xref: /linux/mm/util.c (revision 5635d8bad221701188017a6087fbe25ab245c226)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include <kunit/visibility.h>
30 
31 #include "internal.h"
32 #include "swap.h"
33 
34 /**
35  * kfree_const - conditionally free memory
36  * @x: pointer to the memory
37  *
38  * Function calls kfree only if @x is not in .rodata section.
39  */
kfree_const(const void * x)40 void kfree_const(const void *x)
41 {
42 	if (!is_kernel_rodata((unsigned long)x))
43 		kfree(x);
44 }
45 EXPORT_SYMBOL(kfree_const);
46 
47 /**
48  * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated.
49  * @s: The data to copy
50  * @len: The size of the data, not including the NUL terminator
51  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
52  *
53  * Return: newly allocated copy of @s with NUL-termination or %NULL in
54  * case of error
55  */
__kmemdup_nul(const char * s,size_t len,gfp_t gfp)56 static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp)
57 {
58 	char *buf;
59 
60 	/* '+1' for the NUL terminator */
61 	buf = kmalloc_track_caller(len + 1, gfp);
62 	if (!buf)
63 		return NULL;
64 
65 	memcpy(buf, s, len);
66 	/* Ensure the buf is always NUL-terminated, regardless of @s. */
67 	buf[len] = '\0';
68 	return buf;
69 }
70 
71 /**
72  * kstrdup - allocate space for and copy an existing string
73  * @s: the string to duplicate
74  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
75  *
76  * Return: newly allocated copy of @s or %NULL in case of error
77  */
78 noinline
kstrdup(const char * s,gfp_t gfp)79 char *kstrdup(const char *s, gfp_t gfp)
80 {
81 	return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL;
82 }
83 EXPORT_SYMBOL(kstrdup);
84 
85 /**
86  * kstrdup_const - conditionally duplicate an existing const string
87  * @s: the string to duplicate
88  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
89  *
90  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
91  * must not be passed to krealloc().
92  *
93  * Return: source string if it is in .rodata section otherwise
94  * fallback to kstrdup.
95  */
kstrdup_const(const char * s,gfp_t gfp)96 const char *kstrdup_const(const char *s, gfp_t gfp)
97 {
98 	if (is_kernel_rodata((unsigned long)s))
99 		return s;
100 
101 	return kstrdup(s, gfp);
102 }
103 EXPORT_SYMBOL(kstrdup_const);
104 
105 /**
106  * kstrndup - allocate space for and copy an existing string
107  * @s: the string to duplicate
108  * @max: read at most @max chars from @s
109  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
110  *
111  * Note: Use kmemdup_nul() instead if the size is known exactly.
112  *
113  * Return: newly allocated copy of @s or %NULL in case of error
114  */
kstrndup(const char * s,size_t max,gfp_t gfp)115 char *kstrndup(const char *s, size_t max, gfp_t gfp)
116 {
117 	return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL;
118 }
119 EXPORT_SYMBOL(kstrndup);
120 
121 /**
122  * kmemdup - duplicate region of memory
123  *
124  * @src: memory region to duplicate
125  * @len: memory region length
126  * @gfp: GFP mask to use
127  *
128  * Return: newly allocated copy of @src or %NULL in case of error,
129  * result is physically contiguous. Use kfree() to free.
130  */
kmemdup_noprof(const void * src,size_t len,gfp_t gfp)131 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
132 {
133 	void *p;
134 
135 	p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
136 	if (p)
137 		memcpy(p, src, len);
138 	return p;
139 }
140 EXPORT_SYMBOL(kmemdup_noprof);
141 
142 /**
143  * kmemdup_array - duplicate a given array.
144  *
145  * @src: array to duplicate.
146  * @count: number of elements to duplicate from array.
147  * @element_size: size of each element of array.
148  * @gfp: GFP mask to use.
149  *
150  * Return: duplicated array of @src or %NULL in case of error,
151  * result is physically contiguous. Use kfree() to free.
152  */
kmemdup_array(const void * src,size_t count,size_t element_size,gfp_t gfp)153 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
154 {
155 	return kmemdup(src, size_mul(element_size, count), gfp);
156 }
157 EXPORT_SYMBOL(kmemdup_array);
158 
159 /**
160  * kvmemdup - duplicate region of memory
161  *
162  * @src: memory region to duplicate
163  * @len: memory region length
164  * @gfp: GFP mask to use
165  *
166  * Return: newly allocated copy of @src or %NULL in case of error,
167  * result may be not physically contiguous. Use kvfree() to free.
168  */
kvmemdup(const void * src,size_t len,gfp_t gfp)169 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
170 {
171 	void *p;
172 
173 	p = kvmalloc(len, gfp);
174 	if (p)
175 		memcpy(p, src, len);
176 	return p;
177 }
178 EXPORT_SYMBOL(kvmemdup);
179 
180 /**
181  * kmemdup_nul - Create a NUL-terminated string from unterminated data
182  * @s: The data to stringify
183  * @len: The size of the data
184  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
185  *
186  * Return: newly allocated copy of @s with NUL-termination or %NULL in
187  * case of error
188  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)189 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
190 {
191 	return s ? __kmemdup_nul(s, len, gfp) : NULL;
192 }
193 EXPORT_SYMBOL(kmemdup_nul);
194 
195 static kmem_buckets *user_buckets __ro_after_init;
196 
init_user_buckets(void)197 static int __init init_user_buckets(void)
198 {
199 	user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
200 
201 	return 0;
202 }
203 subsys_initcall(init_user_buckets);
204 
205 /**
206  * memdup_user - duplicate memory region from user space
207  *
208  * @src: source address in user space
209  * @len: number of bytes to copy
210  *
211  * Return: an ERR_PTR() on failure.  Result is physically
212  * contiguous, to be freed by kfree().
213  */
memdup_user(const void __user * src,size_t len)214 void *memdup_user(const void __user *src, size_t len)
215 {
216 	void *p;
217 
218 	p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
219 	if (!p)
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (copy_from_user(p, src, len)) {
223 		kfree(p);
224 		return ERR_PTR(-EFAULT);
225 	}
226 
227 	return p;
228 }
229 EXPORT_SYMBOL(memdup_user);
230 
231 /**
232  * vmemdup_user - duplicate memory region from user space
233  *
234  * @src: source address in user space
235  * @len: number of bytes to copy
236  *
237  * Return: an ERR_PTR() on failure.  Result may be not
238  * physically contiguous.  Use kvfree() to free.
239  */
vmemdup_user(const void __user * src,size_t len)240 void *vmemdup_user(const void __user *src, size_t len)
241 {
242 	void *p;
243 
244 	p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
245 	if (!p)
246 		return ERR_PTR(-ENOMEM);
247 
248 	if (copy_from_user(p, src, len)) {
249 		kvfree(p);
250 		return ERR_PTR(-EFAULT);
251 	}
252 
253 	return p;
254 }
255 EXPORT_SYMBOL(vmemdup_user);
256 
257 /**
258  * strndup_user - duplicate an existing string from user space
259  * @s: The string to duplicate
260  * @n: Maximum number of bytes to copy, including the trailing NUL.
261  *
262  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
263  */
strndup_user(const char __user * s,long n)264 char *strndup_user(const char __user *s, long n)
265 {
266 	char *p;
267 	long length;
268 
269 	length = strnlen_user(s, n);
270 
271 	if (!length)
272 		return ERR_PTR(-EFAULT);
273 
274 	if (length > n)
275 		return ERR_PTR(-EINVAL);
276 
277 	p = memdup_user(s, length);
278 
279 	if (IS_ERR(p))
280 		return p;
281 
282 	p[length - 1] = '\0';
283 
284 	return p;
285 }
286 EXPORT_SYMBOL(strndup_user);
287 
288 /**
289  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
290  *
291  * @src: source address in user space
292  * @len: number of bytes to copy
293  *
294  * Return: an ERR_PTR() on failure.
295  */
memdup_user_nul(const void __user * src,size_t len)296 void *memdup_user_nul(const void __user *src, size_t len)
297 {
298 	char *p;
299 
300 	p = kmem_buckets_alloc_track_caller(user_buckets, len + 1, GFP_USER | __GFP_NOWARN);
301 	if (!p)
302 		return ERR_PTR(-ENOMEM);
303 
304 	if (copy_from_user(p, src, len)) {
305 		kfree(p);
306 		return ERR_PTR(-EFAULT);
307 	}
308 	p[len] = '\0';
309 
310 	return p;
311 }
312 EXPORT_SYMBOL(memdup_user_nul);
313 
314 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)315 int vma_is_stack_for_current(struct vm_area_struct *vma)
316 {
317 	struct task_struct * __maybe_unused t = current;
318 
319 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
320 }
321 
322 /*
323  * Change backing file, only valid to use during initial VMA setup.
324  */
vma_set_file(struct vm_area_struct * vma,struct file * file)325 void vma_set_file(struct vm_area_struct *vma, struct file *file)
326 {
327 	/* Changing an anonymous vma with this is illegal */
328 	get_file(file);
329 	swap(vma->vm_file, file);
330 	fput(file);
331 }
332 EXPORT_SYMBOL(vma_set_file);
333 
334 #ifndef STACK_RND_MASK
335 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
336 #endif
337 
randomize_stack_top(unsigned long stack_top)338 unsigned long randomize_stack_top(unsigned long stack_top)
339 {
340 	unsigned long random_variable = 0;
341 
342 	if (current->flags & PF_RANDOMIZE) {
343 		random_variable = get_random_long();
344 		random_variable &= STACK_RND_MASK;
345 		random_variable <<= PAGE_SHIFT;
346 	}
347 #ifdef CONFIG_STACK_GROWSUP
348 	return PAGE_ALIGN(stack_top) + random_variable;
349 #else
350 	return PAGE_ALIGN(stack_top) - random_variable;
351 #endif
352 }
353 
354 /**
355  * randomize_page - Generate a random, page aligned address
356  * @start:	The smallest acceptable address the caller will take.
357  * @range:	The size of the area, starting at @start, within which the
358  *		random address must fall.
359  *
360  * If @start + @range would overflow, @range is capped.
361  *
362  * NOTE: Historical use of randomize_range, which this replaces, presumed that
363  * @start was already page aligned.  We now align it regardless.
364  *
365  * Return: A page aligned address within [start, start + range).  On error,
366  * @start is returned.
367  */
randomize_page(unsigned long start,unsigned long range)368 unsigned long randomize_page(unsigned long start, unsigned long range)
369 {
370 	if (!PAGE_ALIGNED(start)) {
371 		range -= PAGE_ALIGN(start) - start;
372 		start = PAGE_ALIGN(start);
373 	}
374 
375 	if (start > ULONG_MAX - range)
376 		range = ULONG_MAX - start;
377 
378 	range >>= PAGE_SHIFT;
379 
380 	if (range == 0)
381 		return start;
382 
383 	return start + (get_random_long() % range << PAGE_SHIFT);
384 }
385 
386 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)387 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
388 {
389 	/* Is the current task 32bit ? */
390 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
391 		return randomize_page(mm->brk, SZ_32M);
392 
393 	return randomize_page(mm->brk, SZ_1G);
394 }
395 
arch_mmap_rnd(void)396 unsigned long arch_mmap_rnd(void)
397 {
398 	unsigned long rnd;
399 
400 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
401 	if (is_compat_task())
402 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
403 	else
404 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
405 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
406 
407 	return rnd << PAGE_SHIFT;
408 }
409 
mmap_is_legacy(struct rlimit * rlim_stack)410 static int mmap_is_legacy(struct rlimit *rlim_stack)
411 {
412 	if (current->personality & ADDR_COMPAT_LAYOUT)
413 		return 1;
414 
415 	/* On parisc the stack always grows up - so a unlimited stack should
416 	 * not be an indicator to use the legacy memory layout. */
417 	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
418 		!IS_ENABLED(CONFIG_STACK_GROWSUP))
419 		return 1;
420 
421 	return sysctl_legacy_va_layout;
422 }
423 
424 /*
425  * Leave enough space between the mmap area and the stack to honour ulimit in
426  * the face of randomisation.
427  */
428 #define MIN_GAP		(SZ_128M)
429 #define MAX_GAP		(STACK_TOP / 6 * 5)
430 
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)431 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
432 {
433 #ifdef CONFIG_STACK_GROWSUP
434 	/*
435 	 * For an upwards growing stack the calculation is much simpler.
436 	 * Memory for the maximum stack size is reserved at the top of the
437 	 * task. mmap_base starts directly below the stack and grows
438 	 * downwards.
439 	 */
440 	return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
441 #else
442 	unsigned long gap = rlim_stack->rlim_cur;
443 	unsigned long pad = stack_guard_gap;
444 
445 	/* Account for stack randomization if necessary */
446 	if (current->flags & PF_RANDOMIZE)
447 		pad += (STACK_RND_MASK << PAGE_SHIFT);
448 
449 	/* Values close to RLIM_INFINITY can overflow. */
450 	if (gap + pad > gap)
451 		gap += pad;
452 
453 	if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
454 		gap = MIN_GAP;
455 	else if (gap > MAX_GAP)
456 		gap = MAX_GAP;
457 
458 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
459 #endif
460 }
461 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)462 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
463 {
464 	unsigned long random_factor = 0UL;
465 
466 	if (current->flags & PF_RANDOMIZE)
467 		random_factor = arch_mmap_rnd();
468 
469 	if (mmap_is_legacy(rlim_stack)) {
470 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
471 		clear_bit(MMF_TOPDOWN, &mm->flags);
472 	} else {
473 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
474 		set_bit(MMF_TOPDOWN, &mm->flags);
475 	}
476 }
477 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)478 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
479 {
480 	mm->mmap_base = TASK_UNMAPPED_BASE;
481 	clear_bit(MMF_TOPDOWN, &mm->flags);
482 }
483 #endif
484 #ifdef CONFIG_MMU
485 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
486 #endif
487 
488 /**
489  * __account_locked_vm - account locked pages to an mm's locked_vm
490  * @mm:          mm to account against
491  * @pages:       number of pages to account
492  * @inc:         %true if @pages should be considered positive, %false if not
493  * @task:        task used to check RLIMIT_MEMLOCK
494  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
495  *
496  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
497  * that mmap_lock is held as writer.
498  *
499  * Return:
500  * * 0       on success
501  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
502  */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)503 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
504 			struct task_struct *task, bool bypass_rlim)
505 {
506 	unsigned long locked_vm, limit;
507 	int ret = 0;
508 
509 	mmap_assert_write_locked(mm);
510 
511 	locked_vm = mm->locked_vm;
512 	if (inc) {
513 		if (!bypass_rlim) {
514 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
515 			if (locked_vm + pages > limit)
516 				ret = -ENOMEM;
517 		}
518 		if (!ret)
519 			mm->locked_vm = locked_vm + pages;
520 	} else {
521 		WARN_ON_ONCE(pages > locked_vm);
522 		mm->locked_vm = locked_vm - pages;
523 	}
524 
525 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
526 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
527 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
528 		 ret ? " - exceeded" : "");
529 
530 	return ret;
531 }
532 EXPORT_SYMBOL_GPL(__account_locked_vm);
533 
534 /**
535  * account_locked_vm - account locked pages to an mm's locked_vm
536  * @mm:          mm to account against, may be NULL
537  * @pages:       number of pages to account
538  * @inc:         %true if @pages should be considered positive, %false if not
539  *
540  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
541  *
542  * Return:
543  * * 0       on success, or if mm is NULL
544  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
545  */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)546 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
547 {
548 	int ret;
549 
550 	if (pages == 0 || !mm)
551 		return 0;
552 
553 	mmap_write_lock(mm);
554 	ret = __account_locked_vm(mm, pages, inc, current,
555 				  capable(CAP_IPC_LOCK));
556 	mmap_write_unlock(mm);
557 
558 	return ret;
559 }
560 EXPORT_SYMBOL_GPL(account_locked_vm);
561 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)562 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
563 	unsigned long len, unsigned long prot,
564 	unsigned long flag, unsigned long pgoff)
565 {
566 	unsigned long ret;
567 	struct mm_struct *mm = current->mm;
568 	unsigned long populate;
569 	LIST_HEAD(uf);
570 
571 	ret = security_mmap_file(file, prot, flag);
572 	if (!ret) {
573 		if (mmap_write_lock_killable(mm))
574 			return -EINTR;
575 		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
576 			      &uf);
577 		mmap_write_unlock(mm);
578 		userfaultfd_unmap_complete(mm, &uf);
579 		if (populate)
580 			mm_populate(ret, populate);
581 	}
582 	return ret;
583 }
584 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)585 unsigned long vm_mmap(struct file *file, unsigned long addr,
586 	unsigned long len, unsigned long prot,
587 	unsigned long flag, unsigned long offset)
588 {
589 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
590 		return -EINVAL;
591 	if (unlikely(offset_in_page(offset)))
592 		return -EINVAL;
593 
594 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
595 }
596 EXPORT_SYMBOL(vm_mmap);
597 
kmalloc_gfp_adjust(gfp_t flags,size_t size)598 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
599 {
600 	/*
601 	 * We want to attempt a large physically contiguous block first because
602 	 * it is less likely to fragment multiple larger blocks and therefore
603 	 * contribute to a long term fragmentation less than vmalloc fallback.
604 	 * However make sure that larger requests are not too disruptive - no
605 	 * OOM killer and no allocation failure warnings as we have a fallback.
606 	 */
607 	if (size > PAGE_SIZE) {
608 		flags |= __GFP_NOWARN;
609 
610 		if (!(flags & __GFP_RETRY_MAYFAIL))
611 			flags |= __GFP_NORETRY;
612 
613 		/* nofail semantic is implemented by the vmalloc fallback */
614 		flags &= ~__GFP_NOFAIL;
615 	}
616 
617 	return flags;
618 }
619 
620 /**
621  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
622  * failure, fall back to non-contiguous (vmalloc) allocation.
623  * @size: size of the request.
624  * @b: which set of kmalloc buckets to allocate from.
625  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
626  * @node: numa node to allocate from
627  *
628  * Uses kmalloc to get the memory but if the allocation fails then falls back
629  * to the vmalloc allocator. Use kvfree for freeing the memory.
630  *
631  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
632  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
633  * preferable to the vmalloc fallback, due to visible performance drawbacks.
634  *
635  * Return: pointer to the allocated memory of %NULL in case of failure
636  */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)637 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
638 {
639 	void *ret;
640 
641 	/*
642 	 * It doesn't really make sense to fallback to vmalloc for sub page
643 	 * requests
644 	 */
645 	ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b),
646 				    kmalloc_gfp_adjust(flags, size),
647 				    node);
648 	if (ret || size <= PAGE_SIZE)
649 		return ret;
650 
651 	/* non-sleeping allocations are not supported by vmalloc */
652 	if (!gfpflags_allow_blocking(flags))
653 		return NULL;
654 
655 	/* Don't even allow crazy sizes */
656 	if (unlikely(size > INT_MAX)) {
657 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
658 		return NULL;
659 	}
660 
661 	/*
662 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
663 	 * since the callers already cannot assume anything
664 	 * about the resulting pointer, and cannot play
665 	 * protection games.
666 	 */
667 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
668 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
669 			node, __builtin_return_address(0));
670 }
671 EXPORT_SYMBOL(__kvmalloc_node_noprof);
672 
673 /**
674  * kvfree() - Free memory.
675  * @addr: Pointer to allocated memory.
676  *
677  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
678  * It is slightly more efficient to use kfree() or vfree() if you are certain
679  * that you know which one to use.
680  *
681  * Context: Either preemptible task context or not-NMI interrupt.
682  */
kvfree(const void * addr)683 void kvfree(const void *addr)
684 {
685 	if (is_vmalloc_addr(addr))
686 		vfree(addr);
687 	else
688 		kfree(addr);
689 }
690 EXPORT_SYMBOL(kvfree);
691 
692 /**
693  * kvfree_sensitive - Free a data object containing sensitive information.
694  * @addr: address of the data object to be freed.
695  * @len: length of the data object.
696  *
697  * Use the special memzero_explicit() function to clear the content of a
698  * kvmalloc'ed object containing sensitive data to make sure that the
699  * compiler won't optimize out the data clearing.
700  */
kvfree_sensitive(const void * addr,size_t len)701 void kvfree_sensitive(const void *addr, size_t len)
702 {
703 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
704 		memzero_explicit((void *)addr, len);
705 		kvfree(addr);
706 	}
707 }
708 EXPORT_SYMBOL(kvfree_sensitive);
709 
710 /**
711  * kvrealloc - reallocate memory; contents remain unchanged
712  * @p: object to reallocate memory for
713  * @size: the size to reallocate
714  * @flags: the flags for the page level allocator
715  *
716  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
717  * and @p is not a %NULL pointer, the object pointed to is freed.
718  *
719  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
720  * initial memory allocation, every subsequent call to this API for the same
721  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
722  * __GFP_ZERO is not fully honored by this API.
723  *
724  * In any case, the contents of the object pointed to are preserved up to the
725  * lesser of the new and old sizes.
726  *
727  * This function must not be called concurrently with itself or kvfree() for the
728  * same memory allocation.
729  *
730  * Return: pointer to the allocated memory or %NULL in case of error
731  */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)732 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
733 {
734 	void *n;
735 
736 	if (is_vmalloc_addr(p))
737 		return vrealloc_noprof(p, size, flags);
738 
739 	n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
740 	if (!n) {
741 		/* We failed to krealloc(), fall back to kvmalloc(). */
742 		n = kvmalloc_noprof(size, flags);
743 		if (!n)
744 			return NULL;
745 
746 		if (p) {
747 			/* We already know that `p` is not a vmalloc address. */
748 			kasan_disable_current();
749 			memcpy(n, kasan_reset_tag(p), ksize(p));
750 			kasan_enable_current();
751 
752 			kfree(p);
753 		}
754 	}
755 
756 	return n;
757 }
758 EXPORT_SYMBOL(kvrealloc_noprof);
759 
760 /**
761  * __vmalloc_array - allocate memory for a virtually contiguous array.
762  * @n: number of elements.
763  * @size: element size.
764  * @flags: the type of memory to allocate (see kmalloc).
765  */
__vmalloc_array_noprof(size_t n,size_t size,gfp_t flags)766 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
767 {
768 	size_t bytes;
769 
770 	if (unlikely(check_mul_overflow(n, size, &bytes)))
771 		return NULL;
772 	return __vmalloc_noprof(bytes, flags);
773 }
774 EXPORT_SYMBOL(__vmalloc_array_noprof);
775 
776 /**
777  * vmalloc_array - allocate memory for a virtually contiguous array.
778  * @n: number of elements.
779  * @size: element size.
780  */
vmalloc_array_noprof(size_t n,size_t size)781 void *vmalloc_array_noprof(size_t n, size_t size)
782 {
783 	return __vmalloc_array_noprof(n, size, GFP_KERNEL);
784 }
785 EXPORT_SYMBOL(vmalloc_array_noprof);
786 
787 /**
788  * __vcalloc - allocate and zero memory for a virtually contiguous array.
789  * @n: number of elements.
790  * @size: element size.
791  * @flags: the type of memory to allocate (see kmalloc).
792  */
__vcalloc_noprof(size_t n,size_t size,gfp_t flags)793 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
794 {
795 	return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
796 }
797 EXPORT_SYMBOL(__vcalloc_noprof);
798 
799 /**
800  * vcalloc - allocate and zero memory for a virtually contiguous array.
801  * @n: number of elements.
802  * @size: element size.
803  */
vcalloc_noprof(size_t n,size_t size)804 void *vcalloc_noprof(size_t n, size_t size)
805 {
806 	return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
807 }
808 EXPORT_SYMBOL(vcalloc_noprof);
809 
folio_anon_vma(const struct folio * folio)810 struct anon_vma *folio_anon_vma(const struct folio *folio)
811 {
812 	unsigned long mapping = (unsigned long)folio->mapping;
813 
814 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
815 		return NULL;
816 	return (void *)(mapping - PAGE_MAPPING_ANON);
817 }
818 
819 /**
820  * folio_mapping - Find the mapping where this folio is stored.
821  * @folio: The folio.
822  *
823  * For folios which are in the page cache, return the mapping that this
824  * page belongs to.  Folios in the swap cache return the swap mapping
825  * this page is stored in (which is different from the mapping for the
826  * swap file or swap device where the data is stored).
827  *
828  * You can call this for folios which aren't in the swap cache or page
829  * cache and it will return NULL.
830  */
folio_mapping(struct folio * folio)831 struct address_space *folio_mapping(struct folio *folio)
832 {
833 	struct address_space *mapping;
834 
835 	/* This happens if someone calls flush_dcache_page on slab page */
836 	if (unlikely(folio_test_slab(folio)))
837 		return NULL;
838 
839 	if (unlikely(folio_test_swapcache(folio)))
840 		return swap_address_space(folio->swap);
841 
842 	mapping = folio->mapping;
843 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
844 		return NULL;
845 
846 	return mapping;
847 }
848 EXPORT_SYMBOL(folio_mapping);
849 
850 /**
851  * folio_copy - Copy the contents of one folio to another.
852  * @dst: Folio to copy to.
853  * @src: Folio to copy from.
854  *
855  * The bytes in the folio represented by @src are copied to @dst.
856  * Assumes the caller has validated that @dst is at least as large as @src.
857  * Can be called in atomic context for order-0 folios, but if the folio is
858  * larger, it may sleep.
859  */
folio_copy(struct folio * dst,struct folio * src)860 void folio_copy(struct folio *dst, struct folio *src)
861 {
862 	long i = 0;
863 	long nr = folio_nr_pages(src);
864 
865 	for (;;) {
866 		copy_highpage(folio_page(dst, i), folio_page(src, i));
867 		if (++i == nr)
868 			break;
869 		cond_resched();
870 	}
871 }
872 EXPORT_SYMBOL(folio_copy);
873 
folio_mc_copy(struct folio * dst,struct folio * src)874 int folio_mc_copy(struct folio *dst, struct folio *src)
875 {
876 	long nr = folio_nr_pages(src);
877 	long i = 0;
878 
879 	for (;;) {
880 		if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
881 			return -EHWPOISON;
882 		if (++i == nr)
883 			break;
884 		cond_resched();
885 	}
886 
887 	return 0;
888 }
889 EXPORT_SYMBOL(folio_mc_copy);
890 
891 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
892 int sysctl_overcommit_ratio __read_mostly = 50;
893 unsigned long sysctl_overcommit_kbytes __read_mostly;
894 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
895 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
896 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
897 
overcommit_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)898 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
899 		size_t *lenp, loff_t *ppos)
900 {
901 	int ret;
902 
903 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
904 	if (ret == 0 && write)
905 		sysctl_overcommit_kbytes = 0;
906 	return ret;
907 }
908 
sync_overcommit_as(struct work_struct * dummy)909 static void sync_overcommit_as(struct work_struct *dummy)
910 {
911 	percpu_counter_sync(&vm_committed_as);
912 }
913 
overcommit_policy_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)914 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
915 		size_t *lenp, loff_t *ppos)
916 {
917 	struct ctl_table t;
918 	int new_policy = -1;
919 	int ret;
920 
921 	/*
922 	 * The deviation of sync_overcommit_as could be big with loose policy
923 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
924 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
925 	 * with the strict "NEVER", and to avoid possible race condition (even
926 	 * though user usually won't too frequently do the switching to policy
927 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
928 	 *	1. changing the batch
929 	 *	2. sync percpu count on each CPU
930 	 *	3. switch the policy
931 	 */
932 	if (write) {
933 		t = *table;
934 		t.data = &new_policy;
935 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
936 		if (ret || new_policy == -1)
937 			return ret;
938 
939 		mm_compute_batch(new_policy);
940 		if (new_policy == OVERCOMMIT_NEVER)
941 			schedule_on_each_cpu(sync_overcommit_as);
942 		sysctl_overcommit_memory = new_policy;
943 	} else {
944 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
945 	}
946 
947 	return ret;
948 }
949 
overcommit_kbytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)950 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
951 		size_t *lenp, loff_t *ppos)
952 {
953 	int ret;
954 
955 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
956 	if (ret == 0 && write)
957 		sysctl_overcommit_ratio = 0;
958 	return ret;
959 }
960 
961 /*
962  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
963  */
vm_commit_limit(void)964 unsigned long vm_commit_limit(void)
965 {
966 	unsigned long allowed;
967 
968 	if (sysctl_overcommit_kbytes)
969 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
970 	else
971 		allowed = ((totalram_pages() - hugetlb_total_pages())
972 			   * sysctl_overcommit_ratio / 100);
973 	allowed += total_swap_pages;
974 
975 	return allowed;
976 }
977 
978 /*
979  * Make sure vm_committed_as in one cacheline and not cacheline shared with
980  * other variables. It can be updated by several CPUs frequently.
981  */
982 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
983 
984 /*
985  * The global memory commitment made in the system can be a metric
986  * that can be used to drive ballooning decisions when Linux is hosted
987  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
988  * balancing memory across competing virtual machines that are hosted.
989  * Several metrics drive this policy engine including the guest reported
990  * memory commitment.
991  *
992  * The time cost of this is very low for small platforms, and for big
993  * platform like a 2S/36C/72T Skylake server, in worst case where
994  * vm_committed_as's spinlock is under severe contention, the time cost
995  * could be about 30~40 microseconds.
996  */
vm_memory_committed(void)997 unsigned long vm_memory_committed(void)
998 {
999 	return percpu_counter_sum_positive(&vm_committed_as);
1000 }
1001 EXPORT_SYMBOL_GPL(vm_memory_committed);
1002 
1003 /*
1004  * Check that a process has enough memory to allocate a new virtual
1005  * mapping. 0 means there is enough memory for the allocation to
1006  * succeed and -ENOMEM implies there is not.
1007  *
1008  * We currently support three overcommit policies, which are set via the
1009  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
1010  *
1011  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1012  * Additional code 2002 Jul 20 by Robert Love.
1013  *
1014  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1015  *
1016  * Note this is a helper function intended to be used by LSMs which
1017  * wish to use this logic.
1018  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)1019 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1020 {
1021 	long allowed;
1022 	unsigned long bytes_failed;
1023 
1024 	vm_acct_memory(pages);
1025 
1026 	/*
1027 	 * Sometimes we want to use more memory than we have
1028 	 */
1029 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1030 		return 0;
1031 
1032 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1033 		if (pages > totalram_pages() + total_swap_pages)
1034 			goto error;
1035 		return 0;
1036 	}
1037 
1038 	allowed = vm_commit_limit();
1039 	/*
1040 	 * Reserve some for root
1041 	 */
1042 	if (!cap_sys_admin)
1043 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1044 
1045 	/*
1046 	 * Don't let a single process grow so big a user can't recover
1047 	 */
1048 	if (mm) {
1049 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1050 
1051 		allowed -= min_t(long, mm->total_vm / 32, reserve);
1052 	}
1053 
1054 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1055 		return 0;
1056 error:
1057 	bytes_failed = pages << PAGE_SHIFT;
1058 	pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
1059 			    __func__, current->pid, current->comm, bytes_failed);
1060 	vm_unacct_memory(pages);
1061 
1062 	return -ENOMEM;
1063 }
1064 
1065 /**
1066  * get_cmdline() - copy the cmdline value to a buffer.
1067  * @task:     the task whose cmdline value to copy.
1068  * @buffer:   the buffer to copy to.
1069  * @buflen:   the length of the buffer. Larger cmdline values are truncated
1070  *            to this length.
1071  *
1072  * Return: the size of the cmdline field copied. Note that the copy does
1073  * not guarantee an ending NULL byte.
1074  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)1075 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1076 {
1077 	int res = 0;
1078 	unsigned int len;
1079 	struct mm_struct *mm = get_task_mm(task);
1080 	unsigned long arg_start, arg_end, env_start, env_end;
1081 	if (!mm)
1082 		goto out;
1083 	if (!mm->arg_end)
1084 		goto out_mm;	/* Shh! No looking before we're done */
1085 
1086 	spin_lock(&mm->arg_lock);
1087 	arg_start = mm->arg_start;
1088 	arg_end = mm->arg_end;
1089 	env_start = mm->env_start;
1090 	env_end = mm->env_end;
1091 	spin_unlock(&mm->arg_lock);
1092 
1093 	len = arg_end - arg_start;
1094 
1095 	if (len > buflen)
1096 		len = buflen;
1097 
1098 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1099 
1100 	/*
1101 	 * If the nul at the end of args has been overwritten, then
1102 	 * assume application is using setproctitle(3).
1103 	 */
1104 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1105 		len = strnlen(buffer, res);
1106 		if (len < res) {
1107 			res = len;
1108 		} else {
1109 			len = env_end - env_start;
1110 			if (len > buflen - res)
1111 				len = buflen - res;
1112 			res += access_process_vm(task, env_start,
1113 						 buffer+res, len,
1114 						 FOLL_FORCE);
1115 			res = strnlen(buffer, res);
1116 		}
1117 	}
1118 out_mm:
1119 	mmput(mm);
1120 out:
1121 	return res;
1122 }
1123 
memcmp_pages(struct page * page1,struct page * page2)1124 int __weak memcmp_pages(struct page *page1, struct page *page2)
1125 {
1126 	char *addr1, *addr2;
1127 	int ret;
1128 
1129 	addr1 = kmap_local_page(page1);
1130 	addr2 = kmap_local_page(page2);
1131 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1132 	kunmap_local(addr2);
1133 	kunmap_local(addr1);
1134 	return ret;
1135 }
1136 
1137 #ifdef CONFIG_PRINTK
1138 /**
1139  * mem_dump_obj - Print available provenance information
1140  * @object: object for which to find provenance information.
1141  *
1142  * This function uses pr_cont(), so that the caller is expected to have
1143  * printed out whatever preamble is appropriate.  The provenance information
1144  * depends on the type of object and on how much debugging is enabled.
1145  * For example, for a slab-cache object, the slab name is printed, and,
1146  * if available, the return address and stack trace from the allocation
1147  * and last free path of that object.
1148  */
mem_dump_obj(void * object)1149 void mem_dump_obj(void *object)
1150 {
1151 	const char *type;
1152 
1153 	if (kmem_dump_obj(object))
1154 		return;
1155 
1156 	if (vmalloc_dump_obj(object))
1157 		return;
1158 
1159 	if (is_vmalloc_addr(object))
1160 		type = "vmalloc memory";
1161 	else if (virt_addr_valid(object))
1162 		type = "non-slab/vmalloc memory";
1163 	else if (object == NULL)
1164 		type = "NULL pointer";
1165 	else if (object == ZERO_SIZE_PTR)
1166 		type = "zero-size pointer";
1167 	else
1168 		type = "non-paged memory";
1169 
1170 	pr_cont(" %s\n", type);
1171 }
1172 EXPORT_SYMBOL_GPL(mem_dump_obj);
1173 #endif
1174 
1175 /*
1176  * A driver might set a page logically offline -- PageOffline() -- and
1177  * turn the page inaccessible in the hypervisor; after that, access to page
1178  * content can be fatal.
1179  *
1180  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1181  * pages after checking PageOffline(); however, these PFN walkers can race
1182  * with drivers that set PageOffline().
1183  *
1184  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1185  * synchronize with such drivers, achieving that a page cannot be set
1186  * PageOffline() while frozen.
1187  *
1188  * page_offline_begin()/page_offline_end() is used by drivers that care about
1189  * such races when setting a page PageOffline().
1190  */
1191 static DECLARE_RWSEM(page_offline_rwsem);
1192 
page_offline_freeze(void)1193 void page_offline_freeze(void)
1194 {
1195 	down_read(&page_offline_rwsem);
1196 }
1197 
page_offline_thaw(void)1198 void page_offline_thaw(void)
1199 {
1200 	up_read(&page_offline_rwsem);
1201 }
1202 
page_offline_begin(void)1203 void page_offline_begin(void)
1204 {
1205 	down_write(&page_offline_rwsem);
1206 }
1207 EXPORT_SYMBOL(page_offline_begin);
1208 
page_offline_end(void)1209 void page_offline_end(void)
1210 {
1211 	up_write(&page_offline_rwsem);
1212 }
1213 EXPORT_SYMBOL(page_offline_end);
1214 
1215 #ifndef flush_dcache_folio
flush_dcache_folio(struct folio * folio)1216 void flush_dcache_folio(struct folio *folio)
1217 {
1218 	long i, nr = folio_nr_pages(folio);
1219 
1220 	for (i = 0; i < nr; i++)
1221 		flush_dcache_page(folio_page(folio, i));
1222 }
1223 EXPORT_SYMBOL(flush_dcache_folio);
1224 #endif
1225