xref: /linux/mm/nommu.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37 
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44 
45 unsigned long highest_memmap_pfn;
46 int heap_stack_gap = 0;
47 
48 atomic_long_t mmap_pages_allocated;
49 
50 
51 /* list of mapped, potentially shareable regions */
52 static struct kmem_cache *vm_region_jar;
53 struct rb_root nommu_region_tree = RB_ROOT;
54 DECLARE_RWSEM(nommu_region_sem);
55 
56 const struct vm_operations_struct generic_file_vm_ops = {
57 };
58 
59 /*
60  * Return the total memory allocated for this pointer, not
61  * just what the caller asked for.
62  *
63  * Doesn't have to be accurate, i.e. may have races.
64  */
kobjsize(const void * objp)65 unsigned int kobjsize(const void *objp)
66 {
67 	struct page *page;
68 
69 	/*
70 	 * If the object we have should not have ksize performed on it,
71 	 * return size of 0
72 	 */
73 	if (!objp || !virt_addr_valid(objp))
74 		return 0;
75 
76 	page = virt_to_head_page(objp);
77 
78 	/*
79 	 * If the allocator sets PageSlab, we know the pointer came from
80 	 * kmalloc().
81 	 */
82 	if (PageSlab(page))
83 		return ksize(objp);
84 
85 	/*
86 	 * If it's not a compound page, see if we have a matching VMA
87 	 * region. This test is intentionally done in reverse order,
88 	 * so if there's no VMA, we still fall through and hand back
89 	 * PAGE_SIZE for 0-order pages.
90 	 */
91 	if (!PageCompound(page)) {
92 		struct vm_area_struct *vma;
93 
94 		vma = find_vma(current->mm, (unsigned long)objp);
95 		if (vma)
96 			return vma->vm_end - vma->vm_start;
97 	}
98 
99 	/*
100 	 * The ksize() function is only guaranteed to work for pointers
101 	 * returned by kmalloc(). So handle arbitrary pointers here.
102 	 */
103 	return page_size(page);
104 }
105 
vfree(const void * addr)106 void vfree(const void *addr)
107 {
108 	kfree(addr);
109 }
110 EXPORT_SYMBOL(vfree);
111 
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)112 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
113 {
114 	/*
115 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
116 	 * returns only a logical address.
117 	 */
118 	return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
119 }
120 EXPORT_SYMBOL(__vmalloc_noprof);
121 
vrealloc_noprof(const void * p,size_t size,gfp_t flags)122 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
123 {
124 	return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
125 }
126 
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)127 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
128 		unsigned long start, unsigned long end, gfp_t gfp_mask,
129 		pgprot_t prot, unsigned long vm_flags, int node,
130 		const void *caller)
131 {
132 	return __vmalloc_noprof(size, gfp_mask);
133 }
134 
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)135 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
136 		int node, const void *caller)
137 {
138 	return __vmalloc_noprof(size, gfp_mask);
139 }
140 
__vmalloc_user_flags(unsigned long size,gfp_t flags)141 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
142 {
143 	void *ret;
144 
145 	ret = __vmalloc(size, flags);
146 	if (ret) {
147 		struct vm_area_struct *vma;
148 
149 		mmap_write_lock(current->mm);
150 		vma = find_vma(current->mm, (unsigned long)ret);
151 		if (vma)
152 			vm_flags_set(vma, VM_USERMAP);
153 		mmap_write_unlock(current->mm);
154 	}
155 
156 	return ret;
157 }
158 
vmalloc_user_noprof(unsigned long size)159 void *vmalloc_user_noprof(unsigned long size)
160 {
161 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
162 }
163 EXPORT_SYMBOL(vmalloc_user_noprof);
164 
vmalloc_to_page(const void * addr)165 struct page *vmalloc_to_page(const void *addr)
166 {
167 	return virt_to_page(addr);
168 }
169 EXPORT_SYMBOL(vmalloc_to_page);
170 
vmalloc_to_pfn(const void * addr)171 unsigned long vmalloc_to_pfn(const void *addr)
172 {
173 	return page_to_pfn(virt_to_page(addr));
174 }
175 EXPORT_SYMBOL(vmalloc_to_pfn);
176 
vread_iter(struct iov_iter * iter,const char * addr,size_t count)177 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
178 {
179 	/* Don't allow overflow */
180 	if ((unsigned long) addr + count < count)
181 		count = -(unsigned long) addr;
182 
183 	return copy_to_iter(addr, count, iter);
184 }
185 
186 /*
187  *	vmalloc  -  allocate virtually contiguous memory
188  *
189  *	@size:		allocation size
190  *
191  *	Allocate enough pages to cover @size from the page level
192  *	allocator and map them into contiguous kernel virtual space.
193  *
194  *	For tight control over page level allocator and protection flags
195  *	use __vmalloc() instead.
196  */
vmalloc_noprof(unsigned long size)197 void *vmalloc_noprof(unsigned long size)
198 {
199 	return __vmalloc_noprof(size, GFP_KERNEL);
200 }
201 EXPORT_SYMBOL(vmalloc_noprof);
202 
203 /*
204  *	vmalloc_huge_node  -  allocate virtually contiguous memory, on a node
205  *
206  *	@size:		allocation size
207  *	@gfp_mask:	flags for the page level allocator
208  *	@node:          node to use for allocation or NUMA_NO_NODE
209  *
210  *	Allocate enough pages to cover @size from the page level
211  *	allocator and map them into contiguous kernel virtual space.
212  *
213  *	Due to NOMMU implications the node argument and HUGE page attribute is
214  *	ignored.
215  */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)216 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
217 {
218 	return __vmalloc_noprof(size, gfp_mask);
219 }
220 
221 /*
222  *	vzalloc - allocate virtually contiguous memory with zero fill
223  *
224  *	@size:		allocation size
225  *
226  *	Allocate enough pages to cover @size from the page level
227  *	allocator and map them into contiguous kernel virtual space.
228  *	The memory allocated is set to zero.
229  *
230  *	For tight control over page level allocator and protection flags
231  *	use __vmalloc() instead.
232  */
vzalloc_noprof(unsigned long size)233 void *vzalloc_noprof(unsigned long size)
234 {
235 	return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
236 }
237 EXPORT_SYMBOL(vzalloc_noprof);
238 
239 /**
240  * vmalloc_node - allocate memory on a specific node
241  * @size:	allocation size
242  * @node:	numa node
243  *
244  * Allocate enough pages to cover @size from the page level
245  * allocator and map them into contiguous kernel virtual space.
246  *
247  * For tight control over page level allocator and protection flags
248  * use __vmalloc() instead.
249  */
vmalloc_node_noprof(unsigned long size,int node)250 void *vmalloc_node_noprof(unsigned long size, int node)
251 {
252 	return vmalloc_noprof(size);
253 }
254 EXPORT_SYMBOL(vmalloc_node_noprof);
255 
256 /**
257  * vzalloc_node - allocate memory on a specific node with zero fill
258  * @size:	allocation size
259  * @node:	numa node
260  *
261  * Allocate enough pages to cover @size from the page level
262  * allocator and map them into contiguous kernel virtual space.
263  * The memory allocated is set to zero.
264  *
265  * For tight control over page level allocator and protection flags
266  * use __vmalloc() instead.
267  */
vzalloc_node_noprof(unsigned long size,int node)268 void *vzalloc_node_noprof(unsigned long size, int node)
269 {
270 	return vzalloc_noprof(size);
271 }
272 EXPORT_SYMBOL(vzalloc_node_noprof);
273 
274 /**
275  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
276  *	@size:		allocation size
277  *
278  *	Allocate enough 32bit PA addressable pages to cover @size from the
279  *	page level allocator and map them into contiguous kernel virtual space.
280  */
vmalloc_32_noprof(unsigned long size)281 void *vmalloc_32_noprof(unsigned long size)
282 {
283 	return __vmalloc_noprof(size, GFP_KERNEL);
284 }
285 EXPORT_SYMBOL(vmalloc_32_noprof);
286 
287 /**
288  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
289  *	@size:		allocation size
290  *
291  * The resulting memory area is 32bit addressable and zeroed so it can be
292  * mapped to userspace without leaking data.
293  *
294  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
295  * remap_vmalloc_range() are permissible.
296  */
vmalloc_32_user_noprof(unsigned long size)297 void *vmalloc_32_user_noprof(unsigned long size)
298 {
299 	/*
300 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
301 	 * but for now this can simply use vmalloc_user() directly.
302 	 */
303 	return vmalloc_user_noprof(size);
304 }
305 EXPORT_SYMBOL(vmalloc_32_user_noprof);
306 
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)307 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
308 {
309 	BUG();
310 	return NULL;
311 }
312 EXPORT_SYMBOL(vmap);
313 
vunmap(const void * addr)314 void vunmap(const void *addr)
315 {
316 	BUG();
317 }
318 EXPORT_SYMBOL(vunmap);
319 
vm_map_ram(struct page ** pages,unsigned int count,int node)320 void *vm_map_ram(struct page **pages, unsigned int count, int node)
321 {
322 	BUG();
323 	return NULL;
324 }
325 EXPORT_SYMBOL(vm_map_ram);
326 
vm_unmap_ram(const void * mem,unsigned int count)327 void vm_unmap_ram(const void *mem, unsigned int count)
328 {
329 	BUG();
330 }
331 EXPORT_SYMBOL(vm_unmap_ram);
332 
vm_unmap_aliases(void)333 void vm_unmap_aliases(void)
334 {
335 }
336 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
337 
free_vm_area(struct vm_struct * area)338 void free_vm_area(struct vm_struct *area)
339 {
340 	BUG();
341 }
342 EXPORT_SYMBOL_GPL(free_vm_area);
343 
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)344 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
345 		   struct page *page)
346 {
347 	return -EINVAL;
348 }
349 EXPORT_SYMBOL(vm_insert_page);
350 
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)351 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
352 			struct page **pages, unsigned long *num)
353 {
354 	return -EINVAL;
355 }
356 EXPORT_SYMBOL(vm_insert_pages);
357 
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)358 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
359 			unsigned long num)
360 {
361 	return -EINVAL;
362 }
363 EXPORT_SYMBOL(vm_map_pages);
364 
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)365 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
366 				unsigned long num)
367 {
368 	return -EINVAL;
369 }
370 EXPORT_SYMBOL(vm_map_pages_zero);
371 
372 /*
373  *  sys_brk() for the most part doesn't need the global kernel
374  *  lock, except when an application is doing something nasty
375  *  like trying to un-brk an area that has already been mapped
376  *  to a regular file.  in this case, the unmapping will need
377  *  to invoke file system routines that need the global lock.
378  */
SYSCALL_DEFINE1(brk,unsigned long,brk)379 SYSCALL_DEFINE1(brk, unsigned long, brk)
380 {
381 	struct mm_struct *mm = current->mm;
382 
383 	if (brk < mm->start_brk || brk > mm->context.end_brk)
384 		return mm->brk;
385 
386 	if (mm->brk == brk)
387 		return mm->brk;
388 
389 	/*
390 	 * Always allow shrinking brk
391 	 */
392 	if (brk <= mm->brk) {
393 		mm->brk = brk;
394 		return brk;
395 	}
396 
397 	/*
398 	 * Ok, looks good - let it rip.
399 	 */
400 	flush_icache_user_range(mm->brk, brk);
401 	return mm->brk = brk;
402 }
403 
404 static int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
405 
406 static const struct ctl_table nommu_table[] = {
407 	{
408 		.procname	= "nr_trim_pages",
409 		.data		= &sysctl_nr_trim_pages,
410 		.maxlen		= sizeof(sysctl_nr_trim_pages),
411 		.mode		= 0644,
412 		.proc_handler	= proc_dointvec_minmax,
413 		.extra1		= SYSCTL_ZERO,
414 	},
415 };
416 
417 /*
418  * initialise the percpu counter for VM and region record slabs, initialise VMA
419  * state.
420  */
mmap_init(void)421 void __init mmap_init(void)
422 {
423 	int ret;
424 
425 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
426 	VM_BUG_ON(ret);
427 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
428 	register_sysctl_init("vm", nommu_table);
429 	vma_state_init();
430 }
431 
432 /*
433  * validate the region tree
434  * - the caller must hold the region lock
435  */
436 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)437 static noinline void validate_nommu_regions(void)
438 {
439 	struct vm_region *region, *last;
440 	struct rb_node *p, *lastp;
441 
442 	lastp = rb_first(&nommu_region_tree);
443 	if (!lastp)
444 		return;
445 
446 	last = rb_entry(lastp, struct vm_region, vm_rb);
447 	BUG_ON(last->vm_end <= last->vm_start);
448 	BUG_ON(last->vm_top < last->vm_end);
449 
450 	while ((p = rb_next(lastp))) {
451 		region = rb_entry(p, struct vm_region, vm_rb);
452 		last = rb_entry(lastp, struct vm_region, vm_rb);
453 
454 		BUG_ON(region->vm_end <= region->vm_start);
455 		BUG_ON(region->vm_top < region->vm_end);
456 		BUG_ON(region->vm_start < last->vm_top);
457 
458 		lastp = p;
459 	}
460 }
461 #else
validate_nommu_regions(void)462 static void validate_nommu_regions(void)
463 {
464 }
465 #endif
466 
467 /*
468  * add a region into the global tree
469  */
add_nommu_region(struct vm_region * region)470 static void add_nommu_region(struct vm_region *region)
471 {
472 	struct vm_region *pregion;
473 	struct rb_node **p, *parent;
474 
475 	validate_nommu_regions();
476 
477 	parent = NULL;
478 	p = &nommu_region_tree.rb_node;
479 	while (*p) {
480 		parent = *p;
481 		pregion = rb_entry(parent, struct vm_region, vm_rb);
482 		if (region->vm_start < pregion->vm_start)
483 			p = &(*p)->rb_left;
484 		else if (region->vm_start > pregion->vm_start)
485 			p = &(*p)->rb_right;
486 		else if (pregion == region)
487 			return;
488 		else
489 			BUG();
490 	}
491 
492 	rb_link_node(&region->vm_rb, parent, p);
493 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
494 
495 	validate_nommu_regions();
496 }
497 
498 /*
499  * delete a region from the global tree
500  */
delete_nommu_region(struct vm_region * region)501 static void delete_nommu_region(struct vm_region *region)
502 {
503 	BUG_ON(!nommu_region_tree.rb_node);
504 
505 	validate_nommu_regions();
506 	rb_erase(&region->vm_rb, &nommu_region_tree);
507 	validate_nommu_regions();
508 }
509 
510 /*
511  * free a contiguous series of pages
512  */
free_page_series(unsigned long from,unsigned long to)513 static void free_page_series(unsigned long from, unsigned long to)
514 {
515 	for (; from < to; from += PAGE_SIZE) {
516 		struct page *page = virt_to_page((void *)from);
517 
518 		atomic_long_dec(&mmap_pages_allocated);
519 		put_page(page);
520 	}
521 }
522 
523 /*
524  * release a reference to a region
525  * - the caller must hold the region semaphore for writing, which this releases
526  * - the region may not have been added to the tree yet, in which case vm_top
527  *   will equal vm_start
528  */
__put_nommu_region(struct vm_region * region)529 static void __put_nommu_region(struct vm_region *region)
530 	__releases(nommu_region_sem)
531 {
532 	BUG_ON(!nommu_region_tree.rb_node);
533 
534 	if (--region->vm_usage == 0) {
535 		if (region->vm_top > region->vm_start)
536 			delete_nommu_region(region);
537 		up_write(&nommu_region_sem);
538 
539 		if (region->vm_file)
540 			fput(region->vm_file);
541 
542 		/* IO memory and memory shared directly out of the pagecache
543 		 * from ramfs/tmpfs mustn't be released here */
544 		if (region->vm_flags & VM_MAPPED_COPY)
545 			free_page_series(region->vm_start, region->vm_top);
546 		kmem_cache_free(vm_region_jar, region);
547 	} else {
548 		up_write(&nommu_region_sem);
549 	}
550 }
551 
552 /*
553  * release a reference to a region
554  */
put_nommu_region(struct vm_region * region)555 static void put_nommu_region(struct vm_region *region)
556 {
557 	down_write(&nommu_region_sem);
558 	__put_nommu_region(region);
559 }
560 
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)561 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
562 {
563 	vma->vm_mm = mm;
564 
565 	/* add the VMA to the mapping */
566 	if (vma->vm_file) {
567 		struct address_space *mapping = vma->vm_file->f_mapping;
568 
569 		i_mmap_lock_write(mapping);
570 		flush_dcache_mmap_lock(mapping);
571 		vma_interval_tree_insert(vma, &mapping->i_mmap);
572 		flush_dcache_mmap_unlock(mapping);
573 		i_mmap_unlock_write(mapping);
574 	}
575 }
576 
cleanup_vma_from_mm(struct vm_area_struct * vma)577 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
578 {
579 	vma->vm_mm->map_count--;
580 	/* remove the VMA from the mapping */
581 	if (vma->vm_file) {
582 		struct address_space *mapping;
583 		mapping = vma->vm_file->f_mapping;
584 
585 		i_mmap_lock_write(mapping);
586 		flush_dcache_mmap_lock(mapping);
587 		vma_interval_tree_remove(vma, &mapping->i_mmap);
588 		flush_dcache_mmap_unlock(mapping);
589 		i_mmap_unlock_write(mapping);
590 	}
591 }
592 
593 /*
594  * delete a VMA from its owning mm_struct and address space
595  */
delete_vma_from_mm(struct vm_area_struct * vma)596 static int delete_vma_from_mm(struct vm_area_struct *vma)
597 {
598 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
599 
600 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
601 	if (vma_iter_prealloc(&vmi, NULL)) {
602 		pr_warn("Allocation of vma tree for process %d failed\n",
603 		       current->pid);
604 		return -ENOMEM;
605 	}
606 	cleanup_vma_from_mm(vma);
607 
608 	/* remove from the MM's tree and list */
609 	vma_iter_clear(&vmi);
610 	return 0;
611 }
612 /*
613  * destroy a VMA record
614  */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)615 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
616 {
617 	vma_close(vma);
618 	if (vma->vm_file)
619 		fput(vma->vm_file);
620 	put_nommu_region(vma->vm_region);
621 	vm_area_free(vma);
622 }
623 
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)624 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
625 					     unsigned long start_addr,
626 					     unsigned long end_addr)
627 {
628 	unsigned long index = start_addr;
629 
630 	mmap_assert_locked(mm);
631 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
632 }
633 EXPORT_SYMBOL(find_vma_intersection);
634 
635 /*
636  * look up the first VMA in which addr resides, NULL if none
637  * - should be called with mm->mmap_lock at least held readlocked
638  */
find_vma(struct mm_struct * mm,unsigned long addr)639 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
640 {
641 	VMA_ITERATOR(vmi, mm, addr);
642 
643 	return vma_iter_load(&vmi);
644 }
645 EXPORT_SYMBOL(find_vma);
646 
647 /*
648  * expand a stack to a given address
649  * - not supported under NOMMU conditions
650  */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)651 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
652 {
653 	return -ENOMEM;
654 }
655 
expand_stack(struct mm_struct * mm,unsigned long addr)656 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
657 {
658 	mmap_read_unlock(mm);
659 	return NULL;
660 }
661 
662 /*
663  * look up the first VMA exactly that exactly matches addr
664  * - should be called with mm->mmap_lock at least held readlocked
665  */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)666 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
667 					     unsigned long addr,
668 					     unsigned long len)
669 {
670 	struct vm_area_struct *vma;
671 	unsigned long end = addr + len;
672 	VMA_ITERATOR(vmi, mm, addr);
673 
674 	vma = vma_iter_load(&vmi);
675 	if (!vma)
676 		return NULL;
677 	if (vma->vm_start != addr)
678 		return NULL;
679 	if (vma->vm_end != end)
680 		return NULL;
681 
682 	return vma;
683 }
684 
685 /*
686  * determine whether a mapping should be permitted and, if so, what sort of
687  * mapping we're capable of supporting
688  */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)689 static int validate_mmap_request(struct file *file,
690 				 unsigned long addr,
691 				 unsigned long len,
692 				 unsigned long prot,
693 				 unsigned long flags,
694 				 unsigned long pgoff,
695 				 unsigned long *_capabilities)
696 {
697 	unsigned long capabilities, rlen;
698 	int ret;
699 
700 	/* do the simple checks first */
701 	if (flags & MAP_FIXED)
702 		return -EINVAL;
703 
704 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
705 	    (flags & MAP_TYPE) != MAP_SHARED)
706 		return -EINVAL;
707 
708 	if (!len)
709 		return -EINVAL;
710 
711 	/* Careful about overflows.. */
712 	rlen = PAGE_ALIGN(len);
713 	if (!rlen || rlen > TASK_SIZE)
714 		return -ENOMEM;
715 
716 	/* offset overflow? */
717 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
718 		return -EOVERFLOW;
719 
720 	if (file) {
721 		/* files must support mmap */
722 		if (!file->f_op->mmap)
723 			return -ENODEV;
724 
725 		/* work out if what we've got could possibly be shared
726 		 * - we support chardevs that provide their own "memory"
727 		 * - we support files/blockdevs that are memory backed
728 		 */
729 		if (file->f_op->mmap_capabilities) {
730 			capabilities = file->f_op->mmap_capabilities(file);
731 		} else {
732 			/* no explicit capabilities set, so assume some
733 			 * defaults */
734 			switch (file_inode(file)->i_mode & S_IFMT) {
735 			case S_IFREG:
736 			case S_IFBLK:
737 				capabilities = NOMMU_MAP_COPY;
738 				break;
739 
740 			case S_IFCHR:
741 				capabilities =
742 					NOMMU_MAP_DIRECT |
743 					NOMMU_MAP_READ |
744 					NOMMU_MAP_WRITE;
745 				break;
746 
747 			default:
748 				return -EINVAL;
749 			}
750 		}
751 
752 		/* eliminate any capabilities that we can't support on this
753 		 * device */
754 		if (!file->f_op->get_unmapped_area)
755 			capabilities &= ~NOMMU_MAP_DIRECT;
756 		if (!(file->f_mode & FMODE_CAN_READ))
757 			capabilities &= ~NOMMU_MAP_COPY;
758 
759 		/* The file shall have been opened with read permission. */
760 		if (!(file->f_mode & FMODE_READ))
761 			return -EACCES;
762 
763 		if (flags & MAP_SHARED) {
764 			/* do checks for writing, appending and locking */
765 			if ((prot & PROT_WRITE) &&
766 			    !(file->f_mode & FMODE_WRITE))
767 				return -EACCES;
768 
769 			if (IS_APPEND(file_inode(file)) &&
770 			    (file->f_mode & FMODE_WRITE))
771 				return -EACCES;
772 
773 			if (!(capabilities & NOMMU_MAP_DIRECT))
774 				return -ENODEV;
775 
776 			/* we mustn't privatise shared mappings */
777 			capabilities &= ~NOMMU_MAP_COPY;
778 		} else {
779 			/* we're going to read the file into private memory we
780 			 * allocate */
781 			if (!(capabilities & NOMMU_MAP_COPY))
782 				return -ENODEV;
783 
784 			/* we don't permit a private writable mapping to be
785 			 * shared with the backing device */
786 			if (prot & PROT_WRITE)
787 				capabilities &= ~NOMMU_MAP_DIRECT;
788 		}
789 
790 		if (capabilities & NOMMU_MAP_DIRECT) {
791 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
792 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
793 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
794 			    ) {
795 				capabilities &= ~NOMMU_MAP_DIRECT;
796 				if (flags & MAP_SHARED) {
797 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
798 					return -EINVAL;
799 				}
800 			}
801 		}
802 
803 		/* handle executable mappings and implied executable
804 		 * mappings */
805 		if (path_noexec(&file->f_path)) {
806 			if (prot & PROT_EXEC)
807 				return -EPERM;
808 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
809 			/* handle implication of PROT_EXEC by PROT_READ */
810 			if (current->personality & READ_IMPLIES_EXEC) {
811 				if (capabilities & NOMMU_MAP_EXEC)
812 					prot |= PROT_EXEC;
813 			}
814 		} else if ((prot & PROT_READ) &&
815 			 (prot & PROT_EXEC) &&
816 			 !(capabilities & NOMMU_MAP_EXEC)
817 			 ) {
818 			/* backing file is not executable, try to copy */
819 			capabilities &= ~NOMMU_MAP_DIRECT;
820 		}
821 	} else {
822 		/* anonymous mappings are always memory backed and can be
823 		 * privately mapped
824 		 */
825 		capabilities = NOMMU_MAP_COPY;
826 
827 		/* handle PROT_EXEC implication by PROT_READ */
828 		if ((prot & PROT_READ) &&
829 		    (current->personality & READ_IMPLIES_EXEC))
830 			prot |= PROT_EXEC;
831 	}
832 
833 	/* allow the security API to have its say */
834 	ret = security_mmap_addr(addr);
835 	if (ret < 0)
836 		return ret;
837 
838 	/* looks okay */
839 	*_capabilities = capabilities;
840 	return 0;
841 }
842 
843 /*
844  * we've determined that we can make the mapping, now translate what we
845  * now know into VMA flags
846  */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)847 static unsigned long determine_vm_flags(struct file *file,
848 					unsigned long prot,
849 					unsigned long flags,
850 					unsigned long capabilities)
851 {
852 	unsigned long vm_flags;
853 
854 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
855 
856 	if (!file) {
857 		/*
858 		 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
859 		 * there is no fork().
860 		 */
861 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
862 	} else if (flags & MAP_PRIVATE) {
863 		/* MAP_PRIVATE file mapping */
864 		if (capabilities & NOMMU_MAP_DIRECT)
865 			vm_flags |= (capabilities & NOMMU_VMFLAGS);
866 		else
867 			vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
868 
869 		if (!(prot & PROT_WRITE) && !current->ptrace)
870 			/*
871 			 * R/O private file mapping which cannot be used to
872 			 * modify memory, especially also not via active ptrace
873 			 * (e.g., set breakpoints) or later by upgrading
874 			 * permissions (no mprotect()). We can try overlaying
875 			 * the file mapping, which will work e.g., on chardevs,
876 			 * ramfs/tmpfs/shmfs and romfs/cramf.
877 			 */
878 			vm_flags |= VM_MAYOVERLAY;
879 	} else {
880 		/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
881 		vm_flags |= VM_SHARED | VM_MAYSHARE |
882 			    (capabilities & NOMMU_VMFLAGS);
883 	}
884 
885 	return vm_flags;
886 }
887 
888 /*
889  * set up a shared mapping on a file (the driver or filesystem provides and
890  * pins the storage)
891  */
do_mmap_shared_file(struct vm_area_struct * vma)892 static int do_mmap_shared_file(struct vm_area_struct *vma)
893 {
894 	int ret;
895 
896 	ret = mmap_file(vma->vm_file, vma);
897 	if (ret == 0) {
898 		vma->vm_region->vm_top = vma->vm_region->vm_end;
899 		return 0;
900 	}
901 	if (ret != -ENOSYS)
902 		return ret;
903 
904 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
905 	 * opposed to tried but failed) so we can only give a suitable error as
906 	 * it's not possible to make a private copy if MAP_SHARED was given */
907 	return -ENODEV;
908 }
909 
910 /*
911  * set up a private mapping or an anonymous shared mapping
912  */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)913 static int do_mmap_private(struct vm_area_struct *vma,
914 			   struct vm_region *region,
915 			   unsigned long len,
916 			   unsigned long capabilities)
917 {
918 	unsigned long total, point;
919 	void *base;
920 	int ret, order;
921 
922 	/*
923 	 * Invoke the file's mapping function so that it can keep track of
924 	 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
925 	 * it may attempt to share, which will make is_nommu_shared_mapping()
926 	 * happy.
927 	 */
928 	if (capabilities & NOMMU_MAP_DIRECT) {
929 		ret = mmap_file(vma->vm_file, vma);
930 		/* shouldn't return success if we're not sharing */
931 		if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
932 			ret = -ENOSYS;
933 		if (ret == 0) {
934 			vma->vm_region->vm_top = vma->vm_region->vm_end;
935 			return 0;
936 		}
937 		if (ret != -ENOSYS)
938 			return ret;
939 
940 		/* getting an ENOSYS error indicates that direct mmap isn't
941 		 * possible (as opposed to tried but failed) so we'll try to
942 		 * make a private copy of the data and map that instead */
943 	}
944 
945 
946 	/* allocate some memory to hold the mapping
947 	 * - note that this may not return a page-aligned address if the object
948 	 *   we're allocating is smaller than a page
949 	 */
950 	order = get_order(len);
951 	total = 1 << order;
952 	point = len >> PAGE_SHIFT;
953 
954 	/* we don't want to allocate a power-of-2 sized page set */
955 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
956 		total = point;
957 
958 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
959 	if (!base)
960 		goto enomem;
961 
962 	atomic_long_add(total, &mmap_pages_allocated);
963 
964 	vm_flags_set(vma, VM_MAPPED_COPY);
965 	region->vm_flags = vma->vm_flags;
966 	region->vm_start = (unsigned long) base;
967 	region->vm_end   = region->vm_start + len;
968 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
969 
970 	vma->vm_start = region->vm_start;
971 	vma->vm_end   = region->vm_start + len;
972 
973 	if (vma->vm_file) {
974 		/* read the contents of a file into the copy */
975 		loff_t fpos;
976 
977 		fpos = vma->vm_pgoff;
978 		fpos <<= PAGE_SHIFT;
979 
980 		ret = kernel_read(vma->vm_file, base, len, &fpos);
981 		if (ret < 0)
982 			goto error_free;
983 
984 		/* clear the last little bit */
985 		if (ret < len)
986 			memset(base + ret, 0, len - ret);
987 
988 	} else {
989 		vma_set_anonymous(vma);
990 	}
991 
992 	return 0;
993 
994 error_free:
995 	free_page_series(region->vm_start, region->vm_top);
996 	region->vm_start = vma->vm_start = 0;
997 	region->vm_end   = vma->vm_end = 0;
998 	region->vm_top   = 0;
999 	return ret;
1000 
1001 enomem:
1002 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1003 	       len, current->pid, current->comm);
1004 	show_mem();
1005 	return -ENOMEM;
1006 }
1007 
1008 /*
1009  * handle mapping creation for uClinux
1010  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1011 unsigned long do_mmap(struct file *file,
1012 			unsigned long addr,
1013 			unsigned long len,
1014 			unsigned long prot,
1015 			unsigned long flags,
1016 			vm_flags_t vm_flags,
1017 			unsigned long pgoff,
1018 			unsigned long *populate,
1019 			struct list_head *uf)
1020 {
1021 	struct vm_area_struct *vma;
1022 	struct vm_region *region;
1023 	struct rb_node *rb;
1024 	unsigned long capabilities, result;
1025 	int ret;
1026 	VMA_ITERATOR(vmi, current->mm, 0);
1027 
1028 	*populate = 0;
1029 
1030 	/* decide whether we should attempt the mapping, and if so what sort of
1031 	 * mapping */
1032 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1033 				    &capabilities);
1034 	if (ret < 0)
1035 		return ret;
1036 
1037 	/* we ignore the address hint */
1038 	addr = 0;
1039 	len = PAGE_ALIGN(len);
1040 
1041 	/* we've determined that we can make the mapping, now translate what we
1042 	 * now know into VMA flags */
1043 	vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1044 
1045 
1046 	/* we're going to need to record the mapping */
1047 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1048 	if (!region)
1049 		goto error_getting_region;
1050 
1051 	vma = vm_area_alloc(current->mm);
1052 	if (!vma)
1053 		goto error_getting_vma;
1054 
1055 	region->vm_usage = 1;
1056 	region->vm_flags = vm_flags;
1057 	region->vm_pgoff = pgoff;
1058 
1059 	vm_flags_init(vma, vm_flags);
1060 	vma->vm_pgoff = pgoff;
1061 
1062 	if (file) {
1063 		region->vm_file = get_file(file);
1064 		vma->vm_file = get_file(file);
1065 	}
1066 
1067 	down_write(&nommu_region_sem);
1068 
1069 	/* if we want to share, we need to check for regions created by other
1070 	 * mmap() calls that overlap with our proposed mapping
1071 	 * - we can only share with a superset match on most regular files
1072 	 * - shared mappings on character devices and memory backed files are
1073 	 *   permitted to overlap inexactly as far as we are concerned for in
1074 	 *   these cases, sharing is handled in the driver or filesystem rather
1075 	 *   than here
1076 	 */
1077 	if (is_nommu_shared_mapping(vm_flags)) {
1078 		struct vm_region *pregion;
1079 		unsigned long pglen, rpglen, pgend, rpgend, start;
1080 
1081 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1082 		pgend = pgoff + pglen;
1083 
1084 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1085 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1086 
1087 			if (!is_nommu_shared_mapping(pregion->vm_flags))
1088 				continue;
1089 
1090 			/* search for overlapping mappings on the same file */
1091 			if (file_inode(pregion->vm_file) !=
1092 			    file_inode(file))
1093 				continue;
1094 
1095 			if (pregion->vm_pgoff >= pgend)
1096 				continue;
1097 
1098 			rpglen = pregion->vm_end - pregion->vm_start;
1099 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1100 			rpgend = pregion->vm_pgoff + rpglen;
1101 			if (pgoff >= rpgend)
1102 				continue;
1103 
1104 			/* handle inexactly overlapping matches between
1105 			 * mappings */
1106 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1107 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1108 				/* new mapping is not a subset of the region */
1109 				if (!(capabilities & NOMMU_MAP_DIRECT))
1110 					goto sharing_violation;
1111 				continue;
1112 			}
1113 
1114 			/* we've found a region we can share */
1115 			pregion->vm_usage++;
1116 			vma->vm_region = pregion;
1117 			start = pregion->vm_start;
1118 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1119 			vma->vm_start = start;
1120 			vma->vm_end = start + len;
1121 
1122 			if (pregion->vm_flags & VM_MAPPED_COPY)
1123 				vm_flags_set(vma, VM_MAPPED_COPY);
1124 			else {
1125 				ret = do_mmap_shared_file(vma);
1126 				if (ret < 0) {
1127 					vma->vm_region = NULL;
1128 					vma->vm_start = 0;
1129 					vma->vm_end = 0;
1130 					pregion->vm_usage--;
1131 					pregion = NULL;
1132 					goto error_just_free;
1133 				}
1134 			}
1135 			fput(region->vm_file);
1136 			kmem_cache_free(vm_region_jar, region);
1137 			region = pregion;
1138 			result = start;
1139 			goto share;
1140 		}
1141 
1142 		/* obtain the address at which to make a shared mapping
1143 		 * - this is the hook for quasi-memory character devices to
1144 		 *   tell us the location of a shared mapping
1145 		 */
1146 		if (capabilities & NOMMU_MAP_DIRECT) {
1147 			addr = file->f_op->get_unmapped_area(file, addr, len,
1148 							     pgoff, flags);
1149 			if (IS_ERR_VALUE(addr)) {
1150 				ret = addr;
1151 				if (ret != -ENOSYS)
1152 					goto error_just_free;
1153 
1154 				/* the driver refused to tell us where to site
1155 				 * the mapping so we'll have to attempt to copy
1156 				 * it */
1157 				ret = -ENODEV;
1158 				if (!(capabilities & NOMMU_MAP_COPY))
1159 					goto error_just_free;
1160 
1161 				capabilities &= ~NOMMU_MAP_DIRECT;
1162 			} else {
1163 				vma->vm_start = region->vm_start = addr;
1164 				vma->vm_end = region->vm_end = addr + len;
1165 			}
1166 		}
1167 	}
1168 
1169 	vma->vm_region = region;
1170 
1171 	/* set up the mapping
1172 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1173 	 */
1174 	if (file && vma->vm_flags & VM_SHARED)
1175 		ret = do_mmap_shared_file(vma);
1176 	else
1177 		ret = do_mmap_private(vma, region, len, capabilities);
1178 	if (ret < 0)
1179 		goto error_just_free;
1180 	add_nommu_region(region);
1181 
1182 	/* clear anonymous mappings that don't ask for uninitialized data */
1183 	if (!vma->vm_file &&
1184 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1185 	     !(flags & MAP_UNINITIALIZED)))
1186 		memset((void *)region->vm_start, 0,
1187 		       region->vm_end - region->vm_start);
1188 
1189 	/* okay... we have a mapping; now we have to register it */
1190 	result = vma->vm_start;
1191 
1192 	current->mm->total_vm += len >> PAGE_SHIFT;
1193 
1194 share:
1195 	BUG_ON(!vma->vm_region);
1196 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1197 	if (vma_iter_prealloc(&vmi, vma))
1198 		goto error_just_free;
1199 
1200 	setup_vma_to_mm(vma, current->mm);
1201 	current->mm->map_count++;
1202 	/* add the VMA to the tree */
1203 	vma_iter_store_new(&vmi, vma);
1204 
1205 	/* we flush the region from the icache only when the first executable
1206 	 * mapping of it is made  */
1207 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1208 		flush_icache_user_range(region->vm_start, region->vm_end);
1209 		region->vm_icache_flushed = true;
1210 	}
1211 
1212 	up_write(&nommu_region_sem);
1213 
1214 	return result;
1215 
1216 error_just_free:
1217 	up_write(&nommu_region_sem);
1218 error:
1219 	vma_iter_free(&vmi);
1220 	if (region->vm_file)
1221 		fput(region->vm_file);
1222 	kmem_cache_free(vm_region_jar, region);
1223 	if (vma->vm_file)
1224 		fput(vma->vm_file);
1225 	vm_area_free(vma);
1226 	return ret;
1227 
1228 sharing_violation:
1229 	up_write(&nommu_region_sem);
1230 	pr_warn("Attempt to share mismatched mappings\n");
1231 	ret = -EINVAL;
1232 	goto error;
1233 
1234 error_getting_vma:
1235 	kmem_cache_free(vm_region_jar, region);
1236 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1237 			len, current->pid);
1238 	show_mem();
1239 	return -ENOMEM;
1240 
1241 error_getting_region:
1242 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1243 			len, current->pid);
1244 	show_mem();
1245 	return -ENOMEM;
1246 }
1247 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1248 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1249 			      unsigned long prot, unsigned long flags,
1250 			      unsigned long fd, unsigned long pgoff)
1251 {
1252 	struct file *file = NULL;
1253 	unsigned long retval = -EBADF;
1254 
1255 	audit_mmap_fd(fd, flags);
1256 	if (!(flags & MAP_ANONYMOUS)) {
1257 		file = fget(fd);
1258 		if (!file)
1259 			goto out;
1260 	}
1261 
1262 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1263 
1264 	if (file)
1265 		fput(file);
1266 out:
1267 	return retval;
1268 }
1269 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1270 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1271 		unsigned long, prot, unsigned long, flags,
1272 		unsigned long, fd, unsigned long, pgoff)
1273 {
1274 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1275 }
1276 
1277 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1278 struct mmap_arg_struct {
1279 	unsigned long addr;
1280 	unsigned long len;
1281 	unsigned long prot;
1282 	unsigned long flags;
1283 	unsigned long fd;
1284 	unsigned long offset;
1285 };
1286 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1287 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1288 {
1289 	struct mmap_arg_struct a;
1290 
1291 	if (copy_from_user(&a, arg, sizeof(a)))
1292 		return -EFAULT;
1293 	if (offset_in_page(a.offset))
1294 		return -EINVAL;
1295 
1296 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1297 			       a.offset >> PAGE_SHIFT);
1298 }
1299 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1300 
1301 /*
1302  * split a vma into two pieces at address 'addr', a new vma is allocated either
1303  * for the first part or the tail.
1304  */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1305 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1306 		     unsigned long addr, int new_below)
1307 {
1308 	struct vm_area_struct *new;
1309 	struct vm_region *region;
1310 	unsigned long npages;
1311 	struct mm_struct *mm;
1312 
1313 	/* we're only permitted to split anonymous regions (these should have
1314 	 * only a single usage on the region) */
1315 	if (vma->vm_file)
1316 		return -ENOMEM;
1317 
1318 	mm = vma->vm_mm;
1319 	if (mm->map_count >= sysctl_max_map_count)
1320 		return -ENOMEM;
1321 
1322 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1323 	if (!region)
1324 		return -ENOMEM;
1325 
1326 	new = vm_area_dup(vma);
1327 	if (!new)
1328 		goto err_vma_dup;
1329 
1330 	/* most fields are the same, copy all, and then fixup */
1331 	*region = *vma->vm_region;
1332 	new->vm_region = region;
1333 
1334 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1335 
1336 	if (new_below) {
1337 		region->vm_top = region->vm_end = new->vm_end = addr;
1338 	} else {
1339 		region->vm_start = new->vm_start = addr;
1340 		region->vm_pgoff = new->vm_pgoff += npages;
1341 	}
1342 
1343 	vma_iter_config(vmi, new->vm_start, new->vm_end);
1344 	if (vma_iter_prealloc(vmi, vma)) {
1345 		pr_warn("Allocation of vma tree for process %d failed\n",
1346 			current->pid);
1347 		goto err_vmi_preallocate;
1348 	}
1349 
1350 	if (new->vm_ops && new->vm_ops->open)
1351 		new->vm_ops->open(new);
1352 
1353 	down_write(&nommu_region_sem);
1354 	delete_nommu_region(vma->vm_region);
1355 	if (new_below) {
1356 		vma->vm_region->vm_start = vma->vm_start = addr;
1357 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1358 	} else {
1359 		vma->vm_region->vm_end = vma->vm_end = addr;
1360 		vma->vm_region->vm_top = addr;
1361 	}
1362 	add_nommu_region(vma->vm_region);
1363 	add_nommu_region(new->vm_region);
1364 	up_write(&nommu_region_sem);
1365 
1366 	setup_vma_to_mm(vma, mm);
1367 	setup_vma_to_mm(new, mm);
1368 	vma_iter_store_new(vmi, new);
1369 	mm->map_count++;
1370 	return 0;
1371 
1372 err_vmi_preallocate:
1373 	vm_area_free(new);
1374 err_vma_dup:
1375 	kmem_cache_free(vm_region_jar, region);
1376 	return -ENOMEM;
1377 }
1378 
1379 /*
1380  * shrink a VMA by removing the specified chunk from either the beginning or
1381  * the end
1382  */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1383 static int vmi_shrink_vma(struct vma_iterator *vmi,
1384 		      struct vm_area_struct *vma,
1385 		      unsigned long from, unsigned long to)
1386 {
1387 	struct vm_region *region;
1388 
1389 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1390 	 * and list */
1391 	if (from > vma->vm_start) {
1392 		if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1393 			return -ENOMEM;
1394 		vma->vm_end = from;
1395 	} else {
1396 		if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1397 			return -ENOMEM;
1398 		vma->vm_start = to;
1399 	}
1400 
1401 	/* cut the backing region down to size */
1402 	region = vma->vm_region;
1403 	BUG_ON(region->vm_usage != 1);
1404 
1405 	down_write(&nommu_region_sem);
1406 	delete_nommu_region(region);
1407 	if (from > region->vm_start) {
1408 		to = region->vm_top;
1409 		region->vm_top = region->vm_end = from;
1410 	} else {
1411 		region->vm_start = to;
1412 	}
1413 	add_nommu_region(region);
1414 	up_write(&nommu_region_sem);
1415 
1416 	free_page_series(from, to);
1417 	return 0;
1418 }
1419 
1420 /*
1421  * release a mapping
1422  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1423  *   VMA, though it need not cover the whole VMA
1424  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1425 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1426 {
1427 	VMA_ITERATOR(vmi, mm, start);
1428 	struct vm_area_struct *vma;
1429 	unsigned long end;
1430 	int ret = 0;
1431 
1432 	len = PAGE_ALIGN(len);
1433 	if (len == 0)
1434 		return -EINVAL;
1435 
1436 	end = start + len;
1437 
1438 	/* find the first potentially overlapping VMA */
1439 	vma = vma_find(&vmi, end);
1440 	if (!vma) {
1441 		static int limit;
1442 		if (limit < 5) {
1443 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1444 					current->pid, current->comm,
1445 					start, start + len - 1);
1446 			limit++;
1447 		}
1448 		return -EINVAL;
1449 	}
1450 
1451 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1452 	if (vma->vm_file) {
1453 		do {
1454 			if (start > vma->vm_start)
1455 				return -EINVAL;
1456 			if (end == vma->vm_end)
1457 				goto erase_whole_vma;
1458 			vma = vma_find(&vmi, end);
1459 		} while (vma);
1460 		return -EINVAL;
1461 	} else {
1462 		/* the chunk must be a subset of the VMA found */
1463 		if (start == vma->vm_start && end == vma->vm_end)
1464 			goto erase_whole_vma;
1465 		if (start < vma->vm_start || end > vma->vm_end)
1466 			return -EINVAL;
1467 		if (offset_in_page(start))
1468 			return -EINVAL;
1469 		if (end != vma->vm_end && offset_in_page(end))
1470 			return -EINVAL;
1471 		if (start != vma->vm_start && end != vma->vm_end) {
1472 			ret = split_vma(&vmi, vma, start, 1);
1473 			if (ret < 0)
1474 				return ret;
1475 		}
1476 		return vmi_shrink_vma(&vmi, vma, start, end);
1477 	}
1478 
1479 erase_whole_vma:
1480 	if (delete_vma_from_mm(vma))
1481 		ret = -ENOMEM;
1482 	else
1483 		delete_vma(mm, vma);
1484 	return ret;
1485 }
1486 
vm_munmap(unsigned long addr,size_t len)1487 int vm_munmap(unsigned long addr, size_t len)
1488 {
1489 	struct mm_struct *mm = current->mm;
1490 	int ret;
1491 
1492 	mmap_write_lock(mm);
1493 	ret = do_munmap(mm, addr, len, NULL);
1494 	mmap_write_unlock(mm);
1495 	return ret;
1496 }
1497 EXPORT_SYMBOL(vm_munmap);
1498 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1499 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1500 {
1501 	return vm_munmap(addr, len);
1502 }
1503 
1504 /*
1505  * release all the mappings made in a process's VM space
1506  */
exit_mmap(struct mm_struct * mm)1507 void exit_mmap(struct mm_struct *mm)
1508 {
1509 	VMA_ITERATOR(vmi, mm, 0);
1510 	struct vm_area_struct *vma;
1511 
1512 	if (!mm)
1513 		return;
1514 
1515 	mm->total_vm = 0;
1516 
1517 	/*
1518 	 * Lock the mm to avoid assert complaining even though this is the only
1519 	 * user of the mm
1520 	 */
1521 	mmap_write_lock(mm);
1522 	for_each_vma(vmi, vma) {
1523 		cleanup_vma_from_mm(vma);
1524 		delete_vma(mm, vma);
1525 		cond_resched();
1526 	}
1527 	__mt_destroy(&mm->mm_mt);
1528 	mmap_write_unlock(mm);
1529 }
1530 
1531 /*
1532  * expand (or shrink) an existing mapping, potentially moving it at the same
1533  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1534  *
1535  * under NOMMU conditions, we only permit changing a mapping's size, and only
1536  * as long as it stays within the region allocated by do_mmap_private() and the
1537  * block is not shareable
1538  *
1539  * MREMAP_FIXED is not supported under NOMMU conditions
1540  */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1541 static unsigned long do_mremap(unsigned long addr,
1542 			unsigned long old_len, unsigned long new_len,
1543 			unsigned long flags, unsigned long new_addr)
1544 {
1545 	struct vm_area_struct *vma;
1546 
1547 	/* insanity checks first */
1548 	old_len = PAGE_ALIGN(old_len);
1549 	new_len = PAGE_ALIGN(new_len);
1550 	if (old_len == 0 || new_len == 0)
1551 		return (unsigned long) -EINVAL;
1552 
1553 	if (offset_in_page(addr))
1554 		return -EINVAL;
1555 
1556 	if (flags & MREMAP_FIXED && new_addr != addr)
1557 		return (unsigned long) -EINVAL;
1558 
1559 	vma = find_vma_exact(current->mm, addr, old_len);
1560 	if (!vma)
1561 		return (unsigned long) -EINVAL;
1562 
1563 	if (vma->vm_end != vma->vm_start + old_len)
1564 		return (unsigned long) -EFAULT;
1565 
1566 	if (is_nommu_shared_mapping(vma->vm_flags))
1567 		return (unsigned long) -EPERM;
1568 
1569 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1570 		return (unsigned long) -ENOMEM;
1571 
1572 	/* all checks complete - do it */
1573 	vma->vm_end = vma->vm_start + new_len;
1574 	return vma->vm_start;
1575 }
1576 
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1577 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1578 		unsigned long, new_len, unsigned long, flags,
1579 		unsigned long, new_addr)
1580 {
1581 	unsigned long ret;
1582 
1583 	mmap_write_lock(current->mm);
1584 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1585 	mmap_write_unlock(current->mm);
1586 	return ret;
1587 }
1588 
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1589 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1590 		unsigned long pfn, unsigned long size, pgprot_t prot)
1591 {
1592 	if (addr != (pfn << PAGE_SHIFT))
1593 		return -EINVAL;
1594 
1595 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(remap_pfn_range);
1599 
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1600 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1601 {
1602 	unsigned long pfn = start >> PAGE_SHIFT;
1603 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1604 
1605 	pfn += vma->vm_pgoff;
1606 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1607 }
1608 EXPORT_SYMBOL(vm_iomap_memory);
1609 
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1610 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1611 			unsigned long pgoff)
1612 {
1613 	unsigned int size = vma->vm_end - vma->vm_start;
1614 
1615 	if (!(vma->vm_flags & VM_USERMAP))
1616 		return -EINVAL;
1617 
1618 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1619 	vma->vm_end = vma->vm_start + size;
1620 
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL(remap_vmalloc_range);
1624 
filemap_fault(struct vm_fault * vmf)1625 vm_fault_t filemap_fault(struct vm_fault *vmf)
1626 {
1627 	BUG();
1628 	return 0;
1629 }
1630 EXPORT_SYMBOL(filemap_fault);
1631 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1632 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1633 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1634 {
1635 	BUG();
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL(filemap_map_pages);
1639 
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1640 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1641 			      void *buf, int len, unsigned int gup_flags)
1642 {
1643 	struct vm_area_struct *vma;
1644 	int write = gup_flags & FOLL_WRITE;
1645 
1646 	if (mmap_read_lock_killable(mm))
1647 		return 0;
1648 
1649 	/* the access must start within one of the target process's mappings */
1650 	vma = find_vma(mm, addr);
1651 	if (vma) {
1652 		/* don't overrun this mapping */
1653 		if (addr + len >= vma->vm_end)
1654 			len = vma->vm_end - addr;
1655 
1656 		/* only read or write mappings where it is permitted */
1657 		if (write && vma->vm_flags & VM_MAYWRITE)
1658 			copy_to_user_page(vma, NULL, addr,
1659 					 (void *) addr, buf, len);
1660 		else if (!write && vma->vm_flags & VM_MAYREAD)
1661 			copy_from_user_page(vma, NULL, addr,
1662 					    buf, (void *) addr, len);
1663 		else
1664 			len = 0;
1665 	} else {
1666 		len = 0;
1667 	}
1668 
1669 	mmap_read_unlock(mm);
1670 
1671 	return len;
1672 }
1673 
1674 /**
1675  * access_remote_vm - access another process' address space
1676  * @mm:		the mm_struct of the target address space
1677  * @addr:	start address to access
1678  * @buf:	source or destination buffer
1679  * @len:	number of bytes to transfer
1680  * @gup_flags:	flags modifying lookup behaviour
1681  *
1682  * The caller must hold a reference on @mm.
1683  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1684 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1685 		void *buf, int len, unsigned int gup_flags)
1686 {
1687 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1688 }
1689 
1690 /*
1691  * Access another process' address space.
1692  * - source/target buffer must be kernel space
1693  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1694 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1695 		unsigned int gup_flags)
1696 {
1697 	struct mm_struct *mm;
1698 
1699 	if (addr + len < addr)
1700 		return 0;
1701 
1702 	mm = get_task_mm(tsk);
1703 	if (!mm)
1704 		return 0;
1705 
1706 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1707 
1708 	mmput(mm);
1709 	return len;
1710 }
1711 EXPORT_SYMBOL_GPL(access_process_vm);
1712 
1713 #ifdef CONFIG_BPF_SYSCALL
1714 /*
1715  * Copy a string from another process's address space as given in mm.
1716  * If there is any error return -EFAULT.
1717  */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len)1718 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
1719 				void *buf, int len)
1720 {
1721 	unsigned long addr_end;
1722 	struct vm_area_struct *vma;
1723 	int ret = -EFAULT;
1724 
1725 	*(char *)buf = '\0';
1726 
1727 	if (mmap_read_lock_killable(mm))
1728 		return ret;
1729 
1730 	/* the access must start within one of the target process's mappings */
1731 	vma = find_vma(mm, addr);
1732 	if (!vma)
1733 		goto out;
1734 
1735 	if (check_add_overflow(addr, len, &addr_end))
1736 		goto out;
1737 
1738 	/* don't overrun this mapping */
1739 	if (addr_end > vma->vm_end)
1740 		len = vma->vm_end - addr;
1741 
1742 	/* only read mappings where it is permitted */
1743 	if (vma->vm_flags & VM_MAYREAD) {
1744 		ret = strscpy(buf, (char *)addr, len);
1745 		if (ret < 0)
1746 			ret = len - 1;
1747 	}
1748 
1749 out:
1750 	mmap_read_unlock(mm);
1751 	return ret;
1752 }
1753 
1754 /**
1755  * copy_remote_vm_str - copy a string from another process's address space.
1756  * @tsk:	the task of the target address space
1757  * @addr:	start address to read from
1758  * @buf:	destination buffer
1759  * @len:	number of bytes to copy
1760  * @gup_flags:	flags modifying lookup behaviour (unused)
1761  *
1762  * The caller must hold a reference on @mm.
1763  *
1764  * Return: number of bytes copied from @addr (source) to @buf (destination);
1765  * not including the trailing NUL. Always guaranteed to leave NUL-terminated
1766  * buffer. On any error, return -EFAULT.
1767  */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1768 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
1769 		       void *buf, int len, unsigned int gup_flags)
1770 {
1771 	struct mm_struct *mm;
1772 	int ret;
1773 
1774 	if (unlikely(len == 0))
1775 		return 0;
1776 
1777 	mm = get_task_mm(tsk);
1778 	if (!mm) {
1779 		*(char *)buf = '\0';
1780 		return -EFAULT;
1781 	}
1782 
1783 	ret = __copy_remote_vm_str(mm, addr, buf, len);
1784 
1785 	mmput(mm);
1786 
1787 	return ret;
1788 }
1789 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
1790 #endif /* CONFIG_BPF_SYSCALL */
1791 
1792 /**
1793  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1794  * @inode: The inode to check
1795  * @size: The current filesize of the inode
1796  * @newsize: The proposed filesize of the inode
1797  *
1798  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1799  * make sure that any outstanding VMAs aren't broken and then shrink the
1800  * vm_regions that extend beyond so that do_mmap() doesn't
1801  * automatically grant mappings that are too large.
1802  */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1803 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1804 				size_t newsize)
1805 {
1806 	struct vm_area_struct *vma;
1807 	struct vm_region *region;
1808 	pgoff_t low, high;
1809 	size_t r_size, r_top;
1810 
1811 	low = newsize >> PAGE_SHIFT;
1812 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1813 
1814 	down_write(&nommu_region_sem);
1815 	i_mmap_lock_read(inode->i_mapping);
1816 
1817 	/* search for VMAs that fall within the dead zone */
1818 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1819 		/* found one - only interested if it's shared out of the page
1820 		 * cache */
1821 		if (vma->vm_flags & VM_SHARED) {
1822 			i_mmap_unlock_read(inode->i_mapping);
1823 			up_write(&nommu_region_sem);
1824 			return -ETXTBSY; /* not quite true, but near enough */
1825 		}
1826 	}
1827 
1828 	/* reduce any regions that overlap the dead zone - if in existence,
1829 	 * these will be pointed to by VMAs that don't overlap the dead zone
1830 	 *
1831 	 * we don't check for any regions that start beyond the EOF as there
1832 	 * shouldn't be any
1833 	 */
1834 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1835 		if (!(vma->vm_flags & VM_SHARED))
1836 			continue;
1837 
1838 		region = vma->vm_region;
1839 		r_size = region->vm_top - region->vm_start;
1840 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1841 
1842 		if (r_top > newsize) {
1843 			region->vm_top -= r_top - newsize;
1844 			if (region->vm_end > region->vm_top)
1845 				region->vm_end = region->vm_top;
1846 		}
1847 	}
1848 
1849 	i_mmap_unlock_read(inode->i_mapping);
1850 	up_write(&nommu_region_sem);
1851 	return 0;
1852 }
1853 
1854 /*
1855  * Initialise sysctl_user_reserve_kbytes.
1856  *
1857  * This is intended to prevent a user from starting a single memory hogging
1858  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1859  * mode.
1860  *
1861  * The default value is min(3% of free memory, 128MB)
1862  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1863  */
init_user_reserve(void)1864 static int __meminit init_user_reserve(void)
1865 {
1866 	unsigned long free_kbytes;
1867 
1868 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1869 
1870 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1871 	return 0;
1872 }
1873 subsys_initcall(init_user_reserve);
1874 
1875 /*
1876  * Initialise sysctl_admin_reserve_kbytes.
1877  *
1878  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1879  * to log in and kill a memory hogging process.
1880  *
1881  * Systems with more than 256MB will reserve 8MB, enough to recover
1882  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1883  * only reserve 3% of free pages by default.
1884  */
init_admin_reserve(void)1885 static int __meminit init_admin_reserve(void)
1886 {
1887 	unsigned long free_kbytes;
1888 
1889 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1890 
1891 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1892 	return 0;
1893 }
1894 subsys_initcall(init_admin_reserve);
1895 
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)1896 int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1897 {
1898 	mmap_write_lock(oldmm);
1899 	dup_mm_exe_file(mm, oldmm);
1900 	mmap_write_unlock(oldmm);
1901 	return 0;
1902 }
1903