1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/dropreason.h>
83
84 #include <linux/uaccess.h>
85 #include <trace/events/skb.h>
86 #include <linux/highmem.h>
87 #include <linux/capability.h>
88 #include <linux/user_namespace.h>
89 #include <linux/indirect_call_wrapper.h>
90 #include <linux/textsearch.h>
91
92 #include "dev.h"
93 #include "devmem.h"
94 #include "netmem_priv.h"
95 #include "sock_destructor.h"
96
97 #ifdef CONFIG_SKB_EXTENSIONS
98 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
99 #endif
100
101 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
102 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
103 GRO_MAX_HEAD_PAD))
104
105 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
106 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
107 * size, and we can differentiate heads from skb_small_head_cache
108 * vs system slabs by looking at their size (skb_end_offset()).
109 */
110 #define SKB_SMALL_HEAD_CACHE_SIZE \
111 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
112 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
113 SKB_SMALL_HEAD_SIZE)
114
115 #define SKB_SMALL_HEAD_HEADROOM \
116 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
117
118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
119 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
120 * netmem is a page.
121 */
122 static_assert(offsetof(struct bio_vec, bv_page) ==
123 offsetof(skb_frag_t, netmem));
124 static_assert(sizeof_field(struct bio_vec, bv_page) ==
125 sizeof_field(skb_frag_t, netmem));
126
127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
128 static_assert(sizeof_field(struct bio_vec, bv_len) ==
129 sizeof_field(skb_frag_t, len));
130
131 static_assert(offsetof(struct bio_vec, bv_offset) ==
132 offsetof(skb_frag_t, offset));
133 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
134 sizeof_field(skb_frag_t, offset));
135
136 #undef FN
137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
138 static const char * const drop_reasons[] = {
139 [SKB_CONSUMED] = "CONSUMED",
140 DEFINE_DROP_REASON(FN, FN)
141 };
142
143 static const struct drop_reason_list drop_reasons_core = {
144 .reasons = drop_reasons,
145 .n_reasons = ARRAY_SIZE(drop_reasons),
146 };
147
148 const struct drop_reason_list __rcu *
149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
150 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
151 };
152 EXPORT_SYMBOL(drop_reasons_by_subsys);
153
154 /**
155 * drop_reasons_register_subsys - register another drop reason subsystem
156 * @subsys: the subsystem to register, must not be the core
157 * @list: the list of drop reasons within the subsystem, must point to
158 * a statically initialized list
159 */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
161 const struct drop_reason_list *list)
162 {
163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 "invalid subsystem %d\n", subsys))
166 return;
167
168 /* must point to statically allocated memory, so INIT is OK */
169 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
170 }
171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
172
173 /**
174 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
175 * @subsys: the subsystem to remove, must not be the core
176 *
177 * Note: This will synchronize_rcu() to ensure no users when it returns.
178 */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
180 {
181 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
182 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
183 "invalid subsystem %d\n", subsys))
184 return;
185
186 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
187
188 synchronize_rcu();
189 }
190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
191
192 /**
193 * skb_panic - private function for out-of-line support
194 * @skb: buffer
195 * @sz: size
196 * @addr: address
197 * @msg: skb_over_panic or skb_under_panic
198 *
199 * Out-of-line support for skb_put() and skb_push().
200 * Called via the wrapper skb_over_panic() or skb_under_panic().
201 * Keep out of line to prevent kernel bloat.
202 * __builtin_return_address is not used because it is not always reliable.
203 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
205 const char msg[])
206 {
207 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
208 msg, addr, skb->len, sz, skb->head, skb->data,
209 (unsigned long)skb->tail, (unsigned long)skb->end,
210 skb->dev ? skb->dev->name : "<NULL>");
211 BUG();
212 }
213
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
215 {
216 skb_panic(skb, sz, addr, __func__);
217 }
218
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
220 {
221 skb_panic(skb, sz, addr, __func__);
222 }
223
224 #define NAPI_SKB_CACHE_SIZE 64
225 #define NAPI_SKB_CACHE_BULK 16
226 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
227
228 struct napi_alloc_cache {
229 local_lock_t bh_lock;
230 struct page_frag_cache page;
231 unsigned int skb_count;
232 void *skb_cache[NAPI_SKB_CACHE_SIZE];
233 };
234
235 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
236 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
237 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
238 };
239
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)240 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
241 {
242 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
243 void *data;
244
245 fragsz = SKB_DATA_ALIGN(fragsz);
246
247 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
248 data = __page_frag_alloc_align(&nc->page, fragsz,
249 GFP_ATOMIC | __GFP_NOWARN, align_mask);
250 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
251 return data;
252
253 }
254 EXPORT_SYMBOL(__napi_alloc_frag_align);
255
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)256 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
257 {
258 void *data;
259
260 if (in_hardirq() || irqs_disabled()) {
261 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
262
263 fragsz = SKB_DATA_ALIGN(fragsz);
264 data = __page_frag_alloc_align(nc, fragsz,
265 GFP_ATOMIC | __GFP_NOWARN,
266 align_mask);
267 } else {
268 local_bh_disable();
269 data = __napi_alloc_frag_align(fragsz, align_mask);
270 local_bh_enable();
271 }
272 return data;
273 }
274 EXPORT_SYMBOL(__netdev_alloc_frag_align);
275
napi_skb_cache_get(void)276 static struct sk_buff *napi_skb_cache_get(void)
277 {
278 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
279 struct sk_buff *skb;
280
281 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
282 if (unlikely(!nc->skb_count)) {
283 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
284 GFP_ATOMIC | __GFP_NOWARN,
285 NAPI_SKB_CACHE_BULK,
286 nc->skb_cache);
287 if (unlikely(!nc->skb_count)) {
288 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
289 return NULL;
290 }
291 }
292
293 skb = nc->skb_cache[--nc->skb_count];
294 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
295 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
296
297 return skb;
298 }
299
300 /**
301 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
302 * @skbs: pointer to an at least @n-sized array to fill with skb pointers
303 * @n: number of entries to provide
304 *
305 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
306 * the pointers into the provided array @skbs. If there are less entries
307 * available, tries to replenish the cache and bulk-allocates the diff from
308 * the MM layer if needed.
309 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
310 * ready for {,__}build_skb_around() and don't have any data buffers attached.
311 * Must be called *only* from the BH context.
312 *
313 * Return: number of successfully allocated skbs (@n if no actual allocation
314 * needed or kmem_cache_alloc_bulk() didn't fail).
315 */
napi_skb_cache_get_bulk(void ** skbs,u32 n)316 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
317 {
318 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
319 u32 bulk, total = n;
320
321 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
322
323 if (nc->skb_count >= n)
324 goto get;
325
326 /* No enough cached skbs. Try refilling the cache first */
327 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
328 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
329 GFP_ATOMIC | __GFP_NOWARN, bulk,
330 &nc->skb_cache[nc->skb_count]);
331 if (likely(nc->skb_count >= n))
332 goto get;
333
334 /* Still not enough. Bulk-allocate the missing part directly, zeroed */
335 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
336 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
337 n - nc->skb_count, &skbs[nc->skb_count]);
338 if (likely(nc->skb_count >= n))
339 goto get;
340
341 /* kmem_cache didn't allocate the number we need, limit the output */
342 total -= n - nc->skb_count;
343 n = nc->skb_count;
344
345 get:
346 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
347 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
348
349 skbs[i] = nc->skb_cache[base + i];
350
351 kasan_mempool_unpoison_object(skbs[i], cache_size);
352 memset(skbs[i], 0, offsetof(struct sk_buff, tail));
353 }
354
355 nc->skb_count -= n;
356 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
357
358 return total;
359 }
360 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
361
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 unsigned int size)
364 {
365 struct skb_shared_info *shinfo;
366
367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368
369 /* Assumes caller memset cleared SKB */
370 skb->truesize = SKB_TRUESIZE(size);
371 refcount_set(&skb->users, 1);
372 skb->head = data;
373 skb->data = data;
374 skb_reset_tail_pointer(skb);
375 skb_set_end_offset(skb, size);
376 skb->mac_header = (typeof(skb->mac_header))~0U;
377 skb->transport_header = (typeof(skb->transport_header))~0U;
378 skb->alloc_cpu = raw_smp_processor_id();
379 /* make sure we initialize shinfo sequentially */
380 shinfo = skb_shinfo(skb);
381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 atomic_set(&shinfo->dataref, 1);
383
384 skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386
__slab_build_skb(void * data,unsigned int * size)387 static inline void *__slab_build_skb(void *data, unsigned int *size)
388 {
389 void *resized;
390
391 /* Must find the allocation size (and grow it to match). */
392 *size = ksize(data);
393 /* krealloc() will immediately return "data" when
394 * "ksize(data)" is requested: it is the existing upper
395 * bounds. As a result, GFP_ATOMIC will be ignored. Note
396 * that this "new" pointer needs to be passed back to the
397 * caller for use so the __alloc_size hinting will be
398 * tracked correctly.
399 */
400 resized = krealloc(data, *size, GFP_ATOMIC);
401 WARN_ON_ONCE(resized != data);
402 return resized;
403 }
404
405 /* build_skb() variant which can operate on slab buffers.
406 * Note that this should be used sparingly as slab buffers
407 * cannot be combined efficiently by GRO!
408 */
slab_build_skb(void * data)409 struct sk_buff *slab_build_skb(void *data)
410 {
411 struct sk_buff *skb;
412 unsigned int size;
413
414 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
415 GFP_ATOMIC | __GFP_NOWARN);
416 if (unlikely(!skb))
417 return NULL;
418
419 memset(skb, 0, offsetof(struct sk_buff, tail));
420 data = __slab_build_skb(data, &size);
421 __finalize_skb_around(skb, data, size);
422
423 return skb;
424 }
425 EXPORT_SYMBOL(slab_build_skb);
426
427 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)428 static void __build_skb_around(struct sk_buff *skb, void *data,
429 unsigned int frag_size)
430 {
431 unsigned int size = frag_size;
432
433 /* frag_size == 0 is considered deprecated now. Callers
434 * using slab buffer should use slab_build_skb() instead.
435 */
436 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 data = __slab_build_skb(data, &size);
438
439 __finalize_skb_around(skb, data, size);
440 }
441
442 /**
443 * __build_skb - build a network buffer
444 * @data: data buffer provided by caller
445 * @frag_size: size of data (must not be 0)
446 *
447 * Allocate a new &sk_buff. Caller provides space holding head and
448 * skb_shared_info. @data must have been allocated from the page
449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450 * allocation is deprecated, and callers should use slab_build_skb()
451 * instead.)
452 * The return is the new skb buffer.
453 * On a failure the return is %NULL, and @data is not freed.
454 * Notes :
455 * Before IO, driver allocates only data buffer where NIC put incoming frame
456 * Driver should add room at head (NET_SKB_PAD) and
457 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
459 * before giving packet to stack.
460 * RX rings only contains data buffers, not full skbs.
461 */
__build_skb(void * data,unsigned int frag_size)462 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463 {
464 struct sk_buff *skb;
465
466 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
467 GFP_ATOMIC | __GFP_NOWARN);
468 if (unlikely(!skb))
469 return NULL;
470
471 memset(skb, 0, offsetof(struct sk_buff, tail));
472 __build_skb_around(skb, data, frag_size);
473
474 return skb;
475 }
476
477 /* build_skb() is wrapper over __build_skb(), that specifically
478 * takes care of skb->head and skb->pfmemalloc
479 */
build_skb(void * data,unsigned int frag_size)480 struct sk_buff *build_skb(void *data, unsigned int frag_size)
481 {
482 struct sk_buff *skb = __build_skb(data, frag_size);
483
484 if (likely(skb && frag_size)) {
485 skb->head_frag = 1;
486 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
487 }
488 return skb;
489 }
490 EXPORT_SYMBOL(build_skb);
491
492 /**
493 * build_skb_around - build a network buffer around provided skb
494 * @skb: sk_buff provide by caller, must be memset cleared
495 * @data: data buffer provided by caller
496 * @frag_size: size of data
497 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)498 struct sk_buff *build_skb_around(struct sk_buff *skb,
499 void *data, unsigned int frag_size)
500 {
501 if (unlikely(!skb))
502 return NULL;
503
504 __build_skb_around(skb, data, frag_size);
505
506 if (frag_size) {
507 skb->head_frag = 1;
508 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
509 }
510 return skb;
511 }
512 EXPORT_SYMBOL(build_skb_around);
513
514 /**
515 * __napi_build_skb - build a network buffer
516 * @data: data buffer provided by caller
517 * @frag_size: size of data
518 *
519 * Version of __build_skb() that uses NAPI percpu caches to obtain
520 * skbuff_head instead of inplace allocation.
521 *
522 * Returns a new &sk_buff on success, %NULL on allocation failure.
523 */
__napi_build_skb(void * data,unsigned int frag_size)524 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
525 {
526 struct sk_buff *skb;
527
528 skb = napi_skb_cache_get();
529 if (unlikely(!skb))
530 return NULL;
531
532 memset(skb, 0, offsetof(struct sk_buff, tail));
533 __build_skb_around(skb, data, frag_size);
534
535 return skb;
536 }
537
538 /**
539 * napi_build_skb - build a network buffer
540 * @data: data buffer provided by caller
541 * @frag_size: size of data
542 *
543 * Version of __napi_build_skb() that takes care of skb->head_frag
544 * and skb->pfmemalloc when the data is a page or page fragment.
545 *
546 * Returns a new &sk_buff on success, %NULL on allocation failure.
547 */
napi_build_skb(void * data,unsigned int frag_size)548 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
549 {
550 struct sk_buff *skb = __napi_build_skb(data, frag_size);
551
552 if (likely(skb) && frag_size) {
553 skb->head_frag = 1;
554 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
555 }
556
557 return skb;
558 }
559 EXPORT_SYMBOL(napi_build_skb);
560
561 /*
562 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
563 * the caller if emergency pfmemalloc reserves are being used. If it is and
564 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
565 * may be used. Otherwise, the packet data may be discarded until enough
566 * memory is free
567 */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)568 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
569 bool *pfmemalloc)
570 {
571 bool ret_pfmemalloc = false;
572 size_t obj_size;
573 void *obj;
574
575 obj_size = SKB_HEAD_ALIGN(*size);
576 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
577 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
578 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
579 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
580 node);
581 *size = SKB_SMALL_HEAD_CACHE_SIZE;
582 if (obj || !(gfp_pfmemalloc_allowed(flags)))
583 goto out;
584 /* Try again but now we are using pfmemalloc reserves */
585 ret_pfmemalloc = true;
586 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
587 goto out;
588 }
589
590 obj_size = kmalloc_size_roundup(obj_size);
591 /* The following cast might truncate high-order bits of obj_size, this
592 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
593 */
594 *size = (unsigned int)obj_size;
595
596 /*
597 * Try a regular allocation, when that fails and we're not entitled
598 * to the reserves, fail.
599 */
600 obj = kmalloc_node_track_caller(obj_size,
601 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
602 node);
603 if (obj || !(gfp_pfmemalloc_allowed(flags)))
604 goto out;
605
606 /* Try again but now we are using pfmemalloc reserves */
607 ret_pfmemalloc = true;
608 obj = kmalloc_node_track_caller(obj_size, flags, node);
609
610 out:
611 if (pfmemalloc)
612 *pfmemalloc = ret_pfmemalloc;
613
614 return obj;
615 }
616
617 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
618 * 'private' fields and also do memory statistics to find all the
619 * [BEEP] leaks.
620 *
621 */
622
623 /**
624 * __alloc_skb - allocate a network buffer
625 * @size: size to allocate
626 * @gfp_mask: allocation mask
627 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
628 * instead of head cache and allocate a cloned (child) skb.
629 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
630 * allocations in case the data is required for writeback
631 * @node: numa node to allocate memory on
632 *
633 * Allocate a new &sk_buff. The returned buffer has no headroom and a
634 * tail room of at least size bytes. The object has a reference count
635 * of one. The return is the buffer. On a failure the return is %NULL.
636 *
637 * Buffers may only be allocated from interrupts using a @gfp_mask of
638 * %GFP_ATOMIC.
639 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)640 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
641 int flags, int node)
642 {
643 struct kmem_cache *cache;
644 struct sk_buff *skb;
645 bool pfmemalloc;
646 u8 *data;
647
648 cache = (flags & SKB_ALLOC_FCLONE)
649 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
650
651 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
652 gfp_mask |= __GFP_MEMALLOC;
653
654 /* Get the HEAD */
655 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
656 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
657 skb = napi_skb_cache_get();
658 else
659 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
660 if (unlikely(!skb))
661 return NULL;
662 prefetchw(skb);
663
664 /* We do our best to align skb_shared_info on a separate cache
665 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
666 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
667 * Both skb->head and skb_shared_info are cache line aligned.
668 */
669 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
670 if (unlikely(!data))
671 goto nodata;
672 /* kmalloc_size_roundup() might give us more room than requested.
673 * Put skb_shared_info exactly at the end of allocated zone,
674 * to allow max possible filling before reallocation.
675 */
676 prefetchw(data + SKB_WITH_OVERHEAD(size));
677
678 /*
679 * Only clear those fields we need to clear, not those that we will
680 * actually initialise below. Hence, don't put any more fields after
681 * the tail pointer in struct sk_buff!
682 */
683 memset(skb, 0, offsetof(struct sk_buff, tail));
684 __build_skb_around(skb, data, size);
685 skb->pfmemalloc = pfmemalloc;
686
687 if (flags & SKB_ALLOC_FCLONE) {
688 struct sk_buff_fclones *fclones;
689
690 fclones = container_of(skb, struct sk_buff_fclones, skb1);
691
692 skb->fclone = SKB_FCLONE_ORIG;
693 refcount_set(&fclones->fclone_ref, 1);
694 }
695
696 return skb;
697
698 nodata:
699 kmem_cache_free(cache, skb);
700 return NULL;
701 }
702 EXPORT_SYMBOL(__alloc_skb);
703
704 /**
705 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
706 * @dev: network device to receive on
707 * @len: length to allocate
708 * @gfp_mask: get_free_pages mask, passed to alloc_skb
709 *
710 * Allocate a new &sk_buff and assign it a usage count of one. The
711 * buffer has NET_SKB_PAD headroom built in. Users should allocate
712 * the headroom they think they need without accounting for the
713 * built in space. The built in space is used for optimisations.
714 *
715 * %NULL is returned if there is no free memory.
716 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
718 gfp_t gfp_mask)
719 {
720 struct page_frag_cache *nc;
721 struct sk_buff *skb;
722 bool pfmemalloc;
723 void *data;
724
725 len += NET_SKB_PAD;
726
727 /* If requested length is either too small or too big,
728 * we use kmalloc() for skb->head allocation.
729 */
730 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
731 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
732 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
733 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
734 if (!skb)
735 goto skb_fail;
736 goto skb_success;
737 }
738
739 len = SKB_HEAD_ALIGN(len);
740
741 if (sk_memalloc_socks())
742 gfp_mask |= __GFP_MEMALLOC;
743
744 if (in_hardirq() || irqs_disabled()) {
745 nc = this_cpu_ptr(&netdev_alloc_cache);
746 data = page_frag_alloc(nc, len, gfp_mask);
747 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
748 } else {
749 local_bh_disable();
750 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
751
752 nc = this_cpu_ptr(&napi_alloc_cache.page);
753 data = page_frag_alloc(nc, len, gfp_mask);
754 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
755
756 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
757 local_bh_enable();
758 }
759
760 if (unlikely(!data))
761 return NULL;
762
763 skb = __build_skb(data, len);
764 if (unlikely(!skb)) {
765 skb_free_frag(data);
766 return NULL;
767 }
768
769 if (pfmemalloc)
770 skb->pfmemalloc = 1;
771 skb->head_frag = 1;
772
773 skb_success:
774 skb_reserve(skb, NET_SKB_PAD);
775 skb->dev = dev;
776
777 skb_fail:
778 return skb;
779 }
780 EXPORT_SYMBOL(__netdev_alloc_skb);
781
782 /**
783 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
784 * @napi: napi instance this buffer was allocated for
785 * @len: length to allocate
786 *
787 * Allocate a new sk_buff for use in NAPI receive. This buffer will
788 * attempt to allocate the head from a special reserved region used
789 * only for NAPI Rx allocation. By doing this we can save several
790 * CPU cycles by avoiding having to disable and re-enable IRQs.
791 *
792 * %NULL is returned if there is no free memory.
793 */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)794 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
795 {
796 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
797 struct napi_alloc_cache *nc;
798 struct sk_buff *skb;
799 bool pfmemalloc;
800 void *data;
801
802 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
803 len += NET_SKB_PAD + NET_IP_ALIGN;
804
805 /* If requested length is either too small or too big,
806 * we use kmalloc() for skb->head allocation.
807 */
808 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
809 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
810 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
811 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
812 NUMA_NO_NODE);
813 if (!skb)
814 goto skb_fail;
815 goto skb_success;
816 }
817
818 len = SKB_HEAD_ALIGN(len);
819
820 if (sk_memalloc_socks())
821 gfp_mask |= __GFP_MEMALLOC;
822
823 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
824 nc = this_cpu_ptr(&napi_alloc_cache);
825
826 data = page_frag_alloc(&nc->page, len, gfp_mask);
827 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
828 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
829
830 if (unlikely(!data))
831 return NULL;
832
833 skb = __napi_build_skb(data, len);
834 if (unlikely(!skb)) {
835 skb_free_frag(data);
836 return NULL;
837 }
838
839 if (pfmemalloc)
840 skb->pfmemalloc = 1;
841 skb->head_frag = 1;
842
843 skb_success:
844 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
845 skb->dev = napi->dev;
846
847 skb_fail:
848 return skb;
849 }
850 EXPORT_SYMBOL(napi_alloc_skb);
851
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)852 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
853 int off, int size, unsigned int truesize)
854 {
855 DEBUG_NET_WARN_ON_ONCE(size > truesize);
856
857 skb_fill_netmem_desc(skb, i, netmem, off, size);
858 skb->len += size;
859 skb->data_len += size;
860 skb->truesize += truesize;
861 }
862 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
863
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)864 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
865 unsigned int truesize)
866 {
867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
868
869 DEBUG_NET_WARN_ON_ONCE(size > truesize);
870
871 skb_frag_size_add(frag, size);
872 skb->len += size;
873 skb->data_len += size;
874 skb->truesize += truesize;
875 }
876 EXPORT_SYMBOL(skb_coalesce_rx_frag);
877
skb_drop_list(struct sk_buff ** listp)878 static void skb_drop_list(struct sk_buff **listp)
879 {
880 kfree_skb_list(*listp);
881 *listp = NULL;
882 }
883
skb_drop_fraglist(struct sk_buff * skb)884 static inline void skb_drop_fraglist(struct sk_buff *skb)
885 {
886 skb_drop_list(&skb_shinfo(skb)->frag_list);
887 }
888
skb_clone_fraglist(struct sk_buff * skb)889 static void skb_clone_fraglist(struct sk_buff *skb)
890 {
891 struct sk_buff *list;
892
893 skb_walk_frags(skb, list)
894 skb_get(list);
895 }
896
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)897 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
898 unsigned int headroom)
899 {
900 #if IS_ENABLED(CONFIG_PAGE_POOL)
901 u32 size, truesize, len, max_head_size, off;
902 struct sk_buff *skb = *pskb, *nskb;
903 int err, i, head_off;
904 void *data;
905
906 /* XDP does not support fraglist so we need to linearize
907 * the skb.
908 */
909 if (skb_has_frag_list(skb))
910 return -EOPNOTSUPP;
911
912 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
913 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
914 return -ENOMEM;
915
916 size = min_t(u32, skb->len, max_head_size);
917 truesize = SKB_HEAD_ALIGN(size) + headroom;
918 data = page_pool_dev_alloc_va(pool, &truesize);
919 if (!data)
920 return -ENOMEM;
921
922 nskb = napi_build_skb(data, truesize);
923 if (!nskb) {
924 page_pool_free_va(pool, data, true);
925 return -ENOMEM;
926 }
927
928 skb_reserve(nskb, headroom);
929 skb_copy_header(nskb, skb);
930 skb_mark_for_recycle(nskb);
931
932 err = skb_copy_bits(skb, 0, nskb->data, size);
933 if (err) {
934 consume_skb(nskb);
935 return err;
936 }
937 skb_put(nskb, size);
938
939 head_off = skb_headroom(nskb) - skb_headroom(skb);
940 skb_headers_offset_update(nskb, head_off);
941
942 off = size;
943 len = skb->len - off;
944 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
945 struct page *page;
946 u32 page_off;
947
948 size = min_t(u32, len, PAGE_SIZE);
949 truesize = size;
950
951 page = page_pool_dev_alloc(pool, &page_off, &truesize);
952 if (!page) {
953 consume_skb(nskb);
954 return -ENOMEM;
955 }
956
957 skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
958 err = skb_copy_bits(skb, off, page_address(page) + page_off,
959 size);
960 if (err) {
961 consume_skb(nskb);
962 return err;
963 }
964
965 len -= size;
966 off += size;
967 }
968
969 consume_skb(skb);
970 *pskb = nskb;
971
972 return 0;
973 #else
974 return -EOPNOTSUPP;
975 #endif
976 }
977 EXPORT_SYMBOL(skb_pp_cow_data);
978
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)979 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
980 const struct bpf_prog *prog)
981 {
982 if (!prog->aux->xdp_has_frags)
983 return -EINVAL;
984
985 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
986 }
987 EXPORT_SYMBOL(skb_cow_data_for_xdp);
988
989 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)990 bool napi_pp_put_page(netmem_ref netmem)
991 {
992 netmem = netmem_compound_head(netmem);
993
994 if (unlikely(!netmem_is_pp(netmem)))
995 return false;
996
997 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
998
999 return true;
1000 }
1001 EXPORT_SYMBOL(napi_pp_put_page);
1002 #endif
1003
skb_pp_recycle(struct sk_buff * skb,void * data)1004 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1005 {
1006 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1007 return false;
1008 return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1009 }
1010
1011 /**
1012 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1013 * @skb: page pool aware skb
1014 *
1015 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1016 * intended to gain fragment references only for page pool aware skbs,
1017 * i.e. when skb->pp_recycle is true, and not for fragments in a
1018 * non-pp-recycling skb. It has a fallback to increase references on normal
1019 * pages, as page pool aware skbs may also have normal page fragments.
1020 */
skb_pp_frag_ref(struct sk_buff * skb)1021 static int skb_pp_frag_ref(struct sk_buff *skb)
1022 {
1023 struct skb_shared_info *shinfo;
1024 netmem_ref head_netmem;
1025 int i;
1026
1027 if (!skb->pp_recycle)
1028 return -EINVAL;
1029
1030 shinfo = skb_shinfo(skb);
1031
1032 for (i = 0; i < shinfo->nr_frags; i++) {
1033 head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1034 if (likely(netmem_is_pp(head_netmem)))
1035 page_pool_ref_netmem(head_netmem);
1036 else
1037 page_ref_inc(netmem_to_page(head_netmem));
1038 }
1039 return 0;
1040 }
1041
skb_kfree_head(void * head,unsigned int end_offset)1042 static void skb_kfree_head(void *head, unsigned int end_offset)
1043 {
1044 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1045 kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1046 else
1047 kfree(head);
1048 }
1049
skb_free_head(struct sk_buff * skb)1050 static void skb_free_head(struct sk_buff *skb)
1051 {
1052 unsigned char *head = skb->head;
1053
1054 if (skb->head_frag) {
1055 if (skb_pp_recycle(skb, head))
1056 return;
1057 skb_free_frag(head);
1058 } else {
1059 skb_kfree_head(head, skb_end_offset(skb));
1060 }
1061 }
1062
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1063 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1064 {
1065 struct skb_shared_info *shinfo = skb_shinfo(skb);
1066 int i;
1067
1068 if (!skb_data_unref(skb, shinfo))
1069 goto exit;
1070
1071 if (skb_zcopy(skb)) {
1072 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1073
1074 skb_zcopy_clear(skb, true);
1075 if (skip_unref)
1076 goto free_head;
1077 }
1078
1079 for (i = 0; i < shinfo->nr_frags; i++)
1080 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1081
1082 free_head:
1083 if (shinfo->frag_list)
1084 kfree_skb_list_reason(shinfo->frag_list, reason);
1085
1086 skb_free_head(skb);
1087 exit:
1088 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1089 * bit is only set on the head though, so in order to avoid races
1090 * while trying to recycle fragments on __skb_frag_unref() we need
1091 * to make one SKB responsible for triggering the recycle path.
1092 * So disable the recycling bit if an SKB is cloned and we have
1093 * additional references to the fragmented part of the SKB.
1094 * Eventually the last SKB will have the recycling bit set and it's
1095 * dataref set to 0, which will trigger the recycling
1096 */
1097 skb->pp_recycle = 0;
1098 }
1099
1100 /*
1101 * Free an skbuff by memory without cleaning the state.
1102 */
kfree_skbmem(struct sk_buff * skb)1103 static void kfree_skbmem(struct sk_buff *skb)
1104 {
1105 struct sk_buff_fclones *fclones;
1106
1107 switch (skb->fclone) {
1108 case SKB_FCLONE_UNAVAILABLE:
1109 kmem_cache_free(net_hotdata.skbuff_cache, skb);
1110 return;
1111
1112 case SKB_FCLONE_ORIG:
1113 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1114
1115 /* We usually free the clone (TX completion) before original skb
1116 * This test would have no chance to be true for the clone,
1117 * while here, branch prediction will be good.
1118 */
1119 if (refcount_read(&fclones->fclone_ref) == 1)
1120 goto fastpath;
1121 break;
1122
1123 default: /* SKB_FCLONE_CLONE */
1124 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1125 break;
1126 }
1127 if (!refcount_dec_and_test(&fclones->fclone_ref))
1128 return;
1129 fastpath:
1130 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1131 }
1132
skb_release_head_state(struct sk_buff * skb)1133 void skb_release_head_state(struct sk_buff *skb)
1134 {
1135 skb_dst_drop(skb);
1136 if (skb->destructor) {
1137 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1138 skb->destructor(skb);
1139 }
1140 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1141 nf_conntrack_put(skb_nfct(skb));
1142 #endif
1143 skb_ext_put(skb);
1144 }
1145
1146 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1147 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1148 {
1149 skb_release_head_state(skb);
1150 if (likely(skb->head))
1151 skb_release_data(skb, reason);
1152 }
1153
1154 /**
1155 * __kfree_skb - private function
1156 * @skb: buffer
1157 *
1158 * Free an sk_buff. Release anything attached to the buffer.
1159 * Clean the state. This is an internal helper function. Users should
1160 * always call kfree_skb
1161 */
1162
__kfree_skb(struct sk_buff * skb)1163 void __kfree_skb(struct sk_buff *skb)
1164 {
1165 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1166 kfree_skbmem(skb);
1167 }
1168 EXPORT_SYMBOL(__kfree_skb);
1169
1170 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1171 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1172 enum skb_drop_reason reason)
1173 {
1174 if (unlikely(!skb_unref(skb)))
1175 return false;
1176
1177 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1178 u32_get_bits(reason,
1179 SKB_DROP_REASON_SUBSYS_MASK) >=
1180 SKB_DROP_REASON_SUBSYS_NUM);
1181
1182 if (reason == SKB_CONSUMED)
1183 trace_consume_skb(skb, __builtin_return_address(0));
1184 else
1185 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1186 return true;
1187 }
1188
1189 /**
1190 * sk_skb_reason_drop - free an sk_buff with special reason
1191 * @sk: the socket to receive @skb, or NULL if not applicable
1192 * @skb: buffer to free
1193 * @reason: reason why this skb is dropped
1194 *
1195 * Drop a reference to the buffer and free it if the usage count has hit
1196 * zero. Meanwhile, pass the receiving socket and drop reason to
1197 * 'kfree_skb' tracepoint.
1198 */
1199 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1200 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1201 {
1202 if (__sk_skb_reason_drop(sk, skb, reason))
1203 __kfree_skb(skb);
1204 }
1205 EXPORT_SYMBOL(sk_skb_reason_drop);
1206
1207 #define KFREE_SKB_BULK_SIZE 16
1208
1209 struct skb_free_array {
1210 unsigned int skb_count;
1211 void *skb_array[KFREE_SKB_BULK_SIZE];
1212 };
1213
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1214 static void kfree_skb_add_bulk(struct sk_buff *skb,
1215 struct skb_free_array *sa,
1216 enum skb_drop_reason reason)
1217 {
1218 /* if SKB is a clone, don't handle this case */
1219 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1220 __kfree_skb(skb);
1221 return;
1222 }
1223
1224 skb_release_all(skb, reason);
1225 sa->skb_array[sa->skb_count++] = skb;
1226
1227 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1228 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1229 sa->skb_array);
1230 sa->skb_count = 0;
1231 }
1232 }
1233
1234 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1235 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1236 {
1237 struct skb_free_array sa;
1238
1239 sa.skb_count = 0;
1240
1241 while (segs) {
1242 struct sk_buff *next = segs->next;
1243
1244 if (__sk_skb_reason_drop(NULL, segs, reason)) {
1245 skb_poison_list(segs);
1246 kfree_skb_add_bulk(segs, &sa, reason);
1247 }
1248
1249 segs = next;
1250 }
1251
1252 if (sa.skb_count)
1253 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1254 }
1255 EXPORT_SYMBOL(kfree_skb_list_reason);
1256
1257 /* Dump skb information and contents.
1258 *
1259 * Must only be called from net_ratelimit()-ed paths.
1260 *
1261 * Dumps whole packets if full_pkt, only headers otherwise.
1262 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1263 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1264 {
1265 struct skb_shared_info *sh = skb_shinfo(skb);
1266 struct net_device *dev = skb->dev;
1267 struct sock *sk = skb->sk;
1268 struct sk_buff *list_skb;
1269 bool has_mac, has_trans;
1270 int headroom, tailroom;
1271 int i, len, seg_len;
1272
1273 if (full_pkt)
1274 len = skb->len;
1275 else
1276 len = min_t(int, skb->len, MAX_HEADER + 128);
1277
1278 headroom = skb_headroom(skb);
1279 tailroom = skb_tailroom(skb);
1280
1281 has_mac = skb_mac_header_was_set(skb);
1282 has_trans = skb_transport_header_was_set(skb);
1283
1284 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1285 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1286 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1287 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1288 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1289 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1290 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1291 level, skb->len, headroom, skb_headlen(skb), tailroom,
1292 has_mac ? skb->mac_header : -1,
1293 has_mac ? skb_mac_header_len(skb) : -1,
1294 skb->mac_len,
1295 skb->network_header,
1296 has_trans ? skb_network_header_len(skb) : -1,
1297 has_trans ? skb->transport_header : -1,
1298 sh->tx_flags, sh->nr_frags,
1299 sh->gso_size, sh->gso_type, sh->gso_segs,
1300 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1301 skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1302 skb->hash, skb->sw_hash, skb->l4_hash,
1303 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1304 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1305 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1306 skb->inner_network_header, skb->inner_transport_header);
1307
1308 if (dev)
1309 printk("%sdev name=%s feat=%pNF\n",
1310 level, dev->name, &dev->features);
1311 if (sk)
1312 printk("%ssk family=%hu type=%u proto=%u\n",
1313 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1314
1315 if (full_pkt && headroom)
1316 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1317 16, 1, skb->head, headroom, false);
1318
1319 seg_len = min_t(int, skb_headlen(skb), len);
1320 if (seg_len)
1321 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1322 16, 1, skb->data, seg_len, false);
1323 len -= seg_len;
1324
1325 if (full_pkt && tailroom)
1326 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1327 16, 1, skb_tail_pointer(skb), tailroom, false);
1328
1329 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1330 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1331 u32 p_off, p_len, copied;
1332 struct page *p;
1333 u8 *vaddr;
1334
1335 if (skb_frag_is_net_iov(frag)) {
1336 printk("%sskb frag %d: not readable\n", level, i);
1337 len -= skb_frag_size(frag);
1338 if (!len)
1339 break;
1340 continue;
1341 }
1342
1343 skb_frag_foreach_page(frag, skb_frag_off(frag),
1344 skb_frag_size(frag), p, p_off, p_len,
1345 copied) {
1346 seg_len = min_t(int, p_len, len);
1347 vaddr = kmap_atomic(p);
1348 print_hex_dump(level, "skb frag: ",
1349 DUMP_PREFIX_OFFSET,
1350 16, 1, vaddr + p_off, seg_len, false);
1351 kunmap_atomic(vaddr);
1352 len -= seg_len;
1353 if (!len)
1354 break;
1355 }
1356 }
1357
1358 if (full_pkt && skb_has_frag_list(skb)) {
1359 printk("skb fraglist:\n");
1360 skb_walk_frags(skb, list_skb)
1361 skb_dump(level, list_skb, true);
1362 }
1363 }
1364 EXPORT_SYMBOL(skb_dump);
1365
1366 /**
1367 * skb_tx_error - report an sk_buff xmit error
1368 * @skb: buffer that triggered an error
1369 *
1370 * Report xmit error if a device callback is tracking this skb.
1371 * skb must be freed afterwards.
1372 */
skb_tx_error(struct sk_buff * skb)1373 void skb_tx_error(struct sk_buff *skb)
1374 {
1375 if (skb) {
1376 skb_zcopy_downgrade_managed(skb);
1377 skb_zcopy_clear(skb, true);
1378 }
1379 }
1380 EXPORT_SYMBOL(skb_tx_error);
1381
1382 #ifdef CONFIG_TRACEPOINTS
1383 /**
1384 * consume_skb - free an skbuff
1385 * @skb: buffer to free
1386 *
1387 * Drop a ref to the buffer and free it if the usage count has hit zero
1388 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1389 * is being dropped after a failure and notes that
1390 */
consume_skb(struct sk_buff * skb)1391 void consume_skb(struct sk_buff *skb)
1392 {
1393 if (!skb_unref(skb))
1394 return;
1395
1396 trace_consume_skb(skb, __builtin_return_address(0));
1397 __kfree_skb(skb);
1398 }
1399 EXPORT_SYMBOL(consume_skb);
1400 #endif
1401
1402 /**
1403 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1404 * @skb: buffer to free
1405 *
1406 * Alike consume_skb(), but this variant assumes that this is the last
1407 * skb reference and all the head states have been already dropped
1408 */
__consume_stateless_skb(struct sk_buff * skb)1409 void __consume_stateless_skb(struct sk_buff *skb)
1410 {
1411 trace_consume_skb(skb, __builtin_return_address(0));
1412 skb_release_data(skb, SKB_CONSUMED);
1413 kfree_skbmem(skb);
1414 }
1415
napi_skb_cache_put(struct sk_buff * skb)1416 static void napi_skb_cache_put(struct sk_buff *skb)
1417 {
1418 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1419 u32 i;
1420
1421 if (!kasan_mempool_poison_object(skb))
1422 return;
1423
1424 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1425 nc->skb_cache[nc->skb_count++] = skb;
1426
1427 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1428 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1429 kasan_mempool_unpoison_object(nc->skb_cache[i],
1430 kmem_cache_size(net_hotdata.skbuff_cache));
1431
1432 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1433 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1434 nc->skb_count = NAPI_SKB_CACHE_HALF;
1435 }
1436 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1437 }
1438
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1439 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1440 {
1441 skb_release_all(skb, reason);
1442 napi_skb_cache_put(skb);
1443 }
1444
napi_skb_free_stolen_head(struct sk_buff * skb)1445 void napi_skb_free_stolen_head(struct sk_buff *skb)
1446 {
1447 if (unlikely(skb->slow_gro)) {
1448 nf_reset_ct(skb);
1449 skb_dst_drop(skb);
1450 skb_ext_put(skb);
1451 skb_orphan(skb);
1452 skb->slow_gro = 0;
1453 }
1454 napi_skb_cache_put(skb);
1455 }
1456
napi_consume_skb(struct sk_buff * skb,int budget)1457 void napi_consume_skb(struct sk_buff *skb, int budget)
1458 {
1459 /* Zero budget indicate non-NAPI context called us, like netpoll */
1460 if (unlikely(!budget)) {
1461 dev_consume_skb_any(skb);
1462 return;
1463 }
1464
1465 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1466
1467 if (!skb_unref(skb))
1468 return;
1469
1470 /* if reaching here SKB is ready to free */
1471 trace_consume_skb(skb, __builtin_return_address(0));
1472
1473 /* if SKB is a clone, don't handle this case */
1474 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1475 __kfree_skb(skb);
1476 return;
1477 }
1478
1479 skb_release_all(skb, SKB_CONSUMED);
1480 napi_skb_cache_put(skb);
1481 }
1482 EXPORT_SYMBOL(napi_consume_skb);
1483
1484 /* Make sure a field is contained by headers group */
1485 #define CHECK_SKB_FIELD(field) \
1486 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1487 offsetof(struct sk_buff, headers.field)); \
1488
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1489 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1490 {
1491 new->tstamp = old->tstamp;
1492 /* We do not copy old->sk */
1493 new->dev = old->dev;
1494 memcpy(new->cb, old->cb, sizeof(old->cb));
1495 skb_dst_copy(new, old);
1496 __skb_ext_copy(new, old);
1497 __nf_copy(new, old, false);
1498
1499 /* Note : this field could be in the headers group.
1500 * It is not yet because we do not want to have a 16 bit hole
1501 */
1502 new->queue_mapping = old->queue_mapping;
1503
1504 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1505 CHECK_SKB_FIELD(protocol);
1506 CHECK_SKB_FIELD(csum);
1507 CHECK_SKB_FIELD(hash);
1508 CHECK_SKB_FIELD(priority);
1509 CHECK_SKB_FIELD(skb_iif);
1510 CHECK_SKB_FIELD(vlan_proto);
1511 CHECK_SKB_FIELD(vlan_tci);
1512 CHECK_SKB_FIELD(transport_header);
1513 CHECK_SKB_FIELD(network_header);
1514 CHECK_SKB_FIELD(mac_header);
1515 CHECK_SKB_FIELD(inner_protocol);
1516 CHECK_SKB_FIELD(inner_transport_header);
1517 CHECK_SKB_FIELD(inner_network_header);
1518 CHECK_SKB_FIELD(inner_mac_header);
1519 CHECK_SKB_FIELD(mark);
1520 #ifdef CONFIG_NETWORK_SECMARK
1521 CHECK_SKB_FIELD(secmark);
1522 #endif
1523 #ifdef CONFIG_NET_RX_BUSY_POLL
1524 CHECK_SKB_FIELD(napi_id);
1525 #endif
1526 CHECK_SKB_FIELD(alloc_cpu);
1527 #ifdef CONFIG_XPS
1528 CHECK_SKB_FIELD(sender_cpu);
1529 #endif
1530 #ifdef CONFIG_NET_SCHED
1531 CHECK_SKB_FIELD(tc_index);
1532 #endif
1533
1534 }
1535
1536 /*
1537 * You should not add any new code to this function. Add it to
1538 * __copy_skb_header above instead.
1539 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1540 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1541 {
1542 #define C(x) n->x = skb->x
1543
1544 n->next = n->prev = NULL;
1545 n->sk = NULL;
1546 __copy_skb_header(n, skb);
1547
1548 C(len);
1549 C(data_len);
1550 C(mac_len);
1551 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1552 n->cloned = 1;
1553 n->nohdr = 0;
1554 n->peeked = 0;
1555 C(pfmemalloc);
1556 C(pp_recycle);
1557 n->destructor = NULL;
1558 C(tail);
1559 C(end);
1560 C(head);
1561 C(head_frag);
1562 C(data);
1563 C(truesize);
1564 refcount_set(&n->users, 1);
1565
1566 atomic_inc(&(skb_shinfo(skb)->dataref));
1567 skb->cloned = 1;
1568
1569 return n;
1570 #undef C
1571 }
1572
1573 /**
1574 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1575 * @first: first sk_buff of the msg
1576 */
alloc_skb_for_msg(struct sk_buff * first)1577 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1578 {
1579 struct sk_buff *n;
1580
1581 n = alloc_skb(0, GFP_ATOMIC);
1582 if (!n)
1583 return NULL;
1584
1585 n->len = first->len;
1586 n->data_len = first->len;
1587 n->truesize = first->truesize;
1588
1589 skb_shinfo(n)->frag_list = first;
1590
1591 __copy_skb_header(n, first);
1592 n->destructor = NULL;
1593
1594 return n;
1595 }
1596 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1597
1598 /**
1599 * skb_morph - morph one skb into another
1600 * @dst: the skb to receive the contents
1601 * @src: the skb to supply the contents
1602 *
1603 * This is identical to skb_clone except that the target skb is
1604 * supplied by the user.
1605 *
1606 * The target skb is returned upon exit.
1607 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1608 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1609 {
1610 skb_release_all(dst, SKB_CONSUMED);
1611 return __skb_clone(dst, src);
1612 }
1613 EXPORT_SYMBOL_GPL(skb_morph);
1614
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1615 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1616 {
1617 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1618 struct user_struct *user;
1619
1620 if (capable(CAP_IPC_LOCK) || !size)
1621 return 0;
1622
1623 rlim = rlimit(RLIMIT_MEMLOCK);
1624 if (rlim == RLIM_INFINITY)
1625 return 0;
1626
1627 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1628 max_pg = rlim >> PAGE_SHIFT;
1629 user = mmp->user ? : current_user();
1630
1631 old_pg = atomic_long_read(&user->locked_vm);
1632 do {
1633 new_pg = old_pg + num_pg;
1634 if (new_pg > max_pg)
1635 return -ENOBUFS;
1636 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1637
1638 if (!mmp->user) {
1639 mmp->user = get_uid(user);
1640 mmp->num_pg = num_pg;
1641 } else {
1642 mmp->num_pg += num_pg;
1643 }
1644
1645 return 0;
1646 }
1647 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1648
mm_unaccount_pinned_pages(struct mmpin * mmp)1649 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1650 {
1651 if (mmp->user) {
1652 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1653 free_uid(mmp->user);
1654 }
1655 }
1656 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1657
msg_zerocopy_alloc(struct sock * sk,size_t size,bool devmem)1658 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1659 bool devmem)
1660 {
1661 struct ubuf_info_msgzc *uarg;
1662 struct sk_buff *skb;
1663
1664 WARN_ON_ONCE(!in_task());
1665
1666 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1667 if (!skb)
1668 return NULL;
1669
1670 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1671 uarg = (void *)skb->cb;
1672 uarg->mmp.user = NULL;
1673
1674 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1675 kfree_skb(skb);
1676 return NULL;
1677 }
1678
1679 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1680 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1681 uarg->len = 1;
1682 uarg->bytelen = size;
1683 uarg->zerocopy = 1;
1684 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1685 refcount_set(&uarg->ubuf.refcnt, 1);
1686 sock_hold(sk);
1687
1688 return &uarg->ubuf;
1689 }
1690
skb_from_uarg(struct ubuf_info_msgzc * uarg)1691 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1692 {
1693 return container_of((void *)uarg, struct sk_buff, cb);
1694 }
1695
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg,bool devmem)1696 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1697 struct ubuf_info *uarg, bool devmem)
1698 {
1699 if (uarg) {
1700 struct ubuf_info_msgzc *uarg_zc;
1701 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1702 u32 bytelen, next;
1703
1704 /* there might be non MSG_ZEROCOPY users */
1705 if (uarg->ops != &msg_zerocopy_ubuf_ops)
1706 return NULL;
1707
1708 /* realloc only when socket is locked (TCP, UDP cork),
1709 * so uarg->len and sk_zckey access is serialized
1710 */
1711 if (!sock_owned_by_user(sk)) {
1712 WARN_ON_ONCE(1);
1713 return NULL;
1714 }
1715
1716 uarg_zc = uarg_to_msgzc(uarg);
1717 bytelen = uarg_zc->bytelen + size;
1718 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1719 /* TCP can create new skb to attach new uarg */
1720 if (sk->sk_type == SOCK_STREAM)
1721 goto new_alloc;
1722 return NULL;
1723 }
1724
1725 next = (u32)atomic_read(&sk->sk_zckey);
1726 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1727 if (likely(!devmem) &&
1728 mm_account_pinned_pages(&uarg_zc->mmp, size))
1729 return NULL;
1730 uarg_zc->len++;
1731 uarg_zc->bytelen = bytelen;
1732 atomic_set(&sk->sk_zckey, ++next);
1733
1734 /* no extra ref when appending to datagram (MSG_MORE) */
1735 if (sk->sk_type == SOCK_STREAM)
1736 net_zcopy_get(uarg);
1737
1738 return uarg;
1739 }
1740 }
1741
1742 new_alloc:
1743 return msg_zerocopy_alloc(sk, size, devmem);
1744 }
1745 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1746
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1747 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1748 {
1749 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1750 u32 old_lo, old_hi;
1751 u64 sum_len;
1752
1753 old_lo = serr->ee.ee_info;
1754 old_hi = serr->ee.ee_data;
1755 sum_len = old_hi - old_lo + 1ULL + len;
1756
1757 if (sum_len >= (1ULL << 32))
1758 return false;
1759
1760 if (lo != old_hi + 1)
1761 return false;
1762
1763 serr->ee.ee_data += len;
1764 return true;
1765 }
1766
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1767 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1768 {
1769 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1770 struct sock_exterr_skb *serr;
1771 struct sock *sk = skb->sk;
1772 struct sk_buff_head *q;
1773 unsigned long flags;
1774 bool is_zerocopy;
1775 u32 lo, hi;
1776 u16 len;
1777
1778 mm_unaccount_pinned_pages(&uarg->mmp);
1779
1780 /* if !len, there was only 1 call, and it was aborted
1781 * so do not queue a completion notification
1782 */
1783 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1784 goto release;
1785
1786 len = uarg->len;
1787 lo = uarg->id;
1788 hi = uarg->id + len - 1;
1789 is_zerocopy = uarg->zerocopy;
1790
1791 serr = SKB_EXT_ERR(skb);
1792 memset(serr, 0, sizeof(*serr));
1793 serr->ee.ee_errno = 0;
1794 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1795 serr->ee.ee_data = hi;
1796 serr->ee.ee_info = lo;
1797 if (!is_zerocopy)
1798 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1799
1800 q = &sk->sk_error_queue;
1801 spin_lock_irqsave(&q->lock, flags);
1802 tail = skb_peek_tail(q);
1803 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1804 !skb_zerocopy_notify_extend(tail, lo, len)) {
1805 __skb_queue_tail(q, skb);
1806 skb = NULL;
1807 }
1808 spin_unlock_irqrestore(&q->lock, flags);
1809
1810 sk_error_report(sk);
1811
1812 release:
1813 consume_skb(skb);
1814 sock_put(sk);
1815 }
1816
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1817 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1818 bool success)
1819 {
1820 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1821
1822 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1823
1824 if (refcount_dec_and_test(&uarg->refcnt))
1825 __msg_zerocopy_callback(uarg_zc);
1826 }
1827
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1828 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1829 {
1830 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1831
1832 atomic_dec(&sk->sk_zckey);
1833 uarg_to_msgzc(uarg)->len--;
1834
1835 if (have_uref)
1836 msg_zerocopy_complete(NULL, uarg, true);
1837 }
1838 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1839
1840 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1841 .complete = msg_zerocopy_complete,
1842 };
1843 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1844
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg,struct net_devmem_dmabuf_binding * binding)1845 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1846 struct msghdr *msg, int len,
1847 struct ubuf_info *uarg,
1848 struct net_devmem_dmabuf_binding *binding)
1849 {
1850 int err, orig_len = skb->len;
1851
1852 if (uarg->ops->link_skb) {
1853 err = uarg->ops->link_skb(skb, uarg);
1854 if (err)
1855 return err;
1856 } else {
1857 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1858
1859 /* An skb can only point to one uarg. This edge case happens
1860 * when TCP appends to an skb, but zerocopy_realloc triggered
1861 * a new alloc.
1862 */
1863 if (orig_uarg && uarg != orig_uarg)
1864 return -EEXIST;
1865 }
1866
1867 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1868 binding);
1869 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1870 struct sock *save_sk = skb->sk;
1871
1872 /* Streams do not free skb on error. Reset to prev state. */
1873 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1874 skb->sk = sk;
1875 ___pskb_trim(skb, orig_len);
1876 skb->sk = save_sk;
1877 return err;
1878 }
1879
1880 skb_zcopy_set(skb, uarg, NULL);
1881 return skb->len - orig_len;
1882 }
1883 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1884
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1885 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1886 {
1887 int i;
1888
1889 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1891 skb_frag_ref(skb, i);
1892 }
1893 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1894
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1895 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1896 gfp_t gfp_mask)
1897 {
1898 if (skb_zcopy(orig)) {
1899 if (skb_zcopy(nskb)) {
1900 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1901 if (!gfp_mask) {
1902 WARN_ON_ONCE(1);
1903 return -ENOMEM;
1904 }
1905 if (skb_uarg(nskb) == skb_uarg(orig))
1906 return 0;
1907 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1908 return -EIO;
1909 }
1910 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1911 }
1912 return 0;
1913 }
1914
1915 /**
1916 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1917 * @skb: the skb to modify
1918 * @gfp_mask: allocation priority
1919 *
1920 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1921 * It will copy all frags into kernel and drop the reference
1922 * to userspace pages.
1923 *
1924 * If this function is called from an interrupt gfp_mask() must be
1925 * %GFP_ATOMIC.
1926 *
1927 * Returns 0 on success or a negative error code on failure
1928 * to allocate kernel memory to copy to.
1929 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1930 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1931 {
1932 int num_frags = skb_shinfo(skb)->nr_frags;
1933 struct page *page, *head = NULL;
1934 int i, order, psize, new_frags;
1935 u32 d_off;
1936
1937 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1938 return -EINVAL;
1939
1940 if (!skb_frags_readable(skb))
1941 return -EFAULT;
1942
1943 if (!num_frags)
1944 goto release;
1945
1946 /* We might have to allocate high order pages, so compute what minimum
1947 * page order is needed.
1948 */
1949 order = 0;
1950 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1951 order++;
1952 psize = (PAGE_SIZE << order);
1953
1954 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1955 for (i = 0; i < new_frags; i++) {
1956 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1957 if (!page) {
1958 while (head) {
1959 struct page *next = (struct page *)page_private(head);
1960 put_page(head);
1961 head = next;
1962 }
1963 return -ENOMEM;
1964 }
1965 set_page_private(page, (unsigned long)head);
1966 head = page;
1967 }
1968
1969 page = head;
1970 d_off = 0;
1971 for (i = 0; i < num_frags; i++) {
1972 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1973 u32 p_off, p_len, copied;
1974 struct page *p;
1975 u8 *vaddr;
1976
1977 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1978 p, p_off, p_len, copied) {
1979 u32 copy, done = 0;
1980 vaddr = kmap_atomic(p);
1981
1982 while (done < p_len) {
1983 if (d_off == psize) {
1984 d_off = 0;
1985 page = (struct page *)page_private(page);
1986 }
1987 copy = min_t(u32, psize - d_off, p_len - done);
1988 memcpy(page_address(page) + d_off,
1989 vaddr + p_off + done, copy);
1990 done += copy;
1991 d_off += copy;
1992 }
1993 kunmap_atomic(vaddr);
1994 }
1995 }
1996
1997 /* skb frags release userspace buffers */
1998 for (i = 0; i < num_frags; i++)
1999 skb_frag_unref(skb, i);
2000
2001 /* skb frags point to kernel buffers */
2002 for (i = 0; i < new_frags - 1; i++) {
2003 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2004 head = (struct page *)page_private(head);
2005 }
2006 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2007 d_off);
2008 skb_shinfo(skb)->nr_frags = new_frags;
2009
2010 release:
2011 skb_zcopy_clear(skb, false);
2012 return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2015
2016 /**
2017 * skb_clone - duplicate an sk_buff
2018 * @skb: buffer to clone
2019 * @gfp_mask: allocation priority
2020 *
2021 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
2022 * copies share the same packet data but not structure. The new
2023 * buffer has a reference count of 1. If the allocation fails the
2024 * function returns %NULL otherwise the new buffer is returned.
2025 *
2026 * If this function is called from an interrupt gfp_mask() must be
2027 * %GFP_ATOMIC.
2028 */
2029
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)2030 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2031 {
2032 struct sk_buff_fclones *fclones = container_of(skb,
2033 struct sk_buff_fclones,
2034 skb1);
2035 struct sk_buff *n;
2036
2037 if (skb_orphan_frags(skb, gfp_mask))
2038 return NULL;
2039
2040 if (skb->fclone == SKB_FCLONE_ORIG &&
2041 refcount_read(&fclones->fclone_ref) == 1) {
2042 n = &fclones->skb2;
2043 refcount_set(&fclones->fclone_ref, 2);
2044 n->fclone = SKB_FCLONE_CLONE;
2045 } else {
2046 if (skb_pfmemalloc(skb))
2047 gfp_mask |= __GFP_MEMALLOC;
2048
2049 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2050 if (!n)
2051 return NULL;
2052
2053 n->fclone = SKB_FCLONE_UNAVAILABLE;
2054 }
2055
2056 return __skb_clone(n, skb);
2057 }
2058 EXPORT_SYMBOL(skb_clone);
2059
skb_headers_offset_update(struct sk_buff * skb,int off)2060 void skb_headers_offset_update(struct sk_buff *skb, int off)
2061 {
2062 /* Only adjust this if it actually is csum_start rather than csum */
2063 if (skb->ip_summed == CHECKSUM_PARTIAL)
2064 skb->csum_start += off;
2065 /* {transport,network,mac}_header and tail are relative to skb->head */
2066 skb->transport_header += off;
2067 skb->network_header += off;
2068 if (skb_mac_header_was_set(skb))
2069 skb->mac_header += off;
2070 skb->inner_transport_header += off;
2071 skb->inner_network_header += off;
2072 skb->inner_mac_header += off;
2073 }
2074 EXPORT_SYMBOL(skb_headers_offset_update);
2075
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2076 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2077 {
2078 __copy_skb_header(new, old);
2079
2080 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2081 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2082 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2083 }
2084 EXPORT_SYMBOL(skb_copy_header);
2085
skb_alloc_rx_flag(const struct sk_buff * skb)2086 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2087 {
2088 if (skb_pfmemalloc(skb))
2089 return SKB_ALLOC_RX;
2090 return 0;
2091 }
2092
2093 /**
2094 * skb_copy - create private copy of an sk_buff
2095 * @skb: buffer to copy
2096 * @gfp_mask: allocation priority
2097 *
2098 * Make a copy of both an &sk_buff and its data. This is used when the
2099 * caller wishes to modify the data and needs a private copy of the
2100 * data to alter. Returns %NULL on failure or the pointer to the buffer
2101 * on success. The returned buffer has a reference count of 1.
2102 *
2103 * As by-product this function converts non-linear &sk_buff to linear
2104 * one, so that &sk_buff becomes completely private and caller is allowed
2105 * to modify all the data of returned buffer. This means that this
2106 * function is not recommended for use in circumstances when only
2107 * header is going to be modified. Use pskb_copy() instead.
2108 */
2109
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2110 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2111 {
2112 struct sk_buff *n;
2113 unsigned int size;
2114 int headerlen;
2115
2116 if (!skb_frags_readable(skb))
2117 return NULL;
2118
2119 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2120 return NULL;
2121
2122 headerlen = skb_headroom(skb);
2123 size = skb_end_offset(skb) + skb->data_len;
2124 n = __alloc_skb(size, gfp_mask,
2125 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2126 if (!n)
2127 return NULL;
2128
2129 /* Set the data pointer */
2130 skb_reserve(n, headerlen);
2131 /* Set the tail pointer and length */
2132 skb_put(n, skb->len);
2133
2134 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2135
2136 skb_copy_header(n, skb);
2137 return n;
2138 }
2139 EXPORT_SYMBOL(skb_copy);
2140
2141 /**
2142 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2143 * @skb: buffer to copy
2144 * @headroom: headroom of new skb
2145 * @gfp_mask: allocation priority
2146 * @fclone: if true allocate the copy of the skb from the fclone
2147 * cache instead of the head cache; it is recommended to set this
2148 * to true for the cases where the copy will likely be cloned
2149 *
2150 * Make a copy of both an &sk_buff and part of its data, located
2151 * in header. Fragmented data remain shared. This is used when
2152 * the caller wishes to modify only header of &sk_buff and needs
2153 * private copy of the header to alter. Returns %NULL on failure
2154 * or the pointer to the buffer on success.
2155 * The returned buffer has a reference count of 1.
2156 */
2157
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2159 gfp_t gfp_mask, bool fclone)
2160 {
2161 unsigned int size = skb_headlen(skb) + headroom;
2162 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2163 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2164
2165 if (!n)
2166 goto out;
2167
2168 /* Set the data pointer */
2169 skb_reserve(n, headroom);
2170 /* Set the tail pointer and length */
2171 skb_put(n, skb_headlen(skb));
2172 /* Copy the bytes */
2173 skb_copy_from_linear_data(skb, n->data, n->len);
2174
2175 n->truesize += skb->data_len;
2176 n->data_len = skb->data_len;
2177 n->len = skb->len;
2178
2179 if (skb_shinfo(skb)->nr_frags) {
2180 int i;
2181
2182 if (skb_orphan_frags(skb, gfp_mask) ||
2183 skb_zerocopy_clone(n, skb, gfp_mask)) {
2184 kfree_skb(n);
2185 n = NULL;
2186 goto out;
2187 }
2188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2189 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2190 skb_frag_ref(skb, i);
2191 }
2192 skb_shinfo(n)->nr_frags = i;
2193 }
2194
2195 if (skb_has_frag_list(skb)) {
2196 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2197 skb_clone_fraglist(n);
2198 }
2199
2200 skb_copy_header(n, skb);
2201 out:
2202 return n;
2203 }
2204 EXPORT_SYMBOL(__pskb_copy_fclone);
2205
2206 /**
2207 * pskb_expand_head - reallocate header of &sk_buff
2208 * @skb: buffer to reallocate
2209 * @nhead: room to add at head
2210 * @ntail: room to add at tail
2211 * @gfp_mask: allocation priority
2212 *
2213 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2214 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2215 * reference count of 1. Returns zero in the case of success or error,
2216 * if expansion failed. In the last case, &sk_buff is not changed.
2217 *
2218 * All the pointers pointing into skb header may change and must be
2219 * reloaded after call to this function.
2220 */
2221
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2222 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2223 gfp_t gfp_mask)
2224 {
2225 unsigned int osize = skb_end_offset(skb);
2226 unsigned int size = osize + nhead + ntail;
2227 long off;
2228 u8 *data;
2229 int i;
2230
2231 BUG_ON(nhead < 0);
2232
2233 BUG_ON(skb_shared(skb));
2234
2235 skb_zcopy_downgrade_managed(skb);
2236
2237 if (skb_pfmemalloc(skb))
2238 gfp_mask |= __GFP_MEMALLOC;
2239
2240 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2241 if (!data)
2242 goto nodata;
2243 size = SKB_WITH_OVERHEAD(size);
2244
2245 /* Copy only real data... and, alas, header. This should be
2246 * optimized for the cases when header is void.
2247 */
2248 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2249
2250 memcpy((struct skb_shared_info *)(data + size),
2251 skb_shinfo(skb),
2252 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2253
2254 /*
2255 * if shinfo is shared we must drop the old head gracefully, but if it
2256 * is not we can just drop the old head and let the existing refcount
2257 * be since all we did is relocate the values
2258 */
2259 if (skb_cloned(skb)) {
2260 if (skb_orphan_frags(skb, gfp_mask))
2261 goto nofrags;
2262 if (skb_zcopy(skb))
2263 refcount_inc(&skb_uarg(skb)->refcnt);
2264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2265 skb_frag_ref(skb, i);
2266
2267 if (skb_has_frag_list(skb))
2268 skb_clone_fraglist(skb);
2269
2270 skb_release_data(skb, SKB_CONSUMED);
2271 } else {
2272 skb_free_head(skb);
2273 }
2274 off = (data + nhead) - skb->head;
2275
2276 skb->head = data;
2277 skb->head_frag = 0;
2278 skb->data += off;
2279
2280 skb_set_end_offset(skb, size);
2281 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2282 off = nhead;
2283 #endif
2284 skb->tail += off;
2285 skb_headers_offset_update(skb, nhead);
2286 skb->cloned = 0;
2287 skb->hdr_len = 0;
2288 skb->nohdr = 0;
2289 atomic_set(&skb_shinfo(skb)->dataref, 1);
2290
2291 skb_metadata_clear(skb);
2292
2293 /* It is not generally safe to change skb->truesize.
2294 * For the moment, we really care of rx path, or
2295 * when skb is orphaned (not attached to a socket).
2296 */
2297 if (!skb->sk || skb->destructor == sock_edemux)
2298 skb->truesize += size - osize;
2299
2300 return 0;
2301
2302 nofrags:
2303 skb_kfree_head(data, size);
2304 nodata:
2305 return -ENOMEM;
2306 }
2307 EXPORT_SYMBOL(pskb_expand_head);
2308
2309 /* Make private copy of skb with writable head and some headroom */
2310
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2311 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2312 {
2313 struct sk_buff *skb2;
2314 int delta = headroom - skb_headroom(skb);
2315
2316 if (delta <= 0)
2317 skb2 = pskb_copy(skb, GFP_ATOMIC);
2318 else {
2319 skb2 = skb_clone(skb, GFP_ATOMIC);
2320 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2321 GFP_ATOMIC)) {
2322 kfree_skb(skb2);
2323 skb2 = NULL;
2324 }
2325 }
2326 return skb2;
2327 }
2328 EXPORT_SYMBOL(skb_realloc_headroom);
2329
2330 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2331 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2332 {
2333 unsigned int saved_end_offset, saved_truesize;
2334 struct skb_shared_info *shinfo;
2335 int res;
2336
2337 saved_end_offset = skb_end_offset(skb);
2338 saved_truesize = skb->truesize;
2339
2340 res = pskb_expand_head(skb, 0, 0, pri);
2341 if (res)
2342 return res;
2343
2344 skb->truesize = saved_truesize;
2345
2346 if (likely(skb_end_offset(skb) == saved_end_offset))
2347 return 0;
2348
2349 /* We can not change skb->end if the original or new value
2350 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2351 */
2352 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2353 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2354 /* We think this path should not be taken.
2355 * Add a temporary trace to warn us just in case.
2356 */
2357 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2358 saved_end_offset, skb_end_offset(skb));
2359 WARN_ON_ONCE(1);
2360 return 0;
2361 }
2362
2363 shinfo = skb_shinfo(skb);
2364
2365 /* We are about to change back skb->end,
2366 * we need to move skb_shinfo() to its new location.
2367 */
2368 memmove(skb->head + saved_end_offset,
2369 shinfo,
2370 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2371
2372 skb_set_end_offset(skb, saved_end_offset);
2373
2374 return 0;
2375 }
2376
2377 /**
2378 * skb_expand_head - reallocate header of &sk_buff
2379 * @skb: buffer to reallocate
2380 * @headroom: needed headroom
2381 *
2382 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2383 * if possible; copies skb->sk to new skb as needed
2384 * and frees original skb in case of failures.
2385 *
2386 * It expect increased headroom and generates warning otherwise.
2387 */
2388
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2390 {
2391 int delta = headroom - skb_headroom(skb);
2392 int osize = skb_end_offset(skb);
2393 struct sock *sk = skb->sk;
2394
2395 if (WARN_ONCE(delta <= 0,
2396 "%s is expecting an increase in the headroom", __func__))
2397 return skb;
2398
2399 delta = SKB_DATA_ALIGN(delta);
2400 /* pskb_expand_head() might crash, if skb is shared. */
2401 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2402 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2403
2404 if (unlikely(!nskb))
2405 goto fail;
2406
2407 if (sk)
2408 skb_set_owner_w(nskb, sk);
2409 consume_skb(skb);
2410 skb = nskb;
2411 }
2412 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2413 goto fail;
2414
2415 if (sk && is_skb_wmem(skb)) {
2416 delta = skb_end_offset(skb) - osize;
2417 refcount_add(delta, &sk->sk_wmem_alloc);
2418 skb->truesize += delta;
2419 }
2420 return skb;
2421
2422 fail:
2423 kfree_skb(skb);
2424 return NULL;
2425 }
2426 EXPORT_SYMBOL(skb_expand_head);
2427
2428 /**
2429 * skb_copy_expand - copy and expand sk_buff
2430 * @skb: buffer to copy
2431 * @newheadroom: new free bytes at head
2432 * @newtailroom: new free bytes at tail
2433 * @gfp_mask: allocation priority
2434 *
2435 * Make a copy of both an &sk_buff and its data and while doing so
2436 * allocate additional space.
2437 *
2438 * This is used when the caller wishes to modify the data and needs a
2439 * private copy of the data to alter as well as more space for new fields.
2440 * Returns %NULL on failure or the pointer to the buffer
2441 * on success. The returned buffer has a reference count of 1.
2442 *
2443 * You must pass %GFP_ATOMIC as the allocation priority if this function
2444 * is called from an interrupt.
2445 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2446 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2447 int newheadroom, int newtailroom,
2448 gfp_t gfp_mask)
2449 {
2450 /*
2451 * Allocate the copy buffer
2452 */
2453 int head_copy_len, head_copy_off;
2454 struct sk_buff *n;
2455 int oldheadroom;
2456
2457 if (!skb_frags_readable(skb))
2458 return NULL;
2459
2460 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2461 return NULL;
2462
2463 oldheadroom = skb_headroom(skb);
2464 n = __alloc_skb(newheadroom + skb->len + newtailroom,
2465 gfp_mask, skb_alloc_rx_flag(skb),
2466 NUMA_NO_NODE);
2467 if (!n)
2468 return NULL;
2469
2470 skb_reserve(n, newheadroom);
2471
2472 /* Set the tail pointer and length */
2473 skb_put(n, skb->len);
2474
2475 head_copy_len = oldheadroom;
2476 head_copy_off = 0;
2477 if (newheadroom <= head_copy_len)
2478 head_copy_len = newheadroom;
2479 else
2480 head_copy_off = newheadroom - head_copy_len;
2481
2482 /* Copy the linear header and data. */
2483 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2484 skb->len + head_copy_len));
2485
2486 skb_copy_header(n, skb);
2487
2488 skb_headers_offset_update(n, newheadroom - oldheadroom);
2489
2490 return n;
2491 }
2492 EXPORT_SYMBOL(skb_copy_expand);
2493
2494 /**
2495 * __skb_pad - zero pad the tail of an skb
2496 * @skb: buffer to pad
2497 * @pad: space to pad
2498 * @free_on_error: free buffer on error
2499 *
2500 * Ensure that a buffer is followed by a padding area that is zero
2501 * filled. Used by network drivers which may DMA or transfer data
2502 * beyond the buffer end onto the wire.
2503 *
2504 * May return error in out of memory cases. The skb is freed on error
2505 * if @free_on_error is true.
2506 */
2507
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2508 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2509 {
2510 int err;
2511 int ntail;
2512
2513 /* If the skbuff is non linear tailroom is always zero.. */
2514 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2515 memset(skb->data+skb->len, 0, pad);
2516 return 0;
2517 }
2518
2519 ntail = skb->data_len + pad - (skb->end - skb->tail);
2520 if (likely(skb_cloned(skb) || ntail > 0)) {
2521 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2522 if (unlikely(err))
2523 goto free_skb;
2524 }
2525
2526 /* FIXME: The use of this function with non-linear skb's really needs
2527 * to be audited.
2528 */
2529 err = skb_linearize(skb);
2530 if (unlikely(err))
2531 goto free_skb;
2532
2533 memset(skb->data + skb->len, 0, pad);
2534 return 0;
2535
2536 free_skb:
2537 if (free_on_error)
2538 kfree_skb(skb);
2539 return err;
2540 }
2541 EXPORT_SYMBOL(__skb_pad);
2542
2543 /**
2544 * pskb_put - add data to the tail of a potentially fragmented buffer
2545 * @skb: start of the buffer to use
2546 * @tail: tail fragment of the buffer to use
2547 * @len: amount of data to add
2548 *
2549 * This function extends the used data area of the potentially
2550 * fragmented buffer. @tail must be the last fragment of @skb -- or
2551 * @skb itself. If this would exceed the total buffer size the kernel
2552 * will panic. A pointer to the first byte of the extra data is
2553 * returned.
2554 */
2555
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2556 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2557 {
2558 if (tail != skb) {
2559 skb->data_len += len;
2560 skb->len += len;
2561 }
2562 return skb_put(tail, len);
2563 }
2564 EXPORT_SYMBOL_GPL(pskb_put);
2565
2566 /**
2567 * skb_put - add data to a buffer
2568 * @skb: buffer to use
2569 * @len: amount of data to add
2570 *
2571 * This function extends the used data area of the buffer. If this would
2572 * exceed the total buffer size the kernel will panic. A pointer to the
2573 * first byte of the extra data is returned.
2574 */
skb_put(struct sk_buff * skb,unsigned int len)2575 void *skb_put(struct sk_buff *skb, unsigned int len)
2576 {
2577 void *tmp = skb_tail_pointer(skb);
2578 SKB_LINEAR_ASSERT(skb);
2579 skb->tail += len;
2580 skb->len += len;
2581 if (unlikely(skb->tail > skb->end))
2582 skb_over_panic(skb, len, __builtin_return_address(0));
2583 return tmp;
2584 }
2585 EXPORT_SYMBOL(skb_put);
2586
2587 /**
2588 * skb_push - add data to the start of a buffer
2589 * @skb: buffer to use
2590 * @len: amount of data to add
2591 *
2592 * This function extends the used data area of the buffer at the buffer
2593 * start. If this would exceed the total buffer headroom the kernel will
2594 * panic. A pointer to the first byte of the extra data is returned.
2595 */
skb_push(struct sk_buff * skb,unsigned int len)2596 void *skb_push(struct sk_buff *skb, unsigned int len)
2597 {
2598 skb->data -= len;
2599 skb->len += len;
2600 if (unlikely(skb->data < skb->head))
2601 skb_under_panic(skb, len, __builtin_return_address(0));
2602 return skb->data;
2603 }
2604 EXPORT_SYMBOL(skb_push);
2605
2606 /**
2607 * skb_pull - remove data from the start of a buffer
2608 * @skb: buffer to use
2609 * @len: amount of data to remove
2610 *
2611 * This function removes data from the start of a buffer, returning
2612 * the memory to the headroom. A pointer to the next data in the buffer
2613 * is returned. Once the data has been pulled future pushes will overwrite
2614 * the old data.
2615 */
skb_pull(struct sk_buff * skb,unsigned int len)2616 void *skb_pull(struct sk_buff *skb, unsigned int len)
2617 {
2618 return skb_pull_inline(skb, len);
2619 }
2620 EXPORT_SYMBOL(skb_pull);
2621
2622 /**
2623 * skb_pull_data - remove data from the start of a buffer returning its
2624 * original position.
2625 * @skb: buffer to use
2626 * @len: amount of data to remove
2627 *
2628 * This function removes data from the start of a buffer, returning
2629 * the memory to the headroom. A pointer to the original data in the buffer
2630 * is returned after checking if there is enough data to pull. Once the
2631 * data has been pulled future pushes will overwrite the old data.
2632 */
skb_pull_data(struct sk_buff * skb,size_t len)2633 void *skb_pull_data(struct sk_buff *skb, size_t len)
2634 {
2635 void *data = skb->data;
2636
2637 if (skb->len < len)
2638 return NULL;
2639
2640 skb_pull(skb, len);
2641
2642 return data;
2643 }
2644 EXPORT_SYMBOL(skb_pull_data);
2645
2646 /**
2647 * skb_trim - remove end from a buffer
2648 * @skb: buffer to alter
2649 * @len: new length
2650 *
2651 * Cut the length of a buffer down by removing data from the tail. If
2652 * the buffer is already under the length specified it is not modified.
2653 * The skb must be linear.
2654 */
skb_trim(struct sk_buff * skb,unsigned int len)2655 void skb_trim(struct sk_buff *skb, unsigned int len)
2656 {
2657 if (skb->len > len)
2658 __skb_trim(skb, len);
2659 }
2660 EXPORT_SYMBOL(skb_trim);
2661
2662 /* Trims skb to length len. It can change skb pointers.
2663 */
2664
___pskb_trim(struct sk_buff * skb,unsigned int len)2665 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2666 {
2667 struct sk_buff **fragp;
2668 struct sk_buff *frag;
2669 int offset = skb_headlen(skb);
2670 int nfrags = skb_shinfo(skb)->nr_frags;
2671 int i;
2672 int err;
2673
2674 if (skb_cloned(skb) &&
2675 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2676 return err;
2677
2678 i = 0;
2679 if (offset >= len)
2680 goto drop_pages;
2681
2682 for (; i < nfrags; i++) {
2683 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2684
2685 if (end < len) {
2686 offset = end;
2687 continue;
2688 }
2689
2690 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2691
2692 drop_pages:
2693 skb_shinfo(skb)->nr_frags = i;
2694
2695 for (; i < nfrags; i++)
2696 skb_frag_unref(skb, i);
2697
2698 if (skb_has_frag_list(skb))
2699 skb_drop_fraglist(skb);
2700 goto done;
2701 }
2702
2703 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2704 fragp = &frag->next) {
2705 int end = offset + frag->len;
2706
2707 if (skb_shared(frag)) {
2708 struct sk_buff *nfrag;
2709
2710 nfrag = skb_clone(frag, GFP_ATOMIC);
2711 if (unlikely(!nfrag))
2712 return -ENOMEM;
2713
2714 nfrag->next = frag->next;
2715 consume_skb(frag);
2716 frag = nfrag;
2717 *fragp = frag;
2718 }
2719
2720 if (end < len) {
2721 offset = end;
2722 continue;
2723 }
2724
2725 if (end > len &&
2726 unlikely((err = pskb_trim(frag, len - offset))))
2727 return err;
2728
2729 if (frag->next)
2730 skb_drop_list(&frag->next);
2731 break;
2732 }
2733
2734 done:
2735 if (len > skb_headlen(skb)) {
2736 skb->data_len -= skb->len - len;
2737 skb->len = len;
2738 } else {
2739 skb->len = len;
2740 skb->data_len = 0;
2741 skb_set_tail_pointer(skb, len);
2742 }
2743
2744 if (!skb->sk || skb->destructor == sock_edemux)
2745 skb_condense(skb);
2746 return 0;
2747 }
2748 EXPORT_SYMBOL(___pskb_trim);
2749
2750 /* Note : use pskb_trim_rcsum() instead of calling this directly
2751 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2752 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2753 {
2754 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2755 int delta = skb->len - len;
2756
2757 skb->csum = csum_block_sub(skb->csum,
2758 skb_checksum(skb, len, delta, 0),
2759 len);
2760 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2761 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2762 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2763
2764 if (offset + sizeof(__sum16) > hdlen)
2765 return -EINVAL;
2766 }
2767 return __pskb_trim(skb, len);
2768 }
2769 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2770
2771 /**
2772 * __pskb_pull_tail - advance tail of skb header
2773 * @skb: buffer to reallocate
2774 * @delta: number of bytes to advance tail
2775 *
2776 * The function makes a sense only on a fragmented &sk_buff,
2777 * it expands header moving its tail forward and copying necessary
2778 * data from fragmented part.
2779 *
2780 * &sk_buff MUST have reference count of 1.
2781 *
2782 * Returns %NULL (and &sk_buff does not change) if pull failed
2783 * or value of new tail of skb in the case of success.
2784 *
2785 * All the pointers pointing into skb header may change and must be
2786 * reloaded after call to this function.
2787 */
2788
2789 /* Moves tail of skb head forward, copying data from fragmented part,
2790 * when it is necessary.
2791 * 1. It may fail due to malloc failure.
2792 * 2. It may change skb pointers.
2793 *
2794 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2795 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2796 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2797 {
2798 /* If skb has not enough free space at tail, get new one
2799 * plus 128 bytes for future expansions. If we have enough
2800 * room at tail, reallocate without expansion only if skb is cloned.
2801 */
2802 int i, k, eat = (skb->tail + delta) - skb->end;
2803
2804 if (!skb_frags_readable(skb))
2805 return NULL;
2806
2807 if (eat > 0 || skb_cloned(skb)) {
2808 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2809 GFP_ATOMIC))
2810 return NULL;
2811 }
2812
2813 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2814 skb_tail_pointer(skb), delta));
2815
2816 /* Optimization: no fragments, no reasons to preestimate
2817 * size of pulled pages. Superb.
2818 */
2819 if (!skb_has_frag_list(skb))
2820 goto pull_pages;
2821
2822 /* Estimate size of pulled pages. */
2823 eat = delta;
2824 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2825 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2826
2827 if (size >= eat)
2828 goto pull_pages;
2829 eat -= size;
2830 }
2831
2832 /* If we need update frag list, we are in troubles.
2833 * Certainly, it is possible to add an offset to skb data,
2834 * but taking into account that pulling is expected to
2835 * be very rare operation, it is worth to fight against
2836 * further bloating skb head and crucify ourselves here instead.
2837 * Pure masohism, indeed. 8)8)
2838 */
2839 if (eat) {
2840 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2841 struct sk_buff *clone = NULL;
2842 struct sk_buff *insp = NULL;
2843
2844 do {
2845 if (list->len <= eat) {
2846 /* Eaten as whole. */
2847 eat -= list->len;
2848 list = list->next;
2849 insp = list;
2850 } else {
2851 /* Eaten partially. */
2852 if (skb_is_gso(skb) && !list->head_frag &&
2853 skb_headlen(list))
2854 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2855
2856 if (skb_shared(list)) {
2857 /* Sucks! We need to fork list. :-( */
2858 clone = skb_clone(list, GFP_ATOMIC);
2859 if (!clone)
2860 return NULL;
2861 insp = list->next;
2862 list = clone;
2863 } else {
2864 /* This may be pulled without
2865 * problems. */
2866 insp = list;
2867 }
2868 if (!pskb_pull(list, eat)) {
2869 kfree_skb(clone);
2870 return NULL;
2871 }
2872 break;
2873 }
2874 } while (eat);
2875
2876 /* Free pulled out fragments. */
2877 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2878 skb_shinfo(skb)->frag_list = list->next;
2879 consume_skb(list);
2880 }
2881 /* And insert new clone at head. */
2882 if (clone) {
2883 clone->next = list;
2884 skb_shinfo(skb)->frag_list = clone;
2885 }
2886 }
2887 /* Success! Now we may commit changes to skb data. */
2888
2889 pull_pages:
2890 eat = delta;
2891 k = 0;
2892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2893 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2894
2895 if (size <= eat) {
2896 skb_frag_unref(skb, i);
2897 eat -= size;
2898 } else {
2899 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2900
2901 *frag = skb_shinfo(skb)->frags[i];
2902 if (eat) {
2903 skb_frag_off_add(frag, eat);
2904 skb_frag_size_sub(frag, eat);
2905 if (!i)
2906 goto end;
2907 eat = 0;
2908 }
2909 k++;
2910 }
2911 }
2912 skb_shinfo(skb)->nr_frags = k;
2913
2914 end:
2915 skb->tail += delta;
2916 skb->data_len -= delta;
2917
2918 if (!skb->data_len)
2919 skb_zcopy_clear(skb, false);
2920
2921 return skb_tail_pointer(skb);
2922 }
2923 EXPORT_SYMBOL(__pskb_pull_tail);
2924
2925 /**
2926 * skb_copy_bits - copy bits from skb to kernel buffer
2927 * @skb: source skb
2928 * @offset: offset in source
2929 * @to: destination buffer
2930 * @len: number of bytes to copy
2931 *
2932 * Copy the specified number of bytes from the source skb to the
2933 * destination buffer.
2934 *
2935 * CAUTION ! :
2936 * If its prototype is ever changed,
2937 * check arch/{*}/net/{*}.S files,
2938 * since it is called from BPF assembly code.
2939 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2940 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2941 {
2942 int start = skb_headlen(skb);
2943 struct sk_buff *frag_iter;
2944 int i, copy;
2945
2946 if (offset > (int)skb->len - len)
2947 goto fault;
2948
2949 /* Copy header. */
2950 if ((copy = start - offset) > 0) {
2951 if (copy > len)
2952 copy = len;
2953 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2954 if ((len -= copy) == 0)
2955 return 0;
2956 offset += copy;
2957 to += copy;
2958 }
2959
2960 if (!skb_frags_readable(skb))
2961 goto fault;
2962
2963 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2964 int end;
2965 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2966
2967 WARN_ON(start > offset + len);
2968
2969 end = start + skb_frag_size(f);
2970 if ((copy = end - offset) > 0) {
2971 u32 p_off, p_len, copied;
2972 struct page *p;
2973 u8 *vaddr;
2974
2975 if (copy > len)
2976 copy = len;
2977
2978 skb_frag_foreach_page(f,
2979 skb_frag_off(f) + offset - start,
2980 copy, p, p_off, p_len, copied) {
2981 vaddr = kmap_atomic(p);
2982 memcpy(to + copied, vaddr + p_off, p_len);
2983 kunmap_atomic(vaddr);
2984 }
2985
2986 if ((len -= copy) == 0)
2987 return 0;
2988 offset += copy;
2989 to += copy;
2990 }
2991 start = end;
2992 }
2993
2994 skb_walk_frags(skb, frag_iter) {
2995 int end;
2996
2997 WARN_ON(start > offset + len);
2998
2999 end = start + frag_iter->len;
3000 if ((copy = end - offset) > 0) {
3001 if (copy > len)
3002 copy = len;
3003 if (skb_copy_bits(frag_iter, offset - start, to, copy))
3004 goto fault;
3005 if ((len -= copy) == 0)
3006 return 0;
3007 offset += copy;
3008 to += copy;
3009 }
3010 start = end;
3011 }
3012
3013 if (!len)
3014 return 0;
3015
3016 fault:
3017 return -EFAULT;
3018 }
3019 EXPORT_SYMBOL(skb_copy_bits);
3020
3021 /*
3022 * Callback from splice_to_pipe(), if we need to release some pages
3023 * at the end of the spd in case we error'ed out in filling the pipe.
3024 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)3025 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3026 {
3027 put_page(spd->pages[i]);
3028 }
3029
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)3030 static struct page *linear_to_page(struct page *page, unsigned int *len,
3031 unsigned int *offset,
3032 struct sock *sk)
3033 {
3034 struct page_frag *pfrag = sk_page_frag(sk);
3035
3036 if (!sk_page_frag_refill(sk, pfrag))
3037 return NULL;
3038
3039 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3040
3041 memcpy(page_address(pfrag->page) + pfrag->offset,
3042 page_address(page) + *offset, *len);
3043 *offset = pfrag->offset;
3044 pfrag->offset += *len;
3045
3046 return pfrag->page;
3047 }
3048
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)3049 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3050 struct page *page,
3051 unsigned int offset)
3052 {
3053 return spd->nr_pages &&
3054 spd->pages[spd->nr_pages - 1] == page &&
3055 (spd->partial[spd->nr_pages - 1].offset +
3056 spd->partial[spd->nr_pages - 1].len == offset);
3057 }
3058
3059 /*
3060 * Fill page/offset/length into spd, if it can hold more pages.
3061 */
spd_fill_page(struct splice_pipe_desc * spd,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3062 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3063 unsigned int *len, unsigned int offset, bool linear,
3064 struct sock *sk)
3065 {
3066 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3067 return true;
3068
3069 if (linear) {
3070 page = linear_to_page(page, len, &offset, sk);
3071 if (!page)
3072 return true;
3073 }
3074 if (spd_can_coalesce(spd, page, offset)) {
3075 spd->partial[spd->nr_pages - 1].len += *len;
3076 return false;
3077 }
3078 get_page(page);
3079 spd->pages[spd->nr_pages] = page;
3080 spd->partial[spd->nr_pages].len = *len;
3081 spd->partial[spd->nr_pages].offset = offset;
3082 spd->nr_pages++;
3083
3084 return false;
3085 }
3086
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk)3087 static bool __splice_segment(struct page *page, unsigned int poff,
3088 unsigned int plen, unsigned int *off,
3089 unsigned int *len,
3090 struct splice_pipe_desc *spd, bool linear,
3091 struct sock *sk)
3092 {
3093 if (!*len)
3094 return true;
3095
3096 /* skip this segment if already processed */
3097 if (*off >= plen) {
3098 *off -= plen;
3099 return false;
3100 }
3101
3102 /* ignore any bits we already processed */
3103 poff += *off;
3104 plen -= *off;
3105 *off = 0;
3106
3107 do {
3108 unsigned int flen = min(*len, plen);
3109
3110 if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3111 return true;
3112 poff += flen;
3113 plen -= flen;
3114 *len -= flen;
3115 } while (*len && plen);
3116
3117 return false;
3118 }
3119
3120 /*
3121 * Map linear and fragment data from the skb to spd. It reports true if the
3122 * pipe is full or if we already spliced the requested length.
3123 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3124 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3125 unsigned int *offset, unsigned int *len,
3126 struct splice_pipe_desc *spd, struct sock *sk)
3127 {
3128 struct sk_buff *iter;
3129 int seg;
3130
3131 /* map the linear part :
3132 * If skb->head_frag is set, this 'linear' part is backed by a
3133 * fragment, and if the head is not shared with any clones then
3134 * we can avoid a copy since we own the head portion of this page.
3135 */
3136 if (__splice_segment(virt_to_page(skb->data),
3137 (unsigned long) skb->data & (PAGE_SIZE - 1),
3138 skb_headlen(skb),
3139 offset, len, spd,
3140 skb_head_is_locked(skb),
3141 sk))
3142 return true;
3143
3144 /*
3145 * then map the fragments
3146 */
3147 if (!skb_frags_readable(skb))
3148 return false;
3149
3150 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3151 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3152
3153 if (WARN_ON_ONCE(!skb_frag_page(f)))
3154 return false;
3155
3156 if (__splice_segment(skb_frag_page(f),
3157 skb_frag_off(f), skb_frag_size(f),
3158 offset, len, spd, false, sk))
3159 return true;
3160 }
3161
3162 skb_walk_frags(skb, iter) {
3163 if (*offset >= iter->len) {
3164 *offset -= iter->len;
3165 continue;
3166 }
3167 /* __skb_splice_bits() only fails if the output has no room
3168 * left, so no point in going over the frag_list for the error
3169 * case.
3170 */
3171 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3172 return true;
3173 }
3174
3175 return false;
3176 }
3177
3178 /*
3179 * Map data from the skb to a pipe. Should handle both the linear part,
3180 * the fragments, and the frag list.
3181 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3182 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3183 struct pipe_inode_info *pipe, unsigned int tlen,
3184 unsigned int flags)
3185 {
3186 struct partial_page partial[MAX_SKB_FRAGS];
3187 struct page *pages[MAX_SKB_FRAGS];
3188 struct splice_pipe_desc spd = {
3189 .pages = pages,
3190 .partial = partial,
3191 .nr_pages_max = MAX_SKB_FRAGS,
3192 .ops = &nosteal_pipe_buf_ops,
3193 .spd_release = sock_spd_release,
3194 };
3195 int ret = 0;
3196
3197 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3198
3199 if (spd.nr_pages)
3200 ret = splice_to_pipe(pipe, &spd);
3201
3202 return ret;
3203 }
3204 EXPORT_SYMBOL_GPL(skb_splice_bits);
3205
sendmsg_locked(struct sock * sk,struct msghdr * msg)3206 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3207 {
3208 struct socket *sock = sk->sk_socket;
3209 size_t size = msg_data_left(msg);
3210
3211 if (!sock)
3212 return -EINVAL;
3213
3214 if (!sock->ops->sendmsg_locked)
3215 return sock_no_sendmsg_locked(sk, msg, size);
3216
3217 return sock->ops->sendmsg_locked(sk, msg, size);
3218 }
3219
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3220 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3221 {
3222 struct socket *sock = sk->sk_socket;
3223
3224 if (!sock)
3225 return -EINVAL;
3226 return sock_sendmsg(sock, msg);
3227 }
3228
3229 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,int flags)3230 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3231 int len, sendmsg_func sendmsg, int flags)
3232 {
3233 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0;
3234 unsigned int orig_len = len;
3235 struct sk_buff *head = skb;
3236 unsigned short fragidx;
3237 int slen, ret;
3238
3239 do_frag_list:
3240
3241 /* Deal with head data */
3242 while (offset < skb_headlen(skb) && len) {
3243 struct kvec kv;
3244 struct msghdr msg;
3245
3246 slen = min_t(int, len, skb_headlen(skb) - offset);
3247 kv.iov_base = skb->data + offset;
3248 kv.iov_len = slen;
3249 memset(&msg, 0, sizeof(msg));
3250 msg.msg_flags = MSG_DONTWAIT | flags;
3251 if (slen < len)
3252 msg.msg_flags |= more_hint;
3253
3254 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3255 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3256 sendmsg_unlocked, sk, &msg);
3257 if (ret <= 0)
3258 goto error;
3259
3260 offset += ret;
3261 len -= ret;
3262 }
3263
3264 /* All the data was skb head? */
3265 if (!len)
3266 goto out;
3267
3268 /* Make offset relative to start of frags */
3269 offset -= skb_headlen(skb);
3270
3271 /* Find where we are in frag list */
3272 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3273 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3274
3275 if (offset < skb_frag_size(frag))
3276 break;
3277
3278 offset -= skb_frag_size(frag);
3279 }
3280
3281 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3282 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3283
3284 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3285
3286 while (slen) {
3287 struct bio_vec bvec;
3288 struct msghdr msg = {
3289 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3290 flags,
3291 };
3292
3293 if (slen < len)
3294 msg.msg_flags |= more_hint;
3295 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3296 skb_frag_off(frag) + offset);
3297 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3298 slen);
3299
3300 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3301 sendmsg_unlocked, sk, &msg);
3302 if (ret <= 0)
3303 goto error;
3304
3305 len -= ret;
3306 offset += ret;
3307 slen -= ret;
3308 }
3309
3310 offset = 0;
3311 }
3312
3313 if (len) {
3314 /* Process any frag lists */
3315
3316 if (skb == head) {
3317 if (skb_has_frag_list(skb)) {
3318 skb = skb_shinfo(skb)->frag_list;
3319 goto do_frag_list;
3320 }
3321 } else if (skb->next) {
3322 skb = skb->next;
3323 goto do_frag_list;
3324 }
3325 }
3326
3327 out:
3328 return orig_len - len;
3329
3330 error:
3331 return orig_len == len ? ret : orig_len - len;
3332 }
3333
3334 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3335 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3336 int len)
3337 {
3338 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3339 }
3340 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3341
skb_send_sock_locked_with_flags(struct sock * sk,struct sk_buff * skb,int offset,int len,int flags)3342 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3343 int offset, int len, int flags)
3344 {
3345 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3346 }
3347 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3348
3349 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3350 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3351 {
3352 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3353 }
3354
3355 /**
3356 * skb_store_bits - store bits from kernel buffer to skb
3357 * @skb: destination buffer
3358 * @offset: offset in destination
3359 * @from: source buffer
3360 * @len: number of bytes to copy
3361 *
3362 * Copy the specified number of bytes from the source buffer to the
3363 * destination skb. This function handles all the messy bits of
3364 * traversing fragment lists and such.
3365 */
3366
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3367 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3368 {
3369 int start = skb_headlen(skb);
3370 struct sk_buff *frag_iter;
3371 int i, copy;
3372
3373 if (offset > (int)skb->len - len)
3374 goto fault;
3375
3376 if ((copy = start - offset) > 0) {
3377 if (copy > len)
3378 copy = len;
3379 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3380 if ((len -= copy) == 0)
3381 return 0;
3382 offset += copy;
3383 from += copy;
3384 }
3385
3386 if (!skb_frags_readable(skb))
3387 goto fault;
3388
3389 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3390 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3391 int end;
3392
3393 WARN_ON(start > offset + len);
3394
3395 end = start + skb_frag_size(frag);
3396 if ((copy = end - offset) > 0) {
3397 u32 p_off, p_len, copied;
3398 struct page *p;
3399 u8 *vaddr;
3400
3401 if (copy > len)
3402 copy = len;
3403
3404 skb_frag_foreach_page(frag,
3405 skb_frag_off(frag) + offset - start,
3406 copy, p, p_off, p_len, copied) {
3407 vaddr = kmap_atomic(p);
3408 memcpy(vaddr + p_off, from + copied, p_len);
3409 kunmap_atomic(vaddr);
3410 }
3411
3412 if ((len -= copy) == 0)
3413 return 0;
3414 offset += copy;
3415 from += copy;
3416 }
3417 start = end;
3418 }
3419
3420 skb_walk_frags(skb, frag_iter) {
3421 int end;
3422
3423 WARN_ON(start > offset + len);
3424
3425 end = start + frag_iter->len;
3426 if ((copy = end - offset) > 0) {
3427 if (copy > len)
3428 copy = len;
3429 if (skb_store_bits(frag_iter, offset - start,
3430 from, copy))
3431 goto fault;
3432 if ((len -= copy) == 0)
3433 return 0;
3434 offset += copy;
3435 from += copy;
3436 }
3437 start = end;
3438 }
3439 if (!len)
3440 return 0;
3441
3442 fault:
3443 return -EFAULT;
3444 }
3445 EXPORT_SYMBOL(skb_store_bits);
3446
3447 /* Checksum skb data. */
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3448 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3449 {
3450 int start = skb_headlen(skb);
3451 int i, copy = start - offset;
3452 struct sk_buff *frag_iter;
3453 int pos = 0;
3454
3455 /* Checksum header. */
3456 if (copy > 0) {
3457 if (copy > len)
3458 copy = len;
3459 csum = csum_partial(skb->data + offset, copy, csum);
3460 if ((len -= copy) == 0)
3461 return csum;
3462 offset += copy;
3463 pos = copy;
3464 }
3465
3466 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3467 return 0;
3468
3469 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3470 int end;
3471 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3472
3473 WARN_ON(start > offset + len);
3474
3475 end = start + skb_frag_size(frag);
3476 if ((copy = end - offset) > 0) {
3477 u32 p_off, p_len, copied;
3478 struct page *p;
3479 __wsum csum2;
3480 u8 *vaddr;
3481
3482 if (copy > len)
3483 copy = len;
3484
3485 skb_frag_foreach_page(frag,
3486 skb_frag_off(frag) + offset - start,
3487 copy, p, p_off, p_len, copied) {
3488 vaddr = kmap_atomic(p);
3489 csum2 = csum_partial(vaddr + p_off, p_len, 0);
3490 kunmap_atomic(vaddr);
3491 csum = csum_block_add(csum, csum2, pos);
3492 pos += p_len;
3493 }
3494
3495 if (!(len -= copy))
3496 return csum;
3497 offset += copy;
3498 }
3499 start = end;
3500 }
3501
3502 skb_walk_frags(skb, frag_iter) {
3503 int end;
3504
3505 WARN_ON(start > offset + len);
3506
3507 end = start + frag_iter->len;
3508 if ((copy = end - offset) > 0) {
3509 __wsum csum2;
3510 if (copy > len)
3511 copy = len;
3512 csum2 = skb_checksum(frag_iter, offset - start, copy,
3513 0);
3514 csum = csum_block_add(csum, csum2, pos);
3515 if ((len -= copy) == 0)
3516 return csum;
3517 offset += copy;
3518 pos += copy;
3519 }
3520 start = end;
3521 }
3522 BUG_ON(len);
3523
3524 return csum;
3525 }
3526 EXPORT_SYMBOL(skb_checksum);
3527
3528 /* Both of above in one bottle. */
3529
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3530 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3531 u8 *to, int len)
3532 {
3533 int start = skb_headlen(skb);
3534 int i, copy = start - offset;
3535 struct sk_buff *frag_iter;
3536 int pos = 0;
3537 __wsum csum = 0;
3538
3539 /* Copy header. */
3540 if (copy > 0) {
3541 if (copy > len)
3542 copy = len;
3543 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3544 copy);
3545 if ((len -= copy) == 0)
3546 return csum;
3547 offset += copy;
3548 to += copy;
3549 pos = copy;
3550 }
3551
3552 if (!skb_frags_readable(skb))
3553 return 0;
3554
3555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3556 int end;
3557
3558 WARN_ON(start > offset + len);
3559
3560 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3561 if ((copy = end - offset) > 0) {
3562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3563 u32 p_off, p_len, copied;
3564 struct page *p;
3565 __wsum csum2;
3566 u8 *vaddr;
3567
3568 if (copy > len)
3569 copy = len;
3570
3571 skb_frag_foreach_page(frag,
3572 skb_frag_off(frag) + offset - start,
3573 copy, p, p_off, p_len, copied) {
3574 vaddr = kmap_atomic(p);
3575 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3576 to + copied,
3577 p_len);
3578 kunmap_atomic(vaddr);
3579 csum = csum_block_add(csum, csum2, pos);
3580 pos += p_len;
3581 }
3582
3583 if (!(len -= copy))
3584 return csum;
3585 offset += copy;
3586 to += copy;
3587 }
3588 start = end;
3589 }
3590
3591 skb_walk_frags(skb, frag_iter) {
3592 __wsum csum2;
3593 int end;
3594
3595 WARN_ON(start > offset + len);
3596
3597 end = start + frag_iter->len;
3598 if ((copy = end - offset) > 0) {
3599 if (copy > len)
3600 copy = len;
3601 csum2 = skb_copy_and_csum_bits(frag_iter,
3602 offset - start,
3603 to, copy);
3604 csum = csum_block_add(csum, csum2, pos);
3605 if ((len -= copy) == 0)
3606 return csum;
3607 offset += copy;
3608 to += copy;
3609 pos += copy;
3610 }
3611 start = end;
3612 }
3613 BUG_ON(len);
3614 return csum;
3615 }
3616 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3617
3618 #ifdef CONFIG_NET_CRC32C
skb_crc32c(const struct sk_buff * skb,int offset,int len,u32 crc)3619 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3620 {
3621 int start = skb_headlen(skb);
3622 int i, copy = start - offset;
3623 struct sk_buff *frag_iter;
3624
3625 if (copy > 0) {
3626 copy = min(copy, len);
3627 crc = crc32c(crc, skb->data + offset, copy);
3628 len -= copy;
3629 if (len == 0)
3630 return crc;
3631 offset += copy;
3632 }
3633
3634 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3635 return 0;
3636
3637 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3638 int end;
3639 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3640
3641 WARN_ON(start > offset + len);
3642
3643 end = start + skb_frag_size(frag);
3644 copy = end - offset;
3645 if (copy > 0) {
3646 u32 p_off, p_len, copied;
3647 struct page *p;
3648 u8 *vaddr;
3649
3650 copy = min(copy, len);
3651 skb_frag_foreach_page(frag,
3652 skb_frag_off(frag) + offset - start,
3653 copy, p, p_off, p_len, copied) {
3654 vaddr = kmap_atomic(p);
3655 crc = crc32c(crc, vaddr + p_off, p_len);
3656 kunmap_atomic(vaddr);
3657 }
3658 len -= copy;
3659 if (len == 0)
3660 return crc;
3661 offset += copy;
3662 }
3663 start = end;
3664 }
3665
3666 skb_walk_frags(skb, frag_iter) {
3667 int end;
3668
3669 WARN_ON(start > offset + len);
3670
3671 end = start + frag_iter->len;
3672 copy = end - offset;
3673 if (copy > 0) {
3674 copy = min(copy, len);
3675 crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3676 len -= copy;
3677 if (len == 0)
3678 return crc;
3679 offset += copy;
3680 }
3681 start = end;
3682 }
3683 BUG_ON(len);
3684
3685 return crc;
3686 }
3687 EXPORT_SYMBOL(skb_crc32c);
3688 #endif /* CONFIG_NET_CRC32C */
3689
__skb_checksum_complete_head(struct sk_buff * skb,int len)3690 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3691 {
3692 __sum16 sum;
3693
3694 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3695 /* See comments in __skb_checksum_complete(). */
3696 if (likely(!sum)) {
3697 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3698 !skb->csum_complete_sw)
3699 netdev_rx_csum_fault(skb->dev, skb);
3700 }
3701 if (!skb_shared(skb))
3702 skb->csum_valid = !sum;
3703 return sum;
3704 }
3705 EXPORT_SYMBOL(__skb_checksum_complete_head);
3706
3707 /* This function assumes skb->csum already holds pseudo header's checksum,
3708 * which has been changed from the hardware checksum, for example, by
3709 * __skb_checksum_validate_complete(). And, the original skb->csum must
3710 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3711 *
3712 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3713 * zero. The new checksum is stored back into skb->csum unless the skb is
3714 * shared.
3715 */
__skb_checksum_complete(struct sk_buff * skb)3716 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3717 {
3718 __wsum csum;
3719 __sum16 sum;
3720
3721 csum = skb_checksum(skb, 0, skb->len, 0);
3722
3723 sum = csum_fold(csum_add(skb->csum, csum));
3724 /* This check is inverted, because we already knew the hardware
3725 * checksum is invalid before calling this function. So, if the
3726 * re-computed checksum is valid instead, then we have a mismatch
3727 * between the original skb->csum and skb_checksum(). This means either
3728 * the original hardware checksum is incorrect or we screw up skb->csum
3729 * when moving skb->data around.
3730 */
3731 if (likely(!sum)) {
3732 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3733 !skb->csum_complete_sw)
3734 netdev_rx_csum_fault(skb->dev, skb);
3735 }
3736
3737 if (!skb_shared(skb)) {
3738 /* Save full packet checksum */
3739 skb->csum = csum;
3740 skb->ip_summed = CHECKSUM_COMPLETE;
3741 skb->csum_complete_sw = 1;
3742 skb->csum_valid = !sum;
3743 }
3744
3745 return sum;
3746 }
3747 EXPORT_SYMBOL(__skb_checksum_complete);
3748
3749 /**
3750 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3751 * @from: source buffer
3752 *
3753 * Calculates the amount of linear headroom needed in the 'to' skb passed
3754 * into skb_zerocopy().
3755 */
3756 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3757 skb_zerocopy_headlen(const struct sk_buff *from)
3758 {
3759 unsigned int hlen = 0;
3760
3761 if (!from->head_frag ||
3762 skb_headlen(from) < L1_CACHE_BYTES ||
3763 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3764 hlen = skb_headlen(from);
3765 if (!hlen)
3766 hlen = from->len;
3767 }
3768
3769 if (skb_has_frag_list(from))
3770 hlen = from->len;
3771
3772 return hlen;
3773 }
3774 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3775
3776 /**
3777 * skb_zerocopy - Zero copy skb to skb
3778 * @to: destination buffer
3779 * @from: source buffer
3780 * @len: number of bytes to copy from source buffer
3781 * @hlen: size of linear headroom in destination buffer
3782 *
3783 * Copies up to `len` bytes from `from` to `to` by creating references
3784 * to the frags in the source buffer.
3785 *
3786 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3787 * headroom in the `to` buffer.
3788 *
3789 * Return value:
3790 * 0: everything is OK
3791 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3792 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3793 */
3794 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3795 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3796 {
3797 int i, j = 0;
3798 int plen = 0; /* length of skb->head fragment */
3799 int ret;
3800 struct page *page;
3801 unsigned int offset;
3802
3803 BUG_ON(!from->head_frag && !hlen);
3804
3805 /* dont bother with small payloads */
3806 if (len <= skb_tailroom(to))
3807 return skb_copy_bits(from, 0, skb_put(to, len), len);
3808
3809 if (hlen) {
3810 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3811 if (unlikely(ret))
3812 return ret;
3813 len -= hlen;
3814 } else {
3815 plen = min_t(int, skb_headlen(from), len);
3816 if (plen) {
3817 page = virt_to_head_page(from->head);
3818 offset = from->data - (unsigned char *)page_address(page);
3819 __skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3820 offset, plen);
3821 get_page(page);
3822 j = 1;
3823 len -= plen;
3824 }
3825 }
3826
3827 skb_len_add(to, len + plen);
3828
3829 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3830 skb_tx_error(from);
3831 return -ENOMEM;
3832 }
3833 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3834
3835 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3836 int size;
3837
3838 if (!len)
3839 break;
3840 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3841 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3842 len);
3843 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3844 len -= size;
3845 skb_frag_ref(to, j);
3846 j++;
3847 }
3848 skb_shinfo(to)->nr_frags = j;
3849
3850 return 0;
3851 }
3852 EXPORT_SYMBOL_GPL(skb_zerocopy);
3853
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3854 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3855 {
3856 __wsum csum;
3857 long csstart;
3858
3859 if (skb->ip_summed == CHECKSUM_PARTIAL)
3860 csstart = skb_checksum_start_offset(skb);
3861 else
3862 csstart = skb_headlen(skb);
3863
3864 BUG_ON(csstart > skb_headlen(skb));
3865
3866 skb_copy_from_linear_data(skb, to, csstart);
3867
3868 csum = 0;
3869 if (csstart != skb->len)
3870 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3871 skb->len - csstart);
3872
3873 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3874 long csstuff = csstart + skb->csum_offset;
3875
3876 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3877 }
3878 }
3879 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3880
3881 /**
3882 * skb_dequeue - remove from the head of the queue
3883 * @list: list to dequeue from
3884 *
3885 * Remove the head of the list. The list lock is taken so the function
3886 * may be used safely with other locking list functions. The head item is
3887 * returned or %NULL if the list is empty.
3888 */
3889
skb_dequeue(struct sk_buff_head * list)3890 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3891 {
3892 unsigned long flags;
3893 struct sk_buff *result;
3894
3895 spin_lock_irqsave(&list->lock, flags);
3896 result = __skb_dequeue(list);
3897 spin_unlock_irqrestore(&list->lock, flags);
3898 return result;
3899 }
3900 EXPORT_SYMBOL(skb_dequeue);
3901
3902 /**
3903 * skb_dequeue_tail - remove from the tail of the queue
3904 * @list: list to dequeue from
3905 *
3906 * Remove the tail of the list. The list lock is taken so the function
3907 * may be used safely with other locking list functions. The tail item is
3908 * returned or %NULL if the list is empty.
3909 */
skb_dequeue_tail(struct sk_buff_head * list)3910 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3911 {
3912 unsigned long flags;
3913 struct sk_buff *result;
3914
3915 spin_lock_irqsave(&list->lock, flags);
3916 result = __skb_dequeue_tail(list);
3917 spin_unlock_irqrestore(&list->lock, flags);
3918 return result;
3919 }
3920 EXPORT_SYMBOL(skb_dequeue_tail);
3921
3922 /**
3923 * skb_queue_purge_reason - empty a list
3924 * @list: list to empty
3925 * @reason: drop reason
3926 *
3927 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3928 * the list and one reference dropped. This function takes the list
3929 * lock and is atomic with respect to other list locking functions.
3930 */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3931 void skb_queue_purge_reason(struct sk_buff_head *list,
3932 enum skb_drop_reason reason)
3933 {
3934 struct sk_buff_head tmp;
3935 unsigned long flags;
3936
3937 if (skb_queue_empty_lockless(list))
3938 return;
3939
3940 __skb_queue_head_init(&tmp);
3941
3942 spin_lock_irqsave(&list->lock, flags);
3943 skb_queue_splice_init(list, &tmp);
3944 spin_unlock_irqrestore(&list->lock, flags);
3945
3946 __skb_queue_purge_reason(&tmp, reason);
3947 }
3948 EXPORT_SYMBOL(skb_queue_purge_reason);
3949
3950 /**
3951 * skb_rbtree_purge - empty a skb rbtree
3952 * @root: root of the rbtree to empty
3953 * Return value: the sum of truesizes of all purged skbs.
3954 *
3955 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3956 * the list and one reference dropped. This function does not take
3957 * any lock. Synchronization should be handled by the caller (e.g., TCP
3958 * out-of-order queue is protected by the socket lock).
3959 */
skb_rbtree_purge(struct rb_root * root)3960 unsigned int skb_rbtree_purge(struct rb_root *root)
3961 {
3962 struct rb_node *p = rb_first(root);
3963 unsigned int sum = 0;
3964
3965 while (p) {
3966 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3967
3968 p = rb_next(p);
3969 rb_erase(&skb->rbnode, root);
3970 sum += skb->truesize;
3971 kfree_skb(skb);
3972 }
3973 return sum;
3974 }
3975
skb_errqueue_purge(struct sk_buff_head * list)3976 void skb_errqueue_purge(struct sk_buff_head *list)
3977 {
3978 struct sk_buff *skb, *next;
3979 struct sk_buff_head kill;
3980 unsigned long flags;
3981
3982 __skb_queue_head_init(&kill);
3983
3984 spin_lock_irqsave(&list->lock, flags);
3985 skb_queue_walk_safe(list, skb, next) {
3986 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3987 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3988 continue;
3989 __skb_unlink(skb, list);
3990 __skb_queue_tail(&kill, skb);
3991 }
3992 spin_unlock_irqrestore(&list->lock, flags);
3993 __skb_queue_purge(&kill);
3994 }
3995 EXPORT_SYMBOL(skb_errqueue_purge);
3996
3997 /**
3998 * skb_queue_head - queue a buffer at the list head
3999 * @list: list to use
4000 * @newsk: buffer to queue
4001 *
4002 * Queue a buffer at the start of the list. This function takes the
4003 * list lock and can be used safely with other locking &sk_buff functions
4004 * safely.
4005 *
4006 * A buffer cannot be placed on two lists at the same time.
4007 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)4008 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4009 {
4010 unsigned long flags;
4011
4012 spin_lock_irqsave(&list->lock, flags);
4013 __skb_queue_head(list, newsk);
4014 spin_unlock_irqrestore(&list->lock, flags);
4015 }
4016 EXPORT_SYMBOL(skb_queue_head);
4017
4018 /**
4019 * skb_queue_tail - queue a buffer at the list tail
4020 * @list: list to use
4021 * @newsk: buffer to queue
4022 *
4023 * Queue a buffer at the tail of the list. This function takes the
4024 * list lock and can be used safely with other locking &sk_buff functions
4025 * safely.
4026 *
4027 * A buffer cannot be placed on two lists at the same time.
4028 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)4029 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4030 {
4031 unsigned long flags;
4032
4033 spin_lock_irqsave(&list->lock, flags);
4034 __skb_queue_tail(list, newsk);
4035 spin_unlock_irqrestore(&list->lock, flags);
4036 }
4037 EXPORT_SYMBOL(skb_queue_tail);
4038
4039 /**
4040 * skb_unlink - remove a buffer from a list
4041 * @skb: buffer to remove
4042 * @list: list to use
4043 *
4044 * Remove a packet from a list. The list locks are taken and this
4045 * function is atomic with respect to other list locked calls
4046 *
4047 * You must know what list the SKB is on.
4048 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)4049 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4050 {
4051 unsigned long flags;
4052
4053 spin_lock_irqsave(&list->lock, flags);
4054 __skb_unlink(skb, list);
4055 spin_unlock_irqrestore(&list->lock, flags);
4056 }
4057 EXPORT_SYMBOL(skb_unlink);
4058
4059 /**
4060 * skb_append - append a buffer
4061 * @old: buffer to insert after
4062 * @newsk: buffer to insert
4063 * @list: list to use
4064 *
4065 * Place a packet after a given packet in a list. The list locks are taken
4066 * and this function is atomic with respect to other list locked calls.
4067 * A buffer cannot be placed on two lists at the same time.
4068 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)4069 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4070 {
4071 unsigned long flags;
4072
4073 spin_lock_irqsave(&list->lock, flags);
4074 __skb_queue_after(list, old, newsk);
4075 spin_unlock_irqrestore(&list->lock, flags);
4076 }
4077 EXPORT_SYMBOL(skb_append);
4078
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)4079 static inline void skb_split_inside_header(struct sk_buff *skb,
4080 struct sk_buff* skb1,
4081 const u32 len, const int pos)
4082 {
4083 int i;
4084
4085 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4086 pos - len);
4087 /* And move data appendix as is. */
4088 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4089 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4090
4091 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4092 skb1->unreadable = skb->unreadable;
4093 skb_shinfo(skb)->nr_frags = 0;
4094 skb1->data_len = skb->data_len;
4095 skb1->len += skb1->data_len;
4096 skb->data_len = 0;
4097 skb->len = len;
4098 skb_set_tail_pointer(skb, len);
4099 }
4100
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4101 static inline void skb_split_no_header(struct sk_buff *skb,
4102 struct sk_buff* skb1,
4103 const u32 len, int pos)
4104 {
4105 int i, k = 0;
4106 const int nfrags = skb_shinfo(skb)->nr_frags;
4107
4108 skb_shinfo(skb)->nr_frags = 0;
4109 skb1->len = skb1->data_len = skb->len - len;
4110 skb->len = len;
4111 skb->data_len = len - pos;
4112
4113 for (i = 0; i < nfrags; i++) {
4114 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4115
4116 if (pos + size > len) {
4117 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4118
4119 if (pos < len) {
4120 /* Split frag.
4121 * We have two variants in this case:
4122 * 1. Move all the frag to the second
4123 * part, if it is possible. F.e.
4124 * this approach is mandatory for TUX,
4125 * where splitting is expensive.
4126 * 2. Split is accurately. We make this.
4127 */
4128 skb_frag_ref(skb, i);
4129 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4130 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4131 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4132 skb_shinfo(skb)->nr_frags++;
4133 }
4134 k++;
4135 } else
4136 skb_shinfo(skb)->nr_frags++;
4137 pos += size;
4138 }
4139 skb_shinfo(skb1)->nr_frags = k;
4140
4141 skb1->unreadable = skb->unreadable;
4142 }
4143
4144 /**
4145 * skb_split - Split fragmented skb to two parts at length len.
4146 * @skb: the buffer to split
4147 * @skb1: the buffer to receive the second part
4148 * @len: new length for skb
4149 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4150 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4151 {
4152 int pos = skb_headlen(skb);
4153 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4154
4155 skb_zcopy_downgrade_managed(skb);
4156
4157 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4158 skb_zerocopy_clone(skb1, skb, 0);
4159 if (len < pos) /* Split line is inside header. */
4160 skb_split_inside_header(skb, skb1, len, pos);
4161 else /* Second chunk has no header, nothing to copy. */
4162 skb_split_no_header(skb, skb1, len, pos);
4163 }
4164 EXPORT_SYMBOL(skb_split);
4165
4166 /* Shifting from/to a cloned skb is a no-go.
4167 *
4168 * Caller cannot keep skb_shinfo related pointers past calling here!
4169 */
skb_prepare_for_shift(struct sk_buff * skb)4170 static int skb_prepare_for_shift(struct sk_buff *skb)
4171 {
4172 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4173 }
4174
4175 /**
4176 * skb_shift - Shifts paged data partially from skb to another
4177 * @tgt: buffer into which tail data gets added
4178 * @skb: buffer from which the paged data comes from
4179 * @shiftlen: shift up to this many bytes
4180 *
4181 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4182 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4183 * It's up to caller to free skb if everything was shifted.
4184 *
4185 * If @tgt runs out of frags, the whole operation is aborted.
4186 *
4187 * Skb cannot include anything else but paged data while tgt is allowed
4188 * to have non-paged data as well.
4189 *
4190 * TODO: full sized shift could be optimized but that would need
4191 * specialized skb free'er to handle frags without up-to-date nr_frags.
4192 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4193 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4194 {
4195 int from, to, merge, todo;
4196 skb_frag_t *fragfrom, *fragto;
4197
4198 BUG_ON(shiftlen > skb->len);
4199
4200 if (skb_headlen(skb))
4201 return 0;
4202 if (skb_zcopy(tgt) || skb_zcopy(skb))
4203 return 0;
4204
4205 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4206 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4207
4208 todo = shiftlen;
4209 from = 0;
4210 to = skb_shinfo(tgt)->nr_frags;
4211 fragfrom = &skb_shinfo(skb)->frags[from];
4212
4213 /* Actual merge is delayed until the point when we know we can
4214 * commit all, so that we don't have to undo partial changes
4215 */
4216 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4217 skb_frag_off(fragfrom))) {
4218 merge = -1;
4219 } else {
4220 merge = to - 1;
4221
4222 todo -= skb_frag_size(fragfrom);
4223 if (todo < 0) {
4224 if (skb_prepare_for_shift(skb) ||
4225 skb_prepare_for_shift(tgt))
4226 return 0;
4227
4228 /* All previous frag pointers might be stale! */
4229 fragfrom = &skb_shinfo(skb)->frags[from];
4230 fragto = &skb_shinfo(tgt)->frags[merge];
4231
4232 skb_frag_size_add(fragto, shiftlen);
4233 skb_frag_size_sub(fragfrom, shiftlen);
4234 skb_frag_off_add(fragfrom, shiftlen);
4235
4236 goto onlymerged;
4237 }
4238
4239 from++;
4240 }
4241
4242 /* Skip full, not-fitting skb to avoid expensive operations */
4243 if ((shiftlen == skb->len) &&
4244 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4245 return 0;
4246
4247 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4248 return 0;
4249
4250 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4251 if (to == MAX_SKB_FRAGS)
4252 return 0;
4253
4254 fragfrom = &skb_shinfo(skb)->frags[from];
4255 fragto = &skb_shinfo(tgt)->frags[to];
4256
4257 if (todo >= skb_frag_size(fragfrom)) {
4258 *fragto = *fragfrom;
4259 todo -= skb_frag_size(fragfrom);
4260 from++;
4261 to++;
4262
4263 } else {
4264 __skb_frag_ref(fragfrom);
4265 skb_frag_page_copy(fragto, fragfrom);
4266 skb_frag_off_copy(fragto, fragfrom);
4267 skb_frag_size_set(fragto, todo);
4268
4269 skb_frag_off_add(fragfrom, todo);
4270 skb_frag_size_sub(fragfrom, todo);
4271 todo = 0;
4272
4273 to++;
4274 break;
4275 }
4276 }
4277
4278 /* Ready to "commit" this state change to tgt */
4279 skb_shinfo(tgt)->nr_frags = to;
4280
4281 if (merge >= 0) {
4282 fragfrom = &skb_shinfo(skb)->frags[0];
4283 fragto = &skb_shinfo(tgt)->frags[merge];
4284
4285 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4286 __skb_frag_unref(fragfrom, skb->pp_recycle);
4287 }
4288
4289 /* Reposition in the original skb */
4290 to = 0;
4291 while (from < skb_shinfo(skb)->nr_frags)
4292 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4293 skb_shinfo(skb)->nr_frags = to;
4294
4295 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4296
4297 onlymerged:
4298 /* Most likely the tgt won't ever need its checksum anymore, skb on
4299 * the other hand might need it if it needs to be resent
4300 */
4301 tgt->ip_summed = CHECKSUM_PARTIAL;
4302 skb->ip_summed = CHECKSUM_PARTIAL;
4303
4304 skb_len_add(skb, -shiftlen);
4305 skb_len_add(tgt, shiftlen);
4306
4307 return shiftlen;
4308 }
4309
4310 /**
4311 * skb_prepare_seq_read - Prepare a sequential read of skb data
4312 * @skb: the buffer to read
4313 * @from: lower offset of data to be read
4314 * @to: upper offset of data to be read
4315 * @st: state variable
4316 *
4317 * Initializes the specified state variable. Must be called before
4318 * invoking skb_seq_read() for the first time.
4319 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4320 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4321 unsigned int to, struct skb_seq_state *st)
4322 {
4323 st->lower_offset = from;
4324 st->upper_offset = to;
4325 st->root_skb = st->cur_skb = skb;
4326 st->frag_idx = st->stepped_offset = 0;
4327 st->frag_data = NULL;
4328 st->frag_off = 0;
4329 }
4330 EXPORT_SYMBOL(skb_prepare_seq_read);
4331
4332 /**
4333 * skb_seq_read - Sequentially read skb data
4334 * @consumed: number of bytes consumed by the caller so far
4335 * @data: destination pointer for data to be returned
4336 * @st: state variable
4337 *
4338 * Reads a block of skb data at @consumed relative to the
4339 * lower offset specified to skb_prepare_seq_read(). Assigns
4340 * the head of the data block to @data and returns the length
4341 * of the block or 0 if the end of the skb data or the upper
4342 * offset has been reached.
4343 *
4344 * The caller is not required to consume all of the data
4345 * returned, i.e. @consumed is typically set to the number
4346 * of bytes already consumed and the next call to
4347 * skb_seq_read() will return the remaining part of the block.
4348 *
4349 * Note 1: The size of each block of data returned can be arbitrary,
4350 * this limitation is the cost for zerocopy sequential
4351 * reads of potentially non linear data.
4352 *
4353 * Note 2: Fragment lists within fragments are not implemented
4354 * at the moment, state->root_skb could be replaced with
4355 * a stack for this purpose.
4356 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4357 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4358 struct skb_seq_state *st)
4359 {
4360 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4361 skb_frag_t *frag;
4362
4363 if (unlikely(abs_offset >= st->upper_offset)) {
4364 if (st->frag_data) {
4365 kunmap_atomic(st->frag_data);
4366 st->frag_data = NULL;
4367 }
4368 return 0;
4369 }
4370
4371 next_skb:
4372 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4373
4374 if (abs_offset < block_limit && !st->frag_data) {
4375 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4376 return block_limit - abs_offset;
4377 }
4378
4379 if (!skb_frags_readable(st->cur_skb))
4380 return 0;
4381
4382 if (st->frag_idx == 0 && !st->frag_data)
4383 st->stepped_offset += skb_headlen(st->cur_skb);
4384
4385 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4386 unsigned int pg_idx, pg_off, pg_sz;
4387
4388 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4389
4390 pg_idx = 0;
4391 pg_off = skb_frag_off(frag);
4392 pg_sz = skb_frag_size(frag);
4393
4394 if (skb_frag_must_loop(skb_frag_page(frag))) {
4395 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4396 pg_off = offset_in_page(pg_off + st->frag_off);
4397 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4398 PAGE_SIZE - pg_off);
4399 }
4400
4401 block_limit = pg_sz + st->stepped_offset;
4402 if (abs_offset < block_limit) {
4403 if (!st->frag_data)
4404 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4405
4406 *data = (u8 *)st->frag_data + pg_off +
4407 (abs_offset - st->stepped_offset);
4408
4409 return block_limit - abs_offset;
4410 }
4411
4412 if (st->frag_data) {
4413 kunmap_atomic(st->frag_data);
4414 st->frag_data = NULL;
4415 }
4416
4417 st->stepped_offset += pg_sz;
4418 st->frag_off += pg_sz;
4419 if (st->frag_off == skb_frag_size(frag)) {
4420 st->frag_off = 0;
4421 st->frag_idx++;
4422 }
4423 }
4424
4425 if (st->frag_data) {
4426 kunmap_atomic(st->frag_data);
4427 st->frag_data = NULL;
4428 }
4429
4430 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4431 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4432 st->frag_idx = 0;
4433 goto next_skb;
4434 } else if (st->cur_skb->next) {
4435 st->cur_skb = st->cur_skb->next;
4436 st->frag_idx = 0;
4437 goto next_skb;
4438 }
4439
4440 return 0;
4441 }
4442 EXPORT_SYMBOL(skb_seq_read);
4443
4444 /**
4445 * skb_abort_seq_read - Abort a sequential read of skb data
4446 * @st: state variable
4447 *
4448 * Must be called if skb_seq_read() was not called until it
4449 * returned 0.
4450 */
skb_abort_seq_read(struct skb_seq_state * st)4451 void skb_abort_seq_read(struct skb_seq_state *st)
4452 {
4453 if (st->frag_data)
4454 kunmap_atomic(st->frag_data);
4455 }
4456 EXPORT_SYMBOL(skb_abort_seq_read);
4457
4458 /**
4459 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4460 * @st: source skb_seq_state
4461 * @offset: offset in source
4462 * @to: destination buffer
4463 * @len: number of bytes to copy
4464 *
4465 * Copy @len bytes from @offset bytes into the source @st to the destination
4466 * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4467 * call to this function. If offset needs to decrease from the previous use `st`
4468 * should be reset first.
4469 *
4470 * Return: 0 on success or -EINVAL if the copy ended early
4471 */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4472 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4473 {
4474 const u8 *data;
4475 u32 sqlen;
4476
4477 for (;;) {
4478 sqlen = skb_seq_read(offset, &data, st);
4479 if (sqlen == 0)
4480 return -EINVAL;
4481 if (sqlen >= len) {
4482 memcpy(to, data, len);
4483 return 0;
4484 }
4485 memcpy(to, data, sqlen);
4486 to += sqlen;
4487 offset += sqlen;
4488 len -= sqlen;
4489 }
4490 }
4491 EXPORT_SYMBOL(skb_copy_seq_read);
4492
4493 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4494
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4495 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4496 struct ts_config *conf,
4497 struct ts_state *state)
4498 {
4499 return skb_seq_read(offset, text, TS_SKB_CB(state));
4500 }
4501
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4502 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4503 {
4504 skb_abort_seq_read(TS_SKB_CB(state));
4505 }
4506
4507 /**
4508 * skb_find_text - Find a text pattern in skb data
4509 * @skb: the buffer to look in
4510 * @from: search offset
4511 * @to: search limit
4512 * @config: textsearch configuration
4513 *
4514 * Finds a pattern in the skb data according to the specified
4515 * textsearch configuration. Use textsearch_next() to retrieve
4516 * subsequent occurrences of the pattern. Returns the offset
4517 * to the first occurrence or UINT_MAX if no match was found.
4518 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4519 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4520 unsigned int to, struct ts_config *config)
4521 {
4522 unsigned int patlen = config->ops->get_pattern_len(config);
4523 struct ts_state state;
4524 unsigned int ret;
4525
4526 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4527
4528 config->get_next_block = skb_ts_get_next_block;
4529 config->finish = skb_ts_finish;
4530
4531 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4532
4533 ret = textsearch_find(config, &state);
4534 return (ret + patlen <= to - from ? ret : UINT_MAX);
4535 }
4536 EXPORT_SYMBOL(skb_find_text);
4537
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4538 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4539 int offset, size_t size, size_t max_frags)
4540 {
4541 int i = skb_shinfo(skb)->nr_frags;
4542
4543 if (skb_can_coalesce(skb, i, page, offset)) {
4544 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4545 } else if (i < max_frags) {
4546 skb_zcopy_downgrade_managed(skb);
4547 get_page(page);
4548 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4549 } else {
4550 return -EMSGSIZE;
4551 }
4552
4553 return 0;
4554 }
4555 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4556
4557 /**
4558 * skb_pull_rcsum - pull skb and update receive checksum
4559 * @skb: buffer to update
4560 * @len: length of data pulled
4561 *
4562 * This function performs an skb_pull on the packet and updates
4563 * the CHECKSUM_COMPLETE checksum. It should be used on
4564 * receive path processing instead of skb_pull unless you know
4565 * that the checksum difference is zero (e.g., a valid IP header)
4566 * or you are setting ip_summed to CHECKSUM_NONE.
4567 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4568 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4569 {
4570 unsigned char *data = skb->data;
4571
4572 BUG_ON(len > skb->len);
4573 __skb_pull(skb, len);
4574 skb_postpull_rcsum(skb, data, len);
4575 return skb->data;
4576 }
4577 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4578
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4579 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4580 {
4581 skb_frag_t head_frag;
4582 struct page *page;
4583
4584 page = virt_to_head_page(frag_skb->head);
4585 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4586 (unsigned char *)page_address(page),
4587 skb_headlen(frag_skb));
4588 return head_frag;
4589 }
4590
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4591 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4592 netdev_features_t features,
4593 unsigned int offset)
4594 {
4595 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4596 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4597 unsigned int delta_truesize = 0;
4598 unsigned int delta_len = 0;
4599 struct sk_buff *tail = NULL;
4600 struct sk_buff *nskb, *tmp;
4601 int len_diff, err;
4602
4603 skb_push(skb, -skb_network_offset(skb) + offset);
4604
4605 /* Ensure the head is writeable before touching the shared info */
4606 err = skb_unclone(skb, GFP_ATOMIC);
4607 if (err)
4608 goto err_linearize;
4609
4610 skb_shinfo(skb)->frag_list = NULL;
4611
4612 while (list_skb) {
4613 nskb = list_skb;
4614 list_skb = list_skb->next;
4615
4616 err = 0;
4617 delta_truesize += nskb->truesize;
4618 if (skb_shared(nskb)) {
4619 tmp = skb_clone(nskb, GFP_ATOMIC);
4620 if (tmp) {
4621 consume_skb(nskb);
4622 nskb = tmp;
4623 err = skb_unclone(nskb, GFP_ATOMIC);
4624 } else {
4625 err = -ENOMEM;
4626 }
4627 }
4628
4629 if (!tail)
4630 skb->next = nskb;
4631 else
4632 tail->next = nskb;
4633
4634 if (unlikely(err)) {
4635 nskb->next = list_skb;
4636 goto err_linearize;
4637 }
4638
4639 tail = nskb;
4640
4641 delta_len += nskb->len;
4642
4643 skb_push(nskb, -skb_network_offset(nskb) + offset);
4644
4645 skb_release_head_state(nskb);
4646 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4647 __copy_skb_header(nskb, skb);
4648
4649 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4650 nskb->transport_header += len_diff;
4651 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4652 nskb->data - tnl_hlen,
4653 offset + tnl_hlen);
4654
4655 if (skb_needs_linearize(nskb, features) &&
4656 __skb_linearize(nskb))
4657 goto err_linearize;
4658 }
4659
4660 skb->truesize = skb->truesize - delta_truesize;
4661 skb->data_len = skb->data_len - delta_len;
4662 skb->len = skb->len - delta_len;
4663
4664 skb_gso_reset(skb);
4665
4666 skb->prev = tail;
4667
4668 if (skb_needs_linearize(skb, features) &&
4669 __skb_linearize(skb))
4670 goto err_linearize;
4671
4672 skb_get(skb);
4673
4674 return skb;
4675
4676 err_linearize:
4677 kfree_skb_list(skb->next);
4678 skb->next = NULL;
4679 return ERR_PTR(-ENOMEM);
4680 }
4681 EXPORT_SYMBOL_GPL(skb_segment_list);
4682
4683 /**
4684 * skb_segment - Perform protocol segmentation on skb.
4685 * @head_skb: buffer to segment
4686 * @features: features for the output path (see dev->features)
4687 *
4688 * This function performs segmentation on the given skb. It returns
4689 * a pointer to the first in a list of new skbs for the segments.
4690 * In case of error it returns ERR_PTR(err).
4691 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4692 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4693 netdev_features_t features)
4694 {
4695 struct sk_buff *segs = NULL;
4696 struct sk_buff *tail = NULL;
4697 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4698 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4699 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4700 unsigned int offset = doffset;
4701 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4702 unsigned int partial_segs = 0;
4703 unsigned int headroom;
4704 unsigned int len = head_skb->len;
4705 struct sk_buff *frag_skb;
4706 skb_frag_t *frag;
4707 __be16 proto;
4708 bool csum, sg;
4709 int err = -ENOMEM;
4710 int i = 0;
4711 int nfrags, pos;
4712
4713 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4714 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4715 struct sk_buff *check_skb;
4716
4717 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4718 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4719 /* gso_size is untrusted, and we have a frag_list with
4720 * a linear non head_frag item.
4721 *
4722 * If head_skb's headlen does not fit requested gso_size,
4723 * it means that the frag_list members do NOT terminate
4724 * on exact gso_size boundaries. Hence we cannot perform
4725 * skb_frag_t page sharing. Therefore we must fallback to
4726 * copying the frag_list skbs; we do so by disabling SG.
4727 */
4728 features &= ~NETIF_F_SG;
4729 break;
4730 }
4731 }
4732 }
4733
4734 __skb_push(head_skb, doffset);
4735 proto = skb_network_protocol(head_skb, NULL);
4736 if (unlikely(!proto))
4737 return ERR_PTR(-EINVAL);
4738
4739 sg = !!(features & NETIF_F_SG);
4740 csum = !!can_checksum_protocol(features, proto);
4741
4742 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4743 if (!(features & NETIF_F_GSO_PARTIAL)) {
4744 struct sk_buff *iter;
4745 unsigned int frag_len;
4746
4747 if (!list_skb ||
4748 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4749 goto normal;
4750
4751 /* If we get here then all the required
4752 * GSO features except frag_list are supported.
4753 * Try to split the SKB to multiple GSO SKBs
4754 * with no frag_list.
4755 * Currently we can do that only when the buffers don't
4756 * have a linear part and all the buffers except
4757 * the last are of the same length.
4758 */
4759 frag_len = list_skb->len;
4760 skb_walk_frags(head_skb, iter) {
4761 if (frag_len != iter->len && iter->next)
4762 goto normal;
4763 if (skb_headlen(iter) && !iter->head_frag)
4764 goto normal;
4765
4766 len -= iter->len;
4767 }
4768
4769 if (len != frag_len)
4770 goto normal;
4771 }
4772
4773 /* GSO partial only requires that we trim off any excess that
4774 * doesn't fit into an MSS sized block, so take care of that
4775 * now.
4776 * Cap len to not accidentally hit GSO_BY_FRAGS.
4777 */
4778 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4779 if (partial_segs > 1)
4780 mss *= partial_segs;
4781 else
4782 partial_segs = 0;
4783 }
4784
4785 normal:
4786 headroom = skb_headroom(head_skb);
4787 pos = skb_headlen(head_skb);
4788
4789 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4790 return ERR_PTR(-ENOMEM);
4791
4792 nfrags = skb_shinfo(head_skb)->nr_frags;
4793 frag = skb_shinfo(head_skb)->frags;
4794 frag_skb = head_skb;
4795
4796 do {
4797 struct sk_buff *nskb;
4798 skb_frag_t *nskb_frag;
4799 int hsize;
4800 int size;
4801
4802 if (unlikely(mss == GSO_BY_FRAGS)) {
4803 len = list_skb->len;
4804 } else {
4805 len = head_skb->len - offset;
4806 if (len > mss)
4807 len = mss;
4808 }
4809
4810 hsize = skb_headlen(head_skb) - offset;
4811
4812 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4813 (skb_headlen(list_skb) == len || sg)) {
4814 BUG_ON(skb_headlen(list_skb) > len);
4815
4816 nskb = skb_clone(list_skb, GFP_ATOMIC);
4817 if (unlikely(!nskb))
4818 goto err;
4819
4820 i = 0;
4821 nfrags = skb_shinfo(list_skb)->nr_frags;
4822 frag = skb_shinfo(list_skb)->frags;
4823 frag_skb = list_skb;
4824 pos += skb_headlen(list_skb);
4825
4826 while (pos < offset + len) {
4827 BUG_ON(i >= nfrags);
4828
4829 size = skb_frag_size(frag);
4830 if (pos + size > offset + len)
4831 break;
4832
4833 i++;
4834 pos += size;
4835 frag++;
4836 }
4837
4838 list_skb = list_skb->next;
4839
4840 if (unlikely(pskb_trim(nskb, len))) {
4841 kfree_skb(nskb);
4842 goto err;
4843 }
4844
4845 hsize = skb_end_offset(nskb);
4846 if (skb_cow_head(nskb, doffset + headroom)) {
4847 kfree_skb(nskb);
4848 goto err;
4849 }
4850
4851 nskb->truesize += skb_end_offset(nskb) - hsize;
4852 skb_release_head_state(nskb);
4853 __skb_push(nskb, doffset);
4854 } else {
4855 if (hsize < 0)
4856 hsize = 0;
4857 if (hsize > len || !sg)
4858 hsize = len;
4859
4860 nskb = __alloc_skb(hsize + doffset + headroom,
4861 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4862 NUMA_NO_NODE);
4863
4864 if (unlikely(!nskb))
4865 goto err;
4866
4867 skb_reserve(nskb, headroom);
4868 __skb_put(nskb, doffset);
4869 }
4870
4871 if (segs)
4872 tail->next = nskb;
4873 else
4874 segs = nskb;
4875 tail = nskb;
4876
4877 __copy_skb_header(nskb, head_skb);
4878
4879 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4880 skb_reset_mac_len(nskb);
4881
4882 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4883 nskb->data - tnl_hlen,
4884 doffset + tnl_hlen);
4885
4886 if (nskb->len == len + doffset)
4887 goto perform_csum_check;
4888
4889 if (!sg) {
4890 if (!csum) {
4891 if (!nskb->remcsum_offload)
4892 nskb->ip_summed = CHECKSUM_NONE;
4893 SKB_GSO_CB(nskb)->csum =
4894 skb_copy_and_csum_bits(head_skb, offset,
4895 skb_put(nskb,
4896 len),
4897 len);
4898 SKB_GSO_CB(nskb)->csum_start =
4899 skb_headroom(nskb) + doffset;
4900 } else {
4901 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4902 goto err;
4903 }
4904 continue;
4905 }
4906
4907 nskb_frag = skb_shinfo(nskb)->frags;
4908
4909 skb_copy_from_linear_data_offset(head_skb, offset,
4910 skb_put(nskb, hsize), hsize);
4911
4912 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4913 SKBFL_SHARED_FRAG;
4914
4915 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4916 goto err;
4917
4918 while (pos < offset + len) {
4919 if (i >= nfrags) {
4920 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4921 skb_zerocopy_clone(nskb, list_skb,
4922 GFP_ATOMIC))
4923 goto err;
4924
4925 i = 0;
4926 nfrags = skb_shinfo(list_skb)->nr_frags;
4927 frag = skb_shinfo(list_skb)->frags;
4928 frag_skb = list_skb;
4929 if (!skb_headlen(list_skb)) {
4930 BUG_ON(!nfrags);
4931 } else {
4932 BUG_ON(!list_skb->head_frag);
4933
4934 /* to make room for head_frag. */
4935 i--;
4936 frag--;
4937 }
4938
4939 list_skb = list_skb->next;
4940 }
4941
4942 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4943 MAX_SKB_FRAGS)) {
4944 net_warn_ratelimited(
4945 "skb_segment: too many frags: %u %u\n",
4946 pos, mss);
4947 err = -EINVAL;
4948 goto err;
4949 }
4950
4951 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4952 __skb_frag_ref(nskb_frag);
4953 size = skb_frag_size(nskb_frag);
4954
4955 if (pos < offset) {
4956 skb_frag_off_add(nskb_frag, offset - pos);
4957 skb_frag_size_sub(nskb_frag, offset - pos);
4958 }
4959
4960 skb_shinfo(nskb)->nr_frags++;
4961
4962 if (pos + size <= offset + len) {
4963 i++;
4964 frag++;
4965 pos += size;
4966 } else {
4967 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4968 goto skip_fraglist;
4969 }
4970
4971 nskb_frag++;
4972 }
4973
4974 skip_fraglist:
4975 nskb->data_len = len - hsize;
4976 nskb->len += nskb->data_len;
4977 nskb->truesize += nskb->data_len;
4978
4979 perform_csum_check:
4980 if (!csum) {
4981 if (skb_has_shared_frag(nskb) &&
4982 __skb_linearize(nskb))
4983 goto err;
4984
4985 if (!nskb->remcsum_offload)
4986 nskb->ip_summed = CHECKSUM_NONE;
4987 SKB_GSO_CB(nskb)->csum =
4988 skb_checksum(nskb, doffset,
4989 nskb->len - doffset, 0);
4990 SKB_GSO_CB(nskb)->csum_start =
4991 skb_headroom(nskb) + doffset;
4992 }
4993 } while ((offset += len) < head_skb->len);
4994
4995 /* Some callers want to get the end of the list.
4996 * Put it in segs->prev to avoid walking the list.
4997 * (see validate_xmit_skb_list() for example)
4998 */
4999 segs->prev = tail;
5000
5001 if (partial_segs) {
5002 struct sk_buff *iter;
5003 int type = skb_shinfo(head_skb)->gso_type;
5004 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5005
5006 /* Update type to add partial and then remove dodgy if set */
5007 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5008 type &= ~SKB_GSO_DODGY;
5009
5010 /* Update GSO info and prepare to start updating headers on
5011 * our way back down the stack of protocols.
5012 */
5013 for (iter = segs; iter; iter = iter->next) {
5014 skb_shinfo(iter)->gso_size = gso_size;
5015 skb_shinfo(iter)->gso_segs = partial_segs;
5016 skb_shinfo(iter)->gso_type = type;
5017 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5018 }
5019
5020 if (tail->len - doffset <= gso_size)
5021 skb_shinfo(tail)->gso_size = 0;
5022 else if (tail != segs)
5023 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5024 }
5025
5026 /* Following permits correct backpressure, for protocols
5027 * using skb_set_owner_w().
5028 * Idea is to tranfert ownership from head_skb to last segment.
5029 */
5030 if (head_skb->destructor == sock_wfree) {
5031 swap(tail->truesize, head_skb->truesize);
5032 swap(tail->destructor, head_skb->destructor);
5033 swap(tail->sk, head_skb->sk);
5034 }
5035 return segs;
5036
5037 err:
5038 kfree_skb_list(segs);
5039 return ERR_PTR(err);
5040 }
5041 EXPORT_SYMBOL_GPL(skb_segment);
5042
5043 #ifdef CONFIG_SKB_EXTENSIONS
5044 #define SKB_EXT_ALIGN_VALUE 8
5045 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5046
5047 static const u8 skb_ext_type_len[] = {
5048 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5049 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5050 #endif
5051 #ifdef CONFIG_XFRM
5052 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5053 #endif
5054 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5055 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5056 #endif
5057 #if IS_ENABLED(CONFIG_MPTCP)
5058 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5059 #endif
5060 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5061 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5062 #endif
5063 };
5064
skb_ext_total_length(void)5065 static __always_inline unsigned int skb_ext_total_length(void)
5066 {
5067 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5068 int i;
5069
5070 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5071 l += skb_ext_type_len[i];
5072
5073 return l;
5074 }
5075
skb_extensions_init(void)5076 static void skb_extensions_init(void)
5077 {
5078 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5079 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5080 BUILD_BUG_ON(skb_ext_total_length() > 255);
5081 #endif
5082
5083 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5084 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5085 0,
5086 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5087 NULL);
5088 }
5089 #else
skb_extensions_init(void)5090 static void skb_extensions_init(void) {}
5091 #endif
5092
5093 /* The SKB kmem_cache slab is critical for network performance. Never
5094 * merge/alias the slab with similar sized objects. This avoids fragmentation
5095 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5096 */
5097 #ifndef CONFIG_SLUB_TINY
5098 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
5099 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5100 #define FLAG_SKB_NO_MERGE 0
5101 #endif
5102
skb_init(void)5103 void __init skb_init(void)
5104 {
5105 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5106 sizeof(struct sk_buff),
5107 0,
5108 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5109 FLAG_SKB_NO_MERGE,
5110 offsetof(struct sk_buff, cb),
5111 sizeof_field(struct sk_buff, cb),
5112 NULL);
5113 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5114 sizeof(struct sk_buff_fclones),
5115 0,
5116 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5117 NULL);
5118 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5119 * struct skb_shared_info is located at the end of skb->head,
5120 * and should not be copied to/from user.
5121 */
5122 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5123 SKB_SMALL_HEAD_CACHE_SIZE,
5124 0,
5125 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5126 0,
5127 SKB_SMALL_HEAD_HEADROOM,
5128 NULL);
5129 skb_extensions_init();
5130 }
5131
5132 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5133 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5134 unsigned int recursion_level)
5135 {
5136 int start = skb_headlen(skb);
5137 int i, copy = start - offset;
5138 struct sk_buff *frag_iter;
5139 int elt = 0;
5140
5141 if (unlikely(recursion_level >= 24))
5142 return -EMSGSIZE;
5143
5144 if (copy > 0) {
5145 if (copy > len)
5146 copy = len;
5147 sg_set_buf(sg, skb->data + offset, copy);
5148 elt++;
5149 if ((len -= copy) == 0)
5150 return elt;
5151 offset += copy;
5152 }
5153
5154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5155 int end;
5156
5157 WARN_ON(start > offset + len);
5158
5159 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5160 if ((copy = end - offset) > 0) {
5161 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5162 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5163 return -EMSGSIZE;
5164
5165 if (copy > len)
5166 copy = len;
5167 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5168 skb_frag_off(frag) + offset - start);
5169 elt++;
5170 if (!(len -= copy))
5171 return elt;
5172 offset += copy;
5173 }
5174 start = end;
5175 }
5176
5177 skb_walk_frags(skb, frag_iter) {
5178 int end, ret;
5179
5180 WARN_ON(start > offset + len);
5181
5182 end = start + frag_iter->len;
5183 if ((copy = end - offset) > 0) {
5184 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5185 return -EMSGSIZE;
5186
5187 if (copy > len)
5188 copy = len;
5189 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5190 copy, recursion_level + 1);
5191 if (unlikely(ret < 0))
5192 return ret;
5193 elt += ret;
5194 if ((len -= copy) == 0)
5195 return elt;
5196 offset += copy;
5197 }
5198 start = end;
5199 }
5200 BUG_ON(len);
5201 return elt;
5202 }
5203
5204 /**
5205 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5206 * @skb: Socket buffer containing the buffers to be mapped
5207 * @sg: The scatter-gather list to map into
5208 * @offset: The offset into the buffer's contents to start mapping
5209 * @len: Length of buffer space to be mapped
5210 *
5211 * Fill the specified scatter-gather list with mappings/pointers into a
5212 * region of the buffer space attached to a socket buffer. Returns either
5213 * the number of scatterlist items used, or -EMSGSIZE if the contents
5214 * could not fit.
5215 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5216 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5217 {
5218 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5219
5220 if (nsg <= 0)
5221 return nsg;
5222
5223 sg_mark_end(&sg[nsg - 1]);
5224
5225 return nsg;
5226 }
5227 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5228
5229 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5230 * sglist without mark the sg which contain last skb data as the end.
5231 * So the caller can mannipulate sg list as will when padding new data after
5232 * the first call without calling sg_unmark_end to expend sg list.
5233 *
5234 * Scenario to use skb_to_sgvec_nomark:
5235 * 1. sg_init_table
5236 * 2. skb_to_sgvec_nomark(payload1)
5237 * 3. skb_to_sgvec_nomark(payload2)
5238 *
5239 * This is equivalent to:
5240 * 1. sg_init_table
5241 * 2. skb_to_sgvec(payload1)
5242 * 3. sg_unmark_end
5243 * 4. skb_to_sgvec(payload2)
5244 *
5245 * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5246 * is more preferable.
5247 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5248 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5249 int offset, int len)
5250 {
5251 return __skb_to_sgvec(skb, sg, offset, len, 0);
5252 }
5253 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5254
5255
5256
5257 /**
5258 * skb_cow_data - Check that a socket buffer's data buffers are writable
5259 * @skb: The socket buffer to check.
5260 * @tailbits: Amount of trailing space to be added
5261 * @trailer: Returned pointer to the skb where the @tailbits space begins
5262 *
5263 * Make sure that the data buffers attached to a socket buffer are
5264 * writable. If they are not, private copies are made of the data buffers
5265 * and the socket buffer is set to use these instead.
5266 *
5267 * If @tailbits is given, make sure that there is space to write @tailbits
5268 * bytes of data beyond current end of socket buffer. @trailer will be
5269 * set to point to the skb in which this space begins.
5270 *
5271 * The number of scatterlist elements required to completely map the
5272 * COW'd and extended socket buffer will be returned.
5273 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5274 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5275 {
5276 int copyflag;
5277 int elt;
5278 struct sk_buff *skb1, **skb_p;
5279
5280 /* If skb is cloned or its head is paged, reallocate
5281 * head pulling out all the pages (pages are considered not writable
5282 * at the moment even if they are anonymous).
5283 */
5284 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5285 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5286 return -ENOMEM;
5287
5288 /* Easy case. Most of packets will go this way. */
5289 if (!skb_has_frag_list(skb)) {
5290 /* A little of trouble, not enough of space for trailer.
5291 * This should not happen, when stack is tuned to generate
5292 * good frames. OK, on miss we reallocate and reserve even more
5293 * space, 128 bytes is fair. */
5294
5295 if (skb_tailroom(skb) < tailbits &&
5296 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5297 return -ENOMEM;
5298
5299 /* Voila! */
5300 *trailer = skb;
5301 return 1;
5302 }
5303
5304 /* Misery. We are in troubles, going to mincer fragments... */
5305
5306 elt = 1;
5307 skb_p = &skb_shinfo(skb)->frag_list;
5308 copyflag = 0;
5309
5310 while ((skb1 = *skb_p) != NULL) {
5311 int ntail = 0;
5312
5313 /* The fragment is partially pulled by someone,
5314 * this can happen on input. Copy it and everything
5315 * after it. */
5316
5317 if (skb_shared(skb1))
5318 copyflag = 1;
5319
5320 /* If the skb is the last, worry about trailer. */
5321
5322 if (skb1->next == NULL && tailbits) {
5323 if (skb_shinfo(skb1)->nr_frags ||
5324 skb_has_frag_list(skb1) ||
5325 skb_tailroom(skb1) < tailbits)
5326 ntail = tailbits + 128;
5327 }
5328
5329 if (copyflag ||
5330 skb_cloned(skb1) ||
5331 ntail ||
5332 skb_shinfo(skb1)->nr_frags ||
5333 skb_has_frag_list(skb1)) {
5334 struct sk_buff *skb2;
5335
5336 /* Fuck, we are miserable poor guys... */
5337 if (ntail == 0)
5338 skb2 = skb_copy(skb1, GFP_ATOMIC);
5339 else
5340 skb2 = skb_copy_expand(skb1,
5341 skb_headroom(skb1),
5342 ntail,
5343 GFP_ATOMIC);
5344 if (unlikely(skb2 == NULL))
5345 return -ENOMEM;
5346
5347 if (skb1->sk)
5348 skb_set_owner_w(skb2, skb1->sk);
5349
5350 /* Looking around. Are we still alive?
5351 * OK, link new skb, drop old one */
5352
5353 skb2->next = skb1->next;
5354 *skb_p = skb2;
5355 kfree_skb(skb1);
5356 skb1 = skb2;
5357 }
5358 elt++;
5359 *trailer = skb1;
5360 skb_p = &skb1->next;
5361 }
5362
5363 return elt;
5364 }
5365 EXPORT_SYMBOL_GPL(skb_cow_data);
5366
sock_rmem_free(struct sk_buff * skb)5367 static void sock_rmem_free(struct sk_buff *skb)
5368 {
5369 struct sock *sk = skb->sk;
5370
5371 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5372 }
5373
skb_set_err_queue(struct sk_buff * skb)5374 static void skb_set_err_queue(struct sk_buff *skb)
5375 {
5376 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5377 * So, it is safe to (mis)use it to mark skbs on the error queue.
5378 */
5379 skb->pkt_type = PACKET_OUTGOING;
5380 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5381 }
5382
5383 /*
5384 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5385 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5386 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5387 {
5388 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5389 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5390 return -ENOMEM;
5391
5392 skb_orphan(skb);
5393 skb->sk = sk;
5394 skb->destructor = sock_rmem_free;
5395 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5396 skb_set_err_queue(skb);
5397
5398 /* before exiting rcu section, make sure dst is refcounted */
5399 skb_dst_force(skb);
5400
5401 skb_queue_tail(&sk->sk_error_queue, skb);
5402 if (!sock_flag(sk, SOCK_DEAD))
5403 sk_error_report(sk);
5404 return 0;
5405 }
5406 EXPORT_SYMBOL(sock_queue_err_skb);
5407
is_icmp_err_skb(const struct sk_buff * skb)5408 static bool is_icmp_err_skb(const struct sk_buff *skb)
5409 {
5410 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5411 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5412 }
5413
sock_dequeue_err_skb(struct sock * sk)5414 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5415 {
5416 struct sk_buff_head *q = &sk->sk_error_queue;
5417 struct sk_buff *skb, *skb_next = NULL;
5418 bool icmp_next = false;
5419 unsigned long flags;
5420
5421 if (skb_queue_empty_lockless(q))
5422 return NULL;
5423
5424 spin_lock_irqsave(&q->lock, flags);
5425 skb = __skb_dequeue(q);
5426 if (skb && (skb_next = skb_peek(q))) {
5427 icmp_next = is_icmp_err_skb(skb_next);
5428 if (icmp_next)
5429 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5430 }
5431 spin_unlock_irqrestore(&q->lock, flags);
5432
5433 if (is_icmp_err_skb(skb) && !icmp_next)
5434 sk->sk_err = 0;
5435
5436 if (skb_next)
5437 sk_error_report(sk);
5438
5439 return skb;
5440 }
5441 EXPORT_SYMBOL(sock_dequeue_err_skb);
5442
5443 /**
5444 * skb_clone_sk - create clone of skb, and take reference to socket
5445 * @skb: the skb to clone
5446 *
5447 * This function creates a clone of a buffer that holds a reference on
5448 * sk_refcnt. Buffers created via this function are meant to be
5449 * returned using sock_queue_err_skb, or free via kfree_skb.
5450 *
5451 * When passing buffers allocated with this function to sock_queue_err_skb
5452 * it is necessary to wrap the call with sock_hold/sock_put in order to
5453 * prevent the socket from being released prior to being enqueued on
5454 * the sk_error_queue.
5455 */
skb_clone_sk(struct sk_buff * skb)5456 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5457 {
5458 struct sock *sk = skb->sk;
5459 struct sk_buff *clone;
5460
5461 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5462 return NULL;
5463
5464 clone = skb_clone(skb, GFP_ATOMIC);
5465 if (!clone) {
5466 sock_put(sk);
5467 return NULL;
5468 }
5469
5470 clone->sk = sk;
5471 clone->destructor = sock_efree;
5472
5473 return clone;
5474 }
5475 EXPORT_SYMBOL(skb_clone_sk);
5476
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5477 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5478 struct sock *sk,
5479 int tstype,
5480 bool opt_stats)
5481 {
5482 struct sock_exterr_skb *serr;
5483 int err;
5484
5485 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5486
5487 serr = SKB_EXT_ERR(skb);
5488 memset(serr, 0, sizeof(*serr));
5489 serr->ee.ee_errno = ENOMSG;
5490 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5491 serr->ee.ee_info = tstype;
5492 serr->opt_stats = opt_stats;
5493 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5494 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5495 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5496 if (sk_is_tcp(sk))
5497 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5498 }
5499
5500 err = sock_queue_err_skb(sk, skb);
5501
5502 if (err)
5503 kfree_skb(skb);
5504 }
5505
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5506 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5507 {
5508 bool ret;
5509
5510 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5511 return true;
5512
5513 read_lock_bh(&sk->sk_callback_lock);
5514 ret = sk->sk_socket && sk->sk_socket->file &&
5515 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5516 read_unlock_bh(&sk->sk_callback_lock);
5517 return ret;
5518 }
5519
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5520 void skb_complete_tx_timestamp(struct sk_buff *skb,
5521 struct skb_shared_hwtstamps *hwtstamps)
5522 {
5523 struct sock *sk = skb->sk;
5524
5525 if (!skb_may_tx_timestamp(sk, false))
5526 goto err;
5527
5528 /* Take a reference to prevent skb_orphan() from freeing the socket,
5529 * but only if the socket refcount is not zero.
5530 */
5531 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5532 *skb_hwtstamps(skb) = *hwtstamps;
5533 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5534 sock_put(sk);
5535 return;
5536 }
5537
5538 err:
5539 kfree_skb(skb);
5540 }
5541 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5542
skb_tstamp_tx_report_so_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,int tstype)5543 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5544 struct skb_shared_hwtstamps *hwtstamps,
5545 int tstype)
5546 {
5547 switch (tstype) {
5548 case SCM_TSTAMP_SCHED:
5549 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5550 case SCM_TSTAMP_SND:
5551 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5552 SKBTX_SW_TSTAMP);
5553 case SCM_TSTAMP_ACK:
5554 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5555 case SCM_TSTAMP_COMPLETION:
5556 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5557 }
5558
5559 return false;
5560 }
5561
skb_tstamp_tx_report_bpf_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5562 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5563 struct skb_shared_hwtstamps *hwtstamps,
5564 struct sock *sk,
5565 int tstype)
5566 {
5567 int op;
5568
5569 switch (tstype) {
5570 case SCM_TSTAMP_SCHED:
5571 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5572 break;
5573 case SCM_TSTAMP_SND:
5574 if (hwtstamps) {
5575 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5576 *skb_hwtstamps(skb) = *hwtstamps;
5577 } else {
5578 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5579 }
5580 break;
5581 case SCM_TSTAMP_ACK:
5582 op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5583 break;
5584 default:
5585 return;
5586 }
5587
5588 bpf_skops_tx_timestamping(sk, skb, op);
5589 }
5590
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5591 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5592 const struct sk_buff *ack_skb,
5593 struct skb_shared_hwtstamps *hwtstamps,
5594 struct sock *sk, int tstype)
5595 {
5596 struct sk_buff *skb;
5597 bool tsonly, opt_stats = false;
5598 u32 tsflags;
5599
5600 if (!sk)
5601 return;
5602
5603 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5604 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5605 sk, tstype);
5606
5607 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5608 return;
5609
5610 tsflags = READ_ONCE(sk->sk_tsflags);
5611 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5612 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5613 return;
5614
5615 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5616 if (!skb_may_tx_timestamp(sk, tsonly))
5617 return;
5618
5619 if (tsonly) {
5620 #ifdef CONFIG_INET
5621 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5622 sk_is_tcp(sk)) {
5623 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5624 ack_skb);
5625 opt_stats = true;
5626 } else
5627 #endif
5628 skb = alloc_skb(0, GFP_ATOMIC);
5629 } else {
5630 skb = skb_clone(orig_skb, GFP_ATOMIC);
5631
5632 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5633 kfree_skb(skb);
5634 return;
5635 }
5636 }
5637 if (!skb)
5638 return;
5639
5640 if (tsonly) {
5641 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5642 SKBTX_ANY_TSTAMP;
5643 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5644 }
5645
5646 if (hwtstamps)
5647 *skb_hwtstamps(skb) = *hwtstamps;
5648 else
5649 __net_timestamp(skb);
5650
5651 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5652 }
5653 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5654
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5655 void skb_tstamp_tx(struct sk_buff *orig_skb,
5656 struct skb_shared_hwtstamps *hwtstamps)
5657 {
5658 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5659 SCM_TSTAMP_SND);
5660 }
5661 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5662
5663 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5664 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5665 {
5666 struct sock *sk = skb->sk;
5667 struct sock_exterr_skb *serr;
5668 int err = 1;
5669
5670 skb->wifi_acked_valid = 1;
5671 skb->wifi_acked = acked;
5672
5673 serr = SKB_EXT_ERR(skb);
5674 memset(serr, 0, sizeof(*serr));
5675 serr->ee.ee_errno = ENOMSG;
5676 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5677
5678 /* Take a reference to prevent skb_orphan() from freeing the socket,
5679 * but only if the socket refcount is not zero.
5680 */
5681 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5682 err = sock_queue_err_skb(sk, skb);
5683 sock_put(sk);
5684 }
5685 if (err)
5686 kfree_skb(skb);
5687 }
5688 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5689 #endif /* CONFIG_WIRELESS */
5690
5691 /**
5692 * skb_partial_csum_set - set up and verify partial csum values for packet
5693 * @skb: the skb to set
5694 * @start: the number of bytes after skb->data to start checksumming.
5695 * @off: the offset from start to place the checksum.
5696 *
5697 * For untrusted partially-checksummed packets, we need to make sure the values
5698 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5699 *
5700 * This function checks and sets those values and skb->ip_summed: if this
5701 * returns false you should drop the packet.
5702 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5703 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5704 {
5705 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5706 u32 csum_start = skb_headroom(skb) + (u32)start;
5707
5708 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5709 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5710 start, off, skb_headroom(skb), skb_headlen(skb));
5711 return false;
5712 }
5713 skb->ip_summed = CHECKSUM_PARTIAL;
5714 skb->csum_start = csum_start;
5715 skb->csum_offset = off;
5716 skb->transport_header = csum_start;
5717 return true;
5718 }
5719 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5720
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5721 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5722 unsigned int max)
5723 {
5724 if (skb_headlen(skb) >= len)
5725 return 0;
5726
5727 /* If we need to pullup then pullup to the max, so we
5728 * won't need to do it again.
5729 */
5730 if (max > skb->len)
5731 max = skb->len;
5732
5733 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5734 return -ENOMEM;
5735
5736 if (skb_headlen(skb) < len)
5737 return -EPROTO;
5738
5739 return 0;
5740 }
5741
5742 #define MAX_TCP_HDR_LEN (15 * 4)
5743
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5744 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5745 typeof(IPPROTO_IP) proto,
5746 unsigned int off)
5747 {
5748 int err;
5749
5750 switch (proto) {
5751 case IPPROTO_TCP:
5752 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5753 off + MAX_TCP_HDR_LEN);
5754 if (!err && !skb_partial_csum_set(skb, off,
5755 offsetof(struct tcphdr,
5756 check)))
5757 err = -EPROTO;
5758 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5759
5760 case IPPROTO_UDP:
5761 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5762 off + sizeof(struct udphdr));
5763 if (!err && !skb_partial_csum_set(skb, off,
5764 offsetof(struct udphdr,
5765 check)))
5766 err = -EPROTO;
5767 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5768 }
5769
5770 return ERR_PTR(-EPROTO);
5771 }
5772
5773 /* This value should be large enough to cover a tagged ethernet header plus
5774 * maximally sized IP and TCP or UDP headers.
5775 */
5776 #define MAX_IP_HDR_LEN 128
5777
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5778 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5779 {
5780 unsigned int off;
5781 bool fragment;
5782 __sum16 *csum;
5783 int err;
5784
5785 fragment = false;
5786
5787 err = skb_maybe_pull_tail(skb,
5788 sizeof(struct iphdr),
5789 MAX_IP_HDR_LEN);
5790 if (err < 0)
5791 goto out;
5792
5793 if (ip_is_fragment(ip_hdr(skb)))
5794 fragment = true;
5795
5796 off = ip_hdrlen(skb);
5797
5798 err = -EPROTO;
5799
5800 if (fragment)
5801 goto out;
5802
5803 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5804 if (IS_ERR(csum))
5805 return PTR_ERR(csum);
5806
5807 if (recalculate)
5808 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5809 ip_hdr(skb)->daddr,
5810 skb->len - off,
5811 ip_hdr(skb)->protocol, 0);
5812 err = 0;
5813
5814 out:
5815 return err;
5816 }
5817
5818 /* This value should be large enough to cover a tagged ethernet header plus
5819 * an IPv6 header, all options, and a maximal TCP or UDP header.
5820 */
5821 #define MAX_IPV6_HDR_LEN 256
5822
5823 #define OPT_HDR(type, skb, off) \
5824 (type *)(skb_network_header(skb) + (off))
5825
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5826 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5827 {
5828 int err;
5829 u8 nexthdr;
5830 unsigned int off;
5831 unsigned int len;
5832 bool fragment;
5833 bool done;
5834 __sum16 *csum;
5835
5836 fragment = false;
5837 done = false;
5838
5839 off = sizeof(struct ipv6hdr);
5840
5841 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5842 if (err < 0)
5843 goto out;
5844
5845 nexthdr = ipv6_hdr(skb)->nexthdr;
5846
5847 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5848 while (off <= len && !done) {
5849 switch (nexthdr) {
5850 case IPPROTO_DSTOPTS:
5851 case IPPROTO_HOPOPTS:
5852 case IPPROTO_ROUTING: {
5853 struct ipv6_opt_hdr *hp;
5854
5855 err = skb_maybe_pull_tail(skb,
5856 off +
5857 sizeof(struct ipv6_opt_hdr),
5858 MAX_IPV6_HDR_LEN);
5859 if (err < 0)
5860 goto out;
5861
5862 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5863 nexthdr = hp->nexthdr;
5864 off += ipv6_optlen(hp);
5865 break;
5866 }
5867 case IPPROTO_AH: {
5868 struct ip_auth_hdr *hp;
5869
5870 err = skb_maybe_pull_tail(skb,
5871 off +
5872 sizeof(struct ip_auth_hdr),
5873 MAX_IPV6_HDR_LEN);
5874 if (err < 0)
5875 goto out;
5876
5877 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5878 nexthdr = hp->nexthdr;
5879 off += ipv6_authlen(hp);
5880 break;
5881 }
5882 case IPPROTO_FRAGMENT: {
5883 struct frag_hdr *hp;
5884
5885 err = skb_maybe_pull_tail(skb,
5886 off +
5887 sizeof(struct frag_hdr),
5888 MAX_IPV6_HDR_LEN);
5889 if (err < 0)
5890 goto out;
5891
5892 hp = OPT_HDR(struct frag_hdr, skb, off);
5893
5894 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5895 fragment = true;
5896
5897 nexthdr = hp->nexthdr;
5898 off += sizeof(struct frag_hdr);
5899 break;
5900 }
5901 default:
5902 done = true;
5903 break;
5904 }
5905 }
5906
5907 err = -EPROTO;
5908
5909 if (!done || fragment)
5910 goto out;
5911
5912 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5913 if (IS_ERR(csum))
5914 return PTR_ERR(csum);
5915
5916 if (recalculate)
5917 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5918 &ipv6_hdr(skb)->daddr,
5919 skb->len - off, nexthdr, 0);
5920 err = 0;
5921
5922 out:
5923 return err;
5924 }
5925
5926 /**
5927 * skb_checksum_setup - set up partial checksum offset
5928 * @skb: the skb to set up
5929 * @recalculate: if true the pseudo-header checksum will be recalculated
5930 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5931 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5932 {
5933 int err;
5934
5935 switch (skb->protocol) {
5936 case htons(ETH_P_IP):
5937 err = skb_checksum_setup_ipv4(skb, recalculate);
5938 break;
5939
5940 case htons(ETH_P_IPV6):
5941 err = skb_checksum_setup_ipv6(skb, recalculate);
5942 break;
5943
5944 default:
5945 err = -EPROTO;
5946 break;
5947 }
5948
5949 return err;
5950 }
5951 EXPORT_SYMBOL(skb_checksum_setup);
5952
5953 /**
5954 * skb_checksum_maybe_trim - maybe trims the given skb
5955 * @skb: the skb to check
5956 * @transport_len: the data length beyond the network header
5957 *
5958 * Checks whether the given skb has data beyond the given transport length.
5959 * If so, returns a cloned skb trimmed to this transport length.
5960 * Otherwise returns the provided skb. Returns NULL in error cases
5961 * (e.g. transport_len exceeds skb length or out-of-memory).
5962 *
5963 * Caller needs to set the skb transport header and free any returned skb if it
5964 * differs from the provided skb.
5965 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5966 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5967 unsigned int transport_len)
5968 {
5969 struct sk_buff *skb_chk;
5970 unsigned int len = skb_transport_offset(skb) + transport_len;
5971 int ret;
5972
5973 if (skb->len < len)
5974 return NULL;
5975 else if (skb->len == len)
5976 return skb;
5977
5978 skb_chk = skb_clone(skb, GFP_ATOMIC);
5979 if (!skb_chk)
5980 return NULL;
5981
5982 ret = pskb_trim_rcsum(skb_chk, len);
5983 if (ret) {
5984 kfree_skb(skb_chk);
5985 return NULL;
5986 }
5987
5988 return skb_chk;
5989 }
5990
5991 /**
5992 * skb_checksum_trimmed - validate checksum of an skb
5993 * @skb: the skb to check
5994 * @transport_len: the data length beyond the network header
5995 * @skb_chkf: checksum function to use
5996 *
5997 * Applies the given checksum function skb_chkf to the provided skb.
5998 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5999 *
6000 * If the skb has data beyond the given transport length, then a
6001 * trimmed & cloned skb is checked and returned.
6002 *
6003 * Caller needs to set the skb transport header and free any returned skb if it
6004 * differs from the provided skb.
6005 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))6006 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6007 unsigned int transport_len,
6008 __sum16(*skb_chkf)(struct sk_buff *skb))
6009 {
6010 struct sk_buff *skb_chk;
6011 unsigned int offset = skb_transport_offset(skb);
6012 __sum16 ret;
6013
6014 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6015 if (!skb_chk)
6016 goto err;
6017
6018 if (!pskb_may_pull(skb_chk, offset))
6019 goto err;
6020
6021 skb_pull_rcsum(skb_chk, offset);
6022 ret = skb_chkf(skb_chk);
6023 skb_push_rcsum(skb_chk, offset);
6024
6025 if (ret)
6026 goto err;
6027
6028 return skb_chk;
6029
6030 err:
6031 if (skb_chk && skb_chk != skb)
6032 kfree_skb(skb_chk);
6033
6034 return NULL;
6035
6036 }
6037 EXPORT_SYMBOL(skb_checksum_trimmed);
6038
__skb_warn_lro_forwarding(const struct sk_buff * skb)6039 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6040 {
6041 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6042 skb->dev->name);
6043 }
6044 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6045
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)6046 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6047 {
6048 if (head_stolen) {
6049 skb_release_head_state(skb);
6050 kmem_cache_free(net_hotdata.skbuff_cache, skb);
6051 } else {
6052 __kfree_skb(skb);
6053 }
6054 }
6055 EXPORT_SYMBOL(kfree_skb_partial);
6056
6057 /**
6058 * skb_try_coalesce - try to merge skb to prior one
6059 * @to: prior buffer
6060 * @from: buffer to add
6061 * @fragstolen: pointer to boolean
6062 * @delta_truesize: how much more was allocated than was requested
6063 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)6064 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6065 bool *fragstolen, int *delta_truesize)
6066 {
6067 struct skb_shared_info *to_shinfo, *from_shinfo;
6068 int i, delta, len = from->len;
6069
6070 *fragstolen = false;
6071
6072 if (skb_cloned(to))
6073 return false;
6074
6075 /* In general, avoid mixing page_pool and non-page_pool allocated
6076 * pages within the same SKB. In theory we could take full
6077 * references if @from is cloned and !@to->pp_recycle but its
6078 * tricky (due to potential race with the clone disappearing) and
6079 * rare, so not worth dealing with.
6080 */
6081 if (to->pp_recycle != from->pp_recycle)
6082 return false;
6083
6084 if (skb_frags_readable(from) != skb_frags_readable(to))
6085 return false;
6086
6087 if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6088 if (len)
6089 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6090 *delta_truesize = 0;
6091 return true;
6092 }
6093
6094 to_shinfo = skb_shinfo(to);
6095 from_shinfo = skb_shinfo(from);
6096 if (to_shinfo->frag_list || from_shinfo->frag_list)
6097 return false;
6098 if (skb_zcopy(to) || skb_zcopy(from))
6099 return false;
6100
6101 if (skb_headlen(from) != 0) {
6102 struct page *page;
6103 unsigned int offset;
6104
6105 if (to_shinfo->nr_frags +
6106 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6107 return false;
6108
6109 if (skb_head_is_locked(from))
6110 return false;
6111
6112 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6113
6114 page = virt_to_head_page(from->head);
6115 offset = from->data - (unsigned char *)page_address(page);
6116
6117 skb_fill_page_desc(to, to_shinfo->nr_frags,
6118 page, offset, skb_headlen(from));
6119 *fragstolen = true;
6120 } else {
6121 if (to_shinfo->nr_frags +
6122 from_shinfo->nr_frags > MAX_SKB_FRAGS)
6123 return false;
6124
6125 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6126 }
6127
6128 WARN_ON_ONCE(delta < len);
6129
6130 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6131 from_shinfo->frags,
6132 from_shinfo->nr_frags * sizeof(skb_frag_t));
6133 to_shinfo->nr_frags += from_shinfo->nr_frags;
6134
6135 if (!skb_cloned(from))
6136 from_shinfo->nr_frags = 0;
6137
6138 /* if the skb is not cloned this does nothing
6139 * since we set nr_frags to 0.
6140 */
6141 if (skb_pp_frag_ref(from)) {
6142 for (i = 0; i < from_shinfo->nr_frags; i++)
6143 __skb_frag_ref(&from_shinfo->frags[i]);
6144 }
6145
6146 to->truesize += delta;
6147 to->len += len;
6148 to->data_len += len;
6149
6150 *delta_truesize = delta;
6151 return true;
6152 }
6153 EXPORT_SYMBOL(skb_try_coalesce);
6154
6155 /**
6156 * skb_scrub_packet - scrub an skb
6157 *
6158 * @skb: buffer to clean
6159 * @xnet: packet is crossing netns
6160 *
6161 * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6162 * into/from a tunnel. Some information have to be cleared during these
6163 * operations.
6164 * skb_scrub_packet can also be used to clean a skb before injecting it in
6165 * another namespace (@xnet == true). We have to clear all information in the
6166 * skb that could impact namespace isolation.
6167 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6168 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6169 {
6170 skb->pkt_type = PACKET_HOST;
6171 skb->skb_iif = 0;
6172 skb->ignore_df = 0;
6173 skb_dst_drop(skb);
6174 skb_ext_reset(skb);
6175 nf_reset_ct(skb);
6176 nf_reset_trace(skb);
6177
6178 #ifdef CONFIG_NET_SWITCHDEV
6179 skb->offload_fwd_mark = 0;
6180 skb->offload_l3_fwd_mark = 0;
6181 #endif
6182 ipvs_reset(skb);
6183
6184 if (!xnet)
6185 return;
6186
6187 skb->mark = 0;
6188 skb_clear_tstamp(skb);
6189 }
6190 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6191
skb_reorder_vlan_header(struct sk_buff * skb)6192 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6193 {
6194 int mac_len, meta_len;
6195 void *meta;
6196
6197 if (skb_cow(skb, skb_headroom(skb)) < 0) {
6198 kfree_skb(skb);
6199 return NULL;
6200 }
6201
6202 mac_len = skb->data - skb_mac_header(skb);
6203 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6204 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6205 mac_len - VLAN_HLEN - ETH_TLEN);
6206 }
6207
6208 meta_len = skb_metadata_len(skb);
6209 if (meta_len) {
6210 meta = skb_metadata_end(skb) - meta_len;
6211 memmove(meta + VLAN_HLEN, meta, meta_len);
6212 }
6213
6214 skb->mac_header += VLAN_HLEN;
6215 return skb;
6216 }
6217
skb_vlan_untag(struct sk_buff * skb)6218 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6219 {
6220 struct vlan_hdr *vhdr;
6221 u16 vlan_tci;
6222
6223 if (unlikely(skb_vlan_tag_present(skb))) {
6224 /* vlan_tci is already set-up so leave this for another time */
6225 return skb;
6226 }
6227
6228 skb = skb_share_check(skb, GFP_ATOMIC);
6229 if (unlikely(!skb))
6230 goto err_free;
6231 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6232 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6233 goto err_free;
6234
6235 vhdr = (struct vlan_hdr *)skb->data;
6236 vlan_tci = ntohs(vhdr->h_vlan_TCI);
6237 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6238
6239 skb_pull_rcsum(skb, VLAN_HLEN);
6240 vlan_set_encap_proto(skb, vhdr);
6241
6242 skb = skb_reorder_vlan_header(skb);
6243 if (unlikely(!skb))
6244 goto err_free;
6245
6246 skb_reset_network_header(skb);
6247 if (!skb_transport_header_was_set(skb))
6248 skb_reset_transport_header(skb);
6249 skb_reset_mac_len(skb);
6250
6251 return skb;
6252
6253 err_free:
6254 kfree_skb(skb);
6255 return NULL;
6256 }
6257 EXPORT_SYMBOL(skb_vlan_untag);
6258
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6259 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6260 {
6261 if (!pskb_may_pull(skb, write_len))
6262 return -ENOMEM;
6263
6264 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6265 return 0;
6266
6267 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6268 }
6269 EXPORT_SYMBOL(skb_ensure_writable);
6270
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6271 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6272 {
6273 int needed_headroom = dev->needed_headroom;
6274 int needed_tailroom = dev->needed_tailroom;
6275
6276 /* For tail taggers, we need to pad short frames ourselves, to ensure
6277 * that the tail tag does not fail at its role of being at the end of
6278 * the packet, once the conduit interface pads the frame. Account for
6279 * that pad length here, and pad later.
6280 */
6281 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6282 needed_tailroom += ETH_ZLEN - skb->len;
6283 /* skb_headroom() returns unsigned int... */
6284 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6285 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6286
6287 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6288 /* No reallocation needed, yay! */
6289 return 0;
6290
6291 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6292 GFP_ATOMIC);
6293 }
6294 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6295
6296 /* remove VLAN header from packet and update csum accordingly.
6297 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6298 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6299 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6300 {
6301 int offset = skb->data - skb_mac_header(skb);
6302 int err;
6303
6304 if (WARN_ONCE(offset,
6305 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6306 offset)) {
6307 return -EINVAL;
6308 }
6309
6310 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6311 if (unlikely(err))
6312 return err;
6313
6314 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6315
6316 vlan_remove_tag(skb, vlan_tci);
6317
6318 skb->mac_header += VLAN_HLEN;
6319
6320 if (skb_network_offset(skb) < ETH_HLEN)
6321 skb_set_network_header(skb, ETH_HLEN);
6322
6323 skb_reset_mac_len(skb);
6324
6325 return err;
6326 }
6327 EXPORT_SYMBOL(__skb_vlan_pop);
6328
6329 /* Pop a vlan tag either from hwaccel or from payload.
6330 * Expects skb->data at mac header.
6331 */
skb_vlan_pop(struct sk_buff * skb)6332 int skb_vlan_pop(struct sk_buff *skb)
6333 {
6334 u16 vlan_tci;
6335 __be16 vlan_proto;
6336 int err;
6337
6338 if (likely(skb_vlan_tag_present(skb))) {
6339 __vlan_hwaccel_clear_tag(skb);
6340 } else {
6341 if (unlikely(!eth_type_vlan(skb->protocol)))
6342 return 0;
6343
6344 err = __skb_vlan_pop(skb, &vlan_tci);
6345 if (err)
6346 return err;
6347 }
6348 /* move next vlan tag to hw accel tag */
6349 if (likely(!eth_type_vlan(skb->protocol)))
6350 return 0;
6351
6352 vlan_proto = skb->protocol;
6353 err = __skb_vlan_pop(skb, &vlan_tci);
6354 if (unlikely(err))
6355 return err;
6356
6357 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6358 return 0;
6359 }
6360 EXPORT_SYMBOL(skb_vlan_pop);
6361
6362 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6363 * Expects skb->data at mac header.
6364 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6365 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6366 {
6367 if (skb_vlan_tag_present(skb)) {
6368 int offset = skb->data - skb_mac_header(skb);
6369 int err;
6370
6371 if (WARN_ONCE(offset,
6372 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6373 offset)) {
6374 return -EINVAL;
6375 }
6376
6377 err = __vlan_insert_tag(skb, skb->vlan_proto,
6378 skb_vlan_tag_get(skb));
6379 if (err)
6380 return err;
6381
6382 skb->protocol = skb->vlan_proto;
6383 skb->network_header -= VLAN_HLEN;
6384
6385 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6386 }
6387 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6388 return 0;
6389 }
6390 EXPORT_SYMBOL(skb_vlan_push);
6391
6392 /**
6393 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6394 *
6395 * @skb: Socket buffer to modify
6396 *
6397 * Drop the Ethernet header of @skb.
6398 *
6399 * Expects that skb->data points to the mac header and that no VLAN tags are
6400 * present.
6401 *
6402 * Returns 0 on success, -errno otherwise.
6403 */
skb_eth_pop(struct sk_buff * skb)6404 int skb_eth_pop(struct sk_buff *skb)
6405 {
6406 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6407 skb_network_offset(skb) < ETH_HLEN)
6408 return -EPROTO;
6409
6410 skb_pull_rcsum(skb, ETH_HLEN);
6411 skb_reset_mac_header(skb);
6412 skb_reset_mac_len(skb);
6413
6414 return 0;
6415 }
6416 EXPORT_SYMBOL(skb_eth_pop);
6417
6418 /**
6419 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6420 *
6421 * @skb: Socket buffer to modify
6422 * @dst: Destination MAC address of the new header
6423 * @src: Source MAC address of the new header
6424 *
6425 * Prepend @skb with a new Ethernet header.
6426 *
6427 * Expects that skb->data points to the mac header, which must be empty.
6428 *
6429 * Returns 0 on success, -errno otherwise.
6430 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6431 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6432 const unsigned char *src)
6433 {
6434 struct ethhdr *eth;
6435 int err;
6436
6437 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6438 return -EPROTO;
6439
6440 err = skb_cow_head(skb, sizeof(*eth));
6441 if (err < 0)
6442 return err;
6443
6444 skb_push(skb, sizeof(*eth));
6445 skb_reset_mac_header(skb);
6446 skb_reset_mac_len(skb);
6447
6448 eth = eth_hdr(skb);
6449 ether_addr_copy(eth->h_dest, dst);
6450 ether_addr_copy(eth->h_source, src);
6451 eth->h_proto = skb->protocol;
6452
6453 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6454
6455 return 0;
6456 }
6457 EXPORT_SYMBOL(skb_eth_push);
6458
6459 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6460 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6461 __be16 ethertype)
6462 {
6463 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6464 __be16 diff[] = { ~hdr->h_proto, ethertype };
6465
6466 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6467 }
6468
6469 hdr->h_proto = ethertype;
6470 }
6471
6472 /**
6473 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6474 * the packet
6475 *
6476 * @skb: buffer
6477 * @mpls_lse: MPLS label stack entry to push
6478 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6479 * @mac_len: length of the MAC header
6480 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6481 * ethernet
6482 *
6483 * Expects skb->data at mac header.
6484 *
6485 * Returns 0 on success, -errno otherwise.
6486 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6487 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6488 int mac_len, bool ethernet)
6489 {
6490 struct mpls_shim_hdr *lse;
6491 int err;
6492
6493 if (unlikely(!eth_p_mpls(mpls_proto)))
6494 return -EINVAL;
6495
6496 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6497 if (skb->encapsulation)
6498 return -EINVAL;
6499
6500 err = skb_cow_head(skb, MPLS_HLEN);
6501 if (unlikely(err))
6502 return err;
6503
6504 if (!skb->inner_protocol) {
6505 skb_set_inner_network_header(skb, skb_network_offset(skb));
6506 skb_set_inner_protocol(skb, skb->protocol);
6507 }
6508
6509 skb_push(skb, MPLS_HLEN);
6510 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6511 mac_len);
6512 skb_reset_mac_header(skb);
6513 skb_set_network_header(skb, mac_len);
6514 skb_reset_mac_len(skb);
6515
6516 lse = mpls_hdr(skb);
6517 lse->label_stack_entry = mpls_lse;
6518 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6519
6520 if (ethernet && mac_len >= ETH_HLEN)
6521 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6522 skb->protocol = mpls_proto;
6523
6524 return 0;
6525 }
6526 EXPORT_SYMBOL_GPL(skb_mpls_push);
6527
6528 /**
6529 * skb_mpls_pop() - pop the outermost MPLS header
6530 *
6531 * @skb: buffer
6532 * @next_proto: ethertype of header after popped MPLS header
6533 * @mac_len: length of the MAC header
6534 * @ethernet: flag to indicate if the packet is ethernet
6535 *
6536 * Expects skb->data at mac header.
6537 *
6538 * Returns 0 on success, -errno otherwise.
6539 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6540 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6541 bool ethernet)
6542 {
6543 int err;
6544
6545 if (unlikely(!eth_p_mpls(skb->protocol)))
6546 return 0;
6547
6548 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6549 if (unlikely(err))
6550 return err;
6551
6552 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6553 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6554 mac_len);
6555
6556 __skb_pull(skb, MPLS_HLEN);
6557 skb_reset_mac_header(skb);
6558 skb_set_network_header(skb, mac_len);
6559
6560 if (ethernet && mac_len >= ETH_HLEN) {
6561 struct ethhdr *hdr;
6562
6563 /* use mpls_hdr() to get ethertype to account for VLANs. */
6564 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6565 skb_mod_eth_type(skb, hdr, next_proto);
6566 }
6567 skb->protocol = next_proto;
6568
6569 return 0;
6570 }
6571 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6572
6573 /**
6574 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6575 *
6576 * @skb: buffer
6577 * @mpls_lse: new MPLS label stack entry to update to
6578 *
6579 * Expects skb->data at mac header.
6580 *
6581 * Returns 0 on success, -errno otherwise.
6582 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6583 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6584 {
6585 int err;
6586
6587 if (unlikely(!eth_p_mpls(skb->protocol)))
6588 return -EINVAL;
6589
6590 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6591 if (unlikely(err))
6592 return err;
6593
6594 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6595 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6596
6597 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6598 }
6599
6600 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6601
6602 return 0;
6603 }
6604 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6605
6606 /**
6607 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6608 *
6609 * @skb: buffer
6610 *
6611 * Expects skb->data at mac header.
6612 *
6613 * Returns 0 on success, -errno otherwise.
6614 */
skb_mpls_dec_ttl(struct sk_buff * skb)6615 int skb_mpls_dec_ttl(struct sk_buff *skb)
6616 {
6617 u32 lse;
6618 u8 ttl;
6619
6620 if (unlikely(!eth_p_mpls(skb->protocol)))
6621 return -EINVAL;
6622
6623 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6624 return -ENOMEM;
6625
6626 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6627 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6628 if (!--ttl)
6629 return -EINVAL;
6630
6631 lse &= ~MPLS_LS_TTL_MASK;
6632 lse |= ttl << MPLS_LS_TTL_SHIFT;
6633
6634 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6635 }
6636 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6637
6638 /**
6639 * alloc_skb_with_frags - allocate skb with page frags
6640 *
6641 * @header_len: size of linear part
6642 * @data_len: needed length in frags
6643 * @order: max page order desired.
6644 * @errcode: pointer to error code if any
6645 * @gfp_mask: allocation mask
6646 *
6647 * This can be used to allocate a paged skb, given a maximal order for frags.
6648 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6649 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6650 unsigned long data_len,
6651 int order,
6652 int *errcode,
6653 gfp_t gfp_mask)
6654 {
6655 unsigned long chunk;
6656 struct sk_buff *skb;
6657 struct page *page;
6658 int nr_frags = 0;
6659
6660 *errcode = -EMSGSIZE;
6661 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6662 return NULL;
6663
6664 *errcode = -ENOBUFS;
6665 skb = alloc_skb(header_len, gfp_mask);
6666 if (!skb)
6667 return NULL;
6668
6669 while (data_len) {
6670 if (nr_frags == MAX_SKB_FRAGS - 1)
6671 goto failure;
6672 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6673 order--;
6674
6675 if (order) {
6676 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6677 __GFP_COMP |
6678 __GFP_NOWARN,
6679 order);
6680 if (!page) {
6681 order--;
6682 continue;
6683 }
6684 } else {
6685 page = alloc_page(gfp_mask);
6686 if (!page)
6687 goto failure;
6688 }
6689 chunk = min_t(unsigned long, data_len,
6690 PAGE_SIZE << order);
6691 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6692 nr_frags++;
6693 skb->truesize += (PAGE_SIZE << order);
6694 data_len -= chunk;
6695 }
6696 return skb;
6697
6698 failure:
6699 kfree_skb(skb);
6700 return NULL;
6701 }
6702 EXPORT_SYMBOL(alloc_skb_with_frags);
6703
6704 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6705 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6706 const int headlen, gfp_t gfp_mask)
6707 {
6708 int i;
6709 unsigned int size = skb_end_offset(skb);
6710 int new_hlen = headlen - off;
6711 u8 *data;
6712
6713 if (skb_pfmemalloc(skb))
6714 gfp_mask |= __GFP_MEMALLOC;
6715
6716 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6717 if (!data)
6718 return -ENOMEM;
6719 size = SKB_WITH_OVERHEAD(size);
6720
6721 /* Copy real data, and all frags */
6722 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6723 skb->len -= off;
6724
6725 memcpy((struct skb_shared_info *)(data + size),
6726 skb_shinfo(skb),
6727 offsetof(struct skb_shared_info,
6728 frags[skb_shinfo(skb)->nr_frags]));
6729 if (skb_cloned(skb)) {
6730 /* drop the old head gracefully */
6731 if (skb_orphan_frags(skb, gfp_mask)) {
6732 skb_kfree_head(data, size);
6733 return -ENOMEM;
6734 }
6735 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6736 skb_frag_ref(skb, i);
6737 if (skb_has_frag_list(skb))
6738 skb_clone_fraglist(skb);
6739 skb_release_data(skb, SKB_CONSUMED);
6740 } else {
6741 /* we can reuse existing recount- all we did was
6742 * relocate values
6743 */
6744 skb_free_head(skb);
6745 }
6746
6747 skb->head = data;
6748 skb->data = data;
6749 skb->head_frag = 0;
6750 skb_set_end_offset(skb, size);
6751 skb_set_tail_pointer(skb, skb_headlen(skb));
6752 skb_headers_offset_update(skb, 0);
6753 skb->cloned = 0;
6754 skb->hdr_len = 0;
6755 skb->nohdr = 0;
6756 atomic_set(&skb_shinfo(skb)->dataref, 1);
6757
6758 return 0;
6759 }
6760
6761 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6762
6763 /* carve out the first eat bytes from skb's frag_list. May recurse into
6764 * pskb_carve()
6765 */
pskb_carve_frag_list(struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6766 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6767 gfp_t gfp_mask)
6768 {
6769 struct sk_buff *list = shinfo->frag_list;
6770 struct sk_buff *clone = NULL;
6771 struct sk_buff *insp = NULL;
6772
6773 do {
6774 if (!list) {
6775 pr_err("Not enough bytes to eat. Want %d\n", eat);
6776 return -EFAULT;
6777 }
6778 if (list->len <= eat) {
6779 /* Eaten as whole. */
6780 eat -= list->len;
6781 list = list->next;
6782 insp = list;
6783 } else {
6784 /* Eaten partially. */
6785 if (skb_shared(list)) {
6786 clone = skb_clone(list, gfp_mask);
6787 if (!clone)
6788 return -ENOMEM;
6789 insp = list->next;
6790 list = clone;
6791 } else {
6792 /* This may be pulled without problems. */
6793 insp = list;
6794 }
6795 if (pskb_carve(list, eat, gfp_mask) < 0) {
6796 kfree_skb(clone);
6797 return -ENOMEM;
6798 }
6799 break;
6800 }
6801 } while (eat);
6802
6803 /* Free pulled out fragments. */
6804 while ((list = shinfo->frag_list) != insp) {
6805 shinfo->frag_list = list->next;
6806 consume_skb(list);
6807 }
6808 /* And insert new clone at head. */
6809 if (clone) {
6810 clone->next = list;
6811 shinfo->frag_list = clone;
6812 }
6813 return 0;
6814 }
6815
6816 /* carve off first len bytes from skb. Split line (off) is in the
6817 * non-linear part of skb
6818 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6819 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6820 int pos, gfp_t gfp_mask)
6821 {
6822 int i, k = 0;
6823 unsigned int size = skb_end_offset(skb);
6824 u8 *data;
6825 const int nfrags = skb_shinfo(skb)->nr_frags;
6826 struct skb_shared_info *shinfo;
6827
6828 if (skb_pfmemalloc(skb))
6829 gfp_mask |= __GFP_MEMALLOC;
6830
6831 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6832 if (!data)
6833 return -ENOMEM;
6834 size = SKB_WITH_OVERHEAD(size);
6835
6836 memcpy((struct skb_shared_info *)(data + size),
6837 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6838 if (skb_orphan_frags(skb, gfp_mask)) {
6839 skb_kfree_head(data, size);
6840 return -ENOMEM;
6841 }
6842 shinfo = (struct skb_shared_info *)(data + size);
6843 for (i = 0; i < nfrags; i++) {
6844 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6845
6846 if (pos + fsize > off) {
6847 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6848
6849 if (pos < off) {
6850 /* Split frag.
6851 * We have two variants in this case:
6852 * 1. Move all the frag to the second
6853 * part, if it is possible. F.e.
6854 * this approach is mandatory for TUX,
6855 * where splitting is expensive.
6856 * 2. Split is accurately. We make this.
6857 */
6858 skb_frag_off_add(&shinfo->frags[0], off - pos);
6859 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6860 }
6861 skb_frag_ref(skb, i);
6862 k++;
6863 }
6864 pos += fsize;
6865 }
6866 shinfo->nr_frags = k;
6867 if (skb_has_frag_list(skb))
6868 skb_clone_fraglist(skb);
6869
6870 /* split line is in frag list */
6871 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6872 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6873 if (skb_has_frag_list(skb))
6874 kfree_skb_list(skb_shinfo(skb)->frag_list);
6875 skb_kfree_head(data, size);
6876 return -ENOMEM;
6877 }
6878 skb_release_data(skb, SKB_CONSUMED);
6879
6880 skb->head = data;
6881 skb->head_frag = 0;
6882 skb->data = data;
6883 skb_set_end_offset(skb, size);
6884 skb_reset_tail_pointer(skb);
6885 skb_headers_offset_update(skb, 0);
6886 skb->cloned = 0;
6887 skb->hdr_len = 0;
6888 skb->nohdr = 0;
6889 skb->len -= off;
6890 skb->data_len = skb->len;
6891 atomic_set(&skb_shinfo(skb)->dataref, 1);
6892 return 0;
6893 }
6894
6895 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6896 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6897 {
6898 int headlen = skb_headlen(skb);
6899
6900 if (len < headlen)
6901 return pskb_carve_inside_header(skb, len, headlen, gfp);
6902 else
6903 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6904 }
6905
6906 /* Extract to_copy bytes starting at off from skb, and return this in
6907 * a new skb
6908 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6909 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6910 int to_copy, gfp_t gfp)
6911 {
6912 struct sk_buff *clone = skb_clone(skb, gfp);
6913
6914 if (!clone)
6915 return NULL;
6916
6917 if (pskb_carve(clone, off, gfp) < 0 ||
6918 pskb_trim(clone, to_copy)) {
6919 kfree_skb(clone);
6920 return NULL;
6921 }
6922 return clone;
6923 }
6924 EXPORT_SYMBOL(pskb_extract);
6925
6926 /**
6927 * skb_condense - try to get rid of fragments/frag_list if possible
6928 * @skb: buffer
6929 *
6930 * Can be used to save memory before skb is added to a busy queue.
6931 * If packet has bytes in frags and enough tail room in skb->head,
6932 * pull all of them, so that we can free the frags right now and adjust
6933 * truesize.
6934 * Notes:
6935 * We do not reallocate skb->head thus can not fail.
6936 * Caller must re-evaluate skb->truesize if needed.
6937 */
skb_condense(struct sk_buff * skb)6938 void skb_condense(struct sk_buff *skb)
6939 {
6940 if (skb->data_len) {
6941 if (skb->data_len > skb->end - skb->tail ||
6942 skb_cloned(skb) || !skb_frags_readable(skb))
6943 return;
6944
6945 /* Nice, we can free page frag(s) right now */
6946 __pskb_pull_tail(skb, skb->data_len);
6947 }
6948 /* At this point, skb->truesize might be over estimated,
6949 * because skb had a fragment, and fragments do not tell
6950 * their truesize.
6951 * When we pulled its content into skb->head, fragment
6952 * was freed, but __pskb_pull_tail() could not possibly
6953 * adjust skb->truesize, not knowing the frag truesize.
6954 */
6955 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6956 }
6957 EXPORT_SYMBOL(skb_condense);
6958
6959 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6960 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6961 {
6962 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6963 }
6964
6965 /**
6966 * __skb_ext_alloc - allocate a new skb extensions storage
6967 *
6968 * @flags: See kmalloc().
6969 *
6970 * Returns the newly allocated pointer. The pointer can later attached to a
6971 * skb via __skb_ext_set().
6972 * Note: caller must handle the skb_ext as an opaque data.
6973 */
__skb_ext_alloc(gfp_t flags)6974 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6975 {
6976 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6977
6978 if (new) {
6979 memset(new->offset, 0, sizeof(new->offset));
6980 refcount_set(&new->refcnt, 1);
6981 }
6982
6983 return new;
6984 }
6985
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6986 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6987 unsigned int old_active)
6988 {
6989 struct skb_ext *new;
6990
6991 if (refcount_read(&old->refcnt) == 1)
6992 return old;
6993
6994 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6995 if (!new)
6996 return NULL;
6997
6998 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6999 refcount_set(&new->refcnt, 1);
7000
7001 #ifdef CONFIG_XFRM
7002 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7003 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7004 unsigned int i;
7005
7006 for (i = 0; i < sp->len; i++)
7007 xfrm_state_hold(sp->xvec[i]);
7008 }
7009 #endif
7010 #ifdef CONFIG_MCTP_FLOWS
7011 if (old_active & (1 << SKB_EXT_MCTP)) {
7012 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7013
7014 if (flow->key)
7015 refcount_inc(&flow->key->refs);
7016 }
7017 #endif
7018 __skb_ext_put(old);
7019 return new;
7020 }
7021
7022 /**
7023 * __skb_ext_set - attach the specified extension storage to this skb
7024 * @skb: buffer
7025 * @id: extension id
7026 * @ext: extension storage previously allocated via __skb_ext_alloc()
7027 *
7028 * Existing extensions, if any, are cleared.
7029 *
7030 * Returns the pointer to the extension.
7031 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)7032 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7033 struct skb_ext *ext)
7034 {
7035 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7036
7037 skb_ext_put(skb);
7038 newlen = newoff + skb_ext_type_len[id];
7039 ext->chunks = newlen;
7040 ext->offset[id] = newoff;
7041 skb->extensions = ext;
7042 skb->active_extensions = 1 << id;
7043 return skb_ext_get_ptr(ext, id);
7044 }
7045
7046 /**
7047 * skb_ext_add - allocate space for given extension, COW if needed
7048 * @skb: buffer
7049 * @id: extension to allocate space for
7050 *
7051 * Allocates enough space for the given extension.
7052 * If the extension is already present, a pointer to that extension
7053 * is returned.
7054 *
7055 * If the skb was cloned, COW applies and the returned memory can be
7056 * modified without changing the extension space of clones buffers.
7057 *
7058 * Returns pointer to the extension or NULL on allocation failure.
7059 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)7060 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7061 {
7062 struct skb_ext *new, *old = NULL;
7063 unsigned int newlen, newoff;
7064
7065 if (skb->active_extensions) {
7066 old = skb->extensions;
7067
7068 new = skb_ext_maybe_cow(old, skb->active_extensions);
7069 if (!new)
7070 return NULL;
7071
7072 if (__skb_ext_exist(new, id))
7073 goto set_active;
7074
7075 newoff = new->chunks;
7076 } else {
7077 newoff = SKB_EXT_CHUNKSIZEOF(*new);
7078
7079 new = __skb_ext_alloc(GFP_ATOMIC);
7080 if (!new)
7081 return NULL;
7082 }
7083
7084 newlen = newoff + skb_ext_type_len[id];
7085 new->chunks = newlen;
7086 new->offset[id] = newoff;
7087 set_active:
7088 skb->slow_gro = 1;
7089 skb->extensions = new;
7090 skb->active_extensions |= 1 << id;
7091 return skb_ext_get_ptr(new, id);
7092 }
7093 EXPORT_SYMBOL(skb_ext_add);
7094
7095 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)7096 static void skb_ext_put_sp(struct sec_path *sp)
7097 {
7098 unsigned int i;
7099
7100 for (i = 0; i < sp->len; i++)
7101 xfrm_state_put(sp->xvec[i]);
7102 }
7103 #endif
7104
7105 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)7106 static void skb_ext_put_mctp(struct mctp_flow *flow)
7107 {
7108 if (flow->key)
7109 mctp_key_unref(flow->key);
7110 }
7111 #endif
7112
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)7113 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7114 {
7115 struct skb_ext *ext = skb->extensions;
7116
7117 skb->active_extensions &= ~(1 << id);
7118 if (skb->active_extensions == 0) {
7119 skb->extensions = NULL;
7120 __skb_ext_put(ext);
7121 #ifdef CONFIG_XFRM
7122 } else if (id == SKB_EXT_SEC_PATH &&
7123 refcount_read(&ext->refcnt) == 1) {
7124 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7125
7126 skb_ext_put_sp(sp);
7127 sp->len = 0;
7128 #endif
7129 }
7130 }
7131 EXPORT_SYMBOL(__skb_ext_del);
7132
__skb_ext_put(struct skb_ext * ext)7133 void __skb_ext_put(struct skb_ext *ext)
7134 {
7135 /* If this is last clone, nothing can increment
7136 * it after check passes. Avoids one atomic op.
7137 */
7138 if (refcount_read(&ext->refcnt) == 1)
7139 goto free_now;
7140
7141 if (!refcount_dec_and_test(&ext->refcnt))
7142 return;
7143 free_now:
7144 #ifdef CONFIG_XFRM
7145 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7146 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7147 #endif
7148 #ifdef CONFIG_MCTP_FLOWS
7149 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7150 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7151 #endif
7152
7153 kmem_cache_free(skbuff_ext_cache, ext);
7154 }
7155 EXPORT_SYMBOL(__skb_ext_put);
7156 #endif /* CONFIG_SKB_EXTENSIONS */
7157
kfree_skb_napi_cache(struct sk_buff * skb)7158 static void kfree_skb_napi_cache(struct sk_buff *skb)
7159 {
7160 /* if SKB is a clone, don't handle this case */
7161 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7162 __kfree_skb(skb);
7163 return;
7164 }
7165
7166 local_bh_disable();
7167 __napi_kfree_skb(skb, SKB_CONSUMED);
7168 local_bh_enable();
7169 }
7170
7171 /**
7172 * skb_attempt_defer_free - queue skb for remote freeing
7173 * @skb: buffer
7174 *
7175 * Put @skb in a per-cpu list, using the cpu which
7176 * allocated the skb/pages to reduce false sharing
7177 * and memory zone spinlock contention.
7178 */
skb_attempt_defer_free(struct sk_buff * skb)7179 void skb_attempt_defer_free(struct sk_buff *skb)
7180 {
7181 int cpu = skb->alloc_cpu;
7182 struct softnet_data *sd;
7183 unsigned int defer_max;
7184 bool kick;
7185
7186 if (cpu == raw_smp_processor_id() ||
7187 WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7188 !cpu_online(cpu)) {
7189 nodefer: kfree_skb_napi_cache(skb);
7190 return;
7191 }
7192
7193 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7194 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7195
7196 sd = &per_cpu(softnet_data, cpu);
7197 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7198 if (READ_ONCE(sd->defer_count) >= defer_max)
7199 goto nodefer;
7200
7201 spin_lock_bh(&sd->defer_lock);
7202 /* Send an IPI every time queue reaches half capacity. */
7203 kick = sd->defer_count == (defer_max >> 1);
7204 /* Paired with the READ_ONCE() few lines above */
7205 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7206
7207 skb->next = sd->defer_list;
7208 /* Paired with READ_ONCE() in skb_defer_free_flush() */
7209 WRITE_ONCE(sd->defer_list, skb);
7210 spin_unlock_bh(&sd->defer_lock);
7211
7212 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7213 * if we are unlucky enough (this seems very unlikely).
7214 */
7215 if (unlikely(kick))
7216 kick_defer_list_purge(sd, cpu);
7217 }
7218
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7219 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7220 size_t offset, size_t len)
7221 {
7222 const char *kaddr;
7223 __wsum csum;
7224
7225 kaddr = kmap_local_page(page);
7226 csum = csum_partial(kaddr + offset, len, 0);
7227 kunmap_local(kaddr);
7228 skb->csum = csum_block_add(skb->csum, csum, skb->len);
7229 }
7230
7231 /**
7232 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7233 * @skb: The buffer to add pages to
7234 * @iter: Iterator representing the pages to be added
7235 * @maxsize: Maximum amount of pages to be added
7236 *
7237 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
7238 * extracts pages from an iterator and adds them to the socket buffer if
7239 * possible, copying them to fragments if not possible (such as if they're slab
7240 * pages).
7241 *
7242 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7243 * insufficient space in the buffer to transfer anything.
7244 */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize)7245 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7246 ssize_t maxsize)
7247 {
7248 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7249 struct page *pages[8], **ppages = pages;
7250 ssize_t spliced = 0, ret = 0;
7251 unsigned int i;
7252
7253 while (iter->count > 0) {
7254 ssize_t space, nr, len;
7255 size_t off;
7256
7257 ret = -EMSGSIZE;
7258 space = frag_limit - skb_shinfo(skb)->nr_frags;
7259 if (space < 0)
7260 break;
7261
7262 /* We might be able to coalesce without increasing nr_frags */
7263 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7264
7265 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7266 if (len <= 0) {
7267 ret = len ?: -EIO;
7268 break;
7269 }
7270
7271 i = 0;
7272 do {
7273 struct page *page = pages[i++];
7274 size_t part = min_t(size_t, PAGE_SIZE - off, len);
7275
7276 ret = -EIO;
7277 if (WARN_ON_ONCE(!sendpage_ok(page)))
7278 goto out;
7279
7280 ret = skb_append_pagefrags(skb, page, off, part,
7281 frag_limit);
7282 if (ret < 0) {
7283 iov_iter_revert(iter, len);
7284 goto out;
7285 }
7286
7287 if (skb->ip_summed == CHECKSUM_NONE)
7288 skb_splice_csum_page(skb, page, off, part);
7289
7290 off = 0;
7291 spliced += part;
7292 maxsize -= part;
7293 len -= part;
7294 } while (len > 0);
7295
7296 if (maxsize <= 0)
7297 break;
7298 }
7299
7300 out:
7301 skb_len_add(skb, spliced);
7302 return spliced ?: ret;
7303 }
7304 EXPORT_SYMBOL(skb_splice_from_iter);
7305
7306 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7307 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7308 size_t len, void *to, void *priv2)
7309 {
7310 __wsum *csum = priv2;
7311 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7312
7313 *csum = csum_block_add(*csum, next, progress);
7314 return 0;
7315 }
7316
7317 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7318 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7319 size_t len, void *to, void *priv2)
7320 {
7321 __wsum next, *csum = priv2;
7322
7323 next = csum_and_copy_from_user(iter_from, to + progress, len);
7324 *csum = csum_block_add(*csum, next, progress);
7325 return next ? 0 : len;
7326 }
7327
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7328 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7329 __wsum *csum, struct iov_iter *i)
7330 {
7331 size_t copied;
7332
7333 if (WARN_ON_ONCE(!i->data_source))
7334 return false;
7335 copied = iterate_and_advance2(i, bytes, addr, csum,
7336 copy_from_user_iter_csum,
7337 memcpy_from_iter_csum);
7338 if (likely(copied == bytes))
7339 return true;
7340 iov_iter_revert(i, copied);
7341 return false;
7342 }
7343 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7344
get_netmem(netmem_ref netmem)7345 void get_netmem(netmem_ref netmem)
7346 {
7347 struct net_iov *niov;
7348
7349 if (netmem_is_net_iov(netmem)) {
7350 niov = netmem_to_net_iov(netmem);
7351 if (net_is_devmem_iov(niov))
7352 net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7353 return;
7354 }
7355 get_page(netmem_to_page(netmem));
7356 }
7357 EXPORT_SYMBOL(get_netmem);
7358
put_netmem(netmem_ref netmem)7359 void put_netmem(netmem_ref netmem)
7360 {
7361 struct net_iov *niov;
7362
7363 if (netmem_is_net_iov(netmem)) {
7364 niov = netmem_to_net_iov(netmem);
7365 if (net_is_devmem_iov(niov))
7366 net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7367 return;
7368 }
7369
7370 put_page(netmem_to_page(netmem));
7371 }
7372 EXPORT_SYMBOL(put_netmem);
7373