1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Keystone Queue Manager subsystem driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/soc/ti/knav_qmss.h>
25
26 #include "knav_qmss.h"
27
28 static struct knav_device *kdev;
29 static DEFINE_MUTEX(knav_dev_lock);
30 #define knav_dev_lock_held() \
31 lockdep_is_held(&knav_dev_lock)
32
33 /* Queue manager register indices in DTS */
34 #define KNAV_QUEUE_PEEK_REG_INDEX 0
35 #define KNAV_QUEUE_STATUS_REG_INDEX 1
36 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
37 #define KNAV_QUEUE_REGION_REG_INDEX 3
38 #define KNAV_QUEUE_PUSH_REG_INDEX 4
39 #define KNAV_QUEUE_POP_REG_INDEX 5
40
41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42 * There are no status and vbusm push registers on this version
43 * of QMSS. Push registers are same as pop, So all indices above 1
44 * are to be re-defined
45 */
46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
47 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
48 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
49
50 /* PDSP register indices in DTS */
51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
55
56 #define knav_queue_idx_to_inst(kdev, idx) \
57 (kdev->instances + (idx << kdev->inst_shift))
58
59 #define for_each_handle_rcu(qh, inst) \
60 list_for_each_entry_rcu(qh, &inst->handles, list, \
61 knav_dev_lock_held())
62
63 #define for_each_instance(idx, inst, kdev) \
64 for (idx = 0, inst = kdev->instances; \
65 idx < (kdev)->num_queues_in_use; \
66 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
67
68 /* All firmware file names end up here. List the firmware file names below.
69 * Newest followed by older ones. Search is done from start of the array
70 * until a firmware file is found.
71 */
72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
73
74 static bool device_ready;
knav_qmss_device_ready(void)75 bool knav_qmss_device_ready(void)
76 {
77 return device_ready;
78 }
79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
80
81 /**
82 * knav_queue_notify: qmss queue notfier call
83 *
84 * @inst: - qmss queue instance like accumulator
85 */
knav_queue_notify(struct knav_queue_inst * inst)86 void knav_queue_notify(struct knav_queue_inst *inst)
87 {
88 struct knav_queue *qh;
89
90 if (!inst)
91 return;
92
93 rcu_read_lock();
94 for_each_handle_rcu(qh, inst) {
95 if (atomic_read(&qh->notifier_enabled) <= 0)
96 continue;
97 if (WARN_ON(!qh->notifier_fn))
98 continue;
99 this_cpu_inc(qh->stats->notifies);
100 qh->notifier_fn(qh->notifier_fn_arg);
101 }
102 rcu_read_unlock();
103 }
104 EXPORT_SYMBOL_GPL(knav_queue_notify);
105
knav_queue_int_handler(int irq,void * _instdata)106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
107 {
108 struct knav_queue_inst *inst = _instdata;
109
110 knav_queue_notify(inst);
111 return IRQ_HANDLED;
112 }
113
knav_queue_setup_irq(struct knav_range_info * range,struct knav_queue_inst * inst)114 static int knav_queue_setup_irq(struct knav_range_info *range,
115 struct knav_queue_inst *inst)
116 {
117 unsigned queue = inst->id - range->queue_base;
118 int ret = 0, irq;
119
120 if (range->flags & RANGE_HAS_IRQ) {
121 irq = range->irqs[queue].irq;
122 ret = request_irq(irq, knav_queue_int_handler, IRQF_NO_AUTOEN,
123 inst->irq_name, inst);
124 if (ret)
125 return ret;
126 if (range->irqs[queue].cpu_mask) {
127 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
128 if (ret) {
129 dev_warn(range->kdev->dev,
130 "Failed to set IRQ affinity\n");
131 return ret;
132 }
133 }
134 }
135 return ret;
136 }
137
knav_queue_free_irq(struct knav_queue_inst * inst)138 static void knav_queue_free_irq(struct knav_queue_inst *inst)
139 {
140 struct knav_range_info *range = inst->range;
141 unsigned queue = inst->id - inst->range->queue_base;
142 int irq;
143
144 if (range->flags & RANGE_HAS_IRQ) {
145 irq = range->irqs[queue].irq;
146 irq_set_affinity_hint(irq, NULL);
147 free_irq(irq, inst);
148 }
149 }
150
knav_queue_is_busy(struct knav_queue_inst * inst)151 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
152 {
153 return !list_empty(&inst->handles);
154 }
155
knav_queue_is_reserved(struct knav_queue_inst * inst)156 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
157 {
158 return inst->range->flags & RANGE_RESERVED;
159 }
160
knav_queue_is_shared(struct knav_queue_inst * inst)161 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
162 {
163 struct knav_queue *tmp;
164
165 rcu_read_lock();
166 for_each_handle_rcu(tmp, inst) {
167 if (tmp->flags & KNAV_QUEUE_SHARED) {
168 rcu_read_unlock();
169 return true;
170 }
171 }
172 rcu_read_unlock();
173 return false;
174 }
175
knav_queue_match_type(struct knav_queue_inst * inst,unsigned type)176 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
177 unsigned type)
178 {
179 if ((type == KNAV_QUEUE_QPEND) &&
180 (inst->range->flags & RANGE_HAS_IRQ)) {
181 return true;
182 } else if ((type == KNAV_QUEUE_ACC) &&
183 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
184 return true;
185 } else if ((type == KNAV_QUEUE_GP) &&
186 !(inst->range->flags &
187 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
188 return true;
189 }
190 return false;
191 }
192
193 static inline struct knav_queue_inst *
knav_queue_match_id_to_inst(struct knav_device * kdev,unsigned id)194 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
195 {
196 struct knav_queue_inst *inst;
197 int idx;
198
199 for_each_instance(idx, inst, kdev) {
200 if (inst->id == id)
201 return inst;
202 }
203 return NULL;
204 }
205
knav_queue_find_by_id(int id)206 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
207 {
208 if (kdev->base_id <= id &&
209 kdev->base_id + kdev->num_queues > id) {
210 id -= kdev->base_id;
211 return knav_queue_match_id_to_inst(kdev, id);
212 }
213 return NULL;
214 }
215
__knav_queue_open(struct knav_queue_inst * inst,const char * name,unsigned flags)216 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
217 const char *name, unsigned flags)
218 {
219 struct knav_queue *qh;
220 unsigned id;
221 int ret = 0;
222
223 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
224 if (!qh)
225 return ERR_PTR(-ENOMEM);
226
227 qh->stats = alloc_percpu(struct knav_queue_stats);
228 if (!qh->stats) {
229 ret = -ENOMEM;
230 goto err;
231 }
232
233 qh->flags = flags;
234 qh->inst = inst;
235 id = inst->id - inst->qmgr->start_queue;
236 qh->reg_push = &inst->qmgr->reg_push[id];
237 qh->reg_pop = &inst->qmgr->reg_pop[id];
238 qh->reg_peek = &inst->qmgr->reg_peek[id];
239
240 /* first opener? */
241 if (!knav_queue_is_busy(inst)) {
242 struct knav_range_info *range = inst->range;
243
244 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
245 if (range->ops && range->ops->open_queue)
246 ret = range->ops->open_queue(range, inst, flags);
247
248 if (ret)
249 goto err;
250 }
251 list_add_tail_rcu(&qh->list, &inst->handles);
252 return qh;
253
254 err:
255 if (qh->stats)
256 free_percpu(qh->stats);
257 devm_kfree(inst->kdev->dev, qh);
258 return ERR_PTR(ret);
259 }
260
261 static struct knav_queue *
knav_queue_open_by_id(const char * name,unsigned id,unsigned flags)262 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
263 {
264 struct knav_queue_inst *inst;
265 struct knav_queue *qh;
266
267 mutex_lock(&knav_dev_lock);
268
269 qh = ERR_PTR(-ENODEV);
270 inst = knav_queue_find_by_id(id);
271 if (!inst)
272 goto unlock_ret;
273
274 qh = ERR_PTR(-EEXIST);
275 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
276 goto unlock_ret;
277
278 qh = ERR_PTR(-EBUSY);
279 if ((flags & KNAV_QUEUE_SHARED) &&
280 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
281 goto unlock_ret;
282
283 qh = __knav_queue_open(inst, name, flags);
284
285 unlock_ret:
286 mutex_unlock(&knav_dev_lock);
287
288 return qh;
289 }
290
knav_queue_open_by_type(const char * name,unsigned type,unsigned flags)291 static struct knav_queue *knav_queue_open_by_type(const char *name,
292 unsigned type, unsigned flags)
293 {
294 struct knav_queue_inst *inst;
295 struct knav_queue *qh = ERR_PTR(-EINVAL);
296 int idx;
297
298 mutex_lock(&knav_dev_lock);
299
300 for_each_instance(idx, inst, kdev) {
301 if (knav_queue_is_reserved(inst))
302 continue;
303 if (!knav_queue_match_type(inst, type))
304 continue;
305 if (knav_queue_is_busy(inst))
306 continue;
307 qh = __knav_queue_open(inst, name, flags);
308 goto unlock_ret;
309 }
310
311 unlock_ret:
312 mutex_unlock(&knav_dev_lock);
313 return qh;
314 }
315
knav_queue_set_notify(struct knav_queue_inst * inst,bool enabled)316 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
317 {
318 struct knav_range_info *range = inst->range;
319
320 if (range->ops && range->ops->set_notify)
321 range->ops->set_notify(range, inst, enabled);
322 }
323
knav_queue_enable_notifier(struct knav_queue * qh)324 static int knav_queue_enable_notifier(struct knav_queue *qh)
325 {
326 struct knav_queue_inst *inst = qh->inst;
327 bool first;
328
329 if (WARN_ON(!qh->notifier_fn))
330 return -EINVAL;
331
332 /* Adjust the per handle notifier count */
333 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
334 if (!first)
335 return 0; /* nothing to do */
336
337 /* Now adjust the per instance notifier count */
338 first = (atomic_inc_return(&inst->num_notifiers) == 1);
339 if (first)
340 knav_queue_set_notify(inst, true);
341
342 return 0;
343 }
344
knav_queue_disable_notifier(struct knav_queue * qh)345 static int knav_queue_disable_notifier(struct knav_queue *qh)
346 {
347 struct knav_queue_inst *inst = qh->inst;
348 bool last;
349
350 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
351 if (!last)
352 return 0; /* nothing to do */
353
354 last = (atomic_dec_return(&inst->num_notifiers) == 0);
355 if (last)
356 knav_queue_set_notify(inst, false);
357
358 return 0;
359 }
360
knav_queue_set_notifier(struct knav_queue * qh,struct knav_queue_notify_config * cfg)361 static int knav_queue_set_notifier(struct knav_queue *qh,
362 struct knav_queue_notify_config *cfg)
363 {
364 knav_queue_notify_fn old_fn = qh->notifier_fn;
365
366 if (!cfg)
367 return -EINVAL;
368
369 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
370 return -ENOTSUPP;
371
372 if (!cfg->fn && old_fn)
373 knav_queue_disable_notifier(qh);
374
375 qh->notifier_fn = cfg->fn;
376 qh->notifier_fn_arg = cfg->fn_arg;
377
378 if (cfg->fn && !old_fn)
379 knav_queue_enable_notifier(qh);
380
381 return 0;
382 }
383
knav_gp_set_notify(struct knav_range_info * range,struct knav_queue_inst * inst,bool enabled)384 static int knav_gp_set_notify(struct knav_range_info *range,
385 struct knav_queue_inst *inst,
386 bool enabled)
387 {
388 unsigned queue;
389
390 if (range->flags & RANGE_HAS_IRQ) {
391 queue = inst->id - range->queue_base;
392 if (enabled)
393 enable_irq(range->irqs[queue].irq);
394 else
395 disable_irq_nosync(range->irqs[queue].irq);
396 }
397 return 0;
398 }
399
knav_gp_open_queue(struct knav_range_info * range,struct knav_queue_inst * inst,unsigned flags)400 static int knav_gp_open_queue(struct knav_range_info *range,
401 struct knav_queue_inst *inst, unsigned flags)
402 {
403 return knav_queue_setup_irq(range, inst);
404 }
405
knav_gp_close_queue(struct knav_range_info * range,struct knav_queue_inst * inst)406 static int knav_gp_close_queue(struct knav_range_info *range,
407 struct knav_queue_inst *inst)
408 {
409 knav_queue_free_irq(inst);
410 return 0;
411 }
412
413 static const struct knav_range_ops knav_gp_range_ops = {
414 .set_notify = knav_gp_set_notify,
415 .open_queue = knav_gp_open_queue,
416 .close_queue = knav_gp_close_queue,
417 };
418
419
knav_queue_get_count(void * qhandle)420 static int knav_queue_get_count(void *qhandle)
421 {
422 struct knav_queue *qh = qhandle;
423 struct knav_queue_inst *inst = qh->inst;
424
425 return readl_relaxed(&qh->reg_peek[0].entry_count) +
426 atomic_read(&inst->desc_count);
427 }
428
knav_queue_debug_show_instance(struct seq_file * s,struct knav_queue_inst * inst)429 static void knav_queue_debug_show_instance(struct seq_file *s,
430 struct knav_queue_inst *inst)
431 {
432 struct knav_device *kdev = inst->kdev;
433 struct knav_queue *qh;
434 int cpu = 0;
435 int pushes = 0;
436 int pops = 0;
437 int push_errors = 0;
438 int pop_errors = 0;
439 int notifies = 0;
440
441 if (!knav_queue_is_busy(inst))
442 return;
443
444 seq_printf(s, "\tqueue id %d (%s)\n",
445 kdev->base_id + inst->id, inst->name);
446 for_each_handle_rcu(qh, inst) {
447 for_each_possible_cpu(cpu) {
448 pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
449 pops += per_cpu_ptr(qh->stats, cpu)->pops;
450 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
451 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
452 notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
453 }
454
455 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
456 qh,
457 pushes,
458 pops,
459 knav_queue_get_count(qh),
460 notifies,
461 push_errors,
462 pop_errors);
463 }
464 }
465
knav_queue_debug_show(struct seq_file * s,void * v)466 static int knav_queue_debug_show(struct seq_file *s, void *v)
467 {
468 struct knav_queue_inst *inst;
469 int idx;
470
471 mutex_lock(&knav_dev_lock);
472 seq_printf(s, "%s: %u-%u\n",
473 dev_name(kdev->dev), kdev->base_id,
474 kdev->base_id + kdev->num_queues - 1);
475 for_each_instance(idx, inst, kdev)
476 knav_queue_debug_show_instance(s, inst);
477 mutex_unlock(&knav_dev_lock);
478
479 return 0;
480 }
481
482 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
483
knav_queue_pdsp_wait(u32 * __iomem addr,unsigned timeout,u32 flags)484 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
485 u32 flags)
486 {
487 unsigned long end;
488 u32 val = 0;
489
490 end = jiffies + msecs_to_jiffies(timeout);
491 while (time_after(end, jiffies)) {
492 val = readl_relaxed(addr);
493 if (flags)
494 val &= flags;
495 if (!val)
496 break;
497 cpu_relax();
498 }
499 return val ? -ETIMEDOUT : 0;
500 }
501
502
knav_queue_flush(struct knav_queue * qh)503 static int knav_queue_flush(struct knav_queue *qh)
504 {
505 struct knav_queue_inst *inst = qh->inst;
506 unsigned id = inst->id - inst->qmgr->start_queue;
507
508 atomic_set(&inst->desc_count, 0);
509 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
510 return 0;
511 }
512
513 /**
514 * knav_queue_open() - open a hardware queue
515 * @name: - name to give the queue handle
516 * @id: - desired queue number if any or specifes the type
517 * of queue
518 * @flags: - the following flags are applicable to queues:
519 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
520 * exclusive by default.
521 * Subsequent attempts to open a shared queue should
522 * also have this flag.
523 *
524 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
525 * to check the returned value for error codes.
526 */
knav_queue_open(const char * name,unsigned id,unsigned flags)527 void *knav_queue_open(const char *name, unsigned id,
528 unsigned flags)
529 {
530 struct knav_queue *qh = ERR_PTR(-EINVAL);
531
532 switch (id) {
533 case KNAV_QUEUE_QPEND:
534 case KNAV_QUEUE_ACC:
535 case KNAV_QUEUE_GP:
536 qh = knav_queue_open_by_type(name, id, flags);
537 break;
538
539 default:
540 qh = knav_queue_open_by_id(name, id, flags);
541 break;
542 }
543 return qh;
544 }
545 EXPORT_SYMBOL_GPL(knav_queue_open);
546
547 /**
548 * knav_queue_close() - close a hardware queue handle
549 * @qhandle: - handle to close
550 */
knav_queue_close(void * qhandle)551 void knav_queue_close(void *qhandle)
552 {
553 struct knav_queue *qh = qhandle;
554 struct knav_queue_inst *inst = qh->inst;
555
556 while (atomic_read(&qh->notifier_enabled) > 0)
557 knav_queue_disable_notifier(qh);
558
559 mutex_lock(&knav_dev_lock);
560 list_del_rcu(&qh->list);
561 mutex_unlock(&knav_dev_lock);
562 synchronize_rcu();
563 if (!knav_queue_is_busy(inst)) {
564 struct knav_range_info *range = inst->range;
565
566 if (range->ops && range->ops->close_queue)
567 range->ops->close_queue(range, inst);
568 }
569 free_percpu(qh->stats);
570 devm_kfree(inst->kdev->dev, qh);
571 }
572 EXPORT_SYMBOL_GPL(knav_queue_close);
573
574 /**
575 * knav_queue_device_control() - Perform control operations on a queue
576 * @qhandle: - queue handle
577 * @cmd: - control commands
578 * @arg: - command argument
579 *
580 * Returns 0 on success, errno otherwise.
581 */
knav_queue_device_control(void * qhandle,enum knav_queue_ctrl_cmd cmd,unsigned long arg)582 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
583 unsigned long arg)
584 {
585 struct knav_queue *qh = qhandle;
586 struct knav_queue_notify_config *cfg;
587 int ret;
588
589 switch ((int)cmd) {
590 case KNAV_QUEUE_GET_ID:
591 ret = qh->inst->kdev->base_id + qh->inst->id;
592 break;
593
594 case KNAV_QUEUE_FLUSH:
595 ret = knav_queue_flush(qh);
596 break;
597
598 case KNAV_QUEUE_SET_NOTIFIER:
599 cfg = (void *)arg;
600 ret = knav_queue_set_notifier(qh, cfg);
601 break;
602
603 case KNAV_QUEUE_ENABLE_NOTIFY:
604 ret = knav_queue_enable_notifier(qh);
605 break;
606
607 case KNAV_QUEUE_DISABLE_NOTIFY:
608 ret = knav_queue_disable_notifier(qh);
609 break;
610
611 case KNAV_QUEUE_GET_COUNT:
612 ret = knav_queue_get_count(qh);
613 break;
614
615 default:
616 ret = -ENOTSUPP;
617 break;
618 }
619 return ret;
620 }
621 EXPORT_SYMBOL_GPL(knav_queue_device_control);
622
623
624
625 /**
626 * knav_queue_push() - push data (or descriptor) to the tail of a queue
627 * @qhandle: - hardware queue handle
628 * @dma: - DMA data to push
629 * @size: - size of data to push
630 * @flags: - can be used to pass additional information
631 *
632 * Returns 0 on success, errno otherwise.
633 */
knav_queue_push(void * qhandle,dma_addr_t dma,unsigned size,unsigned flags)634 int knav_queue_push(void *qhandle, dma_addr_t dma,
635 unsigned size, unsigned flags)
636 {
637 struct knav_queue *qh = qhandle;
638 u32 val;
639
640 val = (u32)dma | ((size / 16) - 1);
641 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
642
643 this_cpu_inc(qh->stats->pushes);
644 return 0;
645 }
646 EXPORT_SYMBOL_GPL(knav_queue_push);
647
648 /**
649 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
650 * @qhandle: - hardware queue handle
651 * @size: - (optional) size of the data pop'ed.
652 *
653 * Returns a DMA address on success, 0 on failure.
654 */
knav_queue_pop(void * qhandle,unsigned * size)655 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
656 {
657 struct knav_queue *qh = qhandle;
658 struct knav_queue_inst *inst = qh->inst;
659 dma_addr_t dma;
660 u32 val, idx;
661
662 /* are we accumulated? */
663 if (inst->descs) {
664 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
665 atomic_inc(&inst->desc_count);
666 return 0;
667 }
668 idx = atomic_inc_return(&inst->desc_head);
669 idx &= ACC_DESCS_MASK;
670 val = inst->descs[idx];
671 } else {
672 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
673 if (unlikely(!val))
674 return 0;
675 }
676
677 dma = val & DESC_PTR_MASK;
678 if (size)
679 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
680
681 this_cpu_inc(qh->stats->pops);
682 return dma;
683 }
684 EXPORT_SYMBOL_GPL(knav_queue_pop);
685
686 /* carve out descriptors and push into queue */
kdesc_fill_pool(struct knav_pool * pool)687 static void kdesc_fill_pool(struct knav_pool *pool)
688 {
689 struct knav_region *region;
690 int i;
691
692 region = pool->region;
693 pool->desc_size = region->desc_size;
694 for (i = 0; i < pool->num_desc; i++) {
695 int index = pool->region_offset + i;
696 dma_addr_t dma_addr;
697 unsigned dma_size;
698 dma_addr = region->dma_start + (region->desc_size * index);
699 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
700 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
701 DMA_TO_DEVICE);
702 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
703 }
704 }
705
706 /* pop out descriptors and close the queue */
kdesc_empty_pool(struct knav_pool * pool)707 static void kdesc_empty_pool(struct knav_pool *pool)
708 {
709 dma_addr_t dma;
710 unsigned size;
711 void *desc;
712 int i;
713
714 if (!pool->queue)
715 return;
716
717 for (i = 0;; i++) {
718 dma = knav_queue_pop(pool->queue, &size);
719 if (!dma)
720 break;
721 desc = knav_pool_desc_dma_to_virt(pool, dma);
722 if (!desc) {
723 dev_dbg(pool->kdev->dev,
724 "couldn't unmap desc, continuing\n");
725 }
726 }
727 WARN_ON(i != pool->num_desc);
728 knav_queue_close(pool->queue);
729 }
730
731
732 /* Get the DMA address of a descriptor */
knav_pool_desc_virt_to_dma(void * ph,void * virt)733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734 {
735 struct knav_pool *pool = ph;
736 return pool->region->dma_start + (virt - pool->region->virt_start);
737 }
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739
knav_pool_desc_dma_to_virt(void * ph,dma_addr_t dma)740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741 {
742 struct knav_pool *pool = ph;
743 return pool->region->virt_start + (dma - pool->region->dma_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746
747 /**
748 * knav_pool_create() - Create a pool of descriptors
749 * @name: - name to give the pool handle
750 * @num_desc: - numbers of descriptors in the pool
751 * @region_id: - QMSS region id from which the descriptors are to be
752 * allocated.
753 *
754 * Returns a pool handle on success.
755 * Use IS_ERR_OR_NULL() to identify error values on return.
756 */
knav_pool_create(const char * name,int num_desc,int region_id)757 void *knav_pool_create(const char *name,
758 int num_desc, int region_id)
759 {
760 struct knav_region *reg_itr, *region = NULL;
761 struct knav_pool *pool, *pi = NULL, *iter;
762 struct list_head *node;
763 unsigned last_offset;
764 int ret;
765
766 if (!kdev)
767 return ERR_PTR(-EPROBE_DEFER);
768
769 if (!kdev->dev)
770 return ERR_PTR(-ENODEV);
771
772 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
773 if (!pool) {
774 dev_err(kdev->dev, "out of memory allocating pool\n");
775 return ERR_PTR(-ENOMEM);
776 }
777
778 for_each_region(kdev, reg_itr) {
779 if (reg_itr->id != region_id)
780 continue;
781 region = reg_itr;
782 break;
783 }
784
785 if (!region) {
786 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
787 ret = -EINVAL;
788 goto err;
789 }
790
791 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
792 if (IS_ERR(pool->queue)) {
793 dev_err(kdev->dev,
794 "failed to open queue for pool(%s), error %ld\n",
795 name, PTR_ERR(pool->queue));
796 ret = PTR_ERR(pool->queue);
797 goto err;
798 }
799
800 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
801 pool->kdev = kdev;
802 pool->dev = kdev->dev;
803
804 mutex_lock(&knav_dev_lock);
805
806 if (num_desc > (region->num_desc - region->used_desc)) {
807 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
808 region_id, name);
809 ret = -ENOMEM;
810 goto err_unlock;
811 }
812
813 /* Region maintains a sorted (by region offset) list of pools
814 * use the first free slot which is large enough to accomodate
815 * the request
816 */
817 last_offset = 0;
818 node = ®ion->pools;
819 list_for_each_entry(iter, ®ion->pools, region_inst) {
820 if ((iter->region_offset - last_offset) >= num_desc) {
821 pi = iter;
822 break;
823 }
824 last_offset = iter->region_offset + iter->num_desc;
825 }
826
827 if (pi) {
828 node = &pi->region_inst;
829 pool->region = region;
830 pool->num_desc = num_desc;
831 pool->region_offset = last_offset;
832 region->used_desc += num_desc;
833 list_add_tail(&pool->list, &kdev->pools);
834 list_add_tail(&pool->region_inst, node);
835 } else {
836 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
837 name, region_id);
838 ret = -ENOMEM;
839 goto err_unlock;
840 }
841
842 mutex_unlock(&knav_dev_lock);
843 kdesc_fill_pool(pool);
844 return pool;
845
846 err_unlock:
847 mutex_unlock(&knav_dev_lock);
848 err:
849 kfree(pool->name);
850 devm_kfree(kdev->dev, pool);
851 return ERR_PTR(ret);
852 }
853 EXPORT_SYMBOL_GPL(knav_pool_create);
854
855 /**
856 * knav_pool_destroy() - Free a pool of descriptors
857 * @ph: - pool handle
858 */
knav_pool_destroy(void * ph)859 void knav_pool_destroy(void *ph)
860 {
861 struct knav_pool *pool = ph;
862
863 if (!pool)
864 return;
865
866 if (!pool->region)
867 return;
868
869 kdesc_empty_pool(pool);
870 mutex_lock(&knav_dev_lock);
871
872 pool->region->used_desc -= pool->num_desc;
873 list_del(&pool->region_inst);
874 list_del(&pool->list);
875
876 mutex_unlock(&knav_dev_lock);
877 kfree(pool->name);
878 devm_kfree(kdev->dev, pool);
879 }
880 EXPORT_SYMBOL_GPL(knav_pool_destroy);
881
882
883 /**
884 * knav_pool_desc_get() - Get a descriptor from the pool
885 * @ph: - pool handle
886 *
887 * Returns descriptor from the pool.
888 */
knav_pool_desc_get(void * ph)889 void *knav_pool_desc_get(void *ph)
890 {
891 struct knav_pool *pool = ph;
892 dma_addr_t dma;
893 unsigned size;
894 void *data;
895
896 dma = knav_queue_pop(pool->queue, &size);
897 if (unlikely(!dma))
898 return ERR_PTR(-ENOMEM);
899 data = knav_pool_desc_dma_to_virt(pool, dma);
900 return data;
901 }
902 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
903
904 /**
905 * knav_pool_desc_put() - return a descriptor to the pool
906 * @ph: - pool handle
907 * @desc: - virtual address
908 */
knav_pool_desc_put(void * ph,void * desc)909 void knav_pool_desc_put(void *ph, void *desc)
910 {
911 struct knav_pool *pool = ph;
912 dma_addr_t dma;
913 dma = knav_pool_desc_virt_to_dma(pool, desc);
914 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
915 }
916 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
917
918 /**
919 * knav_pool_desc_map() - Map descriptor for DMA transfer
920 * @ph: - pool handle
921 * @desc: - address of descriptor to map
922 * @size: - size of descriptor to map
923 * @dma: - DMA address return pointer
924 * @dma_sz: - adjusted return pointer
925 *
926 * Returns 0 on success, errno otherwise.
927 */
knav_pool_desc_map(void * ph,void * desc,unsigned size,dma_addr_t * dma,unsigned * dma_sz)928 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
929 dma_addr_t *dma, unsigned *dma_sz)
930 {
931 struct knav_pool *pool = ph;
932 *dma = knav_pool_desc_virt_to_dma(pool, desc);
933 size = min(size, pool->region->desc_size);
934 size = ALIGN(size, SMP_CACHE_BYTES);
935 *dma_sz = size;
936 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
937
938 /* Ensure the descriptor reaches to the memory */
939 __iowmb();
940
941 return 0;
942 }
943 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
944
945 /**
946 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
947 * @ph: - pool handle
948 * @dma: - DMA address of descriptor to unmap
949 * @dma_sz: - size of descriptor to unmap
950 *
951 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
952 * error values on return.
953 */
knav_pool_desc_unmap(void * ph,dma_addr_t dma,unsigned dma_sz)954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
955 {
956 struct knav_pool *pool = ph;
957 unsigned desc_sz;
958 void *desc;
959
960 desc_sz = min(dma_sz, pool->region->desc_size);
961 desc = knav_pool_desc_dma_to_virt(pool, dma);
962 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
963 prefetch(desc);
964 return desc;
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
967
968 /**
969 * knav_pool_count() - Get the number of descriptors in pool.
970 * @ph: - pool handle
971 * Returns number of elements in the pool.
972 */
knav_pool_count(void * ph)973 int knav_pool_count(void *ph)
974 {
975 struct knav_pool *pool = ph;
976 return knav_queue_get_count(pool->queue);
977 }
978 EXPORT_SYMBOL_GPL(knav_pool_count);
979
knav_queue_setup_region(struct knav_device * kdev,struct knav_region * region)980 static void knav_queue_setup_region(struct knav_device *kdev,
981 struct knav_region *region)
982 {
983 unsigned hw_num_desc, hw_desc_size, size;
984 struct knav_reg_region __iomem *regs;
985 struct knav_qmgr_info *qmgr;
986 struct knav_pool *pool;
987 int id = region->id;
988 struct page *page;
989
990 /* unused region? */
991 if (!region->num_desc) {
992 dev_warn(kdev->dev, "unused region %s\n", region->name);
993 return;
994 }
995
996 /* get hardware descriptor value */
997 hw_num_desc = ilog2(region->num_desc - 1) + 1;
998
999 /* did we force fit ourselves into nothingness? */
1000 if (region->num_desc < 32) {
1001 region->num_desc = 0;
1002 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1003 region->name);
1004 return;
1005 }
1006
1007 size = region->num_desc * region->desc_size;
1008 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1009 GFP_DMA32);
1010 if (!region->virt_start) {
1011 region->num_desc = 0;
1012 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1013 region->name);
1014 return;
1015 }
1016 region->virt_end = region->virt_start + size;
1017 page = virt_to_page(region->virt_start);
1018
1019 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1020 DMA_BIDIRECTIONAL);
1021 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1022 dev_err(kdev->dev, "dma map failed for region %s\n",
1023 region->name);
1024 goto fail;
1025 }
1026 region->dma_end = region->dma_start + size;
1027
1028 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1029 if (!pool) {
1030 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1031 goto fail;
1032 }
1033 pool->num_desc = 0;
1034 pool->region_offset = region->num_desc;
1035 list_add(&pool->region_inst, ®ion->pools);
1036
1037 dev_dbg(kdev->dev,
1038 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1039 region->name, id, region->desc_size, region->num_desc,
1040 region->link_index, ®ion->dma_start, ®ion->dma_end,
1041 region->virt_start, region->virt_end);
1042
1043 hw_desc_size = (region->desc_size / 16) - 1;
1044 hw_num_desc -= 5;
1045
1046 for_each_qmgr(kdev, qmgr) {
1047 regs = qmgr->reg_region + id;
1048 writel_relaxed((u32)region->dma_start, ®s->base);
1049 writel_relaxed(region->link_index, ®s->start_index);
1050 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1051 ®s->size_count);
1052 }
1053 return;
1054
1055 fail:
1056 if (region->dma_start)
1057 dma_unmap_page(kdev->dev, region->dma_start, size,
1058 DMA_BIDIRECTIONAL);
1059 if (region->virt_start)
1060 free_pages_exact(region->virt_start, size);
1061 region->num_desc = 0;
1062 return;
1063 }
1064
knav_queue_find_name(struct device_node * node)1065 static const char *knav_queue_find_name(struct device_node *node)
1066 {
1067 const char *name;
1068
1069 if (of_property_read_string(node, "label", &name) < 0)
1070 name = node->name;
1071 if (!name)
1072 name = "unknown";
1073 return name;
1074 }
1075
knav_queue_setup_regions(struct knav_device * kdev,struct device_node * node)1076 static int knav_queue_setup_regions(struct knav_device *kdev,
1077 struct device_node *node)
1078 {
1079 struct device *dev = kdev->dev;
1080 struct device_node *regions __free(device_node) =
1081 of_get_child_by_name(node, "descriptor-regions");
1082 struct knav_region *region;
1083 struct device_node *child;
1084 u32 temp[2];
1085 int ret;
1086
1087 if (!regions)
1088 return dev_err_probe(dev, -ENODEV,
1089 "descriptor-regions not specified\n");
1090
1091 for_each_child_of_node(regions, child) {
1092 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1093 if (!region) {
1094 of_node_put(child);
1095 dev_err(dev, "out of memory allocating region\n");
1096 return -ENOMEM;
1097 }
1098
1099 region->name = knav_queue_find_name(child);
1100 of_property_read_u32(child, "id", ®ion->id);
1101 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1102 if (!ret) {
1103 region->num_desc = temp[0];
1104 region->desc_size = temp[1];
1105 } else {
1106 dev_err(dev, "invalid region info %s\n", region->name);
1107 devm_kfree(dev, region);
1108 continue;
1109 }
1110
1111 ret = of_property_read_u32(child, "link-index",
1112 ®ion->link_index);
1113 if (ret) {
1114 dev_err(dev, "link index not found for %s\n",
1115 region->name);
1116 devm_kfree(dev, region);
1117 continue;
1118 }
1119
1120 INIT_LIST_HEAD(®ion->pools);
1121 list_add_tail(®ion->list, &kdev->regions);
1122 }
1123 if (list_empty(&kdev->regions))
1124 return dev_err_probe(dev, -ENODEV,
1125 "no valid region information found\n");
1126
1127 /* Next, we run through the regions and set things up */
1128 for_each_region(kdev, region)
1129 knav_queue_setup_region(kdev, region);
1130
1131 return 0;
1132 }
1133
knav_get_link_ram(struct knav_device * kdev,const char * name,struct knav_link_ram_block * block)1134 static int knav_get_link_ram(struct knav_device *kdev,
1135 const char *name,
1136 struct knav_link_ram_block *block)
1137 {
1138 struct platform_device *pdev = to_platform_device(kdev->dev);
1139 struct device_node *node = pdev->dev.of_node;
1140 u32 temp[2];
1141
1142 /*
1143 * Note: link ram resources are specified in "entry" sized units. In
1144 * reality, although entries are ~40bits in hardware, we treat them as
1145 * 64-bit entities here.
1146 *
1147 * For example, to specify the internal link ram for Keystone-I class
1148 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149 *
1150 * This gets a bit weird when other link rams are used. For example,
1151 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153 * which accounts for 64-bits per entry, for 16K entries.
1154 */
1155 if (!of_property_read_u32_array(node, name , temp, 2)) {
1156 if (temp[0]) {
1157 /*
1158 * queue_base specified => using internal or onchip
1159 * link ram WARNING - we do not "reserve" this block
1160 */
1161 block->dma = (dma_addr_t)temp[0];
1162 block->virt = NULL;
1163 block->size = temp[1];
1164 } else {
1165 block->size = temp[1];
1166 /* queue_base not specific => allocate requested size */
1167 block->virt = dmam_alloc_coherent(kdev->dev,
1168 8 * block->size, &block->dma,
1169 GFP_KERNEL);
1170 if (!block->virt) {
1171 dev_err(kdev->dev, "failed to alloc linkram\n");
1172 return -ENOMEM;
1173 }
1174 }
1175 } else {
1176 return -ENODEV;
1177 }
1178 return 0;
1179 }
1180
knav_queue_setup_link_ram(struct knav_device * kdev)1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182 {
1183 struct knav_link_ram_block *block;
1184 struct knav_qmgr_info *qmgr;
1185
1186 for_each_qmgr(kdev, qmgr) {
1187 block = &kdev->link_rams[0];
1188 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189 &block->dma, block->virt, block->size);
1190 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191 if (kdev->version == QMSS_66AK2G)
1192 writel_relaxed(block->size,
1193 &qmgr->reg_config->link_ram_size0);
1194 else
1195 writel_relaxed(block->size - 1,
1196 &qmgr->reg_config->link_ram_size0);
1197 block++;
1198 if (!block->size)
1199 continue;
1200
1201 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202 &block->dma, block->virt, block->size);
1203 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204 }
1205
1206 return 0;
1207 }
1208
knav_setup_queue_range(struct knav_device * kdev,struct device_node * node)1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210 struct device_node *node)
1211 {
1212 struct device *dev = kdev->dev;
1213 struct knav_range_info *range;
1214 struct knav_qmgr_info *qmgr;
1215 u32 temp[2], start, end, id, index;
1216 int ret, i;
1217
1218 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219 if (!range) {
1220 dev_err(dev, "out of memory allocating range\n");
1221 return -ENOMEM;
1222 }
1223
1224 range->kdev = kdev;
1225 range->name = knav_queue_find_name(node);
1226 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227 if (!ret) {
1228 range->queue_base = temp[0] - kdev->base_id;
1229 range->num_queues = temp[1];
1230 } else {
1231 dev_err(dev, "invalid queue range %s\n", range->name);
1232 devm_kfree(dev, range);
1233 return -EINVAL;
1234 }
1235
1236 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237 struct of_phandle_args oirq;
1238
1239 if (of_irq_parse_one(node, i, &oirq))
1240 break;
1241
1242 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243 if (range->irqs[i].irq == IRQ_NONE)
1244 break;
1245
1246 range->num_irqs++;
1247
1248 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249 unsigned long mask;
1250 int bit;
1251
1252 range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253 cpumask_size(), GFP_KERNEL);
1254 if (!range->irqs[i].cpu_mask)
1255 return -ENOMEM;
1256
1257 mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258 for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260 }
1261 }
1262
1263 range->num_irqs = min(range->num_irqs, range->num_queues);
1264 if (range->num_irqs)
1265 range->flags |= RANGE_HAS_IRQ;
1266
1267 if (of_property_read_bool(node, "qalloc-by-id"))
1268 range->flags |= RANGE_RESERVED;
1269
1270 if (of_property_present(node, "accumulator")) {
1271 ret = knav_init_acc_range(kdev, node, range);
1272 if (ret < 0) {
1273 devm_kfree(dev, range);
1274 return ret;
1275 }
1276 } else {
1277 range->ops = &knav_gp_range_ops;
1278 }
1279
1280 /* set threshold to 1, and flush out the queues */
1281 for_each_qmgr(kdev, qmgr) {
1282 start = max(qmgr->start_queue, range->queue_base);
1283 end = min(qmgr->start_queue + qmgr->num_queues,
1284 range->queue_base + range->num_queues);
1285 for (id = start; id < end; id++) {
1286 index = id - qmgr->start_queue;
1287 writel_relaxed(THRESH_GTE | 1,
1288 &qmgr->reg_peek[index].ptr_size_thresh);
1289 writel_relaxed(0,
1290 &qmgr->reg_push[index].ptr_size_thresh);
1291 }
1292 }
1293
1294 list_add_tail(&range->list, &kdev->queue_ranges);
1295 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296 range->name, range->queue_base,
1297 range->queue_base + range->num_queues - 1,
1298 range->num_irqs,
1299 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302 kdev->num_queues_in_use += range->num_queues;
1303 return 0;
1304 }
1305
knav_setup_queue_pools(struct knav_device * kdev,struct device_node * node)1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307 struct device_node *node)
1308 {
1309 struct device_node *queue_pools __free(device_node) =
1310 of_get_child_by_name(node, "queue-pools");
1311 struct device_node *type, *range;
1312
1313 if (!queue_pools)
1314 return dev_err_probe(kdev->dev, -ENODEV,
1315 "queue-pools not specified\n");
1316
1317 for_each_child_of_node(queue_pools, type) {
1318 for_each_child_of_node(type, range) {
1319 /* return value ignored, we init the rest... */
1320 knav_setup_queue_range(kdev, range);
1321 }
1322 }
1323
1324 /* ... and barf if they all failed! */
1325 if (list_empty(&kdev->queue_ranges))
1326 return dev_err_probe(kdev->dev, -ENODEV,
1327 "no valid queue range found\n");
1328 return 0;
1329 }
1330
knav_free_queue_range(struct knav_device * kdev,struct knav_range_info * range)1331 static void knav_free_queue_range(struct knav_device *kdev,
1332 struct knav_range_info *range)
1333 {
1334 if (range->ops && range->ops->free_range)
1335 range->ops->free_range(range);
1336 list_del(&range->list);
1337 devm_kfree(kdev->dev, range);
1338 }
1339
knav_free_queue_ranges(struct knav_device * kdev)1340 static void knav_free_queue_ranges(struct knav_device *kdev)
1341 {
1342 struct knav_range_info *range;
1343
1344 for (;;) {
1345 range = first_queue_range(kdev);
1346 if (!range)
1347 break;
1348 knav_free_queue_range(kdev, range);
1349 }
1350 }
1351
knav_queue_free_regions(struct knav_device * kdev)1352 static void knav_queue_free_regions(struct knav_device *kdev)
1353 {
1354 struct knav_region *region;
1355 struct knav_pool *pool, *tmp;
1356 unsigned size;
1357
1358 for (;;) {
1359 region = first_region(kdev);
1360 if (!region)
1361 break;
1362 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst)
1363 knav_pool_destroy(pool);
1364
1365 size = region->virt_end - region->virt_start;
1366 if (size)
1367 free_pages_exact(region->virt_start, size);
1368 list_del(®ion->list);
1369 devm_kfree(kdev->dev, region);
1370 }
1371 }
1372
knav_queue_map_reg(struct knav_device * kdev,struct device_node * node,int index)1373 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1374 struct device_node *node, int index)
1375 {
1376 struct resource res;
1377 void __iomem *regs;
1378 int ret;
1379
1380 ret = of_address_to_resource(node, index, &res);
1381 if (ret) {
1382 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1383 node, index);
1384 return ERR_PTR(ret);
1385 }
1386
1387 regs = devm_ioremap_resource(kdev->dev, &res);
1388 if (IS_ERR(regs))
1389 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1390 index, node);
1391 return regs;
1392 }
1393
knav_queue_init_qmgrs(struct knav_device * kdev,struct device_node * node)1394 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1395 struct device_node *node)
1396 {
1397 struct device *dev = kdev->dev;
1398 struct device_node *qmgrs __free(device_node) =
1399 of_get_child_by_name(node, "qmgrs");
1400 struct knav_qmgr_info *qmgr;
1401 struct device_node *child;
1402 u32 temp[2];
1403 int ret;
1404
1405 if (!qmgrs)
1406 return dev_err_probe(dev, -ENODEV,
1407 "queue manager info not specified\n");
1408
1409 for_each_child_of_node(qmgrs, child) {
1410 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1411 if (!qmgr) {
1412 of_node_put(child);
1413 dev_err(dev, "out of memory allocating qmgr\n");
1414 return -ENOMEM;
1415 }
1416
1417 ret = of_property_read_u32_array(child, "managed-queues",
1418 temp, 2);
1419 if (!ret) {
1420 qmgr->start_queue = temp[0];
1421 qmgr->num_queues = temp[1];
1422 } else {
1423 dev_err(dev, "invalid qmgr queue range\n");
1424 devm_kfree(dev, qmgr);
1425 continue;
1426 }
1427
1428 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1429 qmgr->start_queue, qmgr->num_queues);
1430
1431 qmgr->reg_peek =
1432 knav_queue_map_reg(kdev, child,
1433 KNAV_QUEUE_PEEK_REG_INDEX);
1434
1435 if (kdev->version == QMSS) {
1436 qmgr->reg_status =
1437 knav_queue_map_reg(kdev, child,
1438 KNAV_QUEUE_STATUS_REG_INDEX);
1439 }
1440
1441 qmgr->reg_config =
1442 knav_queue_map_reg(kdev, child,
1443 (kdev->version == QMSS_66AK2G) ?
1444 KNAV_L_QUEUE_CONFIG_REG_INDEX :
1445 KNAV_QUEUE_CONFIG_REG_INDEX);
1446 qmgr->reg_region =
1447 knav_queue_map_reg(kdev, child,
1448 (kdev->version == QMSS_66AK2G) ?
1449 KNAV_L_QUEUE_REGION_REG_INDEX :
1450 KNAV_QUEUE_REGION_REG_INDEX);
1451
1452 qmgr->reg_push =
1453 knav_queue_map_reg(kdev, child,
1454 (kdev->version == QMSS_66AK2G) ?
1455 KNAV_L_QUEUE_PUSH_REG_INDEX :
1456 KNAV_QUEUE_PUSH_REG_INDEX);
1457
1458 if (kdev->version == QMSS) {
1459 qmgr->reg_pop =
1460 knav_queue_map_reg(kdev, child,
1461 KNAV_QUEUE_POP_REG_INDEX);
1462 }
1463
1464 if (IS_ERR(qmgr->reg_peek) ||
1465 ((kdev->version == QMSS) &&
1466 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1467 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1468 IS_ERR(qmgr->reg_push)) {
1469 dev_err(dev, "failed to map qmgr regs\n");
1470 if (kdev->version == QMSS) {
1471 if (!IS_ERR(qmgr->reg_status))
1472 devm_iounmap(dev, qmgr->reg_status);
1473 if (!IS_ERR(qmgr->reg_pop))
1474 devm_iounmap(dev, qmgr->reg_pop);
1475 }
1476 if (!IS_ERR(qmgr->reg_peek))
1477 devm_iounmap(dev, qmgr->reg_peek);
1478 if (!IS_ERR(qmgr->reg_config))
1479 devm_iounmap(dev, qmgr->reg_config);
1480 if (!IS_ERR(qmgr->reg_region))
1481 devm_iounmap(dev, qmgr->reg_region);
1482 if (!IS_ERR(qmgr->reg_push))
1483 devm_iounmap(dev, qmgr->reg_push);
1484 devm_kfree(dev, qmgr);
1485 continue;
1486 }
1487
1488 /* Use same push register for pop as well */
1489 if (kdev->version == QMSS_66AK2G)
1490 qmgr->reg_pop = qmgr->reg_push;
1491
1492 list_add_tail(&qmgr->list, &kdev->qmgrs);
1493 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1494 qmgr->start_queue, qmgr->num_queues,
1495 qmgr->reg_peek, qmgr->reg_status,
1496 qmgr->reg_config, qmgr->reg_region,
1497 qmgr->reg_push, qmgr->reg_pop);
1498 }
1499 return 0;
1500 }
1501
knav_queue_init_pdsps(struct knav_device * kdev,struct device_node * pdsps)1502 static int knav_queue_init_pdsps(struct knav_device *kdev,
1503 struct device_node *pdsps)
1504 {
1505 struct device *dev = kdev->dev;
1506 struct knav_pdsp_info *pdsp;
1507 struct device_node *child;
1508
1509 for_each_child_of_node(pdsps, child) {
1510 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1511 if (!pdsp) {
1512 of_node_put(child);
1513 dev_err(dev, "out of memory allocating pdsp\n");
1514 return -ENOMEM;
1515 }
1516 pdsp->name = knav_queue_find_name(child);
1517 pdsp->iram =
1518 knav_queue_map_reg(kdev, child,
1519 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1520 pdsp->regs =
1521 knav_queue_map_reg(kdev, child,
1522 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1523 pdsp->intd =
1524 knav_queue_map_reg(kdev, child,
1525 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1526 pdsp->command =
1527 knav_queue_map_reg(kdev, child,
1528 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1529
1530 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1531 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1532 dev_err(dev, "failed to map pdsp %s regs\n",
1533 pdsp->name);
1534 if (!IS_ERR(pdsp->command))
1535 devm_iounmap(dev, pdsp->command);
1536 if (!IS_ERR(pdsp->iram))
1537 devm_iounmap(dev, pdsp->iram);
1538 if (!IS_ERR(pdsp->regs))
1539 devm_iounmap(dev, pdsp->regs);
1540 if (!IS_ERR(pdsp->intd))
1541 devm_iounmap(dev, pdsp->intd);
1542 devm_kfree(dev, pdsp);
1543 continue;
1544 }
1545 of_property_read_u32(child, "id", &pdsp->id);
1546 list_add_tail(&pdsp->list, &kdev->pdsps);
1547 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1548 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1549 pdsp->intd);
1550 }
1551 return 0;
1552 }
1553
knav_queue_stop_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1554 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1555 struct knav_pdsp_info *pdsp)
1556 {
1557 u32 val, timeout = 1000;
1558 int ret;
1559
1560 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1561 writel_relaxed(val, &pdsp->regs->control);
1562 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1563 PDSP_CTRL_RUNNING);
1564 if (ret < 0) {
1565 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1566 return ret;
1567 }
1568 pdsp->loaded = false;
1569 pdsp->started = false;
1570 return 0;
1571 }
1572
knav_queue_load_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1573 static int knav_queue_load_pdsp(struct knav_device *kdev,
1574 struct knav_pdsp_info *pdsp)
1575 {
1576 int i, ret, fwlen;
1577 const struct firmware *fw;
1578 bool found = false;
1579 u32 *fwdata;
1580
1581 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1582 if (knav_acc_firmwares[i]) {
1583 ret = request_firmware_direct(&fw,
1584 knav_acc_firmwares[i],
1585 kdev->dev);
1586 if (!ret) {
1587 found = true;
1588 break;
1589 }
1590 }
1591 }
1592
1593 if (!found) {
1594 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1595 return -ENODEV;
1596 }
1597
1598 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1599 knav_acc_firmwares[i]);
1600
1601 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1602 /* download the firmware */
1603 fwdata = (u32 *)fw->data;
1604 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1605 for (i = 0; i < fwlen; i++)
1606 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1607
1608 release_firmware(fw);
1609 return 0;
1610 }
1611
knav_queue_start_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1612 static int knav_queue_start_pdsp(struct knav_device *kdev,
1613 struct knav_pdsp_info *pdsp)
1614 {
1615 u32 val, timeout = 1000;
1616 int ret;
1617
1618 /* write a command for sync */
1619 writel_relaxed(0xffffffff, pdsp->command);
1620 while (readl_relaxed(pdsp->command) != 0xffffffff)
1621 cpu_relax();
1622
1623 /* soft reset the PDSP */
1624 val = readl_relaxed(&pdsp->regs->control);
1625 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1626 writel_relaxed(val, &pdsp->regs->control);
1627
1628 /* enable pdsp */
1629 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1630 writel_relaxed(val, &pdsp->regs->control);
1631
1632 /* wait for command register to clear */
1633 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1634 if (ret < 0) {
1635 dev_err(kdev->dev,
1636 "timed out on pdsp %s command register wait\n",
1637 pdsp->name);
1638 return ret;
1639 }
1640 return 0;
1641 }
1642
knav_queue_stop_pdsps(struct knav_device * kdev)1643 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1644 {
1645 struct knav_pdsp_info *pdsp;
1646
1647 /* disable all pdsps */
1648 for_each_pdsp(kdev, pdsp)
1649 knav_queue_stop_pdsp(kdev, pdsp);
1650 }
1651
knav_queue_start_pdsps(struct knav_device * kdev)1652 static int knav_queue_start_pdsps(struct knav_device *kdev)
1653 {
1654 struct knav_pdsp_info *pdsp;
1655 int ret;
1656
1657 knav_queue_stop_pdsps(kdev);
1658 /* now load them all. We return success even if pdsp
1659 * is not loaded as acc channels are optional on having
1660 * firmware availability in the system. We set the loaded
1661 * and stated flag and when initialize the acc range, check
1662 * it and init the range only if pdsp is started.
1663 */
1664 for_each_pdsp(kdev, pdsp) {
1665 ret = knav_queue_load_pdsp(kdev, pdsp);
1666 if (!ret)
1667 pdsp->loaded = true;
1668 }
1669
1670 for_each_pdsp(kdev, pdsp) {
1671 if (pdsp->loaded) {
1672 ret = knav_queue_start_pdsp(kdev, pdsp);
1673 if (!ret)
1674 pdsp->started = true;
1675 }
1676 }
1677 return 0;
1678 }
1679
knav_queue_setup_pdsps(struct knav_device * kdev,struct device_node * node)1680 static int knav_queue_setup_pdsps(struct knav_device *kdev,
1681 struct device_node *node)
1682 {
1683 struct device_node *pdsps __free(device_node) =
1684 of_get_child_by_name(node, "pdsps");
1685
1686 if (pdsps) {
1687 int ret;
1688
1689 ret = knav_queue_init_pdsps(kdev, pdsps);
1690 if (ret)
1691 return ret;
1692
1693 ret = knav_queue_start_pdsps(kdev);
1694 if (ret)
1695 return ret;
1696 }
1697 return 0;
1698 }
1699
knav_find_qmgr(unsigned id)1700 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1701 {
1702 struct knav_qmgr_info *qmgr;
1703
1704 for_each_qmgr(kdev, qmgr) {
1705 if ((id >= qmgr->start_queue) &&
1706 (id < qmgr->start_queue + qmgr->num_queues))
1707 return qmgr;
1708 }
1709 return NULL;
1710 }
1711
knav_queue_init_queue(struct knav_device * kdev,struct knav_range_info * range,struct knav_queue_inst * inst,unsigned id)1712 static int knav_queue_init_queue(struct knav_device *kdev,
1713 struct knav_range_info *range,
1714 struct knav_queue_inst *inst,
1715 unsigned id)
1716 {
1717 char irq_name[KNAV_NAME_SIZE];
1718 inst->qmgr = knav_find_qmgr(id);
1719 if (!inst->qmgr)
1720 return -1;
1721
1722 INIT_LIST_HEAD(&inst->handles);
1723 inst->kdev = kdev;
1724 inst->range = range;
1725 inst->irq_num = -1;
1726 inst->id = id;
1727 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1728 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1729
1730 if (range->ops && range->ops->init_queue)
1731 return range->ops->init_queue(range, inst);
1732 else
1733 return 0;
1734 }
1735
knav_queue_init_queues(struct knav_device * kdev)1736 static int knav_queue_init_queues(struct knav_device *kdev)
1737 {
1738 struct knav_range_info *range;
1739 int size, id, base_idx;
1740 int idx = 0, ret = 0;
1741
1742 /* how much do we need for instance data? */
1743 size = sizeof(struct knav_queue_inst);
1744
1745 /* round this up to a power of 2, keep the index to instance
1746 * arithmetic fast.
1747 * */
1748 kdev->inst_shift = order_base_2(size);
1749 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1750 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1751 if (!kdev->instances)
1752 return -ENOMEM;
1753
1754 for_each_queue_range(kdev, range) {
1755 if (range->ops && range->ops->init_range)
1756 range->ops->init_range(range);
1757 base_idx = idx;
1758 for (id = range->queue_base;
1759 id < range->queue_base + range->num_queues; id++, idx++) {
1760 ret = knav_queue_init_queue(kdev, range,
1761 knav_queue_idx_to_inst(kdev, idx), id);
1762 if (ret < 0)
1763 return ret;
1764 }
1765 range->queue_base_inst =
1766 knav_queue_idx_to_inst(kdev, base_idx);
1767 }
1768 return 0;
1769 }
1770
1771 /* Match table for of_platform binding */
1772 static const struct of_device_id keystone_qmss_of_match[] = {
1773 {
1774 .compatible = "ti,keystone-navigator-qmss",
1775 },
1776 {
1777 .compatible = "ti,66ak2g-navss-qm",
1778 .data = (void *)QMSS_66AK2G,
1779 },
1780 {},
1781 };
1782 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1783
knav_queue_probe(struct platform_device * pdev)1784 static int knav_queue_probe(struct platform_device *pdev)
1785 {
1786 struct device_node *node = pdev->dev.of_node;
1787 struct device *dev = &pdev->dev;
1788 u32 temp[2];
1789 int ret;
1790
1791 if (!node) {
1792 dev_err(dev, "device tree info unavailable\n");
1793 return -ENODEV;
1794 }
1795
1796 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1797 if (!kdev) {
1798 dev_err(dev, "memory allocation failed\n");
1799 return -ENOMEM;
1800 }
1801
1802 if (device_get_match_data(dev))
1803 kdev->version = QMSS_66AK2G;
1804
1805 platform_set_drvdata(pdev, kdev);
1806 kdev->dev = dev;
1807 INIT_LIST_HEAD(&kdev->queue_ranges);
1808 INIT_LIST_HEAD(&kdev->qmgrs);
1809 INIT_LIST_HEAD(&kdev->pools);
1810 INIT_LIST_HEAD(&kdev->regions);
1811 INIT_LIST_HEAD(&kdev->pdsps);
1812
1813 pm_runtime_enable(&pdev->dev);
1814 ret = pm_runtime_resume_and_get(&pdev->dev);
1815 if (ret < 0) {
1816 pm_runtime_disable(&pdev->dev);
1817 dev_err(dev, "Failed to enable QMSS\n");
1818 return ret;
1819 }
1820
1821 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1822 dev_err(dev, "queue-range not specified\n");
1823 ret = -ENODEV;
1824 goto err;
1825 }
1826 kdev->base_id = temp[0];
1827 kdev->num_queues = temp[1];
1828
1829 /* Initialize queue managers using device tree configuration */
1830 ret = knav_queue_init_qmgrs(kdev, node);
1831 if (ret)
1832 goto err;
1833
1834 /* get pdsp configuration values from device tree */
1835 ret = knav_queue_setup_pdsps(kdev, node);
1836 if (ret)
1837 goto err;
1838
1839 /* get usable queue range values from device tree */
1840 ret = knav_setup_queue_pools(kdev, node);
1841 if (ret)
1842 goto err;
1843
1844 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1845 if (ret) {
1846 dev_err(kdev->dev, "could not setup linking ram\n");
1847 goto err;
1848 }
1849
1850 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1851 if (ret) {
1852 /*
1853 * nothing really, we have one linking ram already, so we just
1854 * live within our means
1855 */
1856 }
1857
1858 ret = knav_queue_setup_link_ram(kdev);
1859 if (ret)
1860 goto err;
1861
1862 ret = knav_queue_setup_regions(kdev, node);
1863 if (ret)
1864 goto err;
1865
1866 ret = knav_queue_init_queues(kdev);
1867 if (ret < 0) {
1868 dev_err(dev, "hwqueue initialization failed\n");
1869 goto err;
1870 }
1871
1872 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873 &knav_queue_debug_fops);
1874 device_ready = true;
1875 return 0;
1876
1877 err:
1878 knav_queue_stop_pdsps(kdev);
1879 knav_queue_free_regions(kdev);
1880 knav_free_queue_ranges(kdev);
1881 pm_runtime_put_sync(&pdev->dev);
1882 pm_runtime_disable(&pdev->dev);
1883 return ret;
1884 }
1885
knav_queue_remove(struct platform_device * pdev)1886 static void knav_queue_remove(struct platform_device *pdev)
1887 {
1888 /* TODO: Free resources */
1889 pm_runtime_put_sync(&pdev->dev);
1890 pm_runtime_disable(&pdev->dev);
1891 }
1892
1893 static struct platform_driver keystone_qmss_driver = {
1894 .probe = knav_queue_probe,
1895 .remove = knav_queue_remove,
1896 .driver = {
1897 .name = "keystone-navigator-qmss",
1898 .of_match_table = keystone_qmss_of_match,
1899 },
1900 };
1901 module_platform_driver(keystone_qmss_driver);
1902
1903 MODULE_LICENSE("GPL v2");
1904 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1905 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1906 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1907