xref: /linux/mm/memory-failure.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/memory-failure.h>
42 #include <linux/page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/slab.h>
54 #include <linux/leafops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/pagewalk.h>
62 #include <linux/shmem_fs.h>
63 #include <linux/sysctl.h>
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/memory-failure.h>
67 
68 #include "swap.h"
69 #include "internal.h"
70 
71 static int sysctl_memory_failure_early_kill __read_mostly;
72 
73 static int sysctl_memory_failure_recovery __read_mostly = 1;
74 
75 static int sysctl_enable_soft_offline __read_mostly = 1;
76 
77 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
78 
79 static bool hw_memory_failure __read_mostly = false;
80 
81 static DEFINE_MUTEX(mf_mutex);
82 
num_poisoned_pages_inc(unsigned long pfn)83 void num_poisoned_pages_inc(unsigned long pfn)
84 {
85 	atomic_long_inc(&num_poisoned_pages);
86 	memblk_nr_poison_inc(pfn);
87 }
88 
num_poisoned_pages_sub(unsigned long pfn,long i)89 void num_poisoned_pages_sub(unsigned long pfn, long i)
90 {
91 	atomic_long_sub(i, &num_poisoned_pages);
92 	if (pfn != -1UL)
93 		memblk_nr_poison_sub(pfn, i);
94 }
95 
96 /**
97  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
98  * @_name: name of the file in the per NUMA sysfs directory.
99  */
100 #define MF_ATTR_RO(_name)					\
101 static ssize_t _name##_show(struct device *dev,			\
102 			    struct device_attribute *attr,	\
103 			    char *buf)				\
104 {								\
105 	struct memory_failure_stats *mf_stats =			\
106 		&NODE_DATA(dev->id)->mf_stats;			\
107 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
108 }								\
109 static DEVICE_ATTR_RO(_name)
110 
111 MF_ATTR_RO(total);
112 MF_ATTR_RO(ignored);
113 MF_ATTR_RO(failed);
114 MF_ATTR_RO(delayed);
115 MF_ATTR_RO(recovered);
116 
117 static struct attribute *memory_failure_attr[] = {
118 	&dev_attr_total.attr,
119 	&dev_attr_ignored.attr,
120 	&dev_attr_failed.attr,
121 	&dev_attr_delayed.attr,
122 	&dev_attr_recovered.attr,
123 	NULL,
124 };
125 
126 const struct attribute_group memory_failure_attr_group = {
127 	.name = "memory_failure",
128 	.attrs = memory_failure_attr,
129 };
130 
131 static const struct ctl_table memory_failure_table[] = {
132 	{
133 		.procname	= "memory_failure_early_kill",
134 		.data		= &sysctl_memory_failure_early_kill,
135 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
136 		.mode		= 0644,
137 		.proc_handler	= proc_dointvec_minmax,
138 		.extra1		= SYSCTL_ZERO,
139 		.extra2		= SYSCTL_ONE,
140 	},
141 	{
142 		.procname	= "memory_failure_recovery",
143 		.data		= &sysctl_memory_failure_recovery,
144 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
145 		.mode		= 0644,
146 		.proc_handler	= proc_dointvec_minmax,
147 		.extra1		= SYSCTL_ZERO,
148 		.extra2		= SYSCTL_ONE,
149 	},
150 	{
151 		.procname	= "enable_soft_offline",
152 		.data		= &sysctl_enable_soft_offline,
153 		.maxlen		= sizeof(sysctl_enable_soft_offline),
154 		.mode		= 0644,
155 		.proc_handler	= proc_dointvec_minmax,
156 		.extra1		= SYSCTL_ZERO,
157 		.extra2		= SYSCTL_ONE,
158 	}
159 };
160 
161 static struct rb_root_cached pfn_space_itree = RB_ROOT_CACHED;
162 
163 static DEFINE_MUTEX(pfn_space_lock);
164 
165 /*
166  * Return values:
167  *   1:   the page is dissolved (if needed) and taken off from buddy,
168  *   0:   the page is dissolved (if needed) and not taken off from buddy,
169  *   < 0: failed to dissolve.
170  */
__page_handle_poison(struct page * page)171 static int __page_handle_poison(struct page *page)
172 {
173 	int ret;
174 
175 	/*
176 	 * zone_pcp_disable() can't be used here. It will
177 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
178 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
179 	 * optimization is enabled. This will break current lock dependency
180 	 * chain and leads to deadlock.
181 	 * Disabling pcp before dissolving the page was a deterministic
182 	 * approach because we made sure that those pages cannot end up in any
183 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
184 	 * but nothing guarantees that those pages do not get back to a PCP
185 	 * queue if we need to refill those.
186 	 */
187 	ret = dissolve_free_hugetlb_folio(page_folio(page));
188 	if (!ret) {
189 		drain_all_pages(page_zone(page));
190 		ret = take_page_off_buddy(page);
191 	}
192 
193 	return ret;
194 }
195 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)196 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
197 {
198 	if (hugepage_or_freepage) {
199 		/*
200 		 * Doing this check for free pages is also fine since
201 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
202 		 */
203 		if (__page_handle_poison(page) <= 0)
204 			/*
205 			 * We could fail to take off the target page from buddy
206 			 * for example due to racy page allocation, but that's
207 			 * acceptable because soft-offlined page is not broken
208 			 * and if someone really want to use it, they should
209 			 * take it.
210 			 */
211 			return false;
212 	}
213 
214 	SetPageHWPoison(page);
215 	if (release)
216 		put_page(page);
217 	page_ref_inc(page);
218 	num_poisoned_pages_inc(page_to_pfn(page));
219 
220 	return true;
221 }
222 
223 static hwpoison_filter_func_t __rcu *hwpoison_filter_func __read_mostly;
224 
hwpoison_filter_register(hwpoison_filter_func_t * filter)225 void hwpoison_filter_register(hwpoison_filter_func_t *filter)
226 {
227 	rcu_assign_pointer(hwpoison_filter_func, filter);
228 }
229 EXPORT_SYMBOL_GPL(hwpoison_filter_register);
230 
hwpoison_filter_unregister(void)231 void hwpoison_filter_unregister(void)
232 {
233 	RCU_INIT_POINTER(hwpoison_filter_func, NULL);
234 	synchronize_rcu();
235 }
236 EXPORT_SYMBOL_GPL(hwpoison_filter_unregister);
237 
hwpoison_filter(struct page * p)238 static int hwpoison_filter(struct page *p)
239 {
240 	int ret = 0;
241 	hwpoison_filter_func_t *filter;
242 
243 	rcu_read_lock();
244 	filter = rcu_dereference(hwpoison_filter_func);
245 	if (filter)
246 		ret = filter(p);
247 	rcu_read_unlock();
248 
249 	return ret;
250 }
251 
252 /*
253  * Kill all processes that have a poisoned page mapped and then isolate
254  * the page.
255  *
256  * General strategy:
257  * Find all processes having the page mapped and kill them.
258  * But we keep a page reference around so that the page is not
259  * actually freed yet.
260  * Then stash the page away
261  *
262  * There's no convenient way to get back to mapped processes
263  * from the VMAs. So do a brute-force search over all
264  * running processes.
265  *
266  * Remember that machine checks are not common (or rather
267  * if they are common you have other problems), so this shouldn't
268  * be a performance issue.
269  *
270  * Also there are some races possible while we get from the
271  * error detection to actually handle it.
272  */
273 
274 struct to_kill {
275 	struct list_head nd;
276 	struct task_struct *tsk;
277 	unsigned long addr;
278 	short size_shift;
279 };
280 
281 /*
282  * Send all the processes who have the page mapped a signal.
283  * ``action optional'' if they are not immediately affected by the error
284  * ``action required'' if error happened in current execution context
285  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)286 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
287 {
288 	struct task_struct *t = tk->tsk;
289 	short addr_lsb = tk->size_shift;
290 	int ret = 0;
291 
292 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
293 			pfn, t->comm, task_pid_nr(t));
294 
295 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
296 		ret = force_sig_mceerr(BUS_MCEERR_AR,
297 				 (void __user *)tk->addr, addr_lsb);
298 	else
299 		/*
300 		 * Signal other processes sharing the page if they have
301 		 * PF_MCE_EARLY set.
302 		 * Don't use force here, it's convenient if the signal
303 		 * can be temporarily blocked.
304 		 */
305 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
306 				      addr_lsb, t);
307 	if (ret < 0)
308 		pr_info("Error sending signal to %s:%d: %d\n",
309 			t->comm, task_pid_nr(t), ret);
310 	return ret;
311 }
312 
313 /*
314  * Unknown page type encountered. Try to check whether it can turn PageLRU by
315  * lru_add_drain_all.
316  */
shake_folio(struct folio * folio)317 void shake_folio(struct folio *folio)
318 {
319 	if (folio_test_hugetlb(folio))
320 		return;
321 	/*
322 	 * TODO: Could shrink slab caches here if a lightweight range-based
323 	 * shrinker will be available.
324 	 */
325 	if (folio_test_slab(folio))
326 		return;
327 
328 	lru_add_drain_all();
329 }
330 EXPORT_SYMBOL_GPL(shake_folio);
331 
shake_page(struct page * page)332 static void shake_page(struct page *page)
333 {
334 	shake_folio(page_folio(page));
335 }
336 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)337 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
338 		unsigned long address)
339 {
340 	unsigned long ret = 0;
341 	pgd_t *pgd;
342 	p4d_t *p4d;
343 	pud_t *pud;
344 	pmd_t *pmd;
345 	pte_t *pte;
346 	pte_t ptent;
347 
348 	VM_BUG_ON_VMA(address == -EFAULT, vma);
349 	pgd = pgd_offset(vma->vm_mm, address);
350 	if (!pgd_present(*pgd))
351 		return 0;
352 	p4d = p4d_offset(pgd, address);
353 	if (!p4d_present(*p4d))
354 		return 0;
355 	pud = pud_offset(p4d, address);
356 	if (!pud_present(*pud))
357 		return 0;
358 	if (pud_trans_huge(*pud))
359 		return PUD_SHIFT;
360 	pmd = pmd_offset(pud, address);
361 	if (!pmd_present(*pmd))
362 		return 0;
363 	if (pmd_trans_huge(*pmd))
364 		return PMD_SHIFT;
365 	pte = pte_offset_map(pmd, address);
366 	if (!pte)
367 		return 0;
368 	ptent = ptep_get(pte);
369 	if (pte_present(ptent))
370 		ret = PAGE_SHIFT;
371 	pte_unmap(pte);
372 	return ret;
373 }
374 
375 /*
376  * Failure handling: if we can't find or can't kill a process there's
377  * not much we can do.	We just print a message and ignore otherwise.
378  */
379 
380 /*
381  * Schedule a process for later kill.
382  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
383  */
__add_to_kill(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)384 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
385 			  struct vm_area_struct *vma, struct list_head *to_kill,
386 			  unsigned long addr)
387 {
388 	struct to_kill *tk;
389 
390 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
391 	if (!tk) {
392 		pr_err("Out of memory while machine check handling\n");
393 		return;
394 	}
395 
396 	tk->addr = addr;
397 	if (is_zone_device_page(p))
398 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
399 	else
400 		tk->size_shift = folio_shift(page_folio(p));
401 
402 	/*
403 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
404 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
405 	 * so "tk->size_shift == 0" effectively checks no mapping on
406 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
407 	 * to a process' address space, it's possible not all N VMAs
408 	 * contain mappings for the page, but at least one VMA does.
409 	 * Only deliver SIGBUS with payload derived from the VMA that
410 	 * has a mapping for the page.
411 	 */
412 	if (tk->addr == -EFAULT) {
413 		pr_info("Unable to find user space address %lx in %s\n",
414 			page_to_pfn(p), tsk->comm);
415 	} else if (tk->size_shift == 0) {
416 		kfree(tk);
417 		return;
418 	}
419 
420 	get_task_struct(tsk);
421 	tk->tsk = tsk;
422 	list_add_tail(&tk->nd, to_kill);
423 }
424 
add_to_kill_anon_file(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)425 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
426 		struct vm_area_struct *vma, struct list_head *to_kill,
427 		unsigned long addr)
428 {
429 	if (addr == -EFAULT)
430 		return;
431 	__add_to_kill(tsk, p, vma, to_kill, addr);
432 }
433 
434 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)435 static bool task_in_to_kill_list(struct list_head *to_kill,
436 				 struct task_struct *tsk)
437 {
438 	struct to_kill *tk, *next;
439 
440 	list_for_each_entry_safe(tk, next, to_kill, nd) {
441 		if (tk->tsk == tsk)
442 			return true;
443 	}
444 
445 	return false;
446 }
447 
add_to_kill_ksm(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
449 		     struct vm_area_struct *vma, struct list_head *to_kill,
450 		     unsigned long addr)
451 {
452 	if (!task_in_to_kill_list(to_kill, tsk))
453 		__add_to_kill(tsk, p, vma, to_kill, addr);
454 }
455 #endif
456 /*
457  * Kill the processes that have been collected earlier.
458  *
459  * Only do anything when FORCEKILL is set, otherwise just free the
460  * list (this is used for clean pages which do not need killing)
461  */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)462 static void kill_procs(struct list_head *to_kill, int forcekill,
463 		unsigned long pfn, int flags)
464 {
465 	struct to_kill *tk, *next;
466 
467 	list_for_each_entry_safe(tk, next, to_kill, nd) {
468 		if (forcekill) {
469 			if (tk->addr == -EFAULT) {
470 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
471 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
472 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
473 						 tk->tsk, PIDTYPE_PID);
474 			}
475 
476 			/*
477 			 * In theory the process could have mapped
478 			 * something else on the address in-between. We could
479 			 * check for that, but we need to tell the
480 			 * process anyways.
481 			 */
482 			else if (kill_proc(tk, pfn, flags) < 0)
483 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
484 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
485 		}
486 		list_del(&tk->nd);
487 		put_task_struct(tk->tsk);
488 		kfree(tk);
489 	}
490 }
491 
492 /*
493  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
494  * on behalf of the thread group. Return task_struct of the (first found)
495  * dedicated thread if found, and return NULL otherwise.
496  *
497  * We already hold rcu lock in the caller, so we don't have to call
498  * rcu_read_lock/unlock() in this function.
499  */
find_early_kill_thread(struct task_struct * tsk)500 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
501 {
502 	struct task_struct *t;
503 
504 	for_each_thread(tsk, t) {
505 		if (t->flags & PF_MCE_PROCESS) {
506 			if (t->flags & PF_MCE_EARLY)
507 				return t;
508 		} else {
509 			if (sysctl_memory_failure_early_kill)
510 				return t;
511 		}
512 	}
513 	return NULL;
514 }
515 
516 /*
517  * Determine whether a given process is "early kill" process which expects
518  * to be signaled when some page under the process is hwpoisoned.
519  * Return task_struct of the dedicated thread (main thread unless explicitly
520  * specified) if the process is "early kill" and otherwise returns NULL.
521  *
522  * Note that the above is true for Action Optional case. For Action Required
523  * case, it's only meaningful to the current thread which need to be signaled
524  * with SIGBUS, this error is Action Optional for other non current
525  * processes sharing the same error page,if the process is "early kill", the
526  * task_struct of the dedicated thread will also be returned.
527  */
task_early_kill(struct task_struct * tsk,int force_early)528 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
529 {
530 	if (!tsk->mm)
531 		return NULL;
532 	/*
533 	 * Comparing ->mm here because current task might represent
534 	 * a subthread, while tsk always points to the main thread.
535 	 */
536 	if (force_early && tsk->mm == current->mm)
537 		return current;
538 
539 	return find_early_kill_thread(tsk);
540 }
541 
542 /*
543  * Collect processes when the error hit an anonymous page.
544  */
collect_procs_anon(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)545 static void collect_procs_anon(const struct folio *folio,
546 		const struct page *page, struct list_head *to_kill,
547 		int force_early)
548 {
549 	struct task_struct *tsk;
550 	struct anon_vma *av;
551 	pgoff_t pgoff;
552 
553 	av = folio_lock_anon_vma_read(folio, NULL);
554 	if (av == NULL)	/* Not actually mapped anymore */
555 		return;
556 
557 	pgoff = page_pgoff(folio, page);
558 	rcu_read_lock();
559 	for_each_process(tsk) {
560 		struct vm_area_struct *vma;
561 		struct anon_vma_chain *vmac;
562 		struct task_struct *t = task_early_kill(tsk, force_early);
563 		unsigned long addr;
564 
565 		if (!t)
566 			continue;
567 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
568 					       pgoff, pgoff) {
569 			vma = vmac->vma;
570 			if (vma->vm_mm != t->mm)
571 				continue;
572 			addr = page_mapped_in_vma(page, vma);
573 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
574 		}
575 	}
576 	rcu_read_unlock();
577 	anon_vma_unlock_read(av);
578 }
579 
580 /*
581  * Collect processes when the error hit a file mapped page.
582  */
collect_procs_file(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)583 static void collect_procs_file(const struct folio *folio,
584 		const struct page *page, struct list_head *to_kill,
585 		int force_early)
586 {
587 	struct vm_area_struct *vma;
588 	struct task_struct *tsk;
589 	struct address_space *mapping = folio->mapping;
590 	pgoff_t pgoff;
591 
592 	i_mmap_lock_read(mapping);
593 	rcu_read_lock();
594 	pgoff = page_pgoff(folio, page);
595 	for_each_process(tsk) {
596 		struct task_struct *t = task_early_kill(tsk, force_early);
597 		unsigned long addr;
598 
599 		if (!t)
600 			continue;
601 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
602 				      pgoff) {
603 			/*
604 			 * Send early kill signal to tasks where a vma covers
605 			 * the page but the corrupted page is not necessarily
606 			 * mapped in its pte.
607 			 * Assume applications who requested early kill want
608 			 * to be informed of all such data corruptions.
609 			 */
610 			if (vma->vm_mm != t->mm)
611 				continue;
612 			addr = page_address_in_vma(folio, page, vma);
613 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
614 		}
615 	}
616 	rcu_read_unlock();
617 	i_mmap_unlock_read(mapping);
618 }
619 
620 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)621 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
622 			      struct vm_area_struct *vma,
623 			      struct list_head *to_kill, pgoff_t pgoff)
624 {
625 	unsigned long addr = vma_address(vma, pgoff, 1);
626 	__add_to_kill(tsk, p, vma, to_kill, addr);
627 }
628 
629 /*
630  * Collect processes when the error hit a fsdax page.
631  */
collect_procs_fsdax(const struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)632 static void collect_procs_fsdax(const struct page *page,
633 		struct address_space *mapping, pgoff_t pgoff,
634 		struct list_head *to_kill, bool pre_remove)
635 {
636 	struct vm_area_struct *vma;
637 	struct task_struct *tsk;
638 
639 	i_mmap_lock_read(mapping);
640 	rcu_read_lock();
641 	for_each_process(tsk) {
642 		struct task_struct *t = tsk;
643 
644 		/*
645 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
646 		 * the current may not be the one accessing the fsdax page.
647 		 * Otherwise, search for the current task.
648 		 */
649 		if (!pre_remove)
650 			t = task_early_kill(tsk, true);
651 		if (!t)
652 			continue;
653 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
654 			if (vma->vm_mm == t->mm)
655 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
656 		}
657 	}
658 	rcu_read_unlock();
659 	i_mmap_unlock_read(mapping);
660 }
661 #endif /* CONFIG_FS_DAX */
662 
663 /*
664  * Collect the processes who have the corrupted page mapped to kill.
665  */
collect_procs(const struct folio * folio,const struct page * page,struct list_head * tokill,int force_early)666 static void collect_procs(const struct folio *folio, const struct page *page,
667 		struct list_head *tokill, int force_early)
668 {
669 	if (!folio->mapping)
670 		return;
671 	if (unlikely(folio_test_ksm(folio)))
672 		collect_procs_ksm(folio, page, tokill, force_early);
673 	else if (folio_test_anon(folio))
674 		collect_procs_anon(folio, page, tokill, force_early);
675 	else
676 		collect_procs_file(folio, page, tokill, force_early);
677 }
678 
679 struct hwpoison_walk {
680 	struct to_kill tk;
681 	unsigned long pfn;
682 	int flags;
683 };
684 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)685 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
686 {
687 	tk->addr = addr;
688 	tk->size_shift = shift;
689 }
690 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)691 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
692 				unsigned long poisoned_pfn, struct to_kill *tk)
693 {
694 	unsigned long pfn = 0;
695 
696 	if (pte_present(pte)) {
697 		pfn = pte_pfn(pte);
698 	} else {
699 		const softleaf_t entry = softleaf_from_pte(pte);
700 
701 		if (softleaf_is_hwpoison(entry))
702 			pfn = softleaf_to_pfn(entry);
703 	}
704 
705 	if (!pfn || pfn != poisoned_pfn)
706 		return 0;
707 
708 	set_to_kill(tk, addr, shift);
709 	return 1;
710 }
711 
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)713 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
714 				      struct hwpoison_walk *hwp)
715 {
716 	pmd_t pmd = *pmdp;
717 	unsigned long pfn;
718 	unsigned long hwpoison_vaddr;
719 
720 	if (!pmd_present(pmd))
721 		return 0;
722 	pfn = pmd_pfn(pmd);
723 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
724 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
725 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
726 		return 1;
727 	}
728 	return 0;
729 }
730 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)731 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
732 				      struct hwpoison_walk *hwp)
733 {
734 	return 0;
735 }
736 #endif
737 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)738 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
739 			      unsigned long end, struct mm_walk *walk)
740 {
741 	struct hwpoison_walk *hwp = walk->private;
742 	int ret = 0;
743 	pte_t *ptep, *mapped_pte;
744 	spinlock_t *ptl;
745 
746 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
747 	if (ptl) {
748 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
749 		spin_unlock(ptl);
750 		goto out;
751 	}
752 
753 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
754 						addr, &ptl);
755 	if (!ptep)
756 		goto out;
757 
758 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
759 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
760 					     hwp->pfn, &hwp->tk);
761 		if (ret == 1)
762 			break;
763 	}
764 	pte_unmap_unlock(mapped_pte, ptl);
765 out:
766 	cond_resched();
767 	return ret;
768 }
769 
770 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)771 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
772 			    unsigned long addr, unsigned long end,
773 			    struct mm_walk *walk)
774 {
775 	struct hwpoison_walk *hwp = walk->private;
776 	struct hstate *h = hstate_vma(walk->vma);
777 	spinlock_t *ptl;
778 	pte_t pte;
779 	int ret;
780 
781 	ptl = huge_pte_lock(h, walk->mm, ptep);
782 	pte = huge_ptep_get(walk->mm, addr, ptep);
783 	ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
784 					hwp->pfn, &hwp->tk);
785 	spin_unlock(ptl);
786 	return ret;
787 }
788 #else
789 #define hwpoison_hugetlb_range	NULL
790 #endif
791 
hwpoison_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)792 static int hwpoison_test_walk(unsigned long start, unsigned long end,
793 			     struct mm_walk *walk)
794 {
795 	/* We also want to consider pages mapped into VM_PFNMAP. */
796 	return 0;
797 }
798 
799 static const struct mm_walk_ops hwpoison_walk_ops = {
800 	.pmd_entry = hwpoison_pte_range,
801 	.hugetlb_entry = hwpoison_hugetlb_range,
802 	.test_walk = hwpoison_test_walk,
803 	.walk_lock = PGWALK_RDLOCK,
804 };
805 
806 /*
807  * Sends SIGBUS to the current process with error info.
808  *
809  * This function is intended to handle "Action Required" MCEs on already
810  * hardware poisoned pages. They could happen, for example, when
811  * memory_failure() failed to unmap the error page at the first call, or
812  * when multiple local machine checks happened on different CPUs.
813  *
814  * MCE handler currently has no easy access to the error virtual address,
815  * so this function walks page table to find it. The returned virtual address
816  * is proper in most cases, but it could be wrong when the application
817  * process has multiple entries mapping the error page.
818  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)819 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
820 				  int flags)
821 {
822 	int ret;
823 	struct hwpoison_walk priv = {
824 		.pfn = pfn,
825 	};
826 	priv.tk.tsk = p;
827 
828 	if (!p->mm)
829 		return -EFAULT;
830 
831 	mmap_read_lock(p->mm);
832 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
833 			      (void *)&priv);
834 	/*
835 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
836 	 * succeeds or fails, then kill the process with SIGBUS.
837 	 * ret = 0 when poison page is a clean page and it's dropped, no
838 	 * SIGBUS is needed.
839 	 */
840 	if (ret == 1 && priv.tk.addr)
841 		kill_proc(&priv.tk, pfn, flags);
842 	mmap_read_unlock(p->mm);
843 
844 	return ret > 0 ? -EHWPOISON : 0;
845 }
846 
847 /*
848  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
849  * But it could not do more to isolate the page from being accessed again,
850  * nor does it kill the process. This is extremely rare and one of the
851  * potential causes is that the page state has been changed due to
852  * underlying race condition. This is the most severe outcomes.
853  *
854  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
855  * It should have killed the process, but it can't isolate the page,
856  * due to conditions such as extra pin, unmap failure, etc. Accessing
857  * the page again may trigger another MCE and the process will be killed
858  * by the m-f() handler immediately.
859  *
860  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
861  * The page is unmapped, and is removed from the LRU or file mapping.
862  * An attempt to access the page again will trigger page fault and the
863  * PF handler will kill the process.
864  *
865  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
866  * The page has been completely isolated, that is, unmapped, taken out of
867  * the buddy system, or hole-punnched out of the file mapping.
868  */
869 static const char *action_name[] = {
870 	[MF_IGNORED] = "Ignored",
871 	[MF_FAILED] = "Failed",
872 	[MF_DELAYED] = "Delayed",
873 	[MF_RECOVERED] = "Recovered",
874 };
875 
876 static const char * const action_page_types[] = {
877 	[MF_MSG_KERNEL]			= "reserved kernel page",
878 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
879 	[MF_MSG_HUGE]			= "huge page",
880 	[MF_MSG_FREE_HUGE]		= "free huge page",
881 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
882 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
883 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
884 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
885 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
886 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
887 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
888 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
889 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
890 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
891 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
892 	[MF_MSG_BUDDY]			= "free buddy page",
893 	[MF_MSG_DAX]			= "dax page",
894 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
895 	[MF_MSG_ALREADY_POISONED]	= "already poisoned page",
896 	[MF_MSG_PFN_MAP]                = "non struct page pfn",
897 	[MF_MSG_UNKNOWN]		= "unknown page",
898 };
899 
900 /*
901  * XXX: It is possible that a page is isolated from LRU cache,
902  * and then kept in swap cache or failed to remove from page cache.
903  * The page count will stop it from being freed by unpoison.
904  * Stress tests should be aware of this memory leak problem.
905  */
delete_from_lru_cache(struct folio * folio)906 static int delete_from_lru_cache(struct folio *folio)
907 {
908 	if (folio_isolate_lru(folio)) {
909 		/*
910 		 * Clear sensible page flags, so that the buddy system won't
911 		 * complain when the folio is unpoison-and-freed.
912 		 */
913 		folio_clear_active(folio);
914 		folio_clear_unevictable(folio);
915 
916 		/*
917 		 * Poisoned page might never drop its ref count to 0 so we have
918 		 * to uncharge it manually from its memcg.
919 		 */
920 		mem_cgroup_uncharge(folio);
921 
922 		/*
923 		 * drop the refcount elevated by folio_isolate_lru()
924 		 */
925 		folio_put(folio);
926 		return 0;
927 	}
928 	return -EIO;
929 }
930 
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)931 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
932 				struct address_space *mapping)
933 {
934 	int ret = MF_FAILED;
935 
936 	if (mapping->a_ops->error_remove_folio) {
937 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
938 
939 		if (err != 0)
940 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
941 		else if (!filemap_release_folio(folio, GFP_NOIO))
942 			pr_info("%#lx: failed to release buffers\n", pfn);
943 		else
944 			ret = MF_RECOVERED;
945 	} else {
946 		/*
947 		 * If the file system doesn't support it just invalidate
948 		 * This fails on dirty or anything with private pages
949 		 */
950 		if (mapping_evict_folio(mapping, folio))
951 			ret = MF_RECOVERED;
952 		else
953 			pr_info("%#lx: Failed to invalidate\n",	pfn);
954 	}
955 
956 	return ret;
957 }
958 
959 struct page_state {
960 	unsigned long mask;
961 	unsigned long res;
962 	enum mf_action_page_type type;
963 
964 	/* Callback ->action() has to unlock the relevant page inside it. */
965 	int (*action)(struct page_state *ps, struct page *p);
966 };
967 
968 /*
969  * Return true if page is still referenced by others, otherwise return
970  * false.
971  *
972  * The extra_pins is true when one extra refcount is expected.
973  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)974 static bool has_extra_refcount(struct page_state *ps, struct page *p,
975 			       bool extra_pins)
976 {
977 	int count = page_count(p) - 1;
978 
979 	if (extra_pins)
980 		count -= folio_nr_pages(page_folio(p));
981 
982 	if (count > 0) {
983 		pr_err("%#lx: %s still referenced by %d users\n",
984 		       page_to_pfn(p), action_page_types[ps->type], count);
985 		return true;
986 	}
987 
988 	return false;
989 }
990 
991 /*
992  * Error hit kernel page.
993  * Do nothing, try to be lucky and not touch this instead. For a few cases we
994  * could be more sophisticated.
995  */
me_kernel(struct page_state * ps,struct page * p)996 static int me_kernel(struct page_state *ps, struct page *p)
997 {
998 	unlock_page(p);
999 	return MF_IGNORED;
1000 }
1001 
1002 /*
1003  * Page in unknown state. Do nothing.
1004  * This is a catch-all in case we fail to make sense of the page state.
1005  */
me_unknown(struct page_state * ps,struct page * p)1006 static int me_unknown(struct page_state *ps, struct page *p)
1007 {
1008 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1009 	unlock_page(p);
1010 	return MF_IGNORED;
1011 }
1012 
1013 /*
1014  * Clean (or cleaned) page cache page.
1015  */
me_pagecache_clean(struct page_state * ps,struct page * p)1016 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1017 {
1018 	struct folio *folio = page_folio(p);
1019 	int ret;
1020 	struct address_space *mapping;
1021 	bool extra_pins;
1022 
1023 	delete_from_lru_cache(folio);
1024 
1025 	/*
1026 	 * For anonymous folios the only reference left
1027 	 * should be the one m_f() holds.
1028 	 */
1029 	if (folio_test_anon(folio)) {
1030 		ret = MF_RECOVERED;
1031 		goto out;
1032 	}
1033 
1034 	/*
1035 	 * Now truncate the page in the page cache. This is really
1036 	 * more like a "temporary hole punch"
1037 	 * Don't do this for block devices when someone else
1038 	 * has a reference, because it could be file system metadata
1039 	 * and that's not safe to truncate.
1040 	 */
1041 	mapping = folio_mapping(folio);
1042 	if (!mapping) {
1043 		/* Folio has been torn down in the meantime */
1044 		ret = MF_FAILED;
1045 		goto out;
1046 	}
1047 
1048 	/*
1049 	 * The shmem page is kept in page cache instead of truncating
1050 	 * so is expected to have an extra refcount after error-handling.
1051 	 */
1052 	extra_pins = shmem_mapping(mapping);
1053 
1054 	/*
1055 	 * Truncation is a bit tricky. Enable it per file system for now.
1056 	 *
1057 	 * Open: to take i_rwsem or not for this? Right now we don't.
1058 	 */
1059 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1060 	if (has_extra_refcount(ps, p, extra_pins))
1061 		ret = MF_FAILED;
1062 
1063 out:
1064 	folio_unlock(folio);
1065 
1066 	return ret;
1067 }
1068 
1069 /*
1070  * Dirty pagecache page
1071  * Issues: when the error hit a hole page the error is not properly
1072  * propagated.
1073  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1074 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1075 {
1076 	struct folio *folio = page_folio(p);
1077 	struct address_space *mapping = folio_mapping(folio);
1078 
1079 	/* TBD: print more information about the file. */
1080 	if (mapping) {
1081 		/*
1082 		 * IO error will be reported by write(), fsync(), etc.
1083 		 * who check the mapping.
1084 		 * This way the application knows that something went
1085 		 * wrong with its dirty file data.
1086 		 */
1087 		mapping_set_error(mapping, -EIO);
1088 	}
1089 
1090 	return me_pagecache_clean(ps, p);
1091 }
1092 
1093 /*
1094  * Clean and dirty swap cache.
1095  *
1096  * Dirty swap cache page is tricky to handle. The page could live both in page
1097  * table and swap cache(ie. page is freshly swapped in). So it could be
1098  * referenced concurrently by 2 types of PTEs:
1099  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1100  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1101  * and then
1102  *      - clear dirty bit to prevent IO
1103  *      - remove from LRU
1104  *      - but keep in the swap cache, so that when we return to it on
1105  *        a later page fault, we know the application is accessing
1106  *        corrupted data and shall be killed (we installed simple
1107  *        interception code in do_swap_page to catch it).
1108  *
1109  * Clean swap cache pages can be directly isolated. A later page fault will
1110  * bring in the known good data from disk.
1111  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1112 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1113 {
1114 	struct folio *folio = page_folio(p);
1115 	int ret;
1116 	bool extra_pins = false;
1117 
1118 	folio_clear_dirty(folio);
1119 	/* Trigger EIO in shmem: */
1120 	folio_clear_uptodate(folio);
1121 
1122 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1123 	folio_unlock(folio);
1124 
1125 	if (ret == MF_DELAYED)
1126 		extra_pins = true;
1127 
1128 	if (has_extra_refcount(ps, p, extra_pins))
1129 		ret = MF_FAILED;
1130 
1131 	return ret;
1132 }
1133 
me_swapcache_clean(struct page_state * ps,struct page * p)1134 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1135 {
1136 	struct folio *folio = page_folio(p);
1137 	int ret;
1138 
1139 	swap_cache_del_folio(folio);
1140 
1141 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1142 	folio_unlock(folio);
1143 
1144 	if (has_extra_refcount(ps, p, false))
1145 		ret = MF_FAILED;
1146 
1147 	return ret;
1148 }
1149 
1150 /*
1151  * Huge pages. Needs work.
1152  * Issues:
1153  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1154  *   To narrow down kill region to one page, we need to break up pmd.
1155  */
me_huge_page(struct page_state * ps,struct page * p)1156 static int me_huge_page(struct page_state *ps, struct page *p)
1157 {
1158 	struct folio *folio = page_folio(p);
1159 	int res;
1160 	struct address_space *mapping;
1161 	bool extra_pins = false;
1162 
1163 	mapping = folio_mapping(folio);
1164 	if (mapping) {
1165 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1166 		/* The page is kept in page cache. */
1167 		extra_pins = true;
1168 		folio_unlock(folio);
1169 	} else {
1170 		folio_unlock(folio);
1171 		/*
1172 		 * migration entry prevents later access on error hugepage,
1173 		 * so we can free and dissolve it into buddy to save healthy
1174 		 * subpages.
1175 		 */
1176 		folio_put(folio);
1177 		if (__page_handle_poison(p) > 0) {
1178 			page_ref_inc(p);
1179 			res = MF_RECOVERED;
1180 		} else {
1181 			res = MF_FAILED;
1182 		}
1183 	}
1184 
1185 	if (has_extra_refcount(ps, p, extra_pins))
1186 		res = MF_FAILED;
1187 
1188 	return res;
1189 }
1190 
1191 /*
1192  * Various page states we can handle.
1193  *
1194  * A page state is defined by its current page->flags bits.
1195  * The table matches them in order and calls the right handler.
1196  *
1197  * This is quite tricky because we can access page at any time
1198  * in its live cycle, so all accesses have to be extremely careful.
1199  *
1200  * This is not complete. More states could be added.
1201  * For any missing state don't attempt recovery.
1202  */
1203 
1204 #define dirty		(1UL << PG_dirty)
1205 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1206 #define unevict		(1UL << PG_unevictable)
1207 #define mlock		(1UL << PG_mlocked)
1208 #define lru		(1UL << PG_lru)
1209 #define head		(1UL << PG_head)
1210 #define reserved	(1UL << PG_reserved)
1211 
1212 static struct page_state error_states[] = {
1213 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1214 	/*
1215 	 * free pages are specially detected outside this table:
1216 	 * PG_buddy pages only make a small fraction of all free pages.
1217 	 */
1218 
1219 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1220 
1221 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1222 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1223 
1224 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1225 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1226 
1227 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1228 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1229 
1230 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1231 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1232 
1233 	/*
1234 	 * Catchall entry: must be at end.
1235 	 */
1236 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1237 };
1238 
1239 #undef dirty
1240 #undef sc
1241 #undef unevict
1242 #undef mlock
1243 #undef lru
1244 #undef head
1245 #undef reserved
1246 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1247 static void update_per_node_mf_stats(unsigned long pfn,
1248 				     enum mf_result result)
1249 {
1250 	int nid = MAX_NUMNODES;
1251 	struct memory_failure_stats *mf_stats = NULL;
1252 
1253 	nid = pfn_to_nid(pfn);
1254 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1255 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1256 		return;
1257 	}
1258 
1259 	mf_stats = &NODE_DATA(nid)->mf_stats;
1260 	switch (result) {
1261 	case MF_IGNORED:
1262 		++mf_stats->ignored;
1263 		break;
1264 	case MF_FAILED:
1265 		++mf_stats->failed;
1266 		break;
1267 	case MF_DELAYED:
1268 		++mf_stats->delayed;
1269 		break;
1270 	case MF_RECOVERED:
1271 		++mf_stats->recovered;
1272 		break;
1273 	default:
1274 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1275 		break;
1276 	}
1277 	++mf_stats->total;
1278 }
1279 
1280 /*
1281  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1282  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1283  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1284 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1285 			 enum mf_result result)
1286 {
1287 	trace_memory_failure_event(pfn, type, result);
1288 
1289 	if (type != MF_MSG_ALREADY_POISONED && type != MF_MSG_PFN_MAP) {
1290 		num_poisoned_pages_inc(pfn);
1291 		update_per_node_mf_stats(pfn, result);
1292 	}
1293 
1294 	pr_err("%#lx: recovery action for %s: %s\n",
1295 		pfn, action_page_types[type], action_name[result]);
1296 
1297 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1298 }
1299 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1300 static int page_action(struct page_state *ps, struct page *p,
1301 			unsigned long pfn)
1302 {
1303 	int result;
1304 
1305 	/* page p should be unlocked after returning from ps->action().  */
1306 	result = ps->action(ps, p);
1307 
1308 	/* Could do more checks here if page looks ok */
1309 	/*
1310 	 * Could adjust zone counters here to correct for the missing page.
1311 	 */
1312 
1313 	return action_result(pfn, ps->type, result);
1314 }
1315 
PageHWPoisonTakenOff(struct page * page)1316 static inline bool PageHWPoisonTakenOff(struct page *page)
1317 {
1318 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1319 }
1320 
SetPageHWPoisonTakenOff(struct page * page)1321 void SetPageHWPoisonTakenOff(struct page *page)
1322 {
1323 	set_page_private(page, MAGIC_HWPOISON);
1324 }
1325 
ClearPageHWPoisonTakenOff(struct page * page)1326 void ClearPageHWPoisonTakenOff(struct page *page)
1327 {
1328 	if (PageHWPoison(page))
1329 		set_page_private(page, 0);
1330 }
1331 
1332 /*
1333  * Return true if a page type of a given page is supported by hwpoison
1334  * mechanism (while handling could fail), otherwise false.  This function
1335  * does not return true for hugetlb or device memory pages, so it's assumed
1336  * to be called only in the context where we never have such pages.
1337  */
HWPoisonHandlable(struct page * page,unsigned long flags)1338 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1339 {
1340 	if (PageSlab(page))
1341 		return false;
1342 
1343 	/* Soft offline could migrate movable_ops pages */
1344 	if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1345 		return true;
1346 
1347 	return PageLRU(page) || is_free_buddy_page(page);
1348 }
1349 
__get_hwpoison_page(struct page * page,unsigned long flags)1350 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1351 {
1352 	struct folio *folio = page_folio(page);
1353 	int ret = 0;
1354 	bool hugetlb = false;
1355 
1356 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1357 	if (hugetlb) {
1358 		/* Make sure hugetlb demotion did not happen from under us. */
1359 		if (folio == page_folio(page))
1360 			return ret;
1361 		if (ret > 0) {
1362 			folio_put(folio);
1363 			folio = page_folio(page);
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * This check prevents from calling folio_try_get() for any
1369 	 * unsupported type of folio in order to reduce the risk of unexpected
1370 	 * races caused by taking a folio refcount.
1371 	 */
1372 	if (!HWPoisonHandlable(&folio->page, flags))
1373 		return -EBUSY;
1374 
1375 	if (folio_try_get(folio)) {
1376 		if (folio == page_folio(page))
1377 			return 1;
1378 
1379 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1380 		folio_put(folio);
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 #define GET_PAGE_MAX_RETRY_NUM 3
1387 
get_any_page(struct page * p,unsigned long flags)1388 static int get_any_page(struct page *p, unsigned long flags)
1389 {
1390 	int ret = 0, pass = 0;
1391 	bool count_increased = false;
1392 
1393 	if (flags & MF_COUNT_INCREASED)
1394 		count_increased = true;
1395 
1396 try_again:
1397 	if (!count_increased) {
1398 		ret = __get_hwpoison_page(p, flags);
1399 		if (!ret) {
1400 			if (page_count(p)) {
1401 				/* We raced with an allocation, retry. */
1402 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1403 					goto try_again;
1404 				ret = -EBUSY;
1405 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1406 				/* We raced with put_page, retry. */
1407 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1408 					goto try_again;
1409 				ret = -EIO;
1410 			}
1411 			goto out;
1412 		} else if (ret == -EBUSY) {
1413 			/*
1414 			 * We raced with (possibly temporary) unhandlable
1415 			 * page, retry.
1416 			 */
1417 			if (pass++ < 3) {
1418 				shake_page(p);
1419 				goto try_again;
1420 			}
1421 			ret = -EIO;
1422 			goto out;
1423 		}
1424 	}
1425 
1426 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1427 		ret = 1;
1428 	} else {
1429 		/*
1430 		 * A page we cannot handle. Check whether we can turn
1431 		 * it into something we can handle.
1432 		 */
1433 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1434 			put_page(p);
1435 			shake_page(p);
1436 			count_increased = false;
1437 			goto try_again;
1438 		}
1439 		put_page(p);
1440 		ret = -EIO;
1441 	}
1442 out:
1443 	if (ret == -EIO)
1444 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1445 
1446 	return ret;
1447 }
1448 
__get_unpoison_page(struct page * page)1449 static int __get_unpoison_page(struct page *page)
1450 {
1451 	struct folio *folio = page_folio(page);
1452 	int ret = 0;
1453 	bool hugetlb = false;
1454 
1455 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1456 	if (hugetlb) {
1457 		/* Make sure hugetlb demotion did not happen from under us. */
1458 		if (folio == page_folio(page))
1459 			return ret;
1460 		if (ret > 0)
1461 			folio_put(folio);
1462 	}
1463 
1464 	/*
1465 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1466 	 * but also isolated from buddy freelist, so need to identify the
1467 	 * state and have to cancel both operations to unpoison.
1468 	 */
1469 	if (PageHWPoisonTakenOff(page))
1470 		return -EHWPOISON;
1471 
1472 	return get_page_unless_zero(page) ? 1 : 0;
1473 }
1474 
1475 /**
1476  * get_hwpoison_page() - Get refcount for memory error handling
1477  * @p:		Raw error page (hit by memory error)
1478  * @flags:	Flags controlling behavior of error handling
1479  *
1480  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1481  * error on it, after checking that the error page is in a well-defined state
1482  * (defined as a page-type we can successfully handle the memory error on it,
1483  * such as LRU page and hugetlb page).
1484  *
1485  * Memory error handling could be triggered at any time on any type of page,
1486  * so it's prone to race with typical memory management lifecycle (like
1487  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1488  * extra care for the error page's state (as done in __get_hwpoison_page()),
1489  * and has some retry logic in get_any_page().
1490  *
1491  * When called from unpoison_memory(), the caller should already ensure that
1492  * the given page has PG_hwpoison. So it's never reused for other page
1493  * allocations, and __get_unpoison_page() never races with them.
1494  *
1495  * Return: 0 on failure or free buddy (hugetlb) page,
1496  *         1 on success for in-use pages in a well-defined state,
1497  *         -EIO for pages on which we can not handle memory errors,
1498  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1499  *         operations like allocation and free,
1500  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1501  */
get_hwpoison_page(struct page * p,unsigned long flags)1502 static int get_hwpoison_page(struct page *p, unsigned long flags)
1503 {
1504 	int ret;
1505 
1506 	zone_pcp_disable(page_zone(p));
1507 	if (flags & MF_UNPOISON)
1508 		ret = __get_unpoison_page(p);
1509 	else
1510 		ret = get_any_page(p, flags);
1511 	zone_pcp_enable(page_zone(p));
1512 
1513 	return ret;
1514 }
1515 
1516 /*
1517  * The caller must guarantee the folio isn't large folio, except hugetlb.
1518  * try_to_unmap() can't handle it.
1519  */
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1520 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1521 {
1522 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1523 	struct address_space *mapping;
1524 
1525 	if (folio_test_swapcache(folio)) {
1526 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1527 		ttu &= ~TTU_HWPOISON;
1528 	}
1529 
1530 	/*
1531 	 * Propagate the dirty bit from PTEs to struct page first, because we
1532 	 * need this to decide if we should kill or just drop the page.
1533 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1534 	 * be called inside page lock (it's recommended but not enforced).
1535 	 */
1536 	mapping = folio_mapping(folio);
1537 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1538 	    mapping_can_writeback(mapping)) {
1539 		if (folio_mkclean(folio)) {
1540 			folio_set_dirty(folio);
1541 		} else {
1542 			ttu &= ~TTU_HWPOISON;
1543 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1544 				pfn);
1545 		}
1546 	}
1547 
1548 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1549 		/*
1550 		 * For hugetlb folios in shared mappings, try_to_unmap
1551 		 * could potentially call huge_pmd_unshare.  Because of
1552 		 * this, take semaphore in write mode here and set
1553 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1554 		 * at this higher level.
1555 		 */
1556 		mapping = hugetlb_folio_mapping_lock_write(folio);
1557 		if (!mapping) {
1558 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1559 				folio_pfn(folio));
1560 			return -EBUSY;
1561 		}
1562 
1563 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1564 		i_mmap_unlock_write(mapping);
1565 	} else {
1566 		try_to_unmap(folio, ttu);
1567 	}
1568 
1569 	return folio_mapped(folio) ? -EBUSY : 0;
1570 }
1571 
1572 /*
1573  * Do all that is necessary to remove user space mappings. Unmap
1574  * the pages and send SIGBUS to the processes if the data was dirty.
1575  */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1576 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1577 		unsigned long pfn, int flags)
1578 {
1579 	LIST_HEAD(tokill);
1580 	bool unmap_success;
1581 	int forcekill;
1582 	bool mlocked = folio_test_mlocked(folio);
1583 
1584 	/*
1585 	 * Here we are interested only in user-mapped pages, so skip any
1586 	 * other types of pages.
1587 	 */
1588 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1589 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1590 		return true;
1591 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1592 		return true;
1593 
1594 	/*
1595 	 * This check implies we don't kill processes if their pages
1596 	 * are in the swap cache early. Those are always late kills.
1597 	 */
1598 	if (!folio_mapped(folio))
1599 		return true;
1600 
1601 	/*
1602 	 * First collect all the processes that have the page
1603 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1604 	 * because ttu takes the rmap data structures down.
1605 	 */
1606 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1607 
1608 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1609 	if (!unmap_success)
1610 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1611 		       pfn, folio_mapcount(folio));
1612 
1613 	/*
1614 	 * try_to_unmap() might put mlocked page in lru cache, so call
1615 	 * shake_page() again to ensure that it's flushed.
1616 	 */
1617 	if (mlocked)
1618 		shake_folio(folio);
1619 
1620 	/*
1621 	 * Now that the dirty bit has been propagated to the
1622 	 * struct page and all unmaps done we can decide if
1623 	 * killing is needed or not.  Only kill when the page
1624 	 * was dirty or the process is not restartable,
1625 	 * otherwise the tokill list is merely
1626 	 * freed.  When there was a problem unmapping earlier
1627 	 * use a more force-full uncatchable kill to prevent
1628 	 * any accesses to the poisoned memory.
1629 	 */
1630 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1631 		    !unmap_success;
1632 	kill_procs(&tokill, forcekill, pfn, flags);
1633 
1634 	return unmap_success;
1635 }
1636 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1637 static int identify_page_state(unsigned long pfn, struct page *p,
1638 				unsigned long page_flags)
1639 {
1640 	struct page_state *ps;
1641 
1642 	/*
1643 	 * The first check uses the current page flags which may not have any
1644 	 * relevant information. The second check with the saved page flags is
1645 	 * carried out only if the first check can't determine the page status.
1646 	 */
1647 	for (ps = error_states;; ps++)
1648 		if ((p->flags.f & ps->mask) == ps->res)
1649 			break;
1650 
1651 	page_flags |= (p->flags.f & (1UL << PG_dirty));
1652 
1653 	if (!ps->mask)
1654 		for (ps = error_states;; ps++)
1655 			if ((page_flags & ps->mask) == ps->res)
1656 				break;
1657 	return page_action(ps, p, pfn);
1658 }
1659 
1660 /*
1661  * When 'release' is 'false', it means that if thp split has failed,
1662  * there is still more to do, hence the page refcount we took earlier
1663  * is still needed.
1664  */
try_to_split_thp_page(struct page * page,unsigned int new_order,bool release)1665 static int try_to_split_thp_page(struct page *page, unsigned int new_order,
1666 		bool release)
1667 {
1668 	int ret;
1669 
1670 	lock_page(page);
1671 	ret = split_huge_page_to_order(page, new_order);
1672 	unlock_page(page);
1673 
1674 	if (ret && release)
1675 		put_page(page);
1676 
1677 	return ret;
1678 }
1679 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1680 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1681 		struct address_space *mapping, pgoff_t index, int flags)
1682 {
1683 	struct to_kill *tk;
1684 	unsigned long size = 0;
1685 
1686 	list_for_each_entry(tk, to_kill, nd)
1687 		if (tk->size_shift)
1688 			size = max(size, 1UL << tk->size_shift);
1689 
1690 	if (size) {
1691 		/*
1692 		 * Unmap the largest mapping to avoid breaking up device-dax
1693 		 * mappings which are constant size. The actual size of the
1694 		 * mapping being torn down is communicated in siginfo, see
1695 		 * kill_proc()
1696 		 */
1697 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1698 
1699 		unmap_mapping_range(mapping, start, size, 0);
1700 	}
1701 
1702 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1703 }
1704 
1705 /*
1706  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1707  * either do not claim or fails to claim a hwpoison event, or devdax.
1708  * The fsdax pages are initialized per base page, and the devdax pages
1709  * could be initialized either as base pages, or as compound pages with
1710  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1711  * hwpoison, such that, if a subpage of a compound page is poisoned,
1712  * simply mark the compound head page is by far sufficient.
1713  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1714 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1715 		struct dev_pagemap *pgmap)
1716 {
1717 	struct folio *folio = pfn_folio(pfn);
1718 	LIST_HEAD(to_kill);
1719 	dax_entry_t cookie;
1720 	int rc = 0;
1721 
1722 	/*
1723 	 * Prevent the inode from being freed while we are interrogating
1724 	 * the address_space, typically this would be handled by
1725 	 * lock_page(), but dax pages do not use the page lock. This
1726 	 * also prevents changes to the mapping of this pfn until
1727 	 * poison signaling is complete.
1728 	 */
1729 	cookie = dax_lock_folio(folio);
1730 	if (!cookie)
1731 		return -EBUSY;
1732 
1733 	if (hwpoison_filter(&folio->page)) {
1734 		rc = -EOPNOTSUPP;
1735 		goto unlock;
1736 	}
1737 
1738 	switch (pgmap->type) {
1739 	case MEMORY_DEVICE_PRIVATE:
1740 	case MEMORY_DEVICE_COHERENT:
1741 		/*
1742 		 * TODO: Handle device pages which may need coordination
1743 		 * with device-side memory.
1744 		 */
1745 		rc = -ENXIO;
1746 		goto unlock;
1747 	default:
1748 		break;
1749 	}
1750 
1751 	/*
1752 	 * Use this flag as an indication that the dax page has been
1753 	 * remapped UC to prevent speculative consumption of poison.
1754 	 */
1755 	SetPageHWPoison(&folio->page);
1756 
1757 	/*
1758 	 * Unlike System-RAM there is no possibility to swap in a
1759 	 * different physical page at a given virtual address, so all
1760 	 * userspace consumption of ZONE_DEVICE memory necessitates
1761 	 * SIGBUS (i.e. MF_MUST_KILL)
1762 	 */
1763 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1764 	collect_procs(folio, &folio->page, &to_kill, true);
1765 
1766 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1767 unlock:
1768 	dax_unlock_folio(folio, cookie);
1769 	return rc;
1770 }
1771 
1772 #ifdef CONFIG_FS_DAX
1773 /**
1774  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1775  * @mapping:	address_space of the file in use
1776  * @index:	start pgoff of the range within the file
1777  * @count:	length of the range, in unit of PAGE_SIZE
1778  * @mf_flags:	memory failure flags
1779  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1780 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1781 		unsigned long count, int mf_flags)
1782 {
1783 	LIST_HEAD(to_kill);
1784 	dax_entry_t cookie;
1785 	struct page *page;
1786 	size_t end = index + count;
1787 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1788 
1789 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1790 
1791 	for (; index < end; index++) {
1792 		page = NULL;
1793 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1794 		if (!cookie)
1795 			return -EBUSY;
1796 		if (!page)
1797 			goto unlock;
1798 
1799 		if (!pre_remove)
1800 			SetPageHWPoison(page);
1801 
1802 		/*
1803 		 * The pre_remove case is revoking access, the memory is still
1804 		 * good and could theoretically be put back into service.
1805 		 */
1806 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1807 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1808 				index, mf_flags);
1809 unlock:
1810 		dax_unlock_mapping_entry(mapping, index, cookie);
1811 	}
1812 	return 0;
1813 }
1814 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1815 #endif /* CONFIG_FS_DAX */
1816 
1817 #ifdef CONFIG_HUGETLB_PAGE
1818 
1819 /*
1820  * Struct raw_hwp_page represents information about "raw error page",
1821  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1822  */
1823 struct raw_hwp_page {
1824 	struct llist_node node;
1825 	struct page *page;
1826 };
1827 
raw_hwp_list_head(struct folio * folio)1828 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1829 {
1830 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1831 }
1832 
is_raw_hwpoison_page_in_hugepage(struct page * page)1833 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1834 {
1835 	struct llist_head *raw_hwp_head;
1836 	struct raw_hwp_page *p;
1837 	struct folio *folio = page_folio(page);
1838 	bool ret = false;
1839 
1840 	if (!folio_test_hwpoison(folio))
1841 		return false;
1842 
1843 	if (!folio_test_hugetlb(folio))
1844 		return PageHWPoison(page);
1845 
1846 	/*
1847 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1848 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1849 	 */
1850 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1851 		return true;
1852 
1853 	mutex_lock(&mf_mutex);
1854 
1855 	raw_hwp_head = raw_hwp_list_head(folio);
1856 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1857 		if (page == p->page) {
1858 			ret = true;
1859 			break;
1860 		}
1861 	}
1862 
1863 	mutex_unlock(&mf_mutex);
1864 
1865 	return ret;
1866 }
1867 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1868 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1869 {
1870 	struct llist_node *head;
1871 	struct raw_hwp_page *p, *next;
1872 	unsigned long count = 0;
1873 
1874 	head = llist_del_all(raw_hwp_list_head(folio));
1875 	llist_for_each_entry_safe(p, next, head, node) {
1876 		if (move_flag)
1877 			SetPageHWPoison(p->page);
1878 		else
1879 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1880 		kfree(p);
1881 		count++;
1882 	}
1883 	return count;
1884 }
1885 
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1886 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1887 {
1888 	struct llist_head *head;
1889 	struct raw_hwp_page *raw_hwp;
1890 	struct raw_hwp_page *p;
1891 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1892 
1893 	/*
1894 	 * Once the hwpoison hugepage has lost reliable raw error info,
1895 	 * there is little meaning to keep additional error info precisely,
1896 	 * so skip to add additional raw error info.
1897 	 */
1898 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1899 		return -EHWPOISON;
1900 	head = raw_hwp_list_head(folio);
1901 	llist_for_each_entry(p, head->first, node) {
1902 		if (p->page == page)
1903 			return -EHWPOISON;
1904 	}
1905 
1906 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1907 	if (raw_hwp) {
1908 		raw_hwp->page = page;
1909 		llist_add(&raw_hwp->node, head);
1910 		/* the first error event will be counted in action_result(). */
1911 		if (ret)
1912 			num_poisoned_pages_inc(page_to_pfn(page));
1913 	} else {
1914 		/*
1915 		 * Failed to save raw error info.  We no longer trace all
1916 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1917 		 * this hwpoisoned hugepage.
1918 		 */
1919 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1920 		/*
1921 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1922 		 * used any more, so free it.
1923 		 */
1924 		__folio_free_raw_hwp(folio, false);
1925 	}
1926 	return ret;
1927 }
1928 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1929 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1930 {
1931 	/*
1932 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1933 	 * pages for tail pages are required but they don't exist.
1934 	 */
1935 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1936 		return 0;
1937 
1938 	/*
1939 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1940 	 * definition.
1941 	 */
1942 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1943 		return 0;
1944 
1945 	return __folio_free_raw_hwp(folio, move_flag);
1946 }
1947 
folio_clear_hugetlb_hwpoison(struct folio * folio)1948 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1949 {
1950 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1951 		return;
1952 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1953 		return;
1954 	folio_clear_hwpoison(folio);
1955 	folio_free_raw_hwp(folio, true);
1956 }
1957 
1958 /*
1959  * Called from hugetlb code with hugetlb_lock held.
1960  *
1961  * Return values:
1962  *   0             - free hugepage
1963  *   1             - in-use hugepage
1964  *   2             - not a hugepage
1965  *   -EBUSY        - the hugepage is busy (try to retry)
1966  *   -EHWPOISON    - the hugepage is already hwpoisoned
1967  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)1968 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1969 				 bool *migratable_cleared)
1970 {
1971 	struct page *page = pfn_to_page(pfn);
1972 	struct folio *folio = page_folio(page);
1973 	int ret = 2;	/* fallback to normal page handling */
1974 	bool count_increased = false;
1975 
1976 	if (!folio_test_hugetlb(folio))
1977 		goto out;
1978 
1979 	if (flags & MF_COUNT_INCREASED) {
1980 		ret = 1;
1981 		count_increased = true;
1982 	} else if (folio_test_hugetlb_freed(folio)) {
1983 		ret = 0;
1984 	} else if (folio_test_hugetlb_migratable(folio)) {
1985 		ret = folio_try_get(folio);
1986 		if (ret)
1987 			count_increased = true;
1988 	} else {
1989 		ret = -EBUSY;
1990 		if (!(flags & MF_NO_RETRY))
1991 			goto out;
1992 	}
1993 
1994 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1995 		ret = -EHWPOISON;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2001 	 * from being migrated by memory hotremove.
2002 	 */
2003 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2004 		folio_clear_hugetlb_migratable(folio);
2005 		*migratable_cleared = true;
2006 	}
2007 
2008 	return ret;
2009 out:
2010 	if (count_increased)
2011 		folio_put(folio);
2012 	return ret;
2013 }
2014 
2015 /*
2016  * Taking refcount of hugetlb pages needs extra care about race conditions
2017  * with basic operations like hugepage allocation/free/demotion.
2018  * So some of prechecks for hwpoison (pinning, and testing/setting
2019  * PageHWPoison) should be done in single hugetlb_lock range.
2020  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2021 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2022 {
2023 	int res;
2024 	struct page *p = pfn_to_page(pfn);
2025 	struct folio *folio;
2026 	unsigned long page_flags;
2027 	bool migratable_cleared = false;
2028 
2029 	*hugetlb = 1;
2030 retry:
2031 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2032 	if (res == 2) { /* fallback to normal page handling */
2033 		*hugetlb = 0;
2034 		return 0;
2035 	} else if (res == -EHWPOISON) {
2036 		if (flags & MF_ACTION_REQUIRED) {
2037 			folio = page_folio(p);
2038 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2039 		}
2040 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2041 		return res;
2042 	} else if (res == -EBUSY) {
2043 		if (!(flags & MF_NO_RETRY)) {
2044 			flags |= MF_NO_RETRY;
2045 			goto retry;
2046 		}
2047 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2048 	}
2049 
2050 	folio = page_folio(p);
2051 	folio_lock(folio);
2052 
2053 	if (hwpoison_filter(p)) {
2054 		folio_clear_hugetlb_hwpoison(folio);
2055 		if (migratable_cleared)
2056 			folio_set_hugetlb_migratable(folio);
2057 		folio_unlock(folio);
2058 		if (res == 1)
2059 			folio_put(folio);
2060 		return -EOPNOTSUPP;
2061 	}
2062 
2063 	/*
2064 	 * Handling free hugepage.  The possible race with hugepage allocation
2065 	 * or demotion can be prevented by PageHWPoison flag.
2066 	 */
2067 	if (res == 0) {
2068 		folio_unlock(folio);
2069 		if (__page_handle_poison(p) > 0) {
2070 			page_ref_inc(p);
2071 			res = MF_RECOVERED;
2072 		} else {
2073 			res = MF_FAILED;
2074 		}
2075 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2076 	}
2077 
2078 	page_flags = folio->flags.f;
2079 
2080 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2081 		folio_unlock(folio);
2082 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2083 	}
2084 
2085 	return identify_page_state(pfn, p, page_flags);
2086 }
2087 
2088 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2089 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2090 {
2091 	return 0;
2092 }
2093 
folio_free_raw_hwp(struct folio * folio,bool flag)2094 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2095 {
2096 	return 0;
2097 }
2098 #endif	/* CONFIG_HUGETLB_PAGE */
2099 
2100 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2101 static void put_ref_page(unsigned long pfn, int flags)
2102 {
2103 	if (!(flags & MF_COUNT_INCREASED))
2104 		return;
2105 
2106 	put_page(pfn_to_page(pfn));
2107 }
2108 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2109 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2110 		struct dev_pagemap *pgmap)
2111 {
2112 	int rc = -ENXIO;
2113 
2114 	/* device metadata space is not recoverable */
2115 	if (!pgmap_pfn_valid(pgmap, pfn))
2116 		goto out;
2117 
2118 	/*
2119 	 * Call driver's implementation to handle the memory failure, otherwise
2120 	 * fall back to generic handler.
2121 	 */
2122 	if (pgmap_has_memory_failure(pgmap)) {
2123 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2124 		/*
2125 		 * Fall back to generic handler too if operation is not
2126 		 * supported inside the driver/device/filesystem.
2127 		 */
2128 		if (rc != -EOPNOTSUPP)
2129 			goto out;
2130 	}
2131 
2132 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2133 out:
2134 	/* drop pgmap ref acquired in caller */
2135 	put_dev_pagemap(pgmap);
2136 	if (rc != -EOPNOTSUPP)
2137 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2138 	return rc;
2139 }
2140 
2141 /*
2142  * The calling condition is as such: thp split failed, page might have
2143  * been RDMA pinned, not much can be done for recovery.
2144  * But a SIGBUS should be delivered with vaddr provided so that the user
2145  * application has a chance to recover. Also, application processes'
2146  * election for MCE early killed will be honored.
2147  */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2148 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2149 				struct folio *folio)
2150 {
2151 	LIST_HEAD(tokill);
2152 
2153 	folio_lock(folio);
2154 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2155 	folio_unlock(folio);
2156 
2157 	kill_procs(&tokill, true, pfn, flags);
2158 }
2159 
register_pfn_address_space(struct pfn_address_space * pfn_space)2160 int register_pfn_address_space(struct pfn_address_space *pfn_space)
2161 {
2162 	guard(mutex)(&pfn_space_lock);
2163 
2164 	if (interval_tree_iter_first(&pfn_space_itree,
2165 				     pfn_space->node.start,
2166 				     pfn_space->node.last))
2167 		return -EBUSY;
2168 
2169 	interval_tree_insert(&pfn_space->node, &pfn_space_itree);
2170 
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(register_pfn_address_space);
2174 
unregister_pfn_address_space(struct pfn_address_space * pfn_space)2175 void unregister_pfn_address_space(struct pfn_address_space *pfn_space)
2176 {
2177 	guard(mutex)(&pfn_space_lock);
2178 
2179 	if (interval_tree_iter_first(&pfn_space_itree,
2180 				     pfn_space->node.start,
2181 				     pfn_space->node.last))
2182 		interval_tree_remove(&pfn_space->node, &pfn_space_itree);
2183 }
2184 EXPORT_SYMBOL_GPL(unregister_pfn_address_space);
2185 
add_to_kill_pfn(struct task_struct * tsk,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long pfn)2186 static void add_to_kill_pfn(struct task_struct *tsk,
2187 			    struct vm_area_struct *vma,
2188 			    struct list_head *to_kill,
2189 			    unsigned long pfn)
2190 {
2191 	struct to_kill *tk;
2192 
2193 	tk = kmalloc(sizeof(*tk), GFP_ATOMIC);
2194 	if (!tk) {
2195 		pr_info("Unable to kill proc %d\n", tsk->pid);
2196 		return;
2197 	}
2198 
2199 	/* Check for pgoff not backed by struct page */
2200 	tk->addr = vma_address(vma, pfn, 1);
2201 	tk->size_shift = PAGE_SHIFT;
2202 
2203 	if (tk->addr == -EFAULT)
2204 		pr_info("Unable to find address %lx in %s\n",
2205 			pfn, tsk->comm);
2206 
2207 	get_task_struct(tsk);
2208 	tk->tsk = tsk;
2209 	list_add_tail(&tk->nd, to_kill);
2210 }
2211 
2212 /*
2213  * Collect processes when the error hit a PFN not backed by struct page.
2214  */
collect_procs_pfn(struct address_space * mapping,unsigned long pfn,struct list_head * to_kill)2215 static void collect_procs_pfn(struct address_space *mapping,
2216 			      unsigned long pfn, struct list_head *to_kill)
2217 {
2218 	struct vm_area_struct *vma;
2219 	struct task_struct *tsk;
2220 
2221 	i_mmap_lock_read(mapping);
2222 	rcu_read_lock();
2223 	for_each_process(tsk) {
2224 		struct task_struct *t = tsk;
2225 
2226 		t = task_early_kill(tsk, true);
2227 		if (!t)
2228 			continue;
2229 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pfn, pfn) {
2230 			if (vma->vm_mm == t->mm)
2231 				add_to_kill_pfn(t, vma, to_kill, pfn);
2232 		}
2233 	}
2234 	rcu_read_unlock();
2235 	i_mmap_unlock_read(mapping);
2236 }
2237 
2238 /**
2239  * memory_failure_pfn - Handle memory failure on a page not backed by
2240  *                      struct page.
2241  * @pfn: Page Number of the corrupted page
2242  * @flags: fine tune action taken
2243  *
2244  * Return:
2245  *   0             - success,
2246  *   -EBUSY        - Page PFN does not belong to any address space mapping.
2247  */
memory_failure_pfn(unsigned long pfn,int flags)2248 static int memory_failure_pfn(unsigned long pfn, int flags)
2249 {
2250 	struct interval_tree_node *node;
2251 	LIST_HEAD(tokill);
2252 
2253 	scoped_guard(mutex, &pfn_space_lock) {
2254 		bool mf_handled = false;
2255 
2256 		/*
2257 		 * Modules registers with MM the address space mapping to
2258 		 * the device memory they manage. Iterate to identify
2259 		 * exactly which address space has mapped to this failing
2260 		 * PFN.
2261 		 */
2262 		for (node = interval_tree_iter_first(&pfn_space_itree, pfn, pfn); node;
2263 		     node = interval_tree_iter_next(node, pfn, pfn)) {
2264 			struct pfn_address_space *pfn_space =
2265 				container_of(node, struct pfn_address_space, node);
2266 
2267 			collect_procs_pfn(pfn_space->mapping, pfn, &tokill);
2268 
2269 			mf_handled = true;
2270 		}
2271 
2272 		if (!mf_handled)
2273 			return action_result(pfn, MF_MSG_PFN_MAP, MF_IGNORED);
2274 	}
2275 
2276 	/*
2277 	 * Unlike System-RAM there is no possibility to swap in a different
2278 	 * physical page at a given virtual address, so all userspace
2279 	 * consumption of direct PFN memory necessitates SIGBUS (i.e.
2280 	 * MF_MUST_KILL)
2281 	 */
2282 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
2283 
2284 	kill_procs(&tokill, true, pfn, flags);
2285 
2286 	return action_result(pfn, MF_MSG_PFN_MAP, MF_RECOVERED);
2287 }
2288 
2289 /**
2290  * memory_failure - Handle memory failure of a page.
2291  * @pfn: Page Number of the corrupted page
2292  * @flags: fine tune action taken
2293  *
2294  * This function is called by the low level machine check code
2295  * of an architecture when it detects hardware memory corruption
2296  * of a page. It tries its best to recover, which includes
2297  * dropping pages, killing processes etc.
2298  *
2299  * The function is primarily of use for corruptions that
2300  * happen outside the current execution context (e.g. when
2301  * detected by a background scrubber)
2302  *
2303  * Must run in process context (e.g. a work queue) with interrupts
2304  * enabled and no spinlocks held.
2305  *
2306  * Return:
2307  *   0             - success,
2308  *   -ENXIO        - memory not managed by the kernel
2309  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
2310  *   -EHWPOISON    - the page was already poisoned, potentially
2311  *                   kill process,
2312  *   other negative values - failure.
2313  */
memory_failure(unsigned long pfn,int flags)2314 int memory_failure(unsigned long pfn, int flags)
2315 {
2316 	struct page *p;
2317 	struct folio *folio;
2318 	struct dev_pagemap *pgmap;
2319 	int res = 0;
2320 	unsigned long page_flags;
2321 	bool retry = true;
2322 	int hugetlb = 0;
2323 
2324 	if (!sysctl_memory_failure_recovery)
2325 		panic("Memory failure on page %lx", pfn);
2326 
2327 	mutex_lock(&mf_mutex);
2328 
2329 	if (!(flags & MF_SW_SIMULATED))
2330 		hw_memory_failure = true;
2331 
2332 	p = pfn_to_online_page(pfn);
2333 	if (!p) {
2334 		res = arch_memory_failure(pfn, flags);
2335 		if (res == 0)
2336 			goto unlock_mutex;
2337 
2338 		if (!pfn_valid(pfn) && !arch_is_platform_page(PFN_PHYS(pfn))) {
2339 			/*
2340 			 * The PFN is not backed by struct page.
2341 			 */
2342 			res = memory_failure_pfn(pfn, flags);
2343 			goto unlock_mutex;
2344 		}
2345 
2346 		if (pfn_valid(pfn)) {
2347 			pgmap = get_dev_pagemap(pfn);
2348 			put_ref_page(pfn, flags);
2349 			if (pgmap) {
2350 				res = memory_failure_dev_pagemap(pfn, flags,
2351 								 pgmap);
2352 				goto unlock_mutex;
2353 			}
2354 		}
2355 		pr_err("%#lx: memory outside kernel control\n", pfn);
2356 		res = -ENXIO;
2357 		goto unlock_mutex;
2358 	}
2359 
2360 try_again:
2361 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2362 	if (hugetlb)
2363 		goto unlock_mutex;
2364 
2365 	if (TestSetPageHWPoison(p)) {
2366 		res = -EHWPOISON;
2367 		if (flags & MF_ACTION_REQUIRED)
2368 			res = kill_accessing_process(current, pfn, flags);
2369 		if (flags & MF_COUNT_INCREASED)
2370 			put_page(p);
2371 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2372 		goto unlock_mutex;
2373 	}
2374 
2375 	/*
2376 	 * We need/can do nothing about count=0 pages.
2377 	 * 1) it's a free page, and therefore in safe hand:
2378 	 *    check_new_page() will be the gate keeper.
2379 	 * 2) it's part of a non-compound high order page.
2380 	 *    Implies some kernel user: cannot stop them from
2381 	 *    R/W the page; let's pray that the page has been
2382 	 *    used and will be freed some time later.
2383 	 * In fact it's dangerous to directly bump up page count from 0,
2384 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2385 	 */
2386 	if (!(flags & MF_COUNT_INCREASED)) {
2387 		res = get_hwpoison_page(p, flags);
2388 		if (!res) {
2389 			if (is_free_buddy_page(p)) {
2390 				if (take_page_off_buddy(p)) {
2391 					page_ref_inc(p);
2392 					res = MF_RECOVERED;
2393 				} else {
2394 					/* We lost the race, try again */
2395 					if (retry) {
2396 						ClearPageHWPoison(p);
2397 						retry = false;
2398 						goto try_again;
2399 					}
2400 					res = MF_FAILED;
2401 				}
2402 				res = action_result(pfn, MF_MSG_BUDDY, res);
2403 			} else {
2404 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2405 			}
2406 			goto unlock_mutex;
2407 		} else if (res < 0) {
2408 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2409 			goto unlock_mutex;
2410 		}
2411 	}
2412 
2413 	folio = page_folio(p);
2414 
2415 	/* filter pages that are protected from hwpoison test by users */
2416 	folio_lock(folio);
2417 	if (hwpoison_filter(p)) {
2418 		ClearPageHWPoison(p);
2419 		folio_unlock(folio);
2420 		folio_put(folio);
2421 		res = -EOPNOTSUPP;
2422 		goto unlock_mutex;
2423 	}
2424 	folio_unlock(folio);
2425 
2426 	if (folio_test_large(folio)) {
2427 		const int new_order = min_order_for_split(folio);
2428 		int err;
2429 
2430 		/*
2431 		 * The flag must be set after the refcount is bumped
2432 		 * otherwise it may race with THP split.
2433 		 * And the flag can't be set in get_hwpoison_page() since
2434 		 * it is called by soft offline too and it is just called
2435 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2436 		 * place.
2437 		 *
2438 		 * Don't need care about the above error handling paths for
2439 		 * get_hwpoison_page() since they handle either free page
2440 		 * or unhandlable page.  The refcount is bumped iff the
2441 		 * page is a valid handlable page.
2442 		 */
2443 		folio_set_has_hwpoisoned(folio);
2444 		err = try_to_split_thp_page(p, new_order, /* release= */ false);
2445 		/*
2446 		 * If splitting a folio to order-0 fails, kill the process.
2447 		 * Split the folio regardless to minimize unusable pages.
2448 		 * Because the memory failure code cannot handle large
2449 		 * folios, this split is always treated as if it failed.
2450 		 */
2451 		if (err || new_order) {
2452 			/* get folio again in case the original one is split */
2453 			folio = page_folio(p);
2454 			res = -EHWPOISON;
2455 			kill_procs_now(p, pfn, flags, folio);
2456 			put_page(p);
2457 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2458 			goto unlock_mutex;
2459 		}
2460 		VM_BUG_ON_PAGE(!page_count(p), p);
2461 		folio = page_folio(p);
2462 	}
2463 
2464 	/*
2465 	 * We ignore non-LRU pages for good reasons.
2466 	 * - PG_locked is only well defined for LRU pages and a few others
2467 	 * - to avoid races with __SetPageLocked()
2468 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2469 	 * The check (unnecessarily) ignores LRU pages being isolated and
2470 	 * walked by the page reclaim code, however that's not a big loss.
2471 	 */
2472 	shake_folio(folio);
2473 
2474 	folio_lock(folio);
2475 
2476 	/*
2477 	 * We're only intended to deal with the non-Compound page here.
2478 	 * The page cannot become compound pages again as folio has been
2479 	 * splited and extra refcnt is held.
2480 	 */
2481 	WARN_ON(folio_test_large(folio));
2482 
2483 	/*
2484 	 * We use page flags to determine what action should be taken, but
2485 	 * the flags can be modified by the error containment action.  One
2486 	 * example is an mlocked page, where PG_mlocked is cleared by
2487 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2488 	 * status correctly, we save a copy of the page flags at this time.
2489 	 */
2490 	page_flags = folio->flags.f;
2491 
2492 	/*
2493 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2494 	 * the folio lock. We need to wait for writeback completion for this
2495 	 * folio or it may trigger a vfs BUG while evicting inode.
2496 	 */
2497 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2498 		goto identify_page_state;
2499 
2500 	/*
2501 	 * It's very difficult to mess with pages currently under IO
2502 	 * and in many cases impossible, so we just avoid it here.
2503 	 */
2504 	folio_wait_writeback(folio);
2505 
2506 	/*
2507 	 * Now take care of user space mappings.
2508 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2509 	 */
2510 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2511 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2512 		goto unlock_page;
2513 	}
2514 
2515 	/*
2516 	 * Torn down by someone else?
2517 	 */
2518 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2519 	    folio->mapping == NULL) {
2520 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2521 		goto unlock_page;
2522 	}
2523 
2524 identify_page_state:
2525 	res = identify_page_state(pfn, p, page_flags);
2526 	mutex_unlock(&mf_mutex);
2527 	return res;
2528 unlock_page:
2529 	folio_unlock(folio);
2530 unlock_mutex:
2531 	mutex_unlock(&mf_mutex);
2532 	return res;
2533 }
2534 EXPORT_SYMBOL_GPL(memory_failure);
2535 
2536 #define MEMORY_FAILURE_FIFO_ORDER	4
2537 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2538 
2539 struct memory_failure_entry {
2540 	unsigned long pfn;
2541 	int flags;
2542 };
2543 
2544 struct memory_failure_cpu {
2545 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2546 		      MEMORY_FAILURE_FIFO_SIZE);
2547 	raw_spinlock_t lock;
2548 	struct work_struct work;
2549 };
2550 
2551 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2552 
2553 /**
2554  * memory_failure_queue - Schedule handling memory failure of a page.
2555  * @pfn: Page Number of the corrupted page
2556  * @flags: Flags for memory failure handling
2557  *
2558  * This function is called by the low level hardware error handler
2559  * when it detects hardware memory corruption of a page. It schedules
2560  * the recovering of error page, including dropping pages, killing
2561  * processes etc.
2562  *
2563  * The function is primarily of use for corruptions that
2564  * happen outside the current execution context (e.g. when
2565  * detected by a background scrubber)
2566  *
2567  * Can run in IRQ context.
2568  */
memory_failure_queue(unsigned long pfn,int flags)2569 void memory_failure_queue(unsigned long pfn, int flags)
2570 {
2571 	struct memory_failure_cpu *mf_cpu;
2572 	unsigned long proc_flags;
2573 	bool buffer_overflow;
2574 	struct memory_failure_entry entry = {
2575 		.pfn =		pfn,
2576 		.flags =	flags,
2577 	};
2578 
2579 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2580 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2581 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2582 	if (!buffer_overflow)
2583 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2584 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2585 	put_cpu_var(memory_failure_cpu);
2586 	if (buffer_overflow)
2587 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2588 		       pfn);
2589 }
2590 EXPORT_SYMBOL_GPL(memory_failure_queue);
2591 
memory_failure_work_func(struct work_struct * work)2592 static void memory_failure_work_func(struct work_struct *work)
2593 {
2594 	struct memory_failure_cpu *mf_cpu;
2595 	struct memory_failure_entry entry = { 0, };
2596 	unsigned long proc_flags;
2597 	int gotten;
2598 
2599 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2600 	for (;;) {
2601 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2602 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2603 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2604 		if (!gotten)
2605 			break;
2606 		if (entry.flags & MF_SOFT_OFFLINE)
2607 			soft_offline_page(entry.pfn, entry.flags);
2608 		else
2609 			memory_failure(entry.pfn, entry.flags);
2610 	}
2611 }
2612 
memory_failure_init(void)2613 static int __init memory_failure_init(void)
2614 {
2615 	struct memory_failure_cpu *mf_cpu;
2616 	int cpu;
2617 
2618 	for_each_possible_cpu(cpu) {
2619 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2620 		raw_spin_lock_init(&mf_cpu->lock);
2621 		INIT_KFIFO(mf_cpu->fifo);
2622 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2623 	}
2624 
2625 	register_sysctl_init("vm", memory_failure_table);
2626 
2627 	return 0;
2628 }
2629 core_initcall(memory_failure_init);
2630 
2631 #undef pr_fmt
2632 #define pr_fmt(fmt)	"Unpoison: " fmt
2633 #define unpoison_pr_info(fmt, pfn, rs)			\
2634 ({							\
2635 	if (__ratelimit(rs))				\
2636 		pr_info(fmt, pfn);			\
2637 })
2638 
2639 /**
2640  * unpoison_memory - Unpoison a previously poisoned page
2641  * @pfn: Page number of the to be unpoisoned page
2642  *
2643  * Software-unpoison a page that has been poisoned by
2644  * memory_failure() earlier.
2645  *
2646  * This is only done on the software-level, so it only works
2647  * for linux injected failures, not real hardware failures
2648  *
2649  * Returns 0 for success, otherwise -errno.
2650  */
unpoison_memory(unsigned long pfn)2651 int unpoison_memory(unsigned long pfn)
2652 {
2653 	struct folio *folio;
2654 	struct page *p;
2655 	int ret = -EBUSY, ghp;
2656 	unsigned long count;
2657 	bool huge = false;
2658 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2659 					DEFAULT_RATELIMIT_BURST);
2660 
2661 	p = pfn_to_online_page(pfn);
2662 	if (!p)
2663 		return -EIO;
2664 	folio = page_folio(p);
2665 
2666 	mutex_lock(&mf_mutex);
2667 
2668 	if (hw_memory_failure) {
2669 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2670 				 pfn, &unpoison_rs);
2671 		ret = -EOPNOTSUPP;
2672 		goto unlock_mutex;
2673 	}
2674 
2675 	if (is_huge_zero_folio(folio)) {
2676 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2677 				 pfn, &unpoison_rs);
2678 		ret = -EOPNOTSUPP;
2679 		goto unlock_mutex;
2680 	}
2681 
2682 	if (!PageHWPoison(p)) {
2683 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2684 				 pfn, &unpoison_rs);
2685 		goto unlock_mutex;
2686 	}
2687 
2688 	if (folio_ref_count(folio) > 1) {
2689 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2690 				 pfn, &unpoison_rs);
2691 		goto unlock_mutex;
2692 	}
2693 
2694 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2695 	    folio_test_reserved(folio) || folio_test_offline(folio))
2696 		goto unlock_mutex;
2697 
2698 	if (folio_mapped(folio)) {
2699 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2700 				 pfn, &unpoison_rs);
2701 		goto unlock_mutex;
2702 	}
2703 
2704 	if (folio_mapping(folio)) {
2705 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2706 				 pfn, &unpoison_rs);
2707 		goto unlock_mutex;
2708 	}
2709 
2710 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2711 	if (!ghp) {
2712 		if (folio_test_hugetlb(folio)) {
2713 			huge = true;
2714 			count = folio_free_raw_hwp(folio, false);
2715 			if (count == 0)
2716 				goto unlock_mutex;
2717 		}
2718 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2719 	} else if (ghp < 0) {
2720 		if (ghp == -EHWPOISON) {
2721 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2722 		} else {
2723 			ret = ghp;
2724 			unpoison_pr_info("%#lx: failed to grab page\n",
2725 					 pfn, &unpoison_rs);
2726 		}
2727 	} else {
2728 		if (folio_test_hugetlb(folio)) {
2729 			huge = true;
2730 			count = folio_free_raw_hwp(folio, false);
2731 			if (count == 0) {
2732 				folio_put(folio);
2733 				goto unlock_mutex;
2734 			}
2735 		}
2736 
2737 		folio_put(folio);
2738 		if (TestClearPageHWPoison(p)) {
2739 			folio_put(folio);
2740 			ret = 0;
2741 		}
2742 	}
2743 
2744 unlock_mutex:
2745 	mutex_unlock(&mf_mutex);
2746 	if (!ret) {
2747 		if (!huge)
2748 			num_poisoned_pages_sub(pfn, 1);
2749 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2750 				 page_to_pfn(p), &unpoison_rs);
2751 	}
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(unpoison_memory);
2755 
2756 #undef pr_fmt
2757 #define pr_fmt(fmt) "Soft offline: " fmt
2758 
2759 /*
2760  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2761  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2762  * If the page is mapped, it migrates the contents over.
2763  */
soft_offline_in_use_page(struct page * page)2764 static int soft_offline_in_use_page(struct page *page)
2765 {
2766 	long ret = 0;
2767 	unsigned long pfn = page_to_pfn(page);
2768 	struct folio *folio = page_folio(page);
2769 	char const *msg_page[] = {"page", "hugepage"};
2770 	bool huge = folio_test_hugetlb(folio);
2771 	bool isolated;
2772 	LIST_HEAD(pagelist);
2773 	struct migration_target_control mtc = {
2774 		.nid = NUMA_NO_NODE,
2775 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2776 		.reason = MR_MEMORY_FAILURE,
2777 	};
2778 
2779 	if (!huge && folio_test_large(folio)) {
2780 		const int new_order = min_order_for_split(folio);
2781 
2782 		/*
2783 		 * If new_order (target split order) is not 0, do not split the
2784 		 * folio at all to retain the still accessible large folio.
2785 		 * NOTE: if minimizing the number of soft offline pages is
2786 		 * preferred, split it to non-zero new_order like it is done in
2787 		 * memory_failure().
2788 		 */
2789 		if (new_order || try_to_split_thp_page(page, /* new_order= */ 0,
2790 						       /* release= */ true)) {
2791 			pr_info("%#lx: thp split failed\n", pfn);
2792 			return -EBUSY;
2793 		}
2794 		folio = page_folio(page);
2795 	}
2796 
2797 	folio_lock(folio);
2798 	if (!huge)
2799 		folio_wait_writeback(folio);
2800 	if (PageHWPoison(page)) {
2801 		folio_unlock(folio);
2802 		folio_put(folio);
2803 		pr_info("%#lx: page already poisoned\n", pfn);
2804 		return 0;
2805 	}
2806 
2807 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2808 		/*
2809 		 * Try to invalidate first. This should work for
2810 		 * non dirty unmapped page cache pages.
2811 		 */
2812 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2813 	folio_unlock(folio);
2814 
2815 	if (ret) {
2816 		pr_info("%#lx: invalidated\n", pfn);
2817 		page_handle_poison(page, false, true);
2818 		return 0;
2819 	}
2820 
2821 	isolated = isolate_folio_to_list(folio, &pagelist);
2822 
2823 	/*
2824 	 * If we succeed to isolate the folio, we grabbed another refcount on
2825 	 * the folio, so we can safely drop the one we got from get_any_page().
2826 	 * If we failed to isolate the folio, it means that we cannot go further
2827 	 * and we will return an error, so drop the reference we got from
2828 	 * get_any_page() as well.
2829 	 */
2830 	folio_put(folio);
2831 
2832 	if (isolated) {
2833 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2834 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2835 		if (!ret) {
2836 			bool release = !huge;
2837 
2838 			if (!page_handle_poison(page, huge, release))
2839 				ret = -EBUSY;
2840 		} else {
2841 			if (!list_empty(&pagelist))
2842 				putback_movable_pages(&pagelist);
2843 
2844 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2845 				pfn, msg_page[huge], ret, &page->flags.f);
2846 			if (ret > 0)
2847 				ret = -EBUSY;
2848 		}
2849 	} else {
2850 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2851 			pfn, msg_page[huge], page_count(page), &page->flags.f);
2852 		ret = -EBUSY;
2853 	}
2854 	return ret;
2855 }
2856 
2857 /**
2858  * soft_offline_page - Soft offline a page.
2859  * @pfn: pfn to soft-offline
2860  * @flags: flags. Same as memory_failure().
2861  *
2862  * Returns 0 on success,
2863  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2864  *         disabled by /proc/sys/vm/enable_soft_offline,
2865  *         < 0 otherwise negated errno.
2866  *
2867  * Soft offline a page, by migration or invalidation,
2868  * without killing anything. This is for the case when
2869  * a page is not corrupted yet (so it's still valid to access),
2870  * but has had a number of corrected errors and is better taken
2871  * out.
2872  *
2873  * The actual policy on when to do that is maintained by
2874  * user space.
2875  *
2876  * This should never impact any application or cause data loss,
2877  * however it might take some time.
2878  *
2879  * This is not a 100% solution for all memory, but tries to be
2880  * ``good enough'' for the majority of memory.
2881  */
soft_offline_page(unsigned long pfn,int flags)2882 int soft_offline_page(unsigned long pfn, int flags)
2883 {
2884 	int ret;
2885 	bool try_again = true;
2886 	struct page *page;
2887 
2888 	if (!pfn_valid(pfn)) {
2889 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2890 		return -ENXIO;
2891 	}
2892 
2893 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2894 	page = pfn_to_online_page(pfn);
2895 	if (!page) {
2896 		put_ref_page(pfn, flags);
2897 		return -EIO;
2898 	}
2899 
2900 	if (!sysctl_enable_soft_offline) {
2901 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2902 		put_ref_page(pfn, flags);
2903 		return -EOPNOTSUPP;
2904 	}
2905 
2906 	mutex_lock(&mf_mutex);
2907 
2908 	if (PageHWPoison(page)) {
2909 		pr_info("%#lx: page already poisoned\n", pfn);
2910 		put_ref_page(pfn, flags);
2911 		mutex_unlock(&mf_mutex);
2912 		return 0;
2913 	}
2914 
2915 retry:
2916 	get_online_mems();
2917 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2918 	put_online_mems();
2919 
2920 	if (hwpoison_filter(page)) {
2921 		if (ret > 0)
2922 			put_page(page);
2923 
2924 		mutex_unlock(&mf_mutex);
2925 		return -EOPNOTSUPP;
2926 	}
2927 
2928 	if (ret > 0) {
2929 		ret = soft_offline_in_use_page(page);
2930 	} else if (ret == 0) {
2931 		if (!page_handle_poison(page, true, false)) {
2932 			if (try_again) {
2933 				try_again = false;
2934 				flags &= ~MF_COUNT_INCREASED;
2935 				goto retry;
2936 			}
2937 			ret = -EBUSY;
2938 		}
2939 	}
2940 
2941 	mutex_unlock(&mf_mutex);
2942 
2943 	return ret;
2944 }
2945