xref: /linux/kernel/kexec_core.c (revision 509d3f45847627f4c5cdce004c3ec79262b5239c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/liveupdate.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/panic_notifier.h>
32 #include <linux/pm.h>
33 #include <linux/cpu.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/console.h>
37 #include <linux/vmalloc.h>
38 #include <linux/swap.h>
39 #include <linux/syscore_ops.h>
40 #include <linux/compiler.h>
41 #include <linux/hugetlb.h>
42 #include <linux/objtool.h>
43 #include <linux/kmsg_dump.h>
44 #include <linux/dma-map-ops.h>
45 #include <linux/sysfs.h>
46 
47 #include <asm/page.h>
48 #include <asm/sections.h>
49 
50 #include <crypto/hash.h>
51 #include "kexec_internal.h"
52 
53 atomic_t __kexec_lock = ATOMIC_INIT(0);
54 
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57 
58 bool kexec_file_dbg_print;
59 
60 /*
61  * When kexec transitions to the new kernel there is a one-to-one
62  * mapping between physical and virtual addresses.  On processors
63  * where you can disable the MMU this is trivial, and easy.  For
64  * others it is still a simple predictable page table to setup.
65  *
66  * In that environment kexec copies the new kernel to its final
67  * resting place.  This means I can only support memory whose
68  * physical address can fit in an unsigned long.  In particular
69  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
70  * If the assembly stub has more restrictive requirements
71  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
72  * defined more restrictively in <asm/kexec.h>.
73  *
74  * The code for the transition from the current kernel to the
75  * new kernel is placed in the control_code_buffer, whose size
76  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
77  * page of memory is necessary, but some architectures require more.
78  * Because this memory must be identity mapped in the transition from
79  * virtual to physical addresses it must live in the range
80  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
81  * modifiable.
82  *
83  * The assembly stub in the control code buffer is passed a linked list
84  * of descriptor pages detailing the source pages of the new kernel,
85  * and the destination addresses of those source pages.  As this data
86  * structure is not used in the context of the current OS, it must
87  * be self-contained.
88  *
89  * The code has been made to work with highmem pages and will use a
90  * destination page in its final resting place (if it happens
91  * to allocate it).  The end product of this is that most of the
92  * physical address space, and most of RAM can be used.
93  *
94  * Future directions include:
95  *  - allocating a page table with the control code buffer identity
96  *    mapped, to simplify machine_kexec and make kexec_on_panic more
97  *    reliable.
98  */
99 
100 /*
101  * KIMAGE_NO_DEST is an impossible destination address..., for
102  * allocating pages whose destination address we do not care about.
103  */
104 #define KIMAGE_NO_DEST (-1UL)
105 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
106 
107 static struct page *kimage_alloc_page(struct kimage *image,
108 				       gfp_t gfp_mask,
109 				       unsigned long dest);
110 
sanity_check_segment_list(struct kimage * image)111 int sanity_check_segment_list(struct kimage *image)
112 {
113 	int i;
114 	unsigned long nr_segments = image->nr_segments;
115 	unsigned long total_pages = 0;
116 	unsigned long nr_pages = totalram_pages();
117 
118 	/*
119 	 * Verify we have good destination addresses.  The caller is
120 	 * responsible for making certain we don't attempt to load
121 	 * the new image into invalid or reserved areas of RAM.  This
122 	 * just verifies it is an address we can use.
123 	 *
124 	 * Since the kernel does everything in page size chunks ensure
125 	 * the destination addresses are page aligned.  Too many
126 	 * special cases crop of when we don't do this.  The most
127 	 * insidious is getting overlapping destination addresses
128 	 * simply because addresses are changed to page size
129 	 * granularity.
130 	 */
131 	for (i = 0; i < nr_segments; i++) {
132 		unsigned long mstart, mend;
133 
134 		mstart = image->segment[i].mem;
135 		mend   = mstart + image->segment[i].memsz;
136 		if (mstart > mend)
137 			return -EADDRNOTAVAIL;
138 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
139 			return -EADDRNOTAVAIL;
140 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
141 			return -EADDRNOTAVAIL;
142 	}
143 
144 	/* Verify our destination addresses do not overlap.
145 	 * If we alloed overlapping destination addresses
146 	 * through very weird things can happen with no
147 	 * easy explanation as one segment stops on another.
148 	 */
149 	for (i = 0; i < nr_segments; i++) {
150 		unsigned long mstart, mend;
151 		unsigned long j;
152 
153 		mstart = image->segment[i].mem;
154 		mend   = mstart + image->segment[i].memsz;
155 		for (j = 0; j < i; j++) {
156 			unsigned long pstart, pend;
157 
158 			pstart = image->segment[j].mem;
159 			pend   = pstart + image->segment[j].memsz;
160 			/* Do the segments overlap ? */
161 			if ((mend > pstart) && (mstart < pend))
162 				return -EINVAL;
163 		}
164 	}
165 
166 	/* Ensure our buffer sizes are strictly less than
167 	 * our memory sizes.  This should always be the case,
168 	 * and it is easier to check up front than to be surprised
169 	 * later on.
170 	 */
171 	for (i = 0; i < nr_segments; i++) {
172 		if (image->segment[i].bufsz > image->segment[i].memsz)
173 			return -EINVAL;
174 	}
175 
176 	/*
177 	 * Verify that no more than half of memory will be consumed. If the
178 	 * request from userspace is too large, a large amount of time will be
179 	 * wasted allocating pages, which can cause a soft lockup.
180 	 */
181 	for (i = 0; i < nr_segments; i++) {
182 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
183 			return -EINVAL;
184 
185 		total_pages += PAGE_COUNT(image->segment[i].memsz);
186 	}
187 
188 	if (total_pages > nr_pages / 2)
189 		return -EINVAL;
190 
191 #ifdef CONFIG_CRASH_DUMP
192 	/*
193 	 * Verify we have good destination addresses.  Normally
194 	 * the caller is responsible for making certain we don't
195 	 * attempt to load the new image into invalid or reserved
196 	 * areas of RAM.  But crash kernels are preloaded into a
197 	 * reserved area of ram.  We must ensure the addresses
198 	 * are in the reserved area otherwise preloading the
199 	 * kernel could corrupt things.
200 	 */
201 
202 	if (image->type == KEXEC_TYPE_CRASH) {
203 		for (i = 0; i < nr_segments; i++) {
204 			unsigned long mstart, mend;
205 
206 			mstart = image->segment[i].mem;
207 			mend = mstart + image->segment[i].memsz - 1;
208 			/* Ensure we are within the crash kernel limits */
209 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
210 			    (mend > phys_to_boot_phys(crashk_res.end)))
211 				return -EADDRNOTAVAIL;
212 		}
213 	}
214 #endif
215 
216 	/*
217 	 * The destination addresses are searched from system RAM rather than
218 	 * being allocated from the buddy allocator, so they are not guaranteed
219 	 * to be accepted by the current kernel.  Accept the destination
220 	 * addresses before kexec swaps their content with the segments' source
221 	 * pages to avoid accessing memory before it is accepted.
222 	 */
223 	for (i = 0; i < nr_segments; i++)
224 		accept_memory(image->segment[i].mem, image->segment[i].memsz);
225 
226 	return 0;
227 }
228 
do_kimage_alloc_init(void)229 struct kimage *do_kimage_alloc_init(void)
230 {
231 	struct kimage *image;
232 
233 	/* Allocate a controlling structure */
234 	image = kzalloc(sizeof(*image), GFP_KERNEL);
235 	if (!image)
236 		return NULL;
237 
238 	image->entry = &image->head;
239 	image->last_entry = &image->head;
240 	image->control_page = ~0; /* By default this does not apply */
241 	image->type = KEXEC_TYPE_DEFAULT;
242 
243 	/* Initialize the list of control pages */
244 	INIT_LIST_HEAD(&image->control_pages);
245 
246 	/* Initialize the list of destination pages */
247 	INIT_LIST_HEAD(&image->dest_pages);
248 
249 	/* Initialize the list of unusable pages */
250 	INIT_LIST_HEAD(&image->unusable_pages);
251 
252 #ifdef CONFIG_CRASH_HOTPLUG
253 	image->hp_action = KEXEC_CRASH_HP_NONE;
254 	image->elfcorehdr_index = -1;
255 	image->elfcorehdr_updated = false;
256 #endif
257 
258 	return image;
259 }
260 
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)261 int kimage_is_destination_range(struct kimage *image,
262 					unsigned long start,
263 					unsigned long end)
264 {
265 	unsigned long i;
266 
267 	for (i = 0; i < image->nr_segments; i++) {
268 		unsigned long mstart, mend;
269 
270 		mstart = image->segment[i].mem;
271 		mend = mstart + image->segment[i].memsz - 1;
272 		if ((end >= mstart) && (start <= mend))
273 			return 1;
274 	}
275 
276 	return 0;
277 }
278 
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)279 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
280 {
281 	struct page *pages;
282 
283 	if (fatal_signal_pending(current))
284 		return NULL;
285 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
286 	if (pages) {
287 		unsigned int count, i;
288 
289 		pages->mapping = NULL;
290 		set_page_private(pages, order);
291 		count = 1 << order;
292 		for (i = 0; i < count; i++)
293 			SetPageReserved(pages + i);
294 
295 		arch_kexec_post_alloc_pages(page_address(pages), count,
296 					    gfp_mask);
297 
298 		if (gfp_mask & __GFP_ZERO)
299 			for (i = 0; i < count; i++)
300 				clear_highpage(pages + i);
301 	}
302 
303 	return pages;
304 }
305 
kimage_free_pages(struct page * page)306 static void kimage_free_pages(struct page *page)
307 {
308 	unsigned int order, count, i;
309 
310 	order = page_private(page);
311 	count = 1 << order;
312 
313 	arch_kexec_pre_free_pages(page_address(page), count);
314 
315 	for (i = 0; i < count; i++)
316 		ClearPageReserved(page + i);
317 	__free_pages(page, order);
318 }
319 
kimage_free_page_list(struct list_head * list)320 void kimage_free_page_list(struct list_head *list)
321 {
322 	struct page *page, *next;
323 
324 	list_for_each_entry_safe(page, next, list, lru) {
325 		list_del(&page->lru);
326 		kimage_free_pages(page);
327 	}
328 }
329 
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)330 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
331 							unsigned int order)
332 {
333 	/* Control pages are special, they are the intermediaries
334 	 * that are needed while we copy the rest of the pages
335 	 * to their final resting place.  As such they must
336 	 * not conflict with either the destination addresses
337 	 * or memory the kernel is already using.
338 	 *
339 	 * The only case where we really need more than one of
340 	 * these are for architectures where we cannot disable
341 	 * the MMU and must instead generate an identity mapped
342 	 * page table for all of the memory.
343 	 *
344 	 * At worst this runs in O(N) of the image size.
345 	 */
346 	struct list_head extra_pages;
347 	struct page *pages;
348 	unsigned int count;
349 
350 	count = 1 << order;
351 	INIT_LIST_HEAD(&extra_pages);
352 
353 	/* Loop while I can allocate a page and the page allocated
354 	 * is a destination page.
355 	 */
356 	do {
357 		unsigned long pfn, epfn, addr, eaddr;
358 
359 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
360 		if (!pages)
361 			break;
362 		pfn   = page_to_boot_pfn(pages);
363 		epfn  = pfn + count;
364 		addr  = pfn << PAGE_SHIFT;
365 		eaddr = (epfn << PAGE_SHIFT) - 1;
366 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
367 			      kimage_is_destination_range(image, addr, eaddr)) {
368 			list_add(&pages->lru, &extra_pages);
369 			pages = NULL;
370 		}
371 	} while (!pages);
372 
373 	if (pages) {
374 		/* Remember the allocated page... */
375 		list_add(&pages->lru, &image->control_pages);
376 
377 		/* Because the page is already in it's destination
378 		 * location we will never allocate another page at
379 		 * that address.  Therefore kimage_alloc_pages
380 		 * will not return it (again) and we don't need
381 		 * to give it an entry in image->segment[].
382 		 */
383 	}
384 	/* Deal with the destination pages I have inadvertently allocated.
385 	 *
386 	 * Ideally I would convert multi-page allocations into single
387 	 * page allocations, and add everything to image->dest_pages.
388 	 *
389 	 * For now it is simpler to just free the pages.
390 	 */
391 	kimage_free_page_list(&extra_pages);
392 
393 	return pages;
394 }
395 
396 #ifdef CONFIG_CRASH_DUMP
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)397 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
398 						      unsigned int order)
399 {
400 	/* Control pages are special, they are the intermediaries
401 	 * that are needed while we copy the rest of the pages
402 	 * to their final resting place.  As such they must
403 	 * not conflict with either the destination addresses
404 	 * or memory the kernel is already using.
405 	 *
406 	 * Control pages are also the only pags we must allocate
407 	 * when loading a crash kernel.  All of the other pages
408 	 * are specified by the segments and we just memcpy
409 	 * into them directly.
410 	 *
411 	 * The only case where we really need more than one of
412 	 * these are for architectures where we cannot disable
413 	 * the MMU and must instead generate an identity mapped
414 	 * page table for all of the memory.
415 	 *
416 	 * Given the low demand this implements a very simple
417 	 * allocator that finds the first hole of the appropriate
418 	 * size in the reserved memory region, and allocates all
419 	 * of the memory up to and including the hole.
420 	 */
421 	unsigned long hole_start, hole_end, size;
422 	struct page *pages;
423 
424 	pages = NULL;
425 	size = (1 << order) << PAGE_SHIFT;
426 	hole_start = ALIGN(image->control_page, size);
427 	hole_end   = hole_start + size - 1;
428 	while (hole_end <= crashk_res.end) {
429 		unsigned long i;
430 
431 		cond_resched();
432 
433 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
434 			break;
435 		/* See if I overlap any of the segments */
436 		for (i = 0; i < image->nr_segments; i++) {
437 			unsigned long mstart, mend;
438 
439 			mstart = image->segment[i].mem;
440 			mend   = mstart + image->segment[i].memsz - 1;
441 			if ((hole_end >= mstart) && (hole_start <= mend)) {
442 				/* Advance the hole to the end of the segment */
443 				hole_start = ALIGN(mend, size);
444 				hole_end   = hole_start + size - 1;
445 				break;
446 			}
447 		}
448 		/* If I don't overlap any segments I have found my hole! */
449 		if (i == image->nr_segments) {
450 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
451 			image->control_page = hole_end + 1;
452 			break;
453 		}
454 	}
455 
456 	/* Ensure that these pages are decrypted if SME is enabled. */
457 	if (pages)
458 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
459 
460 	return pages;
461 }
462 #endif
463 
464 
kimage_alloc_control_pages(struct kimage * image,unsigned int order)465 struct page *kimage_alloc_control_pages(struct kimage *image,
466 					 unsigned int order)
467 {
468 	struct page *pages = NULL;
469 
470 	switch (image->type) {
471 	case KEXEC_TYPE_DEFAULT:
472 		pages = kimage_alloc_normal_control_pages(image, order);
473 		break;
474 #ifdef CONFIG_CRASH_DUMP
475 	case KEXEC_TYPE_CRASH:
476 		pages = kimage_alloc_crash_control_pages(image, order);
477 		break;
478 #endif
479 	}
480 
481 	return pages;
482 }
483 
kimage_add_entry(struct kimage * image,kimage_entry_t entry)484 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
485 {
486 	if (*image->entry != 0)
487 		image->entry++;
488 
489 	if (image->entry == image->last_entry) {
490 		kimage_entry_t *ind_page;
491 		struct page *page;
492 
493 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
494 		if (!page)
495 			return -ENOMEM;
496 
497 		ind_page = page_address(page);
498 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
499 		image->entry = ind_page;
500 		image->last_entry = ind_page +
501 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
502 	}
503 	*image->entry = entry;
504 	image->entry++;
505 	*image->entry = 0;
506 
507 	return 0;
508 }
509 
kimage_set_destination(struct kimage * image,unsigned long destination)510 static int kimage_set_destination(struct kimage *image,
511 				   unsigned long destination)
512 {
513 	destination &= PAGE_MASK;
514 
515 	return kimage_add_entry(image, destination | IND_DESTINATION);
516 }
517 
518 
kimage_add_page(struct kimage * image,unsigned long page)519 static int kimage_add_page(struct kimage *image, unsigned long page)
520 {
521 	page &= PAGE_MASK;
522 
523 	return kimage_add_entry(image, page | IND_SOURCE);
524 }
525 
526 
kimage_free_extra_pages(struct kimage * image)527 static void kimage_free_extra_pages(struct kimage *image)
528 {
529 	/* Walk through and free any extra destination pages I may have */
530 	kimage_free_page_list(&image->dest_pages);
531 
532 	/* Walk through and free any unusable pages I have cached */
533 	kimage_free_page_list(&image->unusable_pages);
534 
535 }
536 
kimage_terminate(struct kimage * image)537 void kimage_terminate(struct kimage *image)
538 {
539 	if (*image->entry != 0)
540 		image->entry++;
541 
542 	*image->entry = IND_DONE;
543 }
544 
545 #define for_each_kimage_entry(image, ptr, entry) \
546 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
547 		ptr = (entry & IND_INDIRECTION) ? \
548 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
549 
kimage_free_entry(kimage_entry_t entry)550 static void kimage_free_entry(kimage_entry_t entry)
551 {
552 	struct page *page;
553 
554 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
555 	kimage_free_pages(page);
556 }
557 
kimage_free_cma(struct kimage * image)558 static void kimage_free_cma(struct kimage *image)
559 {
560 	unsigned long i;
561 
562 	for (i = 0; i < image->nr_segments; i++) {
563 		struct page *cma = image->segment_cma[i];
564 		u32 nr_pages = image->segment[i].memsz >> PAGE_SHIFT;
565 
566 		if (!cma)
567 			continue;
568 
569 		arch_kexec_pre_free_pages(page_address(cma), nr_pages);
570 		dma_release_from_contiguous(NULL, cma, nr_pages);
571 		image->segment_cma[i] = NULL;
572 	}
573 
574 }
575 
kimage_free(struct kimage * image)576 void kimage_free(struct kimage *image)
577 {
578 	kimage_entry_t *ptr, entry;
579 	kimage_entry_t ind = 0;
580 
581 	if (!image)
582 		return;
583 
584 #ifdef CONFIG_CRASH_DUMP
585 	if (image->vmcoreinfo_data_copy) {
586 		crash_update_vmcoreinfo_safecopy(NULL);
587 		vunmap(image->vmcoreinfo_data_copy);
588 	}
589 #endif
590 
591 	kimage_free_extra_pages(image);
592 	for_each_kimage_entry(image, ptr, entry) {
593 		if (entry & IND_INDIRECTION) {
594 			/* Free the previous indirection page */
595 			if (ind & IND_INDIRECTION)
596 				kimage_free_entry(ind);
597 			/* Save this indirection page until we are
598 			 * done with it.
599 			 */
600 			ind = entry;
601 		} else if (entry & IND_SOURCE)
602 			kimage_free_entry(entry);
603 	}
604 	/* Free the final indirection page */
605 	if (ind & IND_INDIRECTION)
606 		kimage_free_entry(ind);
607 
608 	/* Handle any machine specific cleanup */
609 	machine_kexec_cleanup(image);
610 
611 	/* Free the kexec control pages... */
612 	kimage_free_page_list(&image->control_pages);
613 
614 	/* Free CMA allocations */
615 	kimage_free_cma(image);
616 
617 	/*
618 	 * Free up any temporary buffers allocated. This might hit if
619 	 * error occurred much later after buffer allocation.
620 	 */
621 	if (image->file_mode)
622 		kimage_file_post_load_cleanup(image);
623 
624 	kfree(image);
625 }
626 
kimage_dst_used(struct kimage * image,unsigned long page)627 static kimage_entry_t *kimage_dst_used(struct kimage *image,
628 					unsigned long page)
629 {
630 	kimage_entry_t *ptr, entry;
631 	unsigned long destination = 0;
632 
633 	for_each_kimage_entry(image, ptr, entry) {
634 		if (entry & IND_DESTINATION)
635 			destination = entry & PAGE_MASK;
636 		else if (entry & IND_SOURCE) {
637 			if (page == destination)
638 				return ptr;
639 			destination += PAGE_SIZE;
640 		}
641 	}
642 
643 	return NULL;
644 }
645 
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)646 static struct page *kimage_alloc_page(struct kimage *image,
647 					gfp_t gfp_mask,
648 					unsigned long destination)
649 {
650 	/*
651 	 * Here we implement safeguards to ensure that a source page
652 	 * is not copied to its destination page before the data on
653 	 * the destination page is no longer useful.
654 	 *
655 	 * To do this we maintain the invariant that a source page is
656 	 * either its own destination page, or it is not a
657 	 * destination page at all.
658 	 *
659 	 * That is slightly stronger than required, but the proof
660 	 * that no problems will not occur is trivial, and the
661 	 * implementation is simply to verify.
662 	 *
663 	 * When allocating all pages normally this algorithm will run
664 	 * in O(N) time, but in the worst case it will run in O(N^2)
665 	 * time.   If the runtime is a problem the data structures can
666 	 * be fixed.
667 	 */
668 	struct page *page;
669 	unsigned long addr;
670 
671 	/*
672 	 * Walk through the list of destination pages, and see if I
673 	 * have a match.
674 	 */
675 	list_for_each_entry(page, &image->dest_pages, lru) {
676 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
677 		if (addr == destination) {
678 			list_del(&page->lru);
679 			return page;
680 		}
681 	}
682 	page = NULL;
683 	while (1) {
684 		kimage_entry_t *old;
685 
686 		/* Allocate a page, if we run out of memory give up */
687 		page = kimage_alloc_pages(gfp_mask, 0);
688 		if (!page)
689 			return NULL;
690 		/* If the page cannot be used file it away */
691 		if (page_to_boot_pfn(page) >
692 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
693 			list_add(&page->lru, &image->unusable_pages);
694 			continue;
695 		}
696 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
697 
698 		/* If it is the destination page we want use it */
699 		if (addr == destination)
700 			break;
701 
702 		/* If the page is not a destination page use it */
703 		if (!kimage_is_destination_range(image, addr,
704 						  addr + PAGE_SIZE - 1))
705 			break;
706 
707 		/*
708 		 * I know that the page is someones destination page.
709 		 * See if there is already a source page for this
710 		 * destination page.  And if so swap the source pages.
711 		 */
712 		old = kimage_dst_used(image, addr);
713 		if (old) {
714 			/* If so move it */
715 			unsigned long old_addr;
716 			struct page *old_page;
717 
718 			old_addr = *old & PAGE_MASK;
719 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
720 			copy_highpage(page, old_page);
721 			*old = addr | (*old & ~PAGE_MASK);
722 
723 			/* The old page I have found cannot be a
724 			 * destination page, so return it if it's
725 			 * gfp_flags honor the ones passed in.
726 			 */
727 			if (!(gfp_mask & __GFP_HIGHMEM) &&
728 			    PageHighMem(old_page)) {
729 				kimage_free_pages(old_page);
730 				continue;
731 			}
732 			page = old_page;
733 			break;
734 		}
735 		/* Place the page on the destination list, to be used later */
736 		list_add(&page->lru, &image->dest_pages);
737 	}
738 
739 	return page;
740 }
741 
kimage_load_cma_segment(struct kimage * image,int idx)742 static int kimage_load_cma_segment(struct kimage *image, int idx)
743 {
744 	struct kexec_segment *segment = &image->segment[idx];
745 	struct page *cma = image->segment_cma[idx];
746 	char *ptr = page_address(cma);
747 	size_t ubytes, mbytes;
748 	int result = 0;
749 	unsigned char __user *buf = NULL;
750 	unsigned char *kbuf = NULL;
751 
752 	if (image->file_mode)
753 		kbuf = segment->kbuf;
754 	else
755 		buf = segment->buf;
756 	ubytes = segment->bufsz;
757 	mbytes = segment->memsz;
758 
759 	/* Then copy from source buffer to the CMA one */
760 	while (mbytes) {
761 		size_t uchunk, mchunk;
762 
763 		mchunk = min_t(size_t, mbytes, PAGE_SIZE);
764 		uchunk = min(ubytes, mchunk);
765 
766 		if (uchunk) {
767 			/* For file based kexec, source pages are in kernel memory */
768 			if (image->file_mode)
769 				memcpy(ptr, kbuf, uchunk);
770 			else
771 				result = copy_from_user(ptr, buf, uchunk);
772 			ubytes -= uchunk;
773 			if (image->file_mode)
774 				kbuf += uchunk;
775 			else
776 				buf += uchunk;
777 		}
778 
779 		if (result) {
780 			result = -EFAULT;
781 			goto out;
782 		}
783 
784 		ptr    += mchunk;
785 		mbytes -= mchunk;
786 
787 		cond_resched();
788 	}
789 
790 	/* Clear any remainder */
791 	memset(ptr, 0, mbytes);
792 
793 out:
794 	return result;
795 }
796 
kimage_load_normal_segment(struct kimage * image,int idx)797 static int kimage_load_normal_segment(struct kimage *image, int idx)
798 {
799 	struct kexec_segment *segment = &image->segment[idx];
800 	unsigned long maddr;
801 	size_t ubytes, mbytes;
802 	int result;
803 	unsigned char __user *buf = NULL;
804 	unsigned char *kbuf = NULL;
805 
806 	if (image->file_mode)
807 		kbuf = segment->kbuf;
808 	else
809 		buf = segment->buf;
810 	ubytes = segment->bufsz;
811 	mbytes = segment->memsz;
812 	maddr = segment->mem;
813 
814 	if (image->segment_cma[idx])
815 		return kimage_load_cma_segment(image, idx);
816 
817 	result = kimage_set_destination(image, maddr);
818 	if (result < 0)
819 		goto out;
820 
821 	while (mbytes) {
822 		struct page *page;
823 		char *ptr;
824 		size_t uchunk, mchunk;
825 
826 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
827 		if (!page) {
828 			result  = -ENOMEM;
829 			goto out;
830 		}
831 		result = kimage_add_page(image, page_to_boot_pfn(page)
832 								<< PAGE_SHIFT);
833 		if (result < 0)
834 			goto out;
835 
836 		ptr = kmap_local_page(page);
837 		/* Start with a clear page */
838 		clear_page(ptr);
839 		mchunk = min_t(size_t, mbytes, PAGE_SIZE);
840 		uchunk = min(ubytes, mchunk);
841 
842 		if (uchunk) {
843 			/* For file based kexec, source pages are in kernel memory */
844 			if (image->file_mode)
845 				memcpy(ptr, kbuf, uchunk);
846 			else
847 				result = copy_from_user(ptr, buf, uchunk);
848 			ubytes -= uchunk;
849 			if (image->file_mode)
850 				kbuf += uchunk;
851 			else
852 				buf += uchunk;
853 		}
854 		kunmap_local(ptr);
855 		if (result) {
856 			result = -EFAULT;
857 			goto out;
858 		}
859 		maddr  += mchunk;
860 		mbytes -= mchunk;
861 
862 		cond_resched();
863 	}
864 out:
865 	return result;
866 }
867 
868 #ifdef CONFIG_CRASH_DUMP
kimage_load_crash_segment(struct kimage * image,int idx)869 static int kimage_load_crash_segment(struct kimage *image, int idx)
870 {
871 	/* For crash dumps kernels we simply copy the data from
872 	 * user space to it's destination.
873 	 * We do things a page at a time for the sake of kmap.
874 	 */
875 	struct kexec_segment *segment = &image->segment[idx];
876 	unsigned long maddr;
877 	size_t ubytes, mbytes;
878 	int result;
879 	unsigned char __user *buf = NULL;
880 	unsigned char *kbuf = NULL;
881 
882 	result = 0;
883 	if (image->file_mode)
884 		kbuf = segment->kbuf;
885 	else
886 		buf = segment->buf;
887 	ubytes = segment->bufsz;
888 	mbytes = segment->memsz;
889 	maddr = segment->mem;
890 	while (mbytes) {
891 		struct page *page;
892 		char *ptr;
893 		size_t uchunk, mchunk;
894 
895 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
896 		if (!page) {
897 			result  = -ENOMEM;
898 			goto out;
899 		}
900 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
901 		ptr = kmap_local_page(page);
902 		mchunk = min_t(size_t, mbytes, PAGE_SIZE);
903 		uchunk = min(ubytes, mchunk);
904 		if (mchunk > uchunk) {
905 			/* Zero the trailing part of the page */
906 			memset(ptr + uchunk, 0, mchunk - uchunk);
907 		}
908 
909 		if (uchunk) {
910 			/* For file based kexec, source pages are in kernel memory */
911 			if (image->file_mode)
912 				memcpy(ptr, kbuf, uchunk);
913 			else
914 				result = copy_from_user(ptr, buf, uchunk);
915 			ubytes -= uchunk;
916 			if (image->file_mode)
917 				kbuf += uchunk;
918 			else
919 				buf += uchunk;
920 		}
921 		kexec_flush_icache_page(page);
922 		kunmap_local(ptr);
923 		arch_kexec_pre_free_pages(page_address(page), 1);
924 		if (result) {
925 			result = -EFAULT;
926 			goto out;
927 		}
928 		maddr  += mchunk;
929 		mbytes -= mchunk;
930 
931 		cond_resched();
932 	}
933 out:
934 	return result;
935 }
936 #endif
937 
kimage_load_segment(struct kimage * image,int idx)938 int kimage_load_segment(struct kimage *image, int idx)
939 {
940 	int result = -ENOMEM;
941 
942 	switch (image->type) {
943 	case KEXEC_TYPE_DEFAULT:
944 		result = kimage_load_normal_segment(image, idx);
945 		break;
946 #ifdef CONFIG_CRASH_DUMP
947 	case KEXEC_TYPE_CRASH:
948 		result = kimage_load_crash_segment(image, idx);
949 		break;
950 #endif
951 	}
952 
953 	return result;
954 }
955 
kimage_map_segment(struct kimage * image,unsigned long addr,unsigned long size)956 void *kimage_map_segment(struct kimage *image,
957 			 unsigned long addr, unsigned long size)
958 {
959 	unsigned long src_page_addr, dest_page_addr = 0;
960 	unsigned long eaddr = addr + size;
961 	kimage_entry_t *ptr, entry;
962 	struct page **src_pages;
963 	unsigned int npages;
964 	void *vaddr = NULL;
965 	int i;
966 
967 	/*
968 	 * Collect the source pages and map them in a contiguous VA range.
969 	 */
970 	npages = PFN_UP(eaddr) - PFN_DOWN(addr);
971 	src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL);
972 	if (!src_pages) {
973 		pr_err("Could not allocate ima pages array.\n");
974 		return NULL;
975 	}
976 
977 	i = 0;
978 	for_each_kimage_entry(image, ptr, entry) {
979 		if (entry & IND_DESTINATION) {
980 			dest_page_addr = entry & PAGE_MASK;
981 		} else if (entry & IND_SOURCE) {
982 			if (dest_page_addr >= addr && dest_page_addr < eaddr) {
983 				src_page_addr = entry & PAGE_MASK;
984 				src_pages[i++] =
985 					virt_to_page(__va(src_page_addr));
986 				if (i == npages)
987 					break;
988 				dest_page_addr += PAGE_SIZE;
989 			}
990 		}
991 	}
992 
993 	/* Sanity check. */
994 	WARN_ON(i < npages);
995 
996 	vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL);
997 	kfree(src_pages);
998 
999 	if (!vaddr)
1000 		pr_err("Could not map ima buffer.\n");
1001 
1002 	return vaddr;
1003 }
1004 
kimage_unmap_segment(void * segment_buffer)1005 void kimage_unmap_segment(void *segment_buffer)
1006 {
1007 	vunmap(segment_buffer);
1008 }
1009 
1010 struct kexec_load_limit {
1011 	/* Mutex protects the limit count. */
1012 	struct mutex mutex;
1013 	int limit;
1014 };
1015 
1016 static struct kexec_load_limit load_limit_reboot = {
1017 	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
1018 	.limit = -1,
1019 };
1020 
1021 static struct kexec_load_limit load_limit_panic = {
1022 	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
1023 	.limit = -1,
1024 };
1025 
1026 struct kimage *kexec_image;
1027 struct kimage *kexec_crash_image;
1028 static int kexec_load_disabled;
1029 
1030 #ifdef CONFIG_SYSCTL
kexec_limit_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1031 static int kexec_limit_handler(const struct ctl_table *table, int write,
1032 			       void *buffer, size_t *lenp, loff_t *ppos)
1033 {
1034 	struct kexec_load_limit *limit = table->data;
1035 	int val;
1036 	struct ctl_table tmp = {
1037 		.data = &val,
1038 		.maxlen = sizeof(val),
1039 		.mode = table->mode,
1040 	};
1041 	int ret;
1042 
1043 	if (write) {
1044 		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
1045 		if (ret)
1046 			return ret;
1047 
1048 		if (val < 0)
1049 			return -EINVAL;
1050 
1051 		mutex_lock(&limit->mutex);
1052 		if (limit->limit != -1 && val >= limit->limit)
1053 			ret = -EINVAL;
1054 		else
1055 			limit->limit = val;
1056 		mutex_unlock(&limit->mutex);
1057 
1058 		return ret;
1059 	}
1060 
1061 	mutex_lock(&limit->mutex);
1062 	val = limit->limit;
1063 	mutex_unlock(&limit->mutex);
1064 
1065 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
1066 }
1067 
1068 static const struct ctl_table kexec_core_sysctls[] = {
1069 	{
1070 		.procname	= "kexec_load_disabled",
1071 		.data		= &kexec_load_disabled,
1072 		.maxlen		= sizeof(int),
1073 		.mode		= 0644,
1074 		/* only handle a transition from default "0" to "1" */
1075 		.proc_handler	= proc_dointvec_minmax,
1076 		.extra1		= SYSCTL_ONE,
1077 		.extra2		= SYSCTL_ONE,
1078 	},
1079 	{
1080 		.procname	= "kexec_load_limit_panic",
1081 		.data		= &load_limit_panic,
1082 		.mode		= 0644,
1083 		.proc_handler	= kexec_limit_handler,
1084 	},
1085 	{
1086 		.procname	= "kexec_load_limit_reboot",
1087 		.data		= &load_limit_reboot,
1088 		.mode		= 0644,
1089 		.proc_handler	= kexec_limit_handler,
1090 	},
1091 };
1092 
kexec_core_sysctl_init(void)1093 static int __init kexec_core_sysctl_init(void)
1094 {
1095 	register_sysctl_init("kernel", kexec_core_sysctls);
1096 	return 0;
1097 }
1098 late_initcall(kexec_core_sysctl_init);
1099 #endif
1100 
kexec_load_permitted(int kexec_image_type)1101 bool kexec_load_permitted(int kexec_image_type)
1102 {
1103 	struct kexec_load_limit *limit;
1104 
1105 	/*
1106 	 * Only the superuser can use the kexec syscall and if it has not
1107 	 * been disabled.
1108 	 */
1109 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1110 		return false;
1111 
1112 	/* Check limit counter and decrease it.*/
1113 	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1114 		&load_limit_panic : &load_limit_reboot;
1115 	mutex_lock(&limit->mutex);
1116 	if (!limit->limit) {
1117 		mutex_unlock(&limit->mutex);
1118 		return false;
1119 	}
1120 	if (limit->limit != -1)
1121 		limit->limit--;
1122 	mutex_unlock(&limit->mutex);
1123 
1124 	return true;
1125 }
1126 
1127 /*
1128  * Move into place and start executing a preloaded standalone
1129  * executable.  If nothing was preloaded return an error.
1130  */
kernel_kexec(void)1131 int kernel_kexec(void)
1132 {
1133 	int error = 0;
1134 
1135 	if (!kexec_trylock())
1136 		return -EBUSY;
1137 	if (!kexec_image) {
1138 		error = -EINVAL;
1139 		goto Unlock;
1140 	}
1141 
1142 	error = liveupdate_reboot();
1143 	if (error)
1144 		goto Unlock;
1145 
1146 #ifdef CONFIG_KEXEC_JUMP
1147 	if (kexec_image->preserve_context) {
1148 		/*
1149 		 * This flow is analogous to hibernation flows that occur
1150 		 * before creating an image and before jumping from the
1151 		 * restore kernel to the image one, so it uses the same
1152 		 * device callbacks as those two flows.
1153 		 */
1154 		pm_prepare_console();
1155 		error = freeze_processes();
1156 		if (error) {
1157 			error = -EBUSY;
1158 			goto Restore_console;
1159 		}
1160 		console_suspend_all();
1161 		error = dpm_suspend_start(PMSG_FREEZE);
1162 		if (error)
1163 			goto Resume_devices;
1164 		/*
1165 		 * dpm_suspend_end() must be called after dpm_suspend_start()
1166 		 * to complete the transition, like in the hibernation flows
1167 		 * mentioned above.
1168 		 */
1169 		error = dpm_suspend_end(PMSG_FREEZE);
1170 		if (error)
1171 			goto Resume_devices;
1172 		error = suspend_disable_secondary_cpus();
1173 		if (error)
1174 			goto Enable_cpus;
1175 		local_irq_disable();
1176 		error = syscore_suspend();
1177 		if (error)
1178 			goto Enable_irqs;
1179 	} else
1180 #endif
1181 	{
1182 		kexec_in_progress = true;
1183 		kernel_restart_prepare("kexec reboot");
1184 		migrate_to_reboot_cpu();
1185 		syscore_shutdown();
1186 
1187 		/*
1188 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1189 		 * no further code needs to use CPU hotplug (which is true in
1190 		 * the reboot case). However, the kexec path depends on using
1191 		 * CPU hotplug again; so re-enable it here.
1192 		 */
1193 		cpu_hotplug_enable();
1194 		pr_notice("Starting new kernel\n");
1195 		machine_shutdown();
1196 	}
1197 
1198 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1199 	machine_kexec(kexec_image);
1200 
1201 #ifdef CONFIG_KEXEC_JUMP
1202 	if (kexec_image->preserve_context) {
1203 		/*
1204 		 * This flow is analogous to hibernation flows that occur after
1205 		 * creating an image and after the image kernel has got control
1206 		 * back, and in case the devices have been reset or otherwise
1207 		 * manipulated in the meantime, it uses the device callbacks
1208 		 * used by the latter.
1209 		 */
1210 		syscore_resume();
1211  Enable_irqs:
1212 		local_irq_enable();
1213  Enable_cpus:
1214 		suspend_enable_secondary_cpus();
1215 		dpm_resume_start(PMSG_RESTORE);
1216  Resume_devices:
1217 		dpm_resume_end(PMSG_RESTORE);
1218 		console_resume_all();
1219 		thaw_processes();
1220  Restore_console:
1221 		pm_restore_console();
1222 	}
1223 #endif
1224 
1225  Unlock:
1226 	kexec_unlock();
1227 	return error;
1228 }
1229 
loaded_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1230 static ssize_t loaded_show(struct kobject *kobj,
1231 				 struct kobj_attribute *attr, char *buf)
1232 {
1233 	return sysfs_emit(buf, "%d\n", !!kexec_image);
1234 }
1235 static struct kobj_attribute loaded_attr = __ATTR_RO(loaded);
1236 
1237 #ifdef CONFIG_CRASH_DUMP
crash_loaded_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1238 static ssize_t crash_loaded_show(struct kobject *kobj,
1239 				       struct kobj_attribute *attr, char *buf)
1240 {
1241 	return sysfs_emit(buf, "%d\n", kexec_crash_loaded());
1242 }
1243 static struct kobj_attribute crash_loaded_attr = __ATTR_RO(crash_loaded);
1244 
1245 #ifdef CONFIG_CRASH_RESERVE
crash_cma_ranges_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1246 static ssize_t crash_cma_ranges_show(struct kobject *kobj,
1247 				     struct kobj_attribute *attr, char *buf)
1248 {
1249 
1250 	ssize_t len = 0;
1251 	int i;
1252 
1253 	for (i = 0; i < crashk_cma_cnt; ++i) {
1254 		len += sysfs_emit_at(buf, len, "%08llx-%08llx\n",
1255 				     crashk_cma_ranges[i].start,
1256 				     crashk_cma_ranges[i].end);
1257 	}
1258 	return len;
1259 }
1260 static struct kobj_attribute crash_cma_ranges_attr = __ATTR_RO(crash_cma_ranges);
1261 #endif
1262 
crash_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1263 static ssize_t crash_size_show(struct kobject *kobj,
1264 				       struct kobj_attribute *attr, char *buf)
1265 {
1266 	ssize_t size = crash_get_memory_size();
1267 
1268 	if (size < 0)
1269 		return size;
1270 
1271 	return sysfs_emit(buf, "%zd\n", size);
1272 }
crash_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1273 static ssize_t crash_size_store(struct kobject *kobj,
1274 				struct kobj_attribute *attr,
1275 				const char *buf, size_t count)
1276 {
1277 	unsigned long cnt;
1278 	int ret;
1279 
1280 	if (kstrtoul(buf, 0, &cnt))
1281 		return -EINVAL;
1282 
1283 	ret = crash_shrink_memory(cnt);
1284 	return ret < 0 ? ret : count;
1285 }
1286 static struct kobj_attribute crash_size_attr = __ATTR_RW(crash_size);
1287 
1288 #ifdef CONFIG_CRASH_HOTPLUG
crash_elfcorehdr_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1289 static ssize_t crash_elfcorehdr_size_show(struct kobject *kobj,
1290 			       struct kobj_attribute *attr, char *buf)
1291 {
1292 	unsigned int sz = crash_get_elfcorehdr_size();
1293 
1294 	return sysfs_emit(buf, "%u\n", sz);
1295 }
1296 static struct kobj_attribute crash_elfcorehdr_size_attr = __ATTR_RO(crash_elfcorehdr_size);
1297 
1298 #endif /* CONFIG_CRASH_HOTPLUG */
1299 #endif /* CONFIG_CRASH_DUMP */
1300 
1301 static struct attribute *kexec_attrs[] = {
1302 	&loaded_attr.attr,
1303 #ifdef CONFIG_CRASH_DUMP
1304 	&crash_loaded_attr.attr,
1305 	&crash_size_attr.attr,
1306 #ifdef CONFIG_CRASH_RESERVE
1307 	&crash_cma_ranges_attr.attr,
1308 #endif
1309 #ifdef CONFIG_CRASH_HOTPLUG
1310 	&crash_elfcorehdr_size_attr.attr,
1311 #endif
1312 #endif
1313 	NULL
1314 };
1315 
1316 struct kexec_link_entry {
1317 	const char *target;
1318 	const char *name;
1319 };
1320 
1321 static struct kexec_link_entry kexec_links[] = {
1322 	{ "loaded", "kexec_loaded" },
1323 #ifdef CONFIG_CRASH_DUMP
1324 	{ "crash_loaded", "kexec_crash_loaded" },
1325 	{ "crash_size", "kexec_crash_size" },
1326 #ifdef CONFIG_CRASH_RESERVE
1327 	{"crash_cma_ranges", "kexec_crash_cma_ranges"},
1328 #endif
1329 #ifdef CONFIG_CRASH_HOTPLUG
1330 	{ "crash_elfcorehdr_size", "crash_elfcorehdr_size" },
1331 #endif
1332 #endif
1333 };
1334 
1335 static struct kobject *kexec_kobj;
1336 ATTRIBUTE_GROUPS(kexec);
1337 
init_kexec_sysctl(void)1338 static int __init init_kexec_sysctl(void)
1339 {
1340 	int error;
1341 	int i;
1342 
1343 	kexec_kobj = kobject_create_and_add("kexec", kernel_kobj);
1344 	if (!kexec_kobj) {
1345 		pr_err("failed to create kexec kobject\n");
1346 		return -ENOMEM;
1347 	}
1348 
1349 	error = sysfs_create_groups(kexec_kobj, kexec_groups);
1350 	if (error)
1351 		goto kset_exit;
1352 
1353 	for (i = 0; i < ARRAY_SIZE(kexec_links); i++) {
1354 		error = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, kexec_kobj,
1355 							     kexec_links[i].target,
1356 							     kexec_links[i].name);
1357 		if (error)
1358 			pr_err("Unable to create %s symlink (%d)", kexec_links[i].name, error);
1359 	}
1360 
1361 	return 0;
1362 
1363 kset_exit:
1364 	kobject_put(kexec_kobj);
1365 	return error;
1366 }
1367 
1368 subsys_initcall(init_kexec_sysctl);
1369