ops *ops = dev->dev_ops;
4534 	const u16 *regs = dev->info->regs;
4535 	u8 pme_status;
4536 	int ret;
4537 
4538 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4539 			      &pme_status);
4540 	if (ret)
4541 		return ret;
4542 
4543 	if (!pme_status)
4544 		return 0;
4545 
4546 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4547 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4548 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4549 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4550 
4551 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4552 				pme_status);
4553 }
4554 
4555 /**
4556  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4557  * @ds: The dsa_switch structure.
4558  * @port: The port number.
4559  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4560  *
4561  * This function checks the device PME wakeup_source flag and chip_id.
4562  * If enabled and supported, it sets the supported and active WoL
4563  * flags.
4564  */
ksz_get_wol(struct dsa_switch * ds,int port,struct ethtool_wolinfo * wol)4565 static void ksz_get_wol(struct dsa_switch *ds, int port,
4566 			struct ethtool_wolinfo *wol)
4567 {
4568 	struct ksz_device *dev = ds->priv;
4569 	const u16 *regs = dev->info->regs;
4570 	u8 pme_ctrl;
4571 	int ret;
4572 
4573 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4574 		return;
4575 
4576 	if (!dev->wakeup_source)
4577 		return;
4578 
4579 	wol->supported = WAKE_PHY;
4580 
4581 	/* Check if the current MAC address on this port can be set
4582 	 * as global for WAKE_MAGIC support. The result may vary
4583 	 * dynamically based on other ports configurations.
4584 	 */
4585 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4586 		wol->supported |= WAKE_MAGIC;
4587 
4588 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4589 				       &pme_ctrl);
4590 	if (ret)
4591 		return;
4592 
4593 	if (pme_ctrl & PME_WOL_MAGICPKT)
4594 		wol->wolopts |= WAKE_MAGIC;
4595 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4596 		wol->wolopts |= WAKE_PHY;
4597 }
4598 
4599 /**
4600  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4601  * @ds: The dsa_switch structure.
4602  * @port: The port number.
4603  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4604  *
4605  * This function configures Wake-on-LAN (WoL) settings for a specified
4606  * port. It validates the provided WoL options, checks if PME is
4607  * enabled and supported, clears any previous wake reasons, and sets
4608  * the Magic Packet flag in the port's PME control register if
4609  * specified.
4610  *
4611  * Return: 0 on success, or other error codes on failure.
4612  */
ksz_set_wol(struct dsa_switch * ds,int port,struct ethtool_wolinfo * wol)4613 static int ksz_set_wol(struct dsa_switch *ds, int port,
4614 		       struct ethtool_wolinfo *wol)
4615 {
4616 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4617 	struct ksz_device *dev = ds->priv;
4618 	const u16 *regs = dev->info->regs;
4619 	bool magic_switched_off;
4620 	bool magic_switched_on;
4621 	int ret;
4622 
4623 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4624 		return -EINVAL;
4625 
4626 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4627 		return -EOPNOTSUPP;
4628 
4629 	if (!dev->wakeup_source)
4630 		return -EOPNOTSUPP;
4631 
4632 	ret = ksz_handle_wake_reason(dev, port);
4633 	if (ret)
4634 		return ret;
4635 
4636 	if (wol->wolopts & WAKE_MAGIC)
4637 		pme_ctrl |= PME_WOL_MAGICPKT;
4638 	if (wol->wolopts & WAKE_PHY)
4639 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4640 
4641 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4642 				       &pme_ctrl_old);
4643 	if (ret)
4644 		return ret;
4645 
4646 	if (pme_ctrl_old == pme_ctrl)
4647 		return 0;
4648 
4649 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4650 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4651 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4652 			    (pme_ctrl & PME_WOL_MAGICPKT);
4653 
4654 	/* To keep reference count of MAC address, we should do this
4655 	 * operation only on change of WOL settings.
4656 	 */
4657 	if (magic_switched_on) {
4658 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4659 		if (ret)
4660 			return ret;
4661 	} else if (magic_switched_off) {
4662 		ksz_switch_macaddr_put(dev->ds);
4663 	}
4664 
4665 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4666 					pme_ctrl);
4667 	if (ret) {
4668 		if (magic_switched_on)
4669 			ksz_switch_macaddr_put(dev->ds);
4670 		return ret;
4671 	}
4672 
4673 	return 0;
4674 }
4675 
4676 /**
4677  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4678  *                        considering Wake-on-LAN (WoL) settings.
4679  * @dev: The switch device structure.
4680  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4681  *               enabled on any port.
4682  *
4683  * This function prepares the switch device for a safe shutdown while taking
4684  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4685  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4686  * port.
4687  */
ksz_wol_pre_shutdown(struct ksz_device * dev,bool * wol_enabled)4688 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4689 {
4690 	const struct ksz_dev_ops *ops = dev->dev_ops;
4691 	const u16 *regs = dev->info->regs;
4692 	u8 pme_pin_en = PME_ENABLE;
4693 	struct dsa_port *dp;
4694 	int ret;
4695 
4696 	*wol_enabled = false;
4697 
4698 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4699 		return;
4700 
4701 	if (!dev->wakeup_source)
4702 		return;
4703 
4704 	dsa_switch_for_each_user_port(dp, dev->ds) {
4705 		u8 pme_ctrl = 0;
4706 
4707 		ret = ops->pme_pread8(dev, dp->index,
4708 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4709 		if (!ret && pme_ctrl)
4710 			*wol_enabled = true;
4711 
4712 		/* make sure there are no pending wake events which would
4713 		 * prevent the device from going to sleep/shutdown.
4714 		 */
4715 		ksz_handle_wake_reason(dev, dp->index);
4716 	}
4717 
4718 	/* Now we are save to enable PME pin. */
4719 	if (*wol_enabled) {
4720 		if (dev->pme_active_high)
4721 			pme_pin_en |= PME_POLARITY;
4722 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4723 		if (ksz_is_ksz87xx(dev))
4724 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4725 	}
4726 }
4727 
ksz_port_set_mac_address(struct dsa_switch * ds,int port,const unsigned char * addr)4728 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4729 				    const unsigned char *addr)
4730 {
4731 	struct dsa_port *dp = dsa_to_port(ds, port);
4732 	struct ethtool_wolinfo wol;
4733 
4734 	if (dp->hsr_dev) {
4735 		dev_err(ds->dev,
4736 			"Cannot change MAC address on port %d with active HSR offload\n",
4737 			port);
4738 		return -EBUSY;
4739 	}
4740 
4741 	/* Need to initialize variable as the code to fill in settings may
4742 	 * not be executed.
4743 	 */
4744 	wol.wolopts = 0;
4745 
4746 	ksz_get_wol(ds, dp->index, &wol);
4747 	if (wol.wolopts & WAKE_MAGIC) {
4748 		dev_err(ds->dev,
4749 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4750 			port);
4751 		return -EBUSY;
4752 	}
4753 
4754 	return 0;
4755 }
4756 
4757 /**
4758  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4759  *                                 can be used as a global address.
4760  * @ds: Pointer to the DSA switch structure.
4761  * @port: The port number on which the MAC address is to be checked.
4762  *
4763  * This function examines the MAC address set on the specified port and
4764  * determines if it can be used as a global address for the switch.
4765  *
4766  * Return: true if the port's MAC address can be used as a global address, false
4767  * otherwise.
4768  */
ksz_is_port_mac_global_usable(struct dsa_switch * ds,int port)4769 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4770 {
4771 	struct net_device *user = dsa_to_port(ds, port)->user;
4772 	const unsigned char *addr = user->dev_addr;
4773 	struct ksz_switch_macaddr *switch_macaddr;
4774 	struct ksz_device *dev = ds->priv;
4775 
4776 	ASSERT_RTNL();
4777 
4778 	switch_macaddr = dev->switch_macaddr;
4779 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4780 		return false;
4781 
4782 	return true;
4783 }
4784 
4785 /**
4786  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4787  * @ds: DSA switch instance.
4788  * @port: Port number.
4789  * @extack: Netlink extended acknowledgment.
4790  *
4791  * This function programs the switch's MAC address register with the MAC address
4792  * of the requesting user port. This single address is used by the switch for
4793  * multiple features like HSR self-address filtering and WoL. Other user ports
4794  * can share ownership of this address as long as their MAC address is the same.
4795  * The MAC addresses of user ports must not change while they have ownership of
4796  * the switch MAC address.
4797  *
4798  * Return: 0 on success, or other error codes on failure.
4799  */
ksz_switch_macaddr_get(struct dsa_switch * ds,int port,struct netlink_ext_ack * extack)4800 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4801 			   struct netlink_ext_ack *extack)
4802 {
4803 	struct net_device *user = dsa_to_port(ds, port)->user;
4804 	const unsigned char *addr = user->dev_addr;
4805 	struct ksz_switch_macaddr *switch_macaddr;
4806 	struct ksz_device *dev = ds->priv;
4807 	const u16 *regs = dev->info->regs;
4808 	int i, ret;
4809 
4810 	/* Make sure concurrent MAC address changes are blocked */
4811 	ASSERT_RTNL();
4812 
4813 	switch_macaddr = dev->switch_macaddr;
4814 	if (switch_macaddr) {
4815 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4816 			NL_SET_ERR_MSG_FMT_MOD(extack,
4817 					       "Switch already configured for MAC address %pM",
4818 					       switch_macaddr->addr);
4819 			return -EBUSY;
4820 		}
4821 
4822 		refcount_inc(&switch_macaddr->refcount);
4823 		return 0;
4824 	}
4825 
4826 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4827 	if (!switch_macaddr)
4828 		return -ENOMEM;
4829 
4830 	ether_addr_copy(switch_macaddr->addr, addr);
4831 	refcount_set(&switch_macaddr->refcount, 1);
4832 	dev->switch_macaddr = switch_macaddr;
4833 
4834 	/* Program the switch MAC address to hardware */
4835 	for (i = 0; i < ETH_ALEN; i++) {
4836 		if (ksz_is_ksz8463(dev)) {
4837 			u16 addr16 = ((u16)addr[i] << 8) | addr[i + 1];
4838 
4839 			ret = ksz_write16(dev, regs[REG_SW_MAC_ADDR] + i,
4840 					  addr16);
4841 			i++;
4842 		} else {
4843 			ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i,
4844 					 addr[i]);
4845 		}
4846 		if (ret)
4847 			goto macaddr_drop;
4848 	}
4849 
4850 	return 0;
4851 
4852 macaddr_drop:
4853 	dev->switch_macaddr = NULL;
4854 	refcount_set(&switch_macaddr->refcount, 0);
4855 	kfree(switch_macaddr);
4856 
4857 	return ret;
4858 }
4859 
ksz_switch_macaddr_put(struct dsa_switch * ds)4860 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4861 {
4862 	struct ksz_switch_macaddr *switch_macaddr;
4863 	struct ksz_device *dev = ds->priv;
4864 	const u16 *regs = dev->info->regs;
4865 	int i;
4866 
4867 	/* Make sure concurrent MAC address changes are blocked */
4868 	ASSERT_RTNL();
4869 
4870 	switch_macaddr = dev->switch_macaddr;
4871 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4872 		return;
4873 
4874 	for (i = 0; i < ETH_ALEN; i++)
4875 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4876 
4877 	dev->switch_macaddr = NULL;
4878 	kfree(switch_macaddr);
4879 }
4880 
ksz_hsr_join(struct dsa_switch * ds,int port,struct net_device * hsr,struct netlink_ext_ack * extack)4881 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4882 			struct netlink_ext_ack *extack)
4883 {
4884 	struct ksz_device *dev = ds->priv;
4885 	enum hsr_version ver;
4886 	int ret;
4887 
4888 	ret = hsr_get_version(hsr, &ver);
4889 	if (ret)
4890 		return ret;
4891 
4892 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4893 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4894 		return -EOPNOTSUPP;
4895 	}
4896 
4897 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4898 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4899 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4900 		return -EOPNOTSUPP;
4901 	}
4902 
4903 	/* KSZ9477 only supports HSR v0 and v1 */
4904 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4905 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4906 		return -EOPNOTSUPP;
4907 	}
4908 
4909 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4910 	if (hweight8(dev->hsr_ports) >= 2) {
4911 		NL_SET_ERR_MSG_MOD(extack,
4912 				   "Cannot offload more than two ports - using software HSR");
4913 		return -EOPNOTSUPP;
4914 	}
4915 
4916 	/* Self MAC address filtering, to avoid frames traversing
4917 	 * the HSR ring more than once.
4918 	 */
4919 	ret = ksz_switch_macaddr_get(ds, port, extack);
4920 	if (ret)
4921 		return ret;
4922 
4923 	ksz9477_hsr_join(ds, port, hsr);
4924 	dev->hsr_dev = hsr;
4925 	dev->hsr_ports |= BIT(port);
4926 
4927 	return 0;
4928 }
4929 
ksz_hsr_leave(struct dsa_switch * ds,int port,struct net_device * hsr)4930 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4931 			 struct net_device *hsr)
4932 {
4933 	struct ksz_device *dev = ds->priv;
4934 
4935 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4936 
4937 	ksz9477_hsr_leave(ds, port, hsr);
4938 	dev->hsr_ports &= ~BIT(port);
4939 	if (!dev->hsr_ports)
4940 		dev->hsr_dev = NULL;
4941 
4942 	ksz_switch_macaddr_put(ds);
4943 
4944 	return 0;
4945 }
4946 
ksz_suspend(struct dsa_switch * ds)4947 static int ksz_suspend(struct dsa_switch *ds)
4948 {
4949 	struct ksz_device *dev = ds->priv;
4950 
4951 	cancel_delayed_work_sync(&dev->mib_read);
4952 	return 0;
4953 }
4954 
ksz_resume(struct dsa_switch * ds)4955 static int ksz_resume(struct dsa_switch *ds)
4956 {
4957 	struct ksz_device *dev = ds->priv;
4958 
4959 	if (dev->mib_read_interval)
4960 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4961 	return 0;
4962 }
4963 
4964 static const struct dsa_switch_ops ksz_switch_ops = {
4965 	.get_tag_protocol	= ksz_get_tag_protocol,
4966 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4967 	.get_phy_flags		= ksz_get_phy_flags,
4968 	.setup			= ksz_setup,
4969 	.teardown		= ksz_teardown,
4970 	.phy_read		= ksz_phy_read16,
4971 	.phy_write		= ksz_phy_write16,
4972 	.phylink_get_caps	= ksz_phylink_get_caps,
4973 	.port_setup		= ksz_port_setup,
4974 	.set_ageing_time	= ksz_set_ageing_time,
4975 	.get_strings		= ksz_get_strings,
4976 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4977 	.get_sset_count		= ksz_sset_count,
4978 	.port_bridge_join	= ksz_port_bridge_join,
4979 	.port_bridge_leave	= ksz_port_bridge_leave,
4980 	.port_hsr_join		= ksz_hsr_join,
4981 	.port_hsr_leave		= ksz_hsr_leave,
4982 	.port_set_mac_address	= ksz_port_set_mac_address,
4983 	.port_stp_state_set	= ksz_port_stp_state_set,
4984 	.port_teardown		= ksz_port_teardown,
4985 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4986 	.port_bridge_flags	= ksz_port_bridge_flags,
4987 	.port_fast_age		= ksz_port_fast_age,
4988 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4989 	.port_vlan_add		= ksz_port_vlan_add,
4990 	.port_vlan_del		= ksz_port_vlan_del,
4991 	.port_fdb_dump		= ksz_port_fdb_dump,
4992 	.port_fdb_add		= ksz_port_fdb_add,
4993 	.port_fdb_del		= ksz_port_fdb_del,
4994 	.port_mdb_add           = ksz_port_mdb_add,
4995 	.port_mdb_del           = ksz_port_mdb_del,
4996 	.port_mirror_add	= ksz_port_mirror_add,
4997 	.port_mirror_del	= ksz_port_mirror_del,
4998 	.get_stats64		= ksz_get_stats64,
4999 	.get_pause_stats	= ksz_get_pause_stats,
5000 	.port_change_mtu	= ksz_change_mtu,
5001 	.port_max_mtu		= ksz_max_mtu,
5002 	.get_wol		= ksz_get_wol,
5003 	.set_wol		= ksz_set_wol,
5004 	.suspend		= ksz_suspend,
5005 	.resume			= ksz_resume,
5006 	.get_ts_info		= ksz_get_ts_info,
5007 	.port_hwtstamp_get	= ksz_hwtstamp_get,
5008 	.port_hwtstamp_set	= ksz_hwtstamp_set,
5009 	.port_txtstamp		= ksz_port_txtstamp,
5010 	.port_rxtstamp		= ksz_port_rxtstamp,
5011 	.cls_flower_add		= ksz_cls_flower_add,
5012 	.cls_flower_del		= ksz_cls_flower_del,
5013 	.port_setup_tc		= ksz_setup_tc,
5014 	.support_eee		= ksz_support_eee,
5015 	.set_mac_eee		= ksz_set_mac_eee,
5016 	.port_get_default_prio	= ksz_port_get_default_prio,
5017 	.port_set_default_prio	= ksz_port_set_default_prio,
5018 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
5019 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
5020 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
5021 	.port_get_apptrust	= ksz_port_get_apptrust,
5022 	.port_set_apptrust	= ksz_port_set_apptrust,
5023 };
5024 
ksz_switch_alloc(struct device * base,void * priv)5025 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
5026 {
5027 	struct dsa_switch *ds;
5028 	struct ksz_device *swdev;
5029 
5030 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
5031 	if (!ds)
5032 		return NULL;
5033 
5034 	ds->dev = base;
5035 	ds->num_ports = DSA_MAX_PORTS;
5036 	ds->ops = &ksz_switch_ops;
5037 
5038 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
5039 	if (!swdev)
5040 		return NULL;
5041 
5042 	ds->priv = swdev;
5043 	swdev->dev = base;
5044 
5045 	swdev->ds = ds;
5046 	swdev->priv = priv;
5047 
5048 	return swdev;
5049 }
5050 EXPORT_SYMBOL(ksz_switch_alloc);
5051 
5052 /**
5053  * ksz_switch_shutdown - Shutdown routine for the switch device.
5054  * @dev: The switch device structure.
5055  *
5056  * This function is responsible for initiating a shutdown sequence for the
5057  * switch device. It invokes the reset operation defined in the device
5058  * operations, if available, to reset the switch. Subsequently, it calls the
5059  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
5060  * switch.
5061  */
ksz_switch_shutdown(struct ksz_device * dev)5062 void ksz_switch_shutdown(struct ksz_device *dev)
5063 {
5064 	bool wol_enabled = false;
5065 
5066 	ksz_wol_pre_shutdown(dev, &wol_enabled);
5067 
5068 	if (dev->dev_ops->reset && !wol_enabled)
5069 		dev->dev_ops->reset(dev);
5070 
5071 	dsa_switch_shutdown(dev->ds);
5072 }
5073 EXPORT_SYMBOL(ksz_switch_shutdown);
5074 
ksz_parse_rgmii_delay(struct ksz_device * dev,int port_num,struct device_node * port_dn)5075 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
5076 				  struct device_node *port_dn)
5077 {
5078 	phy_interface_t phy_mode = dev->ports[port_num].interface;
5079 	int rx_delay = -1, tx_delay = -1;
5080 
5081 	if (!phy_interface_mode_is_rgmii(phy_mode))
5082 		return;
5083 
5084 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
5085 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
5086 
5087 	if (rx_delay == -1 && tx_delay == -1) {
5088 		dev_warn(dev->dev,
5089 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
5090 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
5091 			 "\"tx-internal-delay-ps\"",
5092 			 port_num);
5093 
5094 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
5095 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5096 			rx_delay = 2000;
5097 
5098 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
5099 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5100 			tx_delay = 2000;
5101 	}
5102 
5103 	if (rx_delay < 0)
5104 		rx_delay = 0;
5105 	if (tx_delay < 0)
5106 		tx_delay = 0;
5107 
5108 	dev->ports[port_num].rgmii_rx_val = rx_delay;
5109 	dev->ports[port_num].rgmii_tx_val = tx_delay;
5110 }
5111 
5112 /**
5113  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
5114  *				 register value.
5115  * @array:	The array of drive strength values to search.
5116  * @array_size:	The size of the array.
5117  * @microamp:	The drive strength value in microamp to be converted.
5118  *
5119  * This function searches the array of drive strength values for the given
5120  * microamp value and returns the corresponding register value for that drive.
5121  *
5122  * Returns: If found, the corresponding register value for that drive strength
5123  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
5124  */
ksz_drive_strength_to_reg(const struct ksz_drive_strength * array,size_t array_size,int microamp)5125 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
5126 				     size_t array_size, int microamp)
5127 {
5128 	int i;
5129 
5130 	for (i = 0; i < array_size; i++) {
5131 		if (array[i].microamp == microamp)
5132 			return array[i].reg_val;
5133 	}
5134 
5135 	return -EINVAL;
5136 }
5137 
5138 /**
5139  * ksz_drive_strength_error() - Report invalid drive strength value
5140  * @dev:	ksz device
5141  * @array:	The array of drive strength values to search.
5142  * @array_size:	The size of the array.
5143  * @microamp:	Invalid drive strength value in microamp
5144  *
5145  * This function logs an error message when an unsupported drive strength value
5146  * is detected. It lists out all the supported drive strength values for
5147  * reference in the error message.
5148  */
ksz_drive_strength_error(struct ksz_device * dev,const struct ksz_drive_strength * array,size_t array_size,int microamp)5149 static void ksz_drive_strength_error(struct ksz_device *dev,
5150 				     const struct ksz_drive_strength *array,
5151 				     size_t array_size, int microamp)
5152 {
5153 	char supported_values[100];
5154 	size_t remaining_size;
5155 	int added_len;
5156 	char *ptr;
5157 	int i;
5158 
5159 	remaining_size = sizeof(supported_values);
5160 	ptr = supported_values;
5161 
5162 	for (i = 0; i < array_size; i++) {
5163 		added_len = snprintf(ptr, remaining_size,
5164 				     i == 0 ? "%d" : ", %d", array[i].microamp);
5165 
5166 		if (added_len >= remaining_size)
5167 			break;
5168 
5169 		ptr += added_len;
5170 		remaining_size -= added_len;
5171 	}
5172 
5173 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
5174 		microamp, supported_values);
5175 }
5176 
5177 /**
5178  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
5179  *				    chip variants.
5180  * @dev:       ksz device
5181  * @props:     Array of drive strength properties to be applied
5182  * @num_props: Number of properties in the array
5183  *
5184  * This function configures the drive strength for various KSZ9477 chip variants
5185  * based on the provided properties. It handles chip-specific nuances and
5186  * ensures only valid drive strengths are written to the respective chip.
5187  *
5188  * Return: 0 on successful configuration, a negative error code on failure.
5189  */
ksz9477_drive_strength_write(struct ksz_device * dev,struct ksz_driver_strength_prop * props,int num_props)5190 static int ksz9477_drive_strength_write(struct ksz_device *dev,
5191 					struct ksz_driver_strength_prop *props,
5192 					int num_props)
5193 {
5194 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
5195 	int i, ret, reg;
5196 	u8 mask = 0;
5197 	u8 val = 0;
5198 
5199 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
5200 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5201 			 props[KSZ_DRIVER_STRENGTH_IO].name);
5202 
5203 	if (dev->chip_id == KSZ8795_CHIP_ID ||
5204 	    dev->chip_id == KSZ8794_CHIP_ID ||
5205 	    dev->chip_id == KSZ8765_CHIP_ID)
5206 		reg = KSZ8795_REG_SW_CTRL_20;
5207 	else
5208 		reg = KSZ9477_REG_SW_IO_STRENGTH;
5209 
5210 	for (i = 0; i < num_props; i++) {
5211 		if (props[i].value == -1)
5212 			continue;
5213 
5214 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
5215 						array_size, props[i].value);
5216 		if (ret < 0) {
5217 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
5218 						 array_size, props[i].value);
5219 			return ret;
5220 		}
5221 
5222 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
5223 		val |= ret << props[i].offset;
5224 	}
5225 
5226 	return ksz_rmw8(dev, reg, mask, val);
5227 }
5228 
5229 /**
5230  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
5231  *				    KSZ8863 compatible chip variants.
5232  * @dev:       ksz device
5233  * @props:     Array of drive strength properties to be set
5234  * @num_props: Number of properties in the array
5235  *
5236  * This function applies the specified drive strength settings to KSZ88X3 chip
5237  * variants (KSZ8873, KSZ8863).
5238  * It ensures the configurations align with what the chip variant supports and
5239  * warns or errors out on unsupported settings.
5240  *
5241  * Return: 0 on success, error code otherwise
5242  */
ksz88x3_drive_strength_write(struct ksz_device * dev,struct ksz_driver_strength_prop * props,int num_props)5243 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
5244 					struct ksz_driver_strength_prop *props,
5245 					int num_props)
5246 {
5247 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
5248 	int microamp;
5249 	int i, ret;
5250 
5251 	for (i = 0; i < num_props; i++) {
5252 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
5253 			continue;
5254 
5255 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5256 			 props[i].name);
5257 	}
5258 
5259 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
5260 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
5261 					microamp);
5262 	if (ret < 0) {
5263 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
5264 					 array_size, microamp);
5265 		return ret;
5266 	}
5267 
5268 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
5269 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
5270 }
5271 
5272 /**
5273  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
5274  *				from device tree properties.
5275  * @dev:	ksz device
5276  *
5277  * This function reads the specified drive strength properties from the
5278  * device tree, validates against the supported chip variants, and sets
5279  * them accordingly. An error should be critical here, as the drive strength
5280  * settings are crucial for EMI compliance.
5281  *
5282  * Return: 0 on success, error code otherwise
5283  */
ksz_parse_drive_strength(struct ksz_device * dev)5284 static int ksz_parse_drive_strength(struct ksz_device *dev)
5285 {
5286 	struct ksz_driver_strength_prop of_props[] = {
5287 		[KSZ_DRIVER_STRENGTH_HI] = {
5288 			.name = "microchip,hi-drive-strength-microamp",
5289 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5290 			.value = -1,
5291 		},
5292 		[KSZ_DRIVER_STRENGTH_LO] = {
5293 			.name = "microchip,lo-drive-strength-microamp",
5294 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5295 			.value = -1,
5296 		},
5297 		[KSZ_DRIVER_STRENGTH_IO] = {
5298 			.name = "microchip,io-drive-strength-microamp",
5299 			.offset = 0, /* don't care */
5300 			.value = -1,
5301 		},
5302 	};
5303 	struct device_node *np = dev->dev->of_node;
5304 	bool have_any_prop = false;
5305 	int i, ret;
5306 
5307 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5308 		ret = of_property_read_u32(np, of_props[i].name,
5309 					   &of_props[i].value);
5310 		if (ret && ret != -EINVAL)
5311 			dev_warn(dev->dev, "Failed to read %s\n",
5312 				 of_props[i].name);
5313 		if (ret)
5314 			continue;
5315 
5316 		have_any_prop = true;
5317 	}
5318 
5319 	if (!have_any_prop)
5320 		return 0;
5321 
5322 	switch (dev->chip_id) {
5323 	case KSZ88X3_CHIP_ID:
5324 		return ksz88x3_drive_strength_write(dev, of_props,
5325 						    ARRAY_SIZE(of_props));
5326 	case KSZ8795_CHIP_ID:
5327 	case KSZ8794_CHIP_ID:
5328 	case KSZ8765_CHIP_ID:
5329 	case KSZ8563_CHIP_ID:
5330 	case KSZ8567_CHIP_ID:
5331 	case KSZ9477_CHIP_ID:
5332 	case KSZ9563_CHIP_ID:
5333 	case KSZ9567_CHIP_ID:
5334 	case KSZ9893_CHIP_ID:
5335 	case KSZ9896_CHIP_ID:
5336 	case KSZ9897_CHIP_ID:
5337 	case LAN9646_CHIP_ID:
5338 		return ksz9477_drive_strength_write(dev, of_props,
5339 						    ARRAY_SIZE(of_props));
5340 	default:
5341 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5342 			if (of_props[i].value == -1)
5343 				continue;
5344 
5345 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5346 				 of_props[i].name);
5347 		}
5348 	}
5349 
5350 	return 0;
5351 }
5352 
ksz8463_configure_straps_spi(struct ksz_device * dev)5353 static int ksz8463_configure_straps_spi(struct ksz_device *dev)
5354 {
5355 	struct pinctrl *pinctrl;
5356 	struct gpio_desc *rxd0;
5357 	struct gpio_desc *rxd1;
5358 
5359 	rxd0 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 0, GPIOD_OUT_LOW);
5360 	if (IS_ERR(rxd0))
5361 		return PTR_ERR(rxd0);
5362 
5363 	rxd1 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 1, GPIOD_OUT_HIGH);
5364 	if (IS_ERR(rxd1))
5365 		return PTR_ERR(rxd1);
5366 
5367 	if (!rxd0 && !rxd1)
5368 		return 0;
5369 
5370 	if ((rxd0 && !rxd1) || (rxd1 && !rxd0))
5371 		return -EINVAL;
5372 
5373 	pinctrl = devm_pinctrl_get_select(dev->dev, "reset");
5374 	if (IS_ERR(pinctrl))
5375 		return PTR_ERR(pinctrl);
5376 
5377 	return 0;
5378 }
5379 
ksz8463_release_straps_spi(struct ksz_device * dev)5380 static int ksz8463_release_straps_spi(struct ksz_device *dev)
5381 {
5382 	return pinctrl_select_default_state(dev->dev);
5383 }
5384 
ksz_switch_register(struct ksz_device * dev)5385 int ksz_switch_register(struct ksz_device *dev)
5386 {
5387 	const struct ksz_chip_data *info;
5388 	struct device_node *ports;
5389 	phy_interface_t interface;
5390 	unsigned int port_num;
5391 	int ret;
5392 	int i;
5393 
5394 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5395 						  GPIOD_OUT_LOW);
5396 	if (IS_ERR(dev->reset_gpio))
5397 		return PTR_ERR(dev->reset_gpio);
5398 
5399 	if (dev->reset_gpio) {
5400 		if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) {
5401 			ret = ksz8463_configure_straps_spi(dev);
5402 			if (ret)
5403 				return ret;
5404 		}
5405 
5406 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5407 		usleep_range(10000, 12000);
5408 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5409 		msleep(100);
5410 
5411 		if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) {
5412 			ret = ksz8463_release_straps_spi(dev);
5413 			if (ret)
5414 				return ret;
5415 		}
5416 	}
5417 
5418 	mutex_init(&dev->dev_mutex);
5419 	mutex_init(&dev->regmap_mutex);
5420 	mutex_init(&dev->alu_mutex);
5421 	mutex_init(&dev->vlan_mutex);
5422 
5423 	ret = ksz_switch_detect(dev);
5424 	if (ret)
5425 		return ret;
5426 
5427 	info = ksz_lookup_info(dev->chip_id);
5428 	if (!info)
5429 		return -ENODEV;
5430 
5431 	/* Update the compatible info with the probed one */
5432 	dev->info = info;
5433 
5434 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5435 		 dev->info->dev_name, dev->chip_rev);
5436 
5437 	ret = ksz_check_device_id(dev);
5438 	if (ret)
5439 		return ret;
5440 
5441 	dev->dev_ops = dev->info->ops;
5442 
5443 	ret = dev->dev_ops->init(dev);
5444 	if (ret)
5445 		return ret;
5446 
5447 	dev->ports = devm_kzalloc(dev->dev,
5448 				  dev->info->port_cnt * sizeof(struct ksz_port),
5449 				  GFP_KERNEL);
5450 	if (!dev->ports)
5451 		return -ENOMEM;
5452 
5453 	for (i = 0; i < dev->info->port_cnt; i++) {
5454 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5455 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5456 		dev->ports[i].mib.counters =
5457 			devm_kzalloc(dev->dev,
5458 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5459 				     GFP_KERNEL);
5460 		if (!dev->ports[i].mib.counters)
5461 			return -ENOMEM;
5462 
5463 		dev->ports[i].ksz_dev = dev;
5464 		dev->ports[i].num = i;
5465 	}
5466 
5467 	/* set the real number of ports */
5468 	dev->ds->num_ports = dev->info->port_cnt;
5469 
5470 	/* set the phylink ops */
5471 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5472 
5473 	/* Host port interface will be self detected, or specifically set in
5474 	 * device tree.
5475 	 */
5476 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5477 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5478 	if (dev->dev->of_node) {
5479 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5480 		if (ret == 0)
5481 			dev->compat_interface = interface;
5482 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5483 		if (!ports)
5484 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5485 		if (ports) {
5486 			for_each_available_child_of_node_scoped(ports, port) {
5487 				if (of_property_read_u32(port, "reg",
5488 							 &port_num))
5489 					continue;
5490 				if (!(dev->port_mask & BIT(port_num))) {
5491 					of_node_put(ports);
5492 					return -EINVAL;
5493 				}
5494 				of_get_phy_mode(port,
5495 						&dev->ports[port_num].interface);
5496 
5497 				ksz_parse_rgmii_delay(dev, port_num, port);
5498 				dev->ports[port_num].fiber =
5499 					of_property_read_bool(port,
5500 							      "micrel,fiber-mode");
5501 			}
5502 			of_node_put(ports);
5503 		}
5504 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5505 							 "microchip,synclko-125");
5506 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5507 							     "microchip,synclko-disable");
5508 		if (dev->synclko_125 && dev->synclko_disable) {
5509 			dev_err(dev->dev, "inconsistent synclko settings\n");
5510 			return -EINVAL;
5511 		}
5512 
5513 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5514 							   "wakeup-source");
5515 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5516 							     "microchip,pme-active-high");
5517 	}
5518 
5519 	ret = dsa_register_switch(dev->ds);
5520 	if (ret) {
5521 		dev->dev_ops->exit(dev);
5522 		return ret;
5523 	}
5524 
5525 	/* Read MIB counters every 30 seconds to avoid overflow. */
5526 	dev->mib_read_interval = msecs_to_jiffies(5000);
5527 
5528 	/* Start the MIB timer. */
5529 	schedule_delayed_work(&dev->mib_read, 0);
5530 
5531 	return ret;
5532 }
5533 EXPORT_SYMBOL(ksz_switch_register);
5534 
ksz_switch_remove(struct ksz_device * dev)5535 void ksz_switch_remove(struct ksz_device *dev)
5536 {
5537 	/* timer started */
5538 	if (dev->mib_read_interval) {
5539 		dev->mib_read_interval = 0;
5540 		cancel_delayed_work_sync(&dev->mib_read);
5541 	}
5542 
5543 	dev->dev_ops->exit(dev);
5544 	dsa_unregister_switch(dev->ds);
5545 
5546 	if (dev->reset_gpio)
5547 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5548 
5549 }
5550 EXPORT_SYMBOL(ksz_switch_remove);
5551 
5552 #ifdef CONFIG_PM_SLEEP
ksz_switch_suspend(struct device * dev)5553 int ksz_switch_suspend(struct device *dev)
5554 {
5555 	struct ksz_device *priv = dev_get_drvdata(dev);
5556 
5557 	return dsa_switch_suspend(priv->ds);
5558 }
5559 EXPORT_SYMBOL(ksz_switch_suspend);
5560 
ksz_switch_resume(struct device * dev)5561 int ksz_switch_resume(struct device *dev)
5562 {
5563 	struct ksz_device *priv = dev_get_drvdata(dev);
5564 
5565 	return dsa_switch_resume(priv->ds);
5566 }
5567 EXPORT_SYMBOL(ksz_switch_resume);
5568 #endif
5569 
5570 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5571 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5572 MODULE_LICENSE("GPL");
5573