xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision b4df828dfc290ffbb59b1172d71fdf34371edc23)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2025 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <net/dsa.h>
28 #include <net/ieee8021q.h>
29 #include <net/pkt_cls.h>
30 #include <net/switchdev.h>
31 
32 #include "ksz_common.h"
33 #include "ksz_dcb.h"
34 #include "ksz_ptp.h"
35 #include "ksz8.h"
36 #include "ksz9477.h"
37 #include "lan937x.h"
38 
39 #define MIB_COUNTER_NUM 0x20
40 
41 struct ksz_stats_raw {
42 	u64 rx_hi;
43 	u64 rx_undersize;
44 	u64 rx_fragments;
45 	u64 rx_oversize;
46 	u64 rx_jabbers;
47 	u64 rx_symbol_err;
48 	u64 rx_crc_err;
49 	u64 rx_align_err;
50 	u64 rx_mac_ctrl;
51 	u64 rx_pause;
52 	u64 rx_bcast;
53 	u64 rx_mcast;
54 	u64 rx_ucast;
55 	u64 rx_64_or_less;
56 	u64 rx_65_127;
57 	u64 rx_128_255;
58 	u64 rx_256_511;
59 	u64 rx_512_1023;
60 	u64 rx_1024_1522;
61 	u64 rx_1523_2000;
62 	u64 rx_2001;
63 	u64 tx_hi;
64 	u64 tx_late_col;
65 	u64 tx_pause;
66 	u64 tx_bcast;
67 	u64 tx_mcast;
68 	u64 tx_ucast;
69 	u64 tx_deferred;
70 	u64 tx_total_col;
71 	u64 tx_exc_col;
72 	u64 tx_single_col;
73 	u64 tx_mult_col;
74 	u64 rx_total;
75 	u64 tx_total;
76 	u64 rx_discards;
77 	u64 tx_discards;
78 };
79 
80 struct ksz88xx_stats_raw {
81 	u64 rx;
82 	u64 rx_hi;
83 	u64 rx_undersize;
84 	u64 rx_fragments;
85 	u64 rx_oversize;
86 	u64 rx_jabbers;
87 	u64 rx_symbol_err;
88 	u64 rx_crc_err;
89 	u64 rx_align_err;
90 	u64 rx_mac_ctrl;
91 	u64 rx_pause;
92 	u64 rx_bcast;
93 	u64 rx_mcast;
94 	u64 rx_ucast;
95 	u64 rx_64_or_less;
96 	u64 rx_65_127;
97 	u64 rx_128_255;
98 	u64 rx_256_511;
99 	u64 rx_512_1023;
100 	u64 rx_1024_1522;
101 	u64 tx;
102 	u64 tx_hi;
103 	u64 tx_late_col;
104 	u64 tx_pause;
105 	u64 tx_bcast;
106 	u64 tx_mcast;
107 	u64 tx_ucast;
108 	u64 tx_deferred;
109 	u64 tx_total_col;
110 	u64 tx_exc_col;
111 	u64 tx_single_col;
112 	u64 tx_mult_col;
113 	u64 rx_discards;
114 	u64 tx_discards;
115 };
116 
117 static const struct ksz_mib_names ksz88xx_mib_names[] = {
118 	{ 0x00, "rx" },
119 	{ 0x01, "rx_hi" },
120 	{ 0x02, "rx_undersize" },
121 	{ 0x03, "rx_fragments" },
122 	{ 0x04, "rx_oversize" },
123 	{ 0x05, "rx_jabbers" },
124 	{ 0x06, "rx_symbol_err" },
125 	{ 0x07, "rx_crc_err" },
126 	{ 0x08, "rx_align_err" },
127 	{ 0x09, "rx_mac_ctrl" },
128 	{ 0x0a, "rx_pause" },
129 	{ 0x0b, "rx_bcast" },
130 	{ 0x0c, "rx_mcast" },
131 	{ 0x0d, "rx_ucast" },
132 	{ 0x0e, "rx_64_or_less" },
133 	{ 0x0f, "rx_65_127" },
134 	{ 0x10, "rx_128_255" },
135 	{ 0x11, "rx_256_511" },
136 	{ 0x12, "rx_512_1023" },
137 	{ 0x13, "rx_1024_1522" },
138 	{ 0x14, "tx" },
139 	{ 0x15, "tx_hi" },
140 	{ 0x16, "tx_late_col" },
141 	{ 0x17, "tx_pause" },
142 	{ 0x18, "tx_bcast" },
143 	{ 0x19, "tx_mcast" },
144 	{ 0x1a, "tx_ucast" },
145 	{ 0x1b, "tx_deferred" },
146 	{ 0x1c, "tx_total_col" },
147 	{ 0x1d, "tx_exc_col" },
148 	{ 0x1e, "tx_single_col" },
149 	{ 0x1f, "tx_mult_col" },
150 	{ 0x100, "rx_discards" },
151 	{ 0x101, "tx_discards" },
152 };
153 
154 static const struct ksz_mib_names ksz9477_mib_names[] = {
155 	{ 0x00, "rx_hi" },
156 	{ 0x01, "rx_undersize" },
157 	{ 0x02, "rx_fragments" },
158 	{ 0x03, "rx_oversize" },
159 	{ 0x04, "rx_jabbers" },
160 	{ 0x05, "rx_symbol_err" },
161 	{ 0x06, "rx_crc_err" },
162 	{ 0x07, "rx_align_err" },
163 	{ 0x08, "rx_mac_ctrl" },
164 	{ 0x09, "rx_pause" },
165 	{ 0x0A, "rx_bcast" },
166 	{ 0x0B, "rx_mcast" },
167 	{ 0x0C, "rx_ucast" },
168 	{ 0x0D, "rx_64_or_less" },
169 	{ 0x0E, "rx_65_127" },
170 	{ 0x0F, "rx_128_255" },
171 	{ 0x10, "rx_256_511" },
172 	{ 0x11, "rx_512_1023" },
173 	{ 0x12, "rx_1024_1522" },
174 	{ 0x13, "rx_1523_2000" },
175 	{ 0x14, "rx_2001" },
176 	{ 0x15, "tx_hi" },
177 	{ 0x16, "tx_late_col" },
178 	{ 0x17, "tx_pause" },
179 	{ 0x18, "tx_bcast" },
180 	{ 0x19, "tx_mcast" },
181 	{ 0x1A, "tx_ucast" },
182 	{ 0x1B, "tx_deferred" },
183 	{ 0x1C, "tx_total_col" },
184 	{ 0x1D, "tx_exc_col" },
185 	{ 0x1E, "tx_single_col" },
186 	{ 0x1F, "tx_mult_col" },
187 	{ 0x80, "rx_total" },
188 	{ 0x81, "tx_total" },
189 	{ 0x82, "rx_discards" },
190 	{ 0x83, "tx_discards" },
191 };
192 
193 struct ksz_driver_strength_prop {
194 	const char *name;
195 	int offset;
196 	int value;
197 };
198 
199 enum ksz_driver_strength_type {
200 	KSZ_DRIVER_STRENGTH_HI,
201 	KSZ_DRIVER_STRENGTH_LO,
202 	KSZ_DRIVER_STRENGTH_IO,
203 };
204 
205 /**
206  * struct ksz_drive_strength - drive strength mapping
207  * @reg_val:	register value
208  * @microamp:	microamp value
209  */
210 struct ksz_drive_strength {
211 	u32 reg_val;
212 	u32 microamp;
213 };
214 
215 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
216  *
217  * This values are not documented in KSZ9477 variants but confirmed by
218  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
219  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
220  *
221  * Documentation in KSZ8795CLX provides more information with some
222  * recommendations:
223  * - for high speed signals
224  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
225  *      2.5V or 3.3V VDDIO.
226  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
227  *      using 1.8V VDDIO.
228  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
229  *      or 3.3V VDDIO.
230  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
231  *   5. In same interface, the heavy loading should use higher one of the
232  *      drive current strength.
233  * - for low speed signals
234  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
235  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
236  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
237  *   4. If it is heavy loading, can use higher drive current strength.
238  */
239 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
240 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
241 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
242 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
243 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
244 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
245 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
246 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
247 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
248 };
249 
250 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
251  *			     variants.
252  * This values are documented in KSZ8873 and KSZ8863 datasheets.
253  */
254 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
255 	{ 0,  8000 },
256 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
257 };
258 
259 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
260 				       unsigned int mode,
261 				       const struct phylink_link_state *state);
262 static void ksz_phylink_mac_config(struct phylink_config *config,
263 				   unsigned int mode,
264 				   const struct phylink_link_state *state);
265 static void ksz_phylink_mac_link_down(struct phylink_config *config,
266 				      unsigned int mode,
267 				      phy_interface_t interface);
268 
269 /**
270  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
271  * @config: phylink config structure
272  *
273  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
274  * a detailed explanation of EEE/LPI handling in KSZ switches.
275  */
276 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
277 {
278 }
279 
280 /**
281  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
282  * @config: phylink config structure
283  * @timer: timer value before entering LPI (unused)
284  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
285  *
286  * This function signals to phylink that the driver architecture supports
287  * LPI management, enabling phylink to control EEE advertisement during
288  * negotiation according to IEEE Std 802.3 (Clause 78).
289  *
290  * Hardware Management of EEE/LPI State:
291  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
292  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
293  * state transitions are managed autonomously by the hardware based on
294  * the auto-negotiation results. (Note: While the datasheet describes EEE
295  * operation based on negotiation, it doesn't explicitly detail the internal
296  * MAC/PHY interaction, so autonomous hardware management of the MAC state
297  * for LPI is inferred from observed behavior).
298  * This hardware control, consistent with the switch's ability to operate
299  * autonomously via strapping, means MAC-level software intervention is not
300  * required or exposed for managing the LPI state once EEE is negotiated.
301  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
302  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
303  * Straps).
304  *
305  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
306  * lack documented MAC-level LPI control.
307  *
308  * Therefore, this callback performs no action and serves primarily to inform
309  * phylink of LPI awareness and to document the inferred hardware behavior.
310  *
311  * Returns: 0 (Always success)
312  */
313 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
314 					 u32 timer, bool tx_clock_stop)
315 {
316 	return 0;
317 }
318 
319 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
320 	.mac_config	= ksz88x3_phylink_mac_config,
321 	.mac_link_down	= ksz_phylink_mac_link_down,
322 	.mac_link_up	= ksz8_phylink_mac_link_up,
323 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
324 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
325 };
326 
327 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
328 	.mac_config	= ksz_phylink_mac_config,
329 	.mac_link_down	= ksz_phylink_mac_link_down,
330 	.mac_link_up	= ksz8_phylink_mac_link_up,
331 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
332 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
333 };
334 
335 static const struct ksz_dev_ops ksz8463_dev_ops = {
336 	.setup = ksz8_setup,
337 	.get_port_addr = ksz8463_get_port_addr,
338 	.cfg_port_member = ksz8_cfg_port_member,
339 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
340 	.port_setup = ksz8_port_setup,
341 	.r_phy = ksz8463_r_phy,
342 	.w_phy = ksz8463_w_phy,
343 	.r_mib_cnt = ksz8_r_mib_cnt,
344 	.r_mib_pkt = ksz8_r_mib_pkt,
345 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
346 	.freeze_mib = ksz8_freeze_mib,
347 	.port_init_cnt = ksz8_port_init_cnt,
348 	.fdb_dump = ksz8_fdb_dump,
349 	.fdb_add = ksz8_fdb_add,
350 	.fdb_del = ksz8_fdb_del,
351 	.mdb_add = ksz8_mdb_add,
352 	.mdb_del = ksz8_mdb_del,
353 	.vlan_filtering = ksz8_port_vlan_filtering,
354 	.vlan_add = ksz8_port_vlan_add,
355 	.vlan_del = ksz8_port_vlan_del,
356 	.mirror_add = ksz8_port_mirror_add,
357 	.mirror_del = ksz8_port_mirror_del,
358 	.get_caps = ksz8_get_caps,
359 	.config_cpu_port = ksz8_config_cpu_port,
360 	.enable_stp_addr = ksz8_enable_stp_addr,
361 	.reset = ksz8_reset_switch,
362 	.init = ksz8_switch_init,
363 	.exit = ksz8_switch_exit,
364 	.change_mtu = ksz8_change_mtu,
365 };
366 
367 static const struct ksz_dev_ops ksz88xx_dev_ops = {
368 	.setup = ksz8_setup,
369 	.get_port_addr = ksz8_get_port_addr,
370 	.cfg_port_member = ksz8_cfg_port_member,
371 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
372 	.port_setup = ksz8_port_setup,
373 	.r_phy = ksz8_r_phy,
374 	.w_phy = ksz8_w_phy,
375 	.r_mib_cnt = ksz8_r_mib_cnt,
376 	.r_mib_pkt = ksz8_r_mib_pkt,
377 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
378 	.freeze_mib = ksz8_freeze_mib,
379 	.port_init_cnt = ksz8_port_init_cnt,
380 	.fdb_dump = ksz8_fdb_dump,
381 	.fdb_add = ksz8_fdb_add,
382 	.fdb_del = ksz8_fdb_del,
383 	.mdb_add = ksz8_mdb_add,
384 	.mdb_del = ksz8_mdb_del,
385 	.vlan_filtering = ksz8_port_vlan_filtering,
386 	.vlan_add = ksz8_port_vlan_add,
387 	.vlan_del = ksz8_port_vlan_del,
388 	.mirror_add = ksz8_port_mirror_add,
389 	.mirror_del = ksz8_port_mirror_del,
390 	.get_caps = ksz8_get_caps,
391 	.config_cpu_port = ksz8_config_cpu_port,
392 	.enable_stp_addr = ksz8_enable_stp_addr,
393 	.reset = ksz8_reset_switch,
394 	.init = ksz8_switch_init,
395 	.exit = ksz8_switch_exit,
396 	.change_mtu = ksz8_change_mtu,
397 	.pme_write8 = ksz8_pme_write8,
398 	.pme_pread8 = ksz8_pme_pread8,
399 	.pme_pwrite8 = ksz8_pme_pwrite8,
400 };
401 
402 static const struct ksz_dev_ops ksz87xx_dev_ops = {
403 	.setup = ksz8_setup,
404 	.get_port_addr = ksz8_get_port_addr,
405 	.cfg_port_member = ksz8_cfg_port_member,
406 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
407 	.port_setup = ksz8_port_setup,
408 	.r_phy = ksz8_r_phy,
409 	.w_phy = ksz8_w_phy,
410 	.r_mib_cnt = ksz8_r_mib_cnt,
411 	.r_mib_pkt = ksz8_r_mib_pkt,
412 	.r_mib_stat64 = ksz_r_mib_stats64,
413 	.freeze_mib = ksz8_freeze_mib,
414 	.port_init_cnt = ksz8_port_init_cnt,
415 	.fdb_dump = ksz8_fdb_dump,
416 	.fdb_add = ksz8_fdb_add,
417 	.fdb_del = ksz8_fdb_del,
418 	.mdb_add = ksz8_mdb_add,
419 	.mdb_del = ksz8_mdb_del,
420 	.vlan_filtering = ksz8_port_vlan_filtering,
421 	.vlan_add = ksz8_port_vlan_add,
422 	.vlan_del = ksz8_port_vlan_del,
423 	.mirror_add = ksz8_port_mirror_add,
424 	.mirror_del = ksz8_port_mirror_del,
425 	.get_caps = ksz8_get_caps,
426 	.config_cpu_port = ksz8_config_cpu_port,
427 	.enable_stp_addr = ksz8_enable_stp_addr,
428 	.reset = ksz8_reset_switch,
429 	.init = ksz8_switch_init,
430 	.exit = ksz8_switch_exit,
431 	.change_mtu = ksz8_change_mtu,
432 	.pme_write8 = ksz8_pme_write8,
433 	.pme_pread8 = ksz8_pme_pread8,
434 	.pme_pwrite8 = ksz8_pme_pwrite8,
435 };
436 
437 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
438 					struct phy_device *phydev,
439 					unsigned int mode,
440 					phy_interface_t interface,
441 					int speed, int duplex, bool tx_pause,
442 					bool rx_pause);
443 
444 static struct phylink_pcs *
445 ksz_phylink_mac_select_pcs(struct phylink_config *config,
446 			   phy_interface_t interface)
447 {
448 	struct dsa_port *dp = dsa_phylink_to_port(config);
449 	struct ksz_device *dev = dp->ds->priv;
450 	struct ksz_port *p = &dev->ports[dp->index];
451 
452 	if (ksz_is_sgmii_port(dev, dp->index) &&
453 	    (interface == PHY_INTERFACE_MODE_SGMII ||
454 	    interface == PHY_INTERFACE_MODE_1000BASEX))
455 		return p->pcs;
456 
457 	return NULL;
458 }
459 
460 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
461 	.mac_config	= ksz_phylink_mac_config,
462 	.mac_link_down	= ksz_phylink_mac_link_down,
463 	.mac_link_up	= ksz9477_phylink_mac_link_up,
464 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
465 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
466 	.mac_select_pcs	= ksz_phylink_mac_select_pcs,
467 };
468 
469 static const struct ksz_dev_ops ksz9477_dev_ops = {
470 	.setup = ksz9477_setup,
471 	.get_port_addr = ksz9477_get_port_addr,
472 	.cfg_port_member = ksz9477_cfg_port_member,
473 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
474 	.port_setup = ksz9477_port_setup,
475 	.set_ageing_time = ksz9477_set_ageing_time,
476 	.r_phy = ksz9477_r_phy,
477 	.w_phy = ksz9477_w_phy,
478 	.r_mib_cnt = ksz9477_r_mib_cnt,
479 	.r_mib_pkt = ksz9477_r_mib_pkt,
480 	.r_mib_stat64 = ksz_r_mib_stats64,
481 	.freeze_mib = ksz9477_freeze_mib,
482 	.port_init_cnt = ksz9477_port_init_cnt,
483 	.vlan_filtering = ksz9477_port_vlan_filtering,
484 	.vlan_add = ksz9477_port_vlan_add,
485 	.vlan_del = ksz9477_port_vlan_del,
486 	.mirror_add = ksz9477_port_mirror_add,
487 	.mirror_del = ksz9477_port_mirror_del,
488 	.get_caps = ksz9477_get_caps,
489 	.fdb_dump = ksz9477_fdb_dump,
490 	.fdb_add = ksz9477_fdb_add,
491 	.fdb_del = ksz9477_fdb_del,
492 	.mdb_add = ksz9477_mdb_add,
493 	.mdb_del = ksz9477_mdb_del,
494 	.change_mtu = ksz9477_change_mtu,
495 	.pme_write8 = ksz_write8,
496 	.pme_pread8 = ksz_pread8,
497 	.pme_pwrite8 = ksz_pwrite8,
498 	.config_cpu_port = ksz9477_config_cpu_port,
499 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
500 	.enable_stp_addr = ksz9477_enable_stp_addr,
501 	.reset = ksz9477_reset_switch,
502 	.init = ksz9477_switch_init,
503 	.exit = ksz9477_switch_exit,
504 	.pcs_create = ksz9477_pcs_create,
505 };
506 
507 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
508 	.mac_config	= ksz_phylink_mac_config,
509 	.mac_link_down	= ksz_phylink_mac_link_down,
510 	.mac_link_up	= ksz9477_phylink_mac_link_up,
511 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
512 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
513 };
514 
515 static const struct ksz_dev_ops lan937x_dev_ops = {
516 	.setup = lan937x_setup,
517 	.teardown = lan937x_teardown,
518 	.get_port_addr = ksz9477_get_port_addr,
519 	.cfg_port_member = ksz9477_cfg_port_member,
520 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
521 	.port_setup = lan937x_port_setup,
522 	.set_ageing_time = lan937x_set_ageing_time,
523 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
524 	.create_phy_addr_map = lan937x_create_phy_addr_map,
525 	.r_phy = lan937x_r_phy,
526 	.w_phy = lan937x_w_phy,
527 	.r_mib_cnt = ksz9477_r_mib_cnt,
528 	.r_mib_pkt = ksz9477_r_mib_pkt,
529 	.r_mib_stat64 = ksz_r_mib_stats64,
530 	.freeze_mib = ksz9477_freeze_mib,
531 	.port_init_cnt = ksz9477_port_init_cnt,
532 	.vlan_filtering = ksz9477_port_vlan_filtering,
533 	.vlan_add = ksz9477_port_vlan_add,
534 	.vlan_del = ksz9477_port_vlan_del,
535 	.mirror_add = ksz9477_port_mirror_add,
536 	.mirror_del = ksz9477_port_mirror_del,
537 	.get_caps = lan937x_phylink_get_caps,
538 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
539 	.fdb_dump = ksz9477_fdb_dump,
540 	.fdb_add = ksz9477_fdb_add,
541 	.fdb_del = ksz9477_fdb_del,
542 	.mdb_add = ksz9477_mdb_add,
543 	.mdb_del = ksz9477_mdb_del,
544 	.change_mtu = lan937x_change_mtu,
545 	.config_cpu_port = lan937x_config_cpu_port,
546 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
547 	.enable_stp_addr = ksz9477_enable_stp_addr,
548 	.reset = lan937x_reset_switch,
549 	.init = lan937x_switch_init,
550 	.exit = lan937x_switch_exit,
551 };
552 
553 static const u16 ksz8463_regs[] = {
554 	[REG_SW_MAC_ADDR]		= 0x10,
555 	[REG_IND_CTRL_0]		= 0x30,
556 	[REG_IND_DATA_8]		= 0x26,
557 	[REG_IND_DATA_CHECK]		= 0x26,
558 	[REG_IND_DATA_HI]		= 0x28,
559 	[REG_IND_DATA_LO]		= 0x2C,
560 	[REG_IND_MIB_CHECK]		= 0x2F,
561 	[P_FORCE_CTRL]			= 0x0C,
562 	[P_LINK_STATUS]			= 0x0E,
563 	[P_LOCAL_CTRL]			= 0x0C,
564 	[P_NEG_RESTART_CTRL]		= 0x0D,
565 	[P_REMOTE_STATUS]		= 0x0E,
566 	[P_SPEED_STATUS]		= 0x0F,
567 	[S_TAIL_TAG_CTRL]		= 0xAD,
568 	[P_STP_CTRL]			= 0x6F,
569 	[S_START_CTRL]			= 0x01,
570 	[S_BROADCAST_CTRL]		= 0x06,
571 	[S_MULTICAST_CTRL]		= 0x04,
572 	[PTP_CLK_CTRL]			= 0x0600,
573 	[PTP_RTC_NANOSEC]		= 0x0604,
574 	[PTP_RTC_SEC]			= 0x0608,
575 	[PTP_RTC_SUB_NANOSEC]		= 0x060C,
576 	[PTP_SUBNANOSEC_RATE]		= 0x0610,
577 	[PTP_MSG_CONF1]			= 0x0620,
578 };
579 
580 static const u32 ksz8463_masks[] = {
581 	[PORT_802_1P_REMAPPING]		= BIT(3),
582 	[SW_TAIL_TAG_ENABLE]		= BIT(0),
583 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
584 	[MIB_COUNTER_VALID]		= BIT(6),
585 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
586 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
587 	[VLAN_TABLE_VALID]		= BIT(19),
588 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
589 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
590 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
591 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
592 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
593 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
594 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
595 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
596 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
597 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
598 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
599 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
600 };
601 
602 static u8 ksz8463_shifts[] = {
603 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
604 	[STATIC_MAC_FWD_PORTS]		= 16,
605 	[STATIC_MAC_FID]		= 22,
606 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
607 	[DYNAMIC_MAC_ENTRIES]		= 24,
608 	[DYNAMIC_MAC_FID]		= 16,
609 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
610 	[DYNAMIC_MAC_SRC_PORT]		= 20,
611 };
612 
613 static const u16 ksz8795_regs[] = {
614 	[REG_SW_MAC_ADDR]		= 0x68,
615 	[REG_IND_CTRL_0]		= 0x6E,
616 	[REG_IND_DATA_8]		= 0x70,
617 	[REG_IND_DATA_CHECK]		= 0x72,
618 	[REG_IND_DATA_HI]		= 0x71,
619 	[REG_IND_DATA_LO]		= 0x75,
620 	[REG_IND_MIB_CHECK]		= 0x74,
621 	[REG_IND_BYTE]			= 0xA0,
622 	[P_FORCE_CTRL]			= 0x0C,
623 	[P_LINK_STATUS]			= 0x0E,
624 	[P_LOCAL_CTRL]			= 0x07,
625 	[P_NEG_RESTART_CTRL]		= 0x0D,
626 	[P_REMOTE_STATUS]		= 0x08,
627 	[P_SPEED_STATUS]		= 0x09,
628 	[S_TAIL_TAG_CTRL]		= 0x0C,
629 	[P_STP_CTRL]			= 0x02,
630 	[S_START_CTRL]			= 0x01,
631 	[S_BROADCAST_CTRL]		= 0x06,
632 	[S_MULTICAST_CTRL]		= 0x04,
633 	[P_XMII_CTRL_0]			= 0x06,
634 	[P_XMII_CTRL_1]			= 0x06,
635 	[REG_SW_PME_CTRL]		= 0x8003,
636 	[REG_PORT_PME_STATUS]		= 0x8003,
637 	[REG_PORT_PME_CTRL]		= 0x8007,
638 };
639 
640 static const u32 ksz8795_masks[] = {
641 	[PORT_802_1P_REMAPPING]		= BIT(7),
642 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
643 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
644 	[MIB_COUNTER_VALID]		= BIT(5),
645 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
646 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
647 	[VLAN_TABLE_VALID]		= BIT(12),
648 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
649 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
650 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
651 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
652 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
653 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
654 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
655 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
656 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
657 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
658 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
659 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
660 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
661 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
662 };
663 
664 static const u8 ksz8795_xmii_ctrl0[] = {
665 	[P_MII_100MBIT]			= 0,
666 	[P_MII_10MBIT]			= 1,
667 	[P_MII_FULL_DUPLEX]		= 0,
668 	[P_MII_HALF_DUPLEX]		= 1,
669 };
670 
671 static const u8 ksz8795_xmii_ctrl1[] = {
672 	[P_RGMII_SEL]			= 3,
673 	[P_GMII_SEL]			= 2,
674 	[P_RMII_SEL]			= 1,
675 	[P_MII_SEL]			= 0,
676 	[P_GMII_1GBIT]			= 1,
677 	[P_GMII_NOT_1GBIT]		= 0,
678 };
679 
680 static const u8 ksz8795_shifts[] = {
681 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
682 	[VLAN_TABLE]			= 16,
683 	[STATIC_MAC_FWD_PORTS]		= 16,
684 	[STATIC_MAC_FID]		= 24,
685 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
686 	[DYNAMIC_MAC_ENTRIES]		= 29,
687 	[DYNAMIC_MAC_FID]		= 16,
688 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
689 	[DYNAMIC_MAC_SRC_PORT]		= 24,
690 };
691 
692 static const u16 ksz8863_regs[] = {
693 	[REG_SW_MAC_ADDR]		= 0x70,
694 	[REG_IND_CTRL_0]		= 0x79,
695 	[REG_IND_DATA_8]		= 0x7B,
696 	[REG_IND_DATA_CHECK]		= 0x7B,
697 	[REG_IND_DATA_HI]		= 0x7C,
698 	[REG_IND_DATA_LO]		= 0x80,
699 	[REG_IND_MIB_CHECK]		= 0x80,
700 	[P_FORCE_CTRL]			= 0x0C,
701 	[P_LINK_STATUS]			= 0x0E,
702 	[P_LOCAL_CTRL]			= 0x0C,
703 	[P_NEG_RESTART_CTRL]		= 0x0D,
704 	[P_REMOTE_STATUS]		= 0x0E,
705 	[P_SPEED_STATUS]		= 0x0F,
706 	[S_TAIL_TAG_CTRL]		= 0x03,
707 	[P_STP_CTRL]			= 0x02,
708 	[S_START_CTRL]			= 0x01,
709 	[S_BROADCAST_CTRL]		= 0x06,
710 	[S_MULTICAST_CTRL]		= 0x04,
711 };
712 
713 static const u32 ksz8863_masks[] = {
714 	[PORT_802_1P_REMAPPING]		= BIT(3),
715 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
716 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
717 	[MIB_COUNTER_VALID]		= BIT(6),
718 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
719 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
720 	[VLAN_TABLE_VALID]		= BIT(19),
721 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
722 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
723 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
724 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
725 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
726 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
727 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
728 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
729 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
730 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
731 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
732 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
733 };
734 
735 static u8 ksz8863_shifts[] = {
736 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
737 	[STATIC_MAC_FWD_PORTS]		= 16,
738 	[STATIC_MAC_FID]		= 22,
739 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
740 	[DYNAMIC_MAC_ENTRIES]		= 24,
741 	[DYNAMIC_MAC_FID]		= 16,
742 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
743 	[DYNAMIC_MAC_SRC_PORT]		= 20,
744 };
745 
746 static const u16 ksz8895_regs[] = {
747 	[REG_SW_MAC_ADDR]		= 0x68,
748 	[REG_IND_CTRL_0]		= 0x6E,
749 	[REG_IND_DATA_8]		= 0x70,
750 	[REG_IND_DATA_CHECK]		= 0x72,
751 	[REG_IND_DATA_HI]		= 0x71,
752 	[REG_IND_DATA_LO]		= 0x75,
753 	[REG_IND_MIB_CHECK]		= 0x75,
754 	[P_FORCE_CTRL]			= 0x0C,
755 	[P_LINK_STATUS]			= 0x0E,
756 	[P_LOCAL_CTRL]			= 0x0C,
757 	[P_NEG_RESTART_CTRL]		= 0x0D,
758 	[P_REMOTE_STATUS]		= 0x0E,
759 	[P_SPEED_STATUS]		= 0x09,
760 	[S_TAIL_TAG_CTRL]		= 0x0C,
761 	[P_STP_CTRL]			= 0x02,
762 	[S_START_CTRL]			= 0x01,
763 	[S_BROADCAST_CTRL]		= 0x06,
764 	[S_MULTICAST_CTRL]		= 0x04,
765 };
766 
767 static const u32 ksz8895_masks[] = {
768 	[PORT_802_1P_REMAPPING]		= BIT(7),
769 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
770 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
771 	[MIB_COUNTER_VALID]		= BIT(6),
772 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
773 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
774 	[VLAN_TABLE_VALID]		= BIT(12),
775 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
776 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
777 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
778 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
779 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
780 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
781 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
782 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
783 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
784 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
785 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
786 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
787 };
788 
789 static const u8 ksz8895_shifts[] = {
790 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
791 	[VLAN_TABLE]			= 13,
792 	[STATIC_MAC_FWD_PORTS]		= 16,
793 	[STATIC_MAC_FID]		= 24,
794 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
795 	[DYNAMIC_MAC_ENTRIES]		= 29,
796 	[DYNAMIC_MAC_FID]		= 16,
797 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
798 	[DYNAMIC_MAC_SRC_PORT]		= 24,
799 };
800 
801 static const u16 ksz9477_regs[] = {
802 	[REG_SW_MAC_ADDR]		= 0x0302,
803 	[P_STP_CTRL]			= 0x0B04,
804 	[S_START_CTRL]			= 0x0300,
805 	[S_BROADCAST_CTRL]		= 0x0332,
806 	[S_MULTICAST_CTRL]		= 0x0331,
807 	[P_XMII_CTRL_0]			= 0x0300,
808 	[P_XMII_CTRL_1]			= 0x0301,
809 	[REG_SW_PME_CTRL]		= 0x0006,
810 	[REG_PORT_PME_STATUS]		= 0x0013,
811 	[REG_PORT_PME_CTRL]		= 0x0017,
812 	[PTP_CLK_CTRL]			= 0x0500,
813 	[PTP_RTC_SUB_NANOSEC]		= 0x0502,
814 	[PTP_RTC_NANOSEC]		= 0x0504,
815 	[PTP_RTC_SEC]			= 0x0508,
816 	[PTP_SUBNANOSEC_RATE]		= 0x050C,
817 	[PTP_MSG_CONF1]			= 0x0514,
818 };
819 
820 static const u32 ksz9477_masks[] = {
821 	[ALU_STAT_WRITE]		= 0,
822 	[ALU_STAT_READ]			= 1,
823 	[ALU_STAT_DIRECT]		= 0,
824 	[ALU_RESV_MCAST_ADDR]		= BIT(1),
825 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
826 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
827 };
828 
829 static const u8 ksz9477_shifts[] = {
830 	[ALU_STAT_INDEX]		= 16,
831 };
832 
833 static const u8 ksz9477_xmii_ctrl0[] = {
834 	[P_MII_100MBIT]			= 1,
835 	[P_MII_10MBIT]			= 0,
836 	[P_MII_FULL_DUPLEX]		= 1,
837 	[P_MII_HALF_DUPLEX]		= 0,
838 };
839 
840 static const u8 ksz9477_xmii_ctrl1[] = {
841 	[P_RGMII_SEL]			= 0,
842 	[P_RMII_SEL]			= 1,
843 	[P_GMII_SEL]			= 2,
844 	[P_MII_SEL]			= 3,
845 	[P_GMII_1GBIT]			= 0,
846 	[P_GMII_NOT_1GBIT]		= 1,
847 };
848 
849 static const u32 lan937x_masks[] = {
850 	[ALU_STAT_WRITE]		= 1,
851 	[ALU_STAT_READ]			= 2,
852 	[ALU_STAT_DIRECT]		= BIT(3),
853 	[ALU_RESV_MCAST_ADDR]		= BIT(2),
854 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
855 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
856 };
857 
858 static const u8 lan937x_shifts[] = {
859 	[ALU_STAT_INDEX]		= 8,
860 };
861 
862 static const struct regmap_range ksz8563_valid_regs[] = {
863 	regmap_reg_range(0x0000, 0x0003),
864 	regmap_reg_range(0x0006, 0x0006),
865 	regmap_reg_range(0x000f, 0x001f),
866 	regmap_reg_range(0x0100, 0x0100),
867 	regmap_reg_range(0x0104, 0x0107),
868 	regmap_reg_range(0x010d, 0x010d),
869 	regmap_reg_range(0x0110, 0x0113),
870 	regmap_reg_range(0x0120, 0x012b),
871 	regmap_reg_range(0x0201, 0x0201),
872 	regmap_reg_range(0x0210, 0x0213),
873 	regmap_reg_range(0x0300, 0x0300),
874 	regmap_reg_range(0x0302, 0x031b),
875 	regmap_reg_range(0x0320, 0x032b),
876 	regmap_reg_range(0x0330, 0x0336),
877 	regmap_reg_range(0x0338, 0x033e),
878 	regmap_reg_range(0x0340, 0x035f),
879 	regmap_reg_range(0x0370, 0x0370),
880 	regmap_reg_range(0x0378, 0x0378),
881 	regmap_reg_range(0x037c, 0x037d),
882 	regmap_reg_range(0x0390, 0x0393),
883 	regmap_reg_range(0x0400, 0x040e),
884 	regmap_reg_range(0x0410, 0x042f),
885 	regmap_reg_range(0x0500, 0x0519),
886 	regmap_reg_range(0x0520, 0x054b),
887 	regmap_reg_range(0x0550, 0x05b3),
888 
889 	/* port 1 */
890 	regmap_reg_range(0x1000, 0x1001),
891 	regmap_reg_range(0x1004, 0x100b),
892 	regmap_reg_range(0x1013, 0x1013),
893 	regmap_reg_range(0x1017, 0x1017),
894 	regmap_reg_range(0x101b, 0x101b),
895 	regmap_reg_range(0x101f, 0x1021),
896 	regmap_reg_range(0x1030, 0x1030),
897 	regmap_reg_range(0x1100, 0x1111),
898 	regmap_reg_range(0x111a, 0x111d),
899 	regmap_reg_range(0x1122, 0x1127),
900 	regmap_reg_range(0x112a, 0x112b),
901 	regmap_reg_range(0x1136, 0x1139),
902 	regmap_reg_range(0x113e, 0x113f),
903 	regmap_reg_range(0x1400, 0x1401),
904 	regmap_reg_range(0x1403, 0x1403),
905 	regmap_reg_range(0x1410, 0x1417),
906 	regmap_reg_range(0x1420, 0x1423),
907 	regmap_reg_range(0x1500, 0x1507),
908 	regmap_reg_range(0x1600, 0x1612),
909 	regmap_reg_range(0x1800, 0x180f),
910 	regmap_reg_range(0x1900, 0x1907),
911 	regmap_reg_range(0x1914, 0x191b),
912 	regmap_reg_range(0x1a00, 0x1a03),
913 	regmap_reg_range(0x1a04, 0x1a08),
914 	regmap_reg_range(0x1b00, 0x1b01),
915 	regmap_reg_range(0x1b04, 0x1b04),
916 	regmap_reg_range(0x1c00, 0x1c05),
917 	regmap_reg_range(0x1c08, 0x1c1b),
918 
919 	/* port 2 */
920 	regmap_reg_range(0x2000, 0x2001),
921 	regmap_reg_range(0x2004, 0x200b),
922 	regmap_reg_range(0x2013, 0x2013),
923 	regmap_reg_range(0x2017, 0x2017),
924 	regmap_reg_range(0x201b, 0x201b),
925 	regmap_reg_range(0x201f, 0x2021),
926 	regmap_reg_range(0x2030, 0x2030),
927 	regmap_reg_range(0x2100, 0x2111),
928 	regmap_reg_range(0x211a, 0x211d),
929 	regmap_reg_range(0x2122, 0x2127),
930 	regmap_reg_range(0x212a, 0x212b),
931 	regmap_reg_range(0x2136, 0x2139),
932 	regmap_reg_range(0x213e, 0x213f),
933 	regmap_reg_range(0x2400, 0x2401),
934 	regmap_reg_range(0x2403, 0x2403),
935 	regmap_reg_range(0x2410, 0x2417),
936 	regmap_reg_range(0x2420, 0x2423),
937 	regmap_reg_range(0x2500, 0x2507),
938 	regmap_reg_range(0x2600, 0x2612),
939 	regmap_reg_range(0x2800, 0x280f),
940 	regmap_reg_range(0x2900, 0x2907),
941 	regmap_reg_range(0x2914, 0x291b),
942 	regmap_reg_range(0x2a00, 0x2a03),
943 	regmap_reg_range(0x2a04, 0x2a08),
944 	regmap_reg_range(0x2b00, 0x2b01),
945 	regmap_reg_range(0x2b04, 0x2b04),
946 	regmap_reg_range(0x2c00, 0x2c05),
947 	regmap_reg_range(0x2c08, 0x2c1b),
948 
949 	/* port 3 */
950 	regmap_reg_range(0x3000, 0x3001),
951 	regmap_reg_range(0x3004, 0x300b),
952 	regmap_reg_range(0x3013, 0x3013),
953 	regmap_reg_range(0x3017, 0x3017),
954 	regmap_reg_range(0x301b, 0x301b),
955 	regmap_reg_range(0x301f, 0x3021),
956 	regmap_reg_range(0x3030, 0x3030),
957 	regmap_reg_range(0x3300, 0x3301),
958 	regmap_reg_range(0x3303, 0x3303),
959 	regmap_reg_range(0x3400, 0x3401),
960 	regmap_reg_range(0x3403, 0x3403),
961 	regmap_reg_range(0x3410, 0x3417),
962 	regmap_reg_range(0x3420, 0x3423),
963 	regmap_reg_range(0x3500, 0x3507),
964 	regmap_reg_range(0x3600, 0x3612),
965 	regmap_reg_range(0x3800, 0x380f),
966 	regmap_reg_range(0x3900, 0x3907),
967 	regmap_reg_range(0x3914, 0x391b),
968 	regmap_reg_range(0x3a00, 0x3a03),
969 	regmap_reg_range(0x3a04, 0x3a08),
970 	regmap_reg_range(0x3b00, 0x3b01),
971 	regmap_reg_range(0x3b04, 0x3b04),
972 	regmap_reg_range(0x3c00, 0x3c05),
973 	regmap_reg_range(0x3c08, 0x3c1b),
974 };
975 
976 static const struct regmap_access_table ksz8563_register_set = {
977 	.yes_ranges = ksz8563_valid_regs,
978 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
979 };
980 
981 static const struct regmap_range ksz9477_valid_regs[] = {
982 	regmap_reg_range(0x0000, 0x0003),
983 	regmap_reg_range(0x0006, 0x0006),
984 	regmap_reg_range(0x0010, 0x001f),
985 	regmap_reg_range(0x0100, 0x0100),
986 	regmap_reg_range(0x0103, 0x0107),
987 	regmap_reg_range(0x010d, 0x010d),
988 	regmap_reg_range(0x0110, 0x0113),
989 	regmap_reg_range(0x0120, 0x012b),
990 	regmap_reg_range(0x0201, 0x0201),
991 	regmap_reg_range(0x0210, 0x0213),
992 	regmap_reg_range(0x0300, 0x0300),
993 	regmap_reg_range(0x0302, 0x031b),
994 	regmap_reg_range(0x0320, 0x032b),
995 	regmap_reg_range(0x0330, 0x0336),
996 	regmap_reg_range(0x0338, 0x033b),
997 	regmap_reg_range(0x033e, 0x033e),
998 	regmap_reg_range(0x0340, 0x035f),
999 	regmap_reg_range(0x0370, 0x0370),
1000 	regmap_reg_range(0x0378, 0x0378),
1001 	regmap_reg_range(0x037c, 0x037d),
1002 	regmap_reg_range(0x0390, 0x0393),
1003 	regmap_reg_range(0x0400, 0x040e),
1004 	regmap_reg_range(0x0410, 0x042f),
1005 	regmap_reg_range(0x0444, 0x044b),
1006 	regmap_reg_range(0x0450, 0x046f),
1007 	regmap_reg_range(0x0500, 0x0519),
1008 	regmap_reg_range(0x0520, 0x054b),
1009 	regmap_reg_range(0x0550, 0x05b3),
1010 	regmap_reg_range(0x0604, 0x060b),
1011 	regmap_reg_range(0x0610, 0x0612),
1012 	regmap_reg_range(0x0614, 0x062c),
1013 	regmap_reg_range(0x0640, 0x0645),
1014 	regmap_reg_range(0x0648, 0x064d),
1015 
1016 	/* port 1 */
1017 	regmap_reg_range(0x1000, 0x1001),
1018 	regmap_reg_range(0x1013, 0x1013),
1019 	regmap_reg_range(0x1017, 0x1017),
1020 	regmap_reg_range(0x101b, 0x101b),
1021 	regmap_reg_range(0x101f, 0x1020),
1022 	regmap_reg_range(0x1030, 0x1030),
1023 	regmap_reg_range(0x1100, 0x1115),
1024 	regmap_reg_range(0x111a, 0x111f),
1025 	regmap_reg_range(0x1120, 0x112b),
1026 	regmap_reg_range(0x1134, 0x113b),
1027 	regmap_reg_range(0x113c, 0x113f),
1028 	regmap_reg_range(0x1400, 0x1401),
1029 	regmap_reg_range(0x1403, 0x1403),
1030 	regmap_reg_range(0x1410, 0x1417),
1031 	regmap_reg_range(0x1420, 0x1423),
1032 	regmap_reg_range(0x1500, 0x1507),
1033 	regmap_reg_range(0x1600, 0x1613),
1034 	regmap_reg_range(0x1800, 0x180f),
1035 	regmap_reg_range(0x1820, 0x1827),
1036 	regmap_reg_range(0x1830, 0x1837),
1037 	regmap_reg_range(0x1840, 0x184b),
1038 	regmap_reg_range(0x1900, 0x1907),
1039 	regmap_reg_range(0x1914, 0x191b),
1040 	regmap_reg_range(0x1920, 0x1920),
1041 	regmap_reg_range(0x1923, 0x1927),
1042 	regmap_reg_range(0x1a00, 0x1a03),
1043 	regmap_reg_range(0x1a04, 0x1a07),
1044 	regmap_reg_range(0x1b00, 0x1b01),
1045 	regmap_reg_range(0x1b04, 0x1b04),
1046 	regmap_reg_range(0x1c00, 0x1c05),
1047 	regmap_reg_range(0x1c08, 0x1c1b),
1048 
1049 	/* port 2 */
1050 	regmap_reg_range(0x2000, 0x2001),
1051 	regmap_reg_range(0x2013, 0x2013),
1052 	regmap_reg_range(0x2017, 0x2017),
1053 	regmap_reg_range(0x201b, 0x201b),
1054 	regmap_reg_range(0x201f, 0x2020),
1055 	regmap_reg_range(0x2030, 0x2030),
1056 	regmap_reg_range(0x2100, 0x2115),
1057 	regmap_reg_range(0x211a, 0x211f),
1058 	regmap_reg_range(0x2120, 0x212b),
1059 	regmap_reg_range(0x2134, 0x213b),
1060 	regmap_reg_range(0x213c, 0x213f),
1061 	regmap_reg_range(0x2400, 0x2401),
1062 	regmap_reg_range(0x2403, 0x2403),
1063 	regmap_reg_range(0x2410, 0x2417),
1064 	regmap_reg_range(0x2420, 0x2423),
1065 	regmap_reg_range(0x2500, 0x2507),
1066 	regmap_reg_range(0x2600, 0x2613),
1067 	regmap_reg_range(0x2800, 0x280f),
1068 	regmap_reg_range(0x2820, 0x2827),
1069 	regmap_reg_range(0x2830, 0x2837),
1070 	regmap_reg_range(0x2840, 0x284b),
1071 	regmap_reg_range(0x2900, 0x2907),
1072 	regmap_reg_range(0x2914, 0x291b),
1073 	regmap_reg_range(0x2920, 0x2920),
1074 	regmap_reg_range(0x2923, 0x2927),
1075 	regmap_reg_range(0x2a00, 0x2a03),
1076 	regmap_reg_range(0x2a04, 0x2a07),
1077 	regmap_reg_range(0x2b00, 0x2b01),
1078 	regmap_reg_range(0x2b04, 0x2b04),
1079 	regmap_reg_range(0x2c00, 0x2c05),
1080 	regmap_reg_range(0x2c08, 0x2c1b),
1081 
1082 	/* port 3 */
1083 	regmap_reg_range(0x3000, 0x3001),
1084 	regmap_reg_range(0x3013, 0x3013),
1085 	regmap_reg_range(0x3017, 0x3017),
1086 	regmap_reg_range(0x301b, 0x301b),
1087 	regmap_reg_range(0x301f, 0x3020),
1088 	regmap_reg_range(0x3030, 0x3030),
1089 	regmap_reg_range(0x3100, 0x3115),
1090 	regmap_reg_range(0x311a, 0x311f),
1091 	regmap_reg_range(0x3120, 0x312b),
1092 	regmap_reg_range(0x3134, 0x313b),
1093 	regmap_reg_range(0x313c, 0x313f),
1094 	regmap_reg_range(0x3400, 0x3401),
1095 	regmap_reg_range(0x3403, 0x3403),
1096 	regmap_reg_range(0x3410, 0x3417),
1097 	regmap_reg_range(0x3420, 0x3423),
1098 	regmap_reg_range(0x3500, 0x3507),
1099 	regmap_reg_range(0x3600, 0x3613),
1100 	regmap_reg_range(0x3800, 0x380f),
1101 	regmap_reg_range(0x3820, 0x3827),
1102 	regmap_reg_range(0x3830, 0x3837),
1103 	regmap_reg_range(0x3840, 0x384b),
1104 	regmap_reg_range(0x3900, 0x3907),
1105 	regmap_reg_range(0x3914, 0x391b),
1106 	regmap_reg_range(0x3920, 0x3920),
1107 	regmap_reg_range(0x3923, 0x3927),
1108 	regmap_reg_range(0x3a00, 0x3a03),
1109 	regmap_reg_range(0x3a04, 0x3a07),
1110 	regmap_reg_range(0x3b00, 0x3b01),
1111 	regmap_reg_range(0x3b04, 0x3b04),
1112 	regmap_reg_range(0x3c00, 0x3c05),
1113 	regmap_reg_range(0x3c08, 0x3c1b),
1114 
1115 	/* port 4 */
1116 	regmap_reg_range(0x4000, 0x4001),
1117 	regmap_reg_range(0x4013, 0x4013),
1118 	regmap_reg_range(0x4017, 0x4017),
1119 	regmap_reg_range(0x401b, 0x401b),
1120 	regmap_reg_range(0x401f, 0x4020),
1121 	regmap_reg_range(0x4030, 0x4030),
1122 	regmap_reg_range(0x4100, 0x4115),
1123 	regmap_reg_range(0x411a, 0x411f),
1124 	regmap_reg_range(0x4120, 0x412b),
1125 	regmap_reg_range(0x4134, 0x413b),
1126 	regmap_reg_range(0x413c, 0x413f),
1127 	regmap_reg_range(0x4400, 0x4401),
1128 	regmap_reg_range(0x4403, 0x4403),
1129 	regmap_reg_range(0x4410, 0x4417),
1130 	regmap_reg_range(0x4420, 0x4423),
1131 	regmap_reg_range(0x4500, 0x4507),
1132 	regmap_reg_range(0x4600, 0x4613),
1133 	regmap_reg_range(0x4800, 0x480f),
1134 	regmap_reg_range(0x4820, 0x4827),
1135 	regmap_reg_range(0x4830, 0x4837),
1136 	regmap_reg_range(0x4840, 0x484b),
1137 	regmap_reg_range(0x4900, 0x4907),
1138 	regmap_reg_range(0x4914, 0x491b),
1139 	regmap_reg_range(0x4920, 0x4920),
1140 	regmap_reg_range(0x4923, 0x4927),
1141 	regmap_reg_range(0x4a00, 0x4a03),
1142 	regmap_reg_range(0x4a04, 0x4a07),
1143 	regmap_reg_range(0x4b00, 0x4b01),
1144 	regmap_reg_range(0x4b04, 0x4b04),
1145 	regmap_reg_range(0x4c00, 0x4c05),
1146 	regmap_reg_range(0x4c08, 0x4c1b),
1147 
1148 	/* port 5 */
1149 	regmap_reg_range(0x5000, 0x5001),
1150 	regmap_reg_range(0x5013, 0x5013),
1151 	regmap_reg_range(0x5017, 0x5017),
1152 	regmap_reg_range(0x501b, 0x501b),
1153 	regmap_reg_range(0x501f, 0x5020),
1154 	regmap_reg_range(0x5030, 0x5030),
1155 	regmap_reg_range(0x5100, 0x5115),
1156 	regmap_reg_range(0x511a, 0x511f),
1157 	regmap_reg_range(0x5120, 0x512b),
1158 	regmap_reg_range(0x5134, 0x513b),
1159 	regmap_reg_range(0x513c, 0x513f),
1160 	regmap_reg_range(0x5400, 0x5401),
1161 	regmap_reg_range(0x5403, 0x5403),
1162 	regmap_reg_range(0x5410, 0x5417),
1163 	regmap_reg_range(0x5420, 0x5423),
1164 	regmap_reg_range(0x5500, 0x5507),
1165 	regmap_reg_range(0x5600, 0x5613),
1166 	regmap_reg_range(0x5800, 0x580f),
1167 	regmap_reg_range(0x5820, 0x5827),
1168 	regmap_reg_range(0x5830, 0x5837),
1169 	regmap_reg_range(0x5840, 0x584b),
1170 	regmap_reg_range(0x5900, 0x5907),
1171 	regmap_reg_range(0x5914, 0x591b),
1172 	regmap_reg_range(0x5920, 0x5920),
1173 	regmap_reg_range(0x5923, 0x5927),
1174 	regmap_reg_range(0x5a00, 0x5a03),
1175 	regmap_reg_range(0x5a04, 0x5a07),
1176 	regmap_reg_range(0x5b00, 0x5b01),
1177 	regmap_reg_range(0x5b04, 0x5b04),
1178 	regmap_reg_range(0x5c00, 0x5c05),
1179 	regmap_reg_range(0x5c08, 0x5c1b),
1180 
1181 	/* port 6 */
1182 	regmap_reg_range(0x6000, 0x6001),
1183 	regmap_reg_range(0x6013, 0x6013),
1184 	regmap_reg_range(0x6017, 0x6017),
1185 	regmap_reg_range(0x601b, 0x601b),
1186 	regmap_reg_range(0x601f, 0x6020),
1187 	regmap_reg_range(0x6030, 0x6030),
1188 	regmap_reg_range(0x6300, 0x6301),
1189 	regmap_reg_range(0x6400, 0x6401),
1190 	regmap_reg_range(0x6403, 0x6403),
1191 	regmap_reg_range(0x6410, 0x6417),
1192 	regmap_reg_range(0x6420, 0x6423),
1193 	regmap_reg_range(0x6500, 0x6507),
1194 	regmap_reg_range(0x6600, 0x6613),
1195 	regmap_reg_range(0x6800, 0x680f),
1196 	regmap_reg_range(0x6820, 0x6827),
1197 	regmap_reg_range(0x6830, 0x6837),
1198 	regmap_reg_range(0x6840, 0x684b),
1199 	regmap_reg_range(0x6900, 0x6907),
1200 	regmap_reg_range(0x6914, 0x691b),
1201 	regmap_reg_range(0x6920, 0x6920),
1202 	regmap_reg_range(0x6923, 0x6927),
1203 	regmap_reg_range(0x6a00, 0x6a03),
1204 	regmap_reg_range(0x6a04, 0x6a07),
1205 	regmap_reg_range(0x6b00, 0x6b01),
1206 	regmap_reg_range(0x6b04, 0x6b04),
1207 	regmap_reg_range(0x6c00, 0x6c05),
1208 	regmap_reg_range(0x6c08, 0x6c1b),
1209 
1210 	/* port 7 */
1211 	regmap_reg_range(0x7000, 0x7001),
1212 	regmap_reg_range(0x7013, 0x7013),
1213 	regmap_reg_range(0x7017, 0x7017),
1214 	regmap_reg_range(0x701b, 0x701b),
1215 	regmap_reg_range(0x701f, 0x7020),
1216 	regmap_reg_range(0x7030, 0x7030),
1217 	regmap_reg_range(0x7200, 0x7207),
1218 	regmap_reg_range(0x7300, 0x7301),
1219 	regmap_reg_range(0x7400, 0x7401),
1220 	regmap_reg_range(0x7403, 0x7403),
1221 	regmap_reg_range(0x7410, 0x7417),
1222 	regmap_reg_range(0x7420, 0x7423),
1223 	regmap_reg_range(0x7500, 0x7507),
1224 	regmap_reg_range(0x7600, 0x7613),
1225 	regmap_reg_range(0x7800, 0x780f),
1226 	regmap_reg_range(0x7820, 0x7827),
1227 	regmap_reg_range(0x7830, 0x7837),
1228 	regmap_reg_range(0x7840, 0x784b),
1229 	regmap_reg_range(0x7900, 0x7907),
1230 	regmap_reg_range(0x7914, 0x791b),
1231 	regmap_reg_range(0x7920, 0x7920),
1232 	regmap_reg_range(0x7923, 0x7927),
1233 	regmap_reg_range(0x7a00, 0x7a03),
1234 	regmap_reg_range(0x7a04, 0x7a07),
1235 	regmap_reg_range(0x7b00, 0x7b01),
1236 	regmap_reg_range(0x7b04, 0x7b04),
1237 	regmap_reg_range(0x7c00, 0x7c05),
1238 	regmap_reg_range(0x7c08, 0x7c1b),
1239 };
1240 
1241 static const struct regmap_access_table ksz9477_register_set = {
1242 	.yes_ranges = ksz9477_valid_regs,
1243 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1244 };
1245 
1246 static const struct regmap_range ksz9896_valid_regs[] = {
1247 	regmap_reg_range(0x0000, 0x0003),
1248 	regmap_reg_range(0x0006, 0x0006),
1249 	regmap_reg_range(0x0010, 0x001f),
1250 	regmap_reg_range(0x0100, 0x0100),
1251 	regmap_reg_range(0x0103, 0x0107),
1252 	regmap_reg_range(0x010d, 0x010d),
1253 	regmap_reg_range(0x0110, 0x0113),
1254 	regmap_reg_range(0x0120, 0x0127),
1255 	regmap_reg_range(0x0201, 0x0201),
1256 	regmap_reg_range(0x0210, 0x0213),
1257 	regmap_reg_range(0x0300, 0x0300),
1258 	regmap_reg_range(0x0302, 0x030b),
1259 	regmap_reg_range(0x0310, 0x031b),
1260 	regmap_reg_range(0x0320, 0x032b),
1261 	regmap_reg_range(0x0330, 0x0336),
1262 	regmap_reg_range(0x0338, 0x033b),
1263 	regmap_reg_range(0x033e, 0x033e),
1264 	regmap_reg_range(0x0340, 0x035f),
1265 	regmap_reg_range(0x0370, 0x0370),
1266 	regmap_reg_range(0x0378, 0x0378),
1267 	regmap_reg_range(0x037c, 0x037d),
1268 	regmap_reg_range(0x0390, 0x0393),
1269 	regmap_reg_range(0x0400, 0x040e),
1270 	regmap_reg_range(0x0410, 0x042f),
1271 
1272 	/* port 1 */
1273 	regmap_reg_range(0x1000, 0x1001),
1274 	regmap_reg_range(0x1013, 0x1013),
1275 	regmap_reg_range(0x1017, 0x1017),
1276 	regmap_reg_range(0x101b, 0x101b),
1277 	regmap_reg_range(0x101f, 0x1020),
1278 	regmap_reg_range(0x1030, 0x1030),
1279 	regmap_reg_range(0x1100, 0x1115),
1280 	regmap_reg_range(0x111a, 0x111f),
1281 	regmap_reg_range(0x1120, 0x112b),
1282 	regmap_reg_range(0x1134, 0x113b),
1283 	regmap_reg_range(0x113c, 0x113f),
1284 	regmap_reg_range(0x1400, 0x1401),
1285 	regmap_reg_range(0x1403, 0x1403),
1286 	regmap_reg_range(0x1410, 0x1417),
1287 	regmap_reg_range(0x1420, 0x1423),
1288 	regmap_reg_range(0x1500, 0x1507),
1289 	regmap_reg_range(0x1600, 0x1612),
1290 	regmap_reg_range(0x1800, 0x180f),
1291 	regmap_reg_range(0x1820, 0x1827),
1292 	regmap_reg_range(0x1830, 0x1837),
1293 	regmap_reg_range(0x1840, 0x184b),
1294 	regmap_reg_range(0x1900, 0x1907),
1295 	regmap_reg_range(0x1914, 0x1915),
1296 	regmap_reg_range(0x1a00, 0x1a03),
1297 	regmap_reg_range(0x1a04, 0x1a07),
1298 	regmap_reg_range(0x1b00, 0x1b01),
1299 	regmap_reg_range(0x1b04, 0x1b04),
1300 
1301 	/* port 2 */
1302 	regmap_reg_range(0x2000, 0x2001),
1303 	regmap_reg_range(0x2013, 0x2013),
1304 	regmap_reg_range(0x2017, 0x2017),
1305 	regmap_reg_range(0x201b, 0x201b),
1306 	regmap_reg_range(0x201f, 0x2020),
1307 	regmap_reg_range(0x2030, 0x2030),
1308 	regmap_reg_range(0x2100, 0x2115),
1309 	regmap_reg_range(0x211a, 0x211f),
1310 	regmap_reg_range(0x2120, 0x212b),
1311 	regmap_reg_range(0x2134, 0x213b),
1312 	regmap_reg_range(0x213c, 0x213f),
1313 	regmap_reg_range(0x2400, 0x2401),
1314 	regmap_reg_range(0x2403, 0x2403),
1315 	regmap_reg_range(0x2410, 0x2417),
1316 	regmap_reg_range(0x2420, 0x2423),
1317 	regmap_reg_range(0x2500, 0x2507),
1318 	regmap_reg_range(0x2600, 0x2612),
1319 	regmap_reg_range(0x2800, 0x280f),
1320 	regmap_reg_range(0x2820, 0x2827),
1321 	regmap_reg_range(0x2830, 0x2837),
1322 	regmap_reg_range(0x2840, 0x284b),
1323 	regmap_reg_range(0x2900, 0x2907),
1324 	regmap_reg_range(0x2914, 0x2915),
1325 	regmap_reg_range(0x2a00, 0x2a03),
1326 	regmap_reg_range(0x2a04, 0x2a07),
1327 	regmap_reg_range(0x2b00, 0x2b01),
1328 	regmap_reg_range(0x2b04, 0x2b04),
1329 
1330 	/* port 3 */
1331 	regmap_reg_range(0x3000, 0x3001),
1332 	regmap_reg_range(0x3013, 0x3013),
1333 	regmap_reg_range(0x3017, 0x3017),
1334 	regmap_reg_range(0x301b, 0x301b),
1335 	regmap_reg_range(0x301f, 0x3020),
1336 	regmap_reg_range(0x3030, 0x3030),
1337 	regmap_reg_range(0x3100, 0x3115),
1338 	regmap_reg_range(0x311a, 0x311f),
1339 	regmap_reg_range(0x3120, 0x312b),
1340 	regmap_reg_range(0x3134, 0x313b),
1341 	regmap_reg_range(0x313c, 0x313f),
1342 	regmap_reg_range(0x3400, 0x3401),
1343 	regmap_reg_range(0x3403, 0x3403),
1344 	regmap_reg_range(0x3410, 0x3417),
1345 	regmap_reg_range(0x3420, 0x3423),
1346 	regmap_reg_range(0x3500, 0x3507),
1347 	regmap_reg_range(0x3600, 0x3612),
1348 	regmap_reg_range(0x3800, 0x380f),
1349 	regmap_reg_range(0x3820, 0x3827),
1350 	regmap_reg_range(0x3830, 0x3837),
1351 	regmap_reg_range(0x3840, 0x384b),
1352 	regmap_reg_range(0x3900, 0x3907),
1353 	regmap_reg_range(0x3914, 0x3915),
1354 	regmap_reg_range(0x3a00, 0x3a03),
1355 	regmap_reg_range(0x3a04, 0x3a07),
1356 	regmap_reg_range(0x3b00, 0x3b01),
1357 	regmap_reg_range(0x3b04, 0x3b04),
1358 
1359 	/* port 4 */
1360 	regmap_reg_range(0x4000, 0x4001),
1361 	regmap_reg_range(0x4013, 0x4013),
1362 	regmap_reg_range(0x4017, 0x4017),
1363 	regmap_reg_range(0x401b, 0x401b),
1364 	regmap_reg_range(0x401f, 0x4020),
1365 	regmap_reg_range(0x4030, 0x4030),
1366 	regmap_reg_range(0x4100, 0x4115),
1367 	regmap_reg_range(0x411a, 0x411f),
1368 	regmap_reg_range(0x4120, 0x412b),
1369 	regmap_reg_range(0x4134, 0x413b),
1370 	regmap_reg_range(0x413c, 0x413f),
1371 	regmap_reg_range(0x4400, 0x4401),
1372 	regmap_reg_range(0x4403, 0x4403),
1373 	regmap_reg_range(0x4410, 0x4417),
1374 	regmap_reg_range(0x4420, 0x4423),
1375 	regmap_reg_range(0x4500, 0x4507),
1376 	regmap_reg_range(0x4600, 0x4612),
1377 	regmap_reg_range(0x4800, 0x480f),
1378 	regmap_reg_range(0x4820, 0x4827),
1379 	regmap_reg_range(0x4830, 0x4837),
1380 	regmap_reg_range(0x4840, 0x484b),
1381 	regmap_reg_range(0x4900, 0x4907),
1382 	regmap_reg_range(0x4914, 0x4915),
1383 	regmap_reg_range(0x4a00, 0x4a03),
1384 	regmap_reg_range(0x4a04, 0x4a07),
1385 	regmap_reg_range(0x4b00, 0x4b01),
1386 	regmap_reg_range(0x4b04, 0x4b04),
1387 
1388 	/* port 5 */
1389 	regmap_reg_range(0x5000, 0x5001),
1390 	regmap_reg_range(0x5013, 0x5013),
1391 	regmap_reg_range(0x5017, 0x5017),
1392 	regmap_reg_range(0x501b, 0x501b),
1393 	regmap_reg_range(0x501f, 0x5020),
1394 	regmap_reg_range(0x5030, 0x5030),
1395 	regmap_reg_range(0x5100, 0x5115),
1396 	regmap_reg_range(0x511a, 0x511f),
1397 	regmap_reg_range(0x5120, 0x512b),
1398 	regmap_reg_range(0x5134, 0x513b),
1399 	regmap_reg_range(0x513c, 0x513f),
1400 	regmap_reg_range(0x5400, 0x5401),
1401 	regmap_reg_range(0x5403, 0x5403),
1402 	regmap_reg_range(0x5410, 0x5417),
1403 	regmap_reg_range(0x5420, 0x5423),
1404 	regmap_reg_range(0x5500, 0x5507),
1405 	regmap_reg_range(0x5600, 0x5612),
1406 	regmap_reg_range(0x5800, 0x580f),
1407 	regmap_reg_range(0x5820, 0x5827),
1408 	regmap_reg_range(0x5830, 0x5837),
1409 	regmap_reg_range(0x5840, 0x584b),
1410 	regmap_reg_range(0x5900, 0x5907),
1411 	regmap_reg_range(0x5914, 0x5915),
1412 	regmap_reg_range(0x5a00, 0x5a03),
1413 	regmap_reg_range(0x5a04, 0x5a07),
1414 	regmap_reg_range(0x5b00, 0x5b01),
1415 	regmap_reg_range(0x5b04, 0x5b04),
1416 
1417 	/* port 6 */
1418 	regmap_reg_range(0x6000, 0x6001),
1419 	regmap_reg_range(0x6013, 0x6013),
1420 	regmap_reg_range(0x6017, 0x6017),
1421 	regmap_reg_range(0x601b, 0x601b),
1422 	regmap_reg_range(0x601f, 0x6020),
1423 	regmap_reg_range(0x6030, 0x6030),
1424 	regmap_reg_range(0x6100, 0x6115),
1425 	regmap_reg_range(0x611a, 0x611f),
1426 	regmap_reg_range(0x6120, 0x612b),
1427 	regmap_reg_range(0x6134, 0x613b),
1428 	regmap_reg_range(0x613c, 0x613f),
1429 	regmap_reg_range(0x6300, 0x6301),
1430 	regmap_reg_range(0x6400, 0x6401),
1431 	regmap_reg_range(0x6403, 0x6403),
1432 	regmap_reg_range(0x6410, 0x6417),
1433 	regmap_reg_range(0x6420, 0x6423),
1434 	regmap_reg_range(0x6500, 0x6507),
1435 	regmap_reg_range(0x6600, 0x6612),
1436 	regmap_reg_range(0x6800, 0x680f),
1437 	regmap_reg_range(0x6820, 0x6827),
1438 	regmap_reg_range(0x6830, 0x6837),
1439 	regmap_reg_range(0x6840, 0x684b),
1440 	regmap_reg_range(0x6900, 0x6907),
1441 	regmap_reg_range(0x6914, 0x6915),
1442 	regmap_reg_range(0x6a00, 0x6a03),
1443 	regmap_reg_range(0x6a04, 0x6a07),
1444 	regmap_reg_range(0x6b00, 0x6b01),
1445 	regmap_reg_range(0x6b04, 0x6b04),
1446 };
1447 
1448 static const struct regmap_access_table ksz9896_register_set = {
1449 	.yes_ranges = ksz9896_valid_regs,
1450 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1451 };
1452 
1453 static const struct regmap_range ksz8873_valid_regs[] = {
1454 	regmap_reg_range(0x00, 0x01),
1455 	/* global control register */
1456 	regmap_reg_range(0x02, 0x0f),
1457 
1458 	/* port registers */
1459 	regmap_reg_range(0x10, 0x1d),
1460 	regmap_reg_range(0x1e, 0x1f),
1461 	regmap_reg_range(0x20, 0x2d),
1462 	regmap_reg_range(0x2e, 0x2f),
1463 	regmap_reg_range(0x30, 0x39),
1464 	regmap_reg_range(0x3f, 0x3f),
1465 
1466 	/* advanced control registers */
1467 	regmap_reg_range(0x43, 0x43),
1468 	regmap_reg_range(0x60, 0x6f),
1469 	regmap_reg_range(0x70, 0x75),
1470 	regmap_reg_range(0x76, 0x78),
1471 	regmap_reg_range(0x79, 0x7a),
1472 	regmap_reg_range(0x7b, 0x83),
1473 	regmap_reg_range(0x8e, 0x99),
1474 	regmap_reg_range(0x9a, 0xa5),
1475 	regmap_reg_range(0xa6, 0xa6),
1476 	regmap_reg_range(0xa7, 0xaa),
1477 	regmap_reg_range(0xab, 0xae),
1478 	regmap_reg_range(0xaf, 0xba),
1479 	regmap_reg_range(0xbb, 0xbc),
1480 	regmap_reg_range(0xbd, 0xbd),
1481 	regmap_reg_range(0xc0, 0xc0),
1482 	regmap_reg_range(0xc2, 0xc2),
1483 	regmap_reg_range(0xc3, 0xc3),
1484 	regmap_reg_range(0xc4, 0xc4),
1485 	regmap_reg_range(0xc6, 0xc6),
1486 };
1487 
1488 static const struct regmap_access_table ksz8873_register_set = {
1489 	.yes_ranges = ksz8873_valid_regs,
1490 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1491 };
1492 
1493 const struct ksz_chip_data ksz_switch_chips[] = {
1494 	[KSZ8463] = {
1495 		.chip_id = KSZ8463_CHIP_ID,
1496 		.dev_name = "KSZ8463",
1497 		.num_vlans = 16,
1498 		.num_alus = 0,
1499 		.num_statics = 8,
1500 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1501 		.port_cnt = 3,
1502 		.num_tx_queues = 4,
1503 		.num_ipms = 4,
1504 		.ops = &ksz8463_dev_ops,
1505 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1506 		.mib_names = ksz88xx_mib_names,
1507 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1508 		.reg_mib_cnt = MIB_COUNTER_NUM,
1509 		.regs = ksz8463_regs,
1510 		.masks = ksz8463_masks,
1511 		.shifts = ksz8463_shifts,
1512 		.supports_mii = {false, false, true},
1513 		.supports_rmii = {false, false, true},
1514 		.internal_phy = {true, true, false},
1515 	},
1516 
1517 	[KSZ8563] = {
1518 		.chip_id = KSZ8563_CHIP_ID,
1519 		.dev_name = "KSZ8563",
1520 		.num_vlans = 4096,
1521 		.num_alus = 4096,
1522 		.num_statics = 16,
1523 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1524 		.port_cnt = 3,		/* total port count */
1525 		.port_nirqs = 3,
1526 		.num_tx_queues = 4,
1527 		.num_ipms = 8,
1528 		.tc_cbs_supported = true,
1529 		.ops = &ksz9477_dev_ops,
1530 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1531 		.mib_names = ksz9477_mib_names,
1532 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1533 		.reg_mib_cnt = MIB_COUNTER_NUM,
1534 		.regs = ksz9477_regs,
1535 		.masks = ksz9477_masks,
1536 		.shifts = ksz9477_shifts,
1537 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1538 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1539 		.supports_mii = {false, false, true},
1540 		.supports_rmii = {false, false, true},
1541 		.supports_rgmii = {false, false, true},
1542 		.internal_phy = {true, true, false},
1543 		.gbit_capable = {false, false, true},
1544 		.ptp_capable = true,
1545 		.wr_table = &ksz8563_register_set,
1546 		.rd_table = &ksz8563_register_set,
1547 	},
1548 
1549 	[KSZ8795] = {
1550 		.chip_id = KSZ8795_CHIP_ID,
1551 		.dev_name = "KSZ8795",
1552 		.num_vlans = 4096,
1553 		.num_alus = 0,
1554 		.num_statics = 32,
1555 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1556 		.port_cnt = 5,		/* total cpu and user ports */
1557 		.num_tx_queues = 4,
1558 		.num_ipms = 4,
1559 		.ops = &ksz87xx_dev_ops,
1560 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1561 		.ksz87xx_eee_link_erratum = true,
1562 		.mib_names = ksz9477_mib_names,
1563 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1564 		.reg_mib_cnt = MIB_COUNTER_NUM,
1565 		.regs = ksz8795_regs,
1566 		.masks = ksz8795_masks,
1567 		.shifts = ksz8795_shifts,
1568 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1569 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1570 		.supports_mii = {false, false, false, false, true},
1571 		.supports_rmii = {false, false, false, false, true},
1572 		.supports_rgmii = {false, false, false, false, true},
1573 		.internal_phy = {true, true, true, true, false},
1574 	},
1575 
1576 	[KSZ8794] = {
1577 		/* WARNING
1578 		 * =======
1579 		 * KSZ8794 is similar to KSZ8795, except the port map
1580 		 * contains a gap between external and CPU ports, the
1581 		 * port map is NOT continuous. The per-port register
1582 		 * map is shifted accordingly too, i.e. registers at
1583 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1584 		 * used on KSZ8795 for external port 3.
1585 		 *           external  cpu
1586 		 * KSZ8794   0,1,2      4
1587 		 * KSZ8795   0,1,2,3    4
1588 		 * KSZ8765   0,1,2,3    4
1589 		 * port_cnt is configured as 5, even though it is 4
1590 		 */
1591 		.chip_id = KSZ8794_CHIP_ID,
1592 		.dev_name = "KSZ8794",
1593 		.num_vlans = 4096,
1594 		.num_alus = 0,
1595 		.num_statics = 32,
1596 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1597 		.port_cnt = 5,		/* total cpu and user ports */
1598 		.num_tx_queues = 4,
1599 		.num_ipms = 4,
1600 		.ops = &ksz87xx_dev_ops,
1601 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1602 		.ksz87xx_eee_link_erratum = true,
1603 		.mib_names = ksz9477_mib_names,
1604 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1605 		.reg_mib_cnt = MIB_COUNTER_NUM,
1606 		.regs = ksz8795_regs,
1607 		.masks = ksz8795_masks,
1608 		.shifts = ksz8795_shifts,
1609 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1610 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1611 		.supports_mii = {false, false, false, false, true},
1612 		.supports_rmii = {false, false, false, false, true},
1613 		.supports_rgmii = {false, false, false, false, true},
1614 		.internal_phy = {true, true, true, false, false},
1615 	},
1616 
1617 	[KSZ8765] = {
1618 		.chip_id = KSZ8765_CHIP_ID,
1619 		.dev_name = "KSZ8765",
1620 		.num_vlans = 4096,
1621 		.num_alus = 0,
1622 		.num_statics = 32,
1623 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1624 		.port_cnt = 5,		/* total cpu and user ports */
1625 		.num_tx_queues = 4,
1626 		.num_ipms = 4,
1627 		.ops = &ksz87xx_dev_ops,
1628 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1629 		.ksz87xx_eee_link_erratum = true,
1630 		.mib_names = ksz9477_mib_names,
1631 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1632 		.reg_mib_cnt = MIB_COUNTER_NUM,
1633 		.regs = ksz8795_regs,
1634 		.masks = ksz8795_masks,
1635 		.shifts = ksz8795_shifts,
1636 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1637 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1638 		.supports_mii = {false, false, false, false, true},
1639 		.supports_rmii = {false, false, false, false, true},
1640 		.supports_rgmii = {false, false, false, false, true},
1641 		.internal_phy = {true, true, true, true, false},
1642 	},
1643 
1644 	[KSZ88X3] = {
1645 		.chip_id = KSZ88X3_CHIP_ID,
1646 		.dev_name = "KSZ8863/KSZ8873",
1647 		.num_vlans = 16,
1648 		.num_alus = 0,
1649 		.num_statics = 8,
1650 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1651 		.port_cnt = 3,
1652 		.num_tx_queues = 4,
1653 		.num_ipms = 4,
1654 		.ops = &ksz88xx_dev_ops,
1655 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1656 		.mib_names = ksz88xx_mib_names,
1657 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1658 		.reg_mib_cnt = MIB_COUNTER_NUM,
1659 		.regs = ksz8863_regs,
1660 		.masks = ksz8863_masks,
1661 		.shifts = ksz8863_shifts,
1662 		.supports_mii = {false, false, true},
1663 		.supports_rmii = {false, false, true},
1664 		.internal_phy = {true, true, false},
1665 		.wr_table = &ksz8873_register_set,
1666 		.rd_table = &ksz8873_register_set,
1667 	},
1668 
1669 	[KSZ8864] = {
1670 		/* WARNING
1671 		 * =======
1672 		 * KSZ8864 is similar to KSZ8895, except the first port
1673 		 * does not exist.
1674 		 *           external  cpu
1675 		 * KSZ8864   1,2,3      4
1676 		 * KSZ8895   0,1,2,3    4
1677 		 * port_cnt is configured as 5, even though it is 4
1678 		 */
1679 		.chip_id = KSZ8864_CHIP_ID,
1680 		.dev_name = "KSZ8864",
1681 		.num_vlans = 4096,
1682 		.num_alus = 0,
1683 		.num_statics = 32,
1684 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1685 		.port_cnt = 5,		/* total cpu and user ports */
1686 		.num_tx_queues = 4,
1687 		.num_ipms = 4,
1688 		.ops = &ksz88xx_dev_ops,
1689 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1690 		.mib_names = ksz88xx_mib_names,
1691 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1692 		.reg_mib_cnt = MIB_COUNTER_NUM,
1693 		.regs = ksz8895_regs,
1694 		.masks = ksz8895_masks,
1695 		.shifts = ksz8895_shifts,
1696 		.supports_mii = {false, false, false, false, true},
1697 		.supports_rmii = {false, false, false, false, true},
1698 		.internal_phy = {false, true, true, true, false},
1699 	},
1700 
1701 	[KSZ8895] = {
1702 		.chip_id = KSZ8895_CHIP_ID,
1703 		.dev_name = "KSZ8895",
1704 		.num_vlans = 4096,
1705 		.num_alus = 0,
1706 		.num_statics = 32,
1707 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1708 		.port_cnt = 5,		/* total cpu and user ports */
1709 		.num_tx_queues = 4,
1710 		.num_ipms = 4,
1711 		.ops = &ksz88xx_dev_ops,
1712 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1713 		.mib_names = ksz88xx_mib_names,
1714 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1715 		.reg_mib_cnt = MIB_COUNTER_NUM,
1716 		.regs = ksz8895_regs,
1717 		.masks = ksz8895_masks,
1718 		.shifts = ksz8895_shifts,
1719 		.supports_mii = {false, false, false, false, true},
1720 		.supports_rmii = {false, false, false, false, true},
1721 		.internal_phy = {true, true, true, true, false},
1722 	},
1723 
1724 	[KSZ9477] = {
1725 		.chip_id = KSZ9477_CHIP_ID,
1726 		.dev_name = "KSZ9477",
1727 		.num_vlans = 4096,
1728 		.num_alus = 4096,
1729 		.num_statics = 16,
1730 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1731 		.port_cnt = 7,		/* total physical port count */
1732 		.port_nirqs = 4,
1733 		.num_tx_queues = 4,
1734 		.num_ipms = 8,
1735 		.tc_cbs_supported = true,
1736 		.ops = &ksz9477_dev_ops,
1737 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1738 		.phy_errata_9477 = true,
1739 		.mib_names = ksz9477_mib_names,
1740 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1741 		.reg_mib_cnt = MIB_COUNTER_NUM,
1742 		.regs = ksz9477_regs,
1743 		.masks = ksz9477_masks,
1744 		.shifts = ksz9477_shifts,
1745 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1746 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1747 		.supports_mii	= {false, false, false, false,
1748 				   false, true, false},
1749 		.supports_rmii	= {false, false, false, false,
1750 				   false, true, false},
1751 		.supports_rgmii = {false, false, false, false,
1752 				   false, true, false},
1753 		.internal_phy	= {true, true, true, true,
1754 				   true, false, false},
1755 		.gbit_capable	= {true, true, true, true, true, true, true},
1756 		.ptp_capable = true,
1757 		.sgmii_port = 7,
1758 		.wr_table = &ksz9477_register_set,
1759 		.rd_table = &ksz9477_register_set,
1760 	},
1761 
1762 	[KSZ9896] = {
1763 		.chip_id = KSZ9896_CHIP_ID,
1764 		.dev_name = "KSZ9896",
1765 		.num_vlans = 4096,
1766 		.num_alus = 4096,
1767 		.num_statics = 16,
1768 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1769 		.port_cnt = 6,		/* total physical port count */
1770 		.port_nirqs = 2,
1771 		.num_tx_queues = 4,
1772 		.num_ipms = 8,
1773 		.ops = &ksz9477_dev_ops,
1774 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1775 		.phy_errata_9477 = true,
1776 		.mib_names = ksz9477_mib_names,
1777 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1778 		.reg_mib_cnt = MIB_COUNTER_NUM,
1779 		.regs = ksz9477_regs,
1780 		.masks = ksz9477_masks,
1781 		.shifts = ksz9477_shifts,
1782 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1783 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1784 		.supports_mii	= {false, false, false, false,
1785 				   false, true},
1786 		.supports_rmii	= {false, false, false, false,
1787 				   false, true},
1788 		.supports_rgmii = {false, false, false, false,
1789 				   false, true},
1790 		.internal_phy	= {true, true, true, true,
1791 				   true, false},
1792 		.gbit_capable	= {true, true, true, true, true, true},
1793 		.wr_table = &ksz9896_register_set,
1794 		.rd_table = &ksz9896_register_set,
1795 	},
1796 
1797 	[KSZ9897] = {
1798 		.chip_id = KSZ9897_CHIP_ID,
1799 		.dev_name = "KSZ9897",
1800 		.num_vlans = 4096,
1801 		.num_alus = 4096,
1802 		.num_statics = 16,
1803 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1804 		.port_cnt = 7,		/* total physical port count */
1805 		.port_nirqs = 2,
1806 		.num_tx_queues = 4,
1807 		.num_ipms = 8,
1808 		.ops = &ksz9477_dev_ops,
1809 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1810 		.phy_errata_9477 = true,
1811 		.mib_names = ksz9477_mib_names,
1812 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1813 		.reg_mib_cnt = MIB_COUNTER_NUM,
1814 		.regs = ksz9477_regs,
1815 		.masks = ksz9477_masks,
1816 		.shifts = ksz9477_shifts,
1817 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1818 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1819 		.supports_mii	= {false, false, false, false,
1820 				   false, true, true},
1821 		.supports_rmii	= {false, false, false, false,
1822 				   false, true, true},
1823 		.supports_rgmii = {false, false, false, false,
1824 				   false, true, true},
1825 		.internal_phy	= {true, true, true, true,
1826 				   true, false, false},
1827 		.gbit_capable	= {true, true, true, true, true, true, true},
1828 	},
1829 
1830 	[KSZ9893] = {
1831 		.chip_id = KSZ9893_CHIP_ID,
1832 		.dev_name = "KSZ9893",
1833 		.num_vlans = 4096,
1834 		.num_alus = 4096,
1835 		.num_statics = 16,
1836 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1837 		.port_cnt = 3,		/* total port count */
1838 		.port_nirqs = 2,
1839 		.num_tx_queues = 4,
1840 		.num_ipms = 8,
1841 		.ops = &ksz9477_dev_ops,
1842 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1843 		.mib_names = ksz9477_mib_names,
1844 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1845 		.reg_mib_cnt = MIB_COUNTER_NUM,
1846 		.regs = ksz9477_regs,
1847 		.masks = ksz9477_masks,
1848 		.shifts = ksz9477_shifts,
1849 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1850 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1851 		.supports_mii = {false, false, true},
1852 		.supports_rmii = {false, false, true},
1853 		.supports_rgmii = {false, false, true},
1854 		.internal_phy = {true, true, false},
1855 		.gbit_capable = {true, true, true},
1856 	},
1857 
1858 	[KSZ9563] = {
1859 		.chip_id = KSZ9563_CHIP_ID,
1860 		.dev_name = "KSZ9563",
1861 		.num_vlans = 4096,
1862 		.num_alus = 4096,
1863 		.num_statics = 16,
1864 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1865 		.port_cnt = 3,		/* total port count */
1866 		.port_nirqs = 3,
1867 		.num_tx_queues = 4,
1868 		.num_ipms = 8,
1869 		.tc_cbs_supported = true,
1870 		.ops = &ksz9477_dev_ops,
1871 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1872 		.mib_names = ksz9477_mib_names,
1873 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1874 		.reg_mib_cnt = MIB_COUNTER_NUM,
1875 		.regs = ksz9477_regs,
1876 		.masks = ksz9477_masks,
1877 		.shifts = ksz9477_shifts,
1878 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1879 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1880 		.supports_mii = {false, false, true},
1881 		.supports_rmii = {false, false, true},
1882 		.supports_rgmii = {false, false, true},
1883 		.internal_phy = {true, true, false},
1884 		.gbit_capable = {true, true, true},
1885 		.ptp_capable = true,
1886 	},
1887 
1888 	[KSZ8567] = {
1889 		.chip_id = KSZ8567_CHIP_ID,
1890 		.dev_name = "KSZ8567",
1891 		.num_vlans = 4096,
1892 		.num_alus = 4096,
1893 		.num_statics = 16,
1894 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1895 		.port_cnt = 7,		/* total port count */
1896 		.port_nirqs = 3,
1897 		.num_tx_queues = 4,
1898 		.num_ipms = 8,
1899 		.tc_cbs_supported = true,
1900 		.ops = &ksz9477_dev_ops,
1901 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1902 		.phy_errata_9477 = true,
1903 		.mib_names = ksz9477_mib_names,
1904 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1905 		.reg_mib_cnt = MIB_COUNTER_NUM,
1906 		.regs = ksz9477_regs,
1907 		.masks = ksz9477_masks,
1908 		.shifts = ksz9477_shifts,
1909 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1910 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1911 		.supports_mii	= {false, false, false, false,
1912 				   false, true, true},
1913 		.supports_rmii	= {false, false, false, false,
1914 				   false, true, true},
1915 		.supports_rgmii = {false, false, false, false,
1916 				   false, true, true},
1917 		.internal_phy	= {true, true, true, true,
1918 				   true, false, false},
1919 		.gbit_capable	= {false, false, false, false, false,
1920 				   true, true},
1921 		.ptp_capable = true,
1922 	},
1923 
1924 	[KSZ9567] = {
1925 		.chip_id = KSZ9567_CHIP_ID,
1926 		.dev_name = "KSZ9567",
1927 		.num_vlans = 4096,
1928 		.num_alus = 4096,
1929 		.num_statics = 16,
1930 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1931 		.port_cnt = 7,		/* total physical port count */
1932 		.port_nirqs = 3,
1933 		.num_tx_queues = 4,
1934 		.num_ipms = 8,
1935 		.tc_cbs_supported = true,
1936 		.ops = &ksz9477_dev_ops,
1937 		.mib_names = ksz9477_mib_names,
1938 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1939 		.reg_mib_cnt = MIB_COUNTER_NUM,
1940 		.regs = ksz9477_regs,
1941 		.masks = ksz9477_masks,
1942 		.shifts = ksz9477_shifts,
1943 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1944 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1945 		.supports_mii	= {false, false, false, false,
1946 				   false, true, true},
1947 		.supports_rmii	= {false, false, false, false,
1948 				   false, true, true},
1949 		.supports_rgmii = {false, false, false, false,
1950 				   false, true, true},
1951 		.internal_phy	= {true, true, true, true,
1952 				   true, false, false},
1953 		.gbit_capable	= {true, true, true, true, true, true, true},
1954 		.ptp_capable = true,
1955 	},
1956 
1957 	[LAN9370] = {
1958 		.chip_id = LAN9370_CHIP_ID,
1959 		.dev_name = "LAN9370",
1960 		.num_vlans = 4096,
1961 		.num_alus = 1024,
1962 		.num_statics = 256,
1963 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1964 		.port_cnt = 5,		/* total physical port count */
1965 		.port_nirqs = 6,
1966 		.num_tx_queues = 8,
1967 		.num_ipms = 8,
1968 		.tc_cbs_supported = true,
1969 		.phy_side_mdio_supported = true,
1970 		.ops = &lan937x_dev_ops,
1971 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1972 		.mib_names = ksz9477_mib_names,
1973 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1974 		.reg_mib_cnt = MIB_COUNTER_NUM,
1975 		.regs = ksz9477_regs,
1976 		.masks = lan937x_masks,
1977 		.shifts = lan937x_shifts,
1978 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1979 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1980 		.supports_mii = {false, false, false, false, true},
1981 		.supports_rmii = {false, false, false, false, true},
1982 		.supports_rgmii = {false, false, false, false, true},
1983 		.internal_phy = {true, true, true, true, false},
1984 		.ptp_capable = true,
1985 	},
1986 
1987 	[LAN9371] = {
1988 		.chip_id = LAN9371_CHIP_ID,
1989 		.dev_name = "LAN9371",
1990 		.num_vlans = 4096,
1991 		.num_alus = 1024,
1992 		.num_statics = 256,
1993 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1994 		.port_cnt = 6,		/* total physical port count */
1995 		.port_nirqs = 6,
1996 		.num_tx_queues = 8,
1997 		.num_ipms = 8,
1998 		.tc_cbs_supported = true,
1999 		.phy_side_mdio_supported = true,
2000 		.ops = &lan937x_dev_ops,
2001 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2002 		.mib_names = ksz9477_mib_names,
2003 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2004 		.reg_mib_cnt = MIB_COUNTER_NUM,
2005 		.regs = ksz9477_regs,
2006 		.masks = lan937x_masks,
2007 		.shifts = lan937x_shifts,
2008 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2009 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2010 		.supports_mii = {false, false, false, false, true, true},
2011 		.supports_rmii = {false, false, false, false, true, true},
2012 		.supports_rgmii = {false, false, false, false, true, true},
2013 		.internal_phy = {true, true, true, true, false, false},
2014 		.ptp_capable = true,
2015 	},
2016 
2017 	[LAN9372] = {
2018 		.chip_id = LAN9372_CHIP_ID,
2019 		.dev_name = "LAN9372",
2020 		.num_vlans = 4096,
2021 		.num_alus = 1024,
2022 		.num_statics = 256,
2023 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2024 		.port_cnt = 8,		/* total physical port count */
2025 		.port_nirqs = 6,
2026 		.num_tx_queues = 8,
2027 		.num_ipms = 8,
2028 		.tc_cbs_supported = true,
2029 		.phy_side_mdio_supported = true,
2030 		.ops = &lan937x_dev_ops,
2031 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2032 		.mib_names = ksz9477_mib_names,
2033 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2034 		.reg_mib_cnt = MIB_COUNTER_NUM,
2035 		.regs = ksz9477_regs,
2036 		.masks = lan937x_masks,
2037 		.shifts = lan937x_shifts,
2038 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2039 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2040 		.supports_mii	= {false, false, false, false,
2041 				   true, true, false, false},
2042 		.supports_rmii	= {false, false, false, false,
2043 				   true, true, false, false},
2044 		.supports_rgmii = {false, false, false, false,
2045 				   true, true, false, false},
2046 		.internal_phy	= {true, true, true, true,
2047 				   false, false, true, true},
2048 		.ptp_capable = true,
2049 	},
2050 
2051 	[LAN9373] = {
2052 		.chip_id = LAN9373_CHIP_ID,
2053 		.dev_name = "LAN9373",
2054 		.num_vlans = 4096,
2055 		.num_alus = 1024,
2056 		.num_statics = 256,
2057 		.cpu_ports = 0x38,	/* can be configured as cpu port */
2058 		.port_cnt = 5,		/* total physical port count */
2059 		.port_nirqs = 6,
2060 		.num_tx_queues = 8,
2061 		.num_ipms = 8,
2062 		.tc_cbs_supported = true,
2063 		.phy_side_mdio_supported = true,
2064 		.ops = &lan937x_dev_ops,
2065 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2066 		.mib_names = ksz9477_mib_names,
2067 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2068 		.reg_mib_cnt = MIB_COUNTER_NUM,
2069 		.regs = ksz9477_regs,
2070 		.masks = lan937x_masks,
2071 		.shifts = lan937x_shifts,
2072 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2073 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2074 		.supports_mii	= {false, false, false, false,
2075 				   true, true, false, false},
2076 		.supports_rmii	= {false, false, false, false,
2077 				   true, true, false, false},
2078 		.supports_rgmii = {false, false, false, false,
2079 				   true, true, false, false},
2080 		.internal_phy	= {true, true, true, false,
2081 				   false, false, true, true},
2082 		.ptp_capable = true,
2083 	},
2084 
2085 	[LAN9374] = {
2086 		.chip_id = LAN9374_CHIP_ID,
2087 		.dev_name = "LAN9374",
2088 		.num_vlans = 4096,
2089 		.num_alus = 1024,
2090 		.num_statics = 256,
2091 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2092 		.port_cnt = 8,		/* total physical port count */
2093 		.port_nirqs = 6,
2094 		.num_tx_queues = 8,
2095 		.num_ipms = 8,
2096 		.tc_cbs_supported = true,
2097 		.phy_side_mdio_supported = true,
2098 		.ops = &lan937x_dev_ops,
2099 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2100 		.mib_names = ksz9477_mib_names,
2101 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2102 		.reg_mib_cnt = MIB_COUNTER_NUM,
2103 		.regs = ksz9477_regs,
2104 		.masks = lan937x_masks,
2105 		.shifts = lan937x_shifts,
2106 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2107 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2108 		.supports_mii	= {false, false, false, false,
2109 				   true, true, false, false},
2110 		.supports_rmii	= {false, false, false, false,
2111 				   true, true, false, false},
2112 		.supports_rgmii = {false, false, false, false,
2113 				   true, true, false, false},
2114 		.internal_phy	= {true, true, true, true,
2115 				   false, false, true, true},
2116 		.ptp_capable = true,
2117 	},
2118 
2119 	[LAN9646] = {
2120 		.chip_id = LAN9646_CHIP_ID,
2121 		.dev_name = "LAN9646",
2122 		.num_vlans = 4096,
2123 		.num_alus = 4096,
2124 		.num_statics = 16,
2125 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
2126 		.port_cnt = 7,		/* total physical port count */
2127 		.port_nirqs = 4,
2128 		.num_tx_queues = 4,
2129 		.num_ipms = 8,
2130 		.ops = &ksz9477_dev_ops,
2131 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
2132 		.phy_errata_9477 = true,
2133 		.mib_names = ksz9477_mib_names,
2134 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2135 		.reg_mib_cnt = MIB_COUNTER_NUM,
2136 		.regs = ksz9477_regs,
2137 		.masks = ksz9477_masks,
2138 		.shifts = ksz9477_shifts,
2139 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2140 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2141 		.supports_mii	= {false, false, false, false,
2142 				   false, true, true},
2143 		.supports_rmii	= {false, false, false, false,
2144 				   false, true, true},
2145 		.supports_rgmii = {false, false, false, false,
2146 				   false, true, true},
2147 		.internal_phy	= {true, true, true, true,
2148 				   true, false, false},
2149 		.gbit_capable	= {true, true, true, true, true, true, true},
2150 		.sgmii_port = 7,
2151 		.wr_table = &ksz9477_register_set,
2152 		.rd_table = &ksz9477_register_set,
2153 	},
2154 };
2155 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2156 
2157 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2158 {
2159 	int i;
2160 
2161 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2162 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2163 
2164 		if (chip->chip_id == prod_num)
2165 			return chip;
2166 	}
2167 
2168 	return NULL;
2169 }
2170 
2171 static int ksz_check_device_id(struct ksz_device *dev)
2172 {
2173 	const struct ksz_chip_data *expected_chip_data;
2174 	u32 expected_chip_id;
2175 
2176 	if (dev->pdata) {
2177 		expected_chip_id = dev->pdata->chip_id;
2178 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2179 		if (WARN_ON(!expected_chip_data))
2180 			return -ENODEV;
2181 	} else {
2182 		expected_chip_data = of_device_get_match_data(dev->dev);
2183 		expected_chip_id = expected_chip_data->chip_id;
2184 	}
2185 
2186 	if (expected_chip_id != dev->chip_id) {
2187 		dev_err(dev->dev,
2188 			"Device tree specifies chip %s but found %s, please fix it!\n",
2189 			expected_chip_data->dev_name, dev->info->dev_name);
2190 		return -ENODEV;
2191 	}
2192 
2193 	return 0;
2194 }
2195 
2196 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2197 				 struct phylink_config *config)
2198 {
2199 	struct ksz_device *dev = ds->priv;
2200 
2201 	if (dev->info->supports_mii[port])
2202 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2203 
2204 	if (dev->info->supports_rmii[port])
2205 		__set_bit(PHY_INTERFACE_MODE_RMII,
2206 			  config->supported_interfaces);
2207 
2208 	if (dev->info->supports_rgmii[port])
2209 		phy_interface_set_rgmii(config->supported_interfaces);
2210 
2211 	if (dev->info->internal_phy[port]) {
2212 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2213 			  config->supported_interfaces);
2214 		/* Compatibility for phylib's default interface type when the
2215 		 * phy-mode property is absent
2216 		 */
2217 		__set_bit(PHY_INTERFACE_MODE_GMII,
2218 			  config->supported_interfaces);
2219 	}
2220 
2221 	if (dev->dev_ops->get_caps)
2222 		dev->dev_ops->get_caps(dev, port, config);
2223 
2224 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2225 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2226 		       sizeof(config->lpi_interfaces));
2227 
2228 		config->lpi_capabilities = MAC_100FD;
2229 		if (dev->info->gbit_capable[port])
2230 			config->lpi_capabilities |= MAC_1000FD;
2231 
2232 		/* EEE is fully operational */
2233 		config->eee_enabled_default = true;
2234 	}
2235 }
2236 
2237 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2238 {
2239 	struct ethtool_pause_stats *pstats;
2240 	struct rtnl_link_stats64 *stats;
2241 	struct ksz_stats_raw *raw;
2242 	struct ksz_port_mib *mib;
2243 	int ret;
2244 
2245 	mib = &dev->ports[port].mib;
2246 	stats = &mib->stats64;
2247 	pstats = &mib->pause_stats;
2248 	raw = (struct ksz_stats_raw *)mib->counters;
2249 
2250 	spin_lock(&mib->stats64_lock);
2251 
2252 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2253 		raw->rx_pause;
2254 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2255 		raw->tx_pause;
2256 
2257 	/* HW counters are counting bytes + FCS which is not acceptable
2258 	 * for rtnl_link_stats64 interface
2259 	 */
2260 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2261 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2262 
2263 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2264 		raw->rx_oversize;
2265 
2266 	stats->rx_crc_errors = raw->rx_crc_err;
2267 	stats->rx_frame_errors = raw->rx_align_err;
2268 	stats->rx_dropped = raw->rx_discards;
2269 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2270 		stats->rx_frame_errors  + stats->rx_dropped;
2271 
2272 	stats->tx_window_errors = raw->tx_late_col;
2273 	stats->tx_fifo_errors = raw->tx_discards;
2274 	stats->tx_aborted_errors = raw->tx_exc_col;
2275 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2276 		stats->tx_aborted_errors;
2277 
2278 	stats->multicast = raw->rx_mcast;
2279 	stats->collisions = raw->tx_total_col;
2280 
2281 	pstats->tx_pause_frames = raw->tx_pause;
2282 	pstats->rx_pause_frames = raw->rx_pause;
2283 
2284 	spin_unlock(&mib->stats64_lock);
2285 
2286 	if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) {
2287 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2288 		if (ret)
2289 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2290 	}
2291 }
2292 
2293 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2294 {
2295 	struct ethtool_pause_stats *pstats;
2296 	struct rtnl_link_stats64 *stats;
2297 	struct ksz88xx_stats_raw *raw;
2298 	struct ksz_port_mib *mib;
2299 
2300 	mib = &dev->ports[port].mib;
2301 	stats = &mib->stats64;
2302 	pstats = &mib->pause_stats;
2303 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2304 
2305 	spin_lock(&mib->stats64_lock);
2306 
2307 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2308 		raw->rx_pause;
2309 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2310 		raw->tx_pause;
2311 
2312 	/* HW counters are counting bytes + FCS which is not acceptable
2313 	 * for rtnl_link_stats64 interface
2314 	 */
2315 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2316 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2317 
2318 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2319 		raw->rx_oversize;
2320 
2321 	stats->rx_crc_errors = raw->rx_crc_err;
2322 	stats->rx_frame_errors = raw->rx_align_err;
2323 	stats->rx_dropped = raw->rx_discards;
2324 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2325 		stats->rx_frame_errors  + stats->rx_dropped;
2326 
2327 	stats->tx_window_errors = raw->tx_late_col;
2328 	stats->tx_fifo_errors = raw->tx_discards;
2329 	stats->tx_aborted_errors = raw->tx_exc_col;
2330 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2331 		stats->tx_aborted_errors;
2332 
2333 	stats->multicast = raw->rx_mcast;
2334 	stats->collisions = raw->tx_total_col;
2335 
2336 	pstats->tx_pause_frames = raw->tx_pause;
2337 	pstats->rx_pause_frames = raw->rx_pause;
2338 
2339 	spin_unlock(&mib->stats64_lock);
2340 }
2341 
2342 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2343 			    struct rtnl_link_stats64 *s)
2344 {
2345 	struct ksz_device *dev = ds->priv;
2346 	struct ksz_port_mib *mib;
2347 
2348 	mib = &dev->ports[port].mib;
2349 
2350 	spin_lock(&mib->stats64_lock);
2351 	memcpy(s, &mib->stats64, sizeof(*s));
2352 	spin_unlock(&mib->stats64_lock);
2353 }
2354 
2355 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2356 				struct ethtool_pause_stats *pause_stats)
2357 {
2358 	struct ksz_device *dev = ds->priv;
2359 	struct ksz_port_mib *mib;
2360 
2361 	mib = &dev->ports[port].mib;
2362 
2363 	spin_lock(&mib->stats64_lock);
2364 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2365 	spin_unlock(&mib->stats64_lock);
2366 }
2367 
2368 static void ksz_get_strings(struct dsa_switch *ds, int port,
2369 			    u32 stringset, uint8_t *buf)
2370 {
2371 	struct ksz_device *dev = ds->priv;
2372 	int i;
2373 
2374 	if (stringset != ETH_SS_STATS)
2375 		return;
2376 
2377 	for (i = 0; i < dev->info->mib_cnt; i++)
2378 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2379 }
2380 
2381 /**
2382  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2383  *			    isolation settings.
2384  * @dev: A pointer to the struct ksz_device representing the device.
2385  * @port: The port number to adjust.
2386  *
2387  * This function dynamically adjusts the port membership configuration for a
2388  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2389  * states and port isolation settings. Each port, including the CPU port, has a
2390  * membership register, represented as a bitfield, where each bit corresponds
2391  * to a port number. A set bit indicates permission to forward frames to that
2392  * port. This function iterates over all ports, updating the membership register
2393  * to reflect current forwarding permissions:
2394  *
2395  * 1. Forwards frames only to ports that are part of the same bridge group and
2396  *    in the BR_STATE_FORWARDING state.
2397  * 2. Takes into account the isolation status of ports; ports in the
2398  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2399  *    frames to each other, even if they are in the same bridge group.
2400  * 3. Ensures that the CPU port is included in the membership based on its
2401  *    upstream port configuration, allowing for management and control traffic
2402  *    to flow as required.
2403  */
2404 static void ksz_update_port_member(struct ksz_device *dev, int port)
2405 {
2406 	struct ksz_port *p = &dev->ports[port];
2407 	struct dsa_switch *ds = dev->ds;
2408 	u8 port_member = 0, cpu_port;
2409 	const struct dsa_port *dp;
2410 	int i, j;
2411 
2412 	if (!dsa_is_user_port(ds, port))
2413 		return;
2414 
2415 	dp = dsa_to_port(ds, port);
2416 	cpu_port = BIT(dsa_upstream_port(ds, port));
2417 
2418 	for (i = 0; i < ds->num_ports; i++) {
2419 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2420 		struct ksz_port *other_p = &dev->ports[i];
2421 		u8 val = 0;
2422 
2423 		if (!dsa_is_user_port(ds, i))
2424 			continue;
2425 		if (port == i)
2426 			continue;
2427 		if (!dsa_port_bridge_same(dp, other_dp))
2428 			continue;
2429 		if (other_p->stp_state != BR_STATE_FORWARDING)
2430 			continue;
2431 
2432 		/* At this point we know that "port" and "other" port [i] are in
2433 		 * the same bridge group and that "other" port [i] is in
2434 		 * forwarding stp state. If "port" is also in forwarding stp
2435 		 * state, we can allow forwarding from port [port] to port [i].
2436 		 * Except if both ports are isolated.
2437 		 */
2438 		if (p->stp_state == BR_STATE_FORWARDING &&
2439 		    !(p->isolated && other_p->isolated)) {
2440 			val |= BIT(port);
2441 			port_member |= BIT(i);
2442 		}
2443 
2444 		/* Retain port [i]'s relationship to other ports than [port] */
2445 		for (j = 0; j < ds->num_ports; j++) {
2446 			const struct dsa_port *third_dp;
2447 			struct ksz_port *third_p;
2448 
2449 			if (j == i)
2450 				continue;
2451 			if (j == port)
2452 				continue;
2453 			if (!dsa_is_user_port(ds, j))
2454 				continue;
2455 			third_p = &dev->ports[j];
2456 			if (third_p->stp_state != BR_STATE_FORWARDING)
2457 				continue;
2458 
2459 			third_dp = dsa_to_port(ds, j);
2460 
2461 			/* Now we updating relation of the "other" port [i] to
2462 			 * the "third" port [j]. We already know that "other"
2463 			 * port [i] is in forwarding stp state and that "third"
2464 			 * port [j] is in forwarding stp state too.
2465 			 * We need to check if "other" port [i] and "third" port
2466 			 * [j] are in the same bridge group and not isolated
2467 			 * before allowing forwarding from port [i] to port [j].
2468 			 */
2469 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2470 			    !(other_p->isolated && third_p->isolated))
2471 				val |= BIT(j);
2472 		}
2473 
2474 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2475 	}
2476 
2477 	/* HSR ports are setup once so need to use the assigned membership
2478 	 * when the port is enabled.
2479 	 */
2480 	if (!port_member && p->stp_state == BR_STATE_FORWARDING &&
2481 	    (dev->hsr_ports & BIT(port)))
2482 		port_member = dev->hsr_ports;
2483 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2484 }
2485 
2486 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2487 {
2488 	struct ksz_device *dev = bus->priv;
2489 	u16 val;
2490 	int ret;
2491 
2492 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2493 	if (ret < 0)
2494 		return ret;
2495 
2496 	return val;
2497 }
2498 
2499 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2500 			     u16 val)
2501 {
2502 	struct ksz_device *dev = bus->priv;
2503 
2504 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2505 }
2506 
2507 /**
2508  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2509  * @bus: MDIO bus structure.
2510  * @addr: PHY address on the parent MDIO bus.
2511  * @regnum: Register number to read.
2512  *
2513  * This function provides a direct read operation on the parent MDIO bus for
2514  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2515  * to retrieve data from the PHY registers at the specified address and register
2516  * number.
2517  *
2518  * Return: Value of the PHY register, or a negative error code on failure.
2519  */
2520 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2521 {
2522 	struct ksz_device *dev = bus->priv;
2523 
2524 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2525 }
2526 
2527 /**
2528  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2529  * @bus: MDIO bus structure.
2530  * @addr: PHY address on the parent MDIO bus.
2531  * @regnum: Register number to write to.
2532  * @val: Value to write to the PHY register.
2533  *
2534  * This function provides a direct write operation on the parent MDIO bus for
2535  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2536  * to modify the PHY register values at the specified address.
2537  *
2538  * Return: 0 on success, or a negative error code on failure.
2539  */
2540 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2541 				 u16 val)
2542 {
2543 	struct ksz_device *dev = bus->priv;
2544 
2545 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2546 }
2547 
2548 /**
2549  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2550  * @dev: Pointer to device structure.
2551  * @addr: PHY address to map to a port.
2552  *
2553  * This function finds the corresponding switch port for a given PHY address by
2554  * iterating over all user ports on the device. It checks if a port's PHY
2555  * address in `phy_addr_map` matches the specified address and if the port
2556  * contains an internal PHY. If a match is found, the index of the port is
2557  * returned.
2558  *
2559  * Return: Port index on success, or -EINVAL if no matching port is found.
2560  */
2561 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2562 {
2563 	struct dsa_switch *ds = dev->ds;
2564 	struct dsa_port *dp;
2565 
2566 	dsa_switch_for_each_user_port(dp, ds) {
2567 		if (dev->info->internal_phy[dp->index] &&
2568 		    dev->phy_addr_map[dp->index] == addr)
2569 			return dp->index;
2570 	}
2571 
2572 	return -EINVAL;
2573 }
2574 
2575 /**
2576  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2577  * @dev: Pointer to the KSZ device structure.
2578  *
2579  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2580  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2581  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2582  *
2583  * Return: 0 on success, or a negative error code on failure.
2584  */
2585 static int ksz_irq_phy_setup(struct ksz_device *dev)
2586 {
2587 	struct dsa_switch *ds = dev->ds;
2588 	int phy, port;
2589 	int irq;
2590 	int ret;
2591 
2592 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2593 		if (BIT(phy) & ds->phys_mii_mask) {
2594 			port = ksz_phy_addr_to_port(dev, phy);
2595 			if (port < 0) {
2596 				ret = port;
2597 				goto out;
2598 			}
2599 
2600 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2601 					       PORT_SRC_PHY_INT);
2602 			if (!irq) {
2603 				ret = -EINVAL;
2604 				goto out;
2605 			}
2606 			ds->user_mii_bus->irq[phy] = irq;
2607 		}
2608 	}
2609 	return 0;
2610 out:
2611 	while (phy--)
2612 		if (BIT(phy) & ds->phys_mii_mask)
2613 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2614 
2615 	return ret;
2616 }
2617 
2618 /**
2619  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2620  * @dev: Pointer to the KSZ device structure.
2621  *
2622  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2623  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2624  */
2625 static void ksz_irq_phy_free(struct ksz_device *dev)
2626 {
2627 	struct dsa_switch *ds = dev->ds;
2628 	int phy;
2629 
2630 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2631 		if (BIT(phy) & ds->phys_mii_mask)
2632 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2633 }
2634 
2635 /**
2636  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2637  * @dev: pointer to the KSZ device structure
2638  * @bus: pointer to the MII bus structure
2639  * @mdio_np: pointer to the MDIO node in the device tree
2640  *
2641  * This function parses and validates PHY configurations for each user port
2642  * defined in the device tree for a KSZ switch device. It verifies that the
2643  * `phy-handle` properties are correctly set and that the internal PHYs match
2644  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2645  * all validations pass. Logs error messages for any mismatches or missing data.
2646  *
2647  * Return: 0 on success, or a negative error code on failure.
2648  */
2649 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2650 				   struct device_node *mdio_np)
2651 {
2652 	struct device_node *phy_node, *phy_parent_node;
2653 	bool phys_are_valid = true;
2654 	struct dsa_port *dp;
2655 	u32 phy_addr;
2656 	int ret;
2657 
2658 	dsa_switch_for_each_user_port(dp, dev->ds) {
2659 		if (!dev->info->internal_phy[dp->index])
2660 			continue;
2661 
2662 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2663 		if (!phy_node) {
2664 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2665 				dp->index);
2666 			phys_are_valid = false;
2667 			continue;
2668 		}
2669 
2670 		phy_parent_node = of_get_parent(phy_node);
2671 		if (!phy_parent_node) {
2672 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2673 				dp->index);
2674 			phys_are_valid = false;
2675 		} else if (phy_parent_node != mdio_np) {
2676 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2677 				dp->index, mdio_np, phy_parent_node);
2678 			phys_are_valid = false;
2679 		} else {
2680 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2681 			if (ret < 0) {
2682 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2683 					dp->index, ret);
2684 				phys_are_valid = false;
2685 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2686 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2687 					dp->index, dev->phy_addr_map[dp->index],
2688 					phy_addr);
2689 				phys_are_valid = false;
2690 			} else {
2691 				bus->phy_mask |= BIT(phy_addr);
2692 			}
2693 		}
2694 
2695 		of_node_put(phy_node);
2696 		of_node_put(phy_parent_node);
2697 	}
2698 
2699 	if (!phys_are_valid)
2700 		return -EINVAL;
2701 
2702 	return 0;
2703 }
2704 
2705 /**
2706  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2707  * @dev: Pointer to the KSZ device structure.
2708  *
2709  * This function sets up and registers an MDIO bus for the KSZ switch device,
2710  * allowing access to its internal PHYs. If the device supports side MDIO,
2711  * the function will configure the external MDIO controller specified by the
2712  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2713  * Otherwise, SPI or I2C access is set up for PHY access.
2714  *
2715  * Return: 0 on success, or a negative error code on failure.
2716  */
2717 static int ksz_mdio_register(struct ksz_device *dev)
2718 {
2719 	struct device_node *parent_bus_node;
2720 	struct mii_bus *parent_bus = NULL;
2721 	struct dsa_switch *ds = dev->ds;
2722 	struct device_node *mdio_np;
2723 	struct mii_bus *bus;
2724 	int ret, i;
2725 
2726 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2727 	if (!mdio_np)
2728 		return 0;
2729 
2730 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2731 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2732 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2733 		ret = -EINVAL;
2734 
2735 		goto put_mdio_node;
2736 	} else if (parent_bus_node) {
2737 		parent_bus = of_mdio_find_bus(parent_bus_node);
2738 		if (!parent_bus) {
2739 			ret = -EPROBE_DEFER;
2740 
2741 			goto put_mdio_node;
2742 		}
2743 
2744 		dev->parent_mdio_bus = parent_bus;
2745 	}
2746 
2747 	bus = devm_mdiobus_alloc(ds->dev);
2748 	if (!bus) {
2749 		ret = -ENOMEM;
2750 		goto put_mdio_node;
2751 	}
2752 
2753 	if (dev->dev_ops->mdio_bus_preinit) {
2754 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2755 		if (ret)
2756 			goto put_mdio_node;
2757 	}
2758 
2759 	if (dev->dev_ops->create_phy_addr_map) {
2760 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2761 		if (ret)
2762 			goto put_mdio_node;
2763 	} else {
2764 		for (i = 0; i < dev->info->port_cnt; i++)
2765 			dev->phy_addr_map[i] = i;
2766 	}
2767 
2768 	bus->priv = dev;
2769 	if (parent_bus) {
2770 		bus->read = ksz_parent_mdio_read;
2771 		bus->write = ksz_parent_mdio_write;
2772 		bus->name = "KSZ side MDIO";
2773 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2774 			 ds->index);
2775 	} else {
2776 		bus->read = ksz_sw_mdio_read;
2777 		bus->write = ksz_sw_mdio_write;
2778 		bus->name = "ksz user smi";
2779 		if (ds->dst->index != 0) {
2780 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2781 		} else {
2782 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2783 		}
2784 	}
2785 
2786 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2787 	if (ret)
2788 		goto put_mdio_node;
2789 
2790 	ds->phys_mii_mask = bus->phy_mask;
2791 	bus->parent = ds->dev;
2792 
2793 	ds->user_mii_bus = bus;
2794 
2795 	if (dev->irq > 0) {
2796 		ret = ksz_irq_phy_setup(dev);
2797 		if (ret)
2798 			goto put_mdio_node;
2799 	}
2800 
2801 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2802 	if (ret) {
2803 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2804 			bus->id);
2805 		if (dev->irq > 0)
2806 			ksz_irq_phy_free(dev);
2807 	}
2808 
2809 put_mdio_node:
2810 	of_node_put(mdio_np);
2811 	of_node_put(parent_bus_node);
2812 
2813 	return ret;
2814 }
2815 
2816 static void ksz_irq_mask(struct irq_data *d)
2817 {
2818 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2819 
2820 	kirq->masked |= BIT(d->hwirq);
2821 }
2822 
2823 static void ksz_irq_unmask(struct irq_data *d)
2824 {
2825 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2826 
2827 	kirq->masked &= ~BIT(d->hwirq);
2828 }
2829 
2830 static void ksz_irq_bus_lock(struct irq_data *d)
2831 {
2832 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2833 
2834 	mutex_lock(&kirq->dev->lock_irq);
2835 }
2836 
2837 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2838 {
2839 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2840 	struct ksz_device *dev = kirq->dev;
2841 	int ret;
2842 
2843 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2844 	if (ret)
2845 		dev_err(dev->dev, "failed to change IRQ mask\n");
2846 
2847 	mutex_unlock(&dev->lock_irq);
2848 }
2849 
2850 static const struct irq_chip ksz_irq_chip = {
2851 	.name			= "ksz-irq",
2852 	.irq_mask		= ksz_irq_mask,
2853 	.irq_unmask		= ksz_irq_unmask,
2854 	.irq_bus_lock		= ksz_irq_bus_lock,
2855 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2856 };
2857 
2858 static int ksz_irq_domain_map(struct irq_domain *d,
2859 			      unsigned int irq, irq_hw_number_t hwirq)
2860 {
2861 	irq_set_chip_data(irq, d->host_data);
2862 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2863 	irq_set_noprobe(irq);
2864 
2865 	return 0;
2866 }
2867 
2868 static const struct irq_domain_ops ksz_irq_domain_ops = {
2869 	.map	= ksz_irq_domain_map,
2870 	.xlate	= irq_domain_xlate_twocell,
2871 };
2872 
2873 static void ksz_irq_free(struct ksz_irq *kirq)
2874 {
2875 	int irq, virq;
2876 
2877 	free_irq(kirq->irq_num, kirq);
2878 
2879 	for (irq = 0; irq < kirq->nirqs; irq++) {
2880 		virq = irq_find_mapping(kirq->domain, irq);
2881 		irq_dispose_mapping(virq);
2882 	}
2883 
2884 	irq_domain_remove(kirq->domain);
2885 }
2886 
2887 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2888 {
2889 	struct ksz_irq *kirq = dev_id;
2890 	unsigned int nhandled = 0;
2891 	struct ksz_device *dev;
2892 	unsigned int sub_irq;
2893 	u8 data;
2894 	int ret;
2895 	u8 n;
2896 
2897 	dev = kirq->dev;
2898 
2899 	/* Read interrupt status register */
2900 	ret = ksz_read8(dev, kirq->reg_status, &data);
2901 	if (ret)
2902 		goto out;
2903 
2904 	for (n = 0; n < kirq->nirqs; ++n) {
2905 		if (data & BIT(n)) {
2906 			sub_irq = irq_find_mapping(kirq->domain, n);
2907 			handle_nested_irq(sub_irq);
2908 			++nhandled;
2909 		}
2910 	}
2911 out:
2912 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2913 }
2914 
2915 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2916 {
2917 	int ret, n;
2918 
2919 	kirq->dev = dev;
2920 
2921 	kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0,
2922 						&ksz_irq_domain_ops, kirq);
2923 	if (!kirq->domain)
2924 		return -ENOMEM;
2925 
2926 	for (n = 0; n < kirq->nirqs; n++)
2927 		irq_create_mapping(kirq->domain, n);
2928 
2929 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2930 				   IRQF_ONESHOT, kirq->name, kirq);
2931 	if (ret)
2932 		goto out;
2933 
2934 	return 0;
2935 
2936 out:
2937 	ksz_irq_free(kirq);
2938 
2939 	return ret;
2940 }
2941 
2942 static int ksz_girq_setup(struct ksz_device *dev)
2943 {
2944 	struct ksz_irq *girq = &dev->girq;
2945 
2946 	girq->nirqs = dev->info->port_cnt;
2947 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2948 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2949 	girq->masked = ~0;
2950 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2951 
2952 	girq->irq_num = dev->irq;
2953 
2954 	return ksz_irq_common_setup(dev, girq);
2955 }
2956 
2957 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2958 {
2959 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2960 
2961 	pirq->nirqs = dev->info->port_nirqs;
2962 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2963 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2964 	pirq->masked = ~0;
2965 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2966 
2967 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2968 	if (!pirq->irq_num)
2969 		return -EINVAL;
2970 
2971 	return ksz_irq_common_setup(dev, pirq);
2972 }
2973 
2974 static int ksz_parse_drive_strength(struct ksz_device *dev);
2975 
2976 static int ksz_setup(struct dsa_switch *ds)
2977 {
2978 	struct ksz_device *dev = ds->priv;
2979 	u16 storm_mask, storm_rate;
2980 	struct dsa_port *dp;
2981 	struct ksz_port *p;
2982 	const u16 *regs;
2983 	int ret;
2984 
2985 	regs = dev->info->regs;
2986 
2987 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2988 				       dev->info->num_vlans, GFP_KERNEL);
2989 	if (!dev->vlan_cache)
2990 		return -ENOMEM;
2991 
2992 	ret = dev->dev_ops->reset(dev);
2993 	if (ret) {
2994 		dev_err(ds->dev, "failed to reset switch\n");
2995 		return ret;
2996 	}
2997 
2998 	ret = ksz_parse_drive_strength(dev);
2999 	if (ret)
3000 		return ret;
3001 
3002 	if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) {
3003 		ret = dev->dev_ops->pcs_create(dev);
3004 		if (ret)
3005 			return ret;
3006 	}
3007 
3008 	/* set broadcast storm protection 10% rate */
3009 	storm_mask = BROADCAST_STORM_RATE;
3010 	storm_rate = (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
3011 	if (ksz_is_ksz8463(dev)) {
3012 		storm_mask = swab16(storm_mask);
3013 		storm_rate = swab16(storm_rate);
3014 	}
3015 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
3016 			   storm_mask, storm_rate);
3017 
3018 	dev->dev_ops->config_cpu_port(ds);
3019 
3020 	dev->dev_ops->enable_stp_addr(dev);
3021 
3022 	ds->num_tx_queues = dev->info->num_tx_queues;
3023 
3024 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
3025 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
3026 
3027 	ksz_init_mib_timer(dev);
3028 
3029 	ds->configure_vlan_while_not_filtering = false;
3030 	ds->dscp_prio_mapping_is_global = true;
3031 
3032 	if (dev->dev_ops->setup) {
3033 		ret = dev->dev_ops->setup(ds);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 	/* Start with learning disabled on standalone user ports, and enabled
3039 	 * on the CPU port. In lack of other finer mechanisms, learning on the
3040 	 * CPU port will avoid flooding bridge local addresses on the network
3041 	 * in some cases.
3042 	 */
3043 	p = &dev->ports[dev->cpu_port];
3044 	p->learning = true;
3045 
3046 	if (dev->irq > 0) {
3047 		ret = ksz_girq_setup(dev);
3048 		if (ret)
3049 			return ret;
3050 
3051 		dsa_switch_for_each_user_port(dp, dev->ds) {
3052 			ret = ksz_pirq_setup(dev, dp->index);
3053 			if (ret)
3054 				goto port_release;
3055 
3056 			if (dev->info->ptp_capable) {
3057 				ret = ksz_ptp_irq_setup(ds, dp->index);
3058 				if (ret)
3059 					goto pirq_release;
3060 			}
3061 		}
3062 	}
3063 
3064 	if (dev->info->ptp_capable) {
3065 		ret = ksz_ptp_clock_register(ds);
3066 		if (ret) {
3067 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
3068 				ret);
3069 			goto port_release;
3070 		}
3071 	}
3072 
3073 	ret = ksz_mdio_register(dev);
3074 	if (ret < 0) {
3075 		dev_err(dev->dev, "failed to register the mdio");
3076 		goto out_ptp_clock_unregister;
3077 	}
3078 
3079 	ret = ksz_dcb_init(dev);
3080 	if (ret)
3081 		goto out_ptp_clock_unregister;
3082 
3083 	/* start switch */
3084 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
3085 			   SW_START, SW_START);
3086 
3087 	return 0;
3088 
3089 out_ptp_clock_unregister:
3090 	if (dev->info->ptp_capable)
3091 		ksz_ptp_clock_unregister(ds);
3092 port_release:
3093 	if (dev->irq > 0) {
3094 		dsa_switch_for_each_user_port_continue_reverse(dp, dev->ds) {
3095 			if (dev->info->ptp_capable)
3096 				ksz_ptp_irq_free(ds, dp->index);
3097 pirq_release:
3098 			ksz_irq_free(&dev->ports[dp->index].pirq);
3099 		}
3100 		ksz_irq_free(&dev->girq);
3101 	}
3102 
3103 	return ret;
3104 }
3105 
3106 static void ksz_teardown(struct dsa_switch *ds)
3107 {
3108 	struct ksz_device *dev = ds->priv;
3109 	struct dsa_port *dp;
3110 
3111 	if (dev->info->ptp_capable)
3112 		ksz_ptp_clock_unregister(ds);
3113 
3114 	if (dev->irq > 0) {
3115 		dsa_switch_for_each_user_port(dp, dev->ds) {
3116 			if (dev->info->ptp_capable)
3117 				ksz_ptp_irq_free(ds, dp->index);
3118 
3119 			ksz_irq_free(&dev->ports[dp->index].pirq);
3120 		}
3121 
3122 		ksz_irq_free(&dev->girq);
3123 	}
3124 
3125 	if (dev->dev_ops->teardown)
3126 		dev->dev_ops->teardown(ds);
3127 }
3128 
3129 static void port_r_cnt(struct ksz_device *dev, int port)
3130 {
3131 	struct ksz_port_mib *mib = &dev->ports[port].mib;
3132 	u64 *dropped;
3133 
3134 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
3135 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
3136 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
3137 					&mib->counters[mib->cnt_ptr]);
3138 		++mib->cnt_ptr;
3139 	}
3140 
3141 	/* last one in storage */
3142 	dropped = &mib->counters[dev->info->mib_cnt];
3143 
3144 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
3145 	while (mib->cnt_ptr < dev->info->mib_cnt) {
3146 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
3147 					dropped, &mib->counters[mib->cnt_ptr]);
3148 		++mib->cnt_ptr;
3149 	}
3150 	mib->cnt_ptr = 0;
3151 }
3152 
3153 static void ksz_mib_read_work(struct work_struct *work)
3154 {
3155 	struct ksz_device *dev = container_of(work, struct ksz_device,
3156 					      mib_read.work);
3157 	struct ksz_port_mib *mib;
3158 	struct ksz_port *p;
3159 	int i;
3160 
3161 	for (i = 0; i < dev->info->port_cnt; i++) {
3162 		if (dsa_is_unused_port(dev->ds, i))
3163 			continue;
3164 
3165 		p = &dev->ports[i];
3166 		mib = &p->mib;
3167 		mutex_lock(&mib->cnt_mutex);
3168 
3169 		/* Only read MIB counters when the port is told to do.
3170 		 * If not, read only dropped counters when link is not up.
3171 		 */
3172 		if (!p->read) {
3173 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3174 
3175 			if (!netif_carrier_ok(dp->user))
3176 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3177 		}
3178 		port_r_cnt(dev, i);
3179 		p->read = false;
3180 
3181 		if (dev->dev_ops->r_mib_stat64)
3182 			dev->dev_ops->r_mib_stat64(dev, i);
3183 
3184 		mutex_unlock(&mib->cnt_mutex);
3185 	}
3186 
3187 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3188 }
3189 
3190 void ksz_init_mib_timer(struct ksz_device *dev)
3191 {
3192 	int i;
3193 
3194 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3195 
3196 	for (i = 0; i < dev->info->port_cnt; i++) {
3197 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3198 
3199 		dev->dev_ops->port_init_cnt(dev, i);
3200 
3201 		mib->cnt_ptr = 0;
3202 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3203 	}
3204 }
3205 
3206 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3207 {
3208 	struct ksz_device *dev = ds->priv;
3209 	u16 val = 0xffff;
3210 	int ret;
3211 
3212 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3213 	if (ret)
3214 		return ret;
3215 
3216 	return val;
3217 }
3218 
3219 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3220 {
3221 	struct ksz_device *dev = ds->priv;
3222 	int ret;
3223 
3224 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3225 	if (ret)
3226 		return ret;
3227 
3228 	return 0;
3229 }
3230 
3231 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3232 {
3233 	struct ksz_device *dev = ds->priv;
3234 
3235 	switch (dev->chip_id) {
3236 	case KSZ88X3_CHIP_ID:
3237 		/* Silicon Errata Sheet (DS80000830A):
3238 		 * Port 1 does not work with LinkMD Cable-Testing.
3239 		 * Port 1 does not respond to received PAUSE control frames.
3240 		 */
3241 		if (!port)
3242 			return MICREL_KSZ8_P1_ERRATA;
3243 		break;
3244 	}
3245 
3246 	return 0;
3247 }
3248 
3249 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3250 				      unsigned int mode,
3251 				      phy_interface_t interface)
3252 {
3253 	struct dsa_port *dp = dsa_phylink_to_port(config);
3254 	struct ksz_device *dev = dp->ds->priv;
3255 
3256 	/* Read all MIB counters when the link is going down. */
3257 	dev->ports[dp->index].read = true;
3258 	/* timer started */
3259 	if (dev->mib_read_interval)
3260 		schedule_delayed_work(&dev->mib_read, 0);
3261 }
3262 
3263 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3264 {
3265 	struct ksz_device *dev = ds->priv;
3266 
3267 	if (sset != ETH_SS_STATS)
3268 		return 0;
3269 
3270 	return dev->info->mib_cnt;
3271 }
3272 
3273 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3274 				  uint64_t *buf)
3275 {
3276 	const struct dsa_port *dp = dsa_to_port(ds, port);
3277 	struct ksz_device *dev = ds->priv;
3278 	struct ksz_port_mib *mib;
3279 
3280 	mib = &dev->ports[port].mib;
3281 	mutex_lock(&mib->cnt_mutex);
3282 
3283 	/* Only read dropped counters if no link. */
3284 	if (!netif_carrier_ok(dp->user))
3285 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3286 	port_r_cnt(dev, port);
3287 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3288 	mutex_unlock(&mib->cnt_mutex);
3289 }
3290 
3291 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3292 				struct dsa_bridge bridge,
3293 				bool *tx_fwd_offload,
3294 				struct netlink_ext_ack *extack)
3295 {
3296 	/* port_stp_state_set() will be called after to put the port in
3297 	 * appropriate state so there is no need to do anything.
3298 	 */
3299 
3300 	return 0;
3301 }
3302 
3303 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3304 				  struct dsa_bridge bridge)
3305 {
3306 	/* port_stp_state_set() will be called after to put the port in
3307 	 * forwarding state so there is no need to do anything.
3308 	 */
3309 }
3310 
3311 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3312 {
3313 	struct ksz_device *dev = ds->priv;
3314 
3315 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3316 }
3317 
3318 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3319 {
3320 	struct ksz_device *dev = ds->priv;
3321 
3322 	if (!dev->dev_ops->set_ageing_time)
3323 		return -EOPNOTSUPP;
3324 
3325 	return dev->dev_ops->set_ageing_time(dev, msecs);
3326 }
3327 
3328 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3329 			    const unsigned char *addr, u16 vid,
3330 			    struct dsa_db db)
3331 {
3332 	struct ksz_device *dev = ds->priv;
3333 
3334 	if (!dev->dev_ops->fdb_add)
3335 		return -EOPNOTSUPP;
3336 
3337 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3338 }
3339 
3340 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3341 			    const unsigned char *addr,
3342 			    u16 vid, struct dsa_db db)
3343 {
3344 	struct ksz_device *dev = ds->priv;
3345 
3346 	if (!dev->dev_ops->fdb_del)
3347 		return -EOPNOTSUPP;
3348 
3349 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3350 }
3351 
3352 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3353 			     dsa_fdb_dump_cb_t *cb, void *data)
3354 {
3355 	struct ksz_device *dev = ds->priv;
3356 
3357 	if (!dev->dev_ops->fdb_dump)
3358 		return -EOPNOTSUPP;
3359 
3360 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3361 }
3362 
3363 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3364 			    const struct switchdev_obj_port_mdb *mdb,
3365 			    struct dsa_db db)
3366 {
3367 	struct ksz_device *dev = ds->priv;
3368 
3369 	if (!dev->dev_ops->mdb_add)
3370 		return -EOPNOTSUPP;
3371 
3372 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3373 }
3374 
3375 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3376 			    const struct switchdev_obj_port_mdb *mdb,
3377 			    struct dsa_db db)
3378 {
3379 	struct ksz_device *dev = ds->priv;
3380 
3381 	if (!dev->dev_ops->mdb_del)
3382 		return -EOPNOTSUPP;
3383 
3384 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3385 }
3386 
3387 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3388 						  int port)
3389 {
3390 	u32 queue_map = 0;
3391 	int ipm;
3392 
3393 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3394 		int queue;
3395 
3396 		/* Traffic Type (TT) is corresponding to the Internal Priority
3397 		 * Map (IPM) in the switch. Traffic Class (TC) is
3398 		 * corresponding to the queue in the switch.
3399 		 */
3400 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3401 		if (queue < 0)
3402 			return queue;
3403 
3404 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3405 	}
3406 
3407 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3408 }
3409 
3410 static int ksz_port_setup(struct dsa_switch *ds, int port)
3411 {
3412 	struct ksz_device *dev = ds->priv;
3413 	int ret;
3414 
3415 	if (!dsa_is_user_port(ds, port))
3416 		return 0;
3417 
3418 	/* setup user port */
3419 	dev->dev_ops->port_setup(dev, port, false);
3420 
3421 	if (!is_ksz8(dev)) {
3422 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3423 		if (ret)
3424 			return ret;
3425 	}
3426 
3427 	/* port_stp_state_set() will be called after to enable the port so
3428 	 * there is no need to do anything.
3429 	 */
3430 
3431 	return ksz_dcb_init_port(dev, port);
3432 }
3433 
3434 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3435 {
3436 	struct ksz_device *dev = ds->priv;
3437 	struct ksz_port *p;
3438 	const u16 *regs;
3439 	u8 data;
3440 
3441 	regs = dev->info->regs;
3442 
3443 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3444 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3445 
3446 	p = &dev->ports[port];
3447 
3448 	switch (state) {
3449 	case BR_STATE_DISABLED:
3450 		data |= PORT_LEARN_DISABLE;
3451 		break;
3452 	case BR_STATE_LISTENING:
3453 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3454 		break;
3455 	case BR_STATE_LEARNING:
3456 		data |= PORT_RX_ENABLE;
3457 		if (!p->learning)
3458 			data |= PORT_LEARN_DISABLE;
3459 		break;
3460 	case BR_STATE_FORWARDING:
3461 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3462 		if (!p->learning)
3463 			data |= PORT_LEARN_DISABLE;
3464 		break;
3465 	case BR_STATE_BLOCKING:
3466 		data |= PORT_LEARN_DISABLE;
3467 		break;
3468 	default:
3469 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3470 		return;
3471 	}
3472 
3473 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3474 
3475 	p->stp_state = state;
3476 
3477 	ksz_update_port_member(dev, port);
3478 }
3479 
3480 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3481 {
3482 	struct ksz_device *dev = ds->priv;
3483 
3484 	switch (dev->chip_id) {
3485 	case KSZ8563_CHIP_ID:
3486 	case KSZ8567_CHIP_ID:
3487 	case KSZ9477_CHIP_ID:
3488 	case KSZ9563_CHIP_ID:
3489 	case KSZ9567_CHIP_ID:
3490 	case KSZ9893_CHIP_ID:
3491 	case KSZ9896_CHIP_ID:
3492 	case KSZ9897_CHIP_ID:
3493 	case LAN9646_CHIP_ID:
3494 		if (dsa_is_user_port(ds, port))
3495 			ksz9477_port_acl_free(dev, port);
3496 	}
3497 }
3498 
3499 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3500 				     struct switchdev_brport_flags flags,
3501 				     struct netlink_ext_ack *extack)
3502 {
3503 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3504 		return -EINVAL;
3505 
3506 	return 0;
3507 }
3508 
3509 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3510 				 struct switchdev_brport_flags flags,
3511 				 struct netlink_ext_ack *extack)
3512 {
3513 	struct ksz_device *dev = ds->priv;
3514 	struct ksz_port *p = &dev->ports[port];
3515 
3516 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3517 		if (flags.mask & BR_LEARNING)
3518 			p->learning = !!(flags.val & BR_LEARNING);
3519 
3520 		if (flags.mask & BR_ISOLATED)
3521 			p->isolated = !!(flags.val & BR_ISOLATED);
3522 
3523 		/* Make the change take effect immediately */
3524 		ksz_port_stp_state_set(ds, port, p->stp_state);
3525 	}
3526 
3527 	return 0;
3528 }
3529 
3530 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3531 						  int port,
3532 						  enum dsa_tag_protocol mp)
3533 {
3534 	struct ksz_device *dev = ds->priv;
3535 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3536 
3537 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3538 		proto = DSA_TAG_PROTO_KSZ8795;
3539 
3540 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3541 	    dev->chip_id == KSZ8463_CHIP_ID ||
3542 	    dev->chip_id == KSZ8563_CHIP_ID ||
3543 	    dev->chip_id == KSZ9893_CHIP_ID ||
3544 	    dev->chip_id == KSZ9563_CHIP_ID)
3545 		proto = DSA_TAG_PROTO_KSZ9893;
3546 
3547 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3548 	    dev->chip_id == KSZ9477_CHIP_ID ||
3549 	    dev->chip_id == KSZ9896_CHIP_ID ||
3550 	    dev->chip_id == KSZ9897_CHIP_ID ||
3551 	    dev->chip_id == KSZ9567_CHIP_ID ||
3552 	    dev->chip_id == LAN9646_CHIP_ID)
3553 		proto = DSA_TAG_PROTO_KSZ9477;
3554 
3555 	if (is_lan937x(dev))
3556 		proto = DSA_TAG_PROTO_LAN937X;
3557 
3558 	return proto;
3559 }
3560 
3561 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3562 				    enum dsa_tag_protocol proto)
3563 {
3564 	struct ksz_tagger_data *tagger_data;
3565 
3566 	switch (proto) {
3567 	case DSA_TAG_PROTO_KSZ8795:
3568 		return 0;
3569 	case DSA_TAG_PROTO_KSZ9893:
3570 	case DSA_TAG_PROTO_KSZ9477:
3571 	case DSA_TAG_PROTO_LAN937X:
3572 		tagger_data = ksz_tagger_data(ds);
3573 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3574 		return 0;
3575 	default:
3576 		return -EPROTONOSUPPORT;
3577 	}
3578 }
3579 
3580 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3581 				   bool flag, struct netlink_ext_ack *extack)
3582 {
3583 	struct ksz_device *dev = ds->priv;
3584 
3585 	if (!dev->dev_ops->vlan_filtering)
3586 		return -EOPNOTSUPP;
3587 
3588 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3589 }
3590 
3591 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3592 			     const struct switchdev_obj_port_vlan *vlan,
3593 			     struct netlink_ext_ack *extack)
3594 {
3595 	struct ksz_device *dev = ds->priv;
3596 
3597 	if (!dev->dev_ops->vlan_add)
3598 		return -EOPNOTSUPP;
3599 
3600 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3601 }
3602 
3603 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3604 			     const struct switchdev_obj_port_vlan *vlan)
3605 {
3606 	struct ksz_device *dev = ds->priv;
3607 
3608 	if (!dev->dev_ops->vlan_del)
3609 		return -EOPNOTSUPP;
3610 
3611 	return dev->dev_ops->vlan_del(dev, port, vlan);
3612 }
3613 
3614 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3615 			       struct dsa_mall_mirror_tc_entry *mirror,
3616 			       bool ingress, struct netlink_ext_ack *extack)
3617 {
3618 	struct ksz_device *dev = ds->priv;
3619 
3620 	if (!dev->dev_ops->mirror_add)
3621 		return -EOPNOTSUPP;
3622 
3623 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3624 }
3625 
3626 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3627 				struct dsa_mall_mirror_tc_entry *mirror)
3628 {
3629 	struct ksz_device *dev = ds->priv;
3630 
3631 	if (dev->dev_ops->mirror_del)
3632 		dev->dev_ops->mirror_del(dev, port, mirror);
3633 }
3634 
3635 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3636 {
3637 	struct ksz_device *dev = ds->priv;
3638 
3639 	if (!dev->dev_ops->change_mtu)
3640 		return -EOPNOTSUPP;
3641 
3642 	return dev->dev_ops->change_mtu(dev, port, mtu);
3643 }
3644 
3645 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3646 {
3647 	struct ksz_device *dev = ds->priv;
3648 
3649 	switch (dev->chip_id) {
3650 	case KSZ8795_CHIP_ID:
3651 	case KSZ8794_CHIP_ID:
3652 	case KSZ8765_CHIP_ID:
3653 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3654 	case KSZ8463_CHIP_ID:
3655 	case KSZ88X3_CHIP_ID:
3656 	case KSZ8864_CHIP_ID:
3657 	case KSZ8895_CHIP_ID:
3658 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3659 	case KSZ8563_CHIP_ID:
3660 	case KSZ8567_CHIP_ID:
3661 	case KSZ9477_CHIP_ID:
3662 	case KSZ9563_CHIP_ID:
3663 	case KSZ9567_CHIP_ID:
3664 	case KSZ9893_CHIP_ID:
3665 	case KSZ9896_CHIP_ID:
3666 	case KSZ9897_CHIP_ID:
3667 	case LAN9370_CHIP_ID:
3668 	case LAN9371_CHIP_ID:
3669 	case LAN9372_CHIP_ID:
3670 	case LAN9373_CHIP_ID:
3671 	case LAN9374_CHIP_ID:
3672 	case LAN9646_CHIP_ID:
3673 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3674 	}
3675 
3676 	return -EOPNOTSUPP;
3677 }
3678 
3679 /**
3680  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3681  *                   port
3682  * @ds: Pointer to the DSA switch structure
3683  * @port: Port number to check
3684  *
3685  * This function also documents devices where EEE was initially advertised but
3686  * later withdrawn due to reliability issues, as described in official errata
3687  * documents. These devices are explicitly listed to record known limitations,
3688  * even if there is no technical necessity for runtime checks.
3689  *
3690  * Returns: true if the internal PHY on the given port supports fully
3691  * operational EEE, false otherwise.
3692  */
3693 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3694 {
3695 	struct ksz_device *dev = ds->priv;
3696 
3697 	if (!dev->info->internal_phy[port])
3698 		return false;
3699 
3700 	switch (dev->chip_id) {
3701 	case KSZ8563_CHIP_ID:
3702 	case KSZ9563_CHIP_ID:
3703 	case KSZ9893_CHIP_ID:
3704 		return true;
3705 	case KSZ8567_CHIP_ID:
3706 		/* KSZ8567R Errata DS80000752C Module 4 */
3707 	case KSZ8765_CHIP_ID:
3708 	case KSZ8794_CHIP_ID:
3709 	case KSZ8795_CHIP_ID:
3710 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3711 	case KSZ9477_CHIP_ID:
3712 		/* KSZ9477S Errata DS80000754A Module 4 */
3713 	case KSZ9567_CHIP_ID:
3714 		/* KSZ9567S Errata DS80000756A Module 4 */
3715 	case KSZ9896_CHIP_ID:
3716 		/* KSZ9896C Errata DS80000757A Module 3 */
3717 	case KSZ9897_CHIP_ID:
3718 	case LAN9646_CHIP_ID:
3719 		/* KSZ9897R Errata DS80000758C Module 4 */
3720 		/* Energy Efficient Ethernet (EEE) feature select must be
3721 		 * manually disabled
3722 		 *   The EEE feature is enabled by default, but it is not fully
3723 		 *   operational. It must be manually disabled through register
3724 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3725 		 *   to enable EEE, and this feature can cause link drops when
3726 		 *   linked to another device supporting EEE.
3727 		 *
3728 		 * The same item appears in the errata for all switches above.
3729 		 */
3730 		break;
3731 	}
3732 
3733 	return false;
3734 }
3735 
3736 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3737 			   struct ethtool_keee *e)
3738 {
3739 	struct ksz_device *dev = ds->priv;
3740 
3741 	if (!e->tx_lpi_enabled) {
3742 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3743 		return -EINVAL;
3744 	}
3745 
3746 	if (e->tx_lpi_timer) {
3747 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3748 		return -EINVAL;
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 static void ksz_set_xmii(struct ksz_device *dev, int port,
3755 			 phy_interface_t interface)
3756 {
3757 	const u8 *bitval = dev->info->xmii_ctrl1;
3758 	struct ksz_port *p = &dev->ports[port];
3759 	const u16 *regs = dev->info->regs;
3760 	u8 data8;
3761 
3762 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3763 
3764 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3765 		   P_RGMII_ID_EG_ENABLE);
3766 
3767 	switch (interface) {
3768 	case PHY_INTERFACE_MODE_MII:
3769 		data8 |= bitval[P_MII_SEL];
3770 		break;
3771 	case PHY_INTERFACE_MODE_RMII:
3772 		data8 |= bitval[P_RMII_SEL];
3773 		break;
3774 	case PHY_INTERFACE_MODE_GMII:
3775 		data8 |= bitval[P_GMII_SEL];
3776 		break;
3777 	case PHY_INTERFACE_MODE_RGMII:
3778 	case PHY_INTERFACE_MODE_RGMII_ID:
3779 	case PHY_INTERFACE_MODE_RGMII_TXID:
3780 	case PHY_INTERFACE_MODE_RGMII_RXID:
3781 		data8 |= bitval[P_RGMII_SEL];
3782 		/* On KSZ9893, disable RGMII in-band status support */
3783 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3784 		    dev->chip_id == KSZ8563_CHIP_ID ||
3785 		    dev->chip_id == KSZ9563_CHIP_ID ||
3786 		    is_lan937x(dev))
3787 			data8 &= ~P_MII_MAC_MODE;
3788 		break;
3789 	default:
3790 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3791 			phy_modes(interface), port);
3792 		return;
3793 	}
3794 
3795 	if (p->rgmii_tx_val)
3796 		data8 |= P_RGMII_ID_EG_ENABLE;
3797 
3798 	if (p->rgmii_rx_val)
3799 		data8 |= P_RGMII_ID_IG_ENABLE;
3800 
3801 	/* Write the updated value */
3802 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3803 }
3804 
3805 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3806 {
3807 	const u8 *bitval = dev->info->xmii_ctrl1;
3808 	const u16 *regs = dev->info->regs;
3809 	phy_interface_t interface;
3810 	u8 data8;
3811 	u8 val;
3812 
3813 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3814 
3815 	val = FIELD_GET(P_MII_SEL_M, data8);
3816 
3817 	if (val == bitval[P_MII_SEL]) {
3818 		if (gbit)
3819 			interface = PHY_INTERFACE_MODE_GMII;
3820 		else
3821 			interface = PHY_INTERFACE_MODE_MII;
3822 	} else if (val == bitval[P_RMII_SEL]) {
3823 		interface = PHY_INTERFACE_MODE_RMII;
3824 	} else {
3825 		interface = PHY_INTERFACE_MODE_RGMII;
3826 		if (data8 & P_RGMII_ID_EG_ENABLE)
3827 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3828 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3829 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3830 			if (data8 & P_RGMII_ID_EG_ENABLE)
3831 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3832 		}
3833 	}
3834 
3835 	return interface;
3836 }
3837 
3838 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3839 				       unsigned int mode,
3840 				       const struct phylink_link_state *state)
3841 {
3842 	struct dsa_port *dp = dsa_phylink_to_port(config);
3843 	struct ksz_device *dev = dp->ds->priv;
3844 
3845 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3846 }
3847 
3848 static void ksz_phylink_mac_config(struct phylink_config *config,
3849 				   unsigned int mode,
3850 				   const struct phylink_link_state *state)
3851 {
3852 	struct dsa_port *dp = dsa_phylink_to_port(config);
3853 	struct ksz_device *dev = dp->ds->priv;
3854 	int port = dp->index;
3855 
3856 	/* Internal PHYs */
3857 	if (dev->info->internal_phy[port])
3858 		return;
3859 
3860 	/* No need to configure XMII control register when using SGMII. */
3861 	if (ksz_is_sgmii_port(dev, port))
3862 		return;
3863 
3864 	if (phylink_autoneg_inband(mode)) {
3865 		dev_err(dev->dev, "In-band AN not supported!\n");
3866 		return;
3867 	}
3868 
3869 	ksz_set_xmii(dev, port, state->interface);
3870 
3871 	if (dev->dev_ops->setup_rgmii_delay)
3872 		dev->dev_ops->setup_rgmii_delay(dev, port);
3873 }
3874 
3875 bool ksz_get_gbit(struct ksz_device *dev, int port)
3876 {
3877 	const u8 *bitval = dev->info->xmii_ctrl1;
3878 	const u16 *regs = dev->info->regs;
3879 	bool gbit = false;
3880 	u8 data8;
3881 	bool val;
3882 
3883 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3884 
3885 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3886 
3887 	if (val == bitval[P_GMII_1GBIT])
3888 		gbit = true;
3889 
3890 	return gbit;
3891 }
3892 
3893 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3894 {
3895 	const u8 *bitval = dev->info->xmii_ctrl1;
3896 	const u16 *regs = dev->info->regs;
3897 	u8 data8;
3898 
3899 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3900 
3901 	data8 &= ~P_GMII_1GBIT_M;
3902 
3903 	if (gbit)
3904 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3905 	else
3906 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3907 
3908 	/* Write the updated value */
3909 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3910 }
3911 
3912 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3913 {
3914 	const u8 *bitval = dev->info->xmii_ctrl0;
3915 	const u16 *regs = dev->info->regs;
3916 	u8 data8;
3917 
3918 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3919 
3920 	data8 &= ~P_MII_100MBIT_M;
3921 
3922 	if (speed == SPEED_100)
3923 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3924 	else
3925 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3926 
3927 	/* Write the updated value */
3928 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3929 }
3930 
3931 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3932 {
3933 	if (speed == SPEED_1000)
3934 		ksz_set_gbit(dev, port, true);
3935 	else
3936 		ksz_set_gbit(dev, port, false);
3937 
3938 	if (speed == SPEED_100 || speed == SPEED_10)
3939 		ksz_set_100_10mbit(dev, port, speed);
3940 }
3941 
3942 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3943 				bool tx_pause, bool rx_pause)
3944 {
3945 	const u8 *bitval = dev->info->xmii_ctrl0;
3946 	const u32 *masks = dev->info->masks;
3947 	const u16 *regs = dev->info->regs;
3948 	u8 mask;
3949 	u8 val;
3950 
3951 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3952 	       masks[P_MII_RX_FLOW_CTRL];
3953 
3954 	if (duplex == DUPLEX_FULL)
3955 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3956 	else
3957 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3958 
3959 	if (tx_pause)
3960 		val |= masks[P_MII_TX_FLOW_CTRL];
3961 
3962 	if (rx_pause)
3963 		val |= masks[P_MII_RX_FLOW_CTRL];
3964 
3965 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3966 }
3967 
3968 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3969 					struct phy_device *phydev,
3970 					unsigned int mode,
3971 					phy_interface_t interface,
3972 					int speed, int duplex, bool tx_pause,
3973 					bool rx_pause)
3974 {
3975 	struct dsa_port *dp = dsa_phylink_to_port(config);
3976 	struct ksz_device *dev = dp->ds->priv;
3977 	int port = dp->index;
3978 	struct ksz_port *p;
3979 
3980 	p = &dev->ports[port];
3981 
3982 	/* Internal PHYs */
3983 	if (dev->info->internal_phy[port])
3984 		return;
3985 
3986 	p->phydev.speed = speed;
3987 
3988 	ksz_port_set_xmii_speed(dev, port, speed);
3989 
3990 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3991 }
3992 
3993 static int ksz_switch_detect(struct ksz_device *dev)
3994 {
3995 	u8 id1, id2, id4;
3996 	u16 id16;
3997 	u32 id32;
3998 	int ret;
3999 
4000 	/* read chip id */
4001 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
4002 	if (ret)
4003 		return ret;
4004 
4005 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
4006 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
4007 
4008 	switch (id1) {
4009 	case KSZ84_FAMILY_ID:
4010 		dev->chip_id = KSZ8463_CHIP_ID;
4011 		break;
4012 	case KSZ87_FAMILY_ID:
4013 		if (id2 == KSZ87_CHIP_ID_95) {
4014 			u8 val;
4015 
4016 			dev->chip_id = KSZ8795_CHIP_ID;
4017 
4018 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
4019 			if (val & KSZ8_PORT_FIBER_MODE)
4020 				dev->chip_id = KSZ8765_CHIP_ID;
4021 		} else if (id2 == KSZ87_CHIP_ID_94) {
4022 			dev->chip_id = KSZ8794_CHIP_ID;
4023 		} else {
4024 			return -ENODEV;
4025 		}
4026 		break;
4027 	case KSZ88_FAMILY_ID:
4028 		if (id2 == KSZ88_CHIP_ID_63)
4029 			dev->chip_id = KSZ88X3_CHIP_ID;
4030 		else
4031 			return -ENODEV;
4032 		break;
4033 	case KSZ8895_FAMILY_ID:
4034 		if (id2 == KSZ8895_CHIP_ID_95 ||
4035 		    id2 == KSZ8895_CHIP_ID_95R)
4036 			dev->chip_id = KSZ8895_CHIP_ID;
4037 		else
4038 			return -ENODEV;
4039 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
4040 		if (ret)
4041 			return ret;
4042 		if (id4 & SW_KSZ8864)
4043 			dev->chip_id = KSZ8864_CHIP_ID;
4044 		break;
4045 	default:
4046 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
4047 		if (ret)
4048 			return ret;
4049 
4050 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
4051 		id32 &= ~0xFF;
4052 
4053 		switch (id32) {
4054 		case KSZ9477_CHIP_ID:
4055 		case KSZ9896_CHIP_ID:
4056 		case KSZ9897_CHIP_ID:
4057 		case KSZ9567_CHIP_ID:
4058 		case KSZ8567_CHIP_ID:
4059 		case LAN9370_CHIP_ID:
4060 		case LAN9371_CHIP_ID:
4061 		case LAN9372_CHIP_ID:
4062 		case LAN9373_CHIP_ID:
4063 		case LAN9374_CHIP_ID:
4064 
4065 			/* LAN9646 does not have its own chip id. */
4066 			if (dev->chip_id != LAN9646_CHIP_ID)
4067 				dev->chip_id = id32;
4068 			break;
4069 		case KSZ9893_CHIP_ID:
4070 			ret = ksz_read8(dev, REG_CHIP_ID4,
4071 					&id4);
4072 			if (ret)
4073 				return ret;
4074 
4075 			if (id4 == SKU_ID_KSZ8563)
4076 				dev->chip_id = KSZ8563_CHIP_ID;
4077 			else if (id4 == SKU_ID_KSZ9563)
4078 				dev->chip_id = KSZ9563_CHIP_ID;
4079 			else
4080 				dev->chip_id = KSZ9893_CHIP_ID;
4081 
4082 			break;
4083 		default:
4084 			dev_err(dev->dev,
4085 				"unsupported switch detected %x)\n", id32);
4086 			return -ENODEV;
4087 		}
4088 	}
4089 	return 0;
4090 }
4091 
4092 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
4093 			      struct flow_cls_offload *cls, bool ingress)
4094 {
4095 	struct ksz_device *dev = ds->priv;
4096 
4097 	switch (dev->chip_id) {
4098 	case KSZ8563_CHIP_ID:
4099 	case KSZ8567_CHIP_ID:
4100 	case KSZ9477_CHIP_ID:
4101 	case KSZ9563_CHIP_ID:
4102 	case KSZ9567_CHIP_ID:
4103 	case KSZ9893_CHIP_ID:
4104 	case KSZ9896_CHIP_ID:
4105 	case KSZ9897_CHIP_ID:
4106 	case LAN9646_CHIP_ID:
4107 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
4108 	}
4109 
4110 	return -EOPNOTSUPP;
4111 }
4112 
4113 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
4114 			      struct flow_cls_offload *cls, bool ingress)
4115 {
4116 	struct ksz_device *dev = ds->priv;
4117 
4118 	switch (dev->chip_id) {
4119 	case KSZ8563_CHIP_ID:
4120 	case KSZ8567_CHIP_ID:
4121 	case KSZ9477_CHIP_ID:
4122 	case KSZ9563_CHIP_ID:
4123 	case KSZ9567_CHIP_ID:
4124 	case KSZ9893_CHIP_ID:
4125 	case KSZ9896_CHIP_ID:
4126 	case KSZ9897_CHIP_ID:
4127 	case LAN9646_CHIP_ID:
4128 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
4129 	}
4130 
4131 	return -EOPNOTSUPP;
4132 }
4133 
4134 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
4135  * is converted to Hex-decimal using the successive multiplication method. On
4136  * every step, integer part is taken and decimal part is carry forwarded.
4137  */
4138 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
4139 {
4140 	u32 cinc = 0;
4141 	u32 txrate;
4142 	u32 rate;
4143 	u8 temp;
4144 	u8 i;
4145 
4146 	txrate = idle_slope - send_slope;
4147 
4148 	if (!txrate)
4149 		return -EINVAL;
4150 
4151 	rate = idle_slope;
4152 
4153 	/* 24 bit register */
4154 	for (i = 0; i < 6; i++) {
4155 		rate = rate * 16;
4156 
4157 		temp = rate / txrate;
4158 
4159 		rate %= txrate;
4160 
4161 		cinc = ((cinc << 4) | temp);
4162 	}
4163 
4164 	*bw = cinc;
4165 
4166 	return 0;
4167 }
4168 
4169 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
4170 			     u8 shaper)
4171 {
4172 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4173 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4174 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4175 }
4176 
4177 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4178 			    struct tc_cbs_qopt_offload *qopt)
4179 {
4180 	struct ksz_device *dev = ds->priv;
4181 	int ret;
4182 	u32 bw;
4183 
4184 	if (!dev->info->tc_cbs_supported)
4185 		return -EOPNOTSUPP;
4186 
4187 	if (qopt->queue > dev->info->num_tx_queues)
4188 		return -EINVAL;
4189 
4190 	/* Queue Selection */
4191 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4192 	if (ret)
4193 		return ret;
4194 
4195 	if (!qopt->enable)
4196 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4197 					 MTI_SHAPING_OFF);
4198 
4199 	/* High Credit */
4200 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4201 			   qopt->hicredit);
4202 	if (ret)
4203 		return ret;
4204 
4205 	/* Low Credit */
4206 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4207 			   qopt->locredit);
4208 	if (ret)
4209 		return ret;
4210 
4211 	/* Credit Increment Register */
4212 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4213 	if (ret)
4214 		return ret;
4215 
4216 	if (dev->dev_ops->tc_cbs_set_cinc) {
4217 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4218 		if (ret)
4219 			return ret;
4220 	}
4221 
4222 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4223 				 MTI_SHAPING_SRP);
4224 }
4225 
4226 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4227 {
4228 	int queue, ret;
4229 
4230 	/* Configuration will not take effect until the last Port Queue X
4231 	 * Egress Limit Control Register is written.
4232 	 */
4233 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4234 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4235 				  KSZ9477_OUT_RATE_NO_LIMIT);
4236 		if (ret)
4237 			return ret;
4238 	}
4239 
4240 	return 0;
4241 }
4242 
4243 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4244 				 int band)
4245 {
4246 	/* Compared to queues, bands prioritize packets differently. In strict
4247 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4248 	 * highest priority is given to Band 0.
4249 	 */
4250 	return p->bands - 1 - band;
4251 }
4252 
4253 static u8 ksz8463_tc_ctrl(int port, int queue)
4254 {
4255 	u8 reg;
4256 
4257 	reg = 0xC8 + port * 4;
4258 	reg += ((3 - queue) / 2) * 2;
4259 	reg++;
4260 	reg -= (queue & 1);
4261 	return reg;
4262 }
4263 
4264 /**
4265  * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection)
4266  *                      for a port on KSZ88x3 switch
4267  * @dev: Pointer to the KSZ switch device structure
4268  * @port: Port number to configure
4269  * @p: Pointer to offload replace parameters describing ETS bands and mapping
4270  *
4271  * The KSZ88x3 supports two scheduling modes: Strict Priority and
4272  * Weighted Fair Queuing (WFQ). Both modes have fixed behavior:
4273  *   - No configurable queue-to-priority mapping
4274  *   - No weight adjustment in WFQ mode
4275  *
4276  * This function configures the switch to use strict priority mode by
4277  * clearing the WFQ enable bit for all queues associated with ETS bands.
4278  * If strict priority is not explicitly requested, the switch will default
4279  * to WFQ mode.
4280  *
4281  * Return: 0 on success, or a negative error code on failure
4282  */
4283 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port,
4284 			      struct tc_ets_qopt_offload_replace_params *p)
4285 {
4286 	int ret, band;
4287 
4288 	/* Only strict priority mode is supported for now.
4289 	 * WFQ is implicitly enabled when strict mode is disabled.
4290 	 */
4291 	for (band = 0; band < p->bands; band++) {
4292 		int queue = ksz_ets_band_to_queue(p, band);
4293 		u8 reg;
4294 
4295 		/* Calculate TXQ Split Control register address for this
4296 		 * port/queue
4297 		 */
4298 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4299 		if (ksz_is_ksz8463(dev))
4300 			reg = ksz8463_tc_ctrl(port, queue);
4301 
4302 		/* Clear WFQ enable bit to select strict priority scheduling */
4303 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0);
4304 		if (ret)
4305 			return ret;
4306 	}
4307 
4308 	return 0;
4309 }
4310 
4311 /**
4312  * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config
4313  *                      for a port on KSZ88x3 switch
4314  * @dev: Pointer to the KSZ switch device structure
4315  * @port: Port number to reset
4316  *
4317  * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or
4318  * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or
4319  * queue mapping. This function resets the port’s scheduling mode to
4320  * the default, which is WFQ, by enabling the WFQ bit for all queues.
4321  *
4322  * Return: 0 on success, or a negative error code on failure
4323  */
4324 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port)
4325 {
4326 	int ret, queue;
4327 
4328 	/* Iterate over all transmit queues for this port */
4329 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4330 		u8 reg;
4331 
4332 		/* Calculate TXQ Split Control register address for this
4333 		 * port/queue
4334 		 */
4335 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4336 		if (ksz_is_ksz8463(dev))
4337 			reg = ksz8463_tc_ctrl(port, queue);
4338 
4339 		/* Set WFQ enable bit to revert back to default scheduling
4340 		 * mode
4341 		 */
4342 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE,
4343 			       KSZ8873_TXQ_WFQ_ENABLE);
4344 		if (ret)
4345 			return ret;
4346 	}
4347 
4348 	return 0;
4349 }
4350 
4351 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4352 {
4353 	int ret;
4354 
4355 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4356 	if (ret)
4357 		return ret;
4358 
4359 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4360 				 MTI_SHAPING_OFF);
4361 }
4362 
4363 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4364 			     int weight)
4365 {
4366 	int ret;
4367 
4368 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4369 	if (ret)
4370 		return ret;
4371 
4372 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4373 				MTI_SHAPING_OFF);
4374 	if (ret)
4375 		return ret;
4376 
4377 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4378 }
4379 
4380 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4381 			  struct tc_ets_qopt_offload_replace_params *p)
4382 {
4383 	int ret, band, tc_prio;
4384 	u32 queue_map = 0;
4385 
4386 	/* In order to ensure proper prioritization, it is necessary to set the
4387 	 * rate limit for the related queue to zero. Otherwise strict priority
4388 	 * or WRR mode will not work. This is a hardware limitation.
4389 	 */
4390 	ret = ksz_disable_egress_rate_limit(dev, port);
4391 	if (ret)
4392 		return ret;
4393 
4394 	/* Configure queue scheduling mode for all bands. Currently only strict
4395 	 * prio mode is supported.
4396 	 */
4397 	for (band = 0; band < p->bands; band++) {
4398 		int queue = ksz_ets_band_to_queue(p, band);
4399 
4400 		ret = ksz_queue_set_strict(dev, port, queue);
4401 		if (ret)
4402 			return ret;
4403 	}
4404 
4405 	/* Configure the mapping between traffic classes and queues. Note:
4406 	 * priomap variable support 16 traffic classes, but the chip can handle
4407 	 * only 8 classes.
4408 	 */
4409 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4410 		int queue;
4411 
4412 		if (tc_prio >= dev->info->num_ipms)
4413 			break;
4414 
4415 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4416 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4417 	}
4418 
4419 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4420 }
4421 
4422 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4423 {
4424 	int ret, queue;
4425 
4426 	/* To restore the default chip configuration, set all queues to use the
4427 	 * WRR scheduler with a weight of 1.
4428 	 */
4429 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4430 		ret = ksz_queue_set_wrr(dev, port, queue,
4431 					KSZ9477_DEFAULT_WRR_WEIGHT);
4432 
4433 		if (ret)
4434 			return ret;
4435 	}
4436 
4437 	/* Revert the queue mapping for TC-priority to its default setting on
4438 	 * the chip.
4439 	 */
4440 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4441 }
4442 
4443 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4444 			       struct tc_ets_qopt_offload_replace_params *p)
4445 {
4446 	int band;
4447 
4448 	/* Since it is not feasible to share one port among multiple qdisc,
4449 	 * the user must configure all available queues appropriately.
4450 	 */
4451 	if (p->bands != dev->info->num_tx_queues) {
4452 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4453 			dev->info->num_tx_queues);
4454 		return -EOPNOTSUPP;
4455 	}
4456 
4457 	for (band = 0; band < p->bands; ++band) {
4458 		/* The KSZ switches utilize a weighted round robin configuration
4459 		 * where a certain number of packets can be transmitted from a
4460 		 * queue before the next queue is serviced. For more information
4461 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4462 		 * documentation on the Port Transmit Queue Control 1 Register.
4463 		 * However, the current ETS Qdisc implementation (as of February
4464 		 * 2023) assigns a weight to each queue based on the number of
4465 		 * bytes or extrapolated bandwidth in percentages. Since this
4466 		 * differs from the KSZ switches' method and we don't want to
4467 		 * fake support by converting bytes to packets, it is better to
4468 		 * return an error instead.
4469 		 */
4470 		if (p->quanta[band]) {
4471 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4472 			return -EOPNOTSUPP;
4473 		}
4474 	}
4475 
4476 	return 0;
4477 }
4478 
4479 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4480 				  struct tc_ets_qopt_offload *qopt)
4481 {
4482 	struct ksz_device *dev = ds->priv;
4483 	int ret;
4484 
4485 	if (is_ksz8(dev) && !(ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)))
4486 		return -EOPNOTSUPP;
4487 
4488 	if (qopt->parent != TC_H_ROOT) {
4489 		dev_err(dev->dev, "Parent should be \"root\"\n");
4490 		return -EOPNOTSUPP;
4491 	}
4492 
4493 	switch (qopt->command) {
4494 	case TC_ETS_REPLACE:
4495 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4496 		if (ret)
4497 			return ret;
4498 
4499 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4500 			return ksz88x3_tc_ets_add(dev, port,
4501 						  &qopt->replace_params);
4502 		else
4503 			return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4504 	case TC_ETS_DESTROY:
4505 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4506 			return ksz88x3_tc_ets_del(dev, port);
4507 		else
4508 			return ksz_tc_ets_del(dev, port);
4509 	case TC_ETS_STATS:
4510 	case TC_ETS_GRAFT:
4511 		return -EOPNOTSUPP;
4512 	}
4513 
4514 	return -EOPNOTSUPP;
4515 }
4516 
4517 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4518 			enum tc_setup_type type, void *type_data)
4519 {
4520 	switch (type) {
4521 	case TC_SETUP_QDISC_CBS:
4522 		return ksz_setup_tc_cbs(ds, port, type_data);
4523 	case TC_SETUP_QDISC_ETS:
4524 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4525 	default:
4526 		return -EOPNOTSUPP;
4527 	}
4528 }
4529 
4530 /**
4531  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4532  * @dev: The device structure.
4533  * @port: The port number.
4534  *
4535  * This function reads the PME (Power Management Event) status register of a
4536  * specified port to determine the wake reason. If there is no wake event, it
4537  * returns early. Otherwise, it logs the wake reason which could be due to a
4538  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4539  * is then cleared to acknowledge the handling of the wake event.
4540  *
4541  * Return: 0 on success, or an error code on failure.
4542  */
4543 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4544 {
4545 	const struct ksz_dev_ops *ops = dev->dev_ops;
4546 	const u16 *regs = dev->info->regs;
4547 	u8 pme_status;
4548 	int ret;
4549 
4550 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4551 			      &pme_status);
4552 	if (ret)
4553 		return ret;
4554 
4555 	if (!pme_status)
4556 		return 0;
4557 
4558 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4559 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4560 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4561 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4562 
4563 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4564 				pme_status);
4565 }
4566 
4567 /**
4568  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4569  * @ds: The dsa_switch structure.
4570  * @port: The port number.
4571  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4572  *
4573  * This function checks the device PME wakeup_source flag and chip_id.
4574  * If enabled and supported, it sets the supported and active WoL
4575  * flags.
4576  */
4577 static void ksz_get_wol(struct dsa_switch *ds, int port,
4578 			struct ethtool_wolinfo *wol)
4579 {
4580 	struct ksz_device *dev = ds->priv;
4581 	const u16 *regs = dev->info->regs;
4582 	u8 pme_ctrl;
4583 	int ret;
4584 
4585 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4586 		return;
4587 
4588 	if (!dev->wakeup_source)
4589 		return;
4590 
4591 	wol->supported = WAKE_PHY;
4592 
4593 	/* Check if the current MAC address on this port can be set
4594 	 * as global for WAKE_MAGIC support. The result may vary
4595 	 * dynamically based on other ports configurations.
4596 	 */
4597 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4598 		wol->supported |= WAKE_MAGIC;
4599 
4600 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4601 				       &pme_ctrl);
4602 	if (ret)
4603 		return;
4604 
4605 	if (pme_ctrl & PME_WOL_MAGICPKT)
4606 		wol->wolopts |= WAKE_MAGIC;
4607 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4608 		wol->wolopts |= WAKE_PHY;
4609 }
4610 
4611 /**
4612  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4613  * @ds: The dsa_switch structure.
4614  * @port: The port number.
4615  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4616  *
4617  * This function configures Wake-on-LAN (WoL) settings for a specified
4618  * port. It validates the provided WoL options, checks if PME is
4619  * enabled and supported, clears any previous wake reasons, and sets
4620  * the Magic Packet flag in the port's PME control register if
4621  * specified.
4622  *
4623  * Return: 0 on success, or other error codes on failure.
4624  */
4625 static int ksz_set_wol(struct dsa_switch *ds, int port,
4626 		       struct ethtool_wolinfo *wol)
4627 {
4628 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4629 	struct ksz_device *dev = ds->priv;
4630 	const u16 *regs = dev->info->regs;
4631 	bool magic_switched_off;
4632 	bool magic_switched_on;
4633 	int ret;
4634 
4635 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4636 		return -EINVAL;
4637 
4638 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4639 		return -EOPNOTSUPP;
4640 
4641 	if (!dev->wakeup_source)
4642 		return -EOPNOTSUPP;
4643 
4644 	ret = ksz_handle_wake_reason(dev, port);
4645 	if (ret)
4646 		return ret;
4647 
4648 	if (wol->wolopts & WAKE_MAGIC)
4649 		pme_ctrl |= PME_WOL_MAGICPKT;
4650 	if (wol->wolopts & WAKE_PHY)
4651 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4652 
4653 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4654 				       &pme_ctrl_old);
4655 	if (ret)
4656 		return ret;
4657 
4658 	if (pme_ctrl_old == pme_ctrl)
4659 		return 0;
4660 
4661 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4662 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4663 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4664 			    (pme_ctrl & PME_WOL_MAGICPKT);
4665 
4666 	/* To keep reference count of MAC address, we should do this
4667 	 * operation only on change of WOL settings.
4668 	 */
4669 	if (magic_switched_on) {
4670 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4671 		if (ret)
4672 			return ret;
4673 	} else if (magic_switched_off) {
4674 		ksz_switch_macaddr_put(dev->ds);
4675 	}
4676 
4677 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4678 					pme_ctrl);
4679 	if (ret) {
4680 		if (magic_switched_on)
4681 			ksz_switch_macaddr_put(dev->ds);
4682 		return ret;
4683 	}
4684 
4685 	return 0;
4686 }
4687 
4688 /**
4689  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4690  *                        considering Wake-on-LAN (WoL) settings.
4691  * @dev: The switch device structure.
4692  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4693  *               enabled on any port.
4694  *
4695  * This function prepares the switch device for a safe shutdown while taking
4696  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4697  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4698  * port.
4699  */
4700 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4701 {
4702 	const struct ksz_dev_ops *ops = dev->dev_ops;
4703 	const u16 *regs = dev->info->regs;
4704 	u8 pme_pin_en = PME_ENABLE;
4705 	struct dsa_port *dp;
4706 	int ret;
4707 
4708 	*wol_enabled = false;
4709 
4710 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4711 		return;
4712 
4713 	if (!dev->wakeup_source)
4714 		return;
4715 
4716 	dsa_switch_for_each_user_port(dp, dev->ds) {
4717 		u8 pme_ctrl = 0;
4718 
4719 		ret = ops->pme_pread8(dev, dp->index,
4720 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4721 		if (!ret && pme_ctrl)
4722 			*wol_enabled = true;
4723 
4724 		/* make sure there are no pending wake events which would
4725 		 * prevent the device from going to sleep/shutdown.
4726 		 */
4727 		ksz_handle_wake_reason(dev, dp->index);
4728 	}
4729 
4730 	/* Now we are save to enable PME pin. */
4731 	if (*wol_enabled) {
4732 		if (dev->pme_active_high)
4733 			pme_pin_en |= PME_POLARITY;
4734 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4735 		if (ksz_is_ksz87xx(dev))
4736 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4737 	}
4738 }
4739 
4740 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4741 				    const unsigned char *addr)
4742 {
4743 	struct dsa_port *dp = dsa_to_port(ds, port);
4744 	struct ethtool_wolinfo wol;
4745 
4746 	if (dp->hsr_dev) {
4747 		dev_err(ds->dev,
4748 			"Cannot change MAC address on port %d with active HSR offload\n",
4749 			port);
4750 		return -EBUSY;
4751 	}
4752 
4753 	/* Need to initialize variable as the code to fill in settings may
4754 	 * not be executed.
4755 	 */
4756 	wol.wolopts = 0;
4757 
4758 	ksz_get_wol(ds, dp->index, &wol);
4759 	if (wol.wolopts & WAKE_MAGIC) {
4760 		dev_err(ds->dev,
4761 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4762 			port);
4763 		return -EBUSY;
4764 	}
4765 
4766 	return 0;
4767 }
4768 
4769 /**
4770  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4771  *                                 can be used as a global address.
4772  * @ds: Pointer to the DSA switch structure.
4773  * @port: The port number on which the MAC address is to be checked.
4774  *
4775  * This function examines the MAC address set on the specified port and
4776  * determines if it can be used as a global address for the switch.
4777  *
4778  * Return: true if the port's MAC address can be used as a global address, false
4779  * otherwise.
4780  */
4781 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4782 {
4783 	struct net_device *user = dsa_to_port(ds, port)->user;
4784 	const unsigned char *addr = user->dev_addr;
4785 	struct ksz_switch_macaddr *switch_macaddr;
4786 	struct ksz_device *dev = ds->priv;
4787 
4788 	ASSERT_RTNL();
4789 
4790 	switch_macaddr = dev->switch_macaddr;
4791 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4792 		return false;
4793 
4794 	return true;
4795 }
4796 
4797 /**
4798  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4799  * @ds: DSA switch instance.
4800  * @port: Port number.
4801  * @extack: Netlink extended acknowledgment.
4802  *
4803  * This function programs the switch's MAC address register with the MAC address
4804  * of the requesting user port. This single address is used by the switch for
4805  * multiple features like HSR self-address filtering and WoL. Other user ports
4806  * can share ownership of this address as long as their MAC address is the same.
4807  * The MAC addresses of user ports must not change while they have ownership of
4808  * the switch MAC address.
4809  *
4810  * Return: 0 on success, or other error codes on failure.
4811  */
4812 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4813 			   struct netlink_ext_ack *extack)
4814 {
4815 	struct net_device *user = dsa_to_port(ds, port)->user;
4816 	const unsigned char *addr = user->dev_addr;
4817 	struct ksz_switch_macaddr *switch_macaddr;
4818 	struct ksz_device *dev = ds->priv;
4819 	const u16 *regs = dev->info->regs;
4820 	int i, ret;
4821 
4822 	/* Make sure concurrent MAC address changes are blocked */
4823 	ASSERT_RTNL();
4824 
4825 	switch_macaddr = dev->switch_macaddr;
4826 	if (switch_macaddr) {
4827 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4828 			NL_SET_ERR_MSG_FMT_MOD(extack,
4829 					       "Switch already configured for MAC address %pM",
4830 					       switch_macaddr->addr);
4831 			return -EBUSY;
4832 		}
4833 
4834 		refcount_inc(&switch_macaddr->refcount);
4835 		return 0;
4836 	}
4837 
4838 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4839 	if (!switch_macaddr)
4840 		return -ENOMEM;
4841 
4842 	ether_addr_copy(switch_macaddr->addr, addr);
4843 	refcount_set(&switch_macaddr->refcount, 1);
4844 	dev->switch_macaddr = switch_macaddr;
4845 
4846 	/* Program the switch MAC address to hardware */
4847 	for (i = 0; i < ETH_ALEN; i++) {
4848 		if (ksz_is_ksz8463(dev)) {
4849 			u16 addr16 = ((u16)addr[i] << 8) | addr[i + 1];
4850 
4851 			ret = ksz_write16(dev, regs[REG_SW_MAC_ADDR] + i,
4852 					  addr16);
4853 			i++;
4854 		} else {
4855 			ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i,
4856 					 addr[i]);
4857 		}
4858 		if (ret)
4859 			goto macaddr_drop;
4860 	}
4861 
4862 	return 0;
4863 
4864 macaddr_drop:
4865 	dev->switch_macaddr = NULL;
4866 	refcount_set(&switch_macaddr->refcount, 0);
4867 	kfree(switch_macaddr);
4868 
4869 	return ret;
4870 }
4871 
4872 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4873 {
4874 	struct ksz_switch_macaddr *switch_macaddr;
4875 	struct ksz_device *dev = ds->priv;
4876 	const u16 *regs = dev->info->regs;
4877 	int i;
4878 
4879 	/* Make sure concurrent MAC address changes are blocked */
4880 	ASSERT_RTNL();
4881 
4882 	switch_macaddr = dev->switch_macaddr;
4883 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4884 		return;
4885 
4886 	for (i = 0; i < ETH_ALEN; i++)
4887 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4888 
4889 	dev->switch_macaddr = NULL;
4890 	kfree(switch_macaddr);
4891 }
4892 
4893 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4894 			struct netlink_ext_ack *extack)
4895 {
4896 	struct ksz_device *dev = ds->priv;
4897 	enum hsr_version ver;
4898 	int ret;
4899 
4900 	ret = hsr_get_version(hsr, &ver);
4901 	if (ret)
4902 		return ret;
4903 
4904 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4905 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4906 		return -EOPNOTSUPP;
4907 	}
4908 
4909 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4910 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4911 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4912 		return -EOPNOTSUPP;
4913 	}
4914 
4915 	/* KSZ9477 only supports HSR v0 and v1 */
4916 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4917 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4918 		return -EOPNOTSUPP;
4919 	}
4920 
4921 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4922 	if (hweight8(dev->hsr_ports) >= 2) {
4923 		NL_SET_ERR_MSG_MOD(extack,
4924 				   "Cannot offload more than two ports - using software HSR");
4925 		return -EOPNOTSUPP;
4926 	}
4927 
4928 	/* Self MAC address filtering, to avoid frames traversing
4929 	 * the HSR ring more than once.
4930 	 */
4931 	ret = ksz_switch_macaddr_get(ds, port, extack);
4932 	if (ret)
4933 		return ret;
4934 
4935 	ksz9477_hsr_join(ds, port, hsr);
4936 	dev->hsr_dev = hsr;
4937 	dev->hsr_ports |= BIT(port);
4938 
4939 	return 0;
4940 }
4941 
4942 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4943 			 struct net_device *hsr)
4944 {
4945 	struct ksz_device *dev = ds->priv;
4946 
4947 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4948 
4949 	ksz9477_hsr_leave(ds, port, hsr);
4950 	dev->hsr_ports &= ~BIT(port);
4951 	if (!dev->hsr_ports)
4952 		dev->hsr_dev = NULL;
4953 
4954 	ksz_switch_macaddr_put(ds);
4955 
4956 	return 0;
4957 }
4958 
4959 static int ksz_suspend(struct dsa_switch *ds)
4960 {
4961 	struct ksz_device *dev = ds->priv;
4962 
4963 	cancel_delayed_work_sync(&dev->mib_read);
4964 	return 0;
4965 }
4966 
4967 static int ksz_resume(struct dsa_switch *ds)
4968 {
4969 	struct ksz_device *dev = ds->priv;
4970 
4971 	if (dev->mib_read_interval)
4972 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4973 	return 0;
4974 }
4975 
4976 static const struct dsa_switch_ops ksz_switch_ops = {
4977 	.get_tag_protocol	= ksz_get_tag_protocol,
4978 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4979 	.get_phy_flags		= ksz_get_phy_flags,
4980 	.setup			= ksz_setup,
4981 	.teardown		= ksz_teardown,
4982 	.phy_read		= ksz_phy_read16,
4983 	.phy_write		= ksz_phy_write16,
4984 	.phylink_get_caps	= ksz_phylink_get_caps,
4985 	.port_setup		= ksz_port_setup,
4986 	.set_ageing_time	= ksz_set_ageing_time,
4987 	.get_strings		= ksz_get_strings,
4988 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4989 	.get_sset_count		= ksz_sset_count,
4990 	.port_bridge_join	= ksz_port_bridge_join,
4991 	.port_bridge_leave	= ksz_port_bridge_leave,
4992 	.port_hsr_join		= ksz_hsr_join,
4993 	.port_hsr_leave		= ksz_hsr_leave,
4994 	.port_set_mac_address	= ksz_port_set_mac_address,
4995 	.port_stp_state_set	= ksz_port_stp_state_set,
4996 	.port_teardown		= ksz_port_teardown,
4997 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4998 	.port_bridge_flags	= ksz_port_bridge_flags,
4999 	.port_fast_age		= ksz_port_fast_age,
5000 	.port_vlan_filtering	= ksz_port_vlan_filtering,
5001 	.port_vlan_add		= ksz_port_vlan_add,
5002 	.port_vlan_del		= ksz_port_vlan_del,
5003 	.port_fdb_dump		= ksz_port_fdb_dump,
5004 	.port_fdb_add		= ksz_port_fdb_add,
5005 	.port_fdb_del		= ksz_port_fdb_del,
5006 	.port_mdb_add           = ksz_port_mdb_add,
5007 	.port_mdb_del           = ksz_port_mdb_del,
5008 	.port_mirror_add	= ksz_port_mirror_add,
5009 	.port_mirror_del	= ksz_port_mirror_del,
5010 	.get_stats64		= ksz_get_stats64,
5011 	.get_pause_stats	= ksz_get_pause_stats,
5012 	.port_change_mtu	= ksz_change_mtu,
5013 	.port_max_mtu		= ksz_max_mtu,
5014 	.get_wol		= ksz_get_wol,
5015 	.set_wol		= ksz_set_wol,
5016 	.suspend		= ksz_suspend,
5017 	.resume			= ksz_resume,
5018 	.get_ts_info		= ksz_get_ts_info,
5019 	.port_hwtstamp_get	= ksz_hwtstamp_get,
5020 	.port_hwtstamp_set	= ksz_hwtstamp_set,
5021 	.port_txtstamp		= ksz_port_txtstamp,
5022 	.port_rxtstamp		= ksz_port_rxtstamp,
5023 	.cls_flower_add		= ksz_cls_flower_add,
5024 	.cls_flower_del		= ksz_cls_flower_del,
5025 	.port_setup_tc		= ksz_setup_tc,
5026 	.support_eee		= ksz_support_eee,
5027 	.set_mac_eee		= ksz_set_mac_eee,
5028 	.port_get_default_prio	= ksz_port_get_default_prio,
5029 	.port_set_default_prio	= ksz_port_set_default_prio,
5030 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
5031 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
5032 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
5033 	.port_get_apptrust	= ksz_port_get_apptrust,
5034 	.port_set_apptrust	= ksz_port_set_apptrust,
5035 };
5036 
5037 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
5038 {
5039 	struct dsa_switch *ds;
5040 	struct ksz_device *swdev;
5041 
5042 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
5043 	if (!ds)
5044 		return NULL;
5045 
5046 	ds->dev = base;
5047 	ds->num_ports = DSA_MAX_PORTS;
5048 	ds->ops = &ksz_switch_ops;
5049 
5050 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
5051 	if (!swdev)
5052 		return NULL;
5053 
5054 	ds->priv = swdev;
5055 	swdev->dev = base;
5056 
5057 	swdev->ds = ds;
5058 	swdev->priv = priv;
5059 
5060 	return swdev;
5061 }
5062 EXPORT_SYMBOL(ksz_switch_alloc);
5063 
5064 /**
5065  * ksz_switch_shutdown - Shutdown routine for the switch device.
5066  * @dev: The switch device structure.
5067  *
5068  * This function is responsible for initiating a shutdown sequence for the
5069  * switch device. It invokes the reset operation defined in the device
5070  * operations, if available, to reset the switch. Subsequently, it calls the
5071  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
5072  * switch.
5073  */
5074 void ksz_switch_shutdown(struct ksz_device *dev)
5075 {
5076 	bool wol_enabled = false;
5077 
5078 	ksz_wol_pre_shutdown(dev, &wol_enabled);
5079 
5080 	if (dev->dev_ops->reset && !wol_enabled)
5081 		dev->dev_ops->reset(dev);
5082 
5083 	dsa_switch_shutdown(dev->ds);
5084 }
5085 EXPORT_SYMBOL(ksz_switch_shutdown);
5086 
5087 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
5088 				  struct device_node *port_dn)
5089 {
5090 	phy_interface_t phy_mode = dev->ports[port_num].interface;
5091 	int rx_delay = -1, tx_delay = -1;
5092 
5093 	if (!phy_interface_mode_is_rgmii(phy_mode))
5094 		return;
5095 
5096 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
5097 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
5098 
5099 	if (rx_delay == -1 && tx_delay == -1) {
5100 		dev_warn(dev->dev,
5101 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
5102 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
5103 			 "\"tx-internal-delay-ps\"",
5104 			 port_num);
5105 
5106 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
5107 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5108 			rx_delay = 2000;
5109 
5110 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
5111 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5112 			tx_delay = 2000;
5113 	}
5114 
5115 	if (rx_delay < 0)
5116 		rx_delay = 0;
5117 	if (tx_delay < 0)
5118 		tx_delay = 0;
5119 
5120 	dev->ports[port_num].rgmii_rx_val = rx_delay;
5121 	dev->ports[port_num].rgmii_tx_val = tx_delay;
5122 }
5123 
5124 /**
5125  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
5126  *				 register value.
5127  * @array:	The array of drive strength values to search.
5128  * @array_size:	The size of the array.
5129  * @microamp:	The drive strength value in microamp to be converted.
5130  *
5131  * This function searches the array of drive strength values for the given
5132  * microamp value and returns the corresponding register value for that drive.
5133  *
5134  * Returns: If found, the corresponding register value for that drive strength
5135  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
5136  */
5137 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
5138 				     size_t array_size, int microamp)
5139 {
5140 	int i;
5141 
5142 	for (i = 0; i < array_size; i++) {
5143 		if (array[i].microamp == microamp)
5144 			return array[i].reg_val;
5145 	}
5146 
5147 	return -EINVAL;
5148 }
5149 
5150 /**
5151  * ksz_drive_strength_error() - Report invalid drive strength value
5152  * @dev:	ksz device
5153  * @array:	The array of drive strength values to search.
5154  * @array_size:	The size of the array.
5155  * @microamp:	Invalid drive strength value in microamp
5156  *
5157  * This function logs an error message when an unsupported drive strength value
5158  * is detected. It lists out all the supported drive strength values for
5159  * reference in the error message.
5160  */
5161 static void ksz_drive_strength_error(struct ksz_device *dev,
5162 				     const struct ksz_drive_strength *array,
5163 				     size_t array_size, int microamp)
5164 {
5165 	char supported_values[100];
5166 	size_t remaining_size;
5167 	int added_len;
5168 	char *ptr;
5169 	int i;
5170 
5171 	remaining_size = sizeof(supported_values);
5172 	ptr = supported_values;
5173 
5174 	for (i = 0; i < array_size; i++) {
5175 		added_len = snprintf(ptr, remaining_size,
5176 				     i == 0 ? "%d" : ", %d", array[i].microamp);
5177 
5178 		if (added_len >= remaining_size)
5179 			break;
5180 
5181 		ptr += added_len;
5182 		remaining_size -= added_len;
5183 	}
5184 
5185 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
5186 		microamp, supported_values);
5187 }
5188 
5189 /**
5190  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
5191  *				    chip variants.
5192  * @dev:       ksz device
5193  * @props:     Array of drive strength properties to be applied
5194  * @num_props: Number of properties in the array
5195  *
5196  * This function configures the drive strength for various KSZ9477 chip variants
5197  * based on the provided properties. It handles chip-specific nuances and
5198  * ensures only valid drive strengths are written to the respective chip.
5199  *
5200  * Return: 0 on successful configuration, a negative error code on failure.
5201  */
5202 static int ksz9477_drive_strength_write(struct ksz_device *dev,
5203 					struct ksz_driver_strength_prop *props,
5204 					int num_props)
5205 {
5206 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
5207 	int i, ret, reg;
5208 	u8 mask = 0;
5209 	u8 val = 0;
5210 
5211 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
5212 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5213 			 props[KSZ_DRIVER_STRENGTH_IO].name);
5214 
5215 	if (dev->chip_id == KSZ8795_CHIP_ID ||
5216 	    dev->chip_id == KSZ8794_CHIP_ID ||
5217 	    dev->chip_id == KSZ8765_CHIP_ID)
5218 		reg = KSZ8795_REG_SW_CTRL_20;
5219 	else
5220 		reg = KSZ9477_REG_SW_IO_STRENGTH;
5221 
5222 	for (i = 0; i < num_props; i++) {
5223 		if (props[i].value == -1)
5224 			continue;
5225 
5226 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
5227 						array_size, props[i].value);
5228 		if (ret < 0) {
5229 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
5230 						 array_size, props[i].value);
5231 			return ret;
5232 		}
5233 
5234 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
5235 		val |= ret << props[i].offset;
5236 	}
5237 
5238 	return ksz_rmw8(dev, reg, mask, val);
5239 }
5240 
5241 /**
5242  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
5243  *				    KSZ8863 compatible chip variants.
5244  * @dev:       ksz device
5245  * @props:     Array of drive strength properties to be set
5246  * @num_props: Number of properties in the array
5247  *
5248  * This function applies the specified drive strength settings to KSZ88X3 chip
5249  * variants (KSZ8873, KSZ8863).
5250  * It ensures the configurations align with what the chip variant supports and
5251  * warns or errors out on unsupported settings.
5252  *
5253  * Return: 0 on success, error code otherwise
5254  */
5255 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
5256 					struct ksz_driver_strength_prop *props,
5257 					int num_props)
5258 {
5259 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
5260 	int microamp;
5261 	int i, ret;
5262 
5263 	for (i = 0; i < num_props; i++) {
5264 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
5265 			continue;
5266 
5267 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5268 			 props[i].name);
5269 	}
5270 
5271 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
5272 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
5273 					microamp);
5274 	if (ret < 0) {
5275 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
5276 					 array_size, microamp);
5277 		return ret;
5278 	}
5279 
5280 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
5281 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
5282 }
5283 
5284 /**
5285  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
5286  *				from device tree properties.
5287  * @dev:	ksz device
5288  *
5289  * This function reads the specified drive strength properties from the
5290  * device tree, validates against the supported chip variants, and sets
5291  * them accordingly. An error should be critical here, as the drive strength
5292  * settings are crucial for EMI compliance.
5293  *
5294  * Return: 0 on success, error code otherwise
5295  */
5296 static int ksz_parse_drive_strength(struct ksz_device *dev)
5297 {
5298 	struct ksz_driver_strength_prop of_props[] = {
5299 		[KSZ_DRIVER_STRENGTH_HI] = {
5300 			.name = "microchip,hi-drive-strength-microamp",
5301 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5302 			.value = -1,
5303 		},
5304 		[KSZ_DRIVER_STRENGTH_LO] = {
5305 			.name = "microchip,lo-drive-strength-microamp",
5306 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5307 			.value = -1,
5308 		},
5309 		[KSZ_DRIVER_STRENGTH_IO] = {
5310 			.name = "microchip,io-drive-strength-microamp",
5311 			.offset = 0, /* don't care */
5312 			.value = -1,
5313 		},
5314 	};
5315 	struct device_node *np = dev->dev->of_node;
5316 	bool have_any_prop = false;
5317 	int i, ret;
5318 
5319 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5320 		ret = of_property_read_u32(np, of_props[i].name,
5321 					   &of_props[i].value);
5322 		if (ret && ret != -EINVAL)
5323 			dev_warn(dev->dev, "Failed to read %s\n",
5324 				 of_props[i].name);
5325 		if (ret)
5326 			continue;
5327 
5328 		have_any_prop = true;
5329 	}
5330 
5331 	if (!have_any_prop)
5332 		return 0;
5333 
5334 	switch (dev->chip_id) {
5335 	case KSZ88X3_CHIP_ID:
5336 		return ksz88x3_drive_strength_write(dev, of_props,
5337 						    ARRAY_SIZE(of_props));
5338 	case KSZ8795_CHIP_ID:
5339 	case KSZ8794_CHIP_ID:
5340 	case KSZ8765_CHIP_ID:
5341 	case KSZ8563_CHIP_ID:
5342 	case KSZ8567_CHIP_ID:
5343 	case KSZ9477_CHIP_ID:
5344 	case KSZ9563_CHIP_ID:
5345 	case KSZ9567_CHIP_ID:
5346 	case KSZ9893_CHIP_ID:
5347 	case KSZ9896_CHIP_ID:
5348 	case KSZ9897_CHIP_ID:
5349 	case LAN9646_CHIP_ID:
5350 		return ksz9477_drive_strength_write(dev, of_props,
5351 						    ARRAY_SIZE(of_props));
5352 	default:
5353 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5354 			if (of_props[i].value == -1)
5355 				continue;
5356 
5357 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5358 				 of_props[i].name);
5359 		}
5360 	}
5361 
5362 	return 0;
5363 }
5364 
5365 static int ksz8463_configure_straps_spi(struct ksz_device *dev)
5366 {
5367 	struct pinctrl *pinctrl;
5368 	struct gpio_desc *rxd0;
5369 	struct gpio_desc *rxd1;
5370 
5371 	rxd0 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 0, GPIOD_OUT_LOW);
5372 	if (IS_ERR(rxd0))
5373 		return PTR_ERR(rxd0);
5374 
5375 	rxd1 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 1, GPIOD_OUT_HIGH);
5376 	if (IS_ERR(rxd1))
5377 		return PTR_ERR(rxd1);
5378 
5379 	if (!rxd0 && !rxd1)
5380 		return 0;
5381 
5382 	if ((rxd0 && !rxd1) || (rxd1 && !rxd0))
5383 		return -EINVAL;
5384 
5385 	pinctrl = devm_pinctrl_get_select(dev->dev, "reset");
5386 	if (IS_ERR(pinctrl))
5387 		return PTR_ERR(pinctrl);
5388 
5389 	return 0;
5390 }
5391 
5392 static int ksz8463_release_straps_spi(struct ksz_device *dev)
5393 {
5394 	return pinctrl_select_default_state(dev->dev);
5395 }
5396 
5397 int ksz_switch_register(struct ksz_device *dev)
5398 {
5399 	const struct ksz_chip_data *info;
5400 	struct device_node *ports;
5401 	phy_interface_t interface;
5402 	unsigned int port_num;
5403 	int ret;
5404 	int i;
5405 
5406 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5407 						  GPIOD_OUT_LOW);
5408 	if (IS_ERR(dev->reset_gpio))
5409 		return PTR_ERR(dev->reset_gpio);
5410 
5411 	if (dev->reset_gpio) {
5412 		if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) {
5413 			ret = ksz8463_configure_straps_spi(dev);
5414 			if (ret)
5415 				return ret;
5416 		}
5417 
5418 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5419 		usleep_range(10000, 12000);
5420 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5421 		msleep(100);
5422 
5423 		if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) {
5424 			ret = ksz8463_release_straps_spi(dev);
5425 			if (ret)
5426 				return ret;
5427 		}
5428 	}
5429 
5430 	mutex_init(&dev->dev_mutex);
5431 	mutex_init(&dev->regmap_mutex);
5432 	mutex_init(&dev->alu_mutex);
5433 	mutex_init(&dev->vlan_mutex);
5434 
5435 	ret = ksz_switch_detect(dev);
5436 	if (ret)
5437 		return ret;
5438 
5439 	info = ksz_lookup_info(dev->chip_id);
5440 	if (!info)
5441 		return -ENODEV;
5442 
5443 	/* Update the compatible info with the probed one */
5444 	dev->info = info;
5445 
5446 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5447 		 dev->info->dev_name, dev->chip_rev);
5448 
5449 	ret = ksz_check_device_id(dev);
5450 	if (ret)
5451 		return ret;
5452 
5453 	dev->dev_ops = dev->info->ops;
5454 
5455 	ret = dev->dev_ops->init(dev);
5456 	if (ret)
5457 		return ret;
5458 
5459 	dev->ports = devm_kzalloc(dev->dev,
5460 				  dev->info->port_cnt * sizeof(struct ksz_port),
5461 				  GFP_KERNEL);
5462 	if (!dev->ports)
5463 		return -ENOMEM;
5464 
5465 	for (i = 0; i < dev->info->port_cnt; i++) {
5466 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5467 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5468 		dev->ports[i].mib.counters =
5469 			devm_kzalloc(dev->dev,
5470 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5471 				     GFP_KERNEL);
5472 		if (!dev->ports[i].mib.counters)
5473 			return -ENOMEM;
5474 
5475 		dev->ports[i].ksz_dev = dev;
5476 		dev->ports[i].num = i;
5477 	}
5478 
5479 	/* set the real number of ports */
5480 	dev->ds->num_ports = dev->info->port_cnt;
5481 
5482 	/* set the phylink ops */
5483 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5484 
5485 	/* Host port interface will be self detected, or specifically set in
5486 	 * device tree.
5487 	 */
5488 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5489 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5490 	if (dev->dev->of_node) {
5491 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5492 		if (ret == 0)
5493 			dev->compat_interface = interface;
5494 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5495 		if (!ports)
5496 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5497 		if (ports) {
5498 			for_each_available_child_of_node_scoped(ports, port) {
5499 				if (of_property_read_u32(port, "reg",
5500 							 &port_num))
5501 					continue;
5502 				if (!(dev->port_mask & BIT(port_num))) {
5503 					of_node_put(ports);
5504 					return -EINVAL;
5505 				}
5506 				of_get_phy_mode(port,
5507 						&dev->ports[port_num].interface);
5508 
5509 				ksz_parse_rgmii_delay(dev, port_num, port);
5510 				dev->ports[port_num].fiber =
5511 					of_property_read_bool(port,
5512 							      "micrel,fiber-mode");
5513 			}
5514 			of_node_put(ports);
5515 		}
5516 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5517 							 "microchip,synclko-125");
5518 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5519 							     "microchip,synclko-disable");
5520 		if (dev->synclko_125 && dev->synclko_disable) {
5521 			dev_err(dev->dev, "inconsistent synclko settings\n");
5522 			return -EINVAL;
5523 		}
5524 
5525 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5526 							   "wakeup-source");
5527 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5528 							     "microchip,pme-active-high");
5529 	}
5530 
5531 	ret = dsa_register_switch(dev->ds);
5532 	if (ret) {
5533 		dev->dev_ops->exit(dev);
5534 		return ret;
5535 	}
5536 
5537 	/* Read MIB counters every 30 seconds to avoid overflow. */
5538 	dev->mib_read_interval = msecs_to_jiffies(5000);
5539 
5540 	/* Start the MIB timer. */
5541 	schedule_delayed_work(&dev->mib_read, 0);
5542 
5543 	return ret;
5544 }
5545 EXPORT_SYMBOL(ksz_switch_register);
5546 
5547 void ksz_switch_remove(struct ksz_device *dev)
5548 {
5549 	/* timer started */
5550 	if (dev->mib_read_interval) {
5551 		dev->mib_read_interval = 0;
5552 		cancel_delayed_work_sync(&dev->mib_read);
5553 	}
5554 
5555 	dev->dev_ops->exit(dev);
5556 	dsa_unregister_switch(dev->ds);
5557 
5558 	if (dev->reset_gpio)
5559 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5560 
5561 }
5562 EXPORT_SYMBOL(ksz_switch_remove);
5563 
5564 #ifdef CONFIG_PM_SLEEP
5565 int ksz_switch_suspend(struct device *dev)
5566 {
5567 	struct ksz_device *priv = dev_get_drvdata(dev);
5568 
5569 	return dsa_switch_suspend(priv->ds);
5570 }
5571 EXPORT_SYMBOL(ksz_switch_suspend);
5572 
5573 int ksz_switch_resume(struct device *dev)
5574 {
5575 	struct ksz_device *priv = dev_get_drvdata(dev);
5576 
5577 	return dsa_switch_resume(priv->ds);
5578 }
5579 EXPORT_SYMBOL(ksz_switch_resume);
5580 #endif
5581 
5582 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5583 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5584 MODULE_LICENSE("GPL");
5585