1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Keystone Queue Manager subsystem driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/soc/ti/knav_qmss.h>
25
26 #include "knav_qmss.h"
27
28 static struct knav_device *kdev;
29 static DEFINE_MUTEX(knav_dev_lock);
30 #define knav_dev_lock_held() \
31 lockdep_is_held(&knav_dev_lock)
32
33 /* Queue manager register indices in DTS */
34 #define KNAV_QUEUE_PEEK_REG_INDEX 0
35 #define KNAV_QUEUE_STATUS_REG_INDEX 1
36 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
37 #define KNAV_QUEUE_REGION_REG_INDEX 3
38 #define KNAV_QUEUE_PUSH_REG_INDEX 4
39 #define KNAV_QUEUE_POP_REG_INDEX 5
40
41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42 * There are no status and vbusm push registers on this version
43 * of QMSS. Push registers are same as pop, So all indices above 1
44 * are to be re-defined
45 */
46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
47 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
48 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
49
50 /* PDSP register indices in DTS */
51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
55
56 #define knav_queue_idx_to_inst(kdev, idx) \
57 (kdev->instances + (idx << kdev->inst_shift))
58
59 #define for_each_handle_rcu(qh, inst) \
60 list_for_each_entry_rcu(qh, &inst->handles, list, \
61 knav_dev_lock_held())
62
63 #define for_each_instance(idx, inst, kdev) \
64 for (idx = 0, inst = kdev->instances; \
65 idx < (kdev)->num_queues_in_use; \
66 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
67
68 /* All firmware file names end up here. List the firmware file names below.
69 * Newest followed by older ones. Search is done from start of the array
70 * until a firmware file is found.
71 */
72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
73
74 static bool device_ready;
knav_qmss_device_ready(void)75 bool knav_qmss_device_ready(void)
76 {
77 return device_ready;
78 }
79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
80
81 /**
82 * knav_queue_notify: qmss queue notfier call
83 *
84 * @inst: - qmss queue instance like accumulator
85 */
knav_queue_notify(struct knav_queue_inst * inst)86 void knav_queue_notify(struct knav_queue_inst *inst)
87 {
88 struct knav_queue *qh;
89
90 if (!inst)
91 return;
92
93 rcu_read_lock();
94 for_each_handle_rcu(qh, inst) {
95 if (atomic_read(&qh->notifier_enabled) <= 0)
96 continue;
97 if (WARN_ON(!qh->notifier_fn))
98 continue;
99 this_cpu_inc(qh->stats->notifies);
100 qh->notifier_fn(qh->notifier_fn_arg);
101 }
102 rcu_read_unlock();
103 }
104 EXPORT_SYMBOL_GPL(knav_queue_notify);
105
knav_queue_int_handler(int irq,void * _instdata)106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
107 {
108 struct knav_queue_inst *inst = _instdata;
109
110 knav_queue_notify(inst);
111 return IRQ_HANDLED;
112 }
113
knav_queue_setup_irq(struct knav_range_info * range,struct knav_queue_inst * inst)114 static int knav_queue_setup_irq(struct knav_range_info *range,
115 struct knav_queue_inst *inst)
116 {
117 unsigned queue = inst->id - range->queue_base;
118 int ret = 0, irq;
119
120 if (range->flags & RANGE_HAS_IRQ) {
121 irq = range->irqs[queue].irq;
122 ret = request_irq(irq, knav_queue_int_handler, IRQF_NO_AUTOEN,
123 inst->irq_name, inst);
124 if (ret)
125 return ret;
126 if (range->irqs[queue].cpu_mask) {
127 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
128 if (ret) {
129 dev_warn(range->kdev->dev,
130 "Failed to set IRQ affinity\n");
131 return ret;
132 }
133 }
134 }
135 return ret;
136 }
137
knav_queue_free_irq(struct knav_queue_inst * inst)138 static void knav_queue_free_irq(struct knav_queue_inst *inst)
139 {
140 struct knav_range_info *range = inst->range;
141 unsigned queue = inst->id - inst->range->queue_base;
142 int irq;
143
144 if (range->flags & RANGE_HAS_IRQ) {
145 irq = range->irqs[queue].irq;
146 irq_set_affinity_hint(irq, NULL);
147 free_irq(irq, inst);
148 }
149 }
150
knav_queue_is_busy(struct knav_queue_inst * inst)151 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
152 {
153 return !list_empty(&inst->handles);
154 }
155
knav_queue_is_reserved(struct knav_queue_inst * inst)156 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
157 {
158 return inst->range->flags & RANGE_RESERVED;
159 }
160
knav_queue_is_shared(struct knav_queue_inst * inst)161 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
162 {
163 struct knav_queue *tmp;
164
165 rcu_read_lock();
166 for_each_handle_rcu(tmp, inst) {
167 if (tmp->flags & KNAV_QUEUE_SHARED) {
168 rcu_read_unlock();
169 return true;
170 }
171 }
172 rcu_read_unlock();
173 return false;
174 }
175
knav_queue_match_type(struct knav_queue_inst * inst,unsigned type)176 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
177 unsigned type)
178 {
179 if ((type == KNAV_QUEUE_QPEND) &&
180 (inst->range->flags & RANGE_HAS_IRQ)) {
181 return true;
182 } else if ((type == KNAV_QUEUE_ACC) &&
183 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
184 return true;
185 } else if ((type == KNAV_QUEUE_GP) &&
186 !(inst->range->flags &
187 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
188 return true;
189 }
190 return false;
191 }
192
193 static inline struct knav_queue_inst *
knav_queue_match_id_to_inst(struct knav_device * kdev,unsigned id)194 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
195 {
196 struct knav_queue_inst *inst;
197 int idx;
198
199 for_each_instance(idx, inst, kdev) {
200 if (inst->id == id)
201 return inst;
202 }
203 return NULL;
204 }
205
knav_queue_find_by_id(int id)206 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
207 {
208 if (kdev->base_id <= id &&
209 kdev->base_id + kdev->num_queues > id) {
210 id -= kdev->base_id;
211 return knav_queue_match_id_to_inst(kdev, id);
212 }
213 return NULL;
214 }
215
__knav_queue_open(struct knav_queue_inst * inst,const char * name,unsigned flags)216 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
217 const char *name, unsigned flags)
218 {
219 struct knav_queue *qh;
220 unsigned id;
221 int ret = 0;
222
223 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
224 if (!qh)
225 return ERR_PTR(-ENOMEM);
226
227 qh->stats = alloc_percpu(struct knav_queue_stats);
228 if (!qh->stats) {
229 ret = -ENOMEM;
230 goto err;
231 }
232
233 qh->flags = flags;
234 qh->inst = inst;
235 id = inst->id - inst->qmgr->start_queue;
236 qh->reg_push = &inst->qmgr->reg_push[id];
237 qh->reg_pop = &inst->qmgr->reg_pop[id];
238 qh->reg_peek = &inst->qmgr->reg_peek[id];
239
240 /* first opener? */
241 if (!knav_queue_is_busy(inst)) {
242 struct knav_range_info *range = inst->range;
243
244 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
245 if (range->ops && range->ops->open_queue)
246 ret = range->ops->open_queue(range, inst, flags);
247
248 if (ret)
249 goto err;
250 }
251 list_add_tail_rcu(&qh->list, &inst->handles);
252 return qh;
253
254 err:
255 free_percpu(qh->stats);
256 devm_kfree(inst->kdev->dev, qh);
257 return ERR_PTR(ret);
258 }
259
260 static struct knav_queue *
knav_queue_open_by_id(const char * name,unsigned id,unsigned flags)261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262 {
263 struct knav_queue_inst *inst;
264 struct knav_queue *qh;
265
266 mutex_lock(&knav_dev_lock);
267
268 qh = ERR_PTR(-ENODEV);
269 inst = knav_queue_find_by_id(id);
270 if (!inst)
271 goto unlock_ret;
272
273 qh = ERR_PTR(-EEXIST);
274 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275 goto unlock_ret;
276
277 qh = ERR_PTR(-EBUSY);
278 if ((flags & KNAV_QUEUE_SHARED) &&
279 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280 goto unlock_ret;
281
282 qh = __knav_queue_open(inst, name, flags);
283
284 unlock_ret:
285 mutex_unlock(&knav_dev_lock);
286
287 return qh;
288 }
289
knav_queue_open_by_type(const char * name,unsigned type,unsigned flags)290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291 unsigned type, unsigned flags)
292 {
293 struct knav_queue_inst *inst;
294 struct knav_queue *qh = ERR_PTR(-EINVAL);
295 int idx;
296
297 mutex_lock(&knav_dev_lock);
298
299 for_each_instance(idx, inst, kdev) {
300 if (knav_queue_is_reserved(inst))
301 continue;
302 if (!knav_queue_match_type(inst, type))
303 continue;
304 if (knav_queue_is_busy(inst))
305 continue;
306 qh = __knav_queue_open(inst, name, flags);
307 goto unlock_ret;
308 }
309
310 unlock_ret:
311 mutex_unlock(&knav_dev_lock);
312 return qh;
313 }
314
knav_queue_set_notify(struct knav_queue_inst * inst,bool enabled)315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316 {
317 struct knav_range_info *range = inst->range;
318
319 if (range->ops && range->ops->set_notify)
320 range->ops->set_notify(range, inst, enabled);
321 }
322
knav_queue_enable_notifier(struct knav_queue * qh)323 static int knav_queue_enable_notifier(struct knav_queue *qh)
324 {
325 struct knav_queue_inst *inst = qh->inst;
326 bool first;
327
328 if (WARN_ON(!qh->notifier_fn))
329 return -EINVAL;
330
331 /* Adjust the per handle notifier count */
332 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333 if (!first)
334 return 0; /* nothing to do */
335
336 /* Now adjust the per instance notifier count */
337 first = (atomic_inc_return(&inst->num_notifiers) == 1);
338 if (first)
339 knav_queue_set_notify(inst, true);
340
341 return 0;
342 }
343
knav_queue_disable_notifier(struct knav_queue * qh)344 static int knav_queue_disable_notifier(struct knav_queue *qh)
345 {
346 struct knav_queue_inst *inst = qh->inst;
347 bool last;
348
349 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350 if (!last)
351 return 0; /* nothing to do */
352
353 last = (atomic_dec_return(&inst->num_notifiers) == 0);
354 if (last)
355 knav_queue_set_notify(inst, false);
356
357 return 0;
358 }
359
knav_queue_set_notifier(struct knav_queue * qh,struct knav_queue_notify_config * cfg)360 static int knav_queue_set_notifier(struct knav_queue *qh,
361 struct knav_queue_notify_config *cfg)
362 {
363 knav_queue_notify_fn old_fn = qh->notifier_fn;
364
365 if (!cfg)
366 return -EINVAL;
367
368 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369 return -ENOTSUPP;
370
371 if (!cfg->fn && old_fn)
372 knav_queue_disable_notifier(qh);
373
374 qh->notifier_fn = cfg->fn;
375 qh->notifier_fn_arg = cfg->fn_arg;
376
377 if (cfg->fn && !old_fn)
378 knav_queue_enable_notifier(qh);
379
380 return 0;
381 }
382
knav_gp_set_notify(struct knav_range_info * range,struct knav_queue_inst * inst,bool enabled)383 static int knav_gp_set_notify(struct knav_range_info *range,
384 struct knav_queue_inst *inst,
385 bool enabled)
386 {
387 unsigned queue;
388
389 if (range->flags & RANGE_HAS_IRQ) {
390 queue = inst->id - range->queue_base;
391 if (enabled)
392 enable_irq(range->irqs[queue].irq);
393 else
394 disable_irq_nosync(range->irqs[queue].irq);
395 }
396 return 0;
397 }
398
knav_gp_open_queue(struct knav_range_info * range,struct knav_queue_inst * inst,unsigned flags)399 static int knav_gp_open_queue(struct knav_range_info *range,
400 struct knav_queue_inst *inst, unsigned flags)
401 {
402 return knav_queue_setup_irq(range, inst);
403 }
404
knav_gp_close_queue(struct knav_range_info * range,struct knav_queue_inst * inst)405 static int knav_gp_close_queue(struct knav_range_info *range,
406 struct knav_queue_inst *inst)
407 {
408 knav_queue_free_irq(inst);
409 return 0;
410 }
411
412 static const struct knav_range_ops knav_gp_range_ops = {
413 .set_notify = knav_gp_set_notify,
414 .open_queue = knav_gp_open_queue,
415 .close_queue = knav_gp_close_queue,
416 };
417
418
knav_queue_get_count(void * qhandle)419 static int knav_queue_get_count(void *qhandle)
420 {
421 struct knav_queue *qh = qhandle;
422 struct knav_queue_inst *inst = qh->inst;
423
424 return readl_relaxed(&qh->reg_peek[0].entry_count) +
425 atomic_read(&inst->desc_count);
426 }
427
knav_queue_debug_show_instance(struct seq_file * s,struct knav_queue_inst * inst)428 static void knav_queue_debug_show_instance(struct seq_file *s,
429 struct knav_queue_inst *inst)
430 {
431 struct knav_device *kdev = inst->kdev;
432 struct knav_queue *qh;
433 int cpu = 0;
434 int pushes = 0;
435 int pops = 0;
436 int push_errors = 0;
437 int pop_errors = 0;
438 int notifies = 0;
439
440 if (!knav_queue_is_busy(inst))
441 return;
442
443 seq_printf(s, "\tqueue id %d (%s)\n",
444 kdev->base_id + inst->id, inst->name);
445 for_each_handle_rcu(qh, inst) {
446 for_each_possible_cpu(cpu) {
447 pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448 pops += per_cpu_ptr(qh->stats, cpu)->pops;
449 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451 notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452 }
453
454 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455 qh,
456 pushes,
457 pops,
458 knav_queue_get_count(qh),
459 notifies,
460 push_errors,
461 pop_errors);
462 }
463 }
464
knav_queue_debug_show(struct seq_file * s,void * v)465 static int knav_queue_debug_show(struct seq_file *s, void *v)
466 {
467 struct knav_queue_inst *inst;
468 int idx;
469
470 mutex_lock(&knav_dev_lock);
471 seq_printf(s, "%s: %u-%u\n",
472 dev_name(kdev->dev), kdev->base_id,
473 kdev->base_id + kdev->num_queues - 1);
474 for_each_instance(idx, inst, kdev)
475 knav_queue_debug_show_instance(s, inst);
476 mutex_unlock(&knav_dev_lock);
477
478 return 0;
479 }
480
481 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
482
knav_queue_pdsp_wait(u32 * __iomem addr,unsigned timeout,u32 flags)483 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
484 u32 flags)
485 {
486 unsigned long end;
487 u32 val = 0;
488
489 end = jiffies + msecs_to_jiffies(timeout);
490 while (time_after(end, jiffies)) {
491 val = readl_relaxed(addr);
492 if (flags)
493 val &= flags;
494 if (!val)
495 break;
496 cpu_relax();
497 }
498 return val ? -ETIMEDOUT : 0;
499 }
500
501
knav_queue_flush(struct knav_queue * qh)502 static int knav_queue_flush(struct knav_queue *qh)
503 {
504 struct knav_queue_inst *inst = qh->inst;
505 unsigned id = inst->id - inst->qmgr->start_queue;
506
507 atomic_set(&inst->desc_count, 0);
508 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
509 return 0;
510 }
511
512 /**
513 * knav_queue_open() - open a hardware queue
514 * @name: - name to give the queue handle
515 * @id: - desired queue number if any or specifes the type
516 * of queue
517 * @flags: - the following flags are applicable to queues:
518 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
519 * exclusive by default.
520 * Subsequent attempts to open a shared queue should
521 * also have this flag.
522 *
523 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
524 * to check the returned value for error codes.
525 */
knav_queue_open(const char * name,unsigned id,unsigned flags)526 void *knav_queue_open(const char *name, unsigned id,
527 unsigned flags)
528 {
529 struct knav_queue *qh = ERR_PTR(-EINVAL);
530
531 switch (id) {
532 case KNAV_QUEUE_QPEND:
533 case KNAV_QUEUE_ACC:
534 case KNAV_QUEUE_GP:
535 qh = knav_queue_open_by_type(name, id, flags);
536 break;
537
538 default:
539 qh = knav_queue_open_by_id(name, id, flags);
540 break;
541 }
542 return qh;
543 }
544 EXPORT_SYMBOL_GPL(knav_queue_open);
545
546 /**
547 * knav_queue_close() - close a hardware queue handle
548 * @qhandle: - handle to close
549 */
knav_queue_close(void * qhandle)550 void knav_queue_close(void *qhandle)
551 {
552 struct knav_queue *qh = qhandle;
553 struct knav_queue_inst *inst = qh->inst;
554
555 while (atomic_read(&qh->notifier_enabled) > 0)
556 knav_queue_disable_notifier(qh);
557
558 mutex_lock(&knav_dev_lock);
559 list_del_rcu(&qh->list);
560 mutex_unlock(&knav_dev_lock);
561 synchronize_rcu();
562 if (!knav_queue_is_busy(inst)) {
563 struct knav_range_info *range = inst->range;
564
565 if (range->ops && range->ops->close_queue)
566 range->ops->close_queue(range, inst);
567 }
568 free_percpu(qh->stats);
569 devm_kfree(inst->kdev->dev, qh);
570 }
571 EXPORT_SYMBOL_GPL(knav_queue_close);
572
573 /**
574 * knav_queue_device_control() - Perform control operations on a queue
575 * @qhandle: - queue handle
576 * @cmd: - control commands
577 * @arg: - command argument
578 *
579 * Returns 0 on success, errno otherwise.
580 */
knav_queue_device_control(void * qhandle,enum knav_queue_ctrl_cmd cmd,unsigned long arg)581 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
582 unsigned long arg)
583 {
584 struct knav_queue *qh = qhandle;
585 struct knav_queue_notify_config *cfg;
586 int ret;
587
588 switch ((int)cmd) {
589 case KNAV_QUEUE_GET_ID:
590 ret = qh->inst->kdev->base_id + qh->inst->id;
591 break;
592
593 case KNAV_QUEUE_FLUSH:
594 ret = knav_queue_flush(qh);
595 break;
596
597 case KNAV_QUEUE_SET_NOTIFIER:
598 cfg = (void *)arg;
599 ret = knav_queue_set_notifier(qh, cfg);
600 break;
601
602 case KNAV_QUEUE_ENABLE_NOTIFY:
603 ret = knav_queue_enable_notifier(qh);
604 break;
605
606 case KNAV_QUEUE_DISABLE_NOTIFY:
607 ret = knav_queue_disable_notifier(qh);
608 break;
609
610 case KNAV_QUEUE_GET_COUNT:
611 ret = knav_queue_get_count(qh);
612 break;
613
614 default:
615 ret = -ENOTSUPP;
616 break;
617 }
618 return ret;
619 }
620 EXPORT_SYMBOL_GPL(knav_queue_device_control);
621
622
623
624 /**
625 * knav_queue_push() - push data (or descriptor) to the tail of a queue
626 * @qhandle: - hardware queue handle
627 * @dma: - DMA data to push
628 * @size: - size of data to push
629 * @flags: - can be used to pass additional information
630 *
631 * Returns 0 on success, errno otherwise.
632 */
knav_queue_push(void * qhandle,dma_addr_t dma,unsigned size,unsigned flags)633 int knav_queue_push(void *qhandle, dma_addr_t dma,
634 unsigned size, unsigned flags)
635 {
636 struct knav_queue *qh = qhandle;
637 u32 val;
638
639 val = (u32)dma | ((size / 16) - 1);
640 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
641
642 this_cpu_inc(qh->stats->pushes);
643 return 0;
644 }
645 EXPORT_SYMBOL_GPL(knav_queue_push);
646
647 /**
648 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
649 * @qhandle: - hardware queue handle
650 * @size: - (optional) size of the data pop'ed.
651 *
652 * Returns a DMA address on success, 0 on failure.
653 */
knav_queue_pop(void * qhandle,unsigned * size)654 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
655 {
656 struct knav_queue *qh = qhandle;
657 struct knav_queue_inst *inst = qh->inst;
658 dma_addr_t dma;
659 u32 val, idx;
660
661 /* are we accumulated? */
662 if (inst->descs) {
663 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
664 atomic_inc(&inst->desc_count);
665 return 0;
666 }
667 idx = atomic_inc_return(&inst->desc_head);
668 idx &= ACC_DESCS_MASK;
669 val = inst->descs[idx];
670 } else {
671 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
672 if (unlikely(!val))
673 return 0;
674 }
675
676 dma = val & DESC_PTR_MASK;
677 if (size)
678 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
679
680 this_cpu_inc(qh->stats->pops);
681 return dma;
682 }
683 EXPORT_SYMBOL_GPL(knav_queue_pop);
684
685 /* carve out descriptors and push into queue */
kdesc_fill_pool(struct knav_pool * pool)686 static void kdesc_fill_pool(struct knav_pool *pool)
687 {
688 struct knav_region *region;
689 int i;
690
691 region = pool->region;
692 pool->desc_size = region->desc_size;
693 for (i = 0; i < pool->num_desc; i++) {
694 int index = pool->region_offset + i;
695 dma_addr_t dma_addr;
696 unsigned dma_size;
697 dma_addr = region->dma_start + (region->desc_size * index);
698 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
699 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
700 DMA_TO_DEVICE);
701 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
702 }
703 }
704
705 /* pop out descriptors and close the queue */
kdesc_empty_pool(struct knav_pool * pool)706 static void kdesc_empty_pool(struct knav_pool *pool)
707 {
708 dma_addr_t dma;
709 unsigned size;
710 void *desc;
711 int i;
712
713 if (!pool->queue)
714 return;
715
716 for (i = 0;; i++) {
717 dma = knav_queue_pop(pool->queue, &size);
718 if (!dma)
719 break;
720 desc = knav_pool_desc_dma_to_virt(pool, dma);
721 if (!desc) {
722 dev_dbg(pool->kdev->dev,
723 "couldn't unmap desc, continuing\n");
724 }
725 }
726 WARN_ON(i != pool->num_desc);
727 knav_queue_close(pool->queue);
728 }
729
730
731 /* Get the DMA address of a descriptor */
knav_pool_desc_virt_to_dma(void * ph,void * virt)732 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
733 {
734 struct knav_pool *pool = ph;
735 return pool->region->dma_start + (virt - pool->region->virt_start);
736 }
737 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
738
knav_pool_desc_dma_to_virt(void * ph,dma_addr_t dma)739 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
740 {
741 struct knav_pool *pool = ph;
742 return pool->region->virt_start + (dma - pool->region->dma_start);
743 }
744 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
745
746 /**
747 * knav_pool_create() - Create a pool of descriptors
748 * @name: - name to give the pool handle
749 * @num_desc: - numbers of descriptors in the pool
750 * @region_id: - QMSS region id from which the descriptors are to be
751 * allocated.
752 *
753 * Returns a pool handle on success.
754 * Use IS_ERR_OR_NULL() to identify error values on return.
755 */
knav_pool_create(const char * name,int num_desc,int region_id)756 void *knav_pool_create(const char *name,
757 int num_desc, int region_id)
758 {
759 struct knav_region *reg_itr, *region = NULL;
760 struct knav_pool *pool, *pi = NULL, *iter;
761 struct list_head *node;
762 unsigned last_offset;
763 int ret;
764
765 if (!kdev)
766 return ERR_PTR(-EPROBE_DEFER);
767
768 if (!kdev->dev)
769 return ERR_PTR(-ENODEV);
770
771 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
772 if (!pool) {
773 dev_err(kdev->dev, "out of memory allocating pool\n");
774 return ERR_PTR(-ENOMEM);
775 }
776
777 for_each_region(kdev, reg_itr) {
778 if (reg_itr->id != region_id)
779 continue;
780 region = reg_itr;
781 break;
782 }
783
784 if (!region) {
785 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
786 ret = -EINVAL;
787 goto err;
788 }
789
790 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
791 if (IS_ERR(pool->queue)) {
792 dev_err(kdev->dev,
793 "failed to open queue for pool(%s), error %ld\n",
794 name, PTR_ERR(pool->queue));
795 ret = PTR_ERR(pool->queue);
796 goto err;
797 }
798
799 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
800 pool->kdev = kdev;
801 pool->dev = kdev->dev;
802
803 mutex_lock(&knav_dev_lock);
804
805 if (num_desc > (region->num_desc - region->used_desc)) {
806 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
807 region_id, name);
808 ret = -ENOMEM;
809 goto err_unlock;
810 }
811
812 /* Region maintains a sorted (by region offset) list of pools
813 * use the first free slot which is large enough to accomodate
814 * the request
815 */
816 last_offset = 0;
817 node = ®ion->pools;
818 list_for_each_entry(iter, ®ion->pools, region_inst) {
819 if ((iter->region_offset - last_offset) >= num_desc) {
820 pi = iter;
821 break;
822 }
823 last_offset = iter->region_offset + iter->num_desc;
824 }
825
826 if (pi) {
827 node = &pi->region_inst;
828 pool->region = region;
829 pool->num_desc = num_desc;
830 pool->region_offset = last_offset;
831 region->used_desc += num_desc;
832 list_add_tail(&pool->list, &kdev->pools);
833 list_add_tail(&pool->region_inst, node);
834 } else {
835 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
836 name, region_id);
837 ret = -ENOMEM;
838 goto err_unlock;
839 }
840
841 mutex_unlock(&knav_dev_lock);
842 kdesc_fill_pool(pool);
843 return pool;
844
845 err_unlock:
846 mutex_unlock(&knav_dev_lock);
847 err:
848 kfree(pool->name);
849 devm_kfree(kdev->dev, pool);
850 return ERR_PTR(ret);
851 }
852 EXPORT_SYMBOL_GPL(knav_pool_create);
853
854 /**
855 * knav_pool_destroy() - Free a pool of descriptors
856 * @ph: - pool handle
857 */
knav_pool_destroy(void * ph)858 void knav_pool_destroy(void *ph)
859 {
860 struct knav_pool *pool = ph;
861
862 if (!pool)
863 return;
864
865 if (!pool->region)
866 return;
867
868 kdesc_empty_pool(pool);
869 mutex_lock(&knav_dev_lock);
870
871 pool->region->used_desc -= pool->num_desc;
872 list_del(&pool->region_inst);
873 list_del(&pool->list);
874
875 mutex_unlock(&knav_dev_lock);
876 kfree(pool->name);
877 devm_kfree(kdev->dev, pool);
878 }
879 EXPORT_SYMBOL_GPL(knav_pool_destroy);
880
881
882 /**
883 * knav_pool_desc_get() - Get a descriptor from the pool
884 * @ph: - pool handle
885 *
886 * Returns descriptor from the pool.
887 */
knav_pool_desc_get(void * ph)888 void *knav_pool_desc_get(void *ph)
889 {
890 struct knav_pool *pool = ph;
891 dma_addr_t dma;
892 unsigned size;
893 void *data;
894
895 dma = knav_queue_pop(pool->queue, &size);
896 if (unlikely(!dma))
897 return ERR_PTR(-ENOMEM);
898 data = knav_pool_desc_dma_to_virt(pool, dma);
899 return data;
900 }
901 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
902
903 /**
904 * knav_pool_desc_put() - return a descriptor to the pool
905 * @ph: - pool handle
906 * @desc: - virtual address
907 */
knav_pool_desc_put(void * ph,void * desc)908 void knav_pool_desc_put(void *ph, void *desc)
909 {
910 struct knav_pool *pool = ph;
911 dma_addr_t dma;
912 dma = knav_pool_desc_virt_to_dma(pool, desc);
913 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
914 }
915 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
916
917 /**
918 * knav_pool_desc_map() - Map descriptor for DMA transfer
919 * @ph: - pool handle
920 * @desc: - address of descriptor to map
921 * @size: - size of descriptor to map
922 * @dma: - DMA address return pointer
923 * @dma_sz: - adjusted return pointer
924 *
925 * Returns 0 on success, errno otherwise.
926 */
knav_pool_desc_map(void * ph,void * desc,unsigned size,dma_addr_t * dma,unsigned * dma_sz)927 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
928 dma_addr_t *dma, unsigned *dma_sz)
929 {
930 struct knav_pool *pool = ph;
931 *dma = knav_pool_desc_virt_to_dma(pool, desc);
932 size = min(size, pool->region->desc_size);
933 size = ALIGN(size, SMP_CACHE_BYTES);
934 *dma_sz = size;
935 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
936
937 /* Ensure the descriptor reaches to the memory */
938 __iowmb();
939
940 return 0;
941 }
942 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
943
944 /**
945 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
946 * @ph: - pool handle
947 * @dma: - DMA address of descriptor to unmap
948 * @dma_sz: - size of descriptor to unmap
949 *
950 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
951 * error values on return.
952 */
knav_pool_desc_unmap(void * ph,dma_addr_t dma,unsigned dma_sz)953 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
954 {
955 struct knav_pool *pool = ph;
956 unsigned desc_sz;
957 void *desc;
958
959 desc_sz = min(dma_sz, pool->region->desc_size);
960 desc = knav_pool_desc_dma_to_virt(pool, dma);
961 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
962 prefetch(desc);
963 return desc;
964 }
965 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
966
967 /**
968 * knav_pool_count() - Get the number of descriptors in pool.
969 * @ph: - pool handle
970 * Returns number of elements in the pool.
971 */
knav_pool_count(void * ph)972 int knav_pool_count(void *ph)
973 {
974 struct knav_pool *pool = ph;
975 return knav_queue_get_count(pool->queue);
976 }
977 EXPORT_SYMBOL_GPL(knav_pool_count);
978
knav_queue_setup_region(struct knav_device * kdev,struct knav_region * region)979 static void knav_queue_setup_region(struct knav_device *kdev,
980 struct knav_region *region)
981 {
982 unsigned hw_num_desc, hw_desc_size, size;
983 struct knav_reg_region __iomem *regs;
984 struct knav_qmgr_info *qmgr;
985 struct knav_pool *pool;
986 int id = region->id;
987 struct page *page;
988
989 /* unused region? */
990 if (!region->num_desc) {
991 dev_warn(kdev->dev, "unused region %s\n", region->name);
992 return;
993 }
994
995 /* get hardware descriptor value */
996 hw_num_desc = ilog2(region->num_desc - 1) + 1;
997
998 /* did we force fit ourselves into nothingness? */
999 if (region->num_desc < 32) {
1000 region->num_desc = 0;
1001 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1002 region->name);
1003 return;
1004 }
1005
1006 size = region->num_desc * region->desc_size;
1007 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1008 GFP_DMA32);
1009 if (!region->virt_start) {
1010 region->num_desc = 0;
1011 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1012 region->name);
1013 return;
1014 }
1015 region->virt_end = region->virt_start + size;
1016 page = virt_to_page(region->virt_start);
1017
1018 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1019 DMA_BIDIRECTIONAL);
1020 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1021 dev_err(kdev->dev, "dma map failed for region %s\n",
1022 region->name);
1023 goto fail;
1024 }
1025 region->dma_end = region->dma_start + size;
1026
1027 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1028 if (!pool) {
1029 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1030 goto fail;
1031 }
1032 pool->num_desc = 0;
1033 pool->region_offset = region->num_desc;
1034 list_add(&pool->region_inst, ®ion->pools);
1035
1036 dev_dbg(kdev->dev,
1037 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1038 region->name, id, region->desc_size, region->num_desc,
1039 region->link_index, ®ion->dma_start, ®ion->dma_end,
1040 region->virt_start, region->virt_end);
1041
1042 hw_desc_size = (region->desc_size / 16) - 1;
1043 hw_num_desc -= 5;
1044
1045 for_each_qmgr(kdev, qmgr) {
1046 regs = qmgr->reg_region + id;
1047 writel_relaxed((u32)region->dma_start, ®s->base);
1048 writel_relaxed(region->link_index, ®s->start_index);
1049 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1050 ®s->size_count);
1051 }
1052 return;
1053
1054 fail:
1055 if (region->dma_start)
1056 dma_unmap_page(kdev->dev, region->dma_start, size,
1057 DMA_BIDIRECTIONAL);
1058 if (region->virt_start)
1059 free_pages_exact(region->virt_start, size);
1060 region->num_desc = 0;
1061 return;
1062 }
1063
knav_queue_find_name(struct device_node * node)1064 static const char *knav_queue_find_name(struct device_node *node)
1065 {
1066 const char *name;
1067
1068 if (of_property_read_string(node, "label", &name) < 0)
1069 name = node->name;
1070 if (!name)
1071 name = "unknown";
1072 return name;
1073 }
1074
knav_queue_setup_regions(struct knav_device * kdev,struct device_node * node)1075 static int knav_queue_setup_regions(struct knav_device *kdev,
1076 struct device_node *node)
1077 {
1078 struct device *dev = kdev->dev;
1079 struct device_node *regions __free(device_node) =
1080 of_get_child_by_name(node, "descriptor-regions");
1081 struct knav_region *region;
1082 struct device_node *child;
1083 u32 temp[2];
1084 int ret;
1085
1086 if (!regions)
1087 return dev_err_probe(dev, -ENODEV,
1088 "descriptor-regions not specified\n");
1089
1090 for_each_child_of_node(regions, child) {
1091 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1092 if (!region) {
1093 of_node_put(child);
1094 dev_err(dev, "out of memory allocating region\n");
1095 return -ENOMEM;
1096 }
1097
1098 region->name = knav_queue_find_name(child);
1099 of_property_read_u32(child, "id", ®ion->id);
1100 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1101 if (!ret) {
1102 region->num_desc = temp[0];
1103 region->desc_size = temp[1];
1104 } else {
1105 dev_err(dev, "invalid region info %s\n", region->name);
1106 devm_kfree(dev, region);
1107 continue;
1108 }
1109
1110 ret = of_property_read_u32(child, "link-index",
1111 ®ion->link_index);
1112 if (ret) {
1113 dev_err(dev, "link index not found for %s\n",
1114 region->name);
1115 devm_kfree(dev, region);
1116 continue;
1117 }
1118
1119 INIT_LIST_HEAD(®ion->pools);
1120 list_add_tail(®ion->list, &kdev->regions);
1121 }
1122 if (list_empty(&kdev->regions))
1123 return dev_err_probe(dev, -ENODEV,
1124 "no valid region information found\n");
1125
1126 /* Next, we run through the regions and set things up */
1127 for_each_region(kdev, region)
1128 knav_queue_setup_region(kdev, region);
1129
1130 return 0;
1131 }
1132
knav_get_link_ram(struct knav_device * kdev,const char * name,struct knav_link_ram_block * block)1133 static int knav_get_link_ram(struct knav_device *kdev,
1134 const char *name,
1135 struct knav_link_ram_block *block)
1136 {
1137 struct platform_device *pdev = to_platform_device(kdev->dev);
1138 struct device_node *node = pdev->dev.of_node;
1139 u32 temp[2];
1140
1141 /*
1142 * Note: link ram resources are specified in "entry" sized units. In
1143 * reality, although entries are ~40bits in hardware, we treat them as
1144 * 64-bit entities here.
1145 *
1146 * For example, to specify the internal link ram for Keystone-I class
1147 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1148 *
1149 * This gets a bit weird when other link rams are used. For example,
1150 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1151 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1152 * which accounts for 64-bits per entry, for 16K entries.
1153 */
1154 if (!of_property_read_u32_array(node, name , temp, 2)) {
1155 if (temp[0]) {
1156 /*
1157 * queue_base specified => using internal or onchip
1158 * link ram WARNING - we do not "reserve" this block
1159 */
1160 block->dma = (dma_addr_t)temp[0];
1161 block->virt = NULL;
1162 block->size = temp[1];
1163 } else {
1164 block->size = temp[1];
1165 /* queue_base not specific => allocate requested size */
1166 block->virt = dmam_alloc_coherent(kdev->dev,
1167 8 * block->size, &block->dma,
1168 GFP_KERNEL);
1169 if (!block->virt) {
1170 dev_err(kdev->dev, "failed to alloc linkram\n");
1171 return -ENOMEM;
1172 }
1173 }
1174 } else {
1175 return -ENODEV;
1176 }
1177 return 0;
1178 }
1179
knav_queue_setup_link_ram(struct knav_device * kdev)1180 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1181 {
1182 struct knav_link_ram_block *block;
1183 struct knav_qmgr_info *qmgr;
1184
1185 for_each_qmgr(kdev, qmgr) {
1186 block = &kdev->link_rams[0];
1187 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1188 &block->dma, block->virt, block->size);
1189 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1190 if (kdev->version == QMSS_66AK2G)
1191 writel_relaxed(block->size,
1192 &qmgr->reg_config->link_ram_size0);
1193 else
1194 writel_relaxed(block->size - 1,
1195 &qmgr->reg_config->link_ram_size0);
1196 block++;
1197 if (!block->size)
1198 continue;
1199
1200 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1201 &block->dma, block->virt, block->size);
1202 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1203 }
1204
1205 return 0;
1206 }
1207
knav_setup_queue_range(struct knav_device * kdev,struct device_node * node)1208 static int knav_setup_queue_range(struct knav_device *kdev,
1209 struct device_node *node)
1210 {
1211 struct device *dev = kdev->dev;
1212 struct knav_range_info *range;
1213 struct knav_qmgr_info *qmgr;
1214 u32 temp[2], start, end, id, index;
1215 int ret, i;
1216
1217 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1218 if (!range) {
1219 dev_err(dev, "out of memory allocating range\n");
1220 return -ENOMEM;
1221 }
1222
1223 range->kdev = kdev;
1224 range->name = knav_queue_find_name(node);
1225 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1226 if (!ret) {
1227 range->queue_base = temp[0] - kdev->base_id;
1228 range->num_queues = temp[1];
1229 } else {
1230 dev_err(dev, "invalid queue range %s\n", range->name);
1231 devm_kfree(dev, range);
1232 return -EINVAL;
1233 }
1234
1235 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1236 struct of_phandle_args oirq;
1237
1238 if (of_irq_parse_one(node, i, &oirq))
1239 break;
1240
1241 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1242 if (range->irqs[i].irq == IRQ_NONE)
1243 break;
1244
1245 range->num_irqs++;
1246
1247 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1248 unsigned long mask;
1249 int bit;
1250
1251 range->irqs[i].cpu_mask = devm_kzalloc(dev,
1252 cpumask_size(), GFP_KERNEL);
1253 if (!range->irqs[i].cpu_mask)
1254 return -ENOMEM;
1255
1256 mask = (oirq.args[2] & 0x0000ff00) >> 8;
1257 for_each_set_bit(bit, &mask, BITS_PER_LONG)
1258 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1259 }
1260 }
1261
1262 range->num_irqs = min(range->num_irqs, range->num_queues);
1263 if (range->num_irqs)
1264 range->flags |= RANGE_HAS_IRQ;
1265
1266 if (of_property_read_bool(node, "qalloc-by-id"))
1267 range->flags |= RANGE_RESERVED;
1268
1269 if (of_property_present(node, "accumulator")) {
1270 ret = knav_init_acc_range(kdev, node, range);
1271 if (ret < 0) {
1272 devm_kfree(dev, range);
1273 return ret;
1274 }
1275 } else {
1276 range->ops = &knav_gp_range_ops;
1277 }
1278
1279 /* set threshold to 1, and flush out the queues */
1280 for_each_qmgr(kdev, qmgr) {
1281 start = max(qmgr->start_queue, range->queue_base);
1282 end = min(qmgr->start_queue + qmgr->num_queues,
1283 range->queue_base + range->num_queues);
1284 for (id = start; id < end; id++) {
1285 index = id - qmgr->start_queue;
1286 writel_relaxed(THRESH_GTE | 1,
1287 &qmgr->reg_peek[index].ptr_size_thresh);
1288 writel_relaxed(0,
1289 &qmgr->reg_push[index].ptr_size_thresh);
1290 }
1291 }
1292
1293 list_add_tail(&range->list, &kdev->queue_ranges);
1294 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1295 range->name, range->queue_base,
1296 range->queue_base + range->num_queues - 1,
1297 range->num_irqs,
1298 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1299 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1300 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1301 kdev->num_queues_in_use += range->num_queues;
1302 return 0;
1303 }
1304
knav_setup_queue_pools(struct knav_device * kdev,struct device_node * node)1305 static int knav_setup_queue_pools(struct knav_device *kdev,
1306 struct device_node *node)
1307 {
1308 struct device_node *queue_pools __free(device_node) =
1309 of_get_child_by_name(node, "queue-pools");
1310 struct device_node *type, *range;
1311
1312 if (!queue_pools)
1313 return dev_err_probe(kdev->dev, -ENODEV,
1314 "queue-pools not specified\n");
1315
1316 for_each_child_of_node(queue_pools, type) {
1317 for_each_child_of_node(type, range) {
1318 /* return value ignored, we init the rest... */
1319 knav_setup_queue_range(kdev, range);
1320 }
1321 }
1322
1323 /* ... and barf if they all failed! */
1324 if (list_empty(&kdev->queue_ranges))
1325 return dev_err_probe(kdev->dev, -ENODEV,
1326 "no valid queue range found\n");
1327 return 0;
1328 }
1329
knav_free_queue_range(struct knav_device * kdev,struct knav_range_info * range)1330 static void knav_free_queue_range(struct knav_device *kdev,
1331 struct knav_range_info *range)
1332 {
1333 if (range->ops && range->ops->free_range)
1334 range->ops->free_range(range);
1335 list_del(&range->list);
1336 devm_kfree(kdev->dev, range);
1337 }
1338
knav_free_queue_ranges(struct knav_device * kdev)1339 static void knav_free_queue_ranges(struct knav_device *kdev)
1340 {
1341 struct knav_range_info *range;
1342
1343 for (;;) {
1344 range = first_queue_range(kdev);
1345 if (!range)
1346 break;
1347 knav_free_queue_range(kdev, range);
1348 }
1349 }
1350
knav_queue_free_regions(struct knav_device * kdev)1351 static void knav_queue_free_regions(struct knav_device *kdev)
1352 {
1353 struct knav_region *region;
1354 struct knav_pool *pool, *tmp;
1355 unsigned size;
1356
1357 for (;;) {
1358 region = first_region(kdev);
1359 if (!region)
1360 break;
1361 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst)
1362 knav_pool_destroy(pool);
1363
1364 size = region->virt_end - region->virt_start;
1365 if (size)
1366 free_pages_exact(region->virt_start, size);
1367 list_del(®ion->list);
1368 devm_kfree(kdev->dev, region);
1369 }
1370 }
1371
knav_queue_map_reg(struct knav_device * kdev,struct device_node * node,int index)1372 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1373 struct device_node *node, int index)
1374 {
1375 struct resource res;
1376 void __iomem *regs;
1377 int ret;
1378
1379 ret = of_address_to_resource(node, index, &res);
1380 if (ret) {
1381 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1382 node, index);
1383 return ERR_PTR(ret);
1384 }
1385
1386 regs = devm_ioremap_resource(kdev->dev, &res);
1387 if (IS_ERR(regs))
1388 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1389 index, node);
1390 return regs;
1391 }
1392
knav_queue_init_qmgrs(struct knav_device * kdev,struct device_node * node)1393 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1394 struct device_node *node)
1395 {
1396 struct device *dev = kdev->dev;
1397 struct device_node *qmgrs __free(device_node) =
1398 of_get_child_by_name(node, "qmgrs");
1399 struct knav_qmgr_info *qmgr;
1400 struct device_node *child;
1401 u32 temp[2];
1402 int ret;
1403
1404 if (!qmgrs)
1405 return dev_err_probe(dev, -ENODEV,
1406 "queue manager info not specified\n");
1407
1408 for_each_child_of_node(qmgrs, child) {
1409 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1410 if (!qmgr) {
1411 of_node_put(child);
1412 dev_err(dev, "out of memory allocating qmgr\n");
1413 return -ENOMEM;
1414 }
1415
1416 ret = of_property_read_u32_array(child, "managed-queues",
1417 temp, 2);
1418 if (!ret) {
1419 qmgr->start_queue = temp[0];
1420 qmgr->num_queues = temp[1];
1421 } else {
1422 dev_err(dev, "invalid qmgr queue range\n");
1423 devm_kfree(dev, qmgr);
1424 continue;
1425 }
1426
1427 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1428 qmgr->start_queue, qmgr->num_queues);
1429
1430 qmgr->reg_peek =
1431 knav_queue_map_reg(kdev, child,
1432 KNAV_QUEUE_PEEK_REG_INDEX);
1433
1434 if (kdev->version == QMSS) {
1435 qmgr->reg_status =
1436 knav_queue_map_reg(kdev, child,
1437 KNAV_QUEUE_STATUS_REG_INDEX);
1438 }
1439
1440 qmgr->reg_config =
1441 knav_queue_map_reg(kdev, child,
1442 (kdev->version == QMSS_66AK2G) ?
1443 KNAV_L_QUEUE_CONFIG_REG_INDEX :
1444 KNAV_QUEUE_CONFIG_REG_INDEX);
1445 qmgr->reg_region =
1446 knav_queue_map_reg(kdev, child,
1447 (kdev->version == QMSS_66AK2G) ?
1448 KNAV_L_QUEUE_REGION_REG_INDEX :
1449 KNAV_QUEUE_REGION_REG_INDEX);
1450
1451 qmgr->reg_push =
1452 knav_queue_map_reg(kdev, child,
1453 (kdev->version == QMSS_66AK2G) ?
1454 KNAV_L_QUEUE_PUSH_REG_INDEX :
1455 KNAV_QUEUE_PUSH_REG_INDEX);
1456
1457 if (kdev->version == QMSS) {
1458 qmgr->reg_pop =
1459 knav_queue_map_reg(kdev, child,
1460 KNAV_QUEUE_POP_REG_INDEX);
1461 }
1462
1463 if (IS_ERR(qmgr->reg_peek) ||
1464 ((kdev->version == QMSS) &&
1465 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1466 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1467 IS_ERR(qmgr->reg_push)) {
1468 dev_err(dev, "failed to map qmgr regs\n");
1469 if (kdev->version == QMSS) {
1470 if (!IS_ERR(qmgr->reg_status))
1471 devm_iounmap(dev, qmgr->reg_status);
1472 if (!IS_ERR(qmgr->reg_pop))
1473 devm_iounmap(dev, qmgr->reg_pop);
1474 }
1475 if (!IS_ERR(qmgr->reg_peek))
1476 devm_iounmap(dev, qmgr->reg_peek);
1477 if (!IS_ERR(qmgr->reg_config))
1478 devm_iounmap(dev, qmgr->reg_config);
1479 if (!IS_ERR(qmgr->reg_region))
1480 devm_iounmap(dev, qmgr->reg_region);
1481 if (!IS_ERR(qmgr->reg_push))
1482 devm_iounmap(dev, qmgr->reg_push);
1483 devm_kfree(dev, qmgr);
1484 continue;
1485 }
1486
1487 /* Use same push register for pop as well */
1488 if (kdev->version == QMSS_66AK2G)
1489 qmgr->reg_pop = qmgr->reg_push;
1490
1491 list_add_tail(&qmgr->list, &kdev->qmgrs);
1492 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1493 qmgr->start_queue, qmgr->num_queues,
1494 qmgr->reg_peek, qmgr->reg_status,
1495 qmgr->reg_config, qmgr->reg_region,
1496 qmgr->reg_push, qmgr->reg_pop);
1497 }
1498 return 0;
1499 }
1500
knav_queue_init_pdsps(struct knav_device * kdev,struct device_node * pdsps)1501 static int knav_queue_init_pdsps(struct knav_device *kdev,
1502 struct device_node *pdsps)
1503 {
1504 struct device *dev = kdev->dev;
1505 struct knav_pdsp_info *pdsp;
1506 struct device_node *child;
1507
1508 for_each_child_of_node(pdsps, child) {
1509 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1510 if (!pdsp) {
1511 of_node_put(child);
1512 dev_err(dev, "out of memory allocating pdsp\n");
1513 return -ENOMEM;
1514 }
1515 pdsp->name = knav_queue_find_name(child);
1516 pdsp->iram =
1517 knav_queue_map_reg(kdev, child,
1518 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1519 pdsp->regs =
1520 knav_queue_map_reg(kdev, child,
1521 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1522 pdsp->intd =
1523 knav_queue_map_reg(kdev, child,
1524 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1525 pdsp->command =
1526 knav_queue_map_reg(kdev, child,
1527 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1528
1529 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1530 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1531 dev_err(dev, "failed to map pdsp %s regs\n",
1532 pdsp->name);
1533 if (!IS_ERR(pdsp->command))
1534 devm_iounmap(dev, pdsp->command);
1535 if (!IS_ERR(pdsp->iram))
1536 devm_iounmap(dev, pdsp->iram);
1537 if (!IS_ERR(pdsp->regs))
1538 devm_iounmap(dev, pdsp->regs);
1539 if (!IS_ERR(pdsp->intd))
1540 devm_iounmap(dev, pdsp->intd);
1541 devm_kfree(dev, pdsp);
1542 continue;
1543 }
1544 of_property_read_u32(child, "id", &pdsp->id);
1545 list_add_tail(&pdsp->list, &kdev->pdsps);
1546 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1547 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1548 pdsp->intd);
1549 }
1550 return 0;
1551 }
1552
knav_queue_stop_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1553 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1554 struct knav_pdsp_info *pdsp)
1555 {
1556 u32 val, timeout = 1000;
1557 int ret;
1558
1559 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1560 writel_relaxed(val, &pdsp->regs->control);
1561 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1562 PDSP_CTRL_RUNNING);
1563 if (ret < 0) {
1564 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1565 return ret;
1566 }
1567 pdsp->loaded = false;
1568 pdsp->started = false;
1569 return 0;
1570 }
1571
knav_queue_load_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1572 static int knav_queue_load_pdsp(struct knav_device *kdev,
1573 struct knav_pdsp_info *pdsp)
1574 {
1575 int i, ret, fwlen;
1576 const struct firmware *fw;
1577 bool found = false;
1578 u32 *fwdata;
1579
1580 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1581 if (knav_acc_firmwares[i]) {
1582 ret = request_firmware_direct(&fw,
1583 knav_acc_firmwares[i],
1584 kdev->dev);
1585 if (!ret) {
1586 found = true;
1587 break;
1588 }
1589 }
1590 }
1591
1592 if (!found) {
1593 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1594 return -ENODEV;
1595 }
1596
1597 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1598 knav_acc_firmwares[i]);
1599
1600 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1601 /* download the firmware */
1602 fwdata = (u32 *)fw->data;
1603 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1604 for (i = 0; i < fwlen; i++)
1605 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1606
1607 release_firmware(fw);
1608 return 0;
1609 }
1610
knav_queue_start_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1611 static int knav_queue_start_pdsp(struct knav_device *kdev,
1612 struct knav_pdsp_info *pdsp)
1613 {
1614 u32 val, timeout = 1000;
1615 int ret;
1616
1617 /* write a command for sync */
1618 writel_relaxed(0xffffffff, pdsp->command);
1619 while (readl_relaxed(pdsp->command) != 0xffffffff)
1620 cpu_relax();
1621
1622 /* soft reset the PDSP */
1623 val = readl_relaxed(&pdsp->regs->control);
1624 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1625 writel_relaxed(val, &pdsp->regs->control);
1626
1627 /* enable pdsp */
1628 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1629 writel_relaxed(val, &pdsp->regs->control);
1630
1631 /* wait for command register to clear */
1632 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1633 if (ret < 0) {
1634 dev_err(kdev->dev,
1635 "timed out on pdsp %s command register wait\n",
1636 pdsp->name);
1637 return ret;
1638 }
1639 return 0;
1640 }
1641
knav_queue_stop_pdsps(struct knav_device * kdev)1642 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1643 {
1644 struct knav_pdsp_info *pdsp;
1645
1646 /* disable all pdsps */
1647 for_each_pdsp(kdev, pdsp)
1648 knav_queue_stop_pdsp(kdev, pdsp);
1649 }
1650
knav_queue_start_pdsps(struct knav_device * kdev)1651 static int knav_queue_start_pdsps(struct knav_device *kdev)
1652 {
1653 struct knav_pdsp_info *pdsp;
1654 int ret;
1655
1656 knav_queue_stop_pdsps(kdev);
1657 /* now load them all. We return success even if pdsp
1658 * is not loaded as acc channels are optional on having
1659 * firmware availability in the system. We set the loaded
1660 * and stated flag and when initialize the acc range, check
1661 * it and init the range only if pdsp is started.
1662 */
1663 for_each_pdsp(kdev, pdsp) {
1664 ret = knav_queue_load_pdsp(kdev, pdsp);
1665 if (!ret)
1666 pdsp->loaded = true;
1667 }
1668
1669 for_each_pdsp(kdev, pdsp) {
1670 if (pdsp->loaded) {
1671 ret = knav_queue_start_pdsp(kdev, pdsp);
1672 if (!ret)
1673 pdsp->started = true;
1674 }
1675 }
1676 return 0;
1677 }
1678
knav_queue_setup_pdsps(struct knav_device * kdev,struct device_node * node)1679 static int knav_queue_setup_pdsps(struct knav_device *kdev,
1680 struct device_node *node)
1681 {
1682 struct device_node *pdsps __free(device_node) =
1683 of_get_child_by_name(node, "pdsps");
1684
1685 if (pdsps) {
1686 int ret;
1687
1688 ret = knav_queue_init_pdsps(kdev, pdsps);
1689 if (ret)
1690 return ret;
1691
1692 ret = knav_queue_start_pdsps(kdev);
1693 if (ret)
1694 return ret;
1695 }
1696 return 0;
1697 }
1698
knav_find_qmgr(unsigned id)1699 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1700 {
1701 struct knav_qmgr_info *qmgr;
1702
1703 for_each_qmgr(kdev, qmgr) {
1704 if ((id >= qmgr->start_queue) &&
1705 (id < qmgr->start_queue + qmgr->num_queues))
1706 return qmgr;
1707 }
1708 return NULL;
1709 }
1710
knav_queue_init_queue(struct knav_device * kdev,struct knav_range_info * range,struct knav_queue_inst * inst,unsigned id)1711 static int knav_queue_init_queue(struct knav_device *kdev,
1712 struct knav_range_info *range,
1713 struct knav_queue_inst *inst,
1714 unsigned id)
1715 {
1716 char irq_name[KNAV_NAME_SIZE];
1717 inst->qmgr = knav_find_qmgr(id);
1718 if (!inst->qmgr)
1719 return -1;
1720
1721 INIT_LIST_HEAD(&inst->handles);
1722 inst->kdev = kdev;
1723 inst->range = range;
1724 inst->irq_num = -1;
1725 inst->id = id;
1726 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1727 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1728
1729 if (range->ops && range->ops->init_queue)
1730 return range->ops->init_queue(range, inst);
1731 else
1732 return 0;
1733 }
1734
knav_queue_init_queues(struct knav_device * kdev)1735 static int knav_queue_init_queues(struct knav_device *kdev)
1736 {
1737 struct knav_range_info *range;
1738 int size, id, base_idx;
1739 int idx = 0, ret = 0;
1740
1741 /* how much do we need for instance data? */
1742 size = sizeof(struct knav_queue_inst);
1743
1744 /* round this up to a power of 2, keep the index to instance
1745 * arithmetic fast.
1746 * */
1747 kdev->inst_shift = order_base_2(size);
1748 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1749 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1750 if (!kdev->instances)
1751 return -ENOMEM;
1752
1753 for_each_queue_range(kdev, range) {
1754 if (range->ops && range->ops->init_range)
1755 range->ops->init_range(range);
1756 base_idx = idx;
1757 for (id = range->queue_base;
1758 id < range->queue_base + range->num_queues; id++, idx++) {
1759 ret = knav_queue_init_queue(kdev, range,
1760 knav_queue_idx_to_inst(kdev, idx), id);
1761 if (ret < 0)
1762 return ret;
1763 }
1764 range->queue_base_inst =
1765 knav_queue_idx_to_inst(kdev, base_idx);
1766 }
1767 return 0;
1768 }
1769
1770 /* Match table for of_platform binding */
1771 static const struct of_device_id keystone_qmss_of_match[] = {
1772 {
1773 .compatible = "ti,keystone-navigator-qmss",
1774 },
1775 {
1776 .compatible = "ti,66ak2g-navss-qm",
1777 .data = (void *)QMSS_66AK2G,
1778 },
1779 {},
1780 };
1781 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1782
knav_queue_probe(struct platform_device * pdev)1783 static int knav_queue_probe(struct platform_device *pdev)
1784 {
1785 struct device_node *node = pdev->dev.of_node;
1786 struct device *dev = &pdev->dev;
1787 u32 temp[2];
1788 int ret;
1789
1790 if (!node) {
1791 dev_err(dev, "device tree info unavailable\n");
1792 return -ENODEV;
1793 }
1794
1795 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1796 if (!kdev) {
1797 dev_err(dev, "memory allocation failed\n");
1798 return -ENOMEM;
1799 }
1800
1801 if (device_get_match_data(dev))
1802 kdev->version = QMSS_66AK2G;
1803
1804 platform_set_drvdata(pdev, kdev);
1805 kdev->dev = dev;
1806 INIT_LIST_HEAD(&kdev->queue_ranges);
1807 INIT_LIST_HEAD(&kdev->qmgrs);
1808 INIT_LIST_HEAD(&kdev->pools);
1809 INIT_LIST_HEAD(&kdev->regions);
1810 INIT_LIST_HEAD(&kdev->pdsps);
1811
1812 pm_runtime_enable(&pdev->dev);
1813 ret = pm_runtime_resume_and_get(&pdev->dev);
1814 if (ret < 0) {
1815 pm_runtime_disable(&pdev->dev);
1816 dev_err(dev, "Failed to enable QMSS\n");
1817 return ret;
1818 }
1819
1820 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1821 dev_err(dev, "queue-range not specified\n");
1822 ret = -ENODEV;
1823 goto err;
1824 }
1825 kdev->base_id = temp[0];
1826 kdev->num_queues = temp[1];
1827
1828 /* Initialize queue managers using device tree configuration */
1829 ret = knav_queue_init_qmgrs(kdev, node);
1830 if (ret)
1831 goto err;
1832
1833 /* get pdsp configuration values from device tree */
1834 ret = knav_queue_setup_pdsps(kdev, node);
1835 if (ret)
1836 goto err;
1837
1838 /* get usable queue range values from device tree */
1839 ret = knav_setup_queue_pools(kdev, node);
1840 if (ret)
1841 goto err;
1842
1843 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1844 if (ret) {
1845 dev_err(kdev->dev, "could not setup linking ram\n");
1846 goto err;
1847 }
1848
1849 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1850 if (ret) {
1851 /*
1852 * nothing really, we have one linking ram already, so we just
1853 * live within our means
1854 */
1855 }
1856
1857 ret = knav_queue_setup_link_ram(kdev);
1858 if (ret)
1859 goto err;
1860
1861 ret = knav_queue_setup_regions(kdev, node);
1862 if (ret)
1863 goto err;
1864
1865 ret = knav_queue_init_queues(kdev);
1866 if (ret < 0) {
1867 dev_err(dev, "hwqueue initialization failed\n");
1868 goto err;
1869 }
1870
1871 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1872 &knav_queue_debug_fops);
1873 device_ready = true;
1874 return 0;
1875
1876 err:
1877 knav_queue_stop_pdsps(kdev);
1878 knav_queue_free_regions(kdev);
1879 knav_free_queue_ranges(kdev);
1880 pm_runtime_put_sync(&pdev->dev);
1881 pm_runtime_disable(&pdev->dev);
1882 return ret;
1883 }
1884
knav_queue_remove(struct platform_device * pdev)1885 static void knav_queue_remove(struct platform_device *pdev)
1886 {
1887 /* TODO: Free resources */
1888 pm_runtime_put_sync(&pdev->dev);
1889 pm_runtime_disable(&pdev->dev);
1890 }
1891
1892 static struct platform_driver keystone_qmss_driver = {
1893 .probe = knav_queue_probe,
1894 .remove = knav_queue_remove,
1895 .driver = {
1896 .name = "keystone-navigator-qmss",
1897 .of_match_table = keystone_qmss_of_match,
1898 },
1899 };
1900 module_platform_driver(keystone_qmss_driver);
1901
1902 MODULE_LICENSE("GPL v2");
1903 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1904 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1905 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1906