1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 #include "ksz9477.h"
21
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)22 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23 {
24 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
25 }
26
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)27 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 bool set)
29 {
30 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
31 bits, set ? bits : 0);
32 }
33
ksz9477_cfg32(struct ksz_device * dev,u32 addr,u32 bits,bool set)34 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35 {
36 regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
37 }
38
ksz9477_port_cfg32(struct ksz_device * dev,int port,int offset,u32 bits,bool set)39 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 u32 bits, bool set)
41 {
42 regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
43 bits, set ? bits : 0);
44 }
45
ksz9477_change_mtu(struct ksz_device * dev,int port,int mtu)46 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 {
48 u16 frame_size;
49
50 if (!dsa_is_cpu_port(dev->ds, port))
51 return 0;
52
53 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
54
55 return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
56 REG_SW_MTU_MASK, frame_size);
57 }
58
ksz9477_wait_vlan_ctrl_ready(struct ksz_device * dev)59 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
60 {
61 unsigned int val;
62
63 return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
64 val, !(val & VLAN_START), 10, 1000);
65 }
66
ksz9477_get_vlan_table(struct ksz_device * dev,u16 vid,u32 * vlan_table)67 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
68 u32 *vlan_table)
69 {
70 int ret;
71
72 mutex_lock(&dev->vlan_mutex);
73
74 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
75 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
76
77 /* wait to be cleared */
78 ret = ksz9477_wait_vlan_ctrl_ready(dev);
79 if (ret) {
80 dev_dbg(dev->dev, "Failed to read vlan table\n");
81 goto exit;
82 }
83
84 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
85 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
86 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
87
88 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
89
90 exit:
91 mutex_unlock(&dev->vlan_mutex);
92
93 return ret;
94 }
95
ksz9477_set_vlan_table(struct ksz_device * dev,u16 vid,u32 * vlan_table)96 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
97 u32 *vlan_table)
98 {
99 int ret;
100
101 mutex_lock(&dev->vlan_mutex);
102
103 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
104 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
105 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
106
107 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
108 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
109
110 /* wait to be cleared */
111 ret = ksz9477_wait_vlan_ctrl_ready(dev);
112 if (ret) {
113 dev_dbg(dev->dev, "Failed to write vlan table\n");
114 goto exit;
115 }
116
117 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
118
119 /* update vlan cache table */
120 dev->vlan_cache[vid].table[0] = vlan_table[0];
121 dev->vlan_cache[vid].table[1] = vlan_table[1];
122 dev->vlan_cache[vid].table[2] = vlan_table[2];
123
124 exit:
125 mutex_unlock(&dev->vlan_mutex);
126
127 return ret;
128 }
129
ksz9477_read_table(struct ksz_device * dev,u32 * table)130 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
131 {
132 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
133 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
134 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
135 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
136 }
137
ksz9477_write_table(struct ksz_device * dev,u32 * table)138 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
139 {
140 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
141 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
142 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
143 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
144 }
145
ksz9477_wait_alu_ready(struct ksz_device * dev)146 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
147 {
148 unsigned int val;
149
150 return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
151 val, !(val & ALU_START), 10, 1000);
152 }
153
ksz9477_wait_alu_sta_ready(struct ksz_device * dev)154 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
155 {
156 unsigned int val;
157
158 return regmap_read_poll_timeout(ksz_regmap_32(dev),
159 REG_SW_ALU_STAT_CTRL__4,
160 val, !(val & ALU_STAT_START),
161 10, 1000);
162 }
163
ksz9477_reset_switch(struct ksz_device * dev)164 int ksz9477_reset_switch(struct ksz_device *dev)
165 {
166 u8 data8;
167 u32 data32;
168
169 /* reset switch */
170 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
171
172 /* turn off SPI DO Edge select */
173 regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
174 SPI_AUTO_EDGE_DETECTION, 0);
175
176 /* default configuration */
177 ksz_write8(dev, REG_SW_LUE_CTRL_1,
178 SW_AGING_ENABLE | SW_LINK_AUTO_AGING | SW_SRC_ADDR_FILTER);
179
180 /* disable interrupts */
181 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
182 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
183 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
184
185 /* KSZ9893 compatible chips do not support refclk configuration */
186 if (dev->chip_id == KSZ9893_CHIP_ID ||
187 dev->chip_id == KSZ8563_CHIP_ID ||
188 dev->chip_id == KSZ9563_CHIP_ID)
189 return 0;
190
191 data8 = SW_ENABLE_REFCLKO;
192 if (dev->synclko_disable)
193 data8 = 0;
194 else if (dev->synclko_125)
195 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
196 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
197
198 return 0;
199 }
200
ksz9477_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)201 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
202 {
203 struct ksz_port *p = &dev->ports[port];
204 unsigned int val;
205 u32 data;
206 int ret;
207
208 /* retain the flush/freeze bit */
209 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
210 data |= MIB_COUNTER_READ;
211 data |= (addr << MIB_COUNTER_INDEX_S);
212 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
213
214 ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
215 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
216 val, !(val & MIB_COUNTER_READ), 10, 1000);
217 /* failed to read MIB. get out of loop */
218 if (ret) {
219 dev_dbg(dev->dev, "Failed to get MIB\n");
220 return;
221 }
222
223 /* count resets upon read */
224 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
225 *cnt += data;
226 }
227
ksz9477_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)228 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
229 u64 *dropped, u64 *cnt)
230 {
231 addr = dev->info->mib_names[addr].index;
232 ksz9477_r_mib_cnt(dev, port, addr, cnt);
233 }
234
ksz9477_freeze_mib(struct ksz_device * dev,int port,bool freeze)235 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
236 {
237 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
238 struct ksz_port *p = &dev->ports[port];
239
240 /* enable/disable the port for flush/freeze function */
241 mutex_lock(&p->mib.cnt_mutex);
242 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
243
244 /* used by MIB counter reading code to know freeze is enabled */
245 p->freeze = freeze;
246 mutex_unlock(&p->mib.cnt_mutex);
247 }
248
ksz9477_half_duplex_monitor(struct ksz_device * dev,int port,u64 tx_late_col)249 static int ksz9477_half_duplex_monitor(struct ksz_device *dev, int port,
250 u64 tx_late_col)
251 {
252 u8 lue_ctrl;
253 u32 pmavbc;
254 u16 pqm;
255 int ret;
256
257 /* Errata DS80000754 recommends monitoring potential faults in
258 * half-duplex mode. The switch might not be able to communicate anymore
259 * in these states. If you see this message, please read the
260 * errata-sheet for more information:
261 * https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/Errata/KSZ9477S-Errata-DS80000754.pdf
262 * To workaround this issue, half-duplex mode should be avoided.
263 * A software reset could be implemented to recover from this state.
264 */
265 dev_warn_once(dev->dev,
266 "Half-duplex detected on port %d, transmission halt may occur\n",
267 port);
268 if (tx_late_col != 0) {
269 /* Transmission halt with late collisions */
270 dev_crit_once(dev->dev,
271 "TX late collisions detected, transmission may be halted on port %d\n",
272 port);
273 }
274 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &lue_ctrl);
275 if (ret)
276 return ret;
277 if (lue_ctrl & SW_VLAN_ENABLE) {
278 ret = ksz_pread16(dev, port, REG_PORT_QM_TX_CNT_0__4, &pqm);
279 if (ret)
280 return ret;
281
282 ret = ksz_read32(dev, REG_PMAVBC, &pmavbc);
283 if (ret)
284 return ret;
285
286 if ((FIELD_GET(PMAVBC_MASK, pmavbc) <= PMAVBC_MIN) ||
287 (FIELD_GET(PORT_QM_TX_CNT_M, pqm) >= PORT_QM_TX_CNT_MAX)) {
288 /* Transmission halt with Half-Duplex and VLAN */
289 dev_crit_once(dev->dev,
290 "resources out of limits, transmission may be halted\n");
291 }
292 }
293
294 return ret;
295 }
296
ksz9477_errata_monitor(struct ksz_device * dev,int port,u64 tx_late_col)297 int ksz9477_errata_monitor(struct ksz_device *dev, int port,
298 u64 tx_late_col)
299 {
300 u8 status;
301 int ret;
302
303 ret = ksz_pread8(dev, port, REG_PORT_STATUS_0, &status);
304 if (ret)
305 return ret;
306
307 if (!(FIELD_GET(PORT_INTF_SPEED_MASK, status)
308 == PORT_INTF_SPEED_NONE) &&
309 !(status & PORT_INTF_FULL_DUPLEX)) {
310 ret = ksz9477_half_duplex_monitor(dev, port, tx_late_col);
311 }
312
313 return ret;
314 }
315
ksz9477_port_init_cnt(struct ksz_device * dev,int port)316 void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
317 {
318 struct ksz_port_mib *mib = &dev->ports[port].mib;
319
320 /* flush all enabled port MIB counters */
321 mutex_lock(&mib->cnt_mutex);
322 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
323 MIB_COUNTER_FLUSH_FREEZE);
324 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
325 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
326 mutex_unlock(&mib->cnt_mutex);
327 }
328
ksz9477_r_phy_quirks(struct ksz_device * dev,u16 addr,u16 reg,u16 * data)329 static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
330 u16 *data)
331 {
332 /* KSZ8563R do not have extended registers but BMSR_ESTATEN and
333 * BMSR_ERCAP bits are set.
334 */
335 if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
336 *data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
337 }
338
ksz9477_r_phy(struct ksz_device * dev,u16 addr,u16 reg,u16 * data)339 int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
340 {
341 u16 val = 0xffff;
342 int ret;
343
344 /* No real PHY after this. Simulate the PHY.
345 * A fixed PHY can be setup in the device tree, but this function is
346 * still called for that port during initialization.
347 * For RGMII PHY there is no way to access it so the fixed PHY should
348 * be used. For SGMII PHY the supporting code will be added later.
349 */
350 if (!dev->info->internal_phy[addr]) {
351 struct ksz_port *p = &dev->ports[addr];
352
353 switch (reg) {
354 case MII_BMCR:
355 val = 0x1140;
356 break;
357 case MII_BMSR:
358 val = 0x796d;
359 break;
360 case MII_PHYSID1:
361 val = 0x0022;
362 break;
363 case MII_PHYSID2:
364 val = 0x1631;
365 break;
366 case MII_ADVERTISE:
367 val = 0x05e1;
368 break;
369 case MII_LPA:
370 val = 0xc5e1;
371 break;
372 case MII_CTRL1000:
373 val = 0x0700;
374 break;
375 case MII_STAT1000:
376 if (p->phydev.speed == SPEED_1000)
377 val = 0x3800;
378 else
379 val = 0;
380 break;
381 }
382 } else {
383 ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
384 if (ret)
385 return ret;
386
387 ksz9477_r_phy_quirks(dev, addr, reg, &val);
388 }
389
390 *data = val;
391
392 return 0;
393 }
394
ksz9477_w_phy(struct ksz_device * dev,u16 addr,u16 reg,u16 val)395 int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
396 {
397 u32 mask, val32;
398
399 /* No real PHY after this. */
400 if (!dev->info->internal_phy[addr])
401 return 0;
402
403 if (reg < 0x10)
404 return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
405
406 /* Errata: When using SPI, I2C, or in-band register access,
407 * writes to certain PHY registers should be performed as
408 * 32-bit writes instead of 16-bit writes.
409 */
410 val32 = val;
411 mask = 0xffff;
412 if ((reg & 1) == 0) {
413 val32 <<= 16;
414 mask <<= 16;
415 }
416 reg &= ~1;
417 return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
418 }
419
ksz9477_cfg_port_member(struct ksz_device * dev,int port,u8 member)420 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
421 {
422 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
423 }
424
ksz9477_flush_dyn_mac_table(struct ksz_device * dev,int port)425 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
426 {
427 const u16 *regs = dev->info->regs;
428 u8 data;
429
430 regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
431 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
432 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
433
434 if (port < dev->info->port_cnt) {
435 /* flush individual port */
436 ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
437 if (!(data & PORT_LEARN_DISABLE))
438 ksz_pwrite8(dev, port, regs[P_STP_CTRL],
439 data | PORT_LEARN_DISABLE);
440 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
441 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
442 } else {
443 /* flush all */
444 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
445 }
446 }
447
ksz9477_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)448 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
449 bool flag, struct netlink_ext_ack *extack)
450 {
451 if (flag) {
452 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
453 PORT_VLAN_LOOKUP_VID_0, true);
454 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
455 } else {
456 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
457 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
458 PORT_VLAN_LOOKUP_VID_0, false);
459 }
460
461 return 0;
462 }
463
ksz9477_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)464 int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
465 const struct switchdev_obj_port_vlan *vlan,
466 struct netlink_ext_ack *extack)
467 {
468 u32 vlan_table[3];
469 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
470 int err;
471
472 err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
473 if (err) {
474 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
475 return err;
476 }
477
478 vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
479 if (untagged)
480 vlan_table[1] |= BIT(port);
481 else
482 vlan_table[1] &= ~BIT(port);
483 vlan_table[1] &= ~(BIT(dev->cpu_port));
484
485 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
486
487 err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
488 if (err) {
489 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
490 return err;
491 }
492
493 /* change PVID */
494 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
495 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
496
497 return 0;
498 }
499
ksz9477_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)500 int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
501 const struct switchdev_obj_port_vlan *vlan)
502 {
503 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
504 u32 vlan_table[3];
505 u16 pvid;
506
507 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
508 pvid = pvid & 0xFFF;
509
510 if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
511 dev_dbg(dev->dev, "Failed to get vlan table\n");
512 return -ETIMEDOUT;
513 }
514
515 vlan_table[2] &= ~BIT(port);
516
517 if (pvid == vlan->vid)
518 pvid = 1;
519
520 if (untagged)
521 vlan_table[1] &= ~BIT(port);
522
523 if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
524 dev_dbg(dev->dev, "Failed to set vlan table\n");
525 return -ETIMEDOUT;
526 }
527
528 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
529
530 return 0;
531 }
532
ksz9477_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)533 int ksz9477_fdb_add(struct ksz_device *dev, int port,
534 const unsigned char *addr, u16 vid, struct dsa_db db)
535 {
536 u32 alu_table[4];
537 u32 data;
538 int ret = 0;
539
540 mutex_lock(&dev->alu_mutex);
541
542 /* find any entry with mac & vid */
543 data = vid << ALU_FID_INDEX_S;
544 data |= ((addr[0] << 8) | addr[1]);
545 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
546
547 data = ((addr[2] << 24) | (addr[3] << 16));
548 data |= ((addr[4] << 8) | addr[5]);
549 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
550
551 /* start read operation */
552 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
553
554 /* wait to be finished */
555 ret = ksz9477_wait_alu_ready(dev);
556 if (ret) {
557 dev_dbg(dev->dev, "Failed to read ALU\n");
558 goto exit;
559 }
560
561 /* read ALU entry */
562 ksz9477_read_table(dev, alu_table);
563
564 /* update ALU entry */
565 alu_table[0] = ALU_V_STATIC_VALID;
566 alu_table[1] |= BIT(port);
567 if (vid)
568 alu_table[1] |= ALU_V_USE_FID;
569 alu_table[2] = (vid << ALU_V_FID_S);
570 alu_table[2] |= ((addr[0] << 8) | addr[1]);
571 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
572 alu_table[3] |= ((addr[4] << 8) | addr[5]);
573
574 ksz9477_write_table(dev, alu_table);
575
576 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
577
578 /* wait to be finished */
579 ret = ksz9477_wait_alu_ready(dev);
580 if (ret)
581 dev_dbg(dev->dev, "Failed to write ALU\n");
582
583 exit:
584 mutex_unlock(&dev->alu_mutex);
585
586 return ret;
587 }
588
ksz9477_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)589 int ksz9477_fdb_del(struct ksz_device *dev, int port,
590 const unsigned char *addr, u16 vid, struct dsa_db db)
591 {
592 u32 alu_table[4];
593 u32 data;
594 int ret = 0;
595
596 mutex_lock(&dev->alu_mutex);
597
598 /* read any entry with mac & vid */
599 data = vid << ALU_FID_INDEX_S;
600 data |= ((addr[0] << 8) | addr[1]);
601 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
602
603 data = ((addr[2] << 24) | (addr[3] << 16));
604 data |= ((addr[4] << 8) | addr[5]);
605 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
606
607 /* start read operation */
608 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
609
610 /* wait to be finished */
611 ret = ksz9477_wait_alu_ready(dev);
612 if (ret) {
613 dev_dbg(dev->dev, "Failed to read ALU\n");
614 goto exit;
615 }
616
617 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
618 if (alu_table[0] & ALU_V_STATIC_VALID) {
619 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
620 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
621 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
622
623 /* clear forwarding port */
624 alu_table[1] &= ~BIT(port);
625
626 /* if there is no port to forward, clear table */
627 if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
628 alu_table[0] = 0;
629 alu_table[1] = 0;
630 alu_table[2] = 0;
631 alu_table[3] = 0;
632 }
633 } else {
634 alu_table[0] = 0;
635 alu_table[1] = 0;
636 alu_table[2] = 0;
637 alu_table[3] = 0;
638 }
639
640 ksz9477_write_table(dev, alu_table);
641
642 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
643
644 /* wait to be finished */
645 ret = ksz9477_wait_alu_ready(dev);
646 if (ret)
647 dev_dbg(dev->dev, "Failed to write ALU\n");
648
649 exit:
650 mutex_unlock(&dev->alu_mutex);
651
652 return ret;
653 }
654
ksz9477_convert_alu(struct alu_struct * alu,u32 * alu_table)655 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
656 {
657 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
658 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
659 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
660 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
661 ALU_V_PRIO_AGE_CNT_M;
662 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
663
664 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
665 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
666 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
667
668 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
669
670 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
671 alu->mac[1] = alu_table[2] & 0xFF;
672 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
673 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
674 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
675 alu->mac[5] = alu_table[3] & 0xFF;
676 }
677
ksz9477_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)678 int ksz9477_fdb_dump(struct ksz_device *dev, int port,
679 dsa_fdb_dump_cb_t *cb, void *data)
680 {
681 int ret = 0;
682 u32 ksz_data;
683 u32 alu_table[4];
684 struct alu_struct alu;
685 int timeout;
686
687 mutex_lock(&dev->alu_mutex);
688
689 /* start ALU search */
690 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
691
692 do {
693 timeout = 1000;
694 do {
695 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
696 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
697 break;
698 usleep_range(1, 10);
699 } while (timeout-- > 0);
700
701 if (!timeout) {
702 dev_dbg(dev->dev, "Failed to search ALU\n");
703 ret = -ETIMEDOUT;
704 goto exit;
705 }
706
707 if (!(ksz_data & ALU_VALID))
708 continue;
709
710 /* read ALU table */
711 ksz9477_read_table(dev, alu_table);
712
713 ksz9477_convert_alu(&alu, alu_table);
714
715 if (alu.port_forward & BIT(port)) {
716 ret = cb(alu.mac, alu.fid, alu.is_static, data);
717 if (ret)
718 goto exit;
719 }
720 } while (ksz_data & ALU_START);
721
722 exit:
723
724 /* stop ALU search */
725 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
726
727 mutex_unlock(&dev->alu_mutex);
728
729 return ret;
730 }
731
ksz9477_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)732 int ksz9477_mdb_add(struct ksz_device *dev, int port,
733 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
734 {
735 u32 static_table[4];
736 const u8 *shifts;
737 const u32 *masks;
738 u32 data;
739 int index;
740 u32 mac_hi, mac_lo;
741 int err = 0;
742
743 shifts = dev->info->shifts;
744 masks = dev->info->masks;
745
746 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
747 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
748 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
749
750 mutex_lock(&dev->alu_mutex);
751
752 for (index = 0; index < dev->info->num_statics; index++) {
753 /* find empty slot first */
754 data = (index << shifts[ALU_STAT_INDEX]) |
755 masks[ALU_STAT_READ] | ALU_STAT_START;
756 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
757
758 /* wait to be finished */
759 err = ksz9477_wait_alu_sta_ready(dev);
760 if (err) {
761 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
762 goto exit;
763 }
764
765 /* read ALU static table */
766 ksz9477_read_table(dev, static_table);
767
768 if (static_table[0] & ALU_V_STATIC_VALID) {
769 /* check this has same vid & mac address */
770 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
771 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
772 static_table[3] == mac_lo) {
773 /* found matching one */
774 break;
775 }
776 } else {
777 /* found empty one */
778 break;
779 }
780 }
781
782 /* no available entry */
783 if (index == dev->info->num_statics) {
784 err = -ENOSPC;
785 goto exit;
786 }
787
788 /* add entry */
789 static_table[0] = ALU_V_STATIC_VALID;
790 static_table[1] |= BIT(port);
791 if (mdb->vid)
792 static_table[1] |= ALU_V_USE_FID;
793 static_table[2] = (mdb->vid << ALU_V_FID_S);
794 static_table[2] |= mac_hi;
795 static_table[3] = mac_lo;
796
797 ksz9477_write_table(dev, static_table);
798
799 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
800 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
801
802 /* wait to be finished */
803 if (ksz9477_wait_alu_sta_ready(dev))
804 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
805
806 exit:
807 mutex_unlock(&dev->alu_mutex);
808 return err;
809 }
810
ksz9477_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)811 int ksz9477_mdb_del(struct ksz_device *dev, int port,
812 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
813 {
814 u32 static_table[4];
815 const u8 *shifts;
816 const u32 *masks;
817 u32 data;
818 int index;
819 int ret = 0;
820 u32 mac_hi, mac_lo;
821
822 shifts = dev->info->shifts;
823 masks = dev->info->masks;
824
825 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
826 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
827 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
828
829 mutex_lock(&dev->alu_mutex);
830
831 for (index = 0; index < dev->info->num_statics; index++) {
832 /* find empty slot first */
833 data = (index << shifts[ALU_STAT_INDEX]) |
834 masks[ALU_STAT_READ] | ALU_STAT_START;
835 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
836
837 /* wait to be finished */
838 ret = ksz9477_wait_alu_sta_ready(dev);
839 if (ret) {
840 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
841 goto exit;
842 }
843
844 /* read ALU static table */
845 ksz9477_read_table(dev, static_table);
846
847 if (static_table[0] & ALU_V_STATIC_VALID) {
848 /* check this has same vid & mac address */
849
850 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
851 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
852 static_table[3] == mac_lo) {
853 /* found matching one */
854 break;
855 }
856 }
857 }
858
859 /* no available entry */
860 if (index == dev->info->num_statics)
861 goto exit;
862
863 /* clear port */
864 static_table[1] &= ~BIT(port);
865
866 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
867 /* delete entry */
868 static_table[0] = 0;
869 static_table[1] = 0;
870 static_table[2] = 0;
871 static_table[3] = 0;
872 }
873
874 ksz9477_write_table(dev, static_table);
875
876 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
877 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
878
879 /* wait to be finished */
880 ret = ksz9477_wait_alu_sta_ready(dev);
881 if (ret)
882 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
883
884 exit:
885 mutex_unlock(&dev->alu_mutex);
886
887 return ret;
888 }
889
ksz9477_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)890 int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
891 struct dsa_mall_mirror_tc_entry *mirror,
892 bool ingress, struct netlink_ext_ack *extack)
893 {
894 u8 data;
895 int p;
896
897 /* Limit to one sniffer port
898 * Check if any of the port is already set for sniffing
899 * If yes, instruct the user to remove the previous entry & exit
900 */
901 for (p = 0; p < dev->info->port_cnt; p++) {
902 /* Skip the current sniffing port */
903 if (p == mirror->to_local_port)
904 continue;
905
906 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
907
908 if (data & PORT_MIRROR_SNIFFER) {
909 NL_SET_ERR_MSG_MOD(extack,
910 "Sniffer port is already configured, delete existing rules & retry");
911 return -EBUSY;
912 }
913 }
914
915 if (ingress)
916 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
917 else
918 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
919
920 /* configure mirror port */
921 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
922 PORT_MIRROR_SNIFFER, true);
923
924 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
925
926 return 0;
927 }
928
ksz9477_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)929 void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
930 struct dsa_mall_mirror_tc_entry *mirror)
931 {
932 bool in_use = false;
933 u8 data;
934 int p;
935
936 if (mirror->ingress)
937 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
938 else
939 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
940
941
942 /* Check if any of the port is still referring to sniffer port */
943 for (p = 0; p < dev->info->port_cnt; p++) {
944 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
945
946 if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
947 in_use = true;
948 break;
949 }
950 }
951
952 /* delete sniffing if there are no other mirroring rules */
953 if (!in_use)
954 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
955 PORT_MIRROR_SNIFFER, false);
956 }
957
ksz9477_get_interface(struct ksz_device * dev,int port)958 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
959 {
960 phy_interface_t interface;
961 bool gbit;
962
963 if (dev->info->internal_phy[port])
964 return PHY_INTERFACE_MODE_NA;
965
966 gbit = ksz_get_gbit(dev, port);
967
968 interface = ksz_get_xmii(dev, port, gbit);
969
970 return interface;
971 }
972
ksz9477_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)973 void ksz9477_get_caps(struct ksz_device *dev, int port,
974 struct phylink_config *config)
975 {
976 config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
977 MAC_SYM_PAUSE;
978
979 if (dev->info->gbit_capable[port])
980 config->mac_capabilities |= MAC_1000FD;
981 }
982
ksz9477_set_ageing_time(struct ksz_device * dev,unsigned int msecs)983 int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
984 {
985 u32 secs = msecs / 1000;
986 u8 value;
987 u8 data;
988 int ret;
989
990 value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
991
992 ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
993 if (ret < 0)
994 return ret;
995
996 data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
997
998 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
999 if (ret < 0)
1000 return ret;
1001
1002 value &= ~SW_AGE_CNT_M;
1003 value |= FIELD_PREP(SW_AGE_CNT_M, data);
1004
1005 return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
1006 }
1007
ksz9477_port_queue_split(struct ksz_device * dev,int port)1008 void ksz9477_port_queue_split(struct ksz_device *dev, int port)
1009 {
1010 u8 data;
1011
1012 if (dev->info->num_tx_queues == 8)
1013 data = PORT_EIGHT_QUEUE;
1014 else if (dev->info->num_tx_queues == 4)
1015 data = PORT_FOUR_QUEUE;
1016 else if (dev->info->num_tx_queues == 2)
1017 data = PORT_TWO_QUEUE;
1018 else
1019 data = PORT_SINGLE_QUEUE;
1020
1021 ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
1022 }
1023
ksz9477_port_setup(struct ksz_device * dev,int port,bool cpu_port)1024 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1025 {
1026 const u16 *regs = dev->info->regs;
1027 struct dsa_switch *ds = dev->ds;
1028 u16 data16;
1029 u8 member;
1030
1031 /* enable tag tail for host port */
1032 if (cpu_port)
1033 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1034 true);
1035
1036 ksz9477_port_queue_split(dev, port);
1037
1038 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1039
1040 /* set back pressure */
1041 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1042
1043 /* enable broadcast storm limit */
1044 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1045
1046 /* replace priority */
1047 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1048 false);
1049 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1050 MTI_PVID_REPLACE, false);
1051
1052 /* force flow control for non-PHY ports only */
1053 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1054 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1055 !dev->info->internal_phy[port]);
1056
1057 if (cpu_port)
1058 member = dsa_user_ports(ds);
1059 else
1060 member = BIT(dsa_upstream_port(ds, port));
1061
1062 ksz9477_cfg_port_member(dev, port, member);
1063
1064 /* clear pending interrupts */
1065 if (dev->info->internal_phy[port])
1066 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1067
1068 ksz9477_port_acl_init(dev, port);
1069
1070 /* clear pending wake flags */
1071 ksz_handle_wake_reason(dev, port);
1072
1073 /* Disable all WoL options by default. Otherwise
1074 * ksz_switch_macaddr_get/put logic will not work properly.
1075 */
1076 ksz_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1077 }
1078
ksz9477_config_cpu_port(struct dsa_switch * ds)1079 void ksz9477_config_cpu_port(struct dsa_switch *ds)
1080 {
1081 struct ksz_device *dev = ds->priv;
1082 struct ksz_port *p;
1083 int i;
1084
1085 for (i = 0; i < dev->info->port_cnt; i++) {
1086 if (dsa_is_cpu_port(ds, i) &&
1087 (dev->info->cpu_ports & (1 << i))) {
1088 phy_interface_t interface;
1089 const char *prev_msg;
1090 const char *prev_mode;
1091
1092 dev->cpu_port = i;
1093 p = &dev->ports[i];
1094
1095 /* Read from XMII register to determine host port
1096 * interface. If set specifically in device tree
1097 * note the difference to help debugging.
1098 */
1099 interface = ksz9477_get_interface(dev, i);
1100 if (!p->interface) {
1101 if (dev->compat_interface) {
1102 dev_warn(dev->dev,
1103 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1104 "Please update your device tree.\n",
1105 i);
1106 p->interface = dev->compat_interface;
1107 } else {
1108 p->interface = interface;
1109 }
1110 }
1111 if (interface && interface != p->interface) {
1112 prev_msg = " instead of ";
1113 prev_mode = phy_modes(interface);
1114 } else {
1115 prev_msg = "";
1116 prev_mode = "";
1117 }
1118 dev_info(dev->dev,
1119 "Port%d: using phy mode %s%s%s\n",
1120 i,
1121 phy_modes(p->interface),
1122 prev_msg,
1123 prev_mode);
1124
1125 /* enable cpu port */
1126 ksz9477_port_setup(dev, i, true);
1127 }
1128 }
1129
1130 for (i = 0; i < dev->info->port_cnt; i++) {
1131 if (i == dev->cpu_port)
1132 continue;
1133 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1134
1135 /* Power down the internal PHY if port is unused. */
1136 if (dsa_is_unused_port(ds, i) && dev->info->internal_phy[i])
1137 ksz_pwrite16(dev, i, 0x100, BMCR_PDOWN);
1138 }
1139 }
1140
ksz9477_enable_stp_addr(struct ksz_device * dev)1141 int ksz9477_enable_stp_addr(struct ksz_device *dev)
1142 {
1143 const u32 *masks;
1144 u32 data;
1145 int ret;
1146
1147 masks = dev->info->masks;
1148
1149 /* Enable Reserved multicast table */
1150 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1151
1152 /* Set the Override bit for forwarding BPDU packet to CPU */
1153 ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1154 ALU_V_OVERRIDE | BIT(dev->cpu_port));
1155 if (ret < 0)
1156 return ret;
1157
1158 data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1159
1160 ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1161 if (ret < 0)
1162 return ret;
1163
1164 /* wait to be finished */
1165 ret = ksz9477_wait_alu_sta_ready(dev);
1166 if (ret < 0) {
1167 dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1168 return ret;
1169 }
1170
1171 return 0;
1172 }
1173
ksz9477_setup(struct dsa_switch * ds)1174 int ksz9477_setup(struct dsa_switch *ds)
1175 {
1176 struct ksz_device *dev = ds->priv;
1177 const u16 *regs = dev->info->regs;
1178 int ret = 0;
1179
1180 ds->mtu_enforcement_ingress = true;
1181
1182 /* Required for port partitioning. */
1183 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1184 true);
1185
1186 /* Do not work correctly with tail tagging. */
1187 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1188
1189 /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1190 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1191
1192 /* Use collision based back pressure mode. */
1193 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_BACK_PRESSURE,
1194 SW_BACK_PRESSURE_COLLISION);
1195
1196 /* Now we can configure default MTU value */
1197 ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1198 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1199 if (ret)
1200 return ret;
1201
1202 /* queue based egress rate limit */
1203 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1204
1205 /* enable global MIB counter freeze function */
1206 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1207
1208 /* Make sure PME (WoL) is not enabled. If requested, it will
1209 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1210 * do not like PME events changes before shutdown.
1211 */
1212 return ksz_write8(dev, regs[REG_SW_PME_CTRL], 0);
1213 }
1214
ksz9477_get_port_addr(int port,int offset)1215 u32 ksz9477_get_port_addr(int port, int offset)
1216 {
1217 return PORT_CTRL_ADDR(port, offset);
1218 }
1219
ksz9477_tc_cbs_set_cinc(struct ksz_device * dev,int port,u32 val)1220 int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1221 {
1222 val = val >> 8;
1223
1224 return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1225 }
1226
1227 /* The KSZ9477 provides following HW features to accelerate
1228 * HSR frames handling:
1229 *
1230 * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH
1231 * 2. RX PACKET DUPLICATION DISCARDING
1232 * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING
1233 *
1234 * Only one from point 1. has the NETIF_F* flag available.
1235 *
1236 * Ones from point 2 and 3 are "best effort" - i.e. those will
1237 * work correctly most of the time, but it may happen that some
1238 * frames will not be caught - to be more specific; there is a race
1239 * condition in hardware such that, when duplicate packets are received
1240 * on member ports very close in time to each other, the hardware fails
1241 * to detect that they are duplicates.
1242 *
1243 * Hence, the SW needs to handle those special cases. However, the speed
1244 * up gain is considerable when above features are used.
1245 *
1246 * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames
1247 * can be forwarded in the switch fabric between HSR ports.
1248 */
1249 #define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD)
1250
ksz9477_hsr_join(struct dsa_switch * ds,int port,struct net_device * hsr)1251 void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr)
1252 {
1253 struct ksz_device *dev = ds->priv;
1254 struct net_device *user;
1255 struct dsa_port *hsr_dp;
1256 u8 data, hsr_ports = 0;
1257
1258 /* Program which port(s) shall support HSR */
1259 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port));
1260
1261 /* Forward frames between HSR ports (i.e. bridge together HSR ports) */
1262 if (dev->hsr_ports) {
1263 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1264 hsr_ports |= BIT(hsr_dp->index);
1265
1266 hsr_ports |= BIT(dsa_upstream_port(ds, port));
1267 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1268 ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports);
1269 }
1270
1271 if (!dev->hsr_ports) {
1272 /* Enable discarding of received HSR frames */
1273 ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data);
1274 data |= HSR_DUPLICATE_DISCARD;
1275 data &= ~HSR_NODE_UNICAST;
1276 ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data);
1277 }
1278
1279 /* Enable per port self-address filtering.
1280 * The global self-address filtering has already been enabled in the
1281 * ksz9477_reset_switch() function.
1282 */
1283 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true);
1284
1285 /* Setup HW supported features for lan HSR ports */
1286 user = dsa_to_port(ds, port)->user;
1287 user->features |= KSZ9477_SUPPORTED_HSR_FEATURES;
1288 }
1289
ksz9477_hsr_leave(struct dsa_switch * ds,int port,struct net_device * hsr)1290 void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr)
1291 {
1292 struct ksz_device *dev = ds->priv;
1293
1294 /* Clear port HSR support */
1295 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0);
1296
1297 /* Disable forwarding frames between HSR ports */
1298 ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port)));
1299
1300 /* Disable per port self-address filtering */
1301 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false);
1302 }
1303
ksz9477_switch_init(struct ksz_device * dev)1304 int ksz9477_switch_init(struct ksz_device *dev)
1305 {
1306 u8 data8;
1307 int ret;
1308
1309 dev->port_mask = (1 << dev->info->port_cnt) - 1;
1310
1311 /* turn off SPI DO Edge select */
1312 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1313 if (ret)
1314 return ret;
1315
1316 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1317 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1318 if (ret)
1319 return ret;
1320
1321 return 0;
1322 }
1323
ksz9477_switch_exit(struct ksz_device * dev)1324 void ksz9477_switch_exit(struct ksz_device *dev)
1325 {
1326 ksz9477_reset_switch(dev);
1327 }
1328
1329 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1330 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1331 MODULE_LICENSE("GPL");
1332