1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/mm_inline.h>
11 #include <linux/kthread.h>
12 #include <linux/khugepaged.h>
13 #include <linux/freezer.h>
14 #include <linux/mman.h>
15 #include <linux/hashtable.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/page_idle.h>
18 #include <linux/page_table_check.h>
19 #include <linux/rcupdate_wait.h>
20 #include <linux/leafops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/dax.h>
23 #include <linux/ksm.h>
24 #include <linux/pgalloc.h>
25
26 #include <asm/tlb.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29
30 enum scan_result {
31 SCAN_FAIL,
32 SCAN_SUCCEED,
33 SCAN_NO_PTE_TABLE,
34 SCAN_PMD_MAPPED,
35 SCAN_EXCEED_NONE_PTE,
36 SCAN_EXCEED_SWAP_PTE,
37 SCAN_EXCEED_SHARED_PTE,
38 SCAN_PTE_NON_PRESENT,
39 SCAN_PTE_UFFD_WP,
40 SCAN_PTE_MAPPED_HUGEPAGE,
41 SCAN_LACK_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
48 SCAN_PAGE_COMPOUND,
49 SCAN_ANY_PROCESS,
50 SCAN_VMA_NULL,
51 SCAN_VMA_CHECK,
52 SCAN_ADDRESS_RANGE,
53 SCAN_DEL_PAGE_LRU,
54 SCAN_ALLOC_HUGE_PAGE_FAIL,
55 SCAN_CGROUP_CHARGE_FAIL,
56 SCAN_TRUNCATED,
57 SCAN_PAGE_HAS_PRIVATE,
58 SCAN_STORE_FAILED,
59 SCAN_COPY_MC,
60 SCAN_PAGE_FILLED,
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 static struct task_struct *khugepaged_thread __read_mostly;
67 static DEFINE_MUTEX(khugepaged_mutex);
68
69 /* default scan 8*HPAGE_PMD_NR ptes (or vmas) every 10 second */
70 static unsigned int khugepaged_pages_to_scan __read_mostly;
71 static unsigned int khugepaged_pages_collapsed;
72 static unsigned int khugepaged_full_scans;
73 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
74 /* during fragmentation poll the hugepage allocator once every minute */
75 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
76 static unsigned long khugepaged_sleep_expire;
77 static DEFINE_SPINLOCK(khugepaged_mm_lock);
78 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
79 /*
80 * default collapse hugepages if there is at least one pte mapped like
81 * it would have happened if the vma was large enough during page
82 * fault.
83 *
84 * Note that these are only respected if collapse was initiated by khugepaged.
85 */
86 unsigned int khugepaged_max_ptes_none __read_mostly;
87 static unsigned int khugepaged_max_ptes_swap __read_mostly;
88 static unsigned int khugepaged_max_ptes_shared __read_mostly;
89
90 #define MM_SLOTS_HASH_BITS 10
91 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
92
93 static struct kmem_cache *mm_slot_cache __ro_after_init;
94
95 struct collapse_control {
96 bool is_khugepaged;
97
98 /* Num pages scanned per node */
99 u32 node_load[MAX_NUMNODES];
100
101 /* nodemask for allocation fallback */
102 nodemask_t alloc_nmask;
103 };
104
105 /**
106 * struct khugepaged_scan - cursor for scanning
107 * @mm_head: the head of the mm list to scan
108 * @mm_slot: the current mm_slot we are scanning
109 * @address: the next address inside that to be scanned
110 *
111 * There is only the one khugepaged_scan instance of this cursor structure.
112 */
113 struct khugepaged_scan {
114 struct list_head mm_head;
115 struct mm_slot *mm_slot;
116 unsigned long address;
117 };
118
119 static struct khugepaged_scan khugepaged_scan = {
120 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
121 };
122
123 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)124 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
125 struct kobj_attribute *attr,
126 char *buf)
127 {
128 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
129 }
130
__sleep_millisecs_store(const char * buf,size_t count,unsigned int * millisecs)131 static ssize_t __sleep_millisecs_store(const char *buf, size_t count,
132 unsigned int *millisecs)
133 {
134 unsigned int msecs;
135 int err;
136
137 err = kstrtouint(buf, 10, &msecs);
138 if (err)
139 return -EINVAL;
140
141 *millisecs = msecs;
142 khugepaged_sleep_expire = 0;
143 wake_up_interruptible(&khugepaged_wait);
144
145 return count;
146 }
147
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)148 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
149 struct kobj_attribute *attr,
150 const char *buf, size_t count)
151 {
152 return __sleep_millisecs_store(buf, count, &khugepaged_scan_sleep_millisecs);
153 }
154 static struct kobj_attribute scan_sleep_millisecs_attr =
155 __ATTR_RW(scan_sleep_millisecs);
156
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)157 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
158 struct kobj_attribute *attr,
159 char *buf)
160 {
161 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
162 }
163
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)164 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
165 struct kobj_attribute *attr,
166 const char *buf, size_t count)
167 {
168 return __sleep_millisecs_store(buf, count, &khugepaged_alloc_sleep_millisecs);
169 }
170 static struct kobj_attribute alloc_sleep_millisecs_attr =
171 __ATTR_RW(alloc_sleep_millisecs);
172
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)173 static ssize_t pages_to_scan_show(struct kobject *kobj,
174 struct kobj_attribute *attr,
175 char *buf)
176 {
177 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
178 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)179 static ssize_t pages_to_scan_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
182 {
183 unsigned int pages;
184 int err;
185
186 err = kstrtouint(buf, 10, &pages);
187 if (err || !pages)
188 return -EINVAL;
189
190 khugepaged_pages_to_scan = pages;
191
192 return count;
193 }
194 static struct kobj_attribute pages_to_scan_attr =
195 __ATTR_RW(pages_to_scan);
196
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)197 static ssize_t pages_collapsed_show(struct kobject *kobj,
198 struct kobj_attribute *attr,
199 char *buf)
200 {
201 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
202 }
203 static struct kobj_attribute pages_collapsed_attr =
204 __ATTR_RO(pages_collapsed);
205
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)206 static ssize_t full_scans_show(struct kobject *kobj,
207 struct kobj_attribute *attr,
208 char *buf)
209 {
210 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
211 }
212 static struct kobj_attribute full_scans_attr =
213 __ATTR_RO(full_scans);
214
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)215 static ssize_t defrag_show(struct kobject *kobj,
216 struct kobj_attribute *attr, char *buf)
217 {
218 return single_hugepage_flag_show(kobj, attr, buf,
219 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
220 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)221 static ssize_t defrag_store(struct kobject *kobj,
222 struct kobj_attribute *attr,
223 const char *buf, size_t count)
224 {
225 return single_hugepage_flag_store(kobj, attr, buf, count,
226 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
227 }
228 static struct kobj_attribute khugepaged_defrag_attr =
229 __ATTR_RW(defrag);
230
231 /*
232 * max_ptes_none controls if khugepaged should collapse hugepages over
233 * any unmapped ptes in turn potentially increasing the memory
234 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
235 * reduce the available free memory in the system as it
236 * runs. Increasing max_ptes_none will instead potentially reduce the
237 * free memory in the system during the khugepaged scan.
238 */
max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)239 static ssize_t max_ptes_none_show(struct kobject *kobj,
240 struct kobj_attribute *attr,
241 char *buf)
242 {
243 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
244 }
max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)245 static ssize_t max_ptes_none_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
248 {
249 int err;
250 unsigned long max_ptes_none;
251
252 err = kstrtoul(buf, 10, &max_ptes_none);
253 if (err || max_ptes_none > HPAGE_PMD_NR - 1)
254 return -EINVAL;
255
256 khugepaged_max_ptes_none = max_ptes_none;
257
258 return count;
259 }
260 static struct kobj_attribute khugepaged_max_ptes_none_attr =
261 __ATTR_RW(max_ptes_none);
262
max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)263 static ssize_t max_ptes_swap_show(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 char *buf)
266 {
267 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
268 }
269
max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)270 static ssize_t max_ptes_swap_store(struct kobject *kobj,
271 struct kobj_attribute *attr,
272 const char *buf, size_t count)
273 {
274 int err;
275 unsigned long max_ptes_swap;
276
277 err = kstrtoul(buf, 10, &max_ptes_swap);
278 if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
279 return -EINVAL;
280
281 khugepaged_max_ptes_swap = max_ptes_swap;
282
283 return count;
284 }
285
286 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
287 __ATTR_RW(max_ptes_swap);
288
max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)289 static ssize_t max_ptes_shared_show(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 char *buf)
292 {
293 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
294 }
295
max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)296 static ssize_t max_ptes_shared_store(struct kobject *kobj,
297 struct kobj_attribute *attr,
298 const char *buf, size_t count)
299 {
300 int err;
301 unsigned long max_ptes_shared;
302
303 err = kstrtoul(buf, 10, &max_ptes_shared);
304 if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
305 return -EINVAL;
306
307 khugepaged_max_ptes_shared = max_ptes_shared;
308
309 return count;
310 }
311
312 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
313 __ATTR_RW(max_ptes_shared);
314
315 static struct attribute *khugepaged_attr[] = {
316 &khugepaged_defrag_attr.attr,
317 &khugepaged_max_ptes_none_attr.attr,
318 &khugepaged_max_ptes_swap_attr.attr,
319 &khugepaged_max_ptes_shared_attr.attr,
320 &pages_to_scan_attr.attr,
321 &pages_collapsed_attr.attr,
322 &full_scans_attr.attr,
323 &scan_sleep_millisecs_attr.attr,
324 &alloc_sleep_millisecs_attr.attr,
325 NULL,
326 };
327
328 struct attribute_group khugepaged_attr_group = {
329 .attrs = khugepaged_attr,
330 .name = "khugepaged",
331 };
332 #endif /* CONFIG_SYSFS */
333
pte_none_or_zero(pte_t pte)334 static bool pte_none_or_zero(pte_t pte)
335 {
336 if (pte_none(pte))
337 return true;
338 return pte_present(pte) && is_zero_pfn(pte_pfn(pte));
339 }
340
hugepage_madvise(struct vm_area_struct * vma,vm_flags_t * vm_flags,int advice)341 int hugepage_madvise(struct vm_area_struct *vma,
342 vm_flags_t *vm_flags, int advice)
343 {
344 switch (advice) {
345 case MADV_HUGEPAGE:
346 #ifdef CONFIG_S390
347 /*
348 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
349 * can't handle this properly after s390_enable_sie, so we simply
350 * ignore the madvise to prevent qemu from causing a SIGSEGV.
351 */
352 if (mm_has_pgste(vma->vm_mm))
353 return 0;
354 #endif
355 *vm_flags &= ~VM_NOHUGEPAGE;
356 *vm_flags |= VM_HUGEPAGE;
357 /*
358 * If the vma become good for khugepaged to scan,
359 * register it here without waiting a page fault that
360 * may not happen any time soon.
361 */
362 khugepaged_enter_vma(vma, *vm_flags);
363 break;
364 case MADV_NOHUGEPAGE:
365 *vm_flags &= ~VM_HUGEPAGE;
366 *vm_flags |= VM_NOHUGEPAGE;
367 /*
368 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
369 * this vma even if we leave the mm registered in khugepaged if
370 * it got registered before VM_NOHUGEPAGE was set.
371 */
372 break;
373 }
374
375 return 0;
376 }
377
khugepaged_init(void)378 int __init khugepaged_init(void)
379 {
380 mm_slot_cache = KMEM_CACHE(mm_slot, 0);
381 if (!mm_slot_cache)
382 return -ENOMEM;
383
384 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
385 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
386 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
387 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
388
389 return 0;
390 }
391
khugepaged_destroy(void)392 void __init khugepaged_destroy(void)
393 {
394 kmem_cache_destroy(mm_slot_cache);
395 }
396
hpage_collapse_test_exit(struct mm_struct * mm)397 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
398 {
399 return atomic_read(&mm->mm_users) == 0;
400 }
401
hpage_collapse_test_exit_or_disable(struct mm_struct * mm)402 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
403 {
404 return hpage_collapse_test_exit(mm) ||
405 mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm);
406 }
407
hugepage_pmd_enabled(void)408 static bool hugepage_pmd_enabled(void)
409 {
410 /*
411 * We cover the anon, shmem and the file-backed case here; file-backed
412 * hugepages, when configured in, are determined by the global control.
413 * Anon pmd-sized hugepages are determined by the pmd-size control.
414 * Shmem pmd-sized hugepages are also determined by its pmd-size control,
415 * except when the global shmem_huge is set to SHMEM_HUGE_DENY.
416 */
417 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
418 hugepage_global_enabled())
419 return true;
420 if (test_bit(PMD_ORDER, &huge_anon_orders_always))
421 return true;
422 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
423 return true;
424 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
425 hugepage_global_enabled())
426 return true;
427 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
428 return true;
429 return false;
430 }
431
__khugepaged_enter(struct mm_struct * mm)432 void __khugepaged_enter(struct mm_struct *mm)
433 {
434 struct mm_slot *slot;
435 int wakeup;
436
437 /* __khugepaged_exit() must not run from under us */
438 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
439 if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm)))
440 return;
441
442 slot = mm_slot_alloc(mm_slot_cache);
443 if (!slot)
444 return;
445
446 spin_lock(&khugepaged_mm_lock);
447 mm_slot_insert(mm_slots_hash, mm, slot);
448 /*
449 * Insert just behind the scanning cursor, to let the area settle
450 * down a little.
451 */
452 wakeup = list_empty(&khugepaged_scan.mm_head);
453 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
454 spin_unlock(&khugepaged_mm_lock);
455
456 mmgrab(mm);
457 if (wakeup)
458 wake_up_interruptible(&khugepaged_wait);
459 }
460
khugepaged_enter_vma(struct vm_area_struct * vma,vm_flags_t vm_flags)461 void khugepaged_enter_vma(struct vm_area_struct *vma,
462 vm_flags_t vm_flags)
463 {
464 if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) &&
465 hugepage_pmd_enabled()) {
466 if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER))
467 __khugepaged_enter(vma->vm_mm);
468 }
469 }
470
__khugepaged_exit(struct mm_struct * mm)471 void __khugepaged_exit(struct mm_struct *mm)
472 {
473 struct mm_slot *slot;
474 int free = 0;
475
476 spin_lock(&khugepaged_mm_lock);
477 slot = mm_slot_lookup(mm_slots_hash, mm);
478 if (slot && khugepaged_scan.mm_slot != slot) {
479 hash_del(&slot->hash);
480 list_del(&slot->mm_node);
481 free = 1;
482 }
483 spin_unlock(&khugepaged_mm_lock);
484
485 if (free) {
486 mm_flags_clear(MMF_VM_HUGEPAGE, mm);
487 mm_slot_free(mm_slot_cache, slot);
488 mmdrop(mm);
489 } else if (slot) {
490 /*
491 * This is required to serialize against
492 * hpage_collapse_test_exit() (which is guaranteed to run
493 * under mmap sem read mode). Stop here (after we return all
494 * pagetables will be destroyed) until khugepaged has finished
495 * working on the pagetables under the mmap_lock.
496 */
497 mmap_write_lock(mm);
498 mmap_write_unlock(mm);
499 }
500 }
501
release_pte_folio(struct folio * folio)502 static void release_pte_folio(struct folio *folio)
503 {
504 node_stat_mod_folio(folio,
505 NR_ISOLATED_ANON + folio_is_file_lru(folio),
506 -folio_nr_pages(folio));
507 folio_unlock(folio);
508 folio_putback_lru(folio);
509 }
510
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)511 static void release_pte_pages(pte_t *pte, pte_t *_pte,
512 struct list_head *compound_pagelist)
513 {
514 struct folio *folio, *tmp;
515
516 while (--_pte >= pte) {
517 pte_t pteval = ptep_get(_pte);
518 unsigned long pfn;
519
520 if (pte_none(pteval))
521 continue;
522 VM_WARN_ON_ONCE(!pte_present(pteval));
523 pfn = pte_pfn(pteval);
524 if (is_zero_pfn(pfn))
525 continue;
526 folio = pfn_folio(pfn);
527 if (folio_test_large(folio))
528 continue;
529 release_pte_folio(folio);
530 }
531
532 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
533 list_del(&folio->lru);
534 release_pte_folio(folio);
535 }
536 }
537
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long start_addr,pte_t * pte,struct collapse_control * cc,struct list_head * compound_pagelist)538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
539 unsigned long start_addr,
540 pte_t *pte,
541 struct collapse_control *cc,
542 struct list_head *compound_pagelist)
543 {
544 struct page *page = NULL;
545 struct folio *folio = NULL;
546 unsigned long addr = start_addr;
547 pte_t *_pte;
548 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
549
550 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
551 _pte++, addr += PAGE_SIZE) {
552 pte_t pteval = ptep_get(_pte);
553 if (pte_none_or_zero(pteval)) {
554 ++none_or_zero;
555 if (!userfaultfd_armed(vma) &&
556 (!cc->is_khugepaged ||
557 none_or_zero <= khugepaged_max_ptes_none)) {
558 continue;
559 } else {
560 result = SCAN_EXCEED_NONE_PTE;
561 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
562 goto out;
563 }
564 }
565 if (!pte_present(pteval)) {
566 result = SCAN_PTE_NON_PRESENT;
567 goto out;
568 }
569 if (pte_uffd_wp(pteval)) {
570 result = SCAN_PTE_UFFD_WP;
571 goto out;
572 }
573 page = vm_normal_page(vma, addr, pteval);
574 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
575 result = SCAN_PAGE_NULL;
576 goto out;
577 }
578
579 folio = page_folio(page);
580 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
581
582 /* See hpage_collapse_scan_pmd(). */
583 if (folio_maybe_mapped_shared(folio)) {
584 ++shared;
585 if (cc->is_khugepaged &&
586 shared > khugepaged_max_ptes_shared) {
587 result = SCAN_EXCEED_SHARED_PTE;
588 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
589 goto out;
590 }
591 }
592
593 if (folio_test_large(folio)) {
594 struct folio *f;
595
596 /*
597 * Check if we have dealt with the compound page
598 * already
599 */
600 list_for_each_entry(f, compound_pagelist, lru) {
601 if (folio == f)
602 goto next;
603 }
604 }
605
606 /*
607 * We can do it before folio_isolate_lru because the
608 * folio can't be freed from under us. NOTE: PG_lock
609 * is needed to serialize against split_huge_page
610 * when invoked from the VM.
611 */
612 if (!folio_trylock(folio)) {
613 result = SCAN_PAGE_LOCK;
614 goto out;
615 }
616
617 /*
618 * Check if the page has any GUP (or other external) pins.
619 *
620 * The page table that maps the page has been already unlinked
621 * from the page table tree and this process cannot get
622 * an additional pin on the page.
623 *
624 * New pins can come later if the page is shared across fork,
625 * but not from this process. The other process cannot write to
626 * the page, only trigger CoW.
627 */
628 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
629 folio_unlock(folio);
630 result = SCAN_PAGE_COUNT;
631 goto out;
632 }
633
634 /*
635 * Isolate the page to avoid collapsing an hugepage
636 * currently in use by the VM.
637 */
638 if (!folio_isolate_lru(folio)) {
639 folio_unlock(folio);
640 result = SCAN_DEL_PAGE_LRU;
641 goto out;
642 }
643 node_stat_mod_folio(folio,
644 NR_ISOLATED_ANON + folio_is_file_lru(folio),
645 folio_nr_pages(folio));
646 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
647 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
648
649 if (folio_test_large(folio))
650 list_add_tail(&folio->lru, compound_pagelist);
651 next:
652 /*
653 * If collapse was initiated by khugepaged, check that there is
654 * enough young pte to justify collapsing the page
655 */
656 if (cc->is_khugepaged &&
657 (pte_young(pteval) || folio_test_young(folio) ||
658 folio_test_referenced(folio) ||
659 mmu_notifier_test_young(vma->vm_mm, addr)))
660 referenced++;
661 }
662
663 if (unlikely(cc->is_khugepaged && !referenced)) {
664 result = SCAN_LACK_REFERENCED_PAGE;
665 } else {
666 result = SCAN_SUCCEED;
667 trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
668 referenced, result);
669 return result;
670 }
671 out:
672 release_pte_pages(pte, _pte, compound_pagelist);
673 trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
674 referenced, result);
675 return result;
676 }
677
__collapse_huge_page_copy_succeeded(pte_t * pte,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)678 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
679 struct vm_area_struct *vma,
680 unsigned long address,
681 spinlock_t *ptl,
682 struct list_head *compound_pagelist)
683 {
684 unsigned long end = address + HPAGE_PMD_SIZE;
685 struct folio *src, *tmp;
686 pte_t pteval;
687 pte_t *_pte;
688 unsigned int nr_ptes;
689
690 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes,
691 address += nr_ptes * PAGE_SIZE) {
692 nr_ptes = 1;
693 pteval = ptep_get(_pte);
694 if (pte_none_or_zero(pteval)) {
695 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
696 if (pte_none(pteval))
697 continue;
698 /*
699 * ptl mostly unnecessary.
700 */
701 spin_lock(ptl);
702 ptep_clear(vma->vm_mm, address, _pte);
703 spin_unlock(ptl);
704 ksm_might_unmap_zero_page(vma->vm_mm, pteval);
705 } else {
706 struct page *src_page = pte_page(pteval);
707
708 src = page_folio(src_page);
709
710 if (folio_test_large(src)) {
711 unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT;
712
713 nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes);
714 } else {
715 release_pte_folio(src);
716 }
717
718 /*
719 * ptl mostly unnecessary, but preempt has to
720 * be disabled to update the per-cpu stats
721 * inside folio_remove_rmap_pte().
722 */
723 spin_lock(ptl);
724 clear_ptes(vma->vm_mm, address, _pte, nr_ptes);
725 folio_remove_rmap_ptes(src, src_page, nr_ptes, vma);
726 spin_unlock(ptl);
727 free_swap_cache(src);
728 folio_put_refs(src, nr_ptes);
729 }
730 }
731
732 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
733 list_del(&src->lru);
734 node_stat_sub_folio(src, NR_ISOLATED_ANON +
735 folio_is_file_lru(src));
736 folio_unlock(src);
737 free_swap_cache(src);
738 folio_putback_lru(src);
739 }
740 }
741
__collapse_huge_page_copy_failed(pte_t * pte,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,struct list_head * compound_pagelist)742 static void __collapse_huge_page_copy_failed(pte_t *pte,
743 pmd_t *pmd,
744 pmd_t orig_pmd,
745 struct vm_area_struct *vma,
746 struct list_head *compound_pagelist)
747 {
748 spinlock_t *pmd_ptl;
749
750 /*
751 * Re-establish the PMD to point to the original page table
752 * entry. Restoring PMD needs to be done prior to releasing
753 * pages. Since pages are still isolated and locked here,
754 * acquiring anon_vma_lock_write is unnecessary.
755 */
756 pmd_ptl = pmd_lock(vma->vm_mm, pmd);
757 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
758 spin_unlock(pmd_ptl);
759 /*
760 * Release both raw and compound pages isolated
761 * in __collapse_huge_page_isolate.
762 */
763 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
764 }
765
766 /*
767 * __collapse_huge_page_copy - attempts to copy memory contents from raw
768 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
769 * otherwise restores the original page table and releases isolated raw pages.
770 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
771 *
772 * @pte: starting of the PTEs to copy from
773 * @folio: the new hugepage to copy contents to
774 * @pmd: pointer to the new hugepage's PMD
775 * @orig_pmd: the original raw pages' PMD
776 * @vma: the original raw pages' virtual memory area
777 * @address: starting address to copy
778 * @ptl: lock on raw pages' PTEs
779 * @compound_pagelist: list that stores compound pages
780 */
__collapse_huge_page_copy(pte_t * pte,struct folio * folio,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)781 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
782 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
783 unsigned long address, spinlock_t *ptl,
784 struct list_head *compound_pagelist)
785 {
786 unsigned int i;
787 int result = SCAN_SUCCEED;
788
789 /*
790 * Copying pages' contents is subject to memory poison at any iteration.
791 */
792 for (i = 0; i < HPAGE_PMD_NR; i++) {
793 pte_t pteval = ptep_get(pte + i);
794 struct page *page = folio_page(folio, i);
795 unsigned long src_addr = address + i * PAGE_SIZE;
796 struct page *src_page;
797
798 if (pte_none_or_zero(pteval)) {
799 clear_user_highpage(page, src_addr);
800 continue;
801 }
802 src_page = pte_page(pteval);
803 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
804 result = SCAN_COPY_MC;
805 break;
806 }
807 }
808
809 if (likely(result == SCAN_SUCCEED))
810 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
811 compound_pagelist);
812 else
813 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
814 compound_pagelist);
815
816 return result;
817 }
818
khugepaged_alloc_sleep(void)819 static void khugepaged_alloc_sleep(void)
820 {
821 DEFINE_WAIT(wait);
822
823 add_wait_queue(&khugepaged_wait, &wait);
824 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
825 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
826 remove_wait_queue(&khugepaged_wait, &wait);
827 }
828
829 struct collapse_control khugepaged_collapse_control = {
830 .is_khugepaged = true,
831 };
832
hpage_collapse_scan_abort(int nid,struct collapse_control * cc)833 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
834 {
835 int i;
836
837 /*
838 * If node_reclaim_mode is disabled, then no extra effort is made to
839 * allocate memory locally.
840 */
841 if (!node_reclaim_enabled())
842 return false;
843
844 /* If there is a count for this node already, it must be acceptable */
845 if (cc->node_load[nid])
846 return false;
847
848 for (i = 0; i < MAX_NUMNODES; i++) {
849 if (!cc->node_load[i])
850 continue;
851 if (node_distance(nid, i) > node_reclaim_distance)
852 return true;
853 }
854 return false;
855 }
856
857 #define khugepaged_defrag() \
858 (transparent_hugepage_flags & \
859 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
860
861 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)862 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
863 {
864 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
865 }
866
867 #ifdef CONFIG_NUMA
hpage_collapse_find_target_node(struct collapse_control * cc)868 static int hpage_collapse_find_target_node(struct collapse_control *cc)
869 {
870 int nid, target_node = 0, max_value = 0;
871
872 /* find first node with max normal pages hit */
873 for (nid = 0; nid < MAX_NUMNODES; nid++)
874 if (cc->node_load[nid] > max_value) {
875 max_value = cc->node_load[nid];
876 target_node = nid;
877 }
878
879 for_each_online_node(nid) {
880 if (max_value == cc->node_load[nid])
881 node_set(nid, cc->alloc_nmask);
882 }
883
884 return target_node;
885 }
886 #else
hpage_collapse_find_target_node(struct collapse_control * cc)887 static int hpage_collapse_find_target_node(struct collapse_control *cc)
888 {
889 return 0;
890 }
891 #endif
892
893 /*
894 * If mmap_lock temporarily dropped, revalidate vma
895 * before taking mmap_lock.
896 * Returns enum scan_result value.
897 */
898
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,bool expect_anon,struct vm_area_struct ** vmap,struct collapse_control * cc)899 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
900 bool expect_anon,
901 struct vm_area_struct **vmap,
902 struct collapse_control *cc)
903 {
904 struct vm_area_struct *vma;
905 enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED :
906 TVA_FORCED_COLLAPSE;
907
908 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
909 return SCAN_ANY_PROCESS;
910
911 *vmap = vma = find_vma(mm, address);
912 if (!vma)
913 return SCAN_VMA_NULL;
914
915 if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
916 return SCAN_ADDRESS_RANGE;
917 if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER))
918 return SCAN_VMA_CHECK;
919 /*
920 * Anon VMA expected, the address may be unmapped then
921 * remapped to file after khugepaged reaquired the mmap_lock.
922 *
923 * thp_vma_allowable_order may return true for qualified file
924 * vmas.
925 */
926 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
927 return SCAN_PAGE_ANON;
928 return SCAN_SUCCEED;
929 }
930
check_pmd_state(pmd_t * pmd)931 static inline int check_pmd_state(pmd_t *pmd)
932 {
933 pmd_t pmde = pmdp_get_lockless(pmd);
934
935 if (pmd_none(pmde))
936 return SCAN_NO_PTE_TABLE;
937
938 /*
939 * The folio may be under migration when khugepaged is trying to
940 * collapse it. Migration success or failure will eventually end
941 * up with a present PMD mapping a folio again.
942 */
943 if (pmd_is_migration_entry(pmde))
944 return SCAN_PMD_MAPPED;
945 if (!pmd_present(pmde))
946 return SCAN_NO_PTE_TABLE;
947 if (pmd_trans_huge(pmde))
948 return SCAN_PMD_MAPPED;
949 if (pmd_bad(pmde))
950 return SCAN_NO_PTE_TABLE;
951 return SCAN_SUCCEED;
952 }
953
find_pmd_or_thp_or_none(struct mm_struct * mm,unsigned long address,pmd_t ** pmd)954 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
955 unsigned long address,
956 pmd_t **pmd)
957 {
958 *pmd = mm_find_pmd(mm, address);
959 if (!*pmd)
960 return SCAN_NO_PTE_TABLE;
961
962 return check_pmd_state(*pmd);
963 }
964
check_pmd_still_valid(struct mm_struct * mm,unsigned long address,pmd_t * pmd)965 static int check_pmd_still_valid(struct mm_struct *mm,
966 unsigned long address,
967 pmd_t *pmd)
968 {
969 pmd_t *new_pmd;
970 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
971
972 if (result != SCAN_SUCCEED)
973 return result;
974 if (new_pmd != pmd)
975 return SCAN_FAIL;
976 return SCAN_SUCCEED;
977 }
978
979 /*
980 * Bring missing pages in from swap, to complete THP collapse.
981 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
982 *
983 * Called and returns without pte mapped or spinlocks held.
984 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
985 */
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start_addr,pmd_t * pmd,int referenced)986 static int __collapse_huge_page_swapin(struct mm_struct *mm,
987 struct vm_area_struct *vma,
988 unsigned long start_addr, pmd_t *pmd,
989 int referenced)
990 {
991 int swapped_in = 0;
992 vm_fault_t ret = 0;
993 unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE);
994 int result;
995 pte_t *pte = NULL;
996 spinlock_t *ptl;
997
998 for (addr = start_addr; addr < end; addr += PAGE_SIZE) {
999 struct vm_fault vmf = {
1000 .vma = vma,
1001 .address = addr,
1002 .pgoff = linear_page_index(vma, addr),
1003 .flags = FAULT_FLAG_ALLOW_RETRY,
1004 .pmd = pmd,
1005 };
1006
1007 if (!pte++) {
1008 /*
1009 * Here the ptl is only used to check pte_same() in
1010 * do_swap_page(), so readonly version is enough.
1011 */
1012 pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
1013 if (!pte) {
1014 mmap_read_unlock(mm);
1015 result = SCAN_NO_PTE_TABLE;
1016 goto out;
1017 }
1018 }
1019
1020 vmf.orig_pte = ptep_get_lockless(pte);
1021 if (pte_none(vmf.orig_pte) ||
1022 pte_present(vmf.orig_pte))
1023 continue;
1024
1025 vmf.pte = pte;
1026 vmf.ptl = ptl;
1027 ret = do_swap_page(&vmf);
1028 /* Which unmaps pte (after perhaps re-checking the entry) */
1029 pte = NULL;
1030
1031 /*
1032 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1033 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1034 * we do not retry here and swap entry will remain in pagetable
1035 * resulting in later failure.
1036 */
1037 if (ret & VM_FAULT_RETRY) {
1038 /* Likely, but not guaranteed, that page lock failed */
1039 result = SCAN_PAGE_LOCK;
1040 goto out;
1041 }
1042 if (ret & VM_FAULT_ERROR) {
1043 mmap_read_unlock(mm);
1044 result = SCAN_FAIL;
1045 goto out;
1046 }
1047 swapped_in++;
1048 }
1049
1050 if (pte)
1051 pte_unmap(pte);
1052
1053 /* Drain LRU cache to remove extra pin on the swapped in pages */
1054 if (swapped_in)
1055 lru_add_drain();
1056
1057 result = SCAN_SUCCEED;
1058 out:
1059 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1060 return result;
1061 }
1062
alloc_charge_folio(struct folio ** foliop,struct mm_struct * mm,struct collapse_control * cc)1063 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1064 struct collapse_control *cc)
1065 {
1066 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1067 GFP_TRANSHUGE);
1068 int node = hpage_collapse_find_target_node(cc);
1069 struct folio *folio;
1070
1071 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1072 if (!folio) {
1073 *foliop = NULL;
1074 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1075 return SCAN_ALLOC_HUGE_PAGE_FAIL;
1076 }
1077
1078 count_vm_event(THP_COLLAPSE_ALLOC);
1079 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1080 folio_put(folio);
1081 *foliop = NULL;
1082 return SCAN_CGROUP_CHARGE_FAIL;
1083 }
1084
1085 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1086
1087 *foliop = folio;
1088 return SCAN_SUCCEED;
1089 }
1090
collapse_huge_page(struct mm_struct * mm,unsigned long address,int referenced,int unmapped,struct collapse_control * cc)1091 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1092 int referenced, int unmapped,
1093 struct collapse_control *cc)
1094 {
1095 LIST_HEAD(compound_pagelist);
1096 pmd_t *pmd, _pmd;
1097 pte_t *pte;
1098 pgtable_t pgtable;
1099 struct folio *folio;
1100 spinlock_t *pmd_ptl, *pte_ptl;
1101 int result = SCAN_FAIL;
1102 struct vm_area_struct *vma;
1103 struct mmu_notifier_range range;
1104
1105 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1106
1107 /*
1108 * Before allocating the hugepage, release the mmap_lock read lock.
1109 * The allocation can take potentially a long time if it involves
1110 * sync compaction, and we do not need to hold the mmap_lock during
1111 * that. We will recheck the vma after taking it again in write mode.
1112 */
1113 mmap_read_unlock(mm);
1114
1115 result = alloc_charge_folio(&folio, mm, cc);
1116 if (result != SCAN_SUCCEED)
1117 goto out_nolock;
1118
1119 mmap_read_lock(mm);
1120 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1121 if (result != SCAN_SUCCEED) {
1122 mmap_read_unlock(mm);
1123 goto out_nolock;
1124 }
1125
1126 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1127 if (result != SCAN_SUCCEED) {
1128 mmap_read_unlock(mm);
1129 goto out_nolock;
1130 }
1131
1132 if (unmapped) {
1133 /*
1134 * __collapse_huge_page_swapin will return with mmap_lock
1135 * released when it fails. So we jump out_nolock directly in
1136 * that case. Continuing to collapse causes inconsistency.
1137 */
1138 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1139 referenced);
1140 if (result != SCAN_SUCCEED)
1141 goto out_nolock;
1142 }
1143
1144 mmap_read_unlock(mm);
1145 /*
1146 * Prevent all access to pagetables with the exception of
1147 * gup_fast later handled by the ptep_clear_flush and the VM
1148 * handled by the anon_vma lock + PG_lock.
1149 *
1150 * UFFDIO_MOVE is prevented to race as well thanks to the
1151 * mmap_lock.
1152 */
1153 mmap_write_lock(mm);
1154 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1155 if (result != SCAN_SUCCEED)
1156 goto out_up_write;
1157 /* check if the pmd is still valid */
1158 vma_start_write(vma);
1159 result = check_pmd_still_valid(mm, address, pmd);
1160 if (result != SCAN_SUCCEED)
1161 goto out_up_write;
1162
1163 anon_vma_lock_write(vma->anon_vma);
1164
1165 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1166 address + HPAGE_PMD_SIZE);
1167 mmu_notifier_invalidate_range_start(&range);
1168
1169 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1170 /*
1171 * This removes any huge TLB entry from the CPU so we won't allow
1172 * huge and small TLB entries for the same virtual address to
1173 * avoid the risk of CPU bugs in that area.
1174 *
1175 * Parallel GUP-fast is fine since GUP-fast will back off when
1176 * it detects PMD is changed.
1177 */
1178 _pmd = pmdp_collapse_flush(vma, address, pmd);
1179 spin_unlock(pmd_ptl);
1180 mmu_notifier_invalidate_range_end(&range);
1181 tlb_remove_table_sync_one();
1182
1183 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1184 if (pte) {
1185 result = __collapse_huge_page_isolate(vma, address, pte, cc,
1186 &compound_pagelist);
1187 spin_unlock(pte_ptl);
1188 } else {
1189 result = SCAN_NO_PTE_TABLE;
1190 }
1191
1192 if (unlikely(result != SCAN_SUCCEED)) {
1193 if (pte)
1194 pte_unmap(pte);
1195 spin_lock(pmd_ptl);
1196 BUG_ON(!pmd_none(*pmd));
1197 /*
1198 * We can only use set_pmd_at when establishing
1199 * hugepmds and never for establishing regular pmds that
1200 * points to regular pagetables. Use pmd_populate for that
1201 */
1202 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1203 spin_unlock(pmd_ptl);
1204 anon_vma_unlock_write(vma->anon_vma);
1205 goto out_up_write;
1206 }
1207
1208 /*
1209 * All pages are isolated and locked so anon_vma rmap
1210 * can't run anymore.
1211 */
1212 anon_vma_unlock_write(vma->anon_vma);
1213
1214 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1215 vma, address, pte_ptl,
1216 &compound_pagelist);
1217 pte_unmap(pte);
1218 if (unlikely(result != SCAN_SUCCEED))
1219 goto out_up_write;
1220
1221 /*
1222 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1223 * copy_huge_page writes become visible before the set_pmd_at()
1224 * write.
1225 */
1226 __folio_mark_uptodate(folio);
1227 pgtable = pmd_pgtable(_pmd);
1228
1229 spin_lock(pmd_ptl);
1230 BUG_ON(!pmd_none(*pmd));
1231 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1232 map_anon_folio_pmd_nopf(folio, pmd, vma, address);
1233 spin_unlock(pmd_ptl);
1234
1235 folio = NULL;
1236
1237 result = SCAN_SUCCEED;
1238 out_up_write:
1239 mmap_write_unlock(mm);
1240 out_nolock:
1241 if (folio)
1242 folio_put(folio);
1243 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1244 return result;
1245 }
1246
hpage_collapse_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start_addr,bool * mmap_locked,struct collapse_control * cc)1247 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1248 struct vm_area_struct *vma,
1249 unsigned long start_addr, bool *mmap_locked,
1250 struct collapse_control *cc)
1251 {
1252 pmd_t *pmd;
1253 pte_t *pte, *_pte;
1254 int result = SCAN_FAIL, referenced = 0;
1255 int none_or_zero = 0, shared = 0;
1256 struct page *page = NULL;
1257 struct folio *folio = NULL;
1258 unsigned long addr;
1259 spinlock_t *ptl;
1260 int node = NUMA_NO_NODE, unmapped = 0;
1261
1262 VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK);
1263
1264 result = find_pmd_or_thp_or_none(mm, start_addr, &pmd);
1265 if (result != SCAN_SUCCEED)
1266 goto out;
1267
1268 memset(cc->node_load, 0, sizeof(cc->node_load));
1269 nodes_clear(cc->alloc_nmask);
1270 pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl);
1271 if (!pte) {
1272 result = SCAN_NO_PTE_TABLE;
1273 goto out;
1274 }
1275
1276 for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1277 _pte++, addr += PAGE_SIZE) {
1278 pte_t pteval = ptep_get(_pte);
1279 if (pte_none_or_zero(pteval)) {
1280 ++none_or_zero;
1281 if (!userfaultfd_armed(vma) &&
1282 (!cc->is_khugepaged ||
1283 none_or_zero <= khugepaged_max_ptes_none)) {
1284 continue;
1285 } else {
1286 result = SCAN_EXCEED_NONE_PTE;
1287 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1288 goto out_unmap;
1289 }
1290 }
1291 if (!pte_present(pteval)) {
1292 ++unmapped;
1293 if (!cc->is_khugepaged ||
1294 unmapped <= khugepaged_max_ptes_swap) {
1295 /*
1296 * Always be strict with uffd-wp
1297 * enabled swap entries. Please see
1298 * comment below for pte_uffd_wp().
1299 */
1300 if (pte_swp_uffd_wp_any(pteval)) {
1301 result = SCAN_PTE_UFFD_WP;
1302 goto out_unmap;
1303 }
1304 continue;
1305 } else {
1306 result = SCAN_EXCEED_SWAP_PTE;
1307 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1308 goto out_unmap;
1309 }
1310 }
1311 if (pte_uffd_wp(pteval)) {
1312 /*
1313 * Don't collapse the page if any of the small
1314 * PTEs are armed with uffd write protection.
1315 * Here we can also mark the new huge pmd as
1316 * write protected if any of the small ones is
1317 * marked but that could bring unknown
1318 * userfault messages that falls outside of
1319 * the registered range. So, just be simple.
1320 */
1321 result = SCAN_PTE_UFFD_WP;
1322 goto out_unmap;
1323 }
1324
1325 page = vm_normal_page(vma, addr, pteval);
1326 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1327 result = SCAN_PAGE_NULL;
1328 goto out_unmap;
1329 }
1330 folio = page_folio(page);
1331
1332 if (!folio_test_anon(folio)) {
1333 result = SCAN_PAGE_ANON;
1334 goto out_unmap;
1335 }
1336
1337 /*
1338 * We treat a single page as shared if any part of the THP
1339 * is shared.
1340 */
1341 if (folio_maybe_mapped_shared(folio)) {
1342 ++shared;
1343 if (cc->is_khugepaged &&
1344 shared > khugepaged_max_ptes_shared) {
1345 result = SCAN_EXCEED_SHARED_PTE;
1346 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1347 goto out_unmap;
1348 }
1349 }
1350
1351 /*
1352 * Record which node the original page is from and save this
1353 * information to cc->node_load[].
1354 * Khugepaged will allocate hugepage from the node has the max
1355 * hit record.
1356 */
1357 node = folio_nid(folio);
1358 if (hpage_collapse_scan_abort(node, cc)) {
1359 result = SCAN_SCAN_ABORT;
1360 goto out_unmap;
1361 }
1362 cc->node_load[node]++;
1363 if (!folio_test_lru(folio)) {
1364 result = SCAN_PAGE_LRU;
1365 goto out_unmap;
1366 }
1367 if (folio_test_locked(folio)) {
1368 result = SCAN_PAGE_LOCK;
1369 goto out_unmap;
1370 }
1371
1372 /*
1373 * Check if the page has any GUP (or other external) pins.
1374 *
1375 * Here the check may be racy:
1376 * it may see folio_mapcount() > folio_ref_count().
1377 * But such case is ephemeral we could always retry collapse
1378 * later. However it may report false positive if the page
1379 * has excessive GUP pins (i.e. 512). Anyway the same check
1380 * will be done again later the risk seems low.
1381 */
1382 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
1383 result = SCAN_PAGE_COUNT;
1384 goto out_unmap;
1385 }
1386
1387 /*
1388 * If collapse was initiated by khugepaged, check that there is
1389 * enough young pte to justify collapsing the page
1390 */
1391 if (cc->is_khugepaged &&
1392 (pte_young(pteval) || folio_test_young(folio) ||
1393 folio_test_referenced(folio) ||
1394 mmu_notifier_test_young(vma->vm_mm, addr)))
1395 referenced++;
1396 }
1397 if (cc->is_khugepaged &&
1398 (!referenced ||
1399 (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1400 result = SCAN_LACK_REFERENCED_PAGE;
1401 } else {
1402 result = SCAN_SUCCEED;
1403 }
1404 out_unmap:
1405 pte_unmap_unlock(pte, ptl);
1406 if (result == SCAN_SUCCEED) {
1407 result = collapse_huge_page(mm, start_addr, referenced,
1408 unmapped, cc);
1409 /* collapse_huge_page will return with the mmap_lock released */
1410 *mmap_locked = false;
1411 }
1412 out:
1413 trace_mm_khugepaged_scan_pmd(mm, folio, referenced,
1414 none_or_zero, result, unmapped);
1415 return result;
1416 }
1417
collect_mm_slot(struct mm_slot * slot)1418 static void collect_mm_slot(struct mm_slot *slot)
1419 {
1420 struct mm_struct *mm = slot->mm;
1421
1422 lockdep_assert_held(&khugepaged_mm_lock);
1423
1424 if (hpage_collapse_test_exit(mm)) {
1425 /* free mm_slot */
1426 hash_del(&slot->hash);
1427 list_del(&slot->mm_node);
1428
1429 /*
1430 * Not strictly needed because the mm exited already.
1431 *
1432 * mm_flags_clear(MMF_VM_HUGEPAGE, mm);
1433 */
1434
1435 /* khugepaged_mm_lock actually not necessary for the below */
1436 mm_slot_free(mm_slot_cache, slot);
1437 mmdrop(mm);
1438 }
1439 }
1440
1441 /* folio must be locked, and mmap_lock must be held */
set_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio,struct page * page)1442 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1443 pmd_t *pmdp, struct folio *folio, struct page *page)
1444 {
1445 struct mm_struct *mm = vma->vm_mm;
1446 struct vm_fault vmf = {
1447 .vma = vma,
1448 .address = addr,
1449 .flags = 0,
1450 };
1451 pgd_t *pgdp;
1452 p4d_t *p4dp;
1453 pud_t *pudp;
1454
1455 mmap_assert_locked(vma->vm_mm);
1456
1457 if (!pmdp) {
1458 pgdp = pgd_offset(mm, addr);
1459 p4dp = p4d_alloc(mm, pgdp, addr);
1460 if (!p4dp)
1461 return SCAN_FAIL;
1462 pudp = pud_alloc(mm, p4dp, addr);
1463 if (!pudp)
1464 return SCAN_FAIL;
1465 pmdp = pmd_alloc(mm, pudp, addr);
1466 if (!pmdp)
1467 return SCAN_FAIL;
1468 }
1469
1470 vmf.pmd = pmdp;
1471 if (do_set_pmd(&vmf, folio, page))
1472 return SCAN_FAIL;
1473
1474 folio_get(folio);
1475 return SCAN_SUCCEED;
1476 }
1477
1478 /**
1479 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1480 * address haddr.
1481 *
1482 * @mm: process address space where collapse happens
1483 * @addr: THP collapse address
1484 * @install_pmd: If a huge PMD should be installed
1485 *
1486 * This function checks whether all the PTEs in the PMD are pointing to the
1487 * right THP. If so, retract the page table so the THP can refault in with
1488 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1489 */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr,bool install_pmd)1490 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1491 bool install_pmd)
1492 {
1493 int nr_mapped_ptes = 0, result = SCAN_FAIL;
1494 unsigned int nr_batch_ptes;
1495 struct mmu_notifier_range range;
1496 bool notified = false;
1497 unsigned long haddr = addr & HPAGE_PMD_MASK;
1498 unsigned long end = haddr + HPAGE_PMD_SIZE;
1499 struct vm_area_struct *vma = vma_lookup(mm, haddr);
1500 struct folio *folio;
1501 pte_t *start_pte, *pte;
1502 pmd_t *pmd, pgt_pmd;
1503 spinlock_t *pml = NULL, *ptl;
1504 int i;
1505
1506 mmap_assert_locked(mm);
1507
1508 /* First check VMA found, in case page tables are being torn down */
1509 if (!vma || !vma->vm_file ||
1510 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1511 return SCAN_VMA_CHECK;
1512
1513 /* Fast check before locking page if already PMD-mapped */
1514 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1515 if (result == SCAN_PMD_MAPPED)
1516 return result;
1517
1518 /*
1519 * If we are here, we've succeeded in replacing all the native pages
1520 * in the page cache with a single hugepage. If a mm were to fault-in
1521 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1522 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1523 * analogously elide sysfs THP settings here and force collapse.
1524 */
1525 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
1526 return SCAN_VMA_CHECK;
1527
1528 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1529 if (userfaultfd_wp(vma))
1530 return SCAN_PTE_UFFD_WP;
1531
1532 folio = filemap_lock_folio(vma->vm_file->f_mapping,
1533 linear_page_index(vma, haddr));
1534 if (IS_ERR(folio))
1535 return SCAN_PAGE_NULL;
1536
1537 if (folio_order(folio) != HPAGE_PMD_ORDER) {
1538 result = SCAN_PAGE_COMPOUND;
1539 goto drop_folio;
1540 }
1541
1542 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1543 switch (result) {
1544 case SCAN_SUCCEED:
1545 break;
1546 case SCAN_NO_PTE_TABLE:
1547 /*
1548 * All pte entries have been removed and pmd cleared.
1549 * Skip all the pte checks and just update the pmd mapping.
1550 */
1551 goto maybe_install_pmd;
1552 default:
1553 goto drop_folio;
1554 }
1555
1556 result = SCAN_FAIL;
1557 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1558 if (!start_pte) /* mmap_lock + page lock should prevent this */
1559 goto drop_folio;
1560
1561 /* step 1: check all mapped PTEs are to the right huge page */
1562 for (i = 0, addr = haddr, pte = start_pte;
1563 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1564 struct page *page;
1565 pte_t ptent = ptep_get(pte);
1566
1567 /* empty pte, skip */
1568 if (pte_none(ptent))
1569 continue;
1570
1571 /* page swapped out, abort */
1572 if (!pte_present(ptent)) {
1573 result = SCAN_PTE_NON_PRESENT;
1574 goto abort;
1575 }
1576
1577 page = vm_normal_page(vma, addr, ptent);
1578 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1579 page = NULL;
1580 /*
1581 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1582 * page table, but the new page will not be a subpage of hpage.
1583 */
1584 if (folio_page(folio, i) != page)
1585 goto abort;
1586 }
1587
1588 pte_unmap_unlock(start_pte, ptl);
1589 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1590 haddr, haddr + HPAGE_PMD_SIZE);
1591 mmu_notifier_invalidate_range_start(&range);
1592 notified = true;
1593
1594 /*
1595 * pmd_lock covers a wider range than ptl, and (if split from mm's
1596 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1597 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1598 * inserts a valid as-if-COWed PTE without even looking up page cache.
1599 * So page lock of folio does not protect from it, so we must not drop
1600 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1601 */
1602 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1603 pml = pmd_lock(mm, pmd);
1604
1605 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1606 if (!start_pte) /* mmap_lock + page lock should prevent this */
1607 goto abort;
1608 if (!pml)
1609 spin_lock(ptl);
1610 else if (ptl != pml)
1611 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1612
1613 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1614 goto abort;
1615
1616 /* step 2: clear page table and adjust rmap */
1617 for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR;
1618 i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE,
1619 pte += nr_batch_ptes) {
1620 unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT;
1621 struct page *page;
1622 pte_t ptent = ptep_get(pte);
1623
1624 nr_batch_ptes = 1;
1625
1626 if (pte_none(ptent))
1627 continue;
1628 /*
1629 * We dropped ptl after the first scan, to do the mmu_notifier:
1630 * page lock stops more PTEs of the folio being faulted in, but
1631 * does not stop write faults COWing anon copies from existing
1632 * PTEs; and does not stop those being swapped out or migrated.
1633 */
1634 if (!pte_present(ptent)) {
1635 result = SCAN_PTE_NON_PRESENT;
1636 goto abort;
1637 }
1638 page = vm_normal_page(vma, addr, ptent);
1639
1640 if (folio_page(folio, i) != page)
1641 goto abort;
1642
1643 nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes);
1644
1645 /*
1646 * Must clear entry, or a racing truncate may re-remove it.
1647 * TLB flush can be left until pmdp_collapse_flush() does it.
1648 * PTE dirty? Shmem page is already dirty; file is read-only.
1649 */
1650 clear_ptes(mm, addr, pte, nr_batch_ptes);
1651 folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma);
1652 nr_mapped_ptes += nr_batch_ptes;
1653 }
1654
1655 if (!pml)
1656 spin_unlock(ptl);
1657
1658 /* step 3: set proper refcount and mm_counters. */
1659 if (nr_mapped_ptes) {
1660 folio_ref_sub(folio, nr_mapped_ptes);
1661 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1662 }
1663
1664 /* step 4: remove empty page table */
1665 if (!pml) {
1666 pml = pmd_lock(mm, pmd);
1667 if (ptl != pml) {
1668 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1669 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1670 flush_tlb_mm(mm);
1671 goto unlock;
1672 }
1673 }
1674 }
1675 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1676 pmdp_get_lockless_sync();
1677 pte_unmap_unlock(start_pte, ptl);
1678 if (ptl != pml)
1679 spin_unlock(pml);
1680
1681 mmu_notifier_invalidate_range_end(&range);
1682
1683 mm_dec_nr_ptes(mm);
1684 page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1685 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1686
1687 maybe_install_pmd:
1688 /* step 5: install pmd entry */
1689 result = install_pmd
1690 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page)
1691 : SCAN_SUCCEED;
1692 goto drop_folio;
1693 abort:
1694 if (nr_mapped_ptes) {
1695 flush_tlb_mm(mm);
1696 folio_ref_sub(folio, nr_mapped_ptes);
1697 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1698 }
1699 unlock:
1700 if (start_pte)
1701 pte_unmap_unlock(start_pte, ptl);
1702 if (pml && pml != ptl)
1703 spin_unlock(pml);
1704 if (notified)
1705 mmu_notifier_invalidate_range_end(&range);
1706 drop_folio:
1707 folio_unlock(folio);
1708 folio_put(folio);
1709 return result;
1710 }
1711
1712 /* Can we retract page tables for this file-backed VMA? */
file_backed_vma_is_retractable(struct vm_area_struct * vma)1713 static bool file_backed_vma_is_retractable(struct vm_area_struct *vma)
1714 {
1715 /*
1716 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1717 * got written to. These VMAs are likely not worth removing
1718 * page tables from, as PMD-mapping is likely to be split later.
1719 */
1720 if (READ_ONCE(vma->anon_vma))
1721 return false;
1722
1723 /*
1724 * When a vma is registered with uffd-wp, we cannot recycle
1725 * the page table because there may be pte markers installed.
1726 * Other vmas can still have the same file mapped hugely, but
1727 * skip this one: it will always be mapped in small page size
1728 * for uffd-wp registered ranges.
1729 */
1730 if (userfaultfd_wp(vma))
1731 return false;
1732
1733 /*
1734 * If the VMA contains guard regions then we can't collapse it.
1735 *
1736 * This is set atomically on guard marker installation under mmap/VMA
1737 * read lock, and here we may not hold any VMA or mmap lock at all.
1738 *
1739 * This is therefore serialised on the PTE page table lock, which is
1740 * obtained on guard region installation after the flag is set, so this
1741 * check being performed under this lock excludes races.
1742 */
1743 if (vma_flag_test_atomic(vma, VMA_MAYBE_GUARD_BIT))
1744 return false;
1745
1746 return true;
1747 }
1748
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1749 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1750 {
1751 struct vm_area_struct *vma;
1752
1753 i_mmap_lock_read(mapping);
1754 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1755 struct mmu_notifier_range range;
1756 struct mm_struct *mm;
1757 unsigned long addr;
1758 pmd_t *pmd, pgt_pmd;
1759 spinlock_t *pml;
1760 spinlock_t *ptl;
1761 bool success = false;
1762
1763 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1764 if (addr & ~HPAGE_PMD_MASK ||
1765 vma->vm_end < addr + HPAGE_PMD_SIZE)
1766 continue;
1767
1768 mm = vma->vm_mm;
1769 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1770 continue;
1771
1772 if (hpage_collapse_test_exit(mm))
1773 continue;
1774
1775 if (!file_backed_vma_is_retractable(vma))
1776 continue;
1777
1778 /* PTEs were notified when unmapped; but now for the PMD? */
1779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1780 addr, addr + HPAGE_PMD_SIZE);
1781 mmu_notifier_invalidate_range_start(&range);
1782
1783 pml = pmd_lock(mm, pmd);
1784 /*
1785 * The lock of new_folio is still held, we will be blocked in
1786 * the page fault path, which prevents the pte entries from
1787 * being set again. So even though the old empty PTE page may be
1788 * concurrently freed and a new PTE page is filled into the pmd
1789 * entry, it is still empty and can be removed.
1790 *
1791 * So here we only need to recheck if the state of pmd entry
1792 * still meets our requirements, rather than checking pmd_same()
1793 * like elsewhere.
1794 */
1795 if (check_pmd_state(pmd) != SCAN_SUCCEED)
1796 goto drop_pml;
1797 ptl = pte_lockptr(mm, pmd);
1798 if (ptl != pml)
1799 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1800
1801 /*
1802 * Huge page lock is still held, so normally the page table must
1803 * remain empty; and we have already skipped anon_vma and
1804 * userfaultfd_wp() vmas. But since the mmap_lock is not held,
1805 * it is still possible for a racing userfaultfd_ioctl() or
1806 * madvise() to have inserted ptes or markers. Now that we hold
1807 * ptlock, repeating the retractable checks protects us from
1808 * races against the prior checks.
1809 */
1810 if (likely(file_backed_vma_is_retractable(vma))) {
1811 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1812 pmdp_get_lockless_sync();
1813 success = true;
1814 }
1815
1816 if (ptl != pml)
1817 spin_unlock(ptl);
1818 drop_pml:
1819 spin_unlock(pml);
1820
1821 mmu_notifier_invalidate_range_end(&range);
1822
1823 if (success) {
1824 mm_dec_nr_ptes(mm);
1825 page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1826 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1827 }
1828 }
1829 i_mmap_unlock_read(mapping);
1830 }
1831
1832 /**
1833 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1834 *
1835 * @mm: process address space where collapse happens
1836 * @addr: virtual collapse start address
1837 * @file: file that collapse on
1838 * @start: collapse start address
1839 * @cc: collapse context and scratchpad
1840 *
1841 * Basic scheme is simple, details are more complex:
1842 * - allocate and lock a new huge page;
1843 * - scan page cache, locking old pages
1844 * + swap/gup in pages if necessary;
1845 * - copy data to new page
1846 * - handle shmem holes
1847 * + re-validate that holes weren't filled by someone else
1848 * + check for userfaultfd
1849 * - finalize updates to the page cache;
1850 * - if replacing succeeds:
1851 * + unlock huge page;
1852 * + free old pages;
1853 * - if replacing failed;
1854 * + unlock old pages
1855 * + unlock and free huge page;
1856 */
collapse_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)1857 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1858 struct file *file, pgoff_t start,
1859 struct collapse_control *cc)
1860 {
1861 struct address_space *mapping = file->f_mapping;
1862 struct page *dst;
1863 struct folio *folio, *tmp, *new_folio;
1864 pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1865 LIST_HEAD(pagelist);
1866 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1867 int nr_none = 0, result = SCAN_SUCCEED;
1868 bool is_shmem = shmem_file(file);
1869
1870 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1871 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1872
1873 result = alloc_charge_folio(&new_folio, mm, cc);
1874 if (result != SCAN_SUCCEED)
1875 goto out;
1876
1877 mapping_set_update(&xas, mapping);
1878
1879 __folio_set_locked(new_folio);
1880 if (is_shmem)
1881 __folio_set_swapbacked(new_folio);
1882 new_folio->index = start;
1883 new_folio->mapping = mapping;
1884
1885 /*
1886 * Ensure we have slots for all the pages in the range. This is
1887 * almost certainly a no-op because most of the pages must be present
1888 */
1889 do {
1890 xas_lock_irq(&xas);
1891 xas_create_range(&xas);
1892 if (!xas_error(&xas))
1893 break;
1894 xas_unlock_irq(&xas);
1895 if (!xas_nomem(&xas, GFP_KERNEL)) {
1896 result = SCAN_FAIL;
1897 goto rollback;
1898 }
1899 } while (1);
1900
1901 for (index = start; index < end;) {
1902 xas_set(&xas, index);
1903 folio = xas_load(&xas);
1904
1905 VM_BUG_ON(index != xas.xa_index);
1906 if (is_shmem) {
1907 if (!folio) {
1908 /*
1909 * Stop if extent has been truncated or
1910 * hole-punched, and is now completely
1911 * empty.
1912 */
1913 if (index == start) {
1914 if (!xas_next_entry(&xas, end - 1)) {
1915 result = SCAN_TRUNCATED;
1916 goto xa_locked;
1917 }
1918 }
1919 nr_none++;
1920 index++;
1921 continue;
1922 }
1923
1924 if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1925 xas_unlock_irq(&xas);
1926 /* swap in or instantiate fallocated page */
1927 if (shmem_get_folio(mapping->host, index, 0,
1928 &folio, SGP_NOALLOC)) {
1929 result = SCAN_FAIL;
1930 goto xa_unlocked;
1931 }
1932 /* drain lru cache to help folio_isolate_lru() */
1933 lru_add_drain();
1934 } else if (folio_trylock(folio)) {
1935 folio_get(folio);
1936 xas_unlock_irq(&xas);
1937 } else {
1938 result = SCAN_PAGE_LOCK;
1939 goto xa_locked;
1940 }
1941 } else { /* !is_shmem */
1942 if (!folio || xa_is_value(folio)) {
1943 xas_unlock_irq(&xas);
1944 page_cache_sync_readahead(mapping, &file->f_ra,
1945 file, index,
1946 end - index);
1947 /* drain lru cache to help folio_isolate_lru() */
1948 lru_add_drain();
1949 folio = filemap_lock_folio(mapping, index);
1950 if (IS_ERR(folio)) {
1951 result = SCAN_FAIL;
1952 goto xa_unlocked;
1953 }
1954 } else if (folio_test_dirty(folio)) {
1955 /*
1956 * khugepaged only works on read-only fd,
1957 * so this page is dirty because it hasn't
1958 * been flushed since first write. There
1959 * won't be new dirty pages.
1960 *
1961 * Trigger async flush here and hope the
1962 * writeback is done when khugepaged
1963 * revisits this page.
1964 *
1965 * This is a one-off situation. We are not
1966 * forcing writeback in loop.
1967 */
1968 xas_unlock_irq(&xas);
1969 filemap_flush(mapping);
1970 result = SCAN_FAIL;
1971 goto xa_unlocked;
1972 } else if (folio_test_writeback(folio)) {
1973 xas_unlock_irq(&xas);
1974 result = SCAN_FAIL;
1975 goto xa_unlocked;
1976 } else if (folio_trylock(folio)) {
1977 folio_get(folio);
1978 xas_unlock_irq(&xas);
1979 } else {
1980 result = SCAN_PAGE_LOCK;
1981 goto xa_locked;
1982 }
1983 }
1984
1985 /*
1986 * The folio must be locked, so we can drop the i_pages lock
1987 * without racing with truncate.
1988 */
1989 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1990
1991 /* make sure the folio is up to date */
1992 if (unlikely(!folio_test_uptodate(folio))) {
1993 result = SCAN_FAIL;
1994 goto out_unlock;
1995 }
1996
1997 /*
1998 * If file was truncated then extended, or hole-punched, before
1999 * we locked the first folio, then a THP might be there already.
2000 * This will be discovered on the first iteration.
2001 */
2002 if (folio_order(folio) == HPAGE_PMD_ORDER &&
2003 folio->index == start) {
2004 /* Maybe PMD-mapped */
2005 result = SCAN_PTE_MAPPED_HUGEPAGE;
2006 goto out_unlock;
2007 }
2008
2009 if (folio_mapping(folio) != mapping) {
2010 result = SCAN_TRUNCATED;
2011 goto out_unlock;
2012 }
2013
2014 if (!is_shmem && (folio_test_dirty(folio) ||
2015 folio_test_writeback(folio))) {
2016 /*
2017 * khugepaged only works on read-only fd, so this
2018 * folio is dirty because it hasn't been flushed
2019 * since first write.
2020 */
2021 result = SCAN_FAIL;
2022 goto out_unlock;
2023 }
2024
2025 if (!folio_isolate_lru(folio)) {
2026 result = SCAN_DEL_PAGE_LRU;
2027 goto out_unlock;
2028 }
2029
2030 if (!filemap_release_folio(folio, GFP_KERNEL)) {
2031 result = SCAN_PAGE_HAS_PRIVATE;
2032 folio_putback_lru(folio);
2033 goto out_unlock;
2034 }
2035
2036 if (folio_mapped(folio))
2037 try_to_unmap(folio,
2038 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2039
2040 xas_lock_irq(&xas);
2041
2042 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2043
2044 /*
2045 * We control 2 + nr_pages references to the folio:
2046 * - we hold a pin on it;
2047 * - nr_pages reference from page cache;
2048 * - one from lru_isolate_folio;
2049 * If those are the only references, then any new usage
2050 * of the folio will have to fetch it from the page
2051 * cache. That requires locking the folio to handle
2052 * truncate, so any new usage will be blocked until we
2053 * unlock folio after collapse/during rollback.
2054 */
2055 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2056 result = SCAN_PAGE_COUNT;
2057 xas_unlock_irq(&xas);
2058 folio_putback_lru(folio);
2059 goto out_unlock;
2060 }
2061
2062 /*
2063 * Accumulate the folios that are being collapsed.
2064 */
2065 list_add_tail(&folio->lru, &pagelist);
2066 index += folio_nr_pages(folio);
2067 continue;
2068 out_unlock:
2069 folio_unlock(folio);
2070 folio_put(folio);
2071 goto xa_unlocked;
2072 }
2073
2074 if (!is_shmem) {
2075 filemap_nr_thps_inc(mapping);
2076 /*
2077 * Paired with the fence in do_dentry_open() -> get_write_access()
2078 * to ensure i_writecount is up to date and the update to nr_thps
2079 * is visible. Ensures the page cache will be truncated if the
2080 * file is opened writable.
2081 */
2082 smp_mb();
2083 if (inode_is_open_for_write(mapping->host)) {
2084 result = SCAN_FAIL;
2085 filemap_nr_thps_dec(mapping);
2086 }
2087 }
2088
2089 xa_locked:
2090 xas_unlock_irq(&xas);
2091 xa_unlocked:
2092
2093 /*
2094 * If collapse is successful, flush must be done now before copying.
2095 * If collapse is unsuccessful, does flush actually need to be done?
2096 * Do it anyway, to clear the state.
2097 */
2098 try_to_unmap_flush();
2099
2100 if (result == SCAN_SUCCEED && nr_none &&
2101 !shmem_charge(mapping->host, nr_none))
2102 result = SCAN_FAIL;
2103 if (result != SCAN_SUCCEED) {
2104 nr_none = 0;
2105 goto rollback;
2106 }
2107
2108 /*
2109 * The old folios are locked, so they won't change anymore.
2110 */
2111 index = start;
2112 dst = folio_page(new_folio, 0);
2113 list_for_each_entry(folio, &pagelist, lru) {
2114 int i, nr_pages = folio_nr_pages(folio);
2115
2116 while (index < folio->index) {
2117 clear_highpage(dst);
2118 index++;
2119 dst++;
2120 }
2121
2122 for (i = 0; i < nr_pages; i++) {
2123 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2124 result = SCAN_COPY_MC;
2125 goto rollback;
2126 }
2127 index++;
2128 dst++;
2129 }
2130 }
2131 while (index < end) {
2132 clear_highpage(dst);
2133 index++;
2134 dst++;
2135 }
2136
2137 if (nr_none) {
2138 struct vm_area_struct *vma;
2139 int nr_none_check = 0;
2140
2141 i_mmap_lock_read(mapping);
2142 xas_lock_irq(&xas);
2143
2144 xas_set(&xas, start);
2145 for (index = start; index < end; index++) {
2146 if (!xas_next(&xas)) {
2147 xas_store(&xas, XA_RETRY_ENTRY);
2148 if (xas_error(&xas)) {
2149 result = SCAN_STORE_FAILED;
2150 goto immap_locked;
2151 }
2152 nr_none_check++;
2153 }
2154 }
2155
2156 if (nr_none != nr_none_check) {
2157 result = SCAN_PAGE_FILLED;
2158 goto immap_locked;
2159 }
2160
2161 /*
2162 * If userspace observed a missing page in a VMA with
2163 * a MODE_MISSING userfaultfd, then it might expect a
2164 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2165 * roll back to avoid suppressing such an event. Since
2166 * wp/minor userfaultfds don't give userspace any
2167 * guarantees that the kernel doesn't fill a missing
2168 * page with a zero page, so they don't matter here.
2169 *
2170 * Any userfaultfds registered after this point will
2171 * not be able to observe any missing pages due to the
2172 * previously inserted retry entries.
2173 */
2174 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2175 if (userfaultfd_missing(vma)) {
2176 result = SCAN_EXCEED_NONE_PTE;
2177 goto immap_locked;
2178 }
2179 }
2180
2181 immap_locked:
2182 i_mmap_unlock_read(mapping);
2183 if (result != SCAN_SUCCEED) {
2184 xas_set(&xas, start);
2185 for (index = start; index < end; index++) {
2186 if (xas_next(&xas) == XA_RETRY_ENTRY)
2187 xas_store(&xas, NULL);
2188 }
2189
2190 xas_unlock_irq(&xas);
2191 goto rollback;
2192 }
2193 } else {
2194 xas_lock_irq(&xas);
2195 }
2196
2197 if (is_shmem)
2198 lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2199 else
2200 lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2201
2202 if (nr_none) {
2203 lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2204 /* nr_none is always 0 for non-shmem. */
2205 lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2206 }
2207
2208 /*
2209 * Mark new_folio as uptodate before inserting it into the
2210 * page cache so that it isn't mistaken for an fallocated but
2211 * unwritten page.
2212 */
2213 folio_mark_uptodate(new_folio);
2214 folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2215
2216 if (is_shmem)
2217 folio_mark_dirty(new_folio);
2218 folio_add_lru(new_folio);
2219
2220 /* Join all the small entries into a single multi-index entry. */
2221 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2222 xas_store(&xas, new_folio);
2223 WARN_ON_ONCE(xas_error(&xas));
2224 xas_unlock_irq(&xas);
2225
2226 /*
2227 * Remove pte page tables, so we can re-fault the page as huge.
2228 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2229 */
2230 retract_page_tables(mapping, start);
2231 if (cc && !cc->is_khugepaged)
2232 result = SCAN_PTE_MAPPED_HUGEPAGE;
2233 folio_unlock(new_folio);
2234
2235 /*
2236 * The collapse has succeeded, so free the old folios.
2237 */
2238 list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2239 list_del(&folio->lru);
2240 folio->mapping = NULL;
2241 folio_clear_active(folio);
2242 folio_clear_unevictable(folio);
2243 folio_unlock(folio);
2244 folio_put_refs(folio, 2 + folio_nr_pages(folio));
2245 }
2246
2247 goto out;
2248
2249 rollback:
2250 /* Something went wrong: roll back page cache changes */
2251 if (nr_none) {
2252 xas_lock_irq(&xas);
2253 mapping->nrpages -= nr_none;
2254 xas_unlock_irq(&xas);
2255 shmem_uncharge(mapping->host, nr_none);
2256 }
2257
2258 list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2259 list_del(&folio->lru);
2260 folio_unlock(folio);
2261 folio_putback_lru(folio);
2262 folio_put(folio);
2263 }
2264 /*
2265 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2266 * file only. This undo is not needed unless failure is
2267 * due to SCAN_COPY_MC.
2268 */
2269 if (!is_shmem && result == SCAN_COPY_MC) {
2270 filemap_nr_thps_dec(mapping);
2271 /*
2272 * Paired with the fence in do_dentry_open() -> get_write_access()
2273 * to ensure the update to nr_thps is visible.
2274 */
2275 smp_mb();
2276 }
2277
2278 new_folio->mapping = NULL;
2279
2280 folio_unlock(new_folio);
2281 folio_put(new_folio);
2282 out:
2283 VM_BUG_ON(!list_empty(&pagelist));
2284 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2285 return result;
2286 }
2287
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2288 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2289 struct file *file, pgoff_t start,
2290 struct collapse_control *cc)
2291 {
2292 struct folio *folio = NULL;
2293 struct address_space *mapping = file->f_mapping;
2294 XA_STATE(xas, &mapping->i_pages, start);
2295 int present, swap;
2296 int node = NUMA_NO_NODE;
2297 int result = SCAN_SUCCEED;
2298
2299 present = 0;
2300 swap = 0;
2301 memset(cc->node_load, 0, sizeof(cc->node_load));
2302 nodes_clear(cc->alloc_nmask);
2303 rcu_read_lock();
2304 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2305 if (xas_retry(&xas, folio))
2306 continue;
2307
2308 if (xa_is_value(folio)) {
2309 swap += 1 << xas_get_order(&xas);
2310 if (cc->is_khugepaged &&
2311 swap > khugepaged_max_ptes_swap) {
2312 result = SCAN_EXCEED_SWAP_PTE;
2313 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2314 break;
2315 }
2316 continue;
2317 }
2318
2319 if (!folio_try_get(folio)) {
2320 xas_reset(&xas);
2321 continue;
2322 }
2323
2324 if (unlikely(folio != xas_reload(&xas))) {
2325 folio_put(folio);
2326 xas_reset(&xas);
2327 continue;
2328 }
2329
2330 if (folio_order(folio) == HPAGE_PMD_ORDER &&
2331 folio->index == start) {
2332 /* Maybe PMD-mapped */
2333 result = SCAN_PTE_MAPPED_HUGEPAGE;
2334 /*
2335 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2336 * by the caller won't touch the page cache, and so
2337 * it's safe to skip LRU and refcount checks before
2338 * returning.
2339 */
2340 folio_put(folio);
2341 break;
2342 }
2343
2344 node = folio_nid(folio);
2345 if (hpage_collapse_scan_abort(node, cc)) {
2346 result = SCAN_SCAN_ABORT;
2347 folio_put(folio);
2348 break;
2349 }
2350 cc->node_load[node]++;
2351
2352 if (!folio_test_lru(folio)) {
2353 result = SCAN_PAGE_LRU;
2354 folio_put(folio);
2355 break;
2356 }
2357
2358 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) {
2359 result = SCAN_PAGE_COUNT;
2360 folio_put(folio);
2361 break;
2362 }
2363
2364 /*
2365 * We probably should check if the folio is referenced
2366 * here, but nobody would transfer pte_young() to
2367 * folio_test_referenced() for us. And rmap walk here
2368 * is just too costly...
2369 */
2370
2371 present += folio_nr_pages(folio);
2372 folio_put(folio);
2373
2374 if (need_resched()) {
2375 xas_pause(&xas);
2376 cond_resched_rcu();
2377 }
2378 }
2379 rcu_read_unlock();
2380
2381 if (result == SCAN_SUCCEED) {
2382 if (cc->is_khugepaged &&
2383 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2384 result = SCAN_EXCEED_NONE_PTE;
2385 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2386 } else {
2387 result = collapse_file(mm, addr, file, start, cc);
2388 }
2389 }
2390
2391 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2392 return result;
2393 }
2394
khugepaged_scan_mm_slot(unsigned int pages,int * result,struct collapse_control * cc)2395 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2396 struct collapse_control *cc)
2397 __releases(&khugepaged_mm_lock)
2398 __acquires(&khugepaged_mm_lock)
2399 {
2400 struct vma_iterator vmi;
2401 struct mm_slot *slot;
2402 struct mm_struct *mm;
2403 struct vm_area_struct *vma;
2404 int progress = 0;
2405
2406 VM_BUG_ON(!pages);
2407 lockdep_assert_held(&khugepaged_mm_lock);
2408 *result = SCAN_FAIL;
2409
2410 if (khugepaged_scan.mm_slot) {
2411 slot = khugepaged_scan.mm_slot;
2412 } else {
2413 slot = list_first_entry(&khugepaged_scan.mm_head,
2414 struct mm_slot, mm_node);
2415 khugepaged_scan.address = 0;
2416 khugepaged_scan.mm_slot = slot;
2417 }
2418 spin_unlock(&khugepaged_mm_lock);
2419
2420 mm = slot->mm;
2421 /*
2422 * Don't wait for semaphore (to avoid long wait times). Just move to
2423 * the next mm on the list.
2424 */
2425 vma = NULL;
2426 if (unlikely(!mmap_read_trylock(mm)))
2427 goto breakouterloop_mmap_lock;
2428
2429 progress++;
2430 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2431 goto breakouterloop;
2432
2433 vma_iter_init(&vmi, mm, khugepaged_scan.address);
2434 for_each_vma(vmi, vma) {
2435 unsigned long hstart, hend;
2436
2437 cond_resched();
2438 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2439 progress++;
2440 break;
2441 }
2442 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) {
2443 skip:
2444 progress++;
2445 continue;
2446 }
2447 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2448 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2449 if (khugepaged_scan.address > hend)
2450 goto skip;
2451 if (khugepaged_scan.address < hstart)
2452 khugepaged_scan.address = hstart;
2453 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2454
2455 while (khugepaged_scan.address < hend) {
2456 bool mmap_locked = true;
2457
2458 cond_resched();
2459 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2460 goto breakouterloop;
2461
2462 VM_BUG_ON(khugepaged_scan.address < hstart ||
2463 khugepaged_scan.address + HPAGE_PMD_SIZE >
2464 hend);
2465 if (!vma_is_anonymous(vma)) {
2466 struct file *file = get_file(vma->vm_file);
2467 pgoff_t pgoff = linear_page_index(vma,
2468 khugepaged_scan.address);
2469
2470 mmap_read_unlock(mm);
2471 mmap_locked = false;
2472 *result = hpage_collapse_scan_file(mm,
2473 khugepaged_scan.address, file, pgoff, cc);
2474 fput(file);
2475 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2476 mmap_read_lock(mm);
2477 if (hpage_collapse_test_exit_or_disable(mm))
2478 goto breakouterloop;
2479 *result = collapse_pte_mapped_thp(mm,
2480 khugepaged_scan.address, false);
2481 if (*result == SCAN_PMD_MAPPED)
2482 *result = SCAN_SUCCEED;
2483 mmap_read_unlock(mm);
2484 }
2485 } else {
2486 *result = hpage_collapse_scan_pmd(mm, vma,
2487 khugepaged_scan.address, &mmap_locked, cc);
2488 }
2489
2490 if (*result == SCAN_SUCCEED)
2491 ++khugepaged_pages_collapsed;
2492
2493 /* move to next address */
2494 khugepaged_scan.address += HPAGE_PMD_SIZE;
2495 progress += HPAGE_PMD_NR;
2496 if (!mmap_locked)
2497 /*
2498 * We released mmap_lock so break loop. Note
2499 * that we drop mmap_lock before all hugepage
2500 * allocations, so if allocation fails, we are
2501 * guaranteed to break here and report the
2502 * correct result back to caller.
2503 */
2504 goto breakouterloop_mmap_lock;
2505 if (progress >= pages)
2506 goto breakouterloop;
2507 }
2508 }
2509 breakouterloop:
2510 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2511 breakouterloop_mmap_lock:
2512
2513 spin_lock(&khugepaged_mm_lock);
2514 VM_BUG_ON(khugepaged_scan.mm_slot != slot);
2515 /*
2516 * Release the current mm_slot if this mm is about to die, or
2517 * if we scanned all vmas of this mm.
2518 */
2519 if (hpage_collapse_test_exit(mm) || !vma) {
2520 /*
2521 * Make sure that if mm_users is reaching zero while
2522 * khugepaged runs here, khugepaged_exit will find
2523 * mm_slot not pointing to the exiting mm.
2524 */
2525 if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) {
2526 khugepaged_scan.mm_slot = list_next_entry(slot, mm_node);
2527 khugepaged_scan.address = 0;
2528 } else {
2529 khugepaged_scan.mm_slot = NULL;
2530 khugepaged_full_scans++;
2531 }
2532
2533 collect_mm_slot(slot);
2534 }
2535
2536 return progress;
2537 }
2538
khugepaged_has_work(void)2539 static int khugepaged_has_work(void)
2540 {
2541 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2542 }
2543
khugepaged_wait_event(void)2544 static int khugepaged_wait_event(void)
2545 {
2546 return !list_empty(&khugepaged_scan.mm_head) ||
2547 kthread_should_stop();
2548 }
2549
khugepaged_do_scan(struct collapse_control * cc)2550 static void khugepaged_do_scan(struct collapse_control *cc)
2551 {
2552 unsigned int progress = 0, pass_through_head = 0;
2553 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2554 bool wait = true;
2555 int result = SCAN_SUCCEED;
2556
2557 lru_add_drain_all();
2558
2559 while (true) {
2560 cond_resched();
2561
2562 if (unlikely(kthread_should_stop()))
2563 break;
2564
2565 spin_lock(&khugepaged_mm_lock);
2566 if (!khugepaged_scan.mm_slot)
2567 pass_through_head++;
2568 if (khugepaged_has_work() &&
2569 pass_through_head < 2)
2570 progress += khugepaged_scan_mm_slot(pages - progress,
2571 &result, cc);
2572 else
2573 progress = pages;
2574 spin_unlock(&khugepaged_mm_lock);
2575
2576 if (progress >= pages)
2577 break;
2578
2579 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2580 /*
2581 * If fail to allocate the first time, try to sleep for
2582 * a while. When hit again, cancel the scan.
2583 */
2584 if (!wait)
2585 break;
2586 wait = false;
2587 khugepaged_alloc_sleep();
2588 }
2589 }
2590 }
2591
khugepaged_should_wakeup(void)2592 static bool khugepaged_should_wakeup(void)
2593 {
2594 return kthread_should_stop() ||
2595 time_after_eq(jiffies, khugepaged_sleep_expire);
2596 }
2597
khugepaged_wait_work(void)2598 static void khugepaged_wait_work(void)
2599 {
2600 if (khugepaged_has_work()) {
2601 const unsigned long scan_sleep_jiffies =
2602 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2603
2604 if (!scan_sleep_jiffies)
2605 return;
2606
2607 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2608 wait_event_freezable_timeout(khugepaged_wait,
2609 khugepaged_should_wakeup(),
2610 scan_sleep_jiffies);
2611 return;
2612 }
2613
2614 if (hugepage_pmd_enabled())
2615 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2616 }
2617
khugepaged(void * none)2618 static int khugepaged(void *none)
2619 {
2620 struct mm_slot *slot;
2621
2622 set_freezable();
2623 set_user_nice(current, MAX_NICE);
2624
2625 while (!kthread_should_stop()) {
2626 khugepaged_do_scan(&khugepaged_collapse_control);
2627 khugepaged_wait_work();
2628 }
2629
2630 spin_lock(&khugepaged_mm_lock);
2631 slot = khugepaged_scan.mm_slot;
2632 khugepaged_scan.mm_slot = NULL;
2633 if (slot)
2634 collect_mm_slot(slot);
2635 spin_unlock(&khugepaged_mm_lock);
2636 return 0;
2637 }
2638
set_recommended_min_free_kbytes(void)2639 static void set_recommended_min_free_kbytes(void)
2640 {
2641 struct zone *zone;
2642 int nr_zones = 0;
2643 unsigned long recommended_min;
2644
2645 if (!hugepage_pmd_enabled()) {
2646 calculate_min_free_kbytes();
2647 goto update_wmarks;
2648 }
2649
2650 for_each_populated_zone(zone) {
2651 /*
2652 * We don't need to worry about fragmentation of
2653 * ZONE_MOVABLE since it only has movable pages.
2654 */
2655 if (zone_idx(zone) > gfp_zone(GFP_USER))
2656 continue;
2657
2658 nr_zones++;
2659 }
2660
2661 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2662 recommended_min = pageblock_nr_pages * nr_zones * 2;
2663
2664 /*
2665 * Make sure that on average at least two pageblocks are almost free
2666 * of another type, one for a migratetype to fall back to and a
2667 * second to avoid subsequent fallbacks of other types There are 3
2668 * MIGRATE_TYPES we care about.
2669 */
2670 recommended_min += pageblock_nr_pages * nr_zones *
2671 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2672
2673 /* don't ever allow to reserve more than 5% of the lowmem */
2674 recommended_min = min(recommended_min,
2675 (unsigned long) nr_free_buffer_pages() / 20);
2676 recommended_min <<= (PAGE_SHIFT-10);
2677
2678 if (recommended_min > min_free_kbytes) {
2679 if (user_min_free_kbytes >= 0)
2680 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2681 min_free_kbytes, recommended_min);
2682
2683 min_free_kbytes = recommended_min;
2684 }
2685
2686 update_wmarks:
2687 setup_per_zone_wmarks();
2688 }
2689
start_stop_khugepaged(void)2690 int start_stop_khugepaged(void)
2691 {
2692 int err = 0;
2693
2694 mutex_lock(&khugepaged_mutex);
2695 if (hugepage_pmd_enabled()) {
2696 if (!khugepaged_thread)
2697 khugepaged_thread = kthread_run(khugepaged, NULL,
2698 "khugepaged");
2699 if (IS_ERR(khugepaged_thread)) {
2700 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2701 err = PTR_ERR(khugepaged_thread);
2702 khugepaged_thread = NULL;
2703 goto fail;
2704 }
2705
2706 if (!list_empty(&khugepaged_scan.mm_head))
2707 wake_up_interruptible(&khugepaged_wait);
2708 } else if (khugepaged_thread) {
2709 kthread_stop(khugepaged_thread);
2710 khugepaged_thread = NULL;
2711 }
2712 set_recommended_min_free_kbytes();
2713 fail:
2714 mutex_unlock(&khugepaged_mutex);
2715 return err;
2716 }
2717
khugepaged_min_free_kbytes_update(void)2718 void khugepaged_min_free_kbytes_update(void)
2719 {
2720 mutex_lock(&khugepaged_mutex);
2721 if (hugepage_pmd_enabled() && khugepaged_thread)
2722 set_recommended_min_free_kbytes();
2723 mutex_unlock(&khugepaged_mutex);
2724 }
2725
current_is_khugepaged(void)2726 bool current_is_khugepaged(void)
2727 {
2728 return kthread_func(current) == khugepaged;
2729 }
2730
madvise_collapse_errno(enum scan_result r)2731 static int madvise_collapse_errno(enum scan_result r)
2732 {
2733 /*
2734 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2735 * actionable feedback to caller, so they may take an appropriate
2736 * fallback measure depending on the nature of the failure.
2737 */
2738 switch (r) {
2739 case SCAN_ALLOC_HUGE_PAGE_FAIL:
2740 return -ENOMEM;
2741 case SCAN_CGROUP_CHARGE_FAIL:
2742 case SCAN_EXCEED_NONE_PTE:
2743 return -EBUSY;
2744 /* Resource temporary unavailable - trying again might succeed */
2745 case SCAN_PAGE_COUNT:
2746 case SCAN_PAGE_LOCK:
2747 case SCAN_PAGE_LRU:
2748 case SCAN_DEL_PAGE_LRU:
2749 case SCAN_PAGE_FILLED:
2750 return -EAGAIN;
2751 /*
2752 * Other: Trying again likely not to succeed / error intrinsic to
2753 * specified memory range. khugepaged likely won't be able to collapse
2754 * either.
2755 */
2756 default:
2757 return -EINVAL;
2758 }
2759 }
2760
madvise_collapse(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool * lock_dropped)2761 int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
2762 unsigned long end, bool *lock_dropped)
2763 {
2764 struct collapse_control *cc;
2765 struct mm_struct *mm = vma->vm_mm;
2766 unsigned long hstart, hend, addr;
2767 int thps = 0, last_fail = SCAN_FAIL;
2768 bool mmap_locked = true;
2769
2770 BUG_ON(vma->vm_start > start);
2771 BUG_ON(vma->vm_end < end);
2772
2773 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
2774 return -EINVAL;
2775
2776 cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2777 if (!cc)
2778 return -ENOMEM;
2779 cc->is_khugepaged = false;
2780
2781 mmgrab(mm);
2782 lru_add_drain_all();
2783
2784 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2785 hend = end & HPAGE_PMD_MASK;
2786
2787 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2788 int result = SCAN_FAIL;
2789
2790 if (!mmap_locked) {
2791 cond_resched();
2792 mmap_read_lock(mm);
2793 mmap_locked = true;
2794 result = hugepage_vma_revalidate(mm, addr, false, &vma,
2795 cc);
2796 if (result != SCAN_SUCCEED) {
2797 last_fail = result;
2798 goto out_nolock;
2799 }
2800
2801 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2802 }
2803 mmap_assert_locked(mm);
2804 if (!vma_is_anonymous(vma)) {
2805 struct file *file = get_file(vma->vm_file);
2806 pgoff_t pgoff = linear_page_index(vma, addr);
2807
2808 mmap_read_unlock(mm);
2809 mmap_locked = false;
2810 result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2811 cc);
2812 fput(file);
2813 } else {
2814 result = hpage_collapse_scan_pmd(mm, vma, addr,
2815 &mmap_locked, cc);
2816 }
2817 if (!mmap_locked)
2818 *lock_dropped = true;
2819
2820 handle_result:
2821 switch (result) {
2822 case SCAN_SUCCEED:
2823 case SCAN_PMD_MAPPED:
2824 ++thps;
2825 break;
2826 case SCAN_PTE_MAPPED_HUGEPAGE:
2827 BUG_ON(mmap_locked);
2828 mmap_read_lock(mm);
2829 result = collapse_pte_mapped_thp(mm, addr, true);
2830 mmap_read_unlock(mm);
2831 goto handle_result;
2832 /* Whitelisted set of results where continuing OK */
2833 case SCAN_NO_PTE_TABLE:
2834 case SCAN_PTE_NON_PRESENT:
2835 case SCAN_PTE_UFFD_WP:
2836 case SCAN_LACK_REFERENCED_PAGE:
2837 case SCAN_PAGE_NULL:
2838 case SCAN_PAGE_COUNT:
2839 case SCAN_PAGE_LOCK:
2840 case SCAN_PAGE_COMPOUND:
2841 case SCAN_PAGE_LRU:
2842 case SCAN_DEL_PAGE_LRU:
2843 last_fail = result;
2844 break;
2845 default:
2846 last_fail = result;
2847 /* Other error, exit */
2848 goto out_maybelock;
2849 }
2850 }
2851
2852 out_maybelock:
2853 /* Caller expects us to hold mmap_lock on return */
2854 if (!mmap_locked)
2855 mmap_read_lock(mm);
2856 out_nolock:
2857 mmap_assert_locked(mm);
2858 mmdrop(mm);
2859 kfree(cc);
2860
2861 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2862 : madvise_collapse_errno(last_fail);
2863 }
2864