xref: /linux/include/linux/memcontrol.h (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_SOCK_THROTTLED,
56 	MEMCG_NR_MEMORY_EVENTS,
57 };
58 
59 struct mem_cgroup_reclaim_cookie {
60 	pg_data_t *pgdat;
61 	int generation;
62 };
63 
64 #ifdef CONFIG_MEMCG
65 
66 #define MEM_CGROUP_ID_SHIFT	16
67 
68 struct mem_cgroup_id {
69 	int id;
70 	refcount_t ref;
71 };
72 
73 struct memcg_vmstats_percpu;
74 struct memcg1_events_percpu;
75 struct memcg_vmstats;
76 struct lruvec_stats_percpu;
77 struct lruvec_stats;
78 
79 struct mem_cgroup_reclaim_iter {
80 	struct mem_cgroup *position;
81 	/* scan generation, increased every round-trip */
82 	atomic_t generation;
83 };
84 
85 /*
86  * per-node information in memory controller.
87  */
88 struct mem_cgroup_per_node {
89 	/* Keep the read-only fields at the start */
90 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
91 						/* use container_of	   */
92 
93 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
94 	struct lruvec_stats			*lruvec_stats;
95 	struct shrinker_info __rcu	*shrinker_info;
96 
97 #ifdef CONFIG_MEMCG_V1
98 	/*
99 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
100 	 * and update often fields to avoid false sharing. If v1 stuff is
101 	 * not present, an explicit padding is needed.
102 	 */
103 
104 	struct rb_node		tree_node;	/* RB tree node */
105 	unsigned long		usage_in_excess;/* Set to the value by which */
106 						/* the soft limit is exceeded*/
107 	bool			on_tree;
108 #else
109 	CACHELINE_PADDING(_pad1_);
110 #endif
111 
112 	/* Fields which get updated often at the end. */
113 	struct lruvec		lruvec;
114 	CACHELINE_PADDING(_pad2_);
115 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
116 	struct mem_cgroup_reclaim_iter	iter;
117 
118 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
119 	/* slab stats for nmi context */
120 	atomic_t		slab_reclaimable;
121 	atomic_t		slab_unreclaimable;
122 #endif
123 };
124 
125 struct mem_cgroup_threshold {
126 	struct eventfd_ctx *eventfd;
127 	unsigned long threshold;
128 };
129 
130 /* For threshold */
131 struct mem_cgroup_threshold_ary {
132 	/* An array index points to threshold just below or equal to usage. */
133 	int current_threshold;
134 	/* Size of entries[] */
135 	unsigned int size;
136 	/* Array of thresholds */
137 	struct mem_cgroup_threshold entries[] __counted_by(size);
138 };
139 
140 struct mem_cgroup_thresholds {
141 	/* Primary thresholds array */
142 	struct mem_cgroup_threshold_ary *primary;
143 	/*
144 	 * Spare threshold array.
145 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
146 	 * It must be able to store at least primary->size - 1 entries.
147 	 */
148 	struct mem_cgroup_threshold_ary *spare;
149 };
150 
151 /*
152  * Remember four most recent foreign writebacks with dirty pages in this
153  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
154  * one in a given round, we're likely to catch it later if it keeps
155  * foreign-dirtying, so a fairly low count should be enough.
156  *
157  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
158  */
159 #define MEMCG_CGWB_FRN_CNT	4
160 
161 struct memcg_cgwb_frn {
162 	u64 bdi_id;			/* bdi->id of the foreign inode */
163 	int memcg_id;			/* memcg->css.id of foreign inode */
164 	u64 at;				/* jiffies_64 at the time of dirtying */
165 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
166 };
167 
168 /*
169  * Bucket for arbitrarily byte-sized objects charged to a memory
170  * cgroup. The bucket can be reparented in one piece when the cgroup
171  * is destroyed, without having to round up the individual references
172  * of all live memory objects in the wild.
173  */
174 struct obj_cgroup {
175 	struct percpu_ref refcnt;
176 	struct mem_cgroup *memcg;
177 	atomic_t nr_charged_bytes;
178 	union {
179 		struct list_head list; /* protected by objcg_lock */
180 		struct rcu_head rcu;
181 	};
182 };
183 
184 /*
185  * The memory controller data structure. The memory controller controls both
186  * page cache and RSS per cgroup. We would eventually like to provide
187  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
188  * to help the administrator determine what knobs to tune.
189  */
190 struct mem_cgroup {
191 	struct cgroup_subsys_state css;
192 
193 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
194 	struct mem_cgroup_id id;
195 
196 	/* Accounted resources */
197 	struct page_counter memory;		/* Both v1 & v2 */
198 
199 	union {
200 		struct page_counter swap;	/* v2 only */
201 		struct page_counter memsw;	/* v1 only */
202 	};
203 
204 	/* registered local peak watchers */
205 	struct list_head memory_peaks;
206 	struct list_head swap_peaks;
207 	spinlock_t	 peaks_lock;
208 
209 	/* Range enforcement for interrupt charges */
210 	struct work_struct high_work;
211 
212 #ifdef CONFIG_ZSWAP
213 	unsigned long zswap_max;
214 
215 	/*
216 	 * Prevent pages from this memcg from being written back from zswap to
217 	 * swap, and from being swapped out on zswap store failures.
218 	 */
219 	bool zswap_writeback;
220 #endif
221 
222 	/* vmpressure notifications */
223 	struct vmpressure vmpressure;
224 
225 	/*
226 	 * Should the OOM killer kill all belonging tasks, had it kill one?
227 	 */
228 	bool oom_group;
229 
230 	int swappiness;
231 
232 	/* memory.events and memory.events.local */
233 	struct cgroup_file events_file;
234 	struct cgroup_file events_local_file;
235 
236 	/* handle for "memory.swap.events" */
237 	struct cgroup_file swap_events_file;
238 
239 	/* memory.stat */
240 	struct memcg_vmstats	*vmstats;
241 
242 	/* memory.events */
243 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
244 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
245 
246 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
247 	/* MEMCG_KMEM for nmi context */
248 	atomic_t		kmem_stat;
249 #endif
250 	/*
251 	 * Hint of reclaim pressure for socket memroy management. Note
252 	 * that this indicator should NOT be used in legacy cgroup mode
253 	 * where socket memory is accounted/charged separately.
254 	 */
255 	u64			socket_pressure;
256 #if BITS_PER_LONG < 64
257 	seqlock_t		socket_pressure_seqlock;
258 #endif
259 	int kmemcg_id;
260 	/*
261 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
262 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
263 	 * to the original objcg until the end of live of memcg.
264 	 */
265 	struct obj_cgroup __rcu	*objcg;
266 	struct obj_cgroup	*orig_objcg;
267 	/* list of inherited objcgs, protected by objcg_lock */
268 	struct list_head objcg_list;
269 
270 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
271 
272 #ifdef CONFIG_CGROUP_WRITEBACK
273 	struct list_head cgwb_list;
274 	struct wb_domain cgwb_domain;
275 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
276 #endif
277 
278 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
279 	struct deferred_split deferred_split_queue;
280 #endif
281 
282 #ifdef CONFIG_LRU_GEN_WALKS_MMU
283 	/* per-memcg mm_struct list */
284 	struct lru_gen_mm_list mm_list;
285 #endif
286 
287 #ifdef CONFIG_MEMCG_V1
288 	/* Legacy consumer-oriented counters */
289 	struct page_counter kmem;		/* v1 only */
290 	struct page_counter tcpmem;		/* v1 only */
291 
292 	struct memcg1_events_percpu __percpu *events_percpu;
293 
294 	unsigned long soft_limit;
295 
296 	/* protected by memcg_oom_lock */
297 	bool oom_lock;
298 	int under_oom;
299 
300 	/* OOM-Killer disable */
301 	int oom_kill_disable;
302 
303 	/* protect arrays of thresholds */
304 	struct mutex thresholds_lock;
305 
306 	/* thresholds for memory usage. RCU-protected */
307 	struct mem_cgroup_thresholds thresholds;
308 
309 	/* thresholds for mem+swap usage. RCU-protected */
310 	struct mem_cgroup_thresholds memsw_thresholds;
311 
312 	/* For oom notifier event fd */
313 	struct list_head oom_notify;
314 
315 	/* Legacy tcp memory accounting */
316 	bool tcpmem_active;
317 	int tcpmem_pressure;
318 
319 	/* List of events which userspace want to receive */
320 	struct list_head event_list;
321 	spinlock_t event_list_lock;
322 #endif /* CONFIG_MEMCG_V1 */
323 
324 	struct mem_cgroup_per_node *nodeinfo[];
325 };
326 
327 /*
328  * size of first charge trial.
329  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
330  * workload.
331  */
332 #define MEMCG_CHARGE_BATCH 64U
333 
334 extern struct mem_cgroup *root_mem_cgroup;
335 
336 enum page_memcg_data_flags {
337 	/* page->memcg_data is a pointer to an slabobj_ext vector */
338 	MEMCG_DATA_OBJEXTS = (1UL << 0),
339 	/* page has been accounted as a non-slab kernel page */
340 	MEMCG_DATA_KMEM = (1UL << 1),
341 	/* the next bit after the last actual flag */
342 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
343 };
344 
345 #define __OBJEXTS_ALLOC_FAIL	MEMCG_DATA_OBJEXTS
346 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
347 
348 #else /* CONFIG_MEMCG */
349 
350 #define __OBJEXTS_ALLOC_FAIL	(1UL << 0)
351 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
352 
353 #endif /* CONFIG_MEMCG */
354 
355 enum objext_flags {
356 	/*
357 	 * Use bit 0 with zero other bits to signal that slabobj_ext vector
358 	 * failed to allocate. The same bit 0 with valid upper bits means
359 	 * MEMCG_DATA_OBJEXTS.
360 	 */
361 	OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL,
362 	/* slabobj_ext vector allocated with kmalloc_nolock() */
363 	OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG,
364 	/* the next bit after the last actual flag */
365 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
366 };
367 
368 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
369 
370 #ifdef CONFIG_MEMCG
371 
372 static inline bool folio_memcg_kmem(struct folio *folio);
373 
374 /*
375  * After the initialization objcg->memcg is always pointing at
376  * a valid memcg, but can be atomically swapped to the parent memcg.
377  *
378  * The caller must ensure that the returned memcg won't be released.
379  */
obj_cgroup_memcg(struct obj_cgroup * objcg)380 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
381 {
382 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
383 	return READ_ONCE(objcg->memcg);
384 }
385 
386 /*
387  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the memory cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper memory cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * kmem folios.
395  */
__folio_memcg(struct folio * folio)396 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
403 
404 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406 
407 /*
408  * __folio_objcg - get the object cgroup associated with a kmem folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the object cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper object cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios or
415  * LRU folios.
416  */
__folio_objcg(struct folio * folio)417 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
418 {
419 	unsigned long memcg_data = folio->memcg_data;
420 
421 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
422 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
423 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
424 
425 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
426 }
427 
428 /*
429  * folio_memcg - Get the memory cgroup associated with a folio.
430  * @folio: Pointer to the folio.
431  *
432  * Returns a pointer to the memory cgroup associated with the folio,
433  * or NULL. This function assumes that the folio is known to have a
434  * proper memory cgroup pointer. It's not safe to call this function
435  * against some type of folios, e.g. slab folios or ex-slab folios.
436  *
437  * For a non-kmem folio any of the following ensures folio and memcg binding
438  * stability:
439  *
440  * - the folio lock
441  * - LRU isolation
442  * - exclusive reference
443  *
444  * For a kmem folio a caller should hold an rcu read lock to protect memcg
445  * associated with a kmem folio from being released.
446  */
folio_memcg(struct folio * folio)447 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
448 {
449 	if (folio_memcg_kmem(folio))
450 		return obj_cgroup_memcg(__folio_objcg(folio));
451 	return __folio_memcg(folio);
452 }
453 
454 /*
455  * folio_memcg_charged - If a folio is charged to a memory cgroup.
456  * @folio: Pointer to the folio.
457  *
458  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
459  */
folio_memcg_charged(struct folio * folio)460 static inline bool folio_memcg_charged(struct folio *folio)
461 {
462 	return folio->memcg_data != 0;
463 }
464 
465 /*
466  * folio_memcg_check - Get the memory cgroup associated with a folio.
467  * @folio: Pointer to the folio.
468  *
469  * Returns a pointer to the memory cgroup associated with the folio,
470  * or NULL. This function unlike folio_memcg() can take any folio
471  * as an argument. It has to be used in cases when it's not known if a folio
472  * has an associated memory cgroup pointer or an object cgroups vector or
473  * an object cgroup.
474  *
475  * For a non-kmem folio any of the following ensures folio and memcg binding
476  * stability:
477  *
478  * - the folio lock
479  * - LRU isolation
480  * - exclusive reference
481  *
482  * For a kmem folio a caller should hold an rcu read lock to protect memcg
483  * associated with a kmem folio from being released.
484  */
folio_memcg_check(struct folio * folio)485 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
486 {
487 	/*
488 	 * Because folio->memcg_data might be changed asynchronously
489 	 * for slabs, READ_ONCE() should be used here.
490 	 */
491 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
492 
493 	if (memcg_data & MEMCG_DATA_OBJEXTS)
494 		return NULL;
495 
496 	if (memcg_data & MEMCG_DATA_KMEM) {
497 		struct obj_cgroup *objcg;
498 
499 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
500 		return obj_cgroup_memcg(objcg);
501 	}
502 
503 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
504 }
505 
page_memcg_check(struct page * page)506 static inline struct mem_cgroup *page_memcg_check(struct page *page)
507 {
508 	if (PageTail(page))
509 		return NULL;
510 	return folio_memcg_check((struct folio *)page);
511 }
512 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)513 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
514 {
515 	struct mem_cgroup *memcg;
516 
517 	rcu_read_lock();
518 retry:
519 	memcg = obj_cgroup_memcg(objcg);
520 	if (unlikely(!css_tryget(&memcg->css)))
521 		goto retry;
522 	rcu_read_unlock();
523 
524 	return memcg;
525 }
526 
527 /*
528  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
529  * @folio: Pointer to the folio.
530  *
531  * Checks if the folio has MemcgKmem flag set. The caller must ensure
532  * that the folio has an associated memory cgroup. It's not safe to call
533  * this function against some types of folios, e.g. slab folios.
534  */
folio_memcg_kmem(struct folio * folio)535 static inline bool folio_memcg_kmem(struct folio *folio)
536 {
537 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
538 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
539 	return folio->memcg_data & MEMCG_DATA_KMEM;
540 }
541 
PageMemcgKmem(struct page * page)542 static inline bool PageMemcgKmem(struct page *page)
543 {
544 	return folio_memcg_kmem(page_folio(page));
545 }
546 
mem_cgroup_is_root(struct mem_cgroup * memcg)547 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
548 {
549 	return (memcg == root_mem_cgroup);
550 }
551 
mem_cgroup_disabled(void)552 static inline bool mem_cgroup_disabled(void)
553 {
554 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
555 }
556 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)557 static inline void mem_cgroup_protection(struct mem_cgroup *root,
558 					 struct mem_cgroup *memcg,
559 					 unsigned long *min,
560 					 unsigned long *low)
561 {
562 	*min = *low = 0;
563 
564 	if (mem_cgroup_disabled())
565 		return;
566 
567 	/*
568 	 * There is no reclaim protection applied to a targeted reclaim.
569 	 * We are special casing this specific case here because
570 	 * mem_cgroup_calculate_protection is not robust enough to keep
571 	 * the protection invariant for calculated effective values for
572 	 * parallel reclaimers with different reclaim target. This is
573 	 * especially a problem for tail memcgs (as they have pages on LRU)
574 	 * which would want to have effective values 0 for targeted reclaim
575 	 * but a different value for external reclaim.
576 	 *
577 	 * Example
578 	 * Let's have global and A's reclaim in parallel:
579 	 *  |
580 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
581 	 *  |\
582 	 *  | C (low = 1G, usage = 2.5G)
583 	 *  B (low = 1G, usage = 0.5G)
584 	 *
585 	 * For the global reclaim
586 	 * A.elow = A.low
587 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
588 	 * C.elow = min(C.usage, C.low)
589 	 *
590 	 * With the effective values resetting we have A reclaim
591 	 * A.elow = 0
592 	 * B.elow = B.low
593 	 * C.elow = C.low
594 	 *
595 	 * If the global reclaim races with A's reclaim then
596 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
597 	 * is possible and reclaiming B would be violating the protection.
598 	 *
599 	 */
600 	if (root == memcg)
601 		return;
602 
603 	*min = READ_ONCE(memcg->memory.emin);
604 	*low = READ_ONCE(memcg->memory.elow);
605 }
606 
607 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
608 				     struct mem_cgroup *memcg);
609 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)610 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
611 					  struct mem_cgroup *memcg)
612 {
613 	/*
614 	 * The root memcg doesn't account charges, and doesn't support
615 	 * protection. The target memcg's protection is ignored, see
616 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
617 	 */
618 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
619 		memcg == target;
620 }
621 
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)622 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
623 					struct mem_cgroup *memcg)
624 {
625 	if (mem_cgroup_unprotected(target, memcg))
626 		return false;
627 
628 	return READ_ONCE(memcg->memory.elow) >=
629 		page_counter_read(&memcg->memory);
630 }
631 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)632 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
633 					struct mem_cgroup *memcg)
634 {
635 	if (mem_cgroup_unprotected(target, memcg))
636 		return false;
637 
638 	return READ_ONCE(memcg->memory.emin) >=
639 		page_counter_read(&memcg->memory);
640 }
641 
642 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
643 
644 /**
645  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
646  * @folio: Folio to charge.
647  * @mm: mm context of the allocating task.
648  * @gfp: Reclaim mode.
649  *
650  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
651  * pages according to @gfp if necessary.  If @mm is NULL, try to
652  * charge to the active memcg.
653  *
654  * Do not use this for folios allocated for swapin.
655  *
656  * Return: 0 on success. Otherwise, an error code is returned.
657  */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)658 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
659 				    gfp_t gfp)
660 {
661 	if (mem_cgroup_disabled())
662 		return 0;
663 	return __mem_cgroup_charge(folio, mm, gfp);
664 }
665 
666 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
667 
668 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
669 				  gfp_t gfp, swp_entry_t entry);
670 
671 void __mem_cgroup_uncharge(struct folio *folio);
672 
673 /**
674  * mem_cgroup_uncharge - Uncharge a folio.
675  * @folio: Folio to uncharge.
676  *
677  * Uncharge a folio previously charged with mem_cgroup_charge().
678  */
mem_cgroup_uncharge(struct folio * folio)679 static inline void mem_cgroup_uncharge(struct folio *folio)
680 {
681 	if (mem_cgroup_disabled())
682 		return;
683 	__mem_cgroup_uncharge(folio);
684 }
685 
686 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
mem_cgroup_uncharge_folios(struct folio_batch * folios)687 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
688 {
689 	if (mem_cgroup_disabled())
690 		return;
691 	__mem_cgroup_uncharge_folios(folios);
692 }
693 
694 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
695 void mem_cgroup_migrate(struct folio *old, struct folio *new);
696 
697 /**
698  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
699  * @memcg: memcg of the wanted lruvec
700  * @pgdat: pglist_data
701  *
702  * Returns the lru list vector holding pages for a given @memcg &
703  * @pgdat combination. This can be the node lruvec, if the memory
704  * controller is disabled.
705  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)706 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
707 					       struct pglist_data *pgdat)
708 {
709 	struct mem_cgroup_per_node *mz;
710 	struct lruvec *lruvec;
711 
712 	if (mem_cgroup_disabled()) {
713 		lruvec = &pgdat->__lruvec;
714 		goto out;
715 	}
716 
717 	if (!memcg)
718 		memcg = root_mem_cgroup;
719 
720 	mz = memcg->nodeinfo[pgdat->node_id];
721 	lruvec = &mz->lruvec;
722 out:
723 	/*
724 	 * Since a node can be onlined after the mem_cgroup was created,
725 	 * we have to be prepared to initialize lruvec->pgdat here;
726 	 * and if offlined then reonlined, we need to reinitialize it.
727 	 */
728 	if (unlikely(lruvec->pgdat != pgdat))
729 		lruvec->pgdat = pgdat;
730 	return lruvec;
731 }
732 
733 /**
734  * folio_lruvec - return lruvec for isolating/putting an LRU folio
735  * @folio: Pointer to the folio.
736  *
737  * This function relies on folio->mem_cgroup being stable.
738  */
folio_lruvec(struct folio * folio)739 static inline struct lruvec *folio_lruvec(struct folio *folio)
740 {
741 	struct mem_cgroup *memcg = folio_memcg(folio);
742 
743 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
744 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
745 }
746 
747 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
748 
749 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
750 
751 struct mem_cgroup *get_mem_cgroup_from_current(void);
752 
753 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
754 
755 struct lruvec *folio_lruvec_lock(struct folio *folio);
756 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
757 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
758 						unsigned long *flags);
759 
760 #ifdef CONFIG_DEBUG_VM
761 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
762 #else
763 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)764 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
765 {
766 }
767 #endif
768 
769 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)770 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
771 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
772 }
773 
obj_cgroup_tryget(struct obj_cgroup * objcg)774 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
775 {
776 	return percpu_ref_tryget(&objcg->refcnt);
777 }
778 
obj_cgroup_get(struct obj_cgroup * objcg)779 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
780 {
781 	percpu_ref_get(&objcg->refcnt);
782 }
783 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)784 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
785 				       unsigned long nr)
786 {
787 	percpu_ref_get_many(&objcg->refcnt, nr);
788 }
789 
obj_cgroup_put(struct obj_cgroup * objcg)790 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
791 {
792 	if (objcg)
793 		percpu_ref_put(&objcg->refcnt);
794 }
795 
mem_cgroup_tryget(struct mem_cgroup * memcg)796 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
797 {
798 	return !memcg || css_tryget(&memcg->css);
799 }
800 
mem_cgroup_tryget_online(struct mem_cgroup * memcg)801 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
802 {
803 	return !memcg || css_tryget_online(&memcg->css);
804 }
805 
mem_cgroup_put(struct mem_cgroup * memcg)806 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
807 {
808 	if (memcg)
809 		css_put(&memcg->css);
810 }
811 
812 #define mem_cgroup_from_counter(counter, member)	\
813 	container_of(counter, struct mem_cgroup, member)
814 
815 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
816 				   struct mem_cgroup *,
817 				   struct mem_cgroup_reclaim_cookie *);
818 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
819 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
820 			   int (*)(struct task_struct *, void *), void *arg);
821 
mem_cgroup_id(struct mem_cgroup * memcg)822 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
823 {
824 	if (mem_cgroup_disabled())
825 		return 0;
826 
827 	return memcg->id.id;
828 }
829 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
830 
831 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)832 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
833 {
834 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
835 }
836 
837 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
838 #endif
839 
mem_cgroup_from_seq(struct seq_file * m)840 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
841 {
842 	return mem_cgroup_from_css(seq_css(m));
843 }
844 
lruvec_memcg(struct lruvec * lruvec)845 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
846 {
847 	struct mem_cgroup_per_node *mz;
848 
849 	if (mem_cgroup_disabled())
850 		return NULL;
851 
852 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
853 	return mz->memcg;
854 }
855 
856 /**
857  * parent_mem_cgroup - find the accounting parent of a memcg
858  * @memcg: memcg whose parent to find
859  *
860  * Returns the parent memcg, or NULL if this is the root.
861  */
parent_mem_cgroup(struct mem_cgroup * memcg)862 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
863 {
864 	return mem_cgroup_from_css(memcg->css.parent);
865 }
866 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)867 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
868 			      struct mem_cgroup *root)
869 {
870 	if (root == memcg)
871 		return true;
872 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
873 }
874 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)875 static inline bool mm_match_cgroup(struct mm_struct *mm,
876 				   struct mem_cgroup *memcg)
877 {
878 	struct mem_cgroup *task_memcg;
879 	bool match = false;
880 
881 	rcu_read_lock();
882 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 	if (task_memcg)
884 		match = mem_cgroup_is_descendant(task_memcg, memcg);
885 	rcu_read_unlock();
886 	return match;
887 }
888 
889 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
890 ino_t page_cgroup_ino(struct page *page);
891 
mem_cgroup_online(struct mem_cgroup * memcg)892 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
893 {
894 	if (mem_cgroup_disabled())
895 		return true;
896 	return !!(memcg->css.flags & CSS_ONLINE);
897 }
898 
899 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
900 		int zid, int nr_pages);
901 
902 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)903 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
904 		enum lru_list lru, int zone_idx)
905 {
906 	struct mem_cgroup_per_node *mz;
907 
908 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
909 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
910 }
911 
912 void __mem_cgroup_handle_over_high(gfp_t gfp_mask);
913 
mem_cgroup_handle_over_high(gfp_t gfp_mask)914 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
915 {
916 	if (unlikely(current->memcg_nr_pages_over_high))
917 		__mem_cgroup_handle_over_high(gfp_mask);
918 }
919 
920 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
921 
922 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
923 
924 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
925 				struct task_struct *p);
926 
927 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
928 
929 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
930 					    struct mem_cgroup *oom_domain);
931 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
932 
933 /* idx can be of type enum memcg_stat_item or node_stat_item */
934 void mod_memcg_state(struct mem_cgroup *memcg,
935 		     enum memcg_stat_item idx, int val);
936 
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)937 static inline void mod_memcg_page_state(struct page *page,
938 					enum memcg_stat_item idx, int val)
939 {
940 	struct mem_cgroup *memcg;
941 
942 	if (mem_cgroup_disabled())
943 		return;
944 
945 	rcu_read_lock();
946 	memcg = folio_memcg(page_folio(page));
947 	if (memcg)
948 		mod_memcg_state(memcg, idx, val);
949 	rcu_read_unlock();
950 }
951 
952 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
953 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
954 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
955 				      enum node_stat_item idx);
956 
957 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
958 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
959 
960 void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
961 
962 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
963 			unsigned long count);
964 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)965 static inline void count_memcg_folio_events(struct folio *folio,
966 		enum vm_event_item idx, unsigned long nr)
967 {
968 	struct mem_cgroup *memcg = folio_memcg(folio);
969 
970 	if (memcg)
971 		count_memcg_events(memcg, idx, nr);
972 }
973 
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)974 static inline void count_memcg_events_mm(struct mm_struct *mm,
975 					enum vm_event_item idx, unsigned long count)
976 {
977 	struct mem_cgroup *memcg;
978 
979 	if (mem_cgroup_disabled())
980 		return;
981 
982 	rcu_read_lock();
983 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984 	if (likely(memcg))
985 		count_memcg_events(memcg, idx, count);
986 	rcu_read_unlock();
987 }
988 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)989 static inline void count_memcg_event_mm(struct mm_struct *mm,
990 					enum vm_event_item idx)
991 {
992 	count_memcg_events_mm(mm, idx, 1);
993 }
994 
995 void __memcg_memory_event(struct mem_cgroup *memcg,
996 			  enum memcg_memory_event event, bool allow_spinning);
997 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)998 static inline void memcg_memory_event(struct mem_cgroup *memcg,
999 				      enum memcg_memory_event event)
1000 {
1001 	__memcg_memory_event(memcg, event, true);
1002 }
1003 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1004 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1005 					 enum memcg_memory_event event)
1006 {
1007 	struct mem_cgroup *memcg;
1008 
1009 	if (mem_cgroup_disabled())
1010 		return;
1011 
1012 	rcu_read_lock();
1013 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1014 	if (likely(memcg))
1015 		memcg_memory_event(memcg, event);
1016 	rcu_read_unlock();
1017 }
1018 
1019 void split_page_memcg(struct page *first, unsigned order);
1020 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1021 		unsigned new_order);
1022 
cgroup_id_from_mm(struct mm_struct * mm)1023 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1024 {
1025 	struct mem_cgroup *memcg;
1026 	u64 id;
1027 
1028 	if (mem_cgroup_disabled())
1029 		return 0;
1030 
1031 	rcu_read_lock();
1032 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1033 	if (!memcg)
1034 		memcg = root_mem_cgroup;
1035 	id = cgroup_id(memcg->css.cgroup);
1036 	rcu_read_unlock();
1037 	return id;
1038 }
1039 
1040 extern int mem_cgroup_init(void);
1041 #else /* CONFIG_MEMCG */
1042 
1043 #define MEM_CGROUP_ID_SHIFT	0
1044 
1045 #define root_mem_cgroup		(NULL)
1046 
folio_memcg(struct folio * folio)1047 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1048 {
1049 	return NULL;
1050 }
1051 
folio_memcg_charged(struct folio * folio)1052 static inline bool folio_memcg_charged(struct folio *folio)
1053 {
1054 	return false;
1055 }
1056 
folio_memcg_check(struct folio * folio)1057 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1058 {
1059 	return NULL;
1060 }
1061 
page_memcg_check(struct page * page)1062 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1063 {
1064 	return NULL;
1065 }
1066 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)1067 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1068 {
1069 	return NULL;
1070 }
1071 
folio_memcg_kmem(struct folio * folio)1072 static inline bool folio_memcg_kmem(struct folio *folio)
1073 {
1074 	return false;
1075 }
1076 
PageMemcgKmem(struct page * page)1077 static inline bool PageMemcgKmem(struct page *page)
1078 {
1079 	return false;
1080 }
1081 
mem_cgroup_is_root(struct mem_cgroup * memcg)1082 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1083 {
1084 	return true;
1085 }
1086 
mem_cgroup_disabled(void)1087 static inline bool mem_cgroup_disabled(void)
1088 {
1089 	return true;
1090 }
1091 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1092 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1093 				      enum memcg_memory_event event)
1094 {
1095 }
1096 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1097 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1098 					 enum memcg_memory_event event)
1099 {
1100 }
1101 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1102 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1103 					 struct mem_cgroup *memcg,
1104 					 unsigned long *min,
1105 					 unsigned long *low)
1106 {
1107 	*min = *low = 0;
1108 }
1109 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1110 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1111 						   struct mem_cgroup *memcg)
1112 {
1113 }
1114 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1115 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1116 					  struct mem_cgroup *memcg)
1117 {
1118 	return true;
1119 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1120 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1121 					struct mem_cgroup *memcg)
1122 {
1123 	return false;
1124 }
1125 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1126 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1127 					struct mem_cgroup *memcg)
1128 {
1129 	return false;
1130 }
1131 
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1132 static inline int mem_cgroup_charge(struct folio *folio,
1133 		struct mm_struct *mm, gfp_t gfp)
1134 {
1135 	return 0;
1136 }
1137 
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)1138 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1139 {
1140         return 0;
1141 }
1142 
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1143 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1144 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1145 {
1146 	return 0;
1147 }
1148 
mem_cgroup_uncharge(struct folio * folio)1149 static inline void mem_cgroup_uncharge(struct folio *folio)
1150 {
1151 }
1152 
mem_cgroup_uncharge_folios(struct folio_batch * folios)1153 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1154 {
1155 }
1156 
mem_cgroup_replace_folio(struct folio * old,struct folio * new)1157 static inline void mem_cgroup_replace_folio(struct folio *old,
1158 		struct folio *new)
1159 {
1160 }
1161 
mem_cgroup_migrate(struct folio * old,struct folio * new)1162 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1163 {
1164 }
1165 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1166 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1167 					       struct pglist_data *pgdat)
1168 {
1169 	return &pgdat->__lruvec;
1170 }
1171 
folio_lruvec(struct folio * folio)1172 static inline struct lruvec *folio_lruvec(struct folio *folio)
1173 {
1174 	struct pglist_data *pgdat = folio_pgdat(folio);
1175 	return &pgdat->__lruvec;
1176 }
1177 
1178 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1179 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1180 {
1181 }
1182 
parent_mem_cgroup(struct mem_cgroup * memcg)1183 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1184 {
1185 	return NULL;
1186 }
1187 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1188 static inline bool mm_match_cgroup(struct mm_struct *mm,
1189 		struct mem_cgroup *memcg)
1190 {
1191 	return true;
1192 }
1193 
get_mem_cgroup_from_mm(struct mm_struct * mm)1194 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1195 {
1196 	return NULL;
1197 }
1198 
get_mem_cgroup_from_current(void)1199 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1200 {
1201 	return NULL;
1202 }
1203 
get_mem_cgroup_from_folio(struct folio * folio)1204 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1205 {
1206 	return NULL;
1207 }
1208 
1209 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1210 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1211 {
1212 	return NULL;
1213 }
1214 
obj_cgroup_get(struct obj_cgroup * objcg)1215 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1216 {
1217 }
1218 
obj_cgroup_put(struct obj_cgroup * objcg)1219 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1220 {
1221 }
1222 
mem_cgroup_tryget(struct mem_cgroup * memcg)1223 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1224 {
1225 	return true;
1226 }
1227 
mem_cgroup_tryget_online(struct mem_cgroup * memcg)1228 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1229 {
1230 	return true;
1231 }
1232 
mem_cgroup_put(struct mem_cgroup * memcg)1233 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1234 {
1235 }
1236 
folio_lruvec_lock(struct folio * folio)1237 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1238 {
1239 	struct pglist_data *pgdat = folio_pgdat(folio);
1240 
1241 	spin_lock(&pgdat->__lruvec.lru_lock);
1242 	return &pgdat->__lruvec;
1243 }
1244 
folio_lruvec_lock_irq(struct folio * folio)1245 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1246 {
1247 	struct pglist_data *pgdat = folio_pgdat(folio);
1248 
1249 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1250 	return &pgdat->__lruvec;
1251 }
1252 
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1253 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1254 		unsigned long *flagsp)
1255 {
1256 	struct pglist_data *pgdat = folio_pgdat(folio);
1257 
1258 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1259 	return &pgdat->__lruvec;
1260 }
1261 
1262 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1263 mem_cgroup_iter(struct mem_cgroup *root,
1264 		struct mem_cgroup *prev,
1265 		struct mem_cgroup_reclaim_cookie *reclaim)
1266 {
1267 	return NULL;
1268 }
1269 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1270 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1271 					 struct mem_cgroup *prev)
1272 {
1273 }
1274 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1275 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1276 		int (*fn)(struct task_struct *, void *), void *arg)
1277 {
1278 }
1279 
mem_cgroup_id(struct mem_cgroup * memcg)1280 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1281 {
1282 	return 0;
1283 }
1284 
mem_cgroup_from_id(unsigned short id)1285 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1286 {
1287 	WARN_ON_ONCE(id);
1288 	/* XXX: This should always return root_mem_cgroup */
1289 	return NULL;
1290 }
1291 
1292 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1293 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1294 {
1295 	return 0;
1296 }
1297 
mem_cgroup_get_from_ino(unsigned long ino)1298 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1299 {
1300 	return NULL;
1301 }
1302 #endif
1303 
mem_cgroup_from_seq(struct seq_file * m)1304 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1305 {
1306 	return NULL;
1307 }
1308 
lruvec_memcg(struct lruvec * lruvec)1309 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1310 {
1311 	return NULL;
1312 }
1313 
mem_cgroup_online(struct mem_cgroup * memcg)1314 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1315 {
1316 	return true;
1317 }
1318 
1319 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1320 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1321 		enum lru_list lru, int zone_idx)
1322 {
1323 	return 0;
1324 }
1325 
mem_cgroup_get_max(struct mem_cgroup * memcg)1326 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1327 {
1328 	return 0;
1329 }
1330 
mem_cgroup_size(struct mem_cgroup * memcg)1331 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1332 {
1333 	return 0;
1334 }
1335 
1336 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1337 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1338 {
1339 }
1340 
1341 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1342 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1343 {
1344 }
1345 
mem_cgroup_handle_over_high(gfp_t gfp_mask)1346 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1347 {
1348 }
1349 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1350 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1351 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1352 {
1353 	return NULL;
1354 }
1355 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1356 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1357 {
1358 }
1359 
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int nr)1360 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1361 				   enum memcg_stat_item idx,
1362 				   int nr)
1363 {
1364 }
1365 
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)1366 static inline void mod_memcg_page_state(struct page *page,
1367 					enum memcg_stat_item idx, int val)
1368 {
1369 }
1370 
memcg_page_state(struct mem_cgroup * memcg,int idx)1371 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1372 {
1373 	return 0;
1374 }
1375 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1376 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1377 					      enum node_stat_item idx)
1378 {
1379 	return node_page_state(lruvec_pgdat(lruvec), idx);
1380 }
1381 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1382 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1383 						    enum node_stat_item idx)
1384 {
1385 	return node_page_state(lruvec_pgdat(lruvec), idx);
1386 }
1387 
mem_cgroup_flush_stats(struct mem_cgroup * memcg)1388 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1389 {
1390 }
1391 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)1392 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1393 {
1394 }
1395 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1396 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1397 					 int val)
1398 {
1399 	struct page *page = virt_to_head_page(p);
1400 
1401 	mod_node_page_state(page_pgdat(page), idx, val);
1402 }
1403 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1404 static inline void count_memcg_events(struct mem_cgroup *memcg,
1405 					enum vm_event_item idx,
1406 					unsigned long count)
1407 {
1408 }
1409 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1410 static inline void count_memcg_folio_events(struct folio *folio,
1411 		enum vm_event_item idx, unsigned long nr)
1412 {
1413 }
1414 
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)1415 static inline void count_memcg_events_mm(struct mm_struct *mm,
1416 					enum vm_event_item idx, unsigned long count)
1417 {
1418 }
1419 
1420 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1421 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1422 {
1423 }
1424 
split_page_memcg(struct page * first,unsigned order)1425 static inline void split_page_memcg(struct page *first, unsigned order)
1426 {
1427 }
1428 
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)1429 static inline void folio_split_memcg_refs(struct folio *folio,
1430 		unsigned old_order, unsigned new_order)
1431 {
1432 }
1433 
cgroup_id_from_mm(struct mm_struct * mm)1434 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1435 {
1436 	return 0;
1437 }
1438 
mem_cgroup_init(void)1439 static inline int mem_cgroup_init(void) { return 0; }
1440 #endif /* CONFIG_MEMCG */
1441 
1442 /*
1443  * Extended information for slab objects stored as an array in page->memcg_data
1444  * if MEMCG_DATA_OBJEXTS is set.
1445  */
1446 struct slabobj_ext {
1447 #ifdef CONFIG_MEMCG
1448 	struct obj_cgroup *objcg;
1449 #endif
1450 #ifdef CONFIG_MEM_ALLOC_PROFILING
1451 	union codetag_ref ref;
1452 #endif
1453 } __aligned(8);
1454 
parent_lruvec(struct lruvec * lruvec)1455 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1456 {
1457 	struct mem_cgroup *memcg;
1458 
1459 	memcg = lruvec_memcg(lruvec);
1460 	if (!memcg)
1461 		return NULL;
1462 	memcg = parent_mem_cgroup(memcg);
1463 	if (!memcg)
1464 		return NULL;
1465 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1466 }
1467 
unlock_page_lruvec(struct lruvec * lruvec)1468 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1469 {
1470 	spin_unlock(&lruvec->lru_lock);
1471 }
1472 
unlock_page_lruvec_irq(struct lruvec * lruvec)1473 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1474 {
1475 	spin_unlock_irq(&lruvec->lru_lock);
1476 }
1477 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1478 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1479 		unsigned long flags)
1480 {
1481 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1482 }
1483 
1484 /* Test requires a stable folio->memcg binding, see folio_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1485 static inline bool folio_matches_lruvec(struct folio *folio,
1486 		struct lruvec *lruvec)
1487 {
1488 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1489 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1490 }
1491 
1492 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1493 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1494 		struct lruvec *locked_lruvec)
1495 {
1496 	if (locked_lruvec) {
1497 		if (folio_matches_lruvec(folio, locked_lruvec))
1498 			return locked_lruvec;
1499 
1500 		unlock_page_lruvec_irq(locked_lruvec);
1501 	}
1502 
1503 	return folio_lruvec_lock_irq(folio);
1504 }
1505 
1506 /* Don't lock again iff folio's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flags)1507 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1508 		struct lruvec **lruvecp, unsigned long *flags)
1509 {
1510 	if (*lruvecp) {
1511 		if (folio_matches_lruvec(folio, *lruvecp))
1512 			return;
1513 
1514 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1515 	}
1516 
1517 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1518 }
1519 
1520 #ifdef CONFIG_CGROUP_WRITEBACK
1521 
1522 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1523 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1524 			 unsigned long *pheadroom, unsigned long *pdirty,
1525 			 unsigned long *pwriteback);
1526 
1527 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1528 					     struct bdi_writeback *wb);
1529 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1530 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1531 						  struct bdi_writeback *wb)
1532 {
1533 	struct mem_cgroup *memcg;
1534 
1535 	if (mem_cgroup_disabled())
1536 		return;
1537 
1538 	memcg = folio_memcg(folio);
1539 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1540 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1541 }
1542 
1543 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1544 
1545 #else	/* CONFIG_CGROUP_WRITEBACK */
1546 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1547 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1548 {
1549 	return NULL;
1550 }
1551 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1552 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1553 				       unsigned long *pfilepages,
1554 				       unsigned long *pheadroom,
1555 				       unsigned long *pdirty,
1556 				       unsigned long *pwriteback)
1557 {
1558 }
1559 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1560 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1561 						  struct bdi_writeback *wb)
1562 {
1563 }
1564 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1565 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1566 {
1567 }
1568 
1569 #endif	/* CONFIG_CGROUP_WRITEBACK */
1570 
1571 struct sock;
1572 #ifdef CONFIG_MEMCG
1573 extern struct static_key_false memcg_sockets_enabled_key;
1574 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1575 
1576 void mem_cgroup_sk_alloc(struct sock *sk);
1577 void mem_cgroup_sk_free(struct sock *sk);
1578 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk);
1579 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
1580 			  gfp_t gfp_mask);
1581 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages);
1582 
1583 #if BITS_PER_LONG < 64
mem_cgroup_set_socket_pressure(struct mem_cgroup * memcg)1584 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1585 {
1586 	u64 val = get_jiffies_64() + HZ;
1587 	unsigned long flags;
1588 
1589 	write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags);
1590 	memcg->socket_pressure = val;
1591 	write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags);
1592 }
1593 
mem_cgroup_get_socket_pressure(struct mem_cgroup * memcg)1594 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1595 {
1596 	unsigned int seq;
1597 	u64 val;
1598 
1599 	do {
1600 		seq = read_seqbegin(&memcg->socket_pressure_seqlock);
1601 		val = memcg->socket_pressure;
1602 	} while (read_seqretry(&memcg->socket_pressure_seqlock, seq));
1603 
1604 	return val;
1605 }
1606 #else
mem_cgroup_set_socket_pressure(struct mem_cgroup * memcg)1607 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1608 {
1609 	WRITE_ONCE(memcg->socket_pressure, jiffies + HZ);
1610 }
1611 
mem_cgroup_get_socket_pressure(struct mem_cgroup * memcg)1612 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1613 {
1614 	return READ_ONCE(memcg->socket_pressure);
1615 }
1616 #endif
1617 
1618 int alloc_shrinker_info(struct mem_cgroup *memcg);
1619 void free_shrinker_info(struct mem_cgroup *memcg);
1620 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1621 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1622 
shrinker_id(struct shrinker * shrinker)1623 static inline int shrinker_id(struct shrinker *shrinker)
1624 {
1625 	return shrinker->id;
1626 }
1627 #else
1628 #define mem_cgroup_sockets_enabled 0
1629 
mem_cgroup_sk_alloc(struct sock * sk)1630 static inline void mem_cgroup_sk_alloc(struct sock *sk)
1631 {
1632 }
1633 
mem_cgroup_sk_free(struct sock * sk)1634 static inline void mem_cgroup_sk_free(struct sock *sk)
1635 {
1636 }
1637 
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)1638 static inline void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
1639 {
1640 }
1641 
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)1642 static inline bool mem_cgroup_sk_charge(const struct sock *sk,
1643 					unsigned int nr_pages,
1644 					gfp_t gfp_mask)
1645 {
1646 	return false;
1647 }
1648 
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)1649 static inline void mem_cgroup_sk_uncharge(const struct sock *sk,
1650 					  unsigned int nr_pages)
1651 {
1652 }
1653 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1654 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1655 				    int nid, int shrinker_id)
1656 {
1657 }
1658 
shrinker_id(struct shrinker * shrinker)1659 static inline int shrinker_id(struct shrinker *shrinker)
1660 {
1661 	return -1;
1662 }
1663 #endif
1664 
1665 #ifdef CONFIG_MEMCG
1666 bool mem_cgroup_kmem_disabled(void);
1667 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1668 void __memcg_kmem_uncharge_page(struct page *page, int order);
1669 
1670 /*
1671  * The returned objcg pointer is safe to use without additional
1672  * protection within a scope. The scope is defined either by
1673  * the current task (similar to the "current" global variable)
1674  * or by set_active_memcg() pair.
1675  * Please, use obj_cgroup_get() to get a reference if the pointer
1676  * needs to be used outside of the local scope.
1677  */
1678 struct obj_cgroup *current_obj_cgroup(void);
1679 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1680 
get_obj_cgroup_from_current(void)1681 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1682 {
1683 	struct obj_cgroup *objcg = current_obj_cgroup();
1684 
1685 	if (objcg)
1686 		obj_cgroup_get(objcg);
1687 
1688 	return objcg;
1689 }
1690 
1691 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1692 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1693 
1694 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1695 static inline bool memcg_bpf_enabled(void)
1696 {
1697 	return static_branch_likely(&memcg_bpf_enabled_key);
1698 }
1699 
1700 extern struct static_key_false memcg_kmem_online_key;
1701 
memcg_kmem_online(void)1702 static inline bool memcg_kmem_online(void)
1703 {
1704 	return static_branch_likely(&memcg_kmem_online_key);
1705 }
1706 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1707 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1708 					 int order)
1709 {
1710 	if (memcg_kmem_online())
1711 		return __memcg_kmem_charge_page(page, gfp, order);
1712 	return 0;
1713 }
1714 
memcg_kmem_uncharge_page(struct page * page,int order)1715 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1716 {
1717 	if (memcg_kmem_online())
1718 		__memcg_kmem_uncharge_page(page, order);
1719 }
1720 
1721 /*
1722  * A helper for accessing memcg's kmem_id, used for getting
1723  * corresponding LRU lists.
1724  */
memcg_kmem_id(struct mem_cgroup * memcg)1725 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1726 {
1727 	return memcg ? memcg->kmemcg_id : -1;
1728 }
1729 
1730 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1731 
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1732 static inline void count_objcg_events(struct obj_cgroup *objcg,
1733 				      enum vm_event_item idx,
1734 				      unsigned long count)
1735 {
1736 	struct mem_cgroup *memcg;
1737 
1738 	if (!memcg_kmem_online())
1739 		return;
1740 
1741 	rcu_read_lock();
1742 	memcg = obj_cgroup_memcg(objcg);
1743 	count_memcg_events(memcg, idx, count);
1744 	rcu_read_unlock();
1745 }
1746 
1747 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid);
1748 
1749 void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg);
1750 
memcg_is_dying(struct mem_cgroup * memcg)1751 static inline bool memcg_is_dying(struct mem_cgroup *memcg)
1752 {
1753 	return memcg ? css_is_dying(&memcg->css) : false;
1754 }
1755 
1756 #else
mem_cgroup_kmem_disabled(void)1757 static inline bool mem_cgroup_kmem_disabled(void)
1758 {
1759 	return true;
1760 }
1761 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1762 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1763 					 int order)
1764 {
1765 	return 0;
1766 }
1767 
memcg_kmem_uncharge_page(struct page * page,int order)1768 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1769 {
1770 }
1771 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1772 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1773 					   int order)
1774 {
1775 	return 0;
1776 }
1777 
__memcg_kmem_uncharge_page(struct page * page,int order)1778 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1779 {
1780 }
1781 
get_obj_cgroup_from_folio(struct folio * folio)1782 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1783 {
1784 	return NULL;
1785 }
1786 
memcg_bpf_enabled(void)1787 static inline bool memcg_bpf_enabled(void)
1788 {
1789 	return false;
1790 }
1791 
memcg_kmem_online(void)1792 static inline bool memcg_kmem_online(void)
1793 {
1794 	return false;
1795 }
1796 
memcg_kmem_id(struct mem_cgroup * memcg)1797 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1798 {
1799 	return -1;
1800 }
1801 
mem_cgroup_from_slab_obj(void * p)1802 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1803 {
1804 	return NULL;
1805 }
1806 
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1807 static inline void count_objcg_events(struct obj_cgroup *objcg,
1808 				      enum vm_event_item idx,
1809 				      unsigned long count)
1810 {
1811 }
1812 
page_cgroup_ino(struct page * page)1813 static inline ino_t page_cgroup_ino(struct page *page)
1814 {
1815 	return 0;
1816 }
1817 
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)1818 static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
1819 {
1820 	return true;
1821 }
1822 
mem_cgroup_show_protected_memory(struct mem_cgroup * memcg)1823 static inline void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
1824 {
1825 }
1826 
memcg_is_dying(struct mem_cgroup * memcg)1827 static inline bool memcg_is_dying(struct mem_cgroup *memcg)
1828 {
1829 	return false;
1830 }
1831 #endif /* CONFIG_MEMCG */
1832 
1833 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1834 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1835 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1836 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1837 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1838 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1839 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1840 {
1841 	return true;
1842 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1843 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1844 					   size_t size)
1845 {
1846 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1847 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1848 					     size_t size)
1849 {
1850 }
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)1851 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1852 {
1853 	/* if zswap is disabled, do not block pages going to the swapping device */
1854 	return true;
1855 }
1856 #endif
1857 
1858 
1859 /* Cgroup v1-related declarations */
1860 
1861 #ifdef CONFIG_MEMCG_V1
1862 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1863 					gfp_t gfp_mask,
1864 					unsigned long *total_scanned);
1865 
1866 bool mem_cgroup_oom_synchronize(bool wait);
1867 
task_in_memcg_oom(struct task_struct * p)1868 static inline bool task_in_memcg_oom(struct task_struct *p)
1869 {
1870 	return p->memcg_in_oom;
1871 }
1872 
mem_cgroup_enter_user_fault(void)1873 static inline void mem_cgroup_enter_user_fault(void)
1874 {
1875 	WARN_ON(current->in_user_fault);
1876 	current->in_user_fault = 1;
1877 }
1878 
mem_cgroup_exit_user_fault(void)1879 static inline void mem_cgroup_exit_user_fault(void)
1880 {
1881 	WARN_ON(!current->in_user_fault);
1882 	current->in_user_fault = 0;
1883 }
1884 
1885 void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1886 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1887 
1888 #else /* CONFIG_MEMCG_V1 */
1889 static inline
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1890 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1891 					gfp_t gfp_mask,
1892 					unsigned long *total_scanned)
1893 {
1894 	return 0;
1895 }
1896 
task_in_memcg_oom(struct task_struct * p)1897 static inline bool task_in_memcg_oom(struct task_struct *p)
1898 {
1899 	return false;
1900 }
1901 
mem_cgroup_oom_synchronize(bool wait)1902 static inline bool mem_cgroup_oom_synchronize(bool wait)
1903 {
1904 	return false;
1905 }
1906 
mem_cgroup_enter_user_fault(void)1907 static inline void mem_cgroup_enter_user_fault(void)
1908 {
1909 }
1910 
mem_cgroup_exit_user_fault(void)1911 static inline void mem_cgroup_exit_user_fault(void)
1912 {
1913 }
1914 
memcg1_swapout(struct folio * folio,swp_entry_t entry)1915 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1916 {
1917 }
1918 
memcg1_swapin(swp_entry_t entry,unsigned int nr_pages)1919 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1920 {
1921 }
1922 
1923 #endif /* CONFIG_MEMCG_V1 */
1924 
1925 #endif /* _LINUX_MEMCONTROL_H */
1926