1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 unsigned long highest_memmap_pfn;
46 int heap_stack_gap = 0;
47
48 atomic_long_t mmap_pages_allocated;
49
50
51 /* list of mapped, potentially shareable regions */
52 static struct kmem_cache *vm_region_jar;
53 struct rb_root nommu_region_tree = RB_ROOT;
54 DECLARE_RWSEM(nommu_region_sem);
55
56 const struct vm_operations_struct generic_file_vm_ops = {
57 };
58
59 /*
60 * Return the total memory allocated for this pointer, not
61 * just what the caller asked for.
62 *
63 * Doesn't have to be accurate, i.e. may have races.
64 */
kobjsize(const void * objp)65 unsigned int kobjsize(const void *objp)
66 {
67 struct page *page;
68
69 /*
70 * If the object we have should not have ksize performed on it,
71 * return size of 0
72 */
73 if (!objp || !virt_addr_valid(objp))
74 return 0;
75
76 page = virt_to_head_page(objp);
77
78 /*
79 * If the allocator sets PageSlab, we know the pointer came from
80 * kmalloc().
81 */
82 if (PageSlab(page))
83 return ksize(objp);
84
85 /*
86 * If it's not a compound page, see if we have a matching VMA
87 * region. This test is intentionally done in reverse order,
88 * so if there's no VMA, we still fall through and hand back
89 * PAGE_SIZE for 0-order pages.
90 */
91 if (!PageCompound(page)) {
92 struct vm_area_struct *vma;
93
94 vma = find_vma(current->mm, (unsigned long)objp);
95 if (vma)
96 return vma->vm_end - vma->vm_start;
97 }
98
99 /*
100 * The ksize() function is only guaranteed to work for pointers
101 * returned by kmalloc(). So handle arbitrary pointers here.
102 */
103 return page_size(page);
104 }
105
vfree(const void * addr)106 void vfree(const void *addr)
107 {
108 kfree(addr);
109 }
110 EXPORT_SYMBOL(vfree);
111
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
113 {
114 /*
115 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
116 * returns only a logical address.
117 */
118 return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
119 }
120 EXPORT_SYMBOL(__vmalloc_noprof);
121
vrealloc_noprof(const void * p,size_t size,gfp_t flags)122 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
123 {
124 return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
125 }
126
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)127 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
128 unsigned long start, unsigned long end, gfp_t gfp_mask,
129 pgprot_t prot, unsigned long vm_flags, int node,
130 const void *caller)
131 {
132 return __vmalloc_noprof(size, gfp_mask);
133 }
134
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)135 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
136 int node, const void *caller)
137 {
138 return __vmalloc_noprof(size, gfp_mask);
139 }
140
__vmalloc_user_flags(unsigned long size,gfp_t flags)141 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
142 {
143 void *ret;
144
145 ret = __vmalloc(size, flags);
146 if (ret) {
147 struct vm_area_struct *vma;
148
149 mmap_write_lock(current->mm);
150 vma = find_vma(current->mm, (unsigned long)ret);
151 if (vma)
152 vm_flags_set(vma, VM_USERMAP);
153 mmap_write_unlock(current->mm);
154 }
155
156 return ret;
157 }
158
vmalloc_user_noprof(unsigned long size)159 void *vmalloc_user_noprof(unsigned long size)
160 {
161 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
162 }
163 EXPORT_SYMBOL(vmalloc_user_noprof);
164
vmalloc_to_page(const void * addr)165 struct page *vmalloc_to_page(const void *addr)
166 {
167 return virt_to_page(addr);
168 }
169 EXPORT_SYMBOL(vmalloc_to_page);
170
vmalloc_to_pfn(const void * addr)171 unsigned long vmalloc_to_pfn(const void *addr)
172 {
173 return page_to_pfn(virt_to_page(addr));
174 }
175 EXPORT_SYMBOL(vmalloc_to_pfn);
176
vread_iter(struct iov_iter * iter,const char * addr,size_t count)177 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
178 {
179 /* Don't allow overflow */
180 if ((unsigned long) addr + count < count)
181 count = -(unsigned long) addr;
182
183 return copy_to_iter(addr, count, iter);
184 }
185
186 /*
187 * vmalloc - allocate virtually contiguous memory
188 *
189 * @size: allocation size
190 *
191 * Allocate enough pages to cover @size from the page level
192 * allocator and map them into contiguous kernel virtual space.
193 *
194 * For tight control over page level allocator and protection flags
195 * use __vmalloc() instead.
196 */
vmalloc_noprof(unsigned long size)197 void *vmalloc_noprof(unsigned long size)
198 {
199 return __vmalloc_noprof(size, GFP_KERNEL);
200 }
201 EXPORT_SYMBOL(vmalloc_noprof);
202
203 /*
204 * vmalloc_huge_node - allocate virtually contiguous memory, on a node
205 *
206 * @size: allocation size
207 * @gfp_mask: flags for the page level allocator
208 * @node: node to use for allocation or NUMA_NO_NODE
209 *
210 * Allocate enough pages to cover @size from the page level
211 * allocator and map them into contiguous kernel virtual space.
212 *
213 * Due to NOMMU implications the node argument and HUGE page attribute is
214 * ignored.
215 */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)216 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
217 {
218 return __vmalloc_noprof(size, gfp_mask);
219 }
220
221 /*
222 * vzalloc - allocate virtually contiguous memory with zero fill
223 *
224 * @size: allocation size
225 *
226 * Allocate enough pages to cover @size from the page level
227 * allocator and map them into contiguous kernel virtual space.
228 * The memory allocated is set to zero.
229 *
230 * For tight control over page level allocator and protection flags
231 * use __vmalloc() instead.
232 */
vzalloc_noprof(unsigned long size)233 void *vzalloc_noprof(unsigned long size)
234 {
235 return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
236 }
237 EXPORT_SYMBOL(vzalloc_noprof);
238
239 /**
240 * vmalloc_node - allocate memory on a specific node
241 * @size: allocation size
242 * @node: numa node
243 *
244 * Allocate enough pages to cover @size from the page level
245 * allocator and map them into contiguous kernel virtual space.
246 *
247 * For tight control over page level allocator and protection flags
248 * use __vmalloc() instead.
249 */
vmalloc_node_noprof(unsigned long size,int node)250 void *vmalloc_node_noprof(unsigned long size, int node)
251 {
252 return vmalloc_noprof(size);
253 }
254 EXPORT_SYMBOL(vmalloc_node_noprof);
255
256 /**
257 * vzalloc_node - allocate memory on a specific node with zero fill
258 * @size: allocation size
259 * @node: numa node
260 *
261 * Allocate enough pages to cover @size from the page level
262 * allocator and map them into contiguous kernel virtual space.
263 * The memory allocated is set to zero.
264 *
265 * For tight control over page level allocator and protection flags
266 * use __vmalloc() instead.
267 */
vzalloc_node_noprof(unsigned long size,int node)268 void *vzalloc_node_noprof(unsigned long size, int node)
269 {
270 return vzalloc_noprof(size);
271 }
272 EXPORT_SYMBOL(vzalloc_node_noprof);
273
274 /**
275 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
276 * @size: allocation size
277 *
278 * Allocate enough 32bit PA addressable pages to cover @size from the
279 * page level allocator and map them into contiguous kernel virtual space.
280 */
vmalloc_32_noprof(unsigned long size)281 void *vmalloc_32_noprof(unsigned long size)
282 {
283 return __vmalloc_noprof(size, GFP_KERNEL);
284 }
285 EXPORT_SYMBOL(vmalloc_32_noprof);
286
287 /**
288 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
289 * @size: allocation size
290 *
291 * The resulting memory area is 32bit addressable and zeroed so it can be
292 * mapped to userspace without leaking data.
293 *
294 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
295 * remap_vmalloc_range() are permissible.
296 */
vmalloc_32_user_noprof(unsigned long size)297 void *vmalloc_32_user_noprof(unsigned long size)
298 {
299 /*
300 * We'll have to sort out the ZONE_DMA bits for 64-bit,
301 * but for now this can simply use vmalloc_user() directly.
302 */
303 return vmalloc_user_noprof(size);
304 }
305 EXPORT_SYMBOL(vmalloc_32_user_noprof);
306
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)307 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
308 {
309 BUG();
310 return NULL;
311 }
312 EXPORT_SYMBOL(vmap);
313
vunmap(const void * addr)314 void vunmap(const void *addr)
315 {
316 BUG();
317 }
318 EXPORT_SYMBOL(vunmap);
319
vm_map_ram(struct page ** pages,unsigned int count,int node)320 void *vm_map_ram(struct page **pages, unsigned int count, int node)
321 {
322 BUG();
323 return NULL;
324 }
325 EXPORT_SYMBOL(vm_map_ram);
326
vm_unmap_ram(const void * mem,unsigned int count)327 void vm_unmap_ram(const void *mem, unsigned int count)
328 {
329 BUG();
330 }
331 EXPORT_SYMBOL(vm_unmap_ram);
332
vm_unmap_aliases(void)333 void vm_unmap_aliases(void)
334 {
335 }
336 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
337
free_vm_area(struct vm_struct * area)338 void free_vm_area(struct vm_struct *area)
339 {
340 BUG();
341 }
342 EXPORT_SYMBOL_GPL(free_vm_area);
343
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)344 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
345 struct page *page)
346 {
347 return -EINVAL;
348 }
349 EXPORT_SYMBOL(vm_insert_page);
350
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)351 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
352 struct page **pages, unsigned long *num)
353 {
354 return -EINVAL;
355 }
356 EXPORT_SYMBOL(vm_insert_pages);
357
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)358 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
359 unsigned long num)
360 {
361 return -EINVAL;
362 }
363 EXPORT_SYMBOL(vm_map_pages);
364
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)365 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
366 unsigned long num)
367 {
368 return -EINVAL;
369 }
370 EXPORT_SYMBOL(vm_map_pages_zero);
371
372 /*
373 * sys_brk() for the most part doesn't need the global kernel
374 * lock, except when an application is doing something nasty
375 * like trying to un-brk an area that has already been mapped
376 * to a regular file. in this case, the unmapping will need
377 * to invoke file system routines that need the global lock.
378 */
SYSCALL_DEFINE1(brk,unsigned long,brk)379 SYSCALL_DEFINE1(brk, unsigned long, brk)
380 {
381 struct mm_struct *mm = current->mm;
382
383 if (brk < mm->start_brk || brk > mm->context.end_brk)
384 return mm->brk;
385
386 if (mm->brk == brk)
387 return mm->brk;
388
389 /*
390 * Always allow shrinking brk
391 */
392 if (brk <= mm->brk) {
393 mm->brk = brk;
394 return brk;
395 }
396
397 /*
398 * Ok, looks good - let it rip.
399 */
400 flush_icache_user_range(mm->brk, brk);
401 return mm->brk = brk;
402 }
403
404 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
405
406 static const struct ctl_table nommu_table[] = {
407 {
408 .procname = "nr_trim_pages",
409 .data = &sysctl_nr_trim_pages,
410 .maxlen = sizeof(sysctl_nr_trim_pages),
411 .mode = 0644,
412 .proc_handler = proc_dointvec_minmax,
413 .extra1 = SYSCTL_ZERO,
414 },
415 };
416
417 /*
418 * initialise the percpu counter for VM and region record slabs, initialise VMA
419 * state.
420 */
mmap_init(void)421 void __init mmap_init(void)
422 {
423 int ret;
424
425 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
426 VM_BUG_ON(ret);
427 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
428 register_sysctl_init("vm", nommu_table);
429 vma_state_init();
430 }
431
432 /*
433 * validate the region tree
434 * - the caller must hold the region lock
435 */
436 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)437 static noinline void validate_nommu_regions(void)
438 {
439 struct vm_region *region, *last;
440 struct rb_node *p, *lastp;
441
442 lastp = rb_first(&nommu_region_tree);
443 if (!lastp)
444 return;
445
446 last = rb_entry(lastp, struct vm_region, vm_rb);
447 BUG_ON(last->vm_end <= last->vm_start);
448 BUG_ON(last->vm_top < last->vm_end);
449
450 while ((p = rb_next(lastp))) {
451 region = rb_entry(p, struct vm_region, vm_rb);
452 last = rb_entry(lastp, struct vm_region, vm_rb);
453
454 BUG_ON(region->vm_end <= region->vm_start);
455 BUG_ON(region->vm_top < region->vm_end);
456 BUG_ON(region->vm_start < last->vm_top);
457
458 lastp = p;
459 }
460 }
461 #else
validate_nommu_regions(void)462 static void validate_nommu_regions(void)
463 {
464 }
465 #endif
466
467 /*
468 * add a region into the global tree
469 */
add_nommu_region(struct vm_region * region)470 static void add_nommu_region(struct vm_region *region)
471 {
472 struct vm_region *pregion;
473 struct rb_node **p, *parent;
474
475 validate_nommu_regions();
476
477 parent = NULL;
478 p = &nommu_region_tree.rb_node;
479 while (*p) {
480 parent = *p;
481 pregion = rb_entry(parent, struct vm_region, vm_rb);
482 if (region->vm_start < pregion->vm_start)
483 p = &(*p)->rb_left;
484 else if (region->vm_start > pregion->vm_start)
485 p = &(*p)->rb_right;
486 else if (pregion == region)
487 return;
488 else
489 BUG();
490 }
491
492 rb_link_node(®ion->vm_rb, parent, p);
493 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
494
495 validate_nommu_regions();
496 }
497
498 /*
499 * delete a region from the global tree
500 */
delete_nommu_region(struct vm_region * region)501 static void delete_nommu_region(struct vm_region *region)
502 {
503 BUG_ON(!nommu_region_tree.rb_node);
504
505 validate_nommu_regions();
506 rb_erase(®ion->vm_rb, &nommu_region_tree);
507 validate_nommu_regions();
508 }
509
510 /*
511 * free a contiguous series of pages
512 */
free_page_series(unsigned long from,unsigned long to)513 static void free_page_series(unsigned long from, unsigned long to)
514 {
515 for (; from < to; from += PAGE_SIZE) {
516 struct page *page = virt_to_page((void *)from);
517
518 atomic_long_dec(&mmap_pages_allocated);
519 put_page(page);
520 }
521 }
522
523 /*
524 * release a reference to a region
525 * - the caller must hold the region semaphore for writing, which this releases
526 * - the region may not have been added to the tree yet, in which case vm_top
527 * will equal vm_start
528 */
__put_nommu_region(struct vm_region * region)529 static void __put_nommu_region(struct vm_region *region)
530 __releases(nommu_region_sem)
531 {
532 BUG_ON(!nommu_region_tree.rb_node);
533
534 if (--region->vm_usage == 0) {
535 if (region->vm_top > region->vm_start)
536 delete_nommu_region(region);
537 up_write(&nommu_region_sem);
538
539 if (region->vm_file)
540 fput(region->vm_file);
541
542 /* IO memory and memory shared directly out of the pagecache
543 * from ramfs/tmpfs mustn't be released here */
544 if (region->vm_flags & VM_MAPPED_COPY)
545 free_page_series(region->vm_start, region->vm_top);
546 kmem_cache_free(vm_region_jar, region);
547 } else {
548 up_write(&nommu_region_sem);
549 }
550 }
551
552 /*
553 * release a reference to a region
554 */
put_nommu_region(struct vm_region * region)555 static void put_nommu_region(struct vm_region *region)
556 {
557 down_write(&nommu_region_sem);
558 __put_nommu_region(region);
559 }
560
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)561 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
562 {
563 vma->vm_mm = mm;
564
565 /* add the VMA to the mapping */
566 if (vma->vm_file) {
567 struct address_space *mapping = vma->vm_file->f_mapping;
568
569 i_mmap_lock_write(mapping);
570 flush_dcache_mmap_lock(mapping);
571 vma_interval_tree_insert(vma, &mapping->i_mmap);
572 flush_dcache_mmap_unlock(mapping);
573 i_mmap_unlock_write(mapping);
574 }
575 }
576
cleanup_vma_from_mm(struct vm_area_struct * vma)577 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
578 {
579 vma->vm_mm->map_count--;
580 /* remove the VMA from the mapping */
581 if (vma->vm_file) {
582 struct address_space *mapping;
583 mapping = vma->vm_file->f_mapping;
584
585 i_mmap_lock_write(mapping);
586 flush_dcache_mmap_lock(mapping);
587 vma_interval_tree_remove(vma, &mapping->i_mmap);
588 flush_dcache_mmap_unlock(mapping);
589 i_mmap_unlock_write(mapping);
590 }
591 }
592
593 /*
594 * delete a VMA from its owning mm_struct and address space
595 */
delete_vma_from_mm(struct vm_area_struct * vma)596 static int delete_vma_from_mm(struct vm_area_struct *vma)
597 {
598 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
599
600 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
601 if (vma_iter_prealloc(&vmi, NULL)) {
602 pr_warn("Allocation of vma tree for process %d failed\n",
603 current->pid);
604 return -ENOMEM;
605 }
606 cleanup_vma_from_mm(vma);
607
608 /* remove from the MM's tree and list */
609 vma_iter_clear(&vmi);
610 return 0;
611 }
612 /*
613 * destroy a VMA record
614 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)615 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
616 {
617 vma_close(vma);
618 if (vma->vm_file)
619 fput(vma->vm_file);
620 put_nommu_region(vma->vm_region);
621 vm_area_free(vma);
622 }
623
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)624 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
625 unsigned long start_addr,
626 unsigned long end_addr)
627 {
628 unsigned long index = start_addr;
629
630 mmap_assert_locked(mm);
631 return mt_find(&mm->mm_mt, &index, end_addr - 1);
632 }
633 EXPORT_SYMBOL(find_vma_intersection);
634
635 /*
636 * look up the first VMA in which addr resides, NULL if none
637 * - should be called with mm->mmap_lock at least held readlocked
638 */
find_vma(struct mm_struct * mm,unsigned long addr)639 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
640 {
641 VMA_ITERATOR(vmi, mm, addr);
642
643 return vma_iter_load(&vmi);
644 }
645 EXPORT_SYMBOL(find_vma);
646
647 /*
648 * expand a stack to a given address
649 * - not supported under NOMMU conditions
650 */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)651 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
652 {
653 return -ENOMEM;
654 }
655
expand_stack(struct mm_struct * mm,unsigned long addr)656 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
657 {
658 mmap_read_unlock(mm);
659 return NULL;
660 }
661
662 /*
663 * look up the first VMA exactly that exactly matches addr
664 * - should be called with mm->mmap_lock at least held readlocked
665 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)666 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
667 unsigned long addr,
668 unsigned long len)
669 {
670 struct vm_area_struct *vma;
671 unsigned long end = addr + len;
672 VMA_ITERATOR(vmi, mm, addr);
673
674 vma = vma_iter_load(&vmi);
675 if (!vma)
676 return NULL;
677 if (vma->vm_start != addr)
678 return NULL;
679 if (vma->vm_end != end)
680 return NULL;
681
682 return vma;
683 }
684
685 /*
686 * determine whether a mapping should be permitted and, if so, what sort of
687 * mapping we're capable of supporting
688 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)689 static int validate_mmap_request(struct file *file,
690 unsigned long addr,
691 unsigned long len,
692 unsigned long prot,
693 unsigned long flags,
694 unsigned long pgoff,
695 unsigned long *_capabilities)
696 {
697 unsigned long capabilities, rlen;
698 int ret;
699
700 /* do the simple checks first */
701 if (flags & MAP_FIXED)
702 return -EINVAL;
703
704 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
705 (flags & MAP_TYPE) != MAP_SHARED)
706 return -EINVAL;
707
708 if (!len)
709 return -EINVAL;
710
711 /* Careful about overflows.. */
712 rlen = PAGE_ALIGN(len);
713 if (!rlen || rlen > TASK_SIZE)
714 return -ENOMEM;
715
716 /* offset overflow? */
717 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
718 return -EOVERFLOW;
719
720 if (file) {
721 /* files must support mmap */
722 if (!file->f_op->mmap)
723 return -ENODEV;
724
725 /* work out if what we've got could possibly be shared
726 * - we support chardevs that provide their own "memory"
727 * - we support files/blockdevs that are memory backed
728 */
729 if (file->f_op->mmap_capabilities) {
730 capabilities = file->f_op->mmap_capabilities(file);
731 } else {
732 /* no explicit capabilities set, so assume some
733 * defaults */
734 switch (file_inode(file)->i_mode & S_IFMT) {
735 case S_IFREG:
736 case S_IFBLK:
737 capabilities = NOMMU_MAP_COPY;
738 break;
739
740 case S_IFCHR:
741 capabilities =
742 NOMMU_MAP_DIRECT |
743 NOMMU_MAP_READ |
744 NOMMU_MAP_WRITE;
745 break;
746
747 default:
748 return -EINVAL;
749 }
750 }
751
752 /* eliminate any capabilities that we can't support on this
753 * device */
754 if (!file->f_op->get_unmapped_area)
755 capabilities &= ~NOMMU_MAP_DIRECT;
756 if (!(file->f_mode & FMODE_CAN_READ))
757 capabilities &= ~NOMMU_MAP_COPY;
758
759 /* The file shall have been opened with read permission. */
760 if (!(file->f_mode & FMODE_READ))
761 return -EACCES;
762
763 if (flags & MAP_SHARED) {
764 /* do checks for writing, appending and locking */
765 if ((prot & PROT_WRITE) &&
766 !(file->f_mode & FMODE_WRITE))
767 return -EACCES;
768
769 if (IS_APPEND(file_inode(file)) &&
770 (file->f_mode & FMODE_WRITE))
771 return -EACCES;
772
773 if (!(capabilities & NOMMU_MAP_DIRECT))
774 return -ENODEV;
775
776 /* we mustn't privatise shared mappings */
777 capabilities &= ~NOMMU_MAP_COPY;
778 } else {
779 /* we're going to read the file into private memory we
780 * allocate */
781 if (!(capabilities & NOMMU_MAP_COPY))
782 return -ENODEV;
783
784 /* we don't permit a private writable mapping to be
785 * shared with the backing device */
786 if (prot & PROT_WRITE)
787 capabilities &= ~NOMMU_MAP_DIRECT;
788 }
789
790 if (capabilities & NOMMU_MAP_DIRECT) {
791 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
792 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
793 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
794 ) {
795 capabilities &= ~NOMMU_MAP_DIRECT;
796 if (flags & MAP_SHARED) {
797 pr_warn("MAP_SHARED not completely supported on !MMU\n");
798 return -EINVAL;
799 }
800 }
801 }
802
803 /* handle executable mappings and implied executable
804 * mappings */
805 if (path_noexec(&file->f_path)) {
806 if (prot & PROT_EXEC)
807 return -EPERM;
808 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
809 /* handle implication of PROT_EXEC by PROT_READ */
810 if (current->personality & READ_IMPLIES_EXEC) {
811 if (capabilities & NOMMU_MAP_EXEC)
812 prot |= PROT_EXEC;
813 }
814 } else if ((prot & PROT_READ) &&
815 (prot & PROT_EXEC) &&
816 !(capabilities & NOMMU_MAP_EXEC)
817 ) {
818 /* backing file is not executable, try to copy */
819 capabilities &= ~NOMMU_MAP_DIRECT;
820 }
821 } else {
822 /* anonymous mappings are always memory backed and can be
823 * privately mapped
824 */
825 capabilities = NOMMU_MAP_COPY;
826
827 /* handle PROT_EXEC implication by PROT_READ */
828 if ((prot & PROT_READ) &&
829 (current->personality & READ_IMPLIES_EXEC))
830 prot |= PROT_EXEC;
831 }
832
833 /* allow the security API to have its say */
834 ret = security_mmap_addr(addr);
835 if (ret < 0)
836 return ret;
837
838 /* looks okay */
839 *_capabilities = capabilities;
840 return 0;
841 }
842
843 /*
844 * we've determined that we can make the mapping, now translate what we
845 * now know into VMA flags
846 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)847 static unsigned long determine_vm_flags(struct file *file,
848 unsigned long prot,
849 unsigned long flags,
850 unsigned long capabilities)
851 {
852 unsigned long vm_flags;
853
854 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
855
856 if (!file) {
857 /*
858 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
859 * there is no fork().
860 */
861 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
862 } else if (flags & MAP_PRIVATE) {
863 /* MAP_PRIVATE file mapping */
864 if (capabilities & NOMMU_MAP_DIRECT)
865 vm_flags |= (capabilities & NOMMU_VMFLAGS);
866 else
867 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
868
869 if (!(prot & PROT_WRITE) && !current->ptrace)
870 /*
871 * R/O private file mapping which cannot be used to
872 * modify memory, especially also not via active ptrace
873 * (e.g., set breakpoints) or later by upgrading
874 * permissions (no mprotect()). We can try overlaying
875 * the file mapping, which will work e.g., on chardevs,
876 * ramfs/tmpfs/shmfs and romfs/cramf.
877 */
878 vm_flags |= VM_MAYOVERLAY;
879 } else {
880 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
881 vm_flags |= VM_SHARED | VM_MAYSHARE |
882 (capabilities & NOMMU_VMFLAGS);
883 }
884
885 return vm_flags;
886 }
887
888 /*
889 * set up a shared mapping on a file (the driver or filesystem provides and
890 * pins the storage)
891 */
do_mmap_shared_file(struct vm_area_struct * vma)892 static int do_mmap_shared_file(struct vm_area_struct *vma)
893 {
894 int ret;
895
896 ret = mmap_file(vma->vm_file, vma);
897 if (ret == 0) {
898 vma->vm_region->vm_top = vma->vm_region->vm_end;
899 return 0;
900 }
901 if (ret != -ENOSYS)
902 return ret;
903
904 /* getting -ENOSYS indicates that direct mmap isn't possible (as
905 * opposed to tried but failed) so we can only give a suitable error as
906 * it's not possible to make a private copy if MAP_SHARED was given */
907 return -ENODEV;
908 }
909
910 /*
911 * set up a private mapping or an anonymous shared mapping
912 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)913 static int do_mmap_private(struct vm_area_struct *vma,
914 struct vm_region *region,
915 unsigned long len,
916 unsigned long capabilities)
917 {
918 unsigned long total, point;
919 void *base;
920 int ret, order;
921
922 /*
923 * Invoke the file's mapping function so that it can keep track of
924 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
925 * it may attempt to share, which will make is_nommu_shared_mapping()
926 * happy.
927 */
928 if (capabilities & NOMMU_MAP_DIRECT) {
929 ret = mmap_file(vma->vm_file, vma);
930 /* shouldn't return success if we're not sharing */
931 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
932 ret = -ENOSYS;
933 if (ret == 0) {
934 vma->vm_region->vm_top = vma->vm_region->vm_end;
935 return 0;
936 }
937 if (ret != -ENOSYS)
938 return ret;
939
940 /* getting an ENOSYS error indicates that direct mmap isn't
941 * possible (as opposed to tried but failed) so we'll try to
942 * make a private copy of the data and map that instead */
943 }
944
945
946 /* allocate some memory to hold the mapping
947 * - note that this may not return a page-aligned address if the object
948 * we're allocating is smaller than a page
949 */
950 order = get_order(len);
951 total = 1 << order;
952 point = len >> PAGE_SHIFT;
953
954 /* we don't want to allocate a power-of-2 sized page set */
955 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
956 total = point;
957
958 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
959 if (!base)
960 goto enomem;
961
962 atomic_long_add(total, &mmap_pages_allocated);
963
964 vm_flags_set(vma, VM_MAPPED_COPY);
965 region->vm_flags = vma->vm_flags;
966 region->vm_start = (unsigned long) base;
967 region->vm_end = region->vm_start + len;
968 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
969
970 vma->vm_start = region->vm_start;
971 vma->vm_end = region->vm_start + len;
972
973 if (vma->vm_file) {
974 /* read the contents of a file into the copy */
975 loff_t fpos;
976
977 fpos = vma->vm_pgoff;
978 fpos <<= PAGE_SHIFT;
979
980 ret = kernel_read(vma->vm_file, base, len, &fpos);
981 if (ret < 0)
982 goto error_free;
983
984 /* clear the last little bit */
985 if (ret < len)
986 memset(base + ret, 0, len - ret);
987
988 } else {
989 vma_set_anonymous(vma);
990 }
991
992 return 0;
993
994 error_free:
995 free_page_series(region->vm_start, region->vm_top);
996 region->vm_start = vma->vm_start = 0;
997 region->vm_end = vma->vm_end = 0;
998 region->vm_top = 0;
999 return ret;
1000
1001 enomem:
1002 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1003 len, current->pid, current->comm);
1004 show_mem();
1005 return -ENOMEM;
1006 }
1007
1008 /*
1009 * handle mapping creation for uClinux
1010 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1011 unsigned long do_mmap(struct file *file,
1012 unsigned long addr,
1013 unsigned long len,
1014 unsigned long prot,
1015 unsigned long flags,
1016 vm_flags_t vm_flags,
1017 unsigned long pgoff,
1018 unsigned long *populate,
1019 struct list_head *uf)
1020 {
1021 struct vm_area_struct *vma;
1022 struct vm_region *region;
1023 struct rb_node *rb;
1024 unsigned long capabilities, result;
1025 int ret;
1026 VMA_ITERATOR(vmi, current->mm, 0);
1027
1028 *populate = 0;
1029
1030 /* decide whether we should attempt the mapping, and if so what sort of
1031 * mapping */
1032 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1033 &capabilities);
1034 if (ret < 0)
1035 return ret;
1036
1037 /* we ignore the address hint */
1038 addr = 0;
1039 len = PAGE_ALIGN(len);
1040
1041 /* we've determined that we can make the mapping, now translate what we
1042 * now know into VMA flags */
1043 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1044
1045
1046 /* we're going to need to record the mapping */
1047 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1048 if (!region)
1049 goto error_getting_region;
1050
1051 vma = vm_area_alloc(current->mm);
1052 if (!vma)
1053 goto error_getting_vma;
1054
1055 region->vm_usage = 1;
1056 region->vm_flags = vm_flags;
1057 region->vm_pgoff = pgoff;
1058
1059 vm_flags_init(vma, vm_flags);
1060 vma->vm_pgoff = pgoff;
1061
1062 if (file) {
1063 region->vm_file = get_file(file);
1064 vma->vm_file = get_file(file);
1065 }
1066
1067 down_write(&nommu_region_sem);
1068
1069 /* if we want to share, we need to check for regions created by other
1070 * mmap() calls that overlap with our proposed mapping
1071 * - we can only share with a superset match on most regular files
1072 * - shared mappings on character devices and memory backed files are
1073 * permitted to overlap inexactly as far as we are concerned for in
1074 * these cases, sharing is handled in the driver or filesystem rather
1075 * than here
1076 */
1077 if (is_nommu_shared_mapping(vm_flags)) {
1078 struct vm_region *pregion;
1079 unsigned long pglen, rpglen, pgend, rpgend, start;
1080
1081 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1082 pgend = pgoff + pglen;
1083
1084 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1085 pregion = rb_entry(rb, struct vm_region, vm_rb);
1086
1087 if (!is_nommu_shared_mapping(pregion->vm_flags))
1088 continue;
1089
1090 /* search for overlapping mappings on the same file */
1091 if (file_inode(pregion->vm_file) !=
1092 file_inode(file))
1093 continue;
1094
1095 if (pregion->vm_pgoff >= pgend)
1096 continue;
1097
1098 rpglen = pregion->vm_end - pregion->vm_start;
1099 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1100 rpgend = pregion->vm_pgoff + rpglen;
1101 if (pgoff >= rpgend)
1102 continue;
1103
1104 /* handle inexactly overlapping matches between
1105 * mappings */
1106 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1107 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1108 /* new mapping is not a subset of the region */
1109 if (!(capabilities & NOMMU_MAP_DIRECT))
1110 goto sharing_violation;
1111 continue;
1112 }
1113
1114 /* we've found a region we can share */
1115 pregion->vm_usage++;
1116 vma->vm_region = pregion;
1117 start = pregion->vm_start;
1118 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1119 vma->vm_start = start;
1120 vma->vm_end = start + len;
1121
1122 if (pregion->vm_flags & VM_MAPPED_COPY)
1123 vm_flags_set(vma, VM_MAPPED_COPY);
1124 else {
1125 ret = do_mmap_shared_file(vma);
1126 if (ret < 0) {
1127 vma->vm_region = NULL;
1128 vma->vm_start = 0;
1129 vma->vm_end = 0;
1130 pregion->vm_usage--;
1131 pregion = NULL;
1132 goto error_just_free;
1133 }
1134 }
1135 fput(region->vm_file);
1136 kmem_cache_free(vm_region_jar, region);
1137 region = pregion;
1138 result = start;
1139 goto share;
1140 }
1141
1142 /* obtain the address at which to make a shared mapping
1143 * - this is the hook for quasi-memory character devices to
1144 * tell us the location of a shared mapping
1145 */
1146 if (capabilities & NOMMU_MAP_DIRECT) {
1147 addr = file->f_op->get_unmapped_area(file, addr, len,
1148 pgoff, flags);
1149 if (IS_ERR_VALUE(addr)) {
1150 ret = addr;
1151 if (ret != -ENOSYS)
1152 goto error_just_free;
1153
1154 /* the driver refused to tell us where to site
1155 * the mapping so we'll have to attempt to copy
1156 * it */
1157 ret = -ENODEV;
1158 if (!(capabilities & NOMMU_MAP_COPY))
1159 goto error_just_free;
1160
1161 capabilities &= ~NOMMU_MAP_DIRECT;
1162 } else {
1163 vma->vm_start = region->vm_start = addr;
1164 vma->vm_end = region->vm_end = addr + len;
1165 }
1166 }
1167 }
1168
1169 vma->vm_region = region;
1170
1171 /* set up the mapping
1172 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1173 */
1174 if (file && vma->vm_flags & VM_SHARED)
1175 ret = do_mmap_shared_file(vma);
1176 else
1177 ret = do_mmap_private(vma, region, len, capabilities);
1178 if (ret < 0)
1179 goto error_just_free;
1180 add_nommu_region(region);
1181
1182 /* clear anonymous mappings that don't ask for uninitialized data */
1183 if (!vma->vm_file &&
1184 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1185 !(flags & MAP_UNINITIALIZED)))
1186 memset((void *)region->vm_start, 0,
1187 region->vm_end - region->vm_start);
1188
1189 /* okay... we have a mapping; now we have to register it */
1190 result = vma->vm_start;
1191
1192 current->mm->total_vm += len >> PAGE_SHIFT;
1193
1194 share:
1195 BUG_ON(!vma->vm_region);
1196 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1197 if (vma_iter_prealloc(&vmi, vma))
1198 goto error_just_free;
1199
1200 setup_vma_to_mm(vma, current->mm);
1201 current->mm->map_count++;
1202 /* add the VMA to the tree */
1203 vma_iter_store_new(&vmi, vma);
1204
1205 /* we flush the region from the icache only when the first executable
1206 * mapping of it is made */
1207 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1208 flush_icache_user_range(region->vm_start, region->vm_end);
1209 region->vm_icache_flushed = true;
1210 }
1211
1212 up_write(&nommu_region_sem);
1213
1214 return result;
1215
1216 error_just_free:
1217 up_write(&nommu_region_sem);
1218 error:
1219 vma_iter_free(&vmi);
1220 if (region->vm_file)
1221 fput(region->vm_file);
1222 kmem_cache_free(vm_region_jar, region);
1223 if (vma->vm_file)
1224 fput(vma->vm_file);
1225 vm_area_free(vma);
1226 return ret;
1227
1228 sharing_violation:
1229 up_write(&nommu_region_sem);
1230 pr_warn("Attempt to share mismatched mappings\n");
1231 ret = -EINVAL;
1232 goto error;
1233
1234 error_getting_vma:
1235 kmem_cache_free(vm_region_jar, region);
1236 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1237 len, current->pid);
1238 show_mem();
1239 return -ENOMEM;
1240
1241 error_getting_region:
1242 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1243 len, current->pid);
1244 show_mem();
1245 return -ENOMEM;
1246 }
1247
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1248 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1249 unsigned long prot, unsigned long flags,
1250 unsigned long fd, unsigned long pgoff)
1251 {
1252 struct file *file = NULL;
1253 unsigned long retval = -EBADF;
1254
1255 audit_mmap_fd(fd, flags);
1256 if (!(flags & MAP_ANONYMOUS)) {
1257 file = fget(fd);
1258 if (!file)
1259 goto out;
1260 }
1261
1262 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1263
1264 if (file)
1265 fput(file);
1266 out:
1267 return retval;
1268 }
1269
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1270 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1271 unsigned long, prot, unsigned long, flags,
1272 unsigned long, fd, unsigned long, pgoff)
1273 {
1274 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1275 }
1276
1277 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1278 struct mmap_arg_struct {
1279 unsigned long addr;
1280 unsigned long len;
1281 unsigned long prot;
1282 unsigned long flags;
1283 unsigned long fd;
1284 unsigned long offset;
1285 };
1286
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1287 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1288 {
1289 struct mmap_arg_struct a;
1290
1291 if (copy_from_user(&a, arg, sizeof(a)))
1292 return -EFAULT;
1293 if (offset_in_page(a.offset))
1294 return -EINVAL;
1295
1296 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1297 a.offset >> PAGE_SHIFT);
1298 }
1299 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1300
1301 /*
1302 * split a vma into two pieces at address 'addr', a new vma is allocated either
1303 * for the first part or the tail.
1304 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1305 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1306 unsigned long addr, int new_below)
1307 {
1308 struct vm_area_struct *new;
1309 struct vm_region *region;
1310 unsigned long npages;
1311 struct mm_struct *mm;
1312
1313 /* we're only permitted to split anonymous regions (these should have
1314 * only a single usage on the region) */
1315 if (vma->vm_file)
1316 return -ENOMEM;
1317
1318 mm = vma->vm_mm;
1319 if (mm->map_count >= sysctl_max_map_count)
1320 return -ENOMEM;
1321
1322 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1323 if (!region)
1324 return -ENOMEM;
1325
1326 new = vm_area_dup(vma);
1327 if (!new)
1328 goto err_vma_dup;
1329
1330 /* most fields are the same, copy all, and then fixup */
1331 *region = *vma->vm_region;
1332 new->vm_region = region;
1333
1334 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1335
1336 if (new_below) {
1337 region->vm_top = region->vm_end = new->vm_end = addr;
1338 } else {
1339 region->vm_start = new->vm_start = addr;
1340 region->vm_pgoff = new->vm_pgoff += npages;
1341 }
1342
1343 vma_iter_config(vmi, new->vm_start, new->vm_end);
1344 if (vma_iter_prealloc(vmi, vma)) {
1345 pr_warn("Allocation of vma tree for process %d failed\n",
1346 current->pid);
1347 goto err_vmi_preallocate;
1348 }
1349
1350 if (new->vm_ops && new->vm_ops->open)
1351 new->vm_ops->open(new);
1352
1353 down_write(&nommu_region_sem);
1354 delete_nommu_region(vma->vm_region);
1355 if (new_below) {
1356 vma->vm_region->vm_start = vma->vm_start = addr;
1357 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1358 } else {
1359 vma->vm_region->vm_end = vma->vm_end = addr;
1360 vma->vm_region->vm_top = addr;
1361 }
1362 add_nommu_region(vma->vm_region);
1363 add_nommu_region(new->vm_region);
1364 up_write(&nommu_region_sem);
1365
1366 setup_vma_to_mm(vma, mm);
1367 setup_vma_to_mm(new, mm);
1368 vma_iter_store_new(vmi, new);
1369 mm->map_count++;
1370 return 0;
1371
1372 err_vmi_preallocate:
1373 vm_area_free(new);
1374 err_vma_dup:
1375 kmem_cache_free(vm_region_jar, region);
1376 return -ENOMEM;
1377 }
1378
1379 /*
1380 * shrink a VMA by removing the specified chunk from either the beginning or
1381 * the end
1382 */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1383 static int vmi_shrink_vma(struct vma_iterator *vmi,
1384 struct vm_area_struct *vma,
1385 unsigned long from, unsigned long to)
1386 {
1387 struct vm_region *region;
1388
1389 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1390 * and list */
1391 if (from > vma->vm_start) {
1392 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1393 return -ENOMEM;
1394 vma->vm_end = from;
1395 } else {
1396 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1397 return -ENOMEM;
1398 vma->vm_start = to;
1399 }
1400
1401 /* cut the backing region down to size */
1402 region = vma->vm_region;
1403 BUG_ON(region->vm_usage != 1);
1404
1405 down_write(&nommu_region_sem);
1406 delete_nommu_region(region);
1407 if (from > region->vm_start) {
1408 to = region->vm_top;
1409 region->vm_top = region->vm_end = from;
1410 } else {
1411 region->vm_start = to;
1412 }
1413 add_nommu_region(region);
1414 up_write(&nommu_region_sem);
1415
1416 free_page_series(from, to);
1417 return 0;
1418 }
1419
1420 /*
1421 * release a mapping
1422 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1423 * VMA, though it need not cover the whole VMA
1424 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1425 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1426 {
1427 VMA_ITERATOR(vmi, mm, start);
1428 struct vm_area_struct *vma;
1429 unsigned long end;
1430 int ret = 0;
1431
1432 len = PAGE_ALIGN(len);
1433 if (len == 0)
1434 return -EINVAL;
1435
1436 end = start + len;
1437
1438 /* find the first potentially overlapping VMA */
1439 vma = vma_find(&vmi, end);
1440 if (!vma) {
1441 static int limit;
1442 if (limit < 5) {
1443 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1444 current->pid, current->comm,
1445 start, start + len - 1);
1446 limit++;
1447 }
1448 return -EINVAL;
1449 }
1450
1451 /* we're allowed to split an anonymous VMA but not a file-backed one */
1452 if (vma->vm_file) {
1453 do {
1454 if (start > vma->vm_start)
1455 return -EINVAL;
1456 if (end == vma->vm_end)
1457 goto erase_whole_vma;
1458 vma = vma_find(&vmi, end);
1459 } while (vma);
1460 return -EINVAL;
1461 } else {
1462 /* the chunk must be a subset of the VMA found */
1463 if (start == vma->vm_start && end == vma->vm_end)
1464 goto erase_whole_vma;
1465 if (start < vma->vm_start || end > vma->vm_end)
1466 return -EINVAL;
1467 if (offset_in_page(start))
1468 return -EINVAL;
1469 if (end != vma->vm_end && offset_in_page(end))
1470 return -EINVAL;
1471 if (start != vma->vm_start && end != vma->vm_end) {
1472 ret = split_vma(&vmi, vma, start, 1);
1473 if (ret < 0)
1474 return ret;
1475 }
1476 return vmi_shrink_vma(&vmi, vma, start, end);
1477 }
1478
1479 erase_whole_vma:
1480 if (delete_vma_from_mm(vma))
1481 ret = -ENOMEM;
1482 else
1483 delete_vma(mm, vma);
1484 return ret;
1485 }
1486
vm_munmap(unsigned long addr,size_t len)1487 int vm_munmap(unsigned long addr, size_t len)
1488 {
1489 struct mm_struct *mm = current->mm;
1490 int ret;
1491
1492 mmap_write_lock(mm);
1493 ret = do_munmap(mm, addr, len, NULL);
1494 mmap_write_unlock(mm);
1495 return ret;
1496 }
1497 EXPORT_SYMBOL(vm_munmap);
1498
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1499 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1500 {
1501 return vm_munmap(addr, len);
1502 }
1503
1504 /*
1505 * release all the mappings made in a process's VM space
1506 */
exit_mmap(struct mm_struct * mm)1507 void exit_mmap(struct mm_struct *mm)
1508 {
1509 VMA_ITERATOR(vmi, mm, 0);
1510 struct vm_area_struct *vma;
1511
1512 if (!mm)
1513 return;
1514
1515 mm->total_vm = 0;
1516
1517 /*
1518 * Lock the mm to avoid assert complaining even though this is the only
1519 * user of the mm
1520 */
1521 mmap_write_lock(mm);
1522 for_each_vma(vmi, vma) {
1523 cleanup_vma_from_mm(vma);
1524 delete_vma(mm, vma);
1525 cond_resched();
1526 }
1527 __mt_destroy(&mm->mm_mt);
1528 mmap_write_unlock(mm);
1529 }
1530
1531 /*
1532 * expand (or shrink) an existing mapping, potentially moving it at the same
1533 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1534 *
1535 * under NOMMU conditions, we only permit changing a mapping's size, and only
1536 * as long as it stays within the region allocated by do_mmap_private() and the
1537 * block is not shareable
1538 *
1539 * MREMAP_FIXED is not supported under NOMMU conditions
1540 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1541 static unsigned long do_mremap(unsigned long addr,
1542 unsigned long old_len, unsigned long new_len,
1543 unsigned long flags, unsigned long new_addr)
1544 {
1545 struct vm_area_struct *vma;
1546
1547 /* insanity checks first */
1548 old_len = PAGE_ALIGN(old_len);
1549 new_len = PAGE_ALIGN(new_len);
1550 if (old_len == 0 || new_len == 0)
1551 return (unsigned long) -EINVAL;
1552
1553 if (offset_in_page(addr))
1554 return -EINVAL;
1555
1556 if (flags & MREMAP_FIXED && new_addr != addr)
1557 return (unsigned long) -EINVAL;
1558
1559 vma = find_vma_exact(current->mm, addr, old_len);
1560 if (!vma)
1561 return (unsigned long) -EINVAL;
1562
1563 if (vma->vm_end != vma->vm_start + old_len)
1564 return (unsigned long) -EFAULT;
1565
1566 if (is_nommu_shared_mapping(vma->vm_flags))
1567 return (unsigned long) -EPERM;
1568
1569 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1570 return (unsigned long) -ENOMEM;
1571
1572 /* all checks complete - do it */
1573 vma->vm_end = vma->vm_start + new_len;
1574 return vma->vm_start;
1575 }
1576
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1577 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1578 unsigned long, new_len, unsigned long, flags,
1579 unsigned long, new_addr)
1580 {
1581 unsigned long ret;
1582
1583 mmap_write_lock(current->mm);
1584 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1585 mmap_write_unlock(current->mm);
1586 return ret;
1587 }
1588
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1589 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1590 unsigned long pfn, unsigned long size, pgprot_t prot)
1591 {
1592 if (addr != (pfn << PAGE_SHIFT))
1593 return -EINVAL;
1594
1595 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1596 return 0;
1597 }
1598 EXPORT_SYMBOL(remap_pfn_range);
1599
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1600 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1601 {
1602 unsigned long pfn = start >> PAGE_SHIFT;
1603 unsigned long vm_len = vma->vm_end - vma->vm_start;
1604
1605 pfn += vma->vm_pgoff;
1606 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1607 }
1608 EXPORT_SYMBOL(vm_iomap_memory);
1609
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1610 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1611 unsigned long pgoff)
1612 {
1613 unsigned int size = vma->vm_end - vma->vm_start;
1614
1615 if (!(vma->vm_flags & VM_USERMAP))
1616 return -EINVAL;
1617
1618 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1619 vma->vm_end = vma->vm_start + size;
1620
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(remap_vmalloc_range);
1624
filemap_fault(struct vm_fault * vmf)1625 vm_fault_t filemap_fault(struct vm_fault *vmf)
1626 {
1627 BUG();
1628 return 0;
1629 }
1630 EXPORT_SYMBOL(filemap_fault);
1631
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1632 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1633 pgoff_t start_pgoff, pgoff_t end_pgoff)
1634 {
1635 BUG();
1636 return 0;
1637 }
1638 EXPORT_SYMBOL(filemap_map_pages);
1639
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1640 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1641 void *buf, int len, unsigned int gup_flags)
1642 {
1643 struct vm_area_struct *vma;
1644 int write = gup_flags & FOLL_WRITE;
1645
1646 if (mmap_read_lock_killable(mm))
1647 return 0;
1648
1649 /* the access must start within one of the target process's mappings */
1650 vma = find_vma(mm, addr);
1651 if (vma) {
1652 /* don't overrun this mapping */
1653 if (addr + len >= vma->vm_end)
1654 len = vma->vm_end - addr;
1655
1656 /* only read or write mappings where it is permitted */
1657 if (write && vma->vm_flags & VM_MAYWRITE)
1658 copy_to_user_page(vma, NULL, addr,
1659 (void *) addr, buf, len);
1660 else if (!write && vma->vm_flags & VM_MAYREAD)
1661 copy_from_user_page(vma, NULL, addr,
1662 buf, (void *) addr, len);
1663 else
1664 len = 0;
1665 } else {
1666 len = 0;
1667 }
1668
1669 mmap_read_unlock(mm);
1670
1671 return len;
1672 }
1673
1674 /**
1675 * access_remote_vm - access another process' address space
1676 * @mm: the mm_struct of the target address space
1677 * @addr: start address to access
1678 * @buf: source or destination buffer
1679 * @len: number of bytes to transfer
1680 * @gup_flags: flags modifying lookup behaviour
1681 *
1682 * The caller must hold a reference on @mm.
1683 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1684 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1685 void *buf, int len, unsigned int gup_flags)
1686 {
1687 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1688 }
1689
1690 /*
1691 * Access another process' address space.
1692 * - source/target buffer must be kernel space
1693 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1694 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1695 unsigned int gup_flags)
1696 {
1697 struct mm_struct *mm;
1698
1699 if (addr + len < addr)
1700 return 0;
1701
1702 mm = get_task_mm(tsk);
1703 if (!mm)
1704 return 0;
1705
1706 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1707
1708 mmput(mm);
1709 return len;
1710 }
1711 EXPORT_SYMBOL_GPL(access_process_vm);
1712
1713 #ifdef CONFIG_BPF_SYSCALL
1714 /*
1715 * Copy a string from another process's address space as given in mm.
1716 * If there is any error return -EFAULT.
1717 */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len)1718 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
1719 void *buf, int len)
1720 {
1721 unsigned long addr_end;
1722 struct vm_area_struct *vma;
1723 int ret = -EFAULT;
1724
1725 *(char *)buf = '\0';
1726
1727 if (mmap_read_lock_killable(mm))
1728 return ret;
1729
1730 /* the access must start within one of the target process's mappings */
1731 vma = find_vma(mm, addr);
1732 if (!vma)
1733 goto out;
1734
1735 if (check_add_overflow(addr, len, &addr_end))
1736 goto out;
1737
1738 /* don't overrun this mapping */
1739 if (addr_end > vma->vm_end)
1740 len = vma->vm_end - addr;
1741
1742 /* only read mappings where it is permitted */
1743 if (vma->vm_flags & VM_MAYREAD) {
1744 ret = strscpy(buf, (char *)addr, len);
1745 if (ret < 0)
1746 ret = len - 1;
1747 }
1748
1749 out:
1750 mmap_read_unlock(mm);
1751 return ret;
1752 }
1753
1754 /**
1755 * copy_remote_vm_str - copy a string from another process's address space.
1756 * @tsk: the task of the target address space
1757 * @addr: start address to read from
1758 * @buf: destination buffer
1759 * @len: number of bytes to copy
1760 * @gup_flags: flags modifying lookup behaviour (unused)
1761 *
1762 * The caller must hold a reference on @mm.
1763 *
1764 * Return: number of bytes copied from @addr (source) to @buf (destination);
1765 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
1766 * buffer. On any error, return -EFAULT.
1767 */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1768 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
1769 void *buf, int len, unsigned int gup_flags)
1770 {
1771 struct mm_struct *mm;
1772 int ret;
1773
1774 if (unlikely(len == 0))
1775 return 0;
1776
1777 mm = get_task_mm(tsk);
1778 if (!mm) {
1779 *(char *)buf = '\0';
1780 return -EFAULT;
1781 }
1782
1783 ret = __copy_remote_vm_str(mm, addr, buf, len);
1784
1785 mmput(mm);
1786
1787 return ret;
1788 }
1789 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
1790 #endif /* CONFIG_BPF_SYSCALL */
1791
1792 /**
1793 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1794 * @inode: The inode to check
1795 * @size: The current filesize of the inode
1796 * @newsize: The proposed filesize of the inode
1797 *
1798 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1799 * make sure that any outstanding VMAs aren't broken and then shrink the
1800 * vm_regions that extend beyond so that do_mmap() doesn't
1801 * automatically grant mappings that are too large.
1802 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1803 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1804 size_t newsize)
1805 {
1806 struct vm_area_struct *vma;
1807 struct vm_region *region;
1808 pgoff_t low, high;
1809 size_t r_size, r_top;
1810
1811 low = newsize >> PAGE_SHIFT;
1812 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1813
1814 down_write(&nommu_region_sem);
1815 i_mmap_lock_read(inode->i_mapping);
1816
1817 /* search for VMAs that fall within the dead zone */
1818 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1819 /* found one - only interested if it's shared out of the page
1820 * cache */
1821 if (vma->vm_flags & VM_SHARED) {
1822 i_mmap_unlock_read(inode->i_mapping);
1823 up_write(&nommu_region_sem);
1824 return -ETXTBSY; /* not quite true, but near enough */
1825 }
1826 }
1827
1828 /* reduce any regions that overlap the dead zone - if in existence,
1829 * these will be pointed to by VMAs that don't overlap the dead zone
1830 *
1831 * we don't check for any regions that start beyond the EOF as there
1832 * shouldn't be any
1833 */
1834 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1835 if (!(vma->vm_flags & VM_SHARED))
1836 continue;
1837
1838 region = vma->vm_region;
1839 r_size = region->vm_top - region->vm_start;
1840 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1841
1842 if (r_top > newsize) {
1843 region->vm_top -= r_top - newsize;
1844 if (region->vm_end > region->vm_top)
1845 region->vm_end = region->vm_top;
1846 }
1847 }
1848
1849 i_mmap_unlock_read(inode->i_mapping);
1850 up_write(&nommu_region_sem);
1851 return 0;
1852 }
1853
1854 /*
1855 * Initialise sysctl_user_reserve_kbytes.
1856 *
1857 * This is intended to prevent a user from starting a single memory hogging
1858 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1859 * mode.
1860 *
1861 * The default value is min(3% of free memory, 128MB)
1862 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1863 */
init_user_reserve(void)1864 static int __meminit init_user_reserve(void)
1865 {
1866 unsigned long free_kbytes;
1867
1868 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1869
1870 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1871 return 0;
1872 }
1873 subsys_initcall(init_user_reserve);
1874
1875 /*
1876 * Initialise sysctl_admin_reserve_kbytes.
1877 *
1878 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1879 * to log in and kill a memory hogging process.
1880 *
1881 * Systems with more than 256MB will reserve 8MB, enough to recover
1882 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1883 * only reserve 3% of free pages by default.
1884 */
init_admin_reserve(void)1885 static int __meminit init_admin_reserve(void)
1886 {
1887 unsigned long free_kbytes;
1888
1889 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1890
1891 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1892 return 0;
1893 }
1894 subsys_initcall(init_admin_reserve);
1895
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)1896 int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1897 {
1898 mmap_write_lock(oldmm);
1899 dup_mm_exe_file(mm, oldmm);
1900 mmap_write_unlock(oldmm);
1901 return 0;
1902 }
1903