1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2016-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include "kfd_kernel_queue.h"
26 #include "kfd_device_queue_manager.h"
27 #include "kfd_pm4_headers_ai.h"
28 #include "kfd_pm4_headers_aldebaran.h"
29 #include "kfd_pm4_opcodes.h"
30 #include "gc/gc_10_1_0_sh_mask.h"
31
pm_map_process_v9(struct packet_manager * pm,uint32_t * buffer,struct qcm_process_device * qpd)32 static int pm_map_process_v9(struct packet_manager *pm,
33 uint32_t *buffer, struct qcm_process_device *qpd)
34 {
35 struct pm4_mes_map_process *packet;
36 uint64_t vm_page_table_base_addr = qpd->page_table_base;
37 struct kfd_node *kfd = pm->dqm->dev;
38 struct kfd_process_device *pdd =
39 container_of(qpd, struct kfd_process_device, qpd);
40 struct amdgpu_device *adev = kfd->adev;
41
42 packet = (struct pm4_mes_map_process *)buffer;
43 memset(buffer, 0, sizeof(struct pm4_mes_map_process));
44 packet->header.u32All = pm_build_pm4_header(IT_MAP_PROCESS,
45 sizeof(struct pm4_mes_map_process));
46 if (adev->enforce_isolation[kfd->node_id] == AMDGPU_ENFORCE_ISOLATION_ENABLE)
47 packet->bitfields2.exec_cleaner_shader = 1;
48 packet->bitfields2.diq_enable = (qpd->is_debug) ? 1 : 0;
49 packet->bitfields2.process_quantum = 10;
50 packet->bitfields2.pasid = pdd->pasid;
51 packet->bitfields14.gds_size = qpd->gds_size & 0x3F;
52 packet->bitfields14.gds_size_hi = (qpd->gds_size >> 6) & 0xF;
53 packet->bitfields14.num_gws = (qpd->mapped_gws_queue) ? qpd->num_gws : 0;
54 packet->bitfields14.num_oac = qpd->num_oac;
55 packet->bitfields14.sdma_enable = 1;
56 packet->bitfields14.num_queues = (qpd->is_debug) ? 0 : qpd->queue_count;
57
58 if (kfd->dqm->trap_debug_vmid && pdd->process->debug_trap_enabled &&
59 pdd->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED) {
60 packet->bitfields2.debug_vmid = kfd->dqm->trap_debug_vmid;
61 packet->bitfields2.new_debug = 1;
62 }
63
64 packet->sh_mem_config = qpd->sh_mem_config;
65 packet->sh_mem_bases = qpd->sh_mem_bases;
66 if (qpd->tba_addr) {
67 packet->sq_shader_tba_lo = lower_32_bits(qpd->tba_addr >> 8);
68 /* On GFX9, unlike GFX10, bit TRAP_EN of SQ_SHADER_TBA_HI is
69 * not defined, so setting it won't do any harm.
70 */
71 packet->sq_shader_tba_hi = upper_32_bits(qpd->tba_addr >> 8)
72 | 1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT;
73
74 packet->sq_shader_tma_lo = lower_32_bits(qpd->tma_addr >> 8);
75 packet->sq_shader_tma_hi = upper_32_bits(qpd->tma_addr >> 8);
76 }
77
78 packet->gds_addr_lo = lower_32_bits(qpd->gds_context_area);
79 packet->gds_addr_hi = upper_32_bits(qpd->gds_context_area);
80
81 packet->vm_context_page_table_base_addr_lo32 =
82 lower_32_bits(vm_page_table_base_addr);
83 packet->vm_context_page_table_base_addr_hi32 =
84 upper_32_bits(vm_page_table_base_addr);
85
86 return 0;
87 }
88
pm_map_process_aldebaran(struct packet_manager * pm,uint32_t * buffer,struct qcm_process_device * qpd)89 static int pm_map_process_aldebaran(struct packet_manager *pm,
90 uint32_t *buffer, struct qcm_process_device *qpd)
91 {
92 struct pm4_mes_map_process_aldebaran *packet;
93 uint64_t vm_page_table_base_addr = qpd->page_table_base;
94 struct kfd_dev *kfd = pm->dqm->dev->kfd;
95 struct kfd_node *knode = pm->dqm->dev;
96 struct kfd_process_device *pdd =
97 container_of(qpd, struct kfd_process_device, qpd);
98 int i;
99 struct amdgpu_device *adev = kfd->adev;
100
101 packet = (struct pm4_mes_map_process_aldebaran *)buffer;
102 memset(buffer, 0, sizeof(struct pm4_mes_map_process_aldebaran));
103 packet->header.u32All = pm_build_pm4_header(IT_MAP_PROCESS,
104 sizeof(struct pm4_mes_map_process_aldebaran));
105 if (adev->enforce_isolation[knode->node_id] ==
106 AMDGPU_ENFORCE_ISOLATION_ENABLE)
107 packet->bitfields2.exec_cleaner_shader = 1;
108 packet->bitfields2.diq_enable = (qpd->is_debug) ? 1 : 0;
109 packet->bitfields2.process_quantum = 10;
110 packet->bitfields2.pasid = pdd->pasid;
111 packet->bitfields14.gds_size = qpd->gds_size & 0x3F;
112 packet->bitfields14.gds_size_hi = (qpd->gds_size >> 6) & 0xF;
113 packet->bitfields14.num_gws = (qpd->mapped_gws_queue) ? qpd->num_gws : 0;
114 packet->bitfields14.num_oac = qpd->num_oac;
115 packet->bitfields14.sdma_enable = 1;
116 packet->bitfields14.num_queues = (qpd->is_debug) ? 0 : qpd->queue_count;
117 packet->spi_gdbg_per_vmid_cntl = pdd->spi_dbg_override |
118 pdd->spi_dbg_launch_mode;
119
120 if (pdd->process->debug_trap_enabled) {
121 for (i = 0; i < kfd->device_info.num_of_watch_points; i++)
122 packet->tcp_watch_cntl[i] = pdd->watch_points[i];
123
124 packet->bitfields2.single_memops =
125 !!(pdd->process->dbg_flags & KFD_DBG_TRAP_FLAG_SINGLE_MEM_OP);
126 }
127
128 packet->sh_mem_config = qpd->sh_mem_config;
129 packet->sh_mem_bases = qpd->sh_mem_bases;
130 if (qpd->tba_addr) {
131 packet->sq_shader_tba_lo = lower_32_bits(qpd->tba_addr >> 8);
132 packet->sq_shader_tba_hi = upper_32_bits(qpd->tba_addr >> 8);
133 packet->sq_shader_tma_lo = lower_32_bits(qpd->tma_addr >> 8);
134 packet->sq_shader_tma_hi = upper_32_bits(qpd->tma_addr >> 8);
135 }
136
137 packet->gds_addr_lo = lower_32_bits(qpd->gds_context_area);
138 packet->gds_addr_hi = upper_32_bits(qpd->gds_context_area);
139
140 packet->vm_context_page_table_base_addr_lo32 =
141 lower_32_bits(vm_page_table_base_addr);
142 packet->vm_context_page_table_base_addr_hi32 =
143 upper_32_bits(vm_page_table_base_addr);
144
145 return 0;
146 }
147
pm_runlist_v9(struct packet_manager * pm,uint32_t * buffer,uint64_t ib,size_t ib_size_in_dwords,bool chain)148 static int pm_runlist_v9(struct packet_manager *pm, uint32_t *buffer,
149 uint64_t ib, size_t ib_size_in_dwords, bool chain)
150 {
151 struct pm4_mes_runlist *packet;
152
153 int concurrent_proc_cnt = 0;
154 struct kfd_node *kfd = pm->dqm->dev;
155 struct amdgpu_device *adev = kfd->adev;
156
157 /* Determine the number of processes to map together to HW:
158 * it can not exceed the number of VMIDs available to the
159 * scheduler, and it is determined by the smaller of the number
160 * of processes in the runlist and kfd module parameter
161 * hws_max_conc_proc.
162 * However, if enforce_isolation is set (toggle LDS/VGPRs/SGPRs
163 * cleaner between process switch), enable single-process mode
164 * in HWS.
165 * Note: the arbitration between the number of VMIDs and
166 * hws_max_conc_proc has been done in
167 * kgd2kfd_device_init().
168 */
169 concurrent_proc_cnt = (adev->enforce_isolation[kfd->node_id] ==
170 AMDGPU_ENFORCE_ISOLATION_ENABLE) ?
171 1 : min(pm->dqm->processes_count, kfd->max_proc_per_quantum);
172
173 packet = (struct pm4_mes_runlist *)buffer;
174
175 memset(buffer, 0, sizeof(struct pm4_mes_runlist));
176 packet->header.u32All = pm_build_pm4_header(IT_RUN_LIST,
177 sizeof(struct pm4_mes_runlist));
178
179 packet->bitfields4.ib_size = ib_size_in_dwords;
180 packet->bitfields4.chain = chain ? 1 : 0;
181 packet->bitfields4.offload_polling = 0;
182 packet->bitfields4.chained_runlist_idle_disable = chain ? 1 : 0;
183 packet->bitfields4.valid = 1;
184 packet->bitfields4.process_cnt = concurrent_proc_cnt;
185 packet->ordinal2 = lower_32_bits(ib);
186 packet->ib_base_hi = upper_32_bits(ib);
187
188 return 0;
189 }
190
pm_set_resources_v9(struct packet_manager * pm,uint32_t * buffer,struct scheduling_resources * res)191 static int pm_set_resources_v9(struct packet_manager *pm, uint32_t *buffer,
192 struct scheduling_resources *res)
193 {
194 struct pm4_mes_set_resources *packet;
195
196 packet = (struct pm4_mes_set_resources *)buffer;
197 memset(buffer, 0, sizeof(struct pm4_mes_set_resources));
198
199 packet->header.u32All = pm_build_pm4_header(IT_SET_RESOURCES,
200 sizeof(struct pm4_mes_set_resources));
201
202 packet->bitfields2.queue_type =
203 queue_type__mes_set_resources__hsa_interface_queue_hiq;
204 packet->bitfields2.vmid_mask = res->vmid_mask;
205 packet->bitfields2.unmap_latency = KFD_UNMAP_LATENCY_MS / 100;
206 if (pm->dqm->dev->adev->gmc.xnack_flags & AMDGPU_GMC_XNACK_FLAG_CHAIN)
207 packet->bitfields2.enb_xnack_retry_disable_check = 1;
208 packet->bitfields7.oac_mask = res->oac_mask;
209 packet->bitfields8.gds_heap_base = res->gds_heap_base;
210 packet->bitfields8.gds_heap_size = res->gds_heap_size;
211
212 packet->gws_mask_lo = lower_32_bits(res->gws_mask);
213 packet->gws_mask_hi = upper_32_bits(res->gws_mask);
214
215 packet->queue_mask_lo = lower_32_bits(res->queue_mask);
216 packet->queue_mask_hi = upper_32_bits(res->queue_mask);
217
218 return 0;
219 }
220
pm_use_ext_eng(struct kfd_dev * dev)221 static inline bool pm_use_ext_eng(struct kfd_dev *dev)
222 {
223 return amdgpu_ip_version(dev->adev, SDMA0_HWIP, 0) >=
224 IP_VERSION(5, 2, 0);
225 }
226
pm_map_queues_v9(struct packet_manager * pm,uint32_t * buffer,struct queue * q,bool is_static)227 static int pm_map_queues_v9(struct packet_manager *pm, uint32_t *buffer,
228 struct queue *q, bool is_static)
229 {
230 struct pm4_mes_map_queues *packet;
231
232 packet = (struct pm4_mes_map_queues *)buffer;
233 memset(buffer, 0, sizeof(struct pm4_mes_map_queues));
234
235 packet->header.u32All = pm_build_pm4_header(IT_MAP_QUEUES,
236 sizeof(struct pm4_mes_map_queues));
237 packet->bitfields2.num_queues = 1;
238 packet->bitfields2.queue_sel =
239 queue_sel__mes_map_queues__map_to_hws_determined_queue_slots_vi;
240
241 packet->bitfields2.engine_sel =
242 engine_sel__mes_map_queues__compute_vi;
243 packet->bitfields2.gws_control_queue = q->properties.is_gws ? 1 : 0;
244 packet->bitfields2.extended_engine_sel =
245 extended_engine_sel__mes_map_queues__legacy_engine_sel;
246 packet->bitfields2.queue_type =
247 queue_type__mes_map_queues__normal_compute_vi;
248
249 switch (q->properties.type) {
250 case KFD_QUEUE_TYPE_COMPUTE:
251 if (is_static)
252 packet->bitfields2.queue_type =
253 queue_type__mes_map_queues__normal_latency_static_queue_vi;
254 break;
255 case KFD_QUEUE_TYPE_DIQ:
256 packet->bitfields2.queue_type =
257 queue_type__mes_map_queues__debug_interface_queue_vi;
258 break;
259 case KFD_QUEUE_TYPE_SDMA:
260 case KFD_QUEUE_TYPE_SDMA_XGMI:
261 if (q->properties.sdma_engine_id < 2 &&
262 !pm_use_ext_eng(q->device->kfd))
263 packet->bitfields2.engine_sel = q->properties.sdma_engine_id +
264 engine_sel__mes_map_queues__sdma0_vi;
265 else {
266 /*
267 * For GFX9.4.3, SDMA engine id can be greater than 8.
268 * For such cases, set extended_engine_sel to 2 and
269 * ensure engine_sel lies between 0-7.
270 */
271 if (q->properties.sdma_engine_id >= 8)
272 packet->bitfields2.extended_engine_sel =
273 extended_engine_sel__mes_map_queues__sdma8_to_15_sel;
274 else
275 packet->bitfields2.extended_engine_sel =
276 extended_engine_sel__mes_map_queues__sdma0_to_7_sel;
277
278 packet->bitfields2.engine_sel = q->properties.sdma_engine_id % 8;
279 }
280 break;
281 default:
282 WARN(1, "queue type %d", q->properties.type);
283 return -EINVAL;
284 }
285 packet->bitfields3.doorbell_offset =
286 q->properties.doorbell_off;
287
288 packet->mqd_addr_lo =
289 lower_32_bits(q->gart_mqd_addr);
290
291 packet->mqd_addr_hi =
292 upper_32_bits(q->gart_mqd_addr);
293
294 packet->wptr_addr_lo =
295 lower_32_bits((uint64_t)q->properties.write_ptr);
296
297 packet->wptr_addr_hi =
298 upper_32_bits((uint64_t)q->properties.write_ptr);
299
300 return 0;
301 }
302
pm_build_dequeue_wait_counts_packet_info(struct packet_manager * pm,uint32_t sch_value,uint32_t que_sleep,uint32_t * reg_offset,uint32_t * reg_data)303 static inline void pm_build_dequeue_wait_counts_packet_info(struct packet_manager *pm,
304 uint32_t sch_value, uint32_t que_sleep, uint32_t *reg_offset,
305 uint32_t *reg_data)
306 {
307 pm->dqm->dev->kfd2kgd->build_dequeue_wait_counts_packet_info(
308 pm->dqm->dev->adev,
309 pm->dqm->wait_times,
310 sch_value,
311 que_sleep,
312 reg_offset,
313 reg_data);
314 }
315
316 /* pm_config_dequeue_wait_counts_v9: Builds WRITE_DATA packet with
317 * register/value for configuring dequeue wait counts
318 *
319 * @return: -ve for failure and 0 for success and buffer is
320 * filled in with packet
321 *
322 **/
pm_config_dequeue_wait_counts_v9(struct packet_manager * pm,uint32_t * buffer,enum kfd_config_dequeue_wait_counts_cmd cmd,uint32_t value)323 static int pm_config_dequeue_wait_counts_v9(struct packet_manager *pm,
324 uint32_t *buffer,
325 enum kfd_config_dequeue_wait_counts_cmd cmd,
326 uint32_t value)
327 {
328 struct pm4_mec_write_data_mmio *packet;
329 uint32_t reg_offset = 0;
330 uint32_t reg_data = 0;
331
332 switch (cmd) {
333 case KFD_DEQUEUE_WAIT_INIT: {
334 uint32_t sch_wave = 0, que_sleep = 1;
335
336 /* For all gfx9 ASICs > gfx941,
337 * Reduce CP_IQ_WAIT_TIME2.QUE_SLEEP to 0x1 from default 0x40.
338 * On a 1GHz machine this is roughly 1 microsecond, which is
339 * about how long it takes to load data out of memory during
340 * queue connect
341 * QUE_SLEEP: Wait Count for Dequeue Retry.
342 *
343 * Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU
344 */
345 if (KFD_GC_VERSION(pm->dqm->dev) < IP_VERSION(9, 4, 1) ||
346 KFD_GC_VERSION(pm->dqm->dev) >= IP_VERSION(10, 0, 0))
347 return -EPERM;
348
349 if (amdgpu_emu_mode == 0 && pm->dqm->dev->adev->gmc.is_app_apu &&
350 (KFD_GC_VERSION(pm->dqm->dev) == IP_VERSION(9, 4, 3)))
351 sch_wave = 1;
352
353 pm_build_dequeue_wait_counts_packet_info(pm, sch_wave, que_sleep,
354 ®_offset, ®_data);
355
356 break;
357 }
358 case KFD_DEQUEUE_WAIT_RESET:
359 /* reg_data would be set to dqm->wait_times */
360 pm_build_dequeue_wait_counts_packet_info(pm, 0, 0, ®_offset, ®_data);
361 break;
362
363 case KFD_DEQUEUE_WAIT_SET_SCH_WAVE:
364 /* The CP cannot handle value 0 and it will result in
365 * an infinite grace period being set so set to 1 to prevent this. Also
366 * avoid debugger API breakage as it sets 0 and expects a low value.
367 */
368 if (!value)
369 value = 1;
370 pm_build_dequeue_wait_counts_packet_info(pm, value, 0, ®_offset, ®_data);
371 break;
372 default:
373 pr_err("Invalid dequeue wait cmd\n");
374 return -EINVAL;
375 }
376
377 packet = (struct pm4_mec_write_data_mmio *)buffer;
378 memset(buffer, 0, sizeof(struct pm4_mec_write_data_mmio));
379
380 packet->header.u32All = pm_build_pm4_header(IT_WRITE_DATA,
381 sizeof(struct pm4_mec_write_data_mmio));
382
383 packet->bitfields2.dst_sel = dst_sel___write_data__mem_mapped_register;
384 packet->bitfields2.addr_incr =
385 addr_incr___write_data__do_not_increment_address;
386
387 packet->bitfields3.dst_mmreg_addr = reg_offset;
388
389 packet->data = reg_data;
390
391 return 0;
392 }
393
pm_unmap_queues_v9(struct packet_manager * pm,uint32_t * buffer,enum kfd_unmap_queues_filter filter,uint32_t filter_param,bool reset)394 static int pm_unmap_queues_v9(struct packet_manager *pm, uint32_t *buffer,
395 enum kfd_unmap_queues_filter filter,
396 uint32_t filter_param, bool reset)
397 {
398 struct pm4_mes_unmap_queues *packet;
399
400 packet = (struct pm4_mes_unmap_queues *)buffer;
401 memset(buffer, 0, sizeof(struct pm4_mes_unmap_queues));
402
403 packet->header.u32All = pm_build_pm4_header(IT_UNMAP_QUEUES,
404 sizeof(struct pm4_mes_unmap_queues));
405
406 packet->bitfields2.extended_engine_sel =
407 pm_use_ext_eng(pm->dqm->dev->kfd) ?
408 extended_engine_sel__mes_unmap_queues__sdma0_to_7_sel :
409 extended_engine_sel__mes_unmap_queues__legacy_engine_sel;
410
411 packet->bitfields2.engine_sel =
412 engine_sel__mes_unmap_queues__compute;
413
414 if (reset)
415 packet->bitfields2.action =
416 action__mes_unmap_queues__reset_queues;
417 else
418 packet->bitfields2.action =
419 action__mes_unmap_queues__preempt_queues;
420
421 switch (filter) {
422 case KFD_UNMAP_QUEUES_FILTER_BY_PASID:
423 packet->bitfields2.queue_sel =
424 queue_sel__mes_unmap_queues__perform_request_on_pasid_queues;
425 packet->bitfields3a.pasid = filter_param;
426 break;
427 case KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES:
428 packet->bitfields2.queue_sel =
429 queue_sel__mes_unmap_queues__unmap_all_queues;
430 break;
431 case KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES:
432 /* in this case, we do not preempt static queues */
433 packet->bitfields2.queue_sel =
434 queue_sel__mes_unmap_queues__unmap_all_non_static_queues;
435 break;
436 default:
437 WARN(1, "filter %d", filter);
438 return -EINVAL;
439 }
440
441 return 0;
442
443 }
444
pm_query_status_v9(struct packet_manager * pm,uint32_t * buffer,uint64_t fence_address,uint64_t fence_value)445 static int pm_query_status_v9(struct packet_manager *pm, uint32_t *buffer,
446 uint64_t fence_address, uint64_t fence_value)
447 {
448 struct pm4_mes_query_status *packet;
449
450 packet = (struct pm4_mes_query_status *)buffer;
451 memset(buffer, 0, sizeof(struct pm4_mes_query_status));
452
453
454 packet->header.u32All = pm_build_pm4_header(IT_QUERY_STATUS,
455 sizeof(struct pm4_mes_query_status));
456
457 packet->bitfields2.context_id = 0;
458 packet->bitfields2.interrupt_sel =
459 interrupt_sel__mes_query_status__completion_status;
460 packet->bitfields2.command =
461 command__mes_query_status__fence_only_after_write_ack;
462
463 packet->addr_hi = upper_32_bits((uint64_t)fence_address);
464 packet->addr_lo = lower_32_bits((uint64_t)fence_address);
465 packet->data_hi = upper_32_bits((uint64_t)fence_value);
466 packet->data_lo = lower_32_bits((uint64_t)fence_value);
467
468 return 0;
469 }
470
471 const struct packet_manager_funcs kfd_v9_pm_funcs = {
472 .map_process = pm_map_process_v9,
473 .runlist = pm_runlist_v9,
474 .set_resources = pm_set_resources_v9,
475 .map_queues = pm_map_queues_v9,
476 .unmap_queues = pm_unmap_queues_v9,
477 .config_dequeue_wait_counts = pm_config_dequeue_wait_counts_v9,
478 .query_status = pm_query_status_v9,
479 .release_mem = NULL,
480 .map_process_size = sizeof(struct pm4_mes_map_process),
481 .runlist_size = sizeof(struct pm4_mes_runlist),
482 .set_resources_size = sizeof(struct pm4_mes_set_resources),
483 .map_queues_size = sizeof(struct pm4_mes_map_queues),
484 .unmap_queues_size = sizeof(struct pm4_mes_unmap_queues),
485 .config_dequeue_wait_counts_size = sizeof(struct pm4_mec_write_data_mmio),
486 .query_status_size = sizeof(struct pm4_mes_query_status),
487 .release_mem_size = 0,
488 };
489
490 const struct packet_manager_funcs kfd_aldebaran_pm_funcs = {
491 .map_process = pm_map_process_aldebaran,
492 .runlist = pm_runlist_v9,
493 .set_resources = pm_set_resources_v9,
494 .map_queues = pm_map_queues_v9,
495 .unmap_queues = pm_unmap_queues_v9,
496 .config_dequeue_wait_counts = pm_config_dequeue_wait_counts_v9,
497 .query_status = pm_query_status_v9,
498 .release_mem = NULL,
499 .map_process_size = sizeof(struct pm4_mes_map_process_aldebaran),
500 .runlist_size = sizeof(struct pm4_mes_runlist),
501 .set_resources_size = sizeof(struct pm4_mes_set_resources),
502 .map_queues_size = sizeof(struct pm4_mes_map_queues),
503 .unmap_queues_size = sizeof(struct pm4_mes_unmap_queues),
504 .config_dequeue_wait_counts_size = sizeof(struct pm4_mec_write_data_mmio),
505 .query_status_size = sizeof(struct pm4_mes_query_status),
506 .release_mem_size = 0,
507 };
508