xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2025 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 /**
269  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
270  * @config: phylink config structure
271  *
272  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
273  * a detailed explanation of EEE/LPI handling in KSZ switches.
274  */
ksz_phylink_mac_disable_tx_lpi(struct phylink_config * config)275 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
276 {
277 }
278 
279 /**
280  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
281  * @config: phylink config structure
282  * @timer: timer value before entering LPI (unused)
283  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
284  *
285  * This function signals to phylink that the driver architecture supports
286  * LPI management, enabling phylink to control EEE advertisement during
287  * negotiation according to IEEE Std 802.3 (Clause 78).
288  *
289  * Hardware Management of EEE/LPI State:
290  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
291  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
292  * state transitions are managed autonomously by the hardware based on
293  * the auto-negotiation results. (Note: While the datasheet describes EEE
294  * operation based on negotiation, it doesn't explicitly detail the internal
295  * MAC/PHY interaction, so autonomous hardware management of the MAC state
296  * for LPI is inferred from observed behavior).
297  * This hardware control, consistent with the switch's ability to operate
298  * autonomously via strapping, means MAC-level software intervention is not
299  * required or exposed for managing the LPI state once EEE is negotiated.
300  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
301  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
302  * Straps).
303  *
304  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
305  * lack documented MAC-level LPI control.
306  *
307  * Therefore, this callback performs no action and serves primarily to inform
308  * phylink of LPI awareness and to document the inferred hardware behavior.
309  *
310  * Returns: 0 (Always success)
311  */
ksz_phylink_mac_enable_tx_lpi(struct phylink_config * config,u32 timer,bool tx_clock_stop)312 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
313 					 u32 timer, bool tx_clock_stop)
314 {
315 	return 0;
316 }
317 
318 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
319 	.mac_config	= ksz88x3_phylink_mac_config,
320 	.mac_link_down	= ksz_phylink_mac_link_down,
321 	.mac_link_up	= ksz8_phylink_mac_link_up,
322 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
323 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
324 };
325 
326 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
327 	.mac_config	= ksz_phylink_mac_config,
328 	.mac_link_down	= ksz_phylink_mac_link_down,
329 	.mac_link_up	= ksz8_phylink_mac_link_up,
330 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
331 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
332 };
333 
334 static const struct ksz_dev_ops ksz8463_dev_ops = {
335 	.setup = ksz8_setup,
336 	.get_port_addr = ksz8463_get_port_addr,
337 	.cfg_port_member = ksz8_cfg_port_member,
338 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
339 	.port_setup = ksz8_port_setup,
340 	.r_phy = ksz8463_r_phy,
341 	.w_phy = ksz8463_w_phy,
342 	.r_mib_cnt = ksz8_r_mib_cnt,
343 	.r_mib_pkt = ksz8_r_mib_pkt,
344 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
345 	.freeze_mib = ksz8_freeze_mib,
346 	.port_init_cnt = ksz8_port_init_cnt,
347 	.fdb_dump = ksz8_fdb_dump,
348 	.fdb_add = ksz8_fdb_add,
349 	.fdb_del = ksz8_fdb_del,
350 	.mdb_add = ksz8_mdb_add,
351 	.mdb_del = ksz8_mdb_del,
352 	.vlan_filtering = ksz8_port_vlan_filtering,
353 	.vlan_add = ksz8_port_vlan_add,
354 	.vlan_del = ksz8_port_vlan_del,
355 	.mirror_add = ksz8_port_mirror_add,
356 	.mirror_del = ksz8_port_mirror_del,
357 	.get_caps = ksz8_get_caps,
358 	.config_cpu_port = ksz8_config_cpu_port,
359 	.enable_stp_addr = ksz8_enable_stp_addr,
360 	.reset = ksz8_reset_switch,
361 	.init = ksz8_switch_init,
362 	.exit = ksz8_switch_exit,
363 	.change_mtu = ksz8_change_mtu,
364 };
365 
366 static const struct ksz_dev_ops ksz88xx_dev_ops = {
367 	.setup = ksz8_setup,
368 	.get_port_addr = ksz8_get_port_addr,
369 	.cfg_port_member = ksz8_cfg_port_member,
370 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
371 	.port_setup = ksz8_port_setup,
372 	.r_phy = ksz8_r_phy,
373 	.w_phy = ksz8_w_phy,
374 	.r_mib_cnt = ksz8_r_mib_cnt,
375 	.r_mib_pkt = ksz8_r_mib_pkt,
376 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
377 	.freeze_mib = ksz8_freeze_mib,
378 	.port_init_cnt = ksz8_port_init_cnt,
379 	.fdb_dump = ksz8_fdb_dump,
380 	.fdb_add = ksz8_fdb_add,
381 	.fdb_del = ksz8_fdb_del,
382 	.mdb_add = ksz8_mdb_add,
383 	.mdb_del = ksz8_mdb_del,
384 	.vlan_filtering = ksz8_port_vlan_filtering,
385 	.vlan_add = ksz8_port_vlan_add,
386 	.vlan_del = ksz8_port_vlan_del,
387 	.mirror_add = ksz8_port_mirror_add,
388 	.mirror_del = ksz8_port_mirror_del,
389 	.get_caps = ksz8_get_caps,
390 	.config_cpu_port = ksz8_config_cpu_port,
391 	.enable_stp_addr = ksz8_enable_stp_addr,
392 	.reset = ksz8_reset_switch,
393 	.init = ksz8_switch_init,
394 	.exit = ksz8_switch_exit,
395 	.change_mtu = ksz8_change_mtu,
396 	.pme_write8 = ksz8_pme_write8,
397 	.pme_pread8 = ksz8_pme_pread8,
398 	.pme_pwrite8 = ksz8_pme_pwrite8,
399 };
400 
401 static const struct ksz_dev_ops ksz87xx_dev_ops = {
402 	.setup = ksz8_setup,
403 	.get_port_addr = ksz8_get_port_addr,
404 	.cfg_port_member = ksz8_cfg_port_member,
405 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
406 	.port_setup = ksz8_port_setup,
407 	.r_phy = ksz8_r_phy,
408 	.w_phy = ksz8_w_phy,
409 	.r_mib_cnt = ksz8_r_mib_cnt,
410 	.r_mib_pkt = ksz8_r_mib_pkt,
411 	.r_mib_stat64 = ksz_r_mib_stats64,
412 	.freeze_mib = ksz8_freeze_mib,
413 	.port_init_cnt = ksz8_port_init_cnt,
414 	.fdb_dump = ksz8_fdb_dump,
415 	.fdb_add = ksz8_fdb_add,
416 	.fdb_del = ksz8_fdb_del,
417 	.mdb_add = ksz8_mdb_add,
418 	.mdb_del = ksz8_mdb_del,
419 	.vlan_filtering = ksz8_port_vlan_filtering,
420 	.vlan_add = ksz8_port_vlan_add,
421 	.vlan_del = ksz8_port_vlan_del,
422 	.mirror_add = ksz8_port_mirror_add,
423 	.mirror_del = ksz8_port_mirror_del,
424 	.get_caps = ksz8_get_caps,
425 	.config_cpu_port = ksz8_config_cpu_port,
426 	.enable_stp_addr = ksz8_enable_stp_addr,
427 	.reset = ksz8_reset_switch,
428 	.init = ksz8_switch_init,
429 	.exit = ksz8_switch_exit,
430 	.change_mtu = ksz8_change_mtu,
431 	.pme_write8 = ksz8_pme_write8,
432 	.pme_pread8 = ksz8_pme_pread8,
433 	.pme_pwrite8 = ksz8_pme_pwrite8,
434 };
435 
436 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
437 					struct phy_device *phydev,
438 					unsigned int mode,
439 					phy_interface_t interface,
440 					int speed, int duplex, bool tx_pause,
441 					bool rx_pause);
442 
443 static struct phylink_pcs *
ksz_phylink_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)444 ksz_phylink_mac_select_pcs(struct phylink_config *config,
445 			   phy_interface_t interface)
446 {
447 	struct dsa_port *dp = dsa_phylink_to_port(config);
448 	struct ksz_device *dev = dp->ds->priv;
449 	struct ksz_port *p = &dev->ports[dp->index];
450 
451 	if (ksz_is_sgmii_port(dev, dp->index) &&
452 	    (interface == PHY_INTERFACE_MODE_SGMII ||
453 	    interface == PHY_INTERFACE_MODE_1000BASEX))
454 		return p->pcs;
455 
456 	return NULL;
457 }
458 
459 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
460 	.mac_config	= ksz_phylink_mac_config,
461 	.mac_link_down	= ksz_phylink_mac_link_down,
462 	.mac_link_up	= ksz9477_phylink_mac_link_up,
463 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
464 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
465 	.mac_select_pcs	= ksz_phylink_mac_select_pcs,
466 };
467 
468 static const struct ksz_dev_ops ksz9477_dev_ops = {
469 	.setup = ksz9477_setup,
470 	.get_port_addr = ksz9477_get_port_addr,
471 	.cfg_port_member = ksz9477_cfg_port_member,
472 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
473 	.port_setup = ksz9477_port_setup,
474 	.set_ageing_time = ksz9477_set_ageing_time,
475 	.r_phy = ksz9477_r_phy,
476 	.w_phy = ksz9477_w_phy,
477 	.r_mib_cnt = ksz9477_r_mib_cnt,
478 	.r_mib_pkt = ksz9477_r_mib_pkt,
479 	.r_mib_stat64 = ksz_r_mib_stats64,
480 	.freeze_mib = ksz9477_freeze_mib,
481 	.port_init_cnt = ksz9477_port_init_cnt,
482 	.vlan_filtering = ksz9477_port_vlan_filtering,
483 	.vlan_add = ksz9477_port_vlan_add,
484 	.vlan_del = ksz9477_port_vlan_del,
485 	.mirror_add = ksz9477_port_mirror_add,
486 	.mirror_del = ksz9477_port_mirror_del,
487 	.get_caps = ksz9477_get_caps,
488 	.fdb_dump = ksz9477_fdb_dump,
489 	.fdb_add = ksz9477_fdb_add,
490 	.fdb_del = ksz9477_fdb_del,
491 	.mdb_add = ksz9477_mdb_add,
492 	.mdb_del = ksz9477_mdb_del,
493 	.change_mtu = ksz9477_change_mtu,
494 	.pme_write8 = ksz_write8,
495 	.pme_pread8 = ksz_pread8,
496 	.pme_pwrite8 = ksz_pwrite8,
497 	.config_cpu_port = ksz9477_config_cpu_port,
498 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
499 	.enable_stp_addr = ksz9477_enable_stp_addr,
500 	.reset = ksz9477_reset_switch,
501 	.init = ksz9477_switch_init,
502 	.exit = ksz9477_switch_exit,
503 	.pcs_create = ksz9477_pcs_create,
504 };
505 
506 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
507 	.mac_config	= ksz_phylink_mac_config,
508 	.mac_link_down	= ksz_phylink_mac_link_down,
509 	.mac_link_up	= ksz9477_phylink_mac_link_up,
510 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
511 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
512 };
513 
514 static const struct ksz_dev_ops lan937x_dev_ops = {
515 	.setup = lan937x_setup,
516 	.teardown = lan937x_teardown,
517 	.get_port_addr = ksz9477_get_port_addr,
518 	.cfg_port_member = ksz9477_cfg_port_member,
519 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
520 	.port_setup = lan937x_port_setup,
521 	.set_ageing_time = lan937x_set_ageing_time,
522 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
523 	.create_phy_addr_map = lan937x_create_phy_addr_map,
524 	.r_phy = lan937x_r_phy,
525 	.w_phy = lan937x_w_phy,
526 	.r_mib_cnt = ksz9477_r_mib_cnt,
527 	.r_mib_pkt = ksz9477_r_mib_pkt,
528 	.r_mib_stat64 = ksz_r_mib_stats64,
529 	.freeze_mib = ksz9477_freeze_mib,
530 	.port_init_cnt = ksz9477_port_init_cnt,
531 	.vlan_filtering = ksz9477_port_vlan_filtering,
532 	.vlan_add = ksz9477_port_vlan_add,
533 	.vlan_del = ksz9477_port_vlan_del,
534 	.mirror_add = ksz9477_port_mirror_add,
535 	.mirror_del = ksz9477_port_mirror_del,
536 	.get_caps = lan937x_phylink_get_caps,
537 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
538 	.fdb_dump = ksz9477_fdb_dump,
539 	.fdb_add = ksz9477_fdb_add,
540 	.fdb_del = ksz9477_fdb_del,
541 	.mdb_add = ksz9477_mdb_add,
542 	.mdb_del = ksz9477_mdb_del,
543 	.change_mtu = lan937x_change_mtu,
544 	.config_cpu_port = lan937x_config_cpu_port,
545 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
546 	.enable_stp_addr = ksz9477_enable_stp_addr,
547 	.reset = lan937x_reset_switch,
548 	.init = lan937x_switch_init,
549 	.exit = lan937x_switch_exit,
550 };
551 
552 static const u16 ksz8463_regs[] = {
553 	[REG_SW_MAC_ADDR]		= 0x10,
554 	[REG_IND_CTRL_0]		= 0x30,
555 	[REG_IND_DATA_8]		= 0x26,
556 	[REG_IND_DATA_CHECK]		= 0x26,
557 	[REG_IND_DATA_HI]		= 0x28,
558 	[REG_IND_DATA_LO]		= 0x2C,
559 	[REG_IND_MIB_CHECK]		= 0x2F,
560 	[P_FORCE_CTRL]			= 0x0C,
561 	[P_LINK_STATUS]			= 0x0E,
562 	[P_LOCAL_CTRL]			= 0x0C,
563 	[P_NEG_RESTART_CTRL]		= 0x0D,
564 	[P_REMOTE_STATUS]		= 0x0E,
565 	[P_SPEED_STATUS]		= 0x0F,
566 	[S_TAIL_TAG_CTRL]		= 0xAD,
567 	[P_STP_CTRL]			= 0x6F,
568 	[S_START_CTRL]			= 0x01,
569 	[S_BROADCAST_CTRL]		= 0x06,
570 	[S_MULTICAST_CTRL]		= 0x04,
571 };
572 
573 static const u32 ksz8463_masks[] = {
574 	[PORT_802_1P_REMAPPING]		= BIT(3),
575 	[SW_TAIL_TAG_ENABLE]		= BIT(0),
576 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
577 	[MIB_COUNTER_VALID]		= BIT(6),
578 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
579 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
580 	[VLAN_TABLE_VALID]		= BIT(19),
581 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
582 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
583 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
584 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
585 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
586 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
587 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
588 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
589 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
590 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
591 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
592 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
593 };
594 
595 static u8 ksz8463_shifts[] = {
596 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
597 	[STATIC_MAC_FWD_PORTS]		= 16,
598 	[STATIC_MAC_FID]		= 22,
599 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
600 	[DYNAMIC_MAC_ENTRIES]		= 24,
601 	[DYNAMIC_MAC_FID]		= 16,
602 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
603 	[DYNAMIC_MAC_SRC_PORT]		= 20,
604 };
605 
606 static const u16 ksz8795_regs[] = {
607 	[REG_SW_MAC_ADDR]		= 0x68,
608 	[REG_IND_CTRL_0]		= 0x6E,
609 	[REG_IND_DATA_8]		= 0x70,
610 	[REG_IND_DATA_CHECK]		= 0x72,
611 	[REG_IND_DATA_HI]		= 0x71,
612 	[REG_IND_DATA_LO]		= 0x75,
613 	[REG_IND_MIB_CHECK]		= 0x74,
614 	[REG_IND_BYTE]			= 0xA0,
615 	[P_FORCE_CTRL]			= 0x0C,
616 	[P_LINK_STATUS]			= 0x0E,
617 	[P_LOCAL_CTRL]			= 0x07,
618 	[P_NEG_RESTART_CTRL]		= 0x0D,
619 	[P_REMOTE_STATUS]		= 0x08,
620 	[P_SPEED_STATUS]		= 0x09,
621 	[S_TAIL_TAG_CTRL]		= 0x0C,
622 	[P_STP_CTRL]			= 0x02,
623 	[S_START_CTRL]			= 0x01,
624 	[S_BROADCAST_CTRL]		= 0x06,
625 	[S_MULTICAST_CTRL]		= 0x04,
626 	[P_XMII_CTRL_0]			= 0x06,
627 	[P_XMII_CTRL_1]			= 0x06,
628 	[REG_SW_PME_CTRL]		= 0x8003,
629 	[REG_PORT_PME_STATUS]		= 0x8003,
630 	[REG_PORT_PME_CTRL]		= 0x8007,
631 };
632 
633 static const u32 ksz8795_masks[] = {
634 	[PORT_802_1P_REMAPPING]		= BIT(7),
635 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
636 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
637 	[MIB_COUNTER_VALID]		= BIT(5),
638 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
639 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
640 	[VLAN_TABLE_VALID]		= BIT(12),
641 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
642 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
643 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
644 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
645 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
646 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
647 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
648 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
649 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
650 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
651 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
652 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
653 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
654 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
655 };
656 
657 static const u8 ksz8795_xmii_ctrl0[] = {
658 	[P_MII_100MBIT]			= 0,
659 	[P_MII_10MBIT]			= 1,
660 	[P_MII_FULL_DUPLEX]		= 0,
661 	[P_MII_HALF_DUPLEX]		= 1,
662 };
663 
664 static const u8 ksz8795_xmii_ctrl1[] = {
665 	[P_RGMII_SEL]			= 3,
666 	[P_GMII_SEL]			= 2,
667 	[P_RMII_SEL]			= 1,
668 	[P_MII_SEL]			= 0,
669 	[P_GMII_1GBIT]			= 1,
670 	[P_GMII_NOT_1GBIT]		= 0,
671 };
672 
673 static const u8 ksz8795_shifts[] = {
674 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
675 	[VLAN_TABLE]			= 16,
676 	[STATIC_MAC_FWD_PORTS]		= 16,
677 	[STATIC_MAC_FID]		= 24,
678 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
679 	[DYNAMIC_MAC_ENTRIES]		= 29,
680 	[DYNAMIC_MAC_FID]		= 16,
681 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
682 	[DYNAMIC_MAC_SRC_PORT]		= 24,
683 };
684 
685 static const u16 ksz8863_regs[] = {
686 	[REG_SW_MAC_ADDR]		= 0x70,
687 	[REG_IND_CTRL_0]		= 0x79,
688 	[REG_IND_DATA_8]		= 0x7B,
689 	[REG_IND_DATA_CHECK]		= 0x7B,
690 	[REG_IND_DATA_HI]		= 0x7C,
691 	[REG_IND_DATA_LO]		= 0x80,
692 	[REG_IND_MIB_CHECK]		= 0x80,
693 	[P_FORCE_CTRL]			= 0x0C,
694 	[P_LINK_STATUS]			= 0x0E,
695 	[P_LOCAL_CTRL]			= 0x0C,
696 	[P_NEG_RESTART_CTRL]		= 0x0D,
697 	[P_REMOTE_STATUS]		= 0x0E,
698 	[P_SPEED_STATUS]		= 0x0F,
699 	[S_TAIL_TAG_CTRL]		= 0x03,
700 	[P_STP_CTRL]			= 0x02,
701 	[S_START_CTRL]			= 0x01,
702 	[S_BROADCAST_CTRL]		= 0x06,
703 	[S_MULTICAST_CTRL]		= 0x04,
704 };
705 
706 static const u32 ksz8863_masks[] = {
707 	[PORT_802_1P_REMAPPING]		= BIT(3),
708 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
709 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
710 	[MIB_COUNTER_VALID]		= BIT(6),
711 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
712 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
713 	[VLAN_TABLE_VALID]		= BIT(19),
714 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
715 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
716 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
717 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
718 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
719 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
720 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
721 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
722 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
723 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
724 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
725 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
726 };
727 
728 static u8 ksz8863_shifts[] = {
729 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
730 	[STATIC_MAC_FWD_PORTS]		= 16,
731 	[STATIC_MAC_FID]		= 22,
732 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
733 	[DYNAMIC_MAC_ENTRIES]		= 24,
734 	[DYNAMIC_MAC_FID]		= 16,
735 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
736 	[DYNAMIC_MAC_SRC_PORT]		= 20,
737 };
738 
739 static const u16 ksz8895_regs[] = {
740 	[REG_SW_MAC_ADDR]		= 0x68,
741 	[REG_IND_CTRL_0]		= 0x6E,
742 	[REG_IND_DATA_8]		= 0x70,
743 	[REG_IND_DATA_CHECK]		= 0x72,
744 	[REG_IND_DATA_HI]		= 0x71,
745 	[REG_IND_DATA_LO]		= 0x75,
746 	[REG_IND_MIB_CHECK]		= 0x75,
747 	[P_FORCE_CTRL]			= 0x0C,
748 	[P_LINK_STATUS]			= 0x0E,
749 	[P_LOCAL_CTRL]			= 0x0C,
750 	[P_NEG_RESTART_CTRL]		= 0x0D,
751 	[P_REMOTE_STATUS]		= 0x0E,
752 	[P_SPEED_STATUS]		= 0x09,
753 	[S_TAIL_TAG_CTRL]		= 0x0C,
754 	[P_STP_CTRL]			= 0x02,
755 	[S_START_CTRL]			= 0x01,
756 	[S_BROADCAST_CTRL]		= 0x06,
757 	[S_MULTICAST_CTRL]		= 0x04,
758 };
759 
760 static const u32 ksz8895_masks[] = {
761 	[PORT_802_1P_REMAPPING]		= BIT(7),
762 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
763 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
764 	[MIB_COUNTER_VALID]		= BIT(6),
765 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
766 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
767 	[VLAN_TABLE_VALID]		= BIT(12),
768 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
769 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
770 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
771 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
772 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
773 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
774 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
775 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
776 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
777 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
778 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
779 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
780 };
781 
782 static const u8 ksz8895_shifts[] = {
783 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
784 	[VLAN_TABLE]			= 13,
785 	[STATIC_MAC_FWD_PORTS]		= 16,
786 	[STATIC_MAC_FID]		= 24,
787 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
788 	[DYNAMIC_MAC_ENTRIES]		= 29,
789 	[DYNAMIC_MAC_FID]		= 16,
790 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
791 	[DYNAMIC_MAC_SRC_PORT]		= 24,
792 };
793 
794 static const u16 ksz9477_regs[] = {
795 	[REG_SW_MAC_ADDR]		= 0x0302,
796 	[P_STP_CTRL]			= 0x0B04,
797 	[S_START_CTRL]			= 0x0300,
798 	[S_BROADCAST_CTRL]		= 0x0332,
799 	[S_MULTICAST_CTRL]		= 0x0331,
800 	[P_XMII_CTRL_0]			= 0x0300,
801 	[P_XMII_CTRL_1]			= 0x0301,
802 	[REG_SW_PME_CTRL]		= 0x0006,
803 	[REG_PORT_PME_STATUS]		= 0x0013,
804 	[REG_PORT_PME_CTRL]		= 0x0017,
805 };
806 
807 static const u32 ksz9477_masks[] = {
808 	[ALU_STAT_WRITE]		= 0,
809 	[ALU_STAT_READ]			= 1,
810 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
811 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
812 };
813 
814 static const u8 ksz9477_shifts[] = {
815 	[ALU_STAT_INDEX]		= 16,
816 };
817 
818 static const u8 ksz9477_xmii_ctrl0[] = {
819 	[P_MII_100MBIT]			= 1,
820 	[P_MII_10MBIT]			= 0,
821 	[P_MII_FULL_DUPLEX]		= 1,
822 	[P_MII_HALF_DUPLEX]		= 0,
823 };
824 
825 static const u8 ksz9477_xmii_ctrl1[] = {
826 	[P_RGMII_SEL]			= 0,
827 	[P_RMII_SEL]			= 1,
828 	[P_GMII_SEL]			= 2,
829 	[P_MII_SEL]			= 3,
830 	[P_GMII_1GBIT]			= 0,
831 	[P_GMII_NOT_1GBIT]		= 1,
832 };
833 
834 static const u32 lan937x_masks[] = {
835 	[ALU_STAT_WRITE]		= 1,
836 	[ALU_STAT_READ]			= 2,
837 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
838 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
839 };
840 
841 static const u8 lan937x_shifts[] = {
842 	[ALU_STAT_INDEX]		= 8,
843 };
844 
845 static const struct regmap_range ksz8563_valid_regs[] = {
846 	regmap_reg_range(0x0000, 0x0003),
847 	regmap_reg_range(0x0006, 0x0006),
848 	regmap_reg_range(0x000f, 0x001f),
849 	regmap_reg_range(0x0100, 0x0100),
850 	regmap_reg_range(0x0104, 0x0107),
851 	regmap_reg_range(0x010d, 0x010d),
852 	regmap_reg_range(0x0110, 0x0113),
853 	regmap_reg_range(0x0120, 0x012b),
854 	regmap_reg_range(0x0201, 0x0201),
855 	regmap_reg_range(0x0210, 0x0213),
856 	regmap_reg_range(0x0300, 0x0300),
857 	regmap_reg_range(0x0302, 0x031b),
858 	regmap_reg_range(0x0320, 0x032b),
859 	regmap_reg_range(0x0330, 0x0336),
860 	regmap_reg_range(0x0338, 0x033e),
861 	regmap_reg_range(0x0340, 0x035f),
862 	regmap_reg_range(0x0370, 0x0370),
863 	regmap_reg_range(0x0378, 0x0378),
864 	regmap_reg_range(0x037c, 0x037d),
865 	regmap_reg_range(0x0390, 0x0393),
866 	regmap_reg_range(0x0400, 0x040e),
867 	regmap_reg_range(0x0410, 0x042f),
868 	regmap_reg_range(0x0500, 0x0519),
869 	regmap_reg_range(0x0520, 0x054b),
870 	regmap_reg_range(0x0550, 0x05b3),
871 
872 	/* port 1 */
873 	regmap_reg_range(0x1000, 0x1001),
874 	regmap_reg_range(0x1004, 0x100b),
875 	regmap_reg_range(0x1013, 0x1013),
876 	regmap_reg_range(0x1017, 0x1017),
877 	regmap_reg_range(0x101b, 0x101b),
878 	regmap_reg_range(0x101f, 0x1021),
879 	regmap_reg_range(0x1030, 0x1030),
880 	regmap_reg_range(0x1100, 0x1111),
881 	regmap_reg_range(0x111a, 0x111d),
882 	regmap_reg_range(0x1122, 0x1127),
883 	regmap_reg_range(0x112a, 0x112b),
884 	regmap_reg_range(0x1136, 0x1139),
885 	regmap_reg_range(0x113e, 0x113f),
886 	regmap_reg_range(0x1400, 0x1401),
887 	regmap_reg_range(0x1403, 0x1403),
888 	regmap_reg_range(0x1410, 0x1417),
889 	regmap_reg_range(0x1420, 0x1423),
890 	regmap_reg_range(0x1500, 0x1507),
891 	regmap_reg_range(0x1600, 0x1612),
892 	regmap_reg_range(0x1800, 0x180f),
893 	regmap_reg_range(0x1900, 0x1907),
894 	regmap_reg_range(0x1914, 0x191b),
895 	regmap_reg_range(0x1a00, 0x1a03),
896 	regmap_reg_range(0x1a04, 0x1a08),
897 	regmap_reg_range(0x1b00, 0x1b01),
898 	regmap_reg_range(0x1b04, 0x1b04),
899 	regmap_reg_range(0x1c00, 0x1c05),
900 	regmap_reg_range(0x1c08, 0x1c1b),
901 
902 	/* port 2 */
903 	regmap_reg_range(0x2000, 0x2001),
904 	regmap_reg_range(0x2004, 0x200b),
905 	regmap_reg_range(0x2013, 0x2013),
906 	regmap_reg_range(0x2017, 0x2017),
907 	regmap_reg_range(0x201b, 0x201b),
908 	regmap_reg_range(0x201f, 0x2021),
909 	regmap_reg_range(0x2030, 0x2030),
910 	regmap_reg_range(0x2100, 0x2111),
911 	regmap_reg_range(0x211a, 0x211d),
912 	regmap_reg_range(0x2122, 0x2127),
913 	regmap_reg_range(0x212a, 0x212b),
914 	regmap_reg_range(0x2136, 0x2139),
915 	regmap_reg_range(0x213e, 0x213f),
916 	regmap_reg_range(0x2400, 0x2401),
917 	regmap_reg_range(0x2403, 0x2403),
918 	regmap_reg_range(0x2410, 0x2417),
919 	regmap_reg_range(0x2420, 0x2423),
920 	regmap_reg_range(0x2500, 0x2507),
921 	regmap_reg_range(0x2600, 0x2612),
922 	regmap_reg_range(0x2800, 0x280f),
923 	regmap_reg_range(0x2900, 0x2907),
924 	regmap_reg_range(0x2914, 0x291b),
925 	regmap_reg_range(0x2a00, 0x2a03),
926 	regmap_reg_range(0x2a04, 0x2a08),
927 	regmap_reg_range(0x2b00, 0x2b01),
928 	regmap_reg_range(0x2b04, 0x2b04),
929 	regmap_reg_range(0x2c00, 0x2c05),
930 	regmap_reg_range(0x2c08, 0x2c1b),
931 
932 	/* port 3 */
933 	regmap_reg_range(0x3000, 0x3001),
934 	regmap_reg_range(0x3004, 0x300b),
935 	regmap_reg_range(0x3013, 0x3013),
936 	regmap_reg_range(0x3017, 0x3017),
937 	regmap_reg_range(0x301b, 0x301b),
938 	regmap_reg_range(0x301f, 0x3021),
939 	regmap_reg_range(0x3030, 0x3030),
940 	regmap_reg_range(0x3300, 0x3301),
941 	regmap_reg_range(0x3303, 0x3303),
942 	regmap_reg_range(0x3400, 0x3401),
943 	regmap_reg_range(0x3403, 0x3403),
944 	regmap_reg_range(0x3410, 0x3417),
945 	regmap_reg_range(0x3420, 0x3423),
946 	regmap_reg_range(0x3500, 0x3507),
947 	regmap_reg_range(0x3600, 0x3612),
948 	regmap_reg_range(0x3800, 0x380f),
949 	regmap_reg_range(0x3900, 0x3907),
950 	regmap_reg_range(0x3914, 0x391b),
951 	regmap_reg_range(0x3a00, 0x3a03),
952 	regmap_reg_range(0x3a04, 0x3a08),
953 	regmap_reg_range(0x3b00, 0x3b01),
954 	regmap_reg_range(0x3b04, 0x3b04),
955 	regmap_reg_range(0x3c00, 0x3c05),
956 	regmap_reg_range(0x3c08, 0x3c1b),
957 };
958 
959 static const struct regmap_access_table ksz8563_register_set = {
960 	.yes_ranges = ksz8563_valid_regs,
961 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
962 };
963 
964 static const struct regmap_range ksz9477_valid_regs[] = {
965 	regmap_reg_range(0x0000, 0x0003),
966 	regmap_reg_range(0x0006, 0x0006),
967 	regmap_reg_range(0x0010, 0x001f),
968 	regmap_reg_range(0x0100, 0x0100),
969 	regmap_reg_range(0x0103, 0x0107),
970 	regmap_reg_range(0x010d, 0x010d),
971 	regmap_reg_range(0x0110, 0x0113),
972 	regmap_reg_range(0x0120, 0x012b),
973 	regmap_reg_range(0x0201, 0x0201),
974 	regmap_reg_range(0x0210, 0x0213),
975 	regmap_reg_range(0x0300, 0x0300),
976 	regmap_reg_range(0x0302, 0x031b),
977 	regmap_reg_range(0x0320, 0x032b),
978 	regmap_reg_range(0x0330, 0x0336),
979 	regmap_reg_range(0x0338, 0x033b),
980 	regmap_reg_range(0x033e, 0x033e),
981 	regmap_reg_range(0x0340, 0x035f),
982 	regmap_reg_range(0x0370, 0x0370),
983 	regmap_reg_range(0x0378, 0x0378),
984 	regmap_reg_range(0x037c, 0x037d),
985 	regmap_reg_range(0x0390, 0x0393),
986 	regmap_reg_range(0x0400, 0x040e),
987 	regmap_reg_range(0x0410, 0x042f),
988 	regmap_reg_range(0x0444, 0x044b),
989 	regmap_reg_range(0x0450, 0x046f),
990 	regmap_reg_range(0x0500, 0x0519),
991 	regmap_reg_range(0x0520, 0x054b),
992 	regmap_reg_range(0x0550, 0x05b3),
993 	regmap_reg_range(0x0604, 0x060b),
994 	regmap_reg_range(0x0610, 0x0612),
995 	regmap_reg_range(0x0614, 0x062c),
996 	regmap_reg_range(0x0640, 0x0645),
997 	regmap_reg_range(0x0648, 0x064d),
998 
999 	/* port 1 */
1000 	regmap_reg_range(0x1000, 0x1001),
1001 	regmap_reg_range(0x1013, 0x1013),
1002 	regmap_reg_range(0x1017, 0x1017),
1003 	regmap_reg_range(0x101b, 0x101b),
1004 	regmap_reg_range(0x101f, 0x1020),
1005 	regmap_reg_range(0x1030, 0x1030),
1006 	regmap_reg_range(0x1100, 0x1115),
1007 	regmap_reg_range(0x111a, 0x111f),
1008 	regmap_reg_range(0x1120, 0x112b),
1009 	regmap_reg_range(0x1134, 0x113b),
1010 	regmap_reg_range(0x113c, 0x113f),
1011 	regmap_reg_range(0x1400, 0x1401),
1012 	regmap_reg_range(0x1403, 0x1403),
1013 	regmap_reg_range(0x1410, 0x1417),
1014 	regmap_reg_range(0x1420, 0x1423),
1015 	regmap_reg_range(0x1500, 0x1507),
1016 	regmap_reg_range(0x1600, 0x1613),
1017 	regmap_reg_range(0x1800, 0x180f),
1018 	regmap_reg_range(0x1820, 0x1827),
1019 	regmap_reg_range(0x1830, 0x1837),
1020 	regmap_reg_range(0x1840, 0x184b),
1021 	regmap_reg_range(0x1900, 0x1907),
1022 	regmap_reg_range(0x1914, 0x191b),
1023 	regmap_reg_range(0x1920, 0x1920),
1024 	regmap_reg_range(0x1923, 0x1927),
1025 	regmap_reg_range(0x1a00, 0x1a03),
1026 	regmap_reg_range(0x1a04, 0x1a07),
1027 	regmap_reg_range(0x1b00, 0x1b01),
1028 	regmap_reg_range(0x1b04, 0x1b04),
1029 	regmap_reg_range(0x1c00, 0x1c05),
1030 	regmap_reg_range(0x1c08, 0x1c1b),
1031 
1032 	/* port 2 */
1033 	regmap_reg_range(0x2000, 0x2001),
1034 	regmap_reg_range(0x2013, 0x2013),
1035 	regmap_reg_range(0x2017, 0x2017),
1036 	regmap_reg_range(0x201b, 0x201b),
1037 	regmap_reg_range(0x201f, 0x2020),
1038 	regmap_reg_range(0x2030, 0x2030),
1039 	regmap_reg_range(0x2100, 0x2115),
1040 	regmap_reg_range(0x211a, 0x211f),
1041 	regmap_reg_range(0x2120, 0x212b),
1042 	regmap_reg_range(0x2134, 0x213b),
1043 	regmap_reg_range(0x213c, 0x213f),
1044 	regmap_reg_range(0x2400, 0x2401),
1045 	regmap_reg_range(0x2403, 0x2403),
1046 	regmap_reg_range(0x2410, 0x2417),
1047 	regmap_reg_range(0x2420, 0x2423),
1048 	regmap_reg_range(0x2500, 0x2507),
1049 	regmap_reg_range(0x2600, 0x2613),
1050 	regmap_reg_range(0x2800, 0x280f),
1051 	regmap_reg_range(0x2820, 0x2827),
1052 	regmap_reg_range(0x2830, 0x2837),
1053 	regmap_reg_range(0x2840, 0x284b),
1054 	regmap_reg_range(0x2900, 0x2907),
1055 	regmap_reg_range(0x2914, 0x291b),
1056 	regmap_reg_range(0x2920, 0x2920),
1057 	regmap_reg_range(0x2923, 0x2927),
1058 	regmap_reg_range(0x2a00, 0x2a03),
1059 	regmap_reg_range(0x2a04, 0x2a07),
1060 	regmap_reg_range(0x2b00, 0x2b01),
1061 	regmap_reg_range(0x2b04, 0x2b04),
1062 	regmap_reg_range(0x2c00, 0x2c05),
1063 	regmap_reg_range(0x2c08, 0x2c1b),
1064 
1065 	/* port 3 */
1066 	regmap_reg_range(0x3000, 0x3001),
1067 	regmap_reg_range(0x3013, 0x3013),
1068 	regmap_reg_range(0x3017, 0x3017),
1069 	regmap_reg_range(0x301b, 0x301b),
1070 	regmap_reg_range(0x301f, 0x3020),
1071 	regmap_reg_range(0x3030, 0x3030),
1072 	regmap_reg_range(0x3100, 0x3115),
1073 	regmap_reg_range(0x311a, 0x311f),
1074 	regmap_reg_range(0x3120, 0x312b),
1075 	regmap_reg_range(0x3134, 0x313b),
1076 	regmap_reg_range(0x313c, 0x313f),
1077 	regmap_reg_range(0x3400, 0x3401),
1078 	regmap_reg_range(0x3403, 0x3403),
1079 	regmap_reg_range(0x3410, 0x3417),
1080 	regmap_reg_range(0x3420, 0x3423),
1081 	regmap_reg_range(0x3500, 0x3507),
1082 	regmap_reg_range(0x3600, 0x3613),
1083 	regmap_reg_range(0x3800, 0x380f),
1084 	regmap_reg_range(0x3820, 0x3827),
1085 	regmap_reg_range(0x3830, 0x3837),
1086 	regmap_reg_range(0x3840, 0x384b),
1087 	regmap_reg_range(0x3900, 0x3907),
1088 	regmap_reg_range(0x3914, 0x391b),
1089 	regmap_reg_range(0x3920, 0x3920),
1090 	regmap_reg_range(0x3923, 0x3927),
1091 	regmap_reg_range(0x3a00, 0x3a03),
1092 	regmap_reg_range(0x3a04, 0x3a07),
1093 	regmap_reg_range(0x3b00, 0x3b01),
1094 	regmap_reg_range(0x3b04, 0x3b04),
1095 	regmap_reg_range(0x3c00, 0x3c05),
1096 	regmap_reg_range(0x3c08, 0x3c1b),
1097 
1098 	/* port 4 */
1099 	regmap_reg_range(0x4000, 0x4001),
1100 	regmap_reg_range(0x4013, 0x4013),
1101 	regmap_reg_range(0x4017, 0x4017),
1102 	regmap_reg_range(0x401b, 0x401b),
1103 	regmap_reg_range(0x401f, 0x4020),
1104 	regmap_reg_range(0x4030, 0x4030),
1105 	regmap_reg_range(0x4100, 0x4115),
1106 	regmap_reg_range(0x411a, 0x411f),
1107 	regmap_reg_range(0x4120, 0x412b),
1108 	regmap_reg_range(0x4134, 0x413b),
1109 	regmap_reg_range(0x413c, 0x413f),
1110 	regmap_reg_range(0x4400, 0x4401),
1111 	regmap_reg_range(0x4403, 0x4403),
1112 	regmap_reg_range(0x4410, 0x4417),
1113 	regmap_reg_range(0x4420, 0x4423),
1114 	regmap_reg_range(0x4500, 0x4507),
1115 	regmap_reg_range(0x4600, 0x4613),
1116 	regmap_reg_range(0x4800, 0x480f),
1117 	regmap_reg_range(0x4820, 0x4827),
1118 	regmap_reg_range(0x4830, 0x4837),
1119 	regmap_reg_range(0x4840, 0x484b),
1120 	regmap_reg_range(0x4900, 0x4907),
1121 	regmap_reg_range(0x4914, 0x491b),
1122 	regmap_reg_range(0x4920, 0x4920),
1123 	regmap_reg_range(0x4923, 0x4927),
1124 	regmap_reg_range(0x4a00, 0x4a03),
1125 	regmap_reg_range(0x4a04, 0x4a07),
1126 	regmap_reg_range(0x4b00, 0x4b01),
1127 	regmap_reg_range(0x4b04, 0x4b04),
1128 	regmap_reg_range(0x4c00, 0x4c05),
1129 	regmap_reg_range(0x4c08, 0x4c1b),
1130 
1131 	/* port 5 */
1132 	regmap_reg_range(0x5000, 0x5001),
1133 	regmap_reg_range(0x5013, 0x5013),
1134 	regmap_reg_range(0x5017, 0x5017),
1135 	regmap_reg_range(0x501b, 0x501b),
1136 	regmap_reg_range(0x501f, 0x5020),
1137 	regmap_reg_range(0x5030, 0x5030),
1138 	regmap_reg_range(0x5100, 0x5115),
1139 	regmap_reg_range(0x511a, 0x511f),
1140 	regmap_reg_range(0x5120, 0x512b),
1141 	regmap_reg_range(0x5134, 0x513b),
1142 	regmap_reg_range(0x513c, 0x513f),
1143 	regmap_reg_range(0x5400, 0x5401),
1144 	regmap_reg_range(0x5403, 0x5403),
1145 	regmap_reg_range(0x5410, 0x5417),
1146 	regmap_reg_range(0x5420, 0x5423),
1147 	regmap_reg_range(0x5500, 0x5507),
1148 	regmap_reg_range(0x5600, 0x5613),
1149 	regmap_reg_range(0x5800, 0x580f),
1150 	regmap_reg_range(0x5820, 0x5827),
1151 	regmap_reg_range(0x5830, 0x5837),
1152 	regmap_reg_range(0x5840, 0x584b),
1153 	regmap_reg_range(0x5900, 0x5907),
1154 	regmap_reg_range(0x5914, 0x591b),
1155 	regmap_reg_range(0x5920, 0x5920),
1156 	regmap_reg_range(0x5923, 0x5927),
1157 	regmap_reg_range(0x5a00, 0x5a03),
1158 	regmap_reg_range(0x5a04, 0x5a07),
1159 	regmap_reg_range(0x5b00, 0x5b01),
1160 	regmap_reg_range(0x5b04, 0x5b04),
1161 	regmap_reg_range(0x5c00, 0x5c05),
1162 	regmap_reg_range(0x5c08, 0x5c1b),
1163 
1164 	/* port 6 */
1165 	regmap_reg_range(0x6000, 0x6001),
1166 	regmap_reg_range(0x6013, 0x6013),
1167 	regmap_reg_range(0x6017, 0x6017),
1168 	regmap_reg_range(0x601b, 0x601b),
1169 	regmap_reg_range(0x601f, 0x6020),
1170 	regmap_reg_range(0x6030, 0x6030),
1171 	regmap_reg_range(0x6300, 0x6301),
1172 	regmap_reg_range(0x6400, 0x6401),
1173 	regmap_reg_range(0x6403, 0x6403),
1174 	regmap_reg_range(0x6410, 0x6417),
1175 	regmap_reg_range(0x6420, 0x6423),
1176 	regmap_reg_range(0x6500, 0x6507),
1177 	regmap_reg_range(0x6600, 0x6613),
1178 	regmap_reg_range(0x6800, 0x680f),
1179 	regmap_reg_range(0x6820, 0x6827),
1180 	regmap_reg_range(0x6830, 0x6837),
1181 	regmap_reg_range(0x6840, 0x684b),
1182 	regmap_reg_range(0x6900, 0x6907),
1183 	regmap_reg_range(0x6914, 0x691b),
1184 	regmap_reg_range(0x6920, 0x6920),
1185 	regmap_reg_range(0x6923, 0x6927),
1186 	regmap_reg_range(0x6a00, 0x6a03),
1187 	regmap_reg_range(0x6a04, 0x6a07),
1188 	regmap_reg_range(0x6b00, 0x6b01),
1189 	regmap_reg_range(0x6b04, 0x6b04),
1190 	regmap_reg_range(0x6c00, 0x6c05),
1191 	regmap_reg_range(0x6c08, 0x6c1b),
1192 
1193 	/* port 7 */
1194 	regmap_reg_range(0x7000, 0x7001),
1195 	regmap_reg_range(0x7013, 0x7013),
1196 	regmap_reg_range(0x7017, 0x7017),
1197 	regmap_reg_range(0x701b, 0x701b),
1198 	regmap_reg_range(0x701f, 0x7020),
1199 	regmap_reg_range(0x7030, 0x7030),
1200 	regmap_reg_range(0x7200, 0x7207),
1201 	regmap_reg_range(0x7300, 0x7301),
1202 	regmap_reg_range(0x7400, 0x7401),
1203 	regmap_reg_range(0x7403, 0x7403),
1204 	regmap_reg_range(0x7410, 0x7417),
1205 	regmap_reg_range(0x7420, 0x7423),
1206 	regmap_reg_range(0x7500, 0x7507),
1207 	regmap_reg_range(0x7600, 0x7613),
1208 	regmap_reg_range(0x7800, 0x780f),
1209 	regmap_reg_range(0x7820, 0x7827),
1210 	regmap_reg_range(0x7830, 0x7837),
1211 	regmap_reg_range(0x7840, 0x784b),
1212 	regmap_reg_range(0x7900, 0x7907),
1213 	regmap_reg_range(0x7914, 0x791b),
1214 	regmap_reg_range(0x7920, 0x7920),
1215 	regmap_reg_range(0x7923, 0x7927),
1216 	regmap_reg_range(0x7a00, 0x7a03),
1217 	regmap_reg_range(0x7a04, 0x7a07),
1218 	regmap_reg_range(0x7b00, 0x7b01),
1219 	regmap_reg_range(0x7b04, 0x7b04),
1220 	regmap_reg_range(0x7c00, 0x7c05),
1221 	regmap_reg_range(0x7c08, 0x7c1b),
1222 };
1223 
1224 static const struct regmap_access_table ksz9477_register_set = {
1225 	.yes_ranges = ksz9477_valid_regs,
1226 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1227 };
1228 
1229 static const struct regmap_range ksz9896_valid_regs[] = {
1230 	regmap_reg_range(0x0000, 0x0003),
1231 	regmap_reg_range(0x0006, 0x0006),
1232 	regmap_reg_range(0x0010, 0x001f),
1233 	regmap_reg_range(0x0100, 0x0100),
1234 	regmap_reg_range(0x0103, 0x0107),
1235 	regmap_reg_range(0x010d, 0x010d),
1236 	regmap_reg_range(0x0110, 0x0113),
1237 	regmap_reg_range(0x0120, 0x0127),
1238 	regmap_reg_range(0x0201, 0x0201),
1239 	regmap_reg_range(0x0210, 0x0213),
1240 	regmap_reg_range(0x0300, 0x0300),
1241 	regmap_reg_range(0x0302, 0x030b),
1242 	regmap_reg_range(0x0310, 0x031b),
1243 	regmap_reg_range(0x0320, 0x032b),
1244 	regmap_reg_range(0x0330, 0x0336),
1245 	regmap_reg_range(0x0338, 0x033b),
1246 	regmap_reg_range(0x033e, 0x033e),
1247 	regmap_reg_range(0x0340, 0x035f),
1248 	regmap_reg_range(0x0370, 0x0370),
1249 	regmap_reg_range(0x0378, 0x0378),
1250 	regmap_reg_range(0x037c, 0x037d),
1251 	regmap_reg_range(0x0390, 0x0393),
1252 	regmap_reg_range(0x0400, 0x040e),
1253 	regmap_reg_range(0x0410, 0x042f),
1254 
1255 	/* port 1 */
1256 	regmap_reg_range(0x1000, 0x1001),
1257 	regmap_reg_range(0x1013, 0x1013),
1258 	regmap_reg_range(0x1017, 0x1017),
1259 	regmap_reg_range(0x101b, 0x101b),
1260 	regmap_reg_range(0x101f, 0x1020),
1261 	regmap_reg_range(0x1030, 0x1030),
1262 	regmap_reg_range(0x1100, 0x1115),
1263 	regmap_reg_range(0x111a, 0x111f),
1264 	regmap_reg_range(0x1120, 0x112b),
1265 	regmap_reg_range(0x1134, 0x113b),
1266 	regmap_reg_range(0x113c, 0x113f),
1267 	regmap_reg_range(0x1400, 0x1401),
1268 	regmap_reg_range(0x1403, 0x1403),
1269 	regmap_reg_range(0x1410, 0x1417),
1270 	regmap_reg_range(0x1420, 0x1423),
1271 	regmap_reg_range(0x1500, 0x1507),
1272 	regmap_reg_range(0x1600, 0x1612),
1273 	regmap_reg_range(0x1800, 0x180f),
1274 	regmap_reg_range(0x1820, 0x1827),
1275 	regmap_reg_range(0x1830, 0x1837),
1276 	regmap_reg_range(0x1840, 0x184b),
1277 	regmap_reg_range(0x1900, 0x1907),
1278 	regmap_reg_range(0x1914, 0x1915),
1279 	regmap_reg_range(0x1a00, 0x1a03),
1280 	regmap_reg_range(0x1a04, 0x1a07),
1281 	regmap_reg_range(0x1b00, 0x1b01),
1282 	regmap_reg_range(0x1b04, 0x1b04),
1283 
1284 	/* port 2 */
1285 	regmap_reg_range(0x2000, 0x2001),
1286 	regmap_reg_range(0x2013, 0x2013),
1287 	regmap_reg_range(0x2017, 0x2017),
1288 	regmap_reg_range(0x201b, 0x201b),
1289 	regmap_reg_range(0x201f, 0x2020),
1290 	regmap_reg_range(0x2030, 0x2030),
1291 	regmap_reg_range(0x2100, 0x2115),
1292 	regmap_reg_range(0x211a, 0x211f),
1293 	regmap_reg_range(0x2120, 0x212b),
1294 	regmap_reg_range(0x2134, 0x213b),
1295 	regmap_reg_range(0x213c, 0x213f),
1296 	regmap_reg_range(0x2400, 0x2401),
1297 	regmap_reg_range(0x2403, 0x2403),
1298 	regmap_reg_range(0x2410, 0x2417),
1299 	regmap_reg_range(0x2420, 0x2423),
1300 	regmap_reg_range(0x2500, 0x2507),
1301 	regmap_reg_range(0x2600, 0x2612),
1302 	regmap_reg_range(0x2800, 0x280f),
1303 	regmap_reg_range(0x2820, 0x2827),
1304 	regmap_reg_range(0x2830, 0x2837),
1305 	regmap_reg_range(0x2840, 0x284b),
1306 	regmap_reg_range(0x2900, 0x2907),
1307 	regmap_reg_range(0x2914, 0x2915),
1308 	regmap_reg_range(0x2a00, 0x2a03),
1309 	regmap_reg_range(0x2a04, 0x2a07),
1310 	regmap_reg_range(0x2b00, 0x2b01),
1311 	regmap_reg_range(0x2b04, 0x2b04),
1312 
1313 	/* port 3 */
1314 	regmap_reg_range(0x3000, 0x3001),
1315 	regmap_reg_range(0x3013, 0x3013),
1316 	regmap_reg_range(0x3017, 0x3017),
1317 	regmap_reg_range(0x301b, 0x301b),
1318 	regmap_reg_range(0x301f, 0x3020),
1319 	regmap_reg_range(0x3030, 0x3030),
1320 	regmap_reg_range(0x3100, 0x3115),
1321 	regmap_reg_range(0x311a, 0x311f),
1322 	regmap_reg_range(0x3120, 0x312b),
1323 	regmap_reg_range(0x3134, 0x313b),
1324 	regmap_reg_range(0x313c, 0x313f),
1325 	regmap_reg_range(0x3400, 0x3401),
1326 	regmap_reg_range(0x3403, 0x3403),
1327 	regmap_reg_range(0x3410, 0x3417),
1328 	regmap_reg_range(0x3420, 0x3423),
1329 	regmap_reg_range(0x3500, 0x3507),
1330 	regmap_reg_range(0x3600, 0x3612),
1331 	regmap_reg_range(0x3800, 0x380f),
1332 	regmap_reg_range(0x3820, 0x3827),
1333 	regmap_reg_range(0x3830, 0x3837),
1334 	regmap_reg_range(0x3840, 0x384b),
1335 	regmap_reg_range(0x3900, 0x3907),
1336 	regmap_reg_range(0x3914, 0x3915),
1337 	regmap_reg_range(0x3a00, 0x3a03),
1338 	regmap_reg_range(0x3a04, 0x3a07),
1339 	regmap_reg_range(0x3b00, 0x3b01),
1340 	regmap_reg_range(0x3b04, 0x3b04),
1341 
1342 	/* port 4 */
1343 	regmap_reg_range(0x4000, 0x4001),
1344 	regmap_reg_range(0x4013, 0x4013),
1345 	regmap_reg_range(0x4017, 0x4017),
1346 	regmap_reg_range(0x401b, 0x401b),
1347 	regmap_reg_range(0x401f, 0x4020),
1348 	regmap_reg_range(0x4030, 0x4030),
1349 	regmap_reg_range(0x4100, 0x4115),
1350 	regmap_reg_range(0x411a, 0x411f),
1351 	regmap_reg_range(0x4120, 0x412b),
1352 	regmap_reg_range(0x4134, 0x413b),
1353 	regmap_reg_range(0x413c, 0x413f),
1354 	regmap_reg_range(0x4400, 0x4401),
1355 	regmap_reg_range(0x4403, 0x4403),
1356 	regmap_reg_range(0x4410, 0x4417),
1357 	regmap_reg_range(0x4420, 0x4423),
1358 	regmap_reg_range(0x4500, 0x4507),
1359 	regmap_reg_range(0x4600, 0x4612),
1360 	regmap_reg_range(0x4800, 0x480f),
1361 	regmap_reg_range(0x4820, 0x4827),
1362 	regmap_reg_range(0x4830, 0x4837),
1363 	regmap_reg_range(0x4840, 0x484b),
1364 	regmap_reg_range(0x4900, 0x4907),
1365 	regmap_reg_range(0x4914, 0x4915),
1366 	regmap_reg_range(0x4a00, 0x4a03),
1367 	regmap_reg_range(0x4a04, 0x4a07),
1368 	regmap_reg_range(0x4b00, 0x4b01),
1369 	regmap_reg_range(0x4b04, 0x4b04),
1370 
1371 	/* port 5 */
1372 	regmap_reg_range(0x5000, 0x5001),
1373 	regmap_reg_range(0x5013, 0x5013),
1374 	regmap_reg_range(0x5017, 0x5017),
1375 	regmap_reg_range(0x501b, 0x501b),
1376 	regmap_reg_range(0x501f, 0x5020),
1377 	regmap_reg_range(0x5030, 0x5030),
1378 	regmap_reg_range(0x5100, 0x5115),
1379 	regmap_reg_range(0x511a, 0x511f),
1380 	regmap_reg_range(0x5120, 0x512b),
1381 	regmap_reg_range(0x5134, 0x513b),
1382 	regmap_reg_range(0x513c, 0x513f),
1383 	regmap_reg_range(0x5400, 0x5401),
1384 	regmap_reg_range(0x5403, 0x5403),
1385 	regmap_reg_range(0x5410, 0x5417),
1386 	regmap_reg_range(0x5420, 0x5423),
1387 	regmap_reg_range(0x5500, 0x5507),
1388 	regmap_reg_range(0x5600, 0x5612),
1389 	regmap_reg_range(0x5800, 0x580f),
1390 	regmap_reg_range(0x5820, 0x5827),
1391 	regmap_reg_range(0x5830, 0x5837),
1392 	regmap_reg_range(0x5840, 0x584b),
1393 	regmap_reg_range(0x5900, 0x5907),
1394 	regmap_reg_range(0x5914, 0x5915),
1395 	regmap_reg_range(0x5a00, 0x5a03),
1396 	regmap_reg_range(0x5a04, 0x5a07),
1397 	regmap_reg_range(0x5b00, 0x5b01),
1398 	regmap_reg_range(0x5b04, 0x5b04),
1399 
1400 	/* port 6 */
1401 	regmap_reg_range(0x6000, 0x6001),
1402 	regmap_reg_range(0x6013, 0x6013),
1403 	regmap_reg_range(0x6017, 0x6017),
1404 	regmap_reg_range(0x601b, 0x601b),
1405 	regmap_reg_range(0x601f, 0x6020),
1406 	regmap_reg_range(0x6030, 0x6030),
1407 	regmap_reg_range(0x6100, 0x6115),
1408 	regmap_reg_range(0x611a, 0x611f),
1409 	regmap_reg_range(0x6120, 0x612b),
1410 	regmap_reg_range(0x6134, 0x613b),
1411 	regmap_reg_range(0x613c, 0x613f),
1412 	regmap_reg_range(0x6300, 0x6301),
1413 	regmap_reg_range(0x6400, 0x6401),
1414 	regmap_reg_range(0x6403, 0x6403),
1415 	regmap_reg_range(0x6410, 0x6417),
1416 	regmap_reg_range(0x6420, 0x6423),
1417 	regmap_reg_range(0x6500, 0x6507),
1418 	regmap_reg_range(0x6600, 0x6612),
1419 	regmap_reg_range(0x6800, 0x680f),
1420 	regmap_reg_range(0x6820, 0x6827),
1421 	regmap_reg_range(0x6830, 0x6837),
1422 	regmap_reg_range(0x6840, 0x684b),
1423 	regmap_reg_range(0x6900, 0x6907),
1424 	regmap_reg_range(0x6914, 0x6915),
1425 	regmap_reg_range(0x6a00, 0x6a03),
1426 	regmap_reg_range(0x6a04, 0x6a07),
1427 	regmap_reg_range(0x6b00, 0x6b01),
1428 	regmap_reg_range(0x6b04, 0x6b04),
1429 };
1430 
1431 static const struct regmap_access_table ksz9896_register_set = {
1432 	.yes_ranges = ksz9896_valid_regs,
1433 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1434 };
1435 
1436 static const struct regmap_range ksz8873_valid_regs[] = {
1437 	regmap_reg_range(0x00, 0x01),
1438 	/* global control register */
1439 	regmap_reg_range(0x02, 0x0f),
1440 
1441 	/* port registers */
1442 	regmap_reg_range(0x10, 0x1d),
1443 	regmap_reg_range(0x1e, 0x1f),
1444 	regmap_reg_range(0x20, 0x2d),
1445 	regmap_reg_range(0x2e, 0x2f),
1446 	regmap_reg_range(0x30, 0x39),
1447 	regmap_reg_range(0x3f, 0x3f),
1448 
1449 	/* advanced control registers */
1450 	regmap_reg_range(0x60, 0x6f),
1451 	regmap_reg_range(0x70, 0x75),
1452 	regmap_reg_range(0x76, 0x78),
1453 	regmap_reg_range(0x79, 0x7a),
1454 	regmap_reg_range(0x7b, 0x83),
1455 	regmap_reg_range(0x8e, 0x99),
1456 	regmap_reg_range(0x9a, 0xa5),
1457 	regmap_reg_range(0xa6, 0xa6),
1458 	regmap_reg_range(0xa7, 0xaa),
1459 	regmap_reg_range(0xab, 0xae),
1460 	regmap_reg_range(0xaf, 0xba),
1461 	regmap_reg_range(0xbb, 0xbc),
1462 	regmap_reg_range(0xbd, 0xbd),
1463 	regmap_reg_range(0xc0, 0xc0),
1464 	regmap_reg_range(0xc2, 0xc2),
1465 	regmap_reg_range(0xc3, 0xc3),
1466 	regmap_reg_range(0xc4, 0xc4),
1467 	regmap_reg_range(0xc6, 0xc6),
1468 };
1469 
1470 static const struct regmap_access_table ksz8873_register_set = {
1471 	.yes_ranges = ksz8873_valid_regs,
1472 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1473 };
1474 
1475 const struct ksz_chip_data ksz_switch_chips[] = {
1476 	[KSZ8463] = {
1477 		.chip_id = KSZ8463_CHIP_ID,
1478 		.dev_name = "KSZ8463",
1479 		.num_vlans = 16,
1480 		.num_alus = 0,
1481 		.num_statics = 8,
1482 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1483 		.port_cnt = 3,
1484 		.num_tx_queues = 4,
1485 		.num_ipms = 4,
1486 		.ops = &ksz8463_dev_ops,
1487 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1488 		.mib_names = ksz88xx_mib_names,
1489 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1490 		.reg_mib_cnt = MIB_COUNTER_NUM,
1491 		.regs = ksz8463_regs,
1492 		.masks = ksz8463_masks,
1493 		.shifts = ksz8463_shifts,
1494 		.supports_mii = {false, false, true},
1495 		.supports_rmii = {false, false, true},
1496 		.internal_phy = {true, true, false},
1497 	},
1498 
1499 	[KSZ8563] = {
1500 		.chip_id = KSZ8563_CHIP_ID,
1501 		.dev_name = "KSZ8563",
1502 		.num_vlans = 4096,
1503 		.num_alus = 4096,
1504 		.num_statics = 16,
1505 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1506 		.port_cnt = 3,		/* total port count */
1507 		.port_nirqs = 3,
1508 		.num_tx_queues = 4,
1509 		.num_ipms = 8,
1510 		.tc_cbs_supported = true,
1511 		.ops = &ksz9477_dev_ops,
1512 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1513 		.mib_names = ksz9477_mib_names,
1514 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1515 		.reg_mib_cnt = MIB_COUNTER_NUM,
1516 		.regs = ksz9477_regs,
1517 		.masks = ksz9477_masks,
1518 		.shifts = ksz9477_shifts,
1519 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1520 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1521 		.supports_mii = {false, false, true},
1522 		.supports_rmii = {false, false, true},
1523 		.supports_rgmii = {false, false, true},
1524 		.internal_phy = {true, true, false},
1525 		.gbit_capable = {false, false, true},
1526 		.ptp_capable = true,
1527 		.wr_table = &ksz8563_register_set,
1528 		.rd_table = &ksz8563_register_set,
1529 	},
1530 
1531 	[KSZ8795] = {
1532 		.chip_id = KSZ8795_CHIP_ID,
1533 		.dev_name = "KSZ8795",
1534 		.num_vlans = 4096,
1535 		.num_alus = 0,
1536 		.num_statics = 32,
1537 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1538 		.port_cnt = 5,		/* total cpu and user ports */
1539 		.num_tx_queues = 4,
1540 		.num_ipms = 4,
1541 		.ops = &ksz87xx_dev_ops,
1542 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1543 		.ksz87xx_eee_link_erratum = true,
1544 		.mib_names = ksz9477_mib_names,
1545 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1546 		.reg_mib_cnt = MIB_COUNTER_NUM,
1547 		.regs = ksz8795_regs,
1548 		.masks = ksz8795_masks,
1549 		.shifts = ksz8795_shifts,
1550 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1551 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1552 		.supports_mii = {false, false, false, false, true},
1553 		.supports_rmii = {false, false, false, false, true},
1554 		.supports_rgmii = {false, false, false, false, true},
1555 		.internal_phy = {true, true, true, true, false},
1556 	},
1557 
1558 	[KSZ8794] = {
1559 		/* WARNING
1560 		 * =======
1561 		 * KSZ8794 is similar to KSZ8795, except the port map
1562 		 * contains a gap between external and CPU ports, the
1563 		 * port map is NOT continuous. The per-port register
1564 		 * map is shifted accordingly too, i.e. registers at
1565 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1566 		 * used on KSZ8795 for external port 3.
1567 		 *           external  cpu
1568 		 * KSZ8794   0,1,2      4
1569 		 * KSZ8795   0,1,2,3    4
1570 		 * KSZ8765   0,1,2,3    4
1571 		 * port_cnt is configured as 5, even though it is 4
1572 		 */
1573 		.chip_id = KSZ8794_CHIP_ID,
1574 		.dev_name = "KSZ8794",
1575 		.num_vlans = 4096,
1576 		.num_alus = 0,
1577 		.num_statics = 32,
1578 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1579 		.port_cnt = 5,		/* total cpu and user ports */
1580 		.num_tx_queues = 4,
1581 		.num_ipms = 4,
1582 		.ops = &ksz87xx_dev_ops,
1583 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1584 		.ksz87xx_eee_link_erratum = true,
1585 		.mib_names = ksz9477_mib_names,
1586 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1587 		.reg_mib_cnt = MIB_COUNTER_NUM,
1588 		.regs = ksz8795_regs,
1589 		.masks = ksz8795_masks,
1590 		.shifts = ksz8795_shifts,
1591 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1592 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1593 		.supports_mii = {false, false, false, false, true},
1594 		.supports_rmii = {false, false, false, false, true},
1595 		.supports_rgmii = {false, false, false, false, true},
1596 		.internal_phy = {true, true, true, false, false},
1597 	},
1598 
1599 	[KSZ8765] = {
1600 		.chip_id = KSZ8765_CHIP_ID,
1601 		.dev_name = "KSZ8765",
1602 		.num_vlans = 4096,
1603 		.num_alus = 0,
1604 		.num_statics = 32,
1605 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1606 		.port_cnt = 5,		/* total cpu and user ports */
1607 		.num_tx_queues = 4,
1608 		.num_ipms = 4,
1609 		.ops = &ksz87xx_dev_ops,
1610 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1611 		.ksz87xx_eee_link_erratum = true,
1612 		.mib_names = ksz9477_mib_names,
1613 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1614 		.reg_mib_cnt = MIB_COUNTER_NUM,
1615 		.regs = ksz8795_regs,
1616 		.masks = ksz8795_masks,
1617 		.shifts = ksz8795_shifts,
1618 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1619 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1620 		.supports_mii = {false, false, false, false, true},
1621 		.supports_rmii = {false, false, false, false, true},
1622 		.supports_rgmii = {false, false, false, false, true},
1623 		.internal_phy = {true, true, true, true, false},
1624 	},
1625 
1626 	[KSZ88X3] = {
1627 		.chip_id = KSZ88X3_CHIP_ID,
1628 		.dev_name = "KSZ8863/KSZ8873",
1629 		.num_vlans = 16,
1630 		.num_alus = 0,
1631 		.num_statics = 8,
1632 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1633 		.port_cnt = 3,
1634 		.num_tx_queues = 4,
1635 		.num_ipms = 4,
1636 		.ops = &ksz88xx_dev_ops,
1637 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1638 		.mib_names = ksz88xx_mib_names,
1639 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1640 		.reg_mib_cnt = MIB_COUNTER_NUM,
1641 		.regs = ksz8863_regs,
1642 		.masks = ksz8863_masks,
1643 		.shifts = ksz8863_shifts,
1644 		.supports_mii = {false, false, true},
1645 		.supports_rmii = {false, false, true},
1646 		.internal_phy = {true, true, false},
1647 		.wr_table = &ksz8873_register_set,
1648 		.rd_table = &ksz8873_register_set,
1649 	},
1650 
1651 	[KSZ8864] = {
1652 		/* WARNING
1653 		 * =======
1654 		 * KSZ8864 is similar to KSZ8895, except the first port
1655 		 * does not exist.
1656 		 *           external  cpu
1657 		 * KSZ8864   1,2,3      4
1658 		 * KSZ8895   0,1,2,3    4
1659 		 * port_cnt is configured as 5, even though it is 4
1660 		 */
1661 		.chip_id = KSZ8864_CHIP_ID,
1662 		.dev_name = "KSZ8864",
1663 		.num_vlans = 4096,
1664 		.num_alus = 0,
1665 		.num_statics = 32,
1666 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1667 		.port_cnt = 5,		/* total cpu and user ports */
1668 		.num_tx_queues = 4,
1669 		.num_ipms = 4,
1670 		.ops = &ksz88xx_dev_ops,
1671 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1672 		.mib_names = ksz88xx_mib_names,
1673 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1674 		.reg_mib_cnt = MIB_COUNTER_NUM,
1675 		.regs = ksz8895_regs,
1676 		.masks = ksz8895_masks,
1677 		.shifts = ksz8895_shifts,
1678 		.supports_mii = {false, false, false, false, true},
1679 		.supports_rmii = {false, false, false, false, true},
1680 		.internal_phy = {false, true, true, true, false},
1681 	},
1682 
1683 	[KSZ8895] = {
1684 		.chip_id = KSZ8895_CHIP_ID,
1685 		.dev_name = "KSZ8895",
1686 		.num_vlans = 4096,
1687 		.num_alus = 0,
1688 		.num_statics = 32,
1689 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1690 		.port_cnt = 5,		/* total cpu and user ports */
1691 		.num_tx_queues = 4,
1692 		.num_ipms = 4,
1693 		.ops = &ksz88xx_dev_ops,
1694 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1695 		.mib_names = ksz88xx_mib_names,
1696 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1697 		.reg_mib_cnt = MIB_COUNTER_NUM,
1698 		.regs = ksz8895_regs,
1699 		.masks = ksz8895_masks,
1700 		.shifts = ksz8895_shifts,
1701 		.supports_mii = {false, false, false, false, true},
1702 		.supports_rmii = {false, false, false, false, true},
1703 		.internal_phy = {true, true, true, true, false},
1704 	},
1705 
1706 	[KSZ9477] = {
1707 		.chip_id = KSZ9477_CHIP_ID,
1708 		.dev_name = "KSZ9477",
1709 		.num_vlans = 4096,
1710 		.num_alus = 4096,
1711 		.num_statics = 16,
1712 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1713 		.port_cnt = 7,		/* total physical port count */
1714 		.port_nirqs = 4,
1715 		.num_tx_queues = 4,
1716 		.num_ipms = 8,
1717 		.tc_cbs_supported = true,
1718 		.ops = &ksz9477_dev_ops,
1719 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1720 		.phy_errata_9477 = true,
1721 		.mib_names = ksz9477_mib_names,
1722 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1723 		.reg_mib_cnt = MIB_COUNTER_NUM,
1724 		.regs = ksz9477_regs,
1725 		.masks = ksz9477_masks,
1726 		.shifts = ksz9477_shifts,
1727 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1728 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1729 		.supports_mii	= {false, false, false, false,
1730 				   false, true, false},
1731 		.supports_rmii	= {false, false, false, false,
1732 				   false, true, false},
1733 		.supports_rgmii = {false, false, false, false,
1734 				   false, true, false},
1735 		.internal_phy	= {true, true, true, true,
1736 				   true, false, false},
1737 		.gbit_capable	= {true, true, true, true, true, true, true},
1738 		.ptp_capable = true,
1739 		.sgmii_port = 7,
1740 		.wr_table = &ksz9477_register_set,
1741 		.rd_table = &ksz9477_register_set,
1742 	},
1743 
1744 	[KSZ9896] = {
1745 		.chip_id = KSZ9896_CHIP_ID,
1746 		.dev_name = "KSZ9896",
1747 		.num_vlans = 4096,
1748 		.num_alus = 4096,
1749 		.num_statics = 16,
1750 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1751 		.port_cnt = 6,		/* total physical port count */
1752 		.port_nirqs = 2,
1753 		.num_tx_queues = 4,
1754 		.num_ipms = 8,
1755 		.ops = &ksz9477_dev_ops,
1756 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1757 		.phy_errata_9477 = true,
1758 		.mib_names = ksz9477_mib_names,
1759 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1760 		.reg_mib_cnt = MIB_COUNTER_NUM,
1761 		.regs = ksz9477_regs,
1762 		.masks = ksz9477_masks,
1763 		.shifts = ksz9477_shifts,
1764 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1765 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1766 		.supports_mii	= {false, false, false, false,
1767 				   false, true},
1768 		.supports_rmii	= {false, false, false, false,
1769 				   false, true},
1770 		.supports_rgmii = {false, false, false, false,
1771 				   false, true},
1772 		.internal_phy	= {true, true, true, true,
1773 				   true, false},
1774 		.gbit_capable	= {true, true, true, true, true, true},
1775 		.wr_table = &ksz9896_register_set,
1776 		.rd_table = &ksz9896_register_set,
1777 	},
1778 
1779 	[KSZ9897] = {
1780 		.chip_id = KSZ9897_CHIP_ID,
1781 		.dev_name = "KSZ9897",
1782 		.num_vlans = 4096,
1783 		.num_alus = 4096,
1784 		.num_statics = 16,
1785 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1786 		.port_cnt = 7,		/* total physical port count */
1787 		.port_nirqs = 2,
1788 		.num_tx_queues = 4,
1789 		.num_ipms = 8,
1790 		.ops = &ksz9477_dev_ops,
1791 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1792 		.phy_errata_9477 = true,
1793 		.mib_names = ksz9477_mib_names,
1794 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1795 		.reg_mib_cnt = MIB_COUNTER_NUM,
1796 		.regs = ksz9477_regs,
1797 		.masks = ksz9477_masks,
1798 		.shifts = ksz9477_shifts,
1799 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1800 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1801 		.supports_mii	= {false, false, false, false,
1802 				   false, true, true},
1803 		.supports_rmii	= {false, false, false, false,
1804 				   false, true, true},
1805 		.supports_rgmii = {false, false, false, false,
1806 				   false, true, true},
1807 		.internal_phy	= {true, true, true, true,
1808 				   true, false, false},
1809 		.gbit_capable	= {true, true, true, true, true, true, true},
1810 	},
1811 
1812 	[KSZ9893] = {
1813 		.chip_id = KSZ9893_CHIP_ID,
1814 		.dev_name = "KSZ9893",
1815 		.num_vlans = 4096,
1816 		.num_alus = 4096,
1817 		.num_statics = 16,
1818 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1819 		.port_cnt = 3,		/* total port count */
1820 		.port_nirqs = 2,
1821 		.num_tx_queues = 4,
1822 		.num_ipms = 8,
1823 		.ops = &ksz9477_dev_ops,
1824 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1825 		.mib_names = ksz9477_mib_names,
1826 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1827 		.reg_mib_cnt = MIB_COUNTER_NUM,
1828 		.regs = ksz9477_regs,
1829 		.masks = ksz9477_masks,
1830 		.shifts = ksz9477_shifts,
1831 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1832 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1833 		.supports_mii = {false, false, true},
1834 		.supports_rmii = {false, false, true},
1835 		.supports_rgmii = {false, false, true},
1836 		.internal_phy = {true, true, false},
1837 		.gbit_capable = {true, true, true},
1838 	},
1839 
1840 	[KSZ9563] = {
1841 		.chip_id = KSZ9563_CHIP_ID,
1842 		.dev_name = "KSZ9563",
1843 		.num_vlans = 4096,
1844 		.num_alus = 4096,
1845 		.num_statics = 16,
1846 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1847 		.port_cnt = 3,		/* total port count */
1848 		.port_nirqs = 3,
1849 		.num_tx_queues = 4,
1850 		.num_ipms = 8,
1851 		.tc_cbs_supported = true,
1852 		.ops = &ksz9477_dev_ops,
1853 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1854 		.mib_names = ksz9477_mib_names,
1855 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1856 		.reg_mib_cnt = MIB_COUNTER_NUM,
1857 		.regs = ksz9477_regs,
1858 		.masks = ksz9477_masks,
1859 		.shifts = ksz9477_shifts,
1860 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1861 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1862 		.supports_mii = {false, false, true},
1863 		.supports_rmii = {false, false, true},
1864 		.supports_rgmii = {false, false, true},
1865 		.internal_phy = {true, true, false},
1866 		.gbit_capable = {true, true, true},
1867 		.ptp_capable = true,
1868 	},
1869 
1870 	[KSZ8567] = {
1871 		.chip_id = KSZ8567_CHIP_ID,
1872 		.dev_name = "KSZ8567",
1873 		.num_vlans = 4096,
1874 		.num_alus = 4096,
1875 		.num_statics = 16,
1876 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1877 		.port_cnt = 7,		/* total port count */
1878 		.port_nirqs = 3,
1879 		.num_tx_queues = 4,
1880 		.num_ipms = 8,
1881 		.tc_cbs_supported = true,
1882 		.ops = &ksz9477_dev_ops,
1883 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1884 		.phy_errata_9477 = true,
1885 		.mib_names = ksz9477_mib_names,
1886 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1887 		.reg_mib_cnt = MIB_COUNTER_NUM,
1888 		.regs = ksz9477_regs,
1889 		.masks = ksz9477_masks,
1890 		.shifts = ksz9477_shifts,
1891 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1892 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1893 		.supports_mii	= {false, false, false, false,
1894 				   false, true, true},
1895 		.supports_rmii	= {false, false, false, false,
1896 				   false, true, true},
1897 		.supports_rgmii = {false, false, false, false,
1898 				   false, true, true},
1899 		.internal_phy	= {true, true, true, true,
1900 				   true, false, false},
1901 		.gbit_capable	= {false, false, false, false, false,
1902 				   true, true},
1903 		.ptp_capable = true,
1904 	},
1905 
1906 	[KSZ9567] = {
1907 		.chip_id = KSZ9567_CHIP_ID,
1908 		.dev_name = "KSZ9567",
1909 		.num_vlans = 4096,
1910 		.num_alus = 4096,
1911 		.num_statics = 16,
1912 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1913 		.port_cnt = 7,		/* total physical port count */
1914 		.port_nirqs = 3,
1915 		.num_tx_queues = 4,
1916 		.num_ipms = 8,
1917 		.tc_cbs_supported = true,
1918 		.ops = &ksz9477_dev_ops,
1919 		.mib_names = ksz9477_mib_names,
1920 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1921 		.reg_mib_cnt = MIB_COUNTER_NUM,
1922 		.regs = ksz9477_regs,
1923 		.masks = ksz9477_masks,
1924 		.shifts = ksz9477_shifts,
1925 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1926 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1927 		.supports_mii	= {false, false, false, false,
1928 				   false, true, true},
1929 		.supports_rmii	= {false, false, false, false,
1930 				   false, true, true},
1931 		.supports_rgmii = {false, false, false, false,
1932 				   false, true, true},
1933 		.internal_phy	= {true, true, true, true,
1934 				   true, false, false},
1935 		.gbit_capable	= {true, true, true, true, true, true, true},
1936 		.ptp_capable = true,
1937 	},
1938 
1939 	[LAN9370] = {
1940 		.chip_id = LAN9370_CHIP_ID,
1941 		.dev_name = "LAN9370",
1942 		.num_vlans = 4096,
1943 		.num_alus = 1024,
1944 		.num_statics = 256,
1945 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1946 		.port_cnt = 5,		/* total physical port count */
1947 		.port_nirqs = 6,
1948 		.num_tx_queues = 8,
1949 		.num_ipms = 8,
1950 		.tc_cbs_supported = true,
1951 		.phy_side_mdio_supported = true,
1952 		.ops = &lan937x_dev_ops,
1953 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1954 		.mib_names = ksz9477_mib_names,
1955 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1956 		.reg_mib_cnt = MIB_COUNTER_NUM,
1957 		.regs = ksz9477_regs,
1958 		.masks = lan937x_masks,
1959 		.shifts = lan937x_shifts,
1960 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1961 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1962 		.supports_mii = {false, false, false, false, true},
1963 		.supports_rmii = {false, false, false, false, true},
1964 		.supports_rgmii = {false, false, false, false, true},
1965 		.internal_phy = {true, true, true, true, false},
1966 		.ptp_capable = true,
1967 	},
1968 
1969 	[LAN9371] = {
1970 		.chip_id = LAN9371_CHIP_ID,
1971 		.dev_name = "LAN9371",
1972 		.num_vlans = 4096,
1973 		.num_alus = 1024,
1974 		.num_statics = 256,
1975 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1976 		.port_cnt = 6,		/* total physical port count */
1977 		.port_nirqs = 6,
1978 		.num_tx_queues = 8,
1979 		.num_ipms = 8,
1980 		.tc_cbs_supported = true,
1981 		.phy_side_mdio_supported = true,
1982 		.ops = &lan937x_dev_ops,
1983 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1984 		.mib_names = ksz9477_mib_names,
1985 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1986 		.reg_mib_cnt = MIB_COUNTER_NUM,
1987 		.regs = ksz9477_regs,
1988 		.masks = lan937x_masks,
1989 		.shifts = lan937x_shifts,
1990 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1991 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1992 		.supports_mii = {false, false, false, false, true, true},
1993 		.supports_rmii = {false, false, false, false, true, true},
1994 		.supports_rgmii = {false, false, false, false, true, true},
1995 		.internal_phy = {true, true, true, true, false, false},
1996 		.ptp_capable = true,
1997 	},
1998 
1999 	[LAN9372] = {
2000 		.chip_id = LAN9372_CHIP_ID,
2001 		.dev_name = "LAN9372",
2002 		.num_vlans = 4096,
2003 		.num_alus = 1024,
2004 		.num_statics = 256,
2005 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2006 		.port_cnt = 8,		/* total physical port count */
2007 		.port_nirqs = 6,
2008 		.num_tx_queues = 8,
2009 		.num_ipms = 8,
2010 		.tc_cbs_supported = true,
2011 		.phy_side_mdio_supported = true,
2012 		.ops = &lan937x_dev_ops,
2013 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2014 		.mib_names = ksz9477_mib_names,
2015 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2016 		.reg_mib_cnt = MIB_COUNTER_NUM,
2017 		.regs = ksz9477_regs,
2018 		.masks = lan937x_masks,
2019 		.shifts = lan937x_shifts,
2020 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2021 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2022 		.supports_mii	= {false, false, false, false,
2023 				   true, true, false, false},
2024 		.supports_rmii	= {false, false, false, false,
2025 				   true, true, false, false},
2026 		.supports_rgmii = {false, false, false, false,
2027 				   true, true, false, false},
2028 		.internal_phy	= {true, true, true, true,
2029 				   false, false, true, true},
2030 		.ptp_capable = true,
2031 	},
2032 
2033 	[LAN9373] = {
2034 		.chip_id = LAN9373_CHIP_ID,
2035 		.dev_name = "LAN9373",
2036 		.num_vlans = 4096,
2037 		.num_alus = 1024,
2038 		.num_statics = 256,
2039 		.cpu_ports = 0x38,	/* can be configured as cpu port */
2040 		.port_cnt = 5,		/* total physical port count */
2041 		.port_nirqs = 6,
2042 		.num_tx_queues = 8,
2043 		.num_ipms = 8,
2044 		.tc_cbs_supported = true,
2045 		.phy_side_mdio_supported = true,
2046 		.ops = &lan937x_dev_ops,
2047 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2048 		.mib_names = ksz9477_mib_names,
2049 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2050 		.reg_mib_cnt = MIB_COUNTER_NUM,
2051 		.regs = ksz9477_regs,
2052 		.masks = lan937x_masks,
2053 		.shifts = lan937x_shifts,
2054 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2055 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2056 		.supports_mii	= {false, false, false, false,
2057 				   true, true, false, false},
2058 		.supports_rmii	= {false, false, false, false,
2059 				   true, true, false, false},
2060 		.supports_rgmii = {false, false, false, false,
2061 				   true, true, false, false},
2062 		.internal_phy	= {true, true, true, false,
2063 				   false, false, true, true},
2064 		.ptp_capable = true,
2065 	},
2066 
2067 	[LAN9374] = {
2068 		.chip_id = LAN9374_CHIP_ID,
2069 		.dev_name = "LAN9374",
2070 		.num_vlans = 4096,
2071 		.num_alus = 1024,
2072 		.num_statics = 256,
2073 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2074 		.port_cnt = 8,		/* total physical port count */
2075 		.port_nirqs = 6,
2076 		.num_tx_queues = 8,
2077 		.num_ipms = 8,
2078 		.tc_cbs_supported = true,
2079 		.phy_side_mdio_supported = true,
2080 		.ops = &lan937x_dev_ops,
2081 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2082 		.mib_names = ksz9477_mib_names,
2083 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2084 		.reg_mib_cnt = MIB_COUNTER_NUM,
2085 		.regs = ksz9477_regs,
2086 		.masks = lan937x_masks,
2087 		.shifts = lan937x_shifts,
2088 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2089 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2090 		.supports_mii	= {false, false, false, false,
2091 				   true, true, false, false},
2092 		.supports_rmii	= {false, false, false, false,
2093 				   true, true, false, false},
2094 		.supports_rgmii = {false, false, false, false,
2095 				   true, true, false, false},
2096 		.internal_phy	= {true, true, true, true,
2097 				   false, false, true, true},
2098 		.ptp_capable = true,
2099 	},
2100 
2101 	[LAN9646] = {
2102 		.chip_id = LAN9646_CHIP_ID,
2103 		.dev_name = "LAN9646",
2104 		.num_vlans = 4096,
2105 		.num_alus = 4096,
2106 		.num_statics = 16,
2107 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
2108 		.port_cnt = 7,		/* total physical port count */
2109 		.port_nirqs = 4,
2110 		.num_tx_queues = 4,
2111 		.num_ipms = 8,
2112 		.ops = &ksz9477_dev_ops,
2113 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
2114 		.phy_errata_9477 = true,
2115 		.mib_names = ksz9477_mib_names,
2116 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2117 		.reg_mib_cnt = MIB_COUNTER_NUM,
2118 		.regs = ksz9477_regs,
2119 		.masks = ksz9477_masks,
2120 		.shifts = ksz9477_shifts,
2121 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2122 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2123 		.supports_mii	= {false, false, false, false,
2124 				   false, true, true},
2125 		.supports_rmii	= {false, false, false, false,
2126 				   false, true, true},
2127 		.supports_rgmii = {false, false, false, false,
2128 				   false, true, true},
2129 		.internal_phy	= {true, true, true, true,
2130 				   true, false, false},
2131 		.gbit_capable	= {true, true, true, true, true, true, true},
2132 		.sgmii_port = 7,
2133 		.wr_table = &ksz9477_register_set,
2134 		.rd_table = &ksz9477_register_set,
2135 	},
2136 };
2137 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2138 
ksz_lookup_info(unsigned int prod_num)2139 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2140 {
2141 	int i;
2142 
2143 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2144 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2145 
2146 		if (chip->chip_id == prod_num)
2147 			return chip;
2148 	}
2149 
2150 	return NULL;
2151 }
2152 
ksz_check_device_id(struct ksz_device * dev)2153 static int ksz_check_device_id(struct ksz_device *dev)
2154 {
2155 	const struct ksz_chip_data *expected_chip_data;
2156 	u32 expected_chip_id;
2157 
2158 	if (dev->pdata) {
2159 		expected_chip_id = dev->pdata->chip_id;
2160 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2161 		if (WARN_ON(!expected_chip_data))
2162 			return -ENODEV;
2163 	} else {
2164 		expected_chip_data = of_device_get_match_data(dev->dev);
2165 		expected_chip_id = expected_chip_data->chip_id;
2166 	}
2167 
2168 	if (expected_chip_id != dev->chip_id) {
2169 		dev_err(dev->dev,
2170 			"Device tree specifies chip %s but found %s, please fix it!\n",
2171 			expected_chip_data->dev_name, dev->info->dev_name);
2172 		return -ENODEV;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
ksz_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2178 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2179 				 struct phylink_config *config)
2180 {
2181 	struct ksz_device *dev = ds->priv;
2182 
2183 	if (dev->info->supports_mii[port])
2184 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2185 
2186 	if (dev->info->supports_rmii[port])
2187 		__set_bit(PHY_INTERFACE_MODE_RMII,
2188 			  config->supported_interfaces);
2189 
2190 	if (dev->info->supports_rgmii[port])
2191 		phy_interface_set_rgmii(config->supported_interfaces);
2192 
2193 	if (dev->info->internal_phy[port]) {
2194 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2195 			  config->supported_interfaces);
2196 		/* Compatibility for phylib's default interface type when the
2197 		 * phy-mode property is absent
2198 		 */
2199 		__set_bit(PHY_INTERFACE_MODE_GMII,
2200 			  config->supported_interfaces);
2201 	}
2202 
2203 	if (dev->dev_ops->get_caps)
2204 		dev->dev_ops->get_caps(dev, port, config);
2205 
2206 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2207 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2208 		       sizeof(config->lpi_interfaces));
2209 
2210 		config->lpi_capabilities = MAC_100FD;
2211 		if (dev->info->gbit_capable[port])
2212 			config->lpi_capabilities |= MAC_1000FD;
2213 
2214 		/* EEE is fully operational */
2215 		config->eee_enabled_default = true;
2216 	}
2217 }
2218 
ksz_r_mib_stats64(struct ksz_device * dev,int port)2219 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2220 {
2221 	struct ethtool_pause_stats *pstats;
2222 	struct rtnl_link_stats64 *stats;
2223 	struct ksz_stats_raw *raw;
2224 	struct ksz_port_mib *mib;
2225 	int ret;
2226 
2227 	mib = &dev->ports[port].mib;
2228 	stats = &mib->stats64;
2229 	pstats = &mib->pause_stats;
2230 	raw = (struct ksz_stats_raw *)mib->counters;
2231 
2232 	spin_lock(&mib->stats64_lock);
2233 
2234 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2235 		raw->rx_pause;
2236 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2237 		raw->tx_pause;
2238 
2239 	/* HW counters are counting bytes + FCS which is not acceptable
2240 	 * for rtnl_link_stats64 interface
2241 	 */
2242 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2243 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2244 
2245 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2246 		raw->rx_oversize;
2247 
2248 	stats->rx_crc_errors = raw->rx_crc_err;
2249 	stats->rx_frame_errors = raw->rx_align_err;
2250 	stats->rx_dropped = raw->rx_discards;
2251 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2252 		stats->rx_frame_errors  + stats->rx_dropped;
2253 
2254 	stats->tx_window_errors = raw->tx_late_col;
2255 	stats->tx_fifo_errors = raw->tx_discards;
2256 	stats->tx_aborted_errors = raw->tx_exc_col;
2257 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2258 		stats->tx_aborted_errors;
2259 
2260 	stats->multicast = raw->rx_mcast;
2261 	stats->collisions = raw->tx_total_col;
2262 
2263 	pstats->tx_pause_frames = raw->tx_pause;
2264 	pstats->rx_pause_frames = raw->rx_pause;
2265 
2266 	spin_unlock(&mib->stats64_lock);
2267 
2268 	if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) {
2269 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2270 		if (ret)
2271 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2272 	}
2273 }
2274 
ksz88xx_r_mib_stats64(struct ksz_device * dev,int port)2275 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2276 {
2277 	struct ethtool_pause_stats *pstats;
2278 	struct rtnl_link_stats64 *stats;
2279 	struct ksz88xx_stats_raw *raw;
2280 	struct ksz_port_mib *mib;
2281 
2282 	mib = &dev->ports[port].mib;
2283 	stats = &mib->stats64;
2284 	pstats = &mib->pause_stats;
2285 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2286 
2287 	spin_lock(&mib->stats64_lock);
2288 
2289 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2290 		raw->rx_pause;
2291 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2292 		raw->tx_pause;
2293 
2294 	/* HW counters are counting bytes + FCS which is not acceptable
2295 	 * for rtnl_link_stats64 interface
2296 	 */
2297 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2298 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2299 
2300 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2301 		raw->rx_oversize;
2302 
2303 	stats->rx_crc_errors = raw->rx_crc_err;
2304 	stats->rx_frame_errors = raw->rx_align_err;
2305 	stats->rx_dropped = raw->rx_discards;
2306 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2307 		stats->rx_frame_errors  + stats->rx_dropped;
2308 
2309 	stats->tx_window_errors = raw->tx_late_col;
2310 	stats->tx_fifo_errors = raw->tx_discards;
2311 	stats->tx_aborted_errors = raw->tx_exc_col;
2312 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2313 		stats->tx_aborted_errors;
2314 
2315 	stats->multicast = raw->rx_mcast;
2316 	stats->collisions = raw->tx_total_col;
2317 
2318 	pstats->tx_pause_frames = raw->tx_pause;
2319 	pstats->rx_pause_frames = raw->rx_pause;
2320 
2321 	spin_unlock(&mib->stats64_lock);
2322 }
2323 
ksz_get_stats64(struct dsa_switch * ds,int port,struct rtnl_link_stats64 * s)2324 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2325 			    struct rtnl_link_stats64 *s)
2326 {
2327 	struct ksz_device *dev = ds->priv;
2328 	struct ksz_port_mib *mib;
2329 
2330 	mib = &dev->ports[port].mib;
2331 
2332 	spin_lock(&mib->stats64_lock);
2333 	memcpy(s, &mib->stats64, sizeof(*s));
2334 	spin_unlock(&mib->stats64_lock);
2335 }
2336 
ksz_get_pause_stats(struct dsa_switch * ds,int port,struct ethtool_pause_stats * pause_stats)2337 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2338 				struct ethtool_pause_stats *pause_stats)
2339 {
2340 	struct ksz_device *dev = ds->priv;
2341 	struct ksz_port_mib *mib;
2342 
2343 	mib = &dev->ports[port].mib;
2344 
2345 	spin_lock(&mib->stats64_lock);
2346 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2347 	spin_unlock(&mib->stats64_lock);
2348 }
2349 
ksz_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * buf)2350 static void ksz_get_strings(struct dsa_switch *ds, int port,
2351 			    u32 stringset, uint8_t *buf)
2352 {
2353 	struct ksz_device *dev = ds->priv;
2354 	int i;
2355 
2356 	if (stringset != ETH_SS_STATS)
2357 		return;
2358 
2359 	for (i = 0; i < dev->info->mib_cnt; i++)
2360 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2361 }
2362 
2363 /**
2364  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2365  *			    isolation settings.
2366  * @dev: A pointer to the struct ksz_device representing the device.
2367  * @port: The port number to adjust.
2368  *
2369  * This function dynamically adjusts the port membership configuration for a
2370  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2371  * states and port isolation settings. Each port, including the CPU port, has a
2372  * membership register, represented as a bitfield, where each bit corresponds
2373  * to a port number. A set bit indicates permission to forward frames to that
2374  * port. This function iterates over all ports, updating the membership register
2375  * to reflect current forwarding permissions:
2376  *
2377  * 1. Forwards frames only to ports that are part of the same bridge group and
2378  *    in the BR_STATE_FORWARDING state.
2379  * 2. Takes into account the isolation status of ports; ports in the
2380  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2381  *    frames to each other, even if they are in the same bridge group.
2382  * 3. Ensures that the CPU port is included in the membership based on its
2383  *    upstream port configuration, allowing for management and control traffic
2384  *    to flow as required.
2385  */
ksz_update_port_member(struct ksz_device * dev,int port)2386 static void ksz_update_port_member(struct ksz_device *dev, int port)
2387 {
2388 	struct ksz_port *p = &dev->ports[port];
2389 	struct dsa_switch *ds = dev->ds;
2390 	u8 port_member = 0, cpu_port;
2391 	const struct dsa_port *dp;
2392 	int i, j;
2393 
2394 	if (!dsa_is_user_port(ds, port))
2395 		return;
2396 
2397 	dp = dsa_to_port(ds, port);
2398 	cpu_port = BIT(dsa_upstream_port(ds, port));
2399 
2400 	for (i = 0; i < ds->num_ports; i++) {
2401 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2402 		struct ksz_port *other_p = &dev->ports[i];
2403 		u8 val = 0;
2404 
2405 		if (!dsa_is_user_port(ds, i))
2406 			continue;
2407 		if (port == i)
2408 			continue;
2409 		if (!dsa_port_bridge_same(dp, other_dp))
2410 			continue;
2411 		if (other_p->stp_state != BR_STATE_FORWARDING)
2412 			continue;
2413 
2414 		/* At this point we know that "port" and "other" port [i] are in
2415 		 * the same bridge group and that "other" port [i] is in
2416 		 * forwarding stp state. If "port" is also in forwarding stp
2417 		 * state, we can allow forwarding from port [port] to port [i].
2418 		 * Except if both ports are isolated.
2419 		 */
2420 		if (p->stp_state == BR_STATE_FORWARDING &&
2421 		    !(p->isolated && other_p->isolated)) {
2422 			val |= BIT(port);
2423 			port_member |= BIT(i);
2424 		}
2425 
2426 		/* Retain port [i]'s relationship to other ports than [port] */
2427 		for (j = 0; j < ds->num_ports; j++) {
2428 			const struct dsa_port *third_dp;
2429 			struct ksz_port *third_p;
2430 
2431 			if (j == i)
2432 				continue;
2433 			if (j == port)
2434 				continue;
2435 			if (!dsa_is_user_port(ds, j))
2436 				continue;
2437 			third_p = &dev->ports[j];
2438 			if (third_p->stp_state != BR_STATE_FORWARDING)
2439 				continue;
2440 
2441 			third_dp = dsa_to_port(ds, j);
2442 
2443 			/* Now we updating relation of the "other" port [i] to
2444 			 * the "third" port [j]. We already know that "other"
2445 			 * port [i] is in forwarding stp state and that "third"
2446 			 * port [j] is in forwarding stp state too.
2447 			 * We need to check if "other" port [i] and "third" port
2448 			 * [j] are in the same bridge group and not isolated
2449 			 * before allowing forwarding from port [i] to port [j].
2450 			 */
2451 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2452 			    !(other_p->isolated && third_p->isolated))
2453 				val |= BIT(j);
2454 		}
2455 
2456 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2457 	}
2458 
2459 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2460 }
2461 
ksz_sw_mdio_read(struct mii_bus * bus,int addr,int regnum)2462 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2463 {
2464 	struct ksz_device *dev = bus->priv;
2465 	u16 val;
2466 	int ret;
2467 
2468 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2469 	if (ret < 0)
2470 		return ret;
2471 
2472 	return val;
2473 }
2474 
ksz_sw_mdio_write(struct mii_bus * bus,int addr,int regnum,u16 val)2475 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2476 			     u16 val)
2477 {
2478 	struct ksz_device *dev = bus->priv;
2479 
2480 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2481 }
2482 
2483 /**
2484  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2485  * @bus: MDIO bus structure.
2486  * @addr: PHY address on the parent MDIO bus.
2487  * @regnum: Register number to read.
2488  *
2489  * This function provides a direct read operation on the parent MDIO bus for
2490  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2491  * to retrieve data from the PHY registers at the specified address and register
2492  * number.
2493  *
2494  * Return: Value of the PHY register, or a negative error code on failure.
2495  */
ksz_parent_mdio_read(struct mii_bus * bus,int addr,int regnum)2496 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2497 {
2498 	struct ksz_device *dev = bus->priv;
2499 
2500 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2501 }
2502 
2503 /**
2504  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2505  * @bus: MDIO bus structure.
2506  * @addr: PHY address on the parent MDIO bus.
2507  * @regnum: Register number to write to.
2508  * @val: Value to write to the PHY register.
2509  *
2510  * This function provides a direct write operation on the parent MDIO bus for
2511  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2512  * to modify the PHY register values at the specified address.
2513  *
2514  * Return: 0 on success, or a negative error code on failure.
2515  */
ksz_parent_mdio_write(struct mii_bus * bus,int addr,int regnum,u16 val)2516 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2517 				 u16 val)
2518 {
2519 	struct ksz_device *dev = bus->priv;
2520 
2521 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2522 }
2523 
2524 /**
2525  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2526  * @dev: Pointer to device structure.
2527  * @addr: PHY address to map to a port.
2528  *
2529  * This function finds the corresponding switch port for a given PHY address by
2530  * iterating over all user ports on the device. It checks if a port's PHY
2531  * address in `phy_addr_map` matches the specified address and if the port
2532  * contains an internal PHY. If a match is found, the index of the port is
2533  * returned.
2534  *
2535  * Return: Port index on success, or -EINVAL if no matching port is found.
2536  */
ksz_phy_addr_to_port(struct ksz_device * dev,int addr)2537 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2538 {
2539 	struct dsa_switch *ds = dev->ds;
2540 	struct dsa_port *dp;
2541 
2542 	dsa_switch_for_each_user_port(dp, ds) {
2543 		if (dev->info->internal_phy[dp->index] &&
2544 		    dev->phy_addr_map[dp->index] == addr)
2545 			return dp->index;
2546 	}
2547 
2548 	return -EINVAL;
2549 }
2550 
2551 /**
2552  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2553  * @dev: Pointer to the KSZ device structure.
2554  *
2555  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2556  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2557  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2558  *
2559  * Return: 0 on success, or a negative error code on failure.
2560  */
ksz_irq_phy_setup(struct ksz_device * dev)2561 static int ksz_irq_phy_setup(struct ksz_device *dev)
2562 {
2563 	struct dsa_switch *ds = dev->ds;
2564 	int phy, port;
2565 	int irq;
2566 	int ret;
2567 
2568 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2569 		if (BIT(phy) & ds->phys_mii_mask) {
2570 			port = ksz_phy_addr_to_port(dev, phy);
2571 			if (port < 0) {
2572 				ret = port;
2573 				goto out;
2574 			}
2575 
2576 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2577 					       PORT_SRC_PHY_INT);
2578 			if (irq < 0) {
2579 				ret = irq;
2580 				goto out;
2581 			}
2582 			ds->user_mii_bus->irq[phy] = irq;
2583 		}
2584 	}
2585 	return 0;
2586 out:
2587 	while (phy--)
2588 		if (BIT(phy) & ds->phys_mii_mask)
2589 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2590 
2591 	return ret;
2592 }
2593 
2594 /**
2595  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2596  * @dev: Pointer to the KSZ device structure.
2597  *
2598  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2599  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2600  */
ksz_irq_phy_free(struct ksz_device * dev)2601 static void ksz_irq_phy_free(struct ksz_device *dev)
2602 {
2603 	struct dsa_switch *ds = dev->ds;
2604 	int phy;
2605 
2606 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2607 		if (BIT(phy) & ds->phys_mii_mask)
2608 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2609 }
2610 
2611 /**
2612  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2613  * @dev: pointer to the KSZ device structure
2614  * @bus: pointer to the MII bus structure
2615  * @mdio_np: pointer to the MDIO node in the device tree
2616  *
2617  * This function parses and validates PHY configurations for each user port
2618  * defined in the device tree for a KSZ switch device. It verifies that the
2619  * `phy-handle` properties are correctly set and that the internal PHYs match
2620  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2621  * all validations pass. Logs error messages for any mismatches or missing data.
2622  *
2623  * Return: 0 on success, or a negative error code on failure.
2624  */
ksz_parse_dt_phy_config(struct ksz_device * dev,struct mii_bus * bus,struct device_node * mdio_np)2625 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2626 				   struct device_node *mdio_np)
2627 {
2628 	struct device_node *phy_node, *phy_parent_node;
2629 	bool phys_are_valid = true;
2630 	struct dsa_port *dp;
2631 	u32 phy_addr;
2632 	int ret;
2633 
2634 	dsa_switch_for_each_user_port(dp, dev->ds) {
2635 		if (!dev->info->internal_phy[dp->index])
2636 			continue;
2637 
2638 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2639 		if (!phy_node) {
2640 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2641 				dp->index);
2642 			phys_are_valid = false;
2643 			continue;
2644 		}
2645 
2646 		phy_parent_node = of_get_parent(phy_node);
2647 		if (!phy_parent_node) {
2648 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2649 				dp->index);
2650 			phys_are_valid = false;
2651 		} else if (phy_parent_node != mdio_np) {
2652 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2653 				dp->index, mdio_np, phy_parent_node);
2654 			phys_are_valid = false;
2655 		} else {
2656 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2657 			if (ret < 0) {
2658 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2659 					dp->index, ret);
2660 				phys_are_valid = false;
2661 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2662 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2663 					dp->index, dev->phy_addr_map[dp->index],
2664 					phy_addr);
2665 				phys_are_valid = false;
2666 			} else {
2667 				bus->phy_mask |= BIT(phy_addr);
2668 			}
2669 		}
2670 
2671 		of_node_put(phy_node);
2672 		of_node_put(phy_parent_node);
2673 	}
2674 
2675 	if (!phys_are_valid)
2676 		return -EINVAL;
2677 
2678 	return 0;
2679 }
2680 
2681 /**
2682  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2683  * @dev: Pointer to the KSZ device structure.
2684  *
2685  * This function sets up and registers an MDIO bus for the KSZ switch device,
2686  * allowing access to its internal PHYs. If the device supports side MDIO,
2687  * the function will configure the external MDIO controller specified by the
2688  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2689  * Otherwise, SPI or I2C access is set up for PHY access.
2690  *
2691  * Return: 0 on success, or a negative error code on failure.
2692  */
ksz_mdio_register(struct ksz_device * dev)2693 static int ksz_mdio_register(struct ksz_device *dev)
2694 {
2695 	struct device_node *parent_bus_node;
2696 	struct mii_bus *parent_bus = NULL;
2697 	struct dsa_switch *ds = dev->ds;
2698 	struct device_node *mdio_np;
2699 	struct mii_bus *bus;
2700 	int ret, i;
2701 
2702 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2703 	if (!mdio_np)
2704 		return 0;
2705 
2706 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2707 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2708 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2709 		ret = -EINVAL;
2710 
2711 		goto put_mdio_node;
2712 	} else if (parent_bus_node) {
2713 		parent_bus = of_mdio_find_bus(parent_bus_node);
2714 		if (!parent_bus) {
2715 			ret = -EPROBE_DEFER;
2716 
2717 			goto put_mdio_node;
2718 		}
2719 
2720 		dev->parent_mdio_bus = parent_bus;
2721 	}
2722 
2723 	bus = devm_mdiobus_alloc(ds->dev);
2724 	if (!bus) {
2725 		ret = -ENOMEM;
2726 		goto put_mdio_node;
2727 	}
2728 
2729 	if (dev->dev_ops->mdio_bus_preinit) {
2730 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2731 		if (ret)
2732 			goto put_mdio_node;
2733 	}
2734 
2735 	if (dev->dev_ops->create_phy_addr_map) {
2736 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2737 		if (ret)
2738 			goto put_mdio_node;
2739 	} else {
2740 		for (i = 0; i < dev->info->port_cnt; i++)
2741 			dev->phy_addr_map[i] = i;
2742 	}
2743 
2744 	bus->priv = dev;
2745 	if (parent_bus) {
2746 		bus->read = ksz_parent_mdio_read;
2747 		bus->write = ksz_parent_mdio_write;
2748 		bus->name = "KSZ side MDIO";
2749 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2750 			 ds->index);
2751 	} else {
2752 		bus->read = ksz_sw_mdio_read;
2753 		bus->write = ksz_sw_mdio_write;
2754 		bus->name = "ksz user smi";
2755 		if (ds->dst->index != 0) {
2756 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2757 		} else {
2758 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2759 		}
2760 	}
2761 
2762 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2763 	if (ret)
2764 		goto put_mdio_node;
2765 
2766 	ds->phys_mii_mask = bus->phy_mask;
2767 	bus->parent = ds->dev;
2768 
2769 	ds->user_mii_bus = bus;
2770 
2771 	if (dev->irq > 0) {
2772 		ret = ksz_irq_phy_setup(dev);
2773 		if (ret)
2774 			goto put_mdio_node;
2775 	}
2776 
2777 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2778 	if (ret) {
2779 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2780 			bus->id);
2781 		if (dev->irq > 0)
2782 			ksz_irq_phy_free(dev);
2783 	}
2784 
2785 put_mdio_node:
2786 	of_node_put(mdio_np);
2787 	of_node_put(parent_bus_node);
2788 
2789 	return ret;
2790 }
2791 
ksz_irq_mask(struct irq_data * d)2792 static void ksz_irq_mask(struct irq_data *d)
2793 {
2794 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2795 
2796 	kirq->masked |= BIT(d->hwirq);
2797 }
2798 
ksz_irq_unmask(struct irq_data * d)2799 static void ksz_irq_unmask(struct irq_data *d)
2800 {
2801 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2802 
2803 	kirq->masked &= ~BIT(d->hwirq);
2804 }
2805 
ksz_irq_bus_lock(struct irq_data * d)2806 static void ksz_irq_bus_lock(struct irq_data *d)
2807 {
2808 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2809 
2810 	mutex_lock(&kirq->dev->lock_irq);
2811 }
2812 
ksz_irq_bus_sync_unlock(struct irq_data * d)2813 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2814 {
2815 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2816 	struct ksz_device *dev = kirq->dev;
2817 	int ret;
2818 
2819 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2820 	if (ret)
2821 		dev_err(dev->dev, "failed to change IRQ mask\n");
2822 
2823 	mutex_unlock(&dev->lock_irq);
2824 }
2825 
2826 static const struct irq_chip ksz_irq_chip = {
2827 	.name			= "ksz-irq",
2828 	.irq_mask		= ksz_irq_mask,
2829 	.irq_unmask		= ksz_irq_unmask,
2830 	.irq_bus_lock		= ksz_irq_bus_lock,
2831 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2832 };
2833 
ksz_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)2834 static int ksz_irq_domain_map(struct irq_domain *d,
2835 			      unsigned int irq, irq_hw_number_t hwirq)
2836 {
2837 	irq_set_chip_data(irq, d->host_data);
2838 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2839 	irq_set_noprobe(irq);
2840 
2841 	return 0;
2842 }
2843 
2844 static const struct irq_domain_ops ksz_irq_domain_ops = {
2845 	.map	= ksz_irq_domain_map,
2846 	.xlate	= irq_domain_xlate_twocell,
2847 };
2848 
ksz_irq_free(struct ksz_irq * kirq)2849 static void ksz_irq_free(struct ksz_irq *kirq)
2850 {
2851 	int irq, virq;
2852 
2853 	free_irq(kirq->irq_num, kirq);
2854 
2855 	for (irq = 0; irq < kirq->nirqs; irq++) {
2856 		virq = irq_find_mapping(kirq->domain, irq);
2857 		irq_dispose_mapping(virq);
2858 	}
2859 
2860 	irq_domain_remove(kirq->domain);
2861 }
2862 
ksz_irq_thread_fn(int irq,void * dev_id)2863 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2864 {
2865 	struct ksz_irq *kirq = dev_id;
2866 	unsigned int nhandled = 0;
2867 	struct ksz_device *dev;
2868 	unsigned int sub_irq;
2869 	u8 data;
2870 	int ret;
2871 	u8 n;
2872 
2873 	dev = kirq->dev;
2874 
2875 	/* Read interrupt status register */
2876 	ret = ksz_read8(dev, kirq->reg_status, &data);
2877 	if (ret)
2878 		goto out;
2879 
2880 	for (n = 0; n < kirq->nirqs; ++n) {
2881 		if (data & BIT(n)) {
2882 			sub_irq = irq_find_mapping(kirq->domain, n);
2883 			handle_nested_irq(sub_irq);
2884 			++nhandled;
2885 		}
2886 	}
2887 out:
2888 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2889 }
2890 
ksz_irq_common_setup(struct ksz_device * dev,struct ksz_irq * kirq)2891 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2892 {
2893 	int ret, n;
2894 
2895 	kirq->dev = dev;
2896 	kirq->masked = ~0;
2897 
2898 	kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0,
2899 						&ksz_irq_domain_ops, kirq);
2900 	if (!kirq->domain)
2901 		return -ENOMEM;
2902 
2903 	for (n = 0; n < kirq->nirqs; n++)
2904 		irq_create_mapping(kirq->domain, n);
2905 
2906 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2907 				   IRQF_ONESHOT, kirq->name, kirq);
2908 	if (ret)
2909 		goto out;
2910 
2911 	return 0;
2912 
2913 out:
2914 	ksz_irq_free(kirq);
2915 
2916 	return ret;
2917 }
2918 
ksz_girq_setup(struct ksz_device * dev)2919 static int ksz_girq_setup(struct ksz_device *dev)
2920 {
2921 	struct ksz_irq *girq = &dev->girq;
2922 
2923 	girq->nirqs = dev->info->port_cnt;
2924 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2925 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2926 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2927 
2928 	girq->irq_num = dev->irq;
2929 
2930 	return ksz_irq_common_setup(dev, girq);
2931 }
2932 
ksz_pirq_setup(struct ksz_device * dev,u8 p)2933 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2934 {
2935 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2936 
2937 	pirq->nirqs = dev->info->port_nirqs;
2938 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2939 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2940 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2941 
2942 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2943 	if (pirq->irq_num < 0)
2944 		return pirq->irq_num;
2945 
2946 	return ksz_irq_common_setup(dev, pirq);
2947 }
2948 
2949 static int ksz_parse_drive_strength(struct ksz_device *dev);
2950 
ksz_setup(struct dsa_switch * ds)2951 static int ksz_setup(struct dsa_switch *ds)
2952 {
2953 	struct ksz_device *dev = ds->priv;
2954 	u16 storm_mask, storm_rate;
2955 	struct dsa_port *dp;
2956 	struct ksz_port *p;
2957 	const u16 *regs;
2958 	int ret;
2959 
2960 	regs = dev->info->regs;
2961 
2962 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2963 				       dev->info->num_vlans, GFP_KERNEL);
2964 	if (!dev->vlan_cache)
2965 		return -ENOMEM;
2966 
2967 	ret = dev->dev_ops->reset(dev);
2968 	if (ret) {
2969 		dev_err(ds->dev, "failed to reset switch\n");
2970 		return ret;
2971 	}
2972 
2973 	ret = ksz_parse_drive_strength(dev);
2974 	if (ret)
2975 		return ret;
2976 
2977 	if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) {
2978 		ret = dev->dev_ops->pcs_create(dev);
2979 		if (ret)
2980 			return ret;
2981 	}
2982 
2983 	/* set broadcast storm protection 10% rate */
2984 	storm_mask = BROADCAST_STORM_RATE;
2985 	storm_rate = (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
2986 	if (ksz_is_ksz8463(dev)) {
2987 		storm_mask = swab16(storm_mask);
2988 		storm_rate = swab16(storm_rate);
2989 	}
2990 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2991 			   storm_mask, storm_rate);
2992 
2993 	dev->dev_ops->config_cpu_port(ds);
2994 
2995 	dev->dev_ops->enable_stp_addr(dev);
2996 
2997 	ds->num_tx_queues = dev->info->num_tx_queues;
2998 
2999 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
3000 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
3001 
3002 	ksz_init_mib_timer(dev);
3003 
3004 	ds->configure_vlan_while_not_filtering = false;
3005 	ds->dscp_prio_mapping_is_global = true;
3006 
3007 	if (dev->dev_ops->setup) {
3008 		ret = dev->dev_ops->setup(ds);
3009 		if (ret)
3010 			return ret;
3011 	}
3012 
3013 	/* Start with learning disabled on standalone user ports, and enabled
3014 	 * on the CPU port. In lack of other finer mechanisms, learning on the
3015 	 * CPU port will avoid flooding bridge local addresses on the network
3016 	 * in some cases.
3017 	 */
3018 	p = &dev->ports[dev->cpu_port];
3019 	p->learning = true;
3020 
3021 	if (dev->irq > 0) {
3022 		ret = ksz_girq_setup(dev);
3023 		if (ret)
3024 			return ret;
3025 
3026 		dsa_switch_for_each_user_port(dp, dev->ds) {
3027 			ret = ksz_pirq_setup(dev, dp->index);
3028 			if (ret)
3029 				goto out_girq;
3030 
3031 			if (dev->info->ptp_capable) {
3032 				ret = ksz_ptp_irq_setup(ds, dp->index);
3033 				if (ret)
3034 					goto out_pirq;
3035 			}
3036 		}
3037 	}
3038 
3039 	if (dev->info->ptp_capable) {
3040 		ret = ksz_ptp_clock_register(ds);
3041 		if (ret) {
3042 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
3043 				ret);
3044 			goto out_ptpirq;
3045 		}
3046 	}
3047 
3048 	ret = ksz_mdio_register(dev);
3049 	if (ret < 0) {
3050 		dev_err(dev->dev, "failed to register the mdio");
3051 		goto out_ptp_clock_unregister;
3052 	}
3053 
3054 	ret = ksz_dcb_init(dev);
3055 	if (ret)
3056 		goto out_ptp_clock_unregister;
3057 
3058 	/* start switch */
3059 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
3060 			   SW_START, SW_START);
3061 
3062 	return 0;
3063 
3064 out_ptp_clock_unregister:
3065 	if (dev->info->ptp_capable)
3066 		ksz_ptp_clock_unregister(ds);
3067 out_ptpirq:
3068 	if (dev->irq > 0 && dev->info->ptp_capable)
3069 		dsa_switch_for_each_user_port(dp, dev->ds)
3070 			ksz_ptp_irq_free(ds, dp->index);
3071 out_pirq:
3072 	if (dev->irq > 0)
3073 		dsa_switch_for_each_user_port(dp, dev->ds)
3074 			ksz_irq_free(&dev->ports[dp->index].pirq);
3075 out_girq:
3076 	if (dev->irq > 0)
3077 		ksz_irq_free(&dev->girq);
3078 
3079 	return ret;
3080 }
3081 
ksz_teardown(struct dsa_switch * ds)3082 static void ksz_teardown(struct dsa_switch *ds)
3083 {
3084 	struct ksz_device *dev = ds->priv;
3085 	struct dsa_port *dp;
3086 
3087 	if (dev->info->ptp_capable)
3088 		ksz_ptp_clock_unregister(ds);
3089 
3090 	if (dev->irq > 0) {
3091 		dsa_switch_for_each_user_port(dp, dev->ds) {
3092 			if (dev->info->ptp_capable)
3093 				ksz_ptp_irq_free(ds, dp->index);
3094 
3095 			ksz_irq_free(&dev->ports[dp->index].pirq);
3096 		}
3097 
3098 		ksz_irq_free(&dev->girq);
3099 	}
3100 
3101 	if (dev->dev_ops->teardown)
3102 		dev->dev_ops->teardown(ds);
3103 }
3104 
port_r_cnt(struct ksz_device * dev,int port)3105 static void port_r_cnt(struct ksz_device *dev, int port)
3106 {
3107 	struct ksz_port_mib *mib = &dev->ports[port].mib;
3108 	u64 *dropped;
3109 
3110 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
3111 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
3112 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
3113 					&mib->counters[mib->cnt_ptr]);
3114 		++mib->cnt_ptr;
3115 	}
3116 
3117 	/* last one in storage */
3118 	dropped = &mib->counters[dev->info->mib_cnt];
3119 
3120 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
3121 	while (mib->cnt_ptr < dev->info->mib_cnt) {
3122 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
3123 					dropped, &mib->counters[mib->cnt_ptr]);
3124 		++mib->cnt_ptr;
3125 	}
3126 	mib->cnt_ptr = 0;
3127 }
3128 
ksz_mib_read_work(struct work_struct * work)3129 static void ksz_mib_read_work(struct work_struct *work)
3130 {
3131 	struct ksz_device *dev = container_of(work, struct ksz_device,
3132 					      mib_read.work);
3133 	struct ksz_port_mib *mib;
3134 	struct ksz_port *p;
3135 	int i;
3136 
3137 	for (i = 0; i < dev->info->port_cnt; i++) {
3138 		if (dsa_is_unused_port(dev->ds, i))
3139 			continue;
3140 
3141 		p = &dev->ports[i];
3142 		mib = &p->mib;
3143 		mutex_lock(&mib->cnt_mutex);
3144 
3145 		/* Only read MIB counters when the port is told to do.
3146 		 * If not, read only dropped counters when link is not up.
3147 		 */
3148 		if (!p->read) {
3149 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3150 
3151 			if (!netif_carrier_ok(dp->user))
3152 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3153 		}
3154 		port_r_cnt(dev, i);
3155 		p->read = false;
3156 
3157 		if (dev->dev_ops->r_mib_stat64)
3158 			dev->dev_ops->r_mib_stat64(dev, i);
3159 
3160 		mutex_unlock(&mib->cnt_mutex);
3161 	}
3162 
3163 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3164 }
3165 
ksz_init_mib_timer(struct ksz_device * dev)3166 void ksz_init_mib_timer(struct ksz_device *dev)
3167 {
3168 	int i;
3169 
3170 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3171 
3172 	for (i = 0; i < dev->info->port_cnt; i++) {
3173 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3174 
3175 		dev->dev_ops->port_init_cnt(dev, i);
3176 
3177 		mib->cnt_ptr = 0;
3178 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3179 	}
3180 }
3181 
ksz_phy_read16(struct dsa_switch * ds,int addr,int reg)3182 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3183 {
3184 	struct ksz_device *dev = ds->priv;
3185 	u16 val = 0xffff;
3186 	int ret;
3187 
3188 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3189 	if (ret)
3190 		return ret;
3191 
3192 	return val;
3193 }
3194 
ksz_phy_write16(struct dsa_switch * ds,int addr,int reg,u16 val)3195 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3196 {
3197 	struct ksz_device *dev = ds->priv;
3198 	int ret;
3199 
3200 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3201 	if (ret)
3202 		return ret;
3203 
3204 	return 0;
3205 }
3206 
ksz_get_phy_flags(struct dsa_switch * ds,int port)3207 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3208 {
3209 	struct ksz_device *dev = ds->priv;
3210 
3211 	switch (dev->chip_id) {
3212 	case KSZ88X3_CHIP_ID:
3213 		/* Silicon Errata Sheet (DS80000830A):
3214 		 * Port 1 does not work with LinkMD Cable-Testing.
3215 		 * Port 1 does not respond to received PAUSE control frames.
3216 		 */
3217 		if (!port)
3218 			return MICREL_KSZ8_P1_ERRATA;
3219 		break;
3220 	}
3221 
3222 	return 0;
3223 }
3224 
ksz_phylink_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)3225 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3226 				      unsigned int mode,
3227 				      phy_interface_t interface)
3228 {
3229 	struct dsa_port *dp = dsa_phylink_to_port(config);
3230 	struct ksz_device *dev = dp->ds->priv;
3231 
3232 	/* Read all MIB counters when the link is going down. */
3233 	dev->ports[dp->index].read = true;
3234 	/* timer started */
3235 	if (dev->mib_read_interval)
3236 		schedule_delayed_work(&dev->mib_read, 0);
3237 }
3238 
ksz_sset_count(struct dsa_switch * ds,int port,int sset)3239 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3240 {
3241 	struct ksz_device *dev = ds->priv;
3242 
3243 	if (sset != ETH_SS_STATS)
3244 		return 0;
3245 
3246 	return dev->info->mib_cnt;
3247 }
3248 
ksz_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * buf)3249 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3250 				  uint64_t *buf)
3251 {
3252 	const struct dsa_port *dp = dsa_to_port(ds, port);
3253 	struct ksz_device *dev = ds->priv;
3254 	struct ksz_port_mib *mib;
3255 
3256 	mib = &dev->ports[port].mib;
3257 	mutex_lock(&mib->cnt_mutex);
3258 
3259 	/* Only read dropped counters if no link. */
3260 	if (!netif_carrier_ok(dp->user))
3261 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3262 	port_r_cnt(dev, port);
3263 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3264 	mutex_unlock(&mib->cnt_mutex);
3265 }
3266 
ksz_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)3267 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3268 				struct dsa_bridge bridge,
3269 				bool *tx_fwd_offload,
3270 				struct netlink_ext_ack *extack)
3271 {
3272 	/* port_stp_state_set() will be called after to put the port in
3273 	 * appropriate state so there is no need to do anything.
3274 	 */
3275 
3276 	return 0;
3277 }
3278 
ksz_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)3279 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3280 				  struct dsa_bridge bridge)
3281 {
3282 	/* port_stp_state_set() will be called after to put the port in
3283 	 * forwarding state so there is no need to do anything.
3284 	 */
3285 }
3286 
ksz_port_fast_age(struct dsa_switch * ds,int port)3287 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3288 {
3289 	struct ksz_device *dev = ds->priv;
3290 
3291 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3292 }
3293 
ksz_set_ageing_time(struct dsa_switch * ds,unsigned int msecs)3294 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3295 {
3296 	struct ksz_device *dev = ds->priv;
3297 
3298 	if (!dev->dev_ops->set_ageing_time)
3299 		return -EOPNOTSUPP;
3300 
3301 	return dev->dev_ops->set_ageing_time(dev, msecs);
3302 }
3303 
ksz_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)3304 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3305 			    const unsigned char *addr, u16 vid,
3306 			    struct dsa_db db)
3307 {
3308 	struct ksz_device *dev = ds->priv;
3309 
3310 	if (!dev->dev_ops->fdb_add)
3311 		return -EOPNOTSUPP;
3312 
3313 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3314 }
3315 
ksz_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)3316 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3317 			    const unsigned char *addr,
3318 			    u16 vid, struct dsa_db db)
3319 {
3320 	struct ksz_device *dev = ds->priv;
3321 
3322 	if (!dev->dev_ops->fdb_del)
3323 		return -EOPNOTSUPP;
3324 
3325 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3326 }
3327 
ksz_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)3328 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3329 			     dsa_fdb_dump_cb_t *cb, void *data)
3330 {
3331 	struct ksz_device *dev = ds->priv;
3332 
3333 	if (!dev->dev_ops->fdb_dump)
3334 		return -EOPNOTSUPP;
3335 
3336 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3337 }
3338 
ksz_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)3339 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3340 			    const struct switchdev_obj_port_mdb *mdb,
3341 			    struct dsa_db db)
3342 {
3343 	struct ksz_device *dev = ds->priv;
3344 
3345 	if (!dev->dev_ops->mdb_add)
3346 		return -EOPNOTSUPP;
3347 
3348 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3349 }
3350 
ksz_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)3351 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3352 			    const struct switchdev_obj_port_mdb *mdb,
3353 			    struct dsa_db db)
3354 {
3355 	struct ksz_device *dev = ds->priv;
3356 
3357 	if (!dev->dev_ops->mdb_del)
3358 		return -EOPNOTSUPP;
3359 
3360 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3361 }
3362 
ksz9477_set_default_prio_queue_mapping(struct ksz_device * dev,int port)3363 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3364 						  int port)
3365 {
3366 	u32 queue_map = 0;
3367 	int ipm;
3368 
3369 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3370 		int queue;
3371 
3372 		/* Traffic Type (TT) is corresponding to the Internal Priority
3373 		 * Map (IPM) in the switch. Traffic Class (TC) is
3374 		 * corresponding to the queue in the switch.
3375 		 */
3376 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3377 		if (queue < 0)
3378 			return queue;
3379 
3380 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3381 	}
3382 
3383 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3384 }
3385 
ksz_port_setup(struct dsa_switch * ds,int port)3386 static int ksz_port_setup(struct dsa_switch *ds, int port)
3387 {
3388 	struct ksz_device *dev = ds->priv;
3389 	int ret;
3390 
3391 	if (!dsa_is_user_port(ds, port))
3392 		return 0;
3393 
3394 	/* setup user port */
3395 	dev->dev_ops->port_setup(dev, port, false);
3396 
3397 	if (!is_ksz8(dev)) {
3398 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3399 		if (ret)
3400 			return ret;
3401 	}
3402 
3403 	/* port_stp_state_set() will be called after to enable the port so
3404 	 * there is no need to do anything.
3405 	 */
3406 
3407 	return ksz_dcb_init_port(dev, port);
3408 }
3409 
ksz_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)3410 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3411 {
3412 	struct ksz_device *dev = ds->priv;
3413 	struct ksz_port *p;
3414 	const u16 *regs;
3415 	u8 data;
3416 
3417 	regs = dev->info->regs;
3418 
3419 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3420 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3421 
3422 	p = &dev->ports[port];
3423 
3424 	switch (state) {
3425 	case BR_STATE_DISABLED:
3426 		data |= PORT_LEARN_DISABLE;
3427 		break;
3428 	case BR_STATE_LISTENING:
3429 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3430 		break;
3431 	case BR_STATE_LEARNING:
3432 		data |= PORT_RX_ENABLE;
3433 		if (!p->learning)
3434 			data |= PORT_LEARN_DISABLE;
3435 		break;
3436 	case BR_STATE_FORWARDING:
3437 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3438 		if (!p->learning)
3439 			data |= PORT_LEARN_DISABLE;
3440 		break;
3441 	case BR_STATE_BLOCKING:
3442 		data |= PORT_LEARN_DISABLE;
3443 		break;
3444 	default:
3445 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3446 		return;
3447 	}
3448 
3449 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3450 
3451 	p->stp_state = state;
3452 
3453 	ksz_update_port_member(dev, port);
3454 }
3455 
ksz_port_teardown(struct dsa_switch * ds,int port)3456 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3457 {
3458 	struct ksz_device *dev = ds->priv;
3459 
3460 	switch (dev->chip_id) {
3461 	case KSZ8563_CHIP_ID:
3462 	case KSZ8567_CHIP_ID:
3463 	case KSZ9477_CHIP_ID:
3464 	case KSZ9563_CHIP_ID:
3465 	case KSZ9567_CHIP_ID:
3466 	case KSZ9893_CHIP_ID:
3467 	case KSZ9896_CHIP_ID:
3468 	case KSZ9897_CHIP_ID:
3469 	case LAN9646_CHIP_ID:
3470 		if (dsa_is_user_port(ds, port))
3471 			ksz9477_port_acl_free(dev, port);
3472 	}
3473 }
3474 
ksz_port_pre_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)3475 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3476 				     struct switchdev_brport_flags flags,
3477 				     struct netlink_ext_ack *extack)
3478 {
3479 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3480 		return -EINVAL;
3481 
3482 	return 0;
3483 }
3484 
ksz_port_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)3485 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3486 				 struct switchdev_brport_flags flags,
3487 				 struct netlink_ext_ack *extack)
3488 {
3489 	struct ksz_device *dev = ds->priv;
3490 	struct ksz_port *p = &dev->ports[port];
3491 
3492 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3493 		if (flags.mask & BR_LEARNING)
3494 			p->learning = !!(flags.val & BR_LEARNING);
3495 
3496 		if (flags.mask & BR_ISOLATED)
3497 			p->isolated = !!(flags.val & BR_ISOLATED);
3498 
3499 		/* Make the change take effect immediately */
3500 		ksz_port_stp_state_set(ds, port, p->stp_state);
3501 	}
3502 
3503 	return 0;
3504 }
3505 
ksz_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)3506 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3507 						  int port,
3508 						  enum dsa_tag_protocol mp)
3509 {
3510 	struct ksz_device *dev = ds->priv;
3511 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3512 
3513 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3514 		proto = DSA_TAG_PROTO_KSZ8795;
3515 
3516 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3517 	    dev->chip_id == KSZ8463_CHIP_ID ||
3518 	    dev->chip_id == KSZ8563_CHIP_ID ||
3519 	    dev->chip_id == KSZ9893_CHIP_ID ||
3520 	    dev->chip_id == KSZ9563_CHIP_ID)
3521 		proto = DSA_TAG_PROTO_KSZ9893;
3522 
3523 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3524 	    dev->chip_id == KSZ9477_CHIP_ID ||
3525 	    dev->chip_id == KSZ9896_CHIP_ID ||
3526 	    dev->chip_id == KSZ9897_CHIP_ID ||
3527 	    dev->chip_id == KSZ9567_CHIP_ID ||
3528 	    dev->chip_id == LAN9646_CHIP_ID)
3529 		proto = DSA_TAG_PROTO_KSZ9477;
3530 
3531 	if (is_lan937x(dev))
3532 		proto = DSA_TAG_PROTO_LAN937X;
3533 
3534 	return proto;
3535 }
3536 
ksz_connect_tag_protocol(struct dsa_switch * ds,enum dsa_tag_protocol proto)3537 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3538 				    enum dsa_tag_protocol proto)
3539 {
3540 	struct ksz_tagger_data *tagger_data;
3541 
3542 	switch (proto) {
3543 	case DSA_TAG_PROTO_KSZ8795:
3544 		return 0;
3545 	case DSA_TAG_PROTO_KSZ9893:
3546 	case DSA_TAG_PROTO_KSZ9477:
3547 	case DSA_TAG_PROTO_LAN937X:
3548 		tagger_data = ksz_tagger_data(ds);
3549 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3550 		return 0;
3551 	default:
3552 		return -EPROTONOSUPPORT;
3553 	}
3554 }
3555 
ksz_port_vlan_filtering(struct dsa_switch * ds,int port,bool flag,struct netlink_ext_ack * extack)3556 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3557 				   bool flag, struct netlink_ext_ack *extack)
3558 {
3559 	struct ksz_device *dev = ds->priv;
3560 
3561 	if (!dev->dev_ops->vlan_filtering)
3562 		return -EOPNOTSUPP;
3563 
3564 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3565 }
3566 
ksz_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)3567 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3568 			     const struct switchdev_obj_port_vlan *vlan,
3569 			     struct netlink_ext_ack *extack)
3570 {
3571 	struct ksz_device *dev = ds->priv;
3572 
3573 	if (!dev->dev_ops->vlan_add)
3574 		return -EOPNOTSUPP;
3575 
3576 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3577 }
3578 
ksz_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)3579 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3580 			     const struct switchdev_obj_port_vlan *vlan)
3581 {
3582 	struct ksz_device *dev = ds->priv;
3583 
3584 	if (!dev->dev_ops->vlan_del)
3585 		return -EOPNOTSUPP;
3586 
3587 	return dev->dev_ops->vlan_del(dev, port, vlan);
3588 }
3589 
ksz_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)3590 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3591 			       struct dsa_mall_mirror_tc_entry *mirror,
3592 			       bool ingress, struct netlink_ext_ack *extack)
3593 {
3594 	struct ksz_device *dev = ds->priv;
3595 
3596 	if (!dev->dev_ops->mirror_add)
3597 		return -EOPNOTSUPP;
3598 
3599 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3600 }
3601 
ksz_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)3602 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3603 				struct dsa_mall_mirror_tc_entry *mirror)
3604 {
3605 	struct ksz_device *dev = ds->priv;
3606 
3607 	if (dev->dev_ops->mirror_del)
3608 		dev->dev_ops->mirror_del(dev, port, mirror);
3609 }
3610 
ksz_change_mtu(struct dsa_switch * ds,int port,int mtu)3611 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3612 {
3613 	struct ksz_device *dev = ds->priv;
3614 
3615 	if (!dev->dev_ops->change_mtu)
3616 		return -EOPNOTSUPP;
3617 
3618 	return dev->dev_ops->change_mtu(dev, port, mtu);
3619 }
3620 
ksz_max_mtu(struct dsa_switch * ds,int port)3621 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3622 {
3623 	struct ksz_device *dev = ds->priv;
3624 
3625 	switch (dev->chip_id) {
3626 	case KSZ8795_CHIP_ID:
3627 	case KSZ8794_CHIP_ID:
3628 	case KSZ8765_CHIP_ID:
3629 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3630 	case KSZ8463_CHIP_ID:
3631 	case KSZ88X3_CHIP_ID:
3632 	case KSZ8864_CHIP_ID:
3633 	case KSZ8895_CHIP_ID:
3634 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3635 	case KSZ8563_CHIP_ID:
3636 	case KSZ8567_CHIP_ID:
3637 	case KSZ9477_CHIP_ID:
3638 	case KSZ9563_CHIP_ID:
3639 	case KSZ9567_CHIP_ID:
3640 	case KSZ9893_CHIP_ID:
3641 	case KSZ9896_CHIP_ID:
3642 	case KSZ9897_CHIP_ID:
3643 	case LAN9370_CHIP_ID:
3644 	case LAN9371_CHIP_ID:
3645 	case LAN9372_CHIP_ID:
3646 	case LAN9373_CHIP_ID:
3647 	case LAN9374_CHIP_ID:
3648 	case LAN9646_CHIP_ID:
3649 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3650 	}
3651 
3652 	return -EOPNOTSUPP;
3653 }
3654 
3655 /**
3656  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3657  *                   port
3658  * @ds: Pointer to the DSA switch structure
3659  * @port: Port number to check
3660  *
3661  * This function also documents devices where EEE was initially advertised but
3662  * later withdrawn due to reliability issues, as described in official errata
3663  * documents. These devices are explicitly listed to record known limitations,
3664  * even if there is no technical necessity for runtime checks.
3665  *
3666  * Returns: true if the internal PHY on the given port supports fully
3667  * operational EEE, false otherwise.
3668  */
ksz_support_eee(struct dsa_switch * ds,int port)3669 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3670 {
3671 	struct ksz_device *dev = ds->priv;
3672 
3673 	if (!dev->info->internal_phy[port])
3674 		return false;
3675 
3676 	switch (dev->chip_id) {
3677 	case KSZ8563_CHIP_ID:
3678 	case KSZ9563_CHIP_ID:
3679 	case KSZ9893_CHIP_ID:
3680 		return true;
3681 	case KSZ8567_CHIP_ID:
3682 		/* KSZ8567R Errata DS80000752C Module 4 */
3683 	case KSZ8765_CHIP_ID:
3684 	case KSZ8794_CHIP_ID:
3685 	case KSZ8795_CHIP_ID:
3686 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3687 	case KSZ9477_CHIP_ID:
3688 		/* KSZ9477S Errata DS80000754A Module 4 */
3689 	case KSZ9567_CHIP_ID:
3690 		/* KSZ9567S Errata DS80000756A Module 4 */
3691 	case KSZ9896_CHIP_ID:
3692 		/* KSZ9896C Errata DS80000757A Module 3 */
3693 	case KSZ9897_CHIP_ID:
3694 	case LAN9646_CHIP_ID:
3695 		/* KSZ9897R Errata DS80000758C Module 4 */
3696 		/* Energy Efficient Ethernet (EEE) feature select must be
3697 		 * manually disabled
3698 		 *   The EEE feature is enabled by default, but it is not fully
3699 		 *   operational. It must be manually disabled through register
3700 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3701 		 *   to enable EEE, and this feature can cause link drops when
3702 		 *   linked to another device supporting EEE.
3703 		 *
3704 		 * The same item appears in the errata for all switches above.
3705 		 */
3706 		break;
3707 	}
3708 
3709 	return false;
3710 }
3711 
ksz_set_mac_eee(struct dsa_switch * ds,int port,struct ethtool_keee * e)3712 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3713 			   struct ethtool_keee *e)
3714 {
3715 	struct ksz_device *dev = ds->priv;
3716 
3717 	if (!e->tx_lpi_enabled) {
3718 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3719 		return -EINVAL;
3720 	}
3721 
3722 	if (e->tx_lpi_timer) {
3723 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3724 		return -EINVAL;
3725 	}
3726 
3727 	return 0;
3728 }
3729 
ksz_set_xmii(struct ksz_device * dev,int port,phy_interface_t interface)3730 static void ksz_set_xmii(struct ksz_device *dev, int port,
3731 			 phy_interface_t interface)
3732 {
3733 	const u8 *bitval = dev->info->xmii_ctrl1;
3734 	struct ksz_port *p = &dev->ports[port];
3735 	const u16 *regs = dev->info->regs;
3736 	u8 data8;
3737 
3738 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3739 
3740 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3741 		   P_RGMII_ID_EG_ENABLE);
3742 
3743 	switch (interface) {
3744 	case PHY_INTERFACE_MODE_MII:
3745 		data8 |= bitval[P_MII_SEL];
3746 		break;
3747 	case PHY_INTERFACE_MODE_RMII:
3748 		data8 |= bitval[P_RMII_SEL];
3749 		break;
3750 	case PHY_INTERFACE_MODE_GMII:
3751 		data8 |= bitval[P_GMII_SEL];
3752 		break;
3753 	case PHY_INTERFACE_MODE_RGMII:
3754 	case PHY_INTERFACE_MODE_RGMII_ID:
3755 	case PHY_INTERFACE_MODE_RGMII_TXID:
3756 	case PHY_INTERFACE_MODE_RGMII_RXID:
3757 		data8 |= bitval[P_RGMII_SEL];
3758 		/* On KSZ9893, disable RGMII in-band status support */
3759 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3760 		    dev->chip_id == KSZ8563_CHIP_ID ||
3761 		    dev->chip_id == KSZ9563_CHIP_ID ||
3762 		    is_lan937x(dev))
3763 			data8 &= ~P_MII_MAC_MODE;
3764 		break;
3765 	default:
3766 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3767 			phy_modes(interface), port);
3768 		return;
3769 	}
3770 
3771 	if (p->rgmii_tx_val)
3772 		data8 |= P_RGMII_ID_EG_ENABLE;
3773 
3774 	if (p->rgmii_rx_val)
3775 		data8 |= P_RGMII_ID_IG_ENABLE;
3776 
3777 	/* Write the updated value */
3778 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3779 }
3780 
ksz_get_xmii(struct ksz_device * dev,int port,bool gbit)3781 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3782 {
3783 	const u8 *bitval = dev->info->xmii_ctrl1;
3784 	const u16 *regs = dev->info->regs;
3785 	phy_interface_t interface;
3786 	u8 data8;
3787 	u8 val;
3788 
3789 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3790 
3791 	val = FIELD_GET(P_MII_SEL_M, data8);
3792 
3793 	if (val == bitval[P_MII_SEL]) {
3794 		if (gbit)
3795 			interface = PHY_INTERFACE_MODE_GMII;
3796 		else
3797 			interface = PHY_INTERFACE_MODE_MII;
3798 	} else if (val == bitval[P_RMII_SEL]) {
3799 		interface = PHY_INTERFACE_MODE_RMII;
3800 	} else {
3801 		interface = PHY_INTERFACE_MODE_RGMII;
3802 		if (data8 & P_RGMII_ID_EG_ENABLE)
3803 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3804 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3805 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3806 			if (data8 & P_RGMII_ID_EG_ENABLE)
3807 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3808 		}
3809 	}
3810 
3811 	return interface;
3812 }
3813 
ksz88x3_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)3814 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3815 				       unsigned int mode,
3816 				       const struct phylink_link_state *state)
3817 {
3818 	struct dsa_port *dp = dsa_phylink_to_port(config);
3819 	struct ksz_device *dev = dp->ds->priv;
3820 
3821 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3822 }
3823 
ksz_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)3824 static void ksz_phylink_mac_config(struct phylink_config *config,
3825 				   unsigned int mode,
3826 				   const struct phylink_link_state *state)
3827 {
3828 	struct dsa_port *dp = dsa_phylink_to_port(config);
3829 	struct ksz_device *dev = dp->ds->priv;
3830 	int port = dp->index;
3831 
3832 	/* Internal PHYs */
3833 	if (dev->info->internal_phy[port])
3834 		return;
3835 
3836 	/* No need to configure XMII control register when using SGMII. */
3837 	if (ksz_is_sgmii_port(dev, port))
3838 		return;
3839 
3840 	if (phylink_autoneg_inband(mode)) {
3841 		dev_err(dev->dev, "In-band AN not supported!\n");
3842 		return;
3843 	}
3844 
3845 	ksz_set_xmii(dev, port, state->interface);
3846 
3847 	if (dev->dev_ops->setup_rgmii_delay)
3848 		dev->dev_ops->setup_rgmii_delay(dev, port);
3849 }
3850 
ksz_get_gbit(struct ksz_device * dev,int port)3851 bool ksz_get_gbit(struct ksz_device *dev, int port)
3852 {
3853 	const u8 *bitval = dev->info->xmii_ctrl1;
3854 	const u16 *regs = dev->info->regs;
3855 	bool gbit = false;
3856 	u8 data8;
3857 	bool val;
3858 
3859 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3860 
3861 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3862 
3863 	if (val == bitval[P_GMII_1GBIT])
3864 		gbit = true;
3865 
3866 	return gbit;
3867 }
3868 
ksz_set_gbit(struct ksz_device * dev,int port,bool gbit)3869 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3870 {
3871 	const u8 *bitval = dev->info->xmii_ctrl1;
3872 	const u16 *regs = dev->info->regs;
3873 	u8 data8;
3874 
3875 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3876 
3877 	data8 &= ~P_GMII_1GBIT_M;
3878 
3879 	if (gbit)
3880 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3881 	else
3882 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3883 
3884 	/* Write the updated value */
3885 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3886 }
3887 
ksz_set_100_10mbit(struct ksz_device * dev,int port,int speed)3888 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3889 {
3890 	const u8 *bitval = dev->info->xmii_ctrl0;
3891 	const u16 *regs = dev->info->regs;
3892 	u8 data8;
3893 
3894 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3895 
3896 	data8 &= ~P_MII_100MBIT_M;
3897 
3898 	if (speed == SPEED_100)
3899 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3900 	else
3901 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3902 
3903 	/* Write the updated value */
3904 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3905 }
3906 
ksz_port_set_xmii_speed(struct ksz_device * dev,int port,int speed)3907 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3908 {
3909 	if (speed == SPEED_1000)
3910 		ksz_set_gbit(dev, port, true);
3911 	else
3912 		ksz_set_gbit(dev, port, false);
3913 
3914 	if (speed == SPEED_100 || speed == SPEED_10)
3915 		ksz_set_100_10mbit(dev, port, speed);
3916 }
3917 
ksz_duplex_flowctrl(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)3918 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3919 				bool tx_pause, bool rx_pause)
3920 {
3921 	const u8 *bitval = dev->info->xmii_ctrl0;
3922 	const u32 *masks = dev->info->masks;
3923 	const u16 *regs = dev->info->regs;
3924 	u8 mask;
3925 	u8 val;
3926 
3927 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3928 	       masks[P_MII_RX_FLOW_CTRL];
3929 
3930 	if (duplex == DUPLEX_FULL)
3931 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3932 	else
3933 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3934 
3935 	if (tx_pause)
3936 		val |= masks[P_MII_TX_FLOW_CTRL];
3937 
3938 	if (rx_pause)
3939 		val |= masks[P_MII_RX_FLOW_CTRL];
3940 
3941 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3942 }
3943 
ksz9477_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)3944 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3945 					struct phy_device *phydev,
3946 					unsigned int mode,
3947 					phy_interface_t interface,
3948 					int speed, int duplex, bool tx_pause,
3949 					bool rx_pause)
3950 {
3951 	struct dsa_port *dp = dsa_phylink_to_port(config);
3952 	struct ksz_device *dev = dp->ds->priv;
3953 	int port = dp->index;
3954 	struct ksz_port *p;
3955 
3956 	p = &dev->ports[port];
3957 
3958 	/* Internal PHYs */
3959 	if (dev->info->internal_phy[port])
3960 		return;
3961 
3962 	p->phydev.speed = speed;
3963 
3964 	ksz_port_set_xmii_speed(dev, port, speed);
3965 
3966 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3967 }
3968 
ksz_switch_detect(struct ksz_device * dev)3969 static int ksz_switch_detect(struct ksz_device *dev)
3970 {
3971 	u8 id1, id2, id4;
3972 	u16 id16;
3973 	u32 id32;
3974 	int ret;
3975 
3976 	/* read chip id */
3977 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3978 	if (ret)
3979 		return ret;
3980 
3981 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3982 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3983 
3984 	switch (id1) {
3985 	case KSZ84_FAMILY_ID:
3986 		dev->chip_id = KSZ8463_CHIP_ID;
3987 		break;
3988 	case KSZ87_FAMILY_ID:
3989 		if (id2 == KSZ87_CHIP_ID_95) {
3990 			u8 val;
3991 
3992 			dev->chip_id = KSZ8795_CHIP_ID;
3993 
3994 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3995 			if (val & KSZ8_PORT_FIBER_MODE)
3996 				dev->chip_id = KSZ8765_CHIP_ID;
3997 		} else if (id2 == KSZ87_CHIP_ID_94) {
3998 			dev->chip_id = KSZ8794_CHIP_ID;
3999 		} else {
4000 			return -ENODEV;
4001 		}
4002 		break;
4003 	case KSZ88_FAMILY_ID:
4004 		if (id2 == KSZ88_CHIP_ID_63)
4005 			dev->chip_id = KSZ88X3_CHIP_ID;
4006 		else
4007 			return -ENODEV;
4008 		break;
4009 	case KSZ8895_FAMILY_ID:
4010 		if (id2 == KSZ8895_CHIP_ID_95 ||
4011 		    id2 == KSZ8895_CHIP_ID_95R)
4012 			dev->chip_id = KSZ8895_CHIP_ID;
4013 		else
4014 			return -ENODEV;
4015 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
4016 		if (ret)
4017 			return ret;
4018 		if (id4 & SW_KSZ8864)
4019 			dev->chip_id = KSZ8864_CHIP_ID;
4020 		break;
4021 	default:
4022 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
4023 		if (ret)
4024 			return ret;
4025 
4026 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
4027 		id32 &= ~0xFF;
4028 
4029 		switch (id32) {
4030 		case KSZ9477_CHIP_ID:
4031 		case KSZ9896_CHIP_ID:
4032 		case KSZ9897_CHIP_ID:
4033 		case KSZ9567_CHIP_ID:
4034 		case KSZ8567_CHIP_ID:
4035 		case LAN9370_CHIP_ID:
4036 		case LAN9371_CHIP_ID:
4037 		case LAN9372_CHIP_ID:
4038 		case LAN9373_CHIP_ID:
4039 		case LAN9374_CHIP_ID:
4040 
4041 			/* LAN9646 does not have its own chip id. */
4042 			if (dev->chip_id != LAN9646_CHIP_ID)
4043 				dev->chip_id = id32;
4044 			break;
4045 		case KSZ9893_CHIP_ID:
4046 			ret = ksz_read8(dev, REG_CHIP_ID4,
4047 					&id4);
4048 			if (ret)
4049 				return ret;
4050 
4051 			if (id4 == SKU_ID_KSZ8563)
4052 				dev->chip_id = KSZ8563_CHIP_ID;
4053 			else if (id4 == SKU_ID_KSZ9563)
4054 				dev->chip_id = KSZ9563_CHIP_ID;
4055 			else
4056 				dev->chip_id = KSZ9893_CHIP_ID;
4057 
4058 			break;
4059 		default:
4060 			dev_err(dev->dev,
4061 				"unsupported switch detected %x)\n", id32);
4062 			return -ENODEV;
4063 		}
4064 	}
4065 	return 0;
4066 }
4067 
ksz_cls_flower_add(struct dsa_switch * ds,int port,struct flow_cls_offload * cls,bool ingress)4068 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
4069 			      struct flow_cls_offload *cls, bool ingress)
4070 {
4071 	struct ksz_device *dev = ds->priv;
4072 
4073 	switch (dev->chip_id) {
4074 	case KSZ8563_CHIP_ID:
4075 	case KSZ8567_CHIP_ID:
4076 	case KSZ9477_CHIP_ID:
4077 	case KSZ9563_CHIP_ID:
4078 	case KSZ9567_CHIP_ID:
4079 	case KSZ9893_CHIP_ID:
4080 	case KSZ9896_CHIP_ID:
4081 	case KSZ9897_CHIP_ID:
4082 	case LAN9646_CHIP_ID:
4083 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
4084 	}
4085 
4086 	return -EOPNOTSUPP;
4087 }
4088 
ksz_cls_flower_del(struct dsa_switch * ds,int port,struct flow_cls_offload * cls,bool ingress)4089 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
4090 			      struct flow_cls_offload *cls, bool ingress)
4091 {
4092 	struct ksz_device *dev = ds->priv;
4093 
4094 	switch (dev->chip_id) {
4095 	case KSZ8563_CHIP_ID:
4096 	case KSZ8567_CHIP_ID:
4097 	case KSZ9477_CHIP_ID:
4098 	case KSZ9563_CHIP_ID:
4099 	case KSZ9567_CHIP_ID:
4100 	case KSZ9893_CHIP_ID:
4101 	case KSZ9896_CHIP_ID:
4102 	case KSZ9897_CHIP_ID:
4103 	case LAN9646_CHIP_ID:
4104 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
4105 	}
4106 
4107 	return -EOPNOTSUPP;
4108 }
4109 
4110 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
4111  * is converted to Hex-decimal using the successive multiplication method. On
4112  * every step, integer part is taken and decimal part is carry forwarded.
4113  */
cinc_cal(s32 idle_slope,s32 send_slope,u32 * bw)4114 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
4115 {
4116 	u32 cinc = 0;
4117 	u32 txrate;
4118 	u32 rate;
4119 	u8 temp;
4120 	u8 i;
4121 
4122 	txrate = idle_slope - send_slope;
4123 
4124 	if (!txrate)
4125 		return -EINVAL;
4126 
4127 	rate = idle_slope;
4128 
4129 	/* 24 bit register */
4130 	for (i = 0; i < 6; i++) {
4131 		rate = rate * 16;
4132 
4133 		temp = rate / txrate;
4134 
4135 		rate %= txrate;
4136 
4137 		cinc = ((cinc << 4) | temp);
4138 	}
4139 
4140 	*bw = cinc;
4141 
4142 	return 0;
4143 }
4144 
ksz_setup_tc_mode(struct ksz_device * dev,int port,u8 scheduler,u8 shaper)4145 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
4146 			     u8 shaper)
4147 {
4148 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4149 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4150 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4151 }
4152 
ksz_setup_tc_cbs(struct dsa_switch * ds,int port,struct tc_cbs_qopt_offload * qopt)4153 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4154 			    struct tc_cbs_qopt_offload *qopt)
4155 {
4156 	struct ksz_device *dev = ds->priv;
4157 	int ret;
4158 	u32 bw;
4159 
4160 	if (!dev->info->tc_cbs_supported)
4161 		return -EOPNOTSUPP;
4162 
4163 	if (qopt->queue > dev->info->num_tx_queues)
4164 		return -EINVAL;
4165 
4166 	/* Queue Selection */
4167 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4168 	if (ret)
4169 		return ret;
4170 
4171 	if (!qopt->enable)
4172 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4173 					 MTI_SHAPING_OFF);
4174 
4175 	/* High Credit */
4176 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4177 			   qopt->hicredit);
4178 	if (ret)
4179 		return ret;
4180 
4181 	/* Low Credit */
4182 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4183 			   qopt->locredit);
4184 	if (ret)
4185 		return ret;
4186 
4187 	/* Credit Increment Register */
4188 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4189 	if (ret)
4190 		return ret;
4191 
4192 	if (dev->dev_ops->tc_cbs_set_cinc) {
4193 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4194 		if (ret)
4195 			return ret;
4196 	}
4197 
4198 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4199 				 MTI_SHAPING_SRP);
4200 }
4201 
ksz_disable_egress_rate_limit(struct ksz_device * dev,int port)4202 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4203 {
4204 	int queue, ret;
4205 
4206 	/* Configuration will not take effect until the last Port Queue X
4207 	 * Egress Limit Control Register is written.
4208 	 */
4209 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4210 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4211 				  KSZ9477_OUT_RATE_NO_LIMIT);
4212 		if (ret)
4213 			return ret;
4214 	}
4215 
4216 	return 0;
4217 }
4218 
ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params * p,int band)4219 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4220 				 int band)
4221 {
4222 	/* Compared to queues, bands prioritize packets differently. In strict
4223 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4224 	 * highest priority is given to Band 0.
4225 	 */
4226 	return p->bands - 1 - band;
4227 }
4228 
ksz8463_tc_ctrl(int port,int queue)4229 static u8 ksz8463_tc_ctrl(int port, int queue)
4230 {
4231 	u8 reg;
4232 
4233 	reg = 0xC8 + port * 4;
4234 	reg += ((3 - queue) / 2) * 2;
4235 	reg++;
4236 	reg -= (queue & 1);
4237 	return reg;
4238 }
4239 
4240 /**
4241  * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection)
4242  *                      for a port on KSZ88x3 switch
4243  * @dev: Pointer to the KSZ switch device structure
4244  * @port: Port number to configure
4245  * @p: Pointer to offload replace parameters describing ETS bands and mapping
4246  *
4247  * The KSZ88x3 supports two scheduling modes: Strict Priority and
4248  * Weighted Fair Queuing (WFQ). Both modes have fixed behavior:
4249  *   - No configurable queue-to-priority mapping
4250  *   - No weight adjustment in WFQ mode
4251  *
4252  * This function configures the switch to use strict priority mode by
4253  * clearing the WFQ enable bit for all queues associated with ETS bands.
4254  * If strict priority is not explicitly requested, the switch will default
4255  * to WFQ mode.
4256  *
4257  * Return: 0 on success, or a negative error code on failure
4258  */
ksz88x3_tc_ets_add(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4259 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port,
4260 			      struct tc_ets_qopt_offload_replace_params *p)
4261 {
4262 	int ret, band;
4263 
4264 	/* Only strict priority mode is supported for now.
4265 	 * WFQ is implicitly enabled when strict mode is disabled.
4266 	 */
4267 	for (band = 0; band < p->bands; band++) {
4268 		int queue = ksz_ets_band_to_queue(p, band);
4269 		u8 reg;
4270 
4271 		/* Calculate TXQ Split Control register address for this
4272 		 * port/queue
4273 		 */
4274 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4275 		if (ksz_is_ksz8463(dev))
4276 			reg = ksz8463_tc_ctrl(port, queue);
4277 
4278 		/* Clear WFQ enable bit to select strict priority scheduling */
4279 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0);
4280 		if (ret)
4281 			return ret;
4282 	}
4283 
4284 	return 0;
4285 }
4286 
4287 /**
4288  * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config
4289  *                      for a port on KSZ88x3 switch
4290  * @dev: Pointer to the KSZ switch device structure
4291  * @port: Port number to reset
4292  *
4293  * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or
4294  * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or
4295  * queue mapping. This function resets the port’s scheduling mode to
4296  * the default, which is WFQ, by enabling the WFQ bit for all queues.
4297  *
4298  * Return: 0 on success, or a negative error code on failure
4299  */
ksz88x3_tc_ets_del(struct ksz_device * dev,int port)4300 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port)
4301 {
4302 	int ret, queue;
4303 
4304 	/* Iterate over all transmit queues for this port */
4305 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4306 		u8 reg;
4307 
4308 		/* Calculate TXQ Split Control register address for this
4309 		 * port/queue
4310 		 */
4311 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4312 		if (ksz_is_ksz8463(dev))
4313 			reg = ksz8463_tc_ctrl(port, queue);
4314 
4315 		/* Set WFQ enable bit to revert back to default scheduling
4316 		 * mode
4317 		 */
4318 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE,
4319 			       KSZ8873_TXQ_WFQ_ENABLE);
4320 		if (ret)
4321 			return ret;
4322 	}
4323 
4324 	return 0;
4325 }
4326 
ksz_queue_set_strict(struct ksz_device * dev,int port,int queue)4327 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4328 {
4329 	int ret;
4330 
4331 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4332 	if (ret)
4333 		return ret;
4334 
4335 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4336 				 MTI_SHAPING_OFF);
4337 }
4338 
ksz_queue_set_wrr(struct ksz_device * dev,int port,int queue,int weight)4339 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4340 			     int weight)
4341 {
4342 	int ret;
4343 
4344 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4345 	if (ret)
4346 		return ret;
4347 
4348 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4349 				MTI_SHAPING_OFF);
4350 	if (ret)
4351 		return ret;
4352 
4353 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4354 }
4355 
ksz_tc_ets_add(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4356 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4357 			  struct tc_ets_qopt_offload_replace_params *p)
4358 {
4359 	int ret, band, tc_prio;
4360 	u32 queue_map = 0;
4361 
4362 	/* In order to ensure proper prioritization, it is necessary to set the
4363 	 * rate limit for the related queue to zero. Otherwise strict priority
4364 	 * or WRR mode will not work. This is a hardware limitation.
4365 	 */
4366 	ret = ksz_disable_egress_rate_limit(dev, port);
4367 	if (ret)
4368 		return ret;
4369 
4370 	/* Configure queue scheduling mode for all bands. Currently only strict
4371 	 * prio mode is supported.
4372 	 */
4373 	for (band = 0; band < p->bands; band++) {
4374 		int queue = ksz_ets_band_to_queue(p, band);
4375 
4376 		ret = ksz_queue_set_strict(dev, port, queue);
4377 		if (ret)
4378 			return ret;
4379 	}
4380 
4381 	/* Configure the mapping between traffic classes and queues. Note:
4382 	 * priomap variable support 16 traffic classes, but the chip can handle
4383 	 * only 8 classes.
4384 	 */
4385 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4386 		int queue;
4387 
4388 		if (tc_prio >= dev->info->num_ipms)
4389 			break;
4390 
4391 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4392 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4393 	}
4394 
4395 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4396 }
4397 
ksz_tc_ets_del(struct ksz_device * dev,int port)4398 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4399 {
4400 	int ret, queue;
4401 
4402 	/* To restore the default chip configuration, set all queues to use the
4403 	 * WRR scheduler with a weight of 1.
4404 	 */
4405 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4406 		ret = ksz_queue_set_wrr(dev, port, queue,
4407 					KSZ9477_DEFAULT_WRR_WEIGHT);
4408 
4409 		if (ret)
4410 			return ret;
4411 	}
4412 
4413 	/* Revert the queue mapping for TC-priority to its default setting on
4414 	 * the chip.
4415 	 */
4416 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4417 }
4418 
ksz_tc_ets_validate(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4419 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4420 			       struct tc_ets_qopt_offload_replace_params *p)
4421 {
4422 	int band;
4423 
4424 	/* Since it is not feasible to share one port among multiple qdisc,
4425 	 * the user must configure all available queues appropriately.
4426 	 */
4427 	if (p->bands != dev->info->num_tx_queues) {
4428 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4429 			dev->info->num_tx_queues);
4430 		return -EOPNOTSUPP;
4431 	}
4432 
4433 	for (band = 0; band < p->bands; ++band) {
4434 		/* The KSZ switches utilize a weighted round robin configuration
4435 		 * where a certain number of packets can be transmitted from a
4436 		 * queue before the next queue is serviced. For more information
4437 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4438 		 * documentation on the Port Transmit Queue Control 1 Register.
4439 		 * However, the current ETS Qdisc implementation (as of February
4440 		 * 2023) assigns a weight to each queue based on the number of
4441 		 * bytes or extrapolated bandwidth in percentages. Since this
4442 		 * differs from the KSZ switches' method and we don't want to
4443 		 * fake support by converting bytes to packets, it is better to
4444 		 * return an error instead.
4445 		 */
4446 		if (p->quanta[band]) {
4447 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4448 			return -EOPNOTSUPP;
4449 		}
4450 	}
4451 
4452 	return 0;
4453 }
4454 
ksz_tc_setup_qdisc_ets(struct dsa_switch * ds,int port,struct tc_ets_qopt_offload * qopt)4455 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4456 				  struct tc_ets_qopt_offload *qopt)
4457 {
4458 	struct ksz_device *dev = ds->priv;
4459 	int ret;
4460 
4461 	if (is_ksz8(dev) && !(ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)))
4462 		return -EOPNOTSUPP;
4463 
4464 	if (qopt->parent != TC_H_ROOT) {
4465 		dev_err(dev->dev, "Parent should be \"root\"\n");
4466 		return -EOPNOTSUPP;
4467 	}
4468 
4469 	switch (qopt->command) {
4470 	case TC_ETS_REPLACE:
4471 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4472 		if (ret)
4473 			return ret;
4474 
4475 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4476 			return ksz88x3_tc_ets_add(dev, port,
4477 						  &qopt->replace_params);
4478 		else
4479 			return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4480 	case TC_ETS_DESTROY:
4481 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4482 			return ksz88x3_tc_ets_del(dev, port);
4483 		else
4484 			return ksz_tc_ets_del(dev, port);
4485 	case TC_ETS_STATS:
4486 	case TC_ETS_GRAFT:
4487 		return -EOPNOTSUPP;
4488 	}
4489 
4490 	return -EOPNOTSUPP;
4491 }
4492 
ksz_setup_tc(struct dsa_switch * ds,int port,enum tc_setup_type type,void * type_data)4493 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4494 			enum tc_setup_type type, void *type_data)
4495 {
4496 	switch (type) {
4497 	case TC_SETUP_QDISC_CBS:
4498 		return ksz_setup_tc_cbs(ds, port, type_data);
4499 	case TC_SETUP_QDISC_ETS:
4500 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4501 	default:
4502 		return -EOPNOTSUPP;
4503 	}
4504 }
4505 
4506 /**
4507  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4508  * @dev: The device structure.
4509  * @port: The port number.
4510  *
4511  * This function reads the PME (Power Management Event) status register of a
4512  * specified port to determine the wake reason. If there is no wake event, it
4513  * returns early. Otherwise, it logs the wake reason which could be due to a
4514  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4515  * is then cleared to acknowledge the handling of the wake event.
4516  *
4517  * Return: 0 on success, or an error code on failure.
4518  */
ksz_handle_wake_reason(struct ksz_device * dev,int port)4519 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4520 {
4521 	const struct ksz_dev_ops *ops = dev->dev_ops;
4522 	const u16 *regs = dev->info->regs;
4523 	u8 pme_status;
4524 	int ret;
4525 
4526 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4527 			      &pme_status);
4528 	if (ret)
4529 		return ret;
4530 
4531 	if (!pme_status)
4532 		return 0;
4533 
4534 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4535 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4536 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4537 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4538 
4539 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4540 				pme_status);
4541 }
4542 
4543 /**
4544  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4545  * @ds: The dsa_switch structure.
4546  * @port: The port number.
4547  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4548  *
4549  * This function checks the device PME wakeup_source flag and chip_id.
4550  * If enabled and supported, it sets the supported and active WoL
4551  * flags.
4552  */
ksz_get_wol(struct dsa_switch * ds,int port,struct ethtool_wolinfo * wol)4553 static void ksz_get_wol(struct dsa_switch *ds, int port,
4554 			struct ethtool_wolinfo *wol)
4555 {
4556 	struct ksz_device *dev = ds->priv;
4557 	const u16 *regs = dev->info->regs;
4558 	u8 pme_ctrl;
4559 	int ret;
4560 
4561 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4562 		return;
4563 
4564 	if (!dev->wakeup_source)
4565 		return;
4566 
4567 	wol->supported = WAKE_PHY;
4568 
4569 	/* Check if the current MAC address on this port can be set
4570 	 * as global for WAKE_MAGIC support. The result may vary
4571 	 * dynamically based on other ports configurations.
4572 	 */
4573 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4574 		wol->supported |= WAKE_MAGIC;
4575 
4576 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4577 				       &pme_ctrl);
4578 	if (ret)
4579 		return;
4580 
4581 	if (pme_ctrl & PME_WOL_MAGICPKT)
4582 		wol->wolopts |= WAKE_MAGIC;
4583 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4584 		wol->wolopts |= WAKE_PHY;
4585 }
4586 
4587 /**
4588  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4589  * @ds: The dsa_switch structure.
4590  * @port: The port number.
4591  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4592  *
4593  * This function configures Wake-on-LAN (WoL) settings for a specified
4594  * port. It validates the provided WoL options, checks if PME is
4595  * enabled and supported, clears any previous wake reasons, and sets
4596  * the Magic Packet flag in the port's PME control register if
4597  * specified.
4598  *
4599  * Return: 0 on success, or other error codes on failure.
4600  */
ksz_set_wol(struct dsa_switch * ds,int port,struct ethtool_wolinfo * wol)4601 static int ksz_set_wol(struct dsa_switch *ds, int port,
4602 		       struct ethtool_wolinfo *wol)
4603 {
4604 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4605 	struct ksz_device *dev = ds->priv;
4606 	const u16 *regs = dev->info->regs;
4607 	bool magic_switched_off;
4608 	bool magic_switched_on;
4609 	int ret;
4610 
4611 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4612 		return -EINVAL;
4613 
4614 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4615 		return -EOPNOTSUPP;
4616 
4617 	if (!dev->wakeup_source)
4618 		return -EOPNOTSUPP;
4619 
4620 	ret = ksz_handle_wake_reason(dev, port);
4621 	if (ret)
4622 		return ret;
4623 
4624 	if (wol->wolopts & WAKE_MAGIC)
4625 		pme_ctrl |= PME_WOL_MAGICPKT;
4626 	if (wol->wolopts & WAKE_PHY)
4627 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4628 
4629 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4630 				       &pme_ctrl_old);
4631 	if (ret)
4632 		return ret;
4633 
4634 	if (pme_ctrl_old == pme_ctrl)
4635 		return 0;
4636 
4637 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4638 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4639 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4640 			    (pme_ctrl & PME_WOL_MAGICPKT);
4641 
4642 	/* To keep reference count of MAC address, we should do this
4643 	 * operation only on change of WOL settings.
4644 	 */
4645 	if (magic_switched_on) {
4646 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4647 		if (ret)
4648 			return ret;
4649 	} else if (magic_switched_off) {
4650 		ksz_switch_macaddr_put(dev->ds);
4651 	}
4652 
4653 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4654 					pme_ctrl);
4655 	if (ret) {
4656 		if (magic_switched_on)
4657 			ksz_switch_macaddr_put(dev->ds);
4658 		return ret;
4659 	}
4660 
4661 	return 0;
4662 }
4663 
4664 /**
4665  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4666  *                        considering Wake-on-LAN (WoL) settings.
4667  * @dev: The switch device structure.
4668  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4669  *               enabled on any port.
4670  *
4671  * This function prepares the switch device for a safe shutdown while taking
4672  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4673  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4674  * port.
4675  */
ksz_wol_pre_shutdown(struct ksz_device * dev,bool * wol_enabled)4676 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4677 {
4678 	const struct ksz_dev_ops *ops = dev->dev_ops;
4679 	const u16 *regs = dev->info->regs;
4680 	u8 pme_pin_en = PME_ENABLE;
4681 	struct dsa_port *dp;
4682 	int ret;
4683 
4684 	*wol_enabled = false;
4685 
4686 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4687 		return;
4688 
4689 	if (!dev->wakeup_source)
4690 		return;
4691 
4692 	dsa_switch_for_each_user_port(dp, dev->ds) {
4693 		u8 pme_ctrl = 0;
4694 
4695 		ret = ops->pme_pread8(dev, dp->index,
4696 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4697 		if (!ret && pme_ctrl)
4698 			*wol_enabled = true;
4699 
4700 		/* make sure there are no pending wake events which would
4701 		 * prevent the device from going to sleep/shutdown.
4702 		 */
4703 		ksz_handle_wake_reason(dev, dp->index);
4704 	}
4705 
4706 	/* Now we are save to enable PME pin. */
4707 	if (*wol_enabled) {
4708 		if (dev->pme_active_high)
4709 			pme_pin_en |= PME_POLARITY;
4710 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4711 		if (ksz_is_ksz87xx(dev))
4712 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4713 	}
4714 }
4715 
ksz_port_set_mac_address(struct dsa_switch * ds,int port,const unsigned char * addr)4716 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4717 				    const unsigned char *addr)
4718 {
4719 	struct dsa_port *dp = dsa_to_port(ds, port);
4720 	struct ethtool_wolinfo wol;
4721 
4722 	if (dp->hsr_dev) {
4723 		dev_err(ds->dev,
4724 			"Cannot change MAC address on port %d with active HSR offload\n",
4725 			port);
4726 		return -EBUSY;
4727 	}
4728 
4729 	/* Need to initialize variable as the code to fill in settings may
4730 	 * not be executed.
4731 	 */
4732 	wol.wolopts = 0;
4733 
4734 	ksz_get_wol(ds, dp->index, &wol);
4735 	if (wol.wolopts & WAKE_MAGIC) {
4736 		dev_err(ds->dev,
4737 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4738 			port);
4739 		return -EBUSY;
4740 	}
4741 
4742 	return 0;
4743 }
4744 
4745 /**
4746  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4747  *                                 can be used as a global address.
4748  * @ds: Pointer to the DSA switch structure.
4749  * @port: The port number on which the MAC address is to be checked.
4750  *
4751  * This function examines the MAC address set on the specified port and
4752  * determines if it can be used as a global address for the switch.
4753  *
4754  * Return: true if the port's MAC address can be used as a global address, false
4755  * otherwise.
4756  */
ksz_is_port_mac_global_usable(struct dsa_switch * ds,int port)4757 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4758 {
4759 	struct net_device *user = dsa_to_port(ds, port)->user;
4760 	const unsigned char *addr = user->dev_addr;
4761 	struct ksz_switch_macaddr *switch_macaddr;
4762 	struct ksz_device *dev = ds->priv;
4763 
4764 	ASSERT_RTNL();
4765 
4766 	switch_macaddr = dev->switch_macaddr;
4767 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4768 		return false;
4769 
4770 	return true;
4771 }
4772 
4773 /**
4774  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4775  * @ds: DSA switch instance.
4776  * @port: Port number.
4777  * @extack: Netlink extended acknowledgment.
4778  *
4779  * This function programs the switch's MAC address register with the MAC address
4780  * of the requesting user port. This single address is used by the switch for
4781  * multiple features like HSR self-address filtering and WoL. Other user ports
4782  * can share ownership of this address as long as their MAC address is the same.
4783  * The MAC addresses of user ports must not change while they have ownership of
4784  * the switch MAC address.
4785  *
4786  * Return: 0 on success, or other error codes on failure.
4787  */
ksz_switch_macaddr_get(struct dsa_switch * ds,int port,struct netlink_ext_ack * extack)4788 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4789 			   struct netlink_ext_ack *extack)
4790 {
4791 	struct net_device *user = dsa_to_port(ds, port)->user;
4792 	const unsigned char *addr = user->dev_addr;
4793 	struct ksz_switch_macaddr *switch_macaddr;
4794 	struct ksz_device *dev = ds->priv;
4795 	const u16 *regs = dev->info->regs;
4796 	int i, ret;
4797 
4798 	/* Make sure concurrent MAC address changes are blocked */
4799 	ASSERT_RTNL();
4800 
4801 	switch_macaddr = dev->switch_macaddr;
4802 	if (switch_macaddr) {
4803 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4804 			NL_SET_ERR_MSG_FMT_MOD(extack,
4805 					       "Switch already configured for MAC address %pM",
4806 					       switch_macaddr->addr);
4807 			return -EBUSY;
4808 		}
4809 
4810 		refcount_inc(&switch_macaddr->refcount);
4811 		return 0;
4812 	}
4813 
4814 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4815 	if (!switch_macaddr)
4816 		return -ENOMEM;
4817 
4818 	ether_addr_copy(switch_macaddr->addr, addr);
4819 	refcount_set(&switch_macaddr->refcount, 1);
4820 	dev->switch_macaddr = switch_macaddr;
4821 
4822 	/* Program the switch MAC address to hardware */
4823 	for (i = 0; i < ETH_ALEN; i++) {
4824 		if (ksz_is_ksz8463(dev)) {
4825 			u16 addr16 = ((u16)addr[i] << 8) | addr[i + 1];
4826 
4827 			ret = ksz_write16(dev, regs[REG_SW_MAC_ADDR] + i,
4828 					  addr16);
4829 			i++;
4830 		} else {
4831 			ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i,
4832 					 addr[i]);
4833 		}
4834 		if (ret)
4835 			goto macaddr_drop;
4836 	}
4837 
4838 	return 0;
4839 
4840 macaddr_drop:
4841 	dev->switch_macaddr = NULL;
4842 	refcount_set(&switch_macaddr->refcount, 0);
4843 	kfree(switch_macaddr);
4844 
4845 	return ret;
4846 }
4847 
ksz_switch_macaddr_put(struct dsa_switch * ds)4848 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4849 {
4850 	struct ksz_switch_macaddr *switch_macaddr;
4851 	struct ksz_device *dev = ds->priv;
4852 	const u16 *regs = dev->info->regs;
4853 	int i;
4854 
4855 	/* Make sure concurrent MAC address changes are blocked */
4856 	ASSERT_RTNL();
4857 
4858 	switch_macaddr = dev->switch_macaddr;
4859 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4860 		return;
4861 
4862 	for (i = 0; i < ETH_ALEN; i++)
4863 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4864 
4865 	dev->switch_macaddr = NULL;
4866 	kfree(switch_macaddr);
4867 }
4868 
ksz_hsr_join(struct dsa_switch * ds,int port,struct net_device * hsr,struct netlink_ext_ack * extack)4869 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4870 			struct netlink_ext_ack *extack)
4871 {
4872 	struct ksz_device *dev = ds->priv;
4873 	enum hsr_version ver;
4874 	int ret;
4875 
4876 	ret = hsr_get_version(hsr, &ver);
4877 	if (ret)
4878 		return ret;
4879 
4880 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4881 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4882 		return -EOPNOTSUPP;
4883 	}
4884 
4885 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4886 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4887 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4888 		return -EOPNOTSUPP;
4889 	}
4890 
4891 	/* KSZ9477 only supports HSR v0 and v1 */
4892 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4893 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4894 		return -EOPNOTSUPP;
4895 	}
4896 
4897 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4898 	if (hweight8(dev->hsr_ports) >= 2) {
4899 		NL_SET_ERR_MSG_MOD(extack,
4900 				   "Cannot offload more than two ports - using software HSR");
4901 		return -EOPNOTSUPP;
4902 	}
4903 
4904 	/* Self MAC address filtering, to avoid frames traversing
4905 	 * the HSR ring more than once.
4906 	 */
4907 	ret = ksz_switch_macaddr_get(ds, port, extack);
4908 	if (ret)
4909 		return ret;
4910 
4911 	ksz9477_hsr_join(ds, port, hsr);
4912 	dev->hsr_dev = hsr;
4913 	dev->hsr_ports |= BIT(port);
4914 
4915 	return 0;
4916 }
4917 
ksz_hsr_leave(struct dsa_switch * ds,int port,struct net_device * hsr)4918 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4919 			 struct net_device *hsr)
4920 {
4921 	struct ksz_device *dev = ds->priv;
4922 
4923 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4924 
4925 	ksz9477_hsr_leave(ds, port, hsr);
4926 	dev->hsr_ports &= ~BIT(port);
4927 	if (!dev->hsr_ports)
4928 		dev->hsr_dev = NULL;
4929 
4930 	ksz_switch_macaddr_put(ds);
4931 
4932 	return 0;
4933 }
4934 
ksz_suspend(struct dsa_switch * ds)4935 static int ksz_suspend(struct dsa_switch *ds)
4936 {
4937 	struct ksz_device *dev = ds->priv;
4938 
4939 	cancel_delayed_work_sync(&dev->mib_read);
4940 	return 0;
4941 }
4942 
ksz_resume(struct dsa_switch * ds)4943 static int ksz_resume(struct dsa_switch *ds)
4944 {
4945 	struct ksz_device *dev = ds->priv;
4946 
4947 	if (dev->mib_read_interval)
4948 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4949 	return 0;
4950 }
4951 
4952 static const struct dsa_switch_ops ksz_switch_ops = {
4953 	.get_tag_protocol	= ksz_get_tag_protocol,
4954 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4955 	.get_phy_flags		= ksz_get_phy_flags,
4956 	.setup			= ksz_setup,
4957 	.teardown		= ksz_teardown,
4958 	.phy_read		= ksz_phy_read16,
4959 	.phy_write		= ksz_phy_write16,
4960 	.phylink_get_caps	= ksz_phylink_get_caps,
4961 	.port_setup		= ksz_port_setup,
4962 	.set_ageing_time	= ksz_set_ageing_time,
4963 	.get_strings		= ksz_get_strings,
4964 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4965 	.get_sset_count		= ksz_sset_count,
4966 	.port_bridge_join	= ksz_port_bridge_join,
4967 	.port_bridge_leave	= ksz_port_bridge_leave,
4968 	.port_hsr_join		= ksz_hsr_join,
4969 	.port_hsr_leave		= ksz_hsr_leave,
4970 	.port_set_mac_address	= ksz_port_set_mac_address,
4971 	.port_stp_state_set	= ksz_port_stp_state_set,
4972 	.port_teardown		= ksz_port_teardown,
4973 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4974 	.port_bridge_flags	= ksz_port_bridge_flags,
4975 	.port_fast_age		= ksz_port_fast_age,
4976 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4977 	.port_vlan_add		= ksz_port_vlan_add,
4978 	.port_vlan_del		= ksz_port_vlan_del,
4979 	.port_fdb_dump		= ksz_port_fdb_dump,
4980 	.port_fdb_add		= ksz_port_fdb_add,
4981 	.port_fdb_del		= ksz_port_fdb_del,
4982 	.port_mdb_add           = ksz_port_mdb_add,
4983 	.port_mdb_del           = ksz_port_mdb_del,
4984 	.port_mirror_add	= ksz_port_mirror_add,
4985 	.port_mirror_del	= ksz_port_mirror_del,
4986 	.get_stats64		= ksz_get_stats64,
4987 	.get_pause_stats	= ksz_get_pause_stats,
4988 	.port_change_mtu	= ksz_change_mtu,
4989 	.port_max_mtu		= ksz_max_mtu,
4990 	.get_wol		= ksz_get_wol,
4991 	.set_wol		= ksz_set_wol,
4992 	.suspend		= ksz_suspend,
4993 	.resume			= ksz_resume,
4994 	.get_ts_info		= ksz_get_ts_info,
4995 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4996 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4997 	.port_txtstamp		= ksz_port_txtstamp,
4998 	.port_rxtstamp		= ksz_port_rxtstamp,
4999 	.cls_flower_add		= ksz_cls_flower_add,
5000 	.cls_flower_del		= ksz_cls_flower_del,
5001 	.port_setup_tc		= ksz_setup_tc,
5002 	.support_eee		= ksz_support_eee,
5003 	.set_mac_eee		= ksz_set_mac_eee,
5004 	.port_get_default_prio	= ksz_port_get_default_prio,
5005 	.port_set_default_prio	= ksz_port_set_default_prio,
5006 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
5007 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
5008 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
5009 	.port_get_apptrust	= ksz_port_get_apptrust,
5010 	.port_set_apptrust	= ksz_port_set_apptrust,
5011 };
5012 
ksz_switch_alloc(struct device * base,void * priv)5013 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
5014 {
5015 	struct dsa_switch *ds;
5016 	struct ksz_device *swdev;
5017 
5018 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
5019 	if (!ds)
5020 		return NULL;
5021 
5022 	ds->dev = base;
5023 	ds->num_ports = DSA_MAX_PORTS;
5024 	ds->ops = &ksz_switch_ops;
5025 
5026 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
5027 	if (!swdev)
5028 		return NULL;
5029 
5030 	ds->priv = swdev;
5031 	swdev->dev = base;
5032 
5033 	swdev->ds = ds;
5034 	swdev->priv = priv;
5035 
5036 	return swdev;
5037 }
5038 EXPORT_SYMBOL(ksz_switch_alloc);
5039 
5040 /**
5041  * ksz_switch_shutdown - Shutdown routine for the switch device.
5042  * @dev: The switch device structure.
5043  *
5044  * This function is responsible for initiating a shutdown sequence for the
5045  * switch device. It invokes the reset operation defined in the device
5046  * operations, if available, to reset the switch. Subsequently, it calls the
5047  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
5048  * switch.
5049  */
ksz_switch_shutdown(struct ksz_device * dev)5050 void ksz_switch_shutdown(struct ksz_device *dev)
5051 {
5052 	bool wol_enabled = false;
5053 
5054 	ksz_wol_pre_shutdown(dev, &wol_enabled);
5055 
5056 	if (dev->dev_ops->reset && !wol_enabled)
5057 		dev->dev_ops->reset(dev);
5058 
5059 	dsa_switch_shutdown(dev->ds);
5060 }
5061 EXPORT_SYMBOL(ksz_switch_shutdown);
5062 
ksz_parse_rgmii_delay(struct ksz_device * dev,int port_num,struct device_node * port_dn)5063 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
5064 				  struct device_node *port_dn)
5065 {
5066 	phy_interface_t phy_mode = dev->ports[port_num].interface;
5067 	int rx_delay = -1, tx_delay = -1;
5068 
5069 	if (!phy_interface_mode_is_rgmii(phy_mode))
5070 		return;
5071 
5072 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
5073 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
5074 
5075 	if (rx_delay == -1 && tx_delay == -1) {
5076 		dev_warn(dev->dev,
5077 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
5078 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
5079 			 "\"tx-internal-delay-ps\"",
5080 			 port_num);
5081 
5082 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
5083 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5084 			rx_delay = 2000;
5085 
5086 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
5087 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5088 			tx_delay = 2000;
5089 	}
5090 
5091 	if (rx_delay < 0)
5092 		rx_delay = 0;
5093 	if (tx_delay < 0)
5094 		tx_delay = 0;
5095 
5096 	dev->ports[port_num].rgmii_rx_val = rx_delay;
5097 	dev->ports[port_num].rgmii_tx_val = tx_delay;
5098 }
5099 
5100 /**
5101  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
5102  *				 register value.
5103  * @array:	The array of drive strength values to search.
5104  * @array_size:	The size of the array.
5105  * @microamp:	The drive strength value in microamp to be converted.
5106  *
5107  * This function searches the array of drive strength values for the given
5108  * microamp value and returns the corresponding register value for that drive.
5109  *
5110  * Returns: If found, the corresponding register value for that drive strength
5111  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
5112  */
ksz_drive_strength_to_reg(const struct ksz_drive_strength * array,size_t array_size,int microamp)5113 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
5114 				     size_t array_size, int microamp)
5115 {
5116 	int i;
5117 
5118 	for (i = 0; i < array_size; i++) {
5119 		if (array[i].microamp == microamp)
5120 			return array[i].reg_val;
5121 	}
5122 
5123 	return -EINVAL;
5124 }
5125 
5126 /**
5127  * ksz_drive_strength_error() - Report invalid drive strength value
5128  * @dev:	ksz device
5129  * @array:	The array of drive strength values to search.
5130  * @array_size:	The size of the array.
5131  * @microamp:	Invalid drive strength value in microamp
5132  *
5133  * This function logs an error message when an unsupported drive strength value
5134  * is detected. It lists out all the supported drive strength values for
5135  * reference in the error message.
5136  */
ksz_drive_strength_error(struct ksz_device * dev,const struct ksz_drive_strength * array,size_t array_size,int microamp)5137 static void ksz_drive_strength_error(struct ksz_device *dev,
5138 				     const struct ksz_drive_strength *array,
5139 				     size_t array_size, int microamp)
5140 {
5141 	char supported_values[100];
5142 	size_t remaining_size;
5143 	int added_len;
5144 	char *ptr;
5145 	int i;
5146 
5147 	remaining_size = sizeof(supported_values);
5148 	ptr = supported_values;
5149 
5150 	for (i = 0; i < array_size; i++) {
5151 		added_len = snprintf(ptr, remaining_size,
5152 				     i == 0 ? "%d" : ", %d", array[i].microamp);
5153 
5154 		if (added_len >= remaining_size)
5155 			break;
5156 
5157 		ptr += added_len;
5158 		remaining_size -= added_len;
5159 	}
5160 
5161 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
5162 		microamp, supported_values);
5163 }
5164 
5165 /**
5166  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
5167  *				    chip variants.
5168  * @dev:       ksz device
5169  * @props:     Array of drive strength properties to be applied
5170  * @num_props: Number of properties in the array
5171  *
5172  * This function configures the drive strength for various KSZ9477 chip variants
5173  * based on the provided properties. It handles chip-specific nuances and
5174  * ensures only valid drive strengths are written to the respective chip.
5175  *
5176  * Return: 0 on successful configuration, a negative error code on failure.
5177  */
ksz9477_drive_strength_write(struct ksz_device * dev,struct ksz_driver_strength_prop * props,int num_props)5178 static int ksz9477_drive_strength_write(struct ksz_device *dev,
5179 					struct ksz_driver_strength_prop *props,
5180 					int num_props)
5181 {
5182 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
5183 	int i, ret, reg;
5184 	u8 mask = 0;
5185 	u8 val = 0;
5186 
5187 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
5188 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5189 			 props[KSZ_DRIVER_STRENGTH_IO].name);
5190 
5191 	if (dev->chip_id == KSZ8795_CHIP_ID ||
5192 	    dev->chip_id == KSZ8794_CHIP_ID ||
5193 	    dev->chip_id == KSZ8765_CHIP_ID)
5194 		reg = KSZ8795_REG_SW_CTRL_20;
5195 	else
5196 		reg = KSZ9477_REG_SW_IO_STRENGTH;
5197 
5198 	for (i = 0; i < num_props; i++) {
5199 		if (props[i].value == -1)
5200 			continue;
5201 
5202 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
5203 						array_size, props[i].value);
5204 		if (ret < 0) {
5205 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
5206 						 array_size, props[i].value);
5207 			return ret;
5208 		}
5209 
5210 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
5211 		val |= ret << props[i].offset;
5212 	}
5213 
5214 	return ksz_rmw8(dev, reg, mask, val);
5215 }
5216 
5217 /**
5218  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
5219  *				    KSZ8863 compatible chip variants.
5220  * @dev:       ksz device
5221  * @props:     Array of drive strength properties to be set
5222  * @num_props: Number of properties in the array
5223  *
5224  * This function applies the specified drive strength settings to KSZ88X3 chip
5225  * variants (KSZ8873, KSZ8863).
5226  * It ensures the configurations align with what the chip variant supports and
5227  * warns or errors out on unsupported settings.
5228  *
5229  * Return: 0 on success, error code otherwise
5230  */
ksz88x3_drive_strength_write(struct ksz_device * dev,struct ksz_driver_strength_prop * props,int num_props)5231 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
5232 					struct ksz_driver_strength_prop *props,
5233 					int num_props)
5234 {
5235 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
5236 	int microamp;
5237 	int i, ret;
5238 
5239 	for (i = 0; i < num_props; i++) {
5240 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
5241 			continue;
5242 
5243 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5244 			 props[i].name);
5245 	}
5246 
5247 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
5248 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
5249 					microamp);
5250 	if (ret < 0) {
5251 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
5252 					 array_size, microamp);
5253 		return ret;
5254 	}
5255 
5256 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
5257 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
5258 }
5259 
5260 /**
5261  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
5262  *				from device tree properties.
5263  * @dev:	ksz device
5264  *
5265  * This function reads the specified drive strength properties from the
5266  * device tree, validates against the supported chip variants, and sets
5267  * them accordingly. An error should be critical here, as the drive strength
5268  * settings are crucial for EMI compliance.
5269  *
5270  * Return: 0 on success, error code otherwise
5271  */
ksz_parse_drive_strength(struct ksz_device * dev)5272 static int ksz_parse_drive_strength(struct ksz_device *dev)
5273 {
5274 	struct ksz_driver_strength_prop of_props[] = {
5275 		[KSZ_DRIVER_STRENGTH_HI] = {
5276 			.name = "microchip,hi-drive-strength-microamp",
5277 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5278 			.value = -1,
5279 		},
5280 		[KSZ_DRIVER_STRENGTH_LO] = {
5281 			.name = "microchip,lo-drive-strength-microamp",
5282 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5283 			.value = -1,
5284 		},
5285 		[KSZ_DRIVER_STRENGTH_IO] = {
5286 			.name = "microchip,io-drive-strength-microamp",
5287 			.offset = 0, /* don't care */
5288 			.value = -1,
5289 		},
5290 	};
5291 	struct device_node *np = dev->dev->of_node;
5292 	bool have_any_prop = false;
5293 	int i, ret;
5294 
5295 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5296 		ret = of_property_read_u32(np, of_props[i].name,
5297 					   &of_props[i].value);
5298 		if (ret && ret != -EINVAL)
5299 			dev_warn(dev->dev, "Failed to read %s\n",
5300 				 of_props[i].name);
5301 		if (ret)
5302 			continue;
5303 
5304 		have_any_prop = true;
5305 	}
5306 
5307 	if (!have_any_prop)
5308 		return 0;
5309 
5310 	switch (dev->chip_id) {
5311 	case KSZ88X3_CHIP_ID:
5312 		return ksz88x3_drive_strength_write(dev, of_props,
5313 						    ARRAY_SIZE(of_props));
5314 	case KSZ8795_CHIP_ID:
5315 	case KSZ8794_CHIP_ID:
5316 	case KSZ8765_CHIP_ID:
5317 	case KSZ8563_CHIP_ID:
5318 	case KSZ8567_CHIP_ID:
5319 	case KSZ9477_CHIP_ID:
5320 	case KSZ9563_CHIP_ID:
5321 	case KSZ9567_CHIP_ID:
5322 	case KSZ9893_CHIP_ID:
5323 	case KSZ9896_CHIP_ID:
5324 	case KSZ9897_CHIP_ID:
5325 	case LAN9646_CHIP_ID:
5326 		return ksz9477_drive_strength_write(dev, of_props,
5327 						    ARRAY_SIZE(of_props));
5328 	default:
5329 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5330 			if (of_props[i].value == -1)
5331 				continue;
5332 
5333 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5334 				 of_props[i].name);
5335 		}
5336 	}
5337 
5338 	return 0;
5339 }
5340 
ksz_switch_register(struct ksz_device * dev)5341 int ksz_switch_register(struct ksz_device *dev)
5342 {
5343 	const struct ksz_chip_data *info;
5344 	struct device_node *ports;
5345 	phy_interface_t interface;
5346 	unsigned int port_num;
5347 	int ret;
5348 	int i;
5349 
5350 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5351 						  GPIOD_OUT_LOW);
5352 	if (IS_ERR(dev->reset_gpio))
5353 		return PTR_ERR(dev->reset_gpio);
5354 
5355 	if (dev->reset_gpio) {
5356 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5357 		usleep_range(10000, 12000);
5358 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5359 		msleep(100);
5360 	}
5361 
5362 	mutex_init(&dev->dev_mutex);
5363 	mutex_init(&dev->regmap_mutex);
5364 	mutex_init(&dev->alu_mutex);
5365 	mutex_init(&dev->vlan_mutex);
5366 
5367 	ret = ksz_switch_detect(dev);
5368 	if (ret)
5369 		return ret;
5370 
5371 	info = ksz_lookup_info(dev->chip_id);
5372 	if (!info)
5373 		return -ENODEV;
5374 
5375 	/* Update the compatible info with the probed one */
5376 	dev->info = info;
5377 
5378 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5379 		 dev->info->dev_name, dev->chip_rev);
5380 
5381 	ret = ksz_check_device_id(dev);
5382 	if (ret)
5383 		return ret;
5384 
5385 	dev->dev_ops = dev->info->ops;
5386 
5387 	ret = dev->dev_ops->init(dev);
5388 	if (ret)
5389 		return ret;
5390 
5391 	dev->ports = devm_kzalloc(dev->dev,
5392 				  dev->info->port_cnt * sizeof(struct ksz_port),
5393 				  GFP_KERNEL);
5394 	if (!dev->ports)
5395 		return -ENOMEM;
5396 
5397 	for (i = 0; i < dev->info->port_cnt; i++) {
5398 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5399 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5400 		dev->ports[i].mib.counters =
5401 			devm_kzalloc(dev->dev,
5402 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5403 				     GFP_KERNEL);
5404 		if (!dev->ports[i].mib.counters)
5405 			return -ENOMEM;
5406 
5407 		dev->ports[i].ksz_dev = dev;
5408 		dev->ports[i].num = i;
5409 	}
5410 
5411 	/* set the real number of ports */
5412 	dev->ds->num_ports = dev->info->port_cnt;
5413 
5414 	/* set the phylink ops */
5415 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5416 
5417 	/* Host port interface will be self detected, or specifically set in
5418 	 * device tree.
5419 	 */
5420 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5421 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5422 	if (dev->dev->of_node) {
5423 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5424 		if (ret == 0)
5425 			dev->compat_interface = interface;
5426 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5427 		if (!ports)
5428 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5429 		if (ports) {
5430 			for_each_available_child_of_node_scoped(ports, port) {
5431 				if (of_property_read_u32(port, "reg",
5432 							 &port_num))
5433 					continue;
5434 				if (!(dev->port_mask & BIT(port_num))) {
5435 					of_node_put(ports);
5436 					return -EINVAL;
5437 				}
5438 				of_get_phy_mode(port,
5439 						&dev->ports[port_num].interface);
5440 
5441 				ksz_parse_rgmii_delay(dev, port_num, port);
5442 				dev->ports[port_num].fiber =
5443 					of_property_read_bool(port,
5444 							      "micrel,fiber-mode");
5445 			}
5446 			of_node_put(ports);
5447 		}
5448 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5449 							 "microchip,synclko-125");
5450 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5451 							     "microchip,synclko-disable");
5452 		if (dev->synclko_125 && dev->synclko_disable) {
5453 			dev_err(dev->dev, "inconsistent synclko settings\n");
5454 			return -EINVAL;
5455 		}
5456 
5457 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5458 							   "wakeup-source");
5459 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5460 							     "microchip,pme-active-high");
5461 	}
5462 
5463 	ret = dsa_register_switch(dev->ds);
5464 	if (ret) {
5465 		dev->dev_ops->exit(dev);
5466 		return ret;
5467 	}
5468 
5469 	/* Read MIB counters every 30 seconds to avoid overflow. */
5470 	dev->mib_read_interval = msecs_to_jiffies(5000);
5471 
5472 	/* Start the MIB timer. */
5473 	schedule_delayed_work(&dev->mib_read, 0);
5474 
5475 	return ret;
5476 }
5477 EXPORT_SYMBOL(ksz_switch_register);
5478 
ksz_switch_remove(struct ksz_device * dev)5479 void ksz_switch_remove(struct ksz_device *dev)
5480 {
5481 	/* timer started */
5482 	if (dev->mib_read_interval) {
5483 		dev->mib_read_interval = 0;
5484 		cancel_delayed_work_sync(&dev->mib_read);
5485 	}
5486 
5487 	dev->dev_ops->exit(dev);
5488 	dsa_unregister_switch(dev->ds);
5489 
5490 	if (dev->reset_gpio)
5491 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5492 
5493 }
5494 EXPORT_SYMBOL(ksz_switch_remove);
5495 
5496 #ifdef CONFIG_PM_SLEEP
ksz_switch_suspend(struct device * dev)5497 int ksz_switch_suspend(struct device *dev)
5498 {
5499 	struct ksz_device *priv = dev_get_drvdata(dev);
5500 
5501 	return dsa_switch_suspend(priv->ds);
5502 }
5503 EXPORT_SYMBOL(ksz_switch_suspend);
5504 
ksz_switch_resume(struct device * dev)5505 int ksz_switch_resume(struct device *dev)
5506 {
5507 	struct ksz_device *priv = dev_get_drvdata(dev);
5508 
5509 	return dsa_switch_resume(priv->ds);
5510 }
5511 EXPORT_SYMBOL(ksz_switch_resume);
5512 #endif
5513 
5514 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5515 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5516 MODULE_LICENSE("GPL");
5517