xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c (revision f82d27dcff939d3cbecbc60e1b71e2518c37e81d)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 #include <linux/crc16.h>
35 
36 #include "kfd_priv.h"
37 #include "kfd_crat.h"
38 #include "kfd_topology.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_svm.h"
41 #include "kfd_debug.h"
42 #include "amdgpu_amdkfd.h"
43 #include "amdgpu_ras.h"
44 #include "amdgpu.h"
45 
46 /* topology_device_list - Master list of all topology devices */
47 static struct list_head topology_device_list;
48 static struct kfd_system_properties sys_props;
49 
50 static DECLARE_RWSEM(topology_lock);
51 static uint32_t topology_crat_proximity_domain;
52 
53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
54 						uint32_t proximity_domain)
55 {
56 	struct kfd_topology_device *top_dev;
57 	struct kfd_topology_device *device = NULL;
58 
59 	list_for_each_entry(top_dev, &topology_device_list, list)
60 		if (top_dev->proximity_domain == proximity_domain) {
61 			device = top_dev;
62 			break;
63 		}
64 
65 	return device;
66 }
67 
68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
69 						uint32_t proximity_domain)
70 {
71 	struct kfd_topology_device *device = NULL;
72 
73 	down_read(&topology_lock);
74 
75 	device = kfd_topology_device_by_proximity_domain_no_lock(
76 							proximity_domain);
77 	up_read(&topology_lock);
78 
79 	return device;
80 }
81 
82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
83 {
84 	struct kfd_topology_device *top_dev = NULL;
85 	struct kfd_topology_device *ret = NULL;
86 
87 	down_read(&topology_lock);
88 
89 	list_for_each_entry(top_dev, &topology_device_list, list)
90 		if (top_dev->gpu_id == gpu_id) {
91 			ret = top_dev;
92 			break;
93 		}
94 
95 	up_read(&topology_lock);
96 
97 	return ret;
98 }
99 
100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
101 {
102 	struct kfd_topology_device *top_dev;
103 
104 	top_dev = kfd_topology_device_by_id(gpu_id);
105 	if (!top_dev)
106 		return NULL;
107 
108 	return top_dev->gpu;
109 }
110 
111 /* Called with write topology_lock acquired */
112 static void kfd_release_topology_device(struct kfd_topology_device *dev)
113 {
114 	struct kfd_mem_properties *mem;
115 	struct kfd_cache_properties *cache;
116 	struct kfd_iolink_properties *iolink;
117 	struct kfd_iolink_properties *p2plink;
118 	struct kfd_perf_properties *perf;
119 
120 	list_del(&dev->list);
121 
122 	while (dev->mem_props.next != &dev->mem_props) {
123 		mem = container_of(dev->mem_props.next,
124 				struct kfd_mem_properties, list);
125 		list_del(&mem->list);
126 		kfree(mem);
127 	}
128 
129 	while (dev->cache_props.next != &dev->cache_props) {
130 		cache = container_of(dev->cache_props.next,
131 				struct kfd_cache_properties, list);
132 		list_del(&cache->list);
133 		kfree(cache);
134 	}
135 
136 	while (dev->io_link_props.next != &dev->io_link_props) {
137 		iolink = container_of(dev->io_link_props.next,
138 				struct kfd_iolink_properties, list);
139 		list_del(&iolink->list);
140 		kfree(iolink);
141 	}
142 
143 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
144 		p2plink = container_of(dev->p2p_link_props.next,
145 				struct kfd_iolink_properties, list);
146 		list_del(&p2plink->list);
147 		kfree(p2plink);
148 	}
149 
150 	while (dev->perf_props.next != &dev->perf_props) {
151 		perf = container_of(dev->perf_props.next,
152 				struct kfd_perf_properties, list);
153 		list_del(&perf->list);
154 		kfree(perf);
155 	}
156 
157 	kfree(dev);
158 }
159 
160 void kfd_release_topology_device_list(struct list_head *device_list)
161 {
162 	struct kfd_topology_device *dev;
163 
164 	while (!list_empty(device_list)) {
165 		dev = list_first_entry(device_list,
166 				       struct kfd_topology_device, list);
167 		kfd_release_topology_device(dev);
168 	}
169 }
170 
171 static void kfd_release_live_view(void)
172 {
173 	kfd_release_topology_device_list(&topology_device_list);
174 	memset(&sys_props, 0, sizeof(sys_props));
175 }
176 
177 struct kfd_topology_device *kfd_create_topology_device(
178 				struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	dev = kfd_alloc_struct(dev);
183 	if (!dev) {
184 		pr_err("No memory to allocate a topology device");
185 		return NULL;
186 	}
187 
188 	INIT_LIST_HEAD(&dev->mem_props);
189 	INIT_LIST_HEAD(&dev->cache_props);
190 	INIT_LIST_HEAD(&dev->io_link_props);
191 	INIT_LIST_HEAD(&dev->p2p_link_props);
192 	INIT_LIST_HEAD(&dev->perf_props);
193 
194 	list_add_tail(&dev->list, device_list);
195 
196 	return dev;
197 }
198 
199 
200 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
201 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
202 				  fmt, __VA_ARGS__))
203 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
204 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
205 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
206 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
207 #define sysfs_show_32bit_val(buffer, offs, value) \
208 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
209 #define sysfs_show_str_val(buffer, offs, value) \
210 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
211 
212 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
213 		char *buffer)
214 {
215 	int offs = 0;
216 
217 	/* Making sure that the buffer is an empty string */
218 	buffer[0] = 0;
219 
220 	if (attr == &sys_props.attr_genid) {
221 		sysfs_show_32bit_val(buffer, offs,
222 				     sys_props.generation_count);
223 	} else if (attr == &sys_props.attr_props) {
224 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
225 				      sys_props.platform_oem);
226 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
227 				      sys_props.platform_id);
228 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
229 				      sys_props.platform_rev);
230 	} else {
231 		offs = -EINVAL;
232 	}
233 
234 	return offs;
235 }
236 
237 static void kfd_topology_kobj_release(struct kobject *kobj)
238 {
239 	kfree(kobj);
240 }
241 
242 static const struct sysfs_ops sysprops_ops = {
243 	.show = sysprops_show,
244 };
245 
246 static const struct kobj_type sysprops_type = {
247 	.release = kfd_topology_kobj_release,
248 	.sysfs_ops = &sysprops_ops,
249 };
250 
251 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
252 		char *buffer)
253 {
254 	int offs = 0;
255 	struct kfd_iolink_properties *iolink;
256 
257 	/* Making sure that the buffer is an empty string */
258 	buffer[0] = 0;
259 
260 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
261 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
262 		return -EPERM;
263 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
264 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
265 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
266 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
267 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
268 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
269 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
270 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
271 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
272 			      iolink->min_bandwidth);
273 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
274 			      iolink->max_bandwidth);
275 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
276 			      iolink->rec_transfer_size);
277 	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
278 			      iolink->rec_sdma_eng_id_mask);
279 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
280 
281 	return offs;
282 }
283 
284 static const struct sysfs_ops iolink_ops = {
285 	.show = iolink_show,
286 };
287 
288 static const struct kobj_type iolink_type = {
289 	.release = kfd_topology_kobj_release,
290 	.sysfs_ops = &iolink_ops,
291 };
292 
293 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
294 		char *buffer)
295 {
296 	int offs = 0;
297 	struct kfd_mem_properties *mem;
298 
299 	/* Making sure that the buffer is an empty string */
300 	buffer[0] = 0;
301 
302 	mem = container_of(attr, struct kfd_mem_properties, attr);
303 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
304 		return -EPERM;
305 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
306 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
307 			      mem->size_in_bytes);
308 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
309 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
310 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
311 			      mem->mem_clk_max);
312 
313 	return offs;
314 }
315 
316 static const struct sysfs_ops mem_ops = {
317 	.show = mem_show,
318 };
319 
320 static const struct kobj_type mem_type = {
321 	.release = kfd_topology_kobj_release,
322 	.sysfs_ops = &mem_ops,
323 };
324 
325 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
326 		char *buffer)
327 {
328 	int offs = 0;
329 	uint32_t i, j;
330 	struct kfd_cache_properties *cache;
331 
332 	/* Making sure that the buffer is an empty string */
333 	buffer[0] = 0;
334 	cache = container_of(attr, struct kfd_cache_properties, attr);
335 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
336 		return -EPERM;
337 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
338 			cache->processor_id_low);
339 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
340 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
341 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
342 			      cache->cacheline_size);
343 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
344 			      cache->cachelines_per_tag);
345 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
346 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
347 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
348 
349 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
350 	for (i = 0; i < cache->sibling_map_size; i++)
351 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
352 			/* Check each bit */
353 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
354 						(cache->sibling_map[i] >> j) & 1);
355 
356 	/* Replace the last "," with end of line */
357 	buffer[offs-1] = '\n';
358 	return offs;
359 }
360 
361 static const struct sysfs_ops cache_ops = {
362 	.show = kfd_cache_show,
363 };
364 
365 static const struct kobj_type cache_type = {
366 	.release = kfd_topology_kobj_release,
367 	.sysfs_ops = &cache_ops,
368 };
369 
370 /****** Sysfs of Performance Counters ******/
371 
372 struct kfd_perf_attr {
373 	struct kobj_attribute attr;
374 	uint32_t data;
375 };
376 
377 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
378 			char *buf)
379 {
380 	int offs = 0;
381 	struct kfd_perf_attr *attr;
382 
383 	buf[0] = 0;
384 	attr = container_of(attrs, struct kfd_perf_attr, attr);
385 	if (!attr->data) /* invalid data for PMC */
386 		return 0;
387 	else
388 		return sysfs_show_32bit_val(buf, offs, attr->data);
389 }
390 
391 #define KFD_PERF_DESC(_name, _data)			\
392 {							\
393 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
394 	.data = _data,					\
395 }
396 
397 static struct kfd_perf_attr perf_attr_iommu[] = {
398 	KFD_PERF_DESC(max_concurrent, 0),
399 	KFD_PERF_DESC(num_counters, 0),
400 	KFD_PERF_DESC(counter_ids, 0),
401 };
402 /****************************************/
403 
404 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
405 		char *buffer)
406 {
407 	int offs = 0;
408 	struct kfd_topology_device *dev;
409 	uint32_t log_max_watch_addr;
410 
411 	/* Making sure that the buffer is an empty string */
412 	buffer[0] = 0;
413 
414 	if (strcmp(attr->name, "gpu_id") == 0) {
415 		dev = container_of(attr, struct kfd_topology_device,
416 				attr_gpuid);
417 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
418 			return -EPERM;
419 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
420 	}
421 
422 	if (strcmp(attr->name, "name") == 0) {
423 		dev = container_of(attr, struct kfd_topology_device,
424 				attr_name);
425 
426 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
427 			return -EPERM;
428 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
429 	}
430 
431 	dev = container_of(attr, struct kfd_topology_device,
432 			attr_props);
433 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
434 		return -EPERM;
435 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
436 			      dev->node_props.cpu_cores_count);
437 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
438 			      dev->gpu ? dev->node_props.simd_count : 0);
439 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
440 			      dev->node_props.mem_banks_count);
441 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
442 			      dev->node_props.caches_count);
443 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
444 			      dev->node_props.io_links_count);
445 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
446 			      dev->node_props.p2p_links_count);
447 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
448 			      dev->node_props.cpu_core_id_base);
449 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
450 			      dev->node_props.simd_id_base);
451 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
452 			      dev->node_props.max_waves_per_simd);
453 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
454 			      dev->node_props.lds_size_in_kb);
455 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
456 			      dev->node_props.gds_size_in_kb);
457 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
458 			      dev->node_props.num_gws);
459 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
460 			      dev->node_props.wave_front_size);
461 	sysfs_show_32bit_prop(buffer, offs, "array_count",
462 			      dev->gpu ? (dev->node_props.array_count *
463 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
464 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
465 			      dev->node_props.simd_arrays_per_engine);
466 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
467 			      dev->node_props.cu_per_simd_array);
468 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
469 			      dev->node_props.simd_per_cu);
470 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
471 			      dev->node_props.max_slots_scratch_cu);
472 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
473 			      dev->node_props.gfx_target_version);
474 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
475 			      dev->node_props.vendor_id);
476 	sysfs_show_32bit_prop(buffer, offs, "device_id",
477 			      dev->node_props.device_id);
478 	sysfs_show_32bit_prop(buffer, offs, "location_id",
479 			      dev->node_props.location_id);
480 	sysfs_show_32bit_prop(buffer, offs, "domain",
481 			      dev->node_props.domain);
482 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
483 			      dev->node_props.drm_render_minor);
484 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
485 			      dev->node_props.hive_id);
486 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
487 			      dev->node_props.num_sdma_engines);
488 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
489 			      dev->node_props.num_sdma_xgmi_engines);
490 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
491 			      dev->node_props.num_sdma_queues_per_engine);
492 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
493 			      dev->node_props.num_cp_queues);
494 
495 	if (dev->gpu) {
496 		log_max_watch_addr =
497 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
498 
499 		if (log_max_watch_addr) {
500 			dev->node_props.capability |=
501 					HSA_CAP_WATCH_POINTS_SUPPORTED;
502 
503 			dev->node_props.capability |=
504 				((log_max_watch_addr <<
505 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
506 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
507 		}
508 
509 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
510 			dev->node_props.capability |=
511 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
512 
513 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
514 			dev->node_props.max_engine_clk_fcompute);
515 
516 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
517 
518 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
519 				      dev->gpu->kfd->mec_fw_version);
520 		sysfs_show_32bit_prop(buffer, offs, "capability",
521 				      dev->node_props.capability);
522 		sysfs_show_32bit_prop(buffer, offs, "capability2",
523 				      dev->node_props.capability2);
524 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
525 				      dev->node_props.debug_prop);
526 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
527 				      dev->gpu->kfd->sdma_fw_version);
528 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
529 				      dev->gpu->adev->unique_id);
530 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
531 				      NUM_XCC(dev->gpu->xcc_mask));
532 	}
533 
534 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
535 				     cpufreq_quick_get_max(0)/1000);
536 }
537 
538 static const struct sysfs_ops node_ops = {
539 	.show = node_show,
540 };
541 
542 static const struct kobj_type node_type = {
543 	.release = kfd_topology_kobj_release,
544 	.sysfs_ops = &node_ops,
545 };
546 
547 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
548 {
549 	sysfs_remove_file(kobj, attr);
550 	kobject_del(kobj);
551 	kobject_put(kobj);
552 }
553 
554 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
555 {
556 	struct kfd_iolink_properties *p2plink;
557 	struct kfd_iolink_properties *iolink;
558 	struct kfd_cache_properties *cache;
559 	struct kfd_mem_properties *mem;
560 	struct kfd_perf_properties *perf;
561 
562 	if (dev->kobj_iolink) {
563 		list_for_each_entry(iolink, &dev->io_link_props, list)
564 			if (iolink->kobj) {
565 				kfd_remove_sysfs_file(iolink->kobj,
566 							&iolink->attr);
567 				iolink->kobj = NULL;
568 			}
569 		kobject_del(dev->kobj_iolink);
570 		kobject_put(dev->kobj_iolink);
571 		dev->kobj_iolink = NULL;
572 	}
573 
574 	if (dev->kobj_p2plink) {
575 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
576 			if (p2plink->kobj) {
577 				kfd_remove_sysfs_file(p2plink->kobj,
578 							&p2plink->attr);
579 				p2plink->kobj = NULL;
580 			}
581 		kobject_del(dev->kobj_p2plink);
582 		kobject_put(dev->kobj_p2plink);
583 		dev->kobj_p2plink = NULL;
584 	}
585 
586 	if (dev->kobj_cache) {
587 		list_for_each_entry(cache, &dev->cache_props, list)
588 			if (cache->kobj) {
589 				kfd_remove_sysfs_file(cache->kobj,
590 							&cache->attr);
591 				cache->kobj = NULL;
592 			}
593 		kobject_del(dev->kobj_cache);
594 		kobject_put(dev->kobj_cache);
595 		dev->kobj_cache = NULL;
596 	}
597 
598 	if (dev->kobj_mem) {
599 		list_for_each_entry(mem, &dev->mem_props, list)
600 			if (mem->kobj) {
601 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
602 				mem->kobj = NULL;
603 			}
604 		kobject_del(dev->kobj_mem);
605 		kobject_put(dev->kobj_mem);
606 		dev->kobj_mem = NULL;
607 	}
608 
609 	if (dev->kobj_perf) {
610 		list_for_each_entry(perf, &dev->perf_props, list) {
611 			kfree(perf->attr_group);
612 			perf->attr_group = NULL;
613 		}
614 		kobject_del(dev->kobj_perf);
615 		kobject_put(dev->kobj_perf);
616 		dev->kobj_perf = NULL;
617 	}
618 
619 	if (dev->kobj_node) {
620 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
621 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
622 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
623 		kobject_del(dev->kobj_node);
624 		kobject_put(dev->kobj_node);
625 		dev->kobj_node = NULL;
626 	}
627 }
628 
629 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
630 		uint32_t id)
631 {
632 	struct kfd_iolink_properties *p2plink;
633 	struct kfd_iolink_properties *iolink;
634 	struct kfd_cache_properties *cache;
635 	struct kfd_mem_properties *mem;
636 	struct kfd_perf_properties *perf;
637 	int ret;
638 	uint32_t i, num_attrs;
639 	struct attribute **attrs;
640 
641 	if (WARN_ON(dev->kobj_node))
642 		return -EEXIST;
643 
644 	/*
645 	 * Creating the sysfs folders
646 	 */
647 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
648 	if (!dev->kobj_node)
649 		return -ENOMEM;
650 
651 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
652 			sys_props.kobj_nodes, "%d", id);
653 	if (ret < 0) {
654 		kobject_put(dev->kobj_node);
655 		return ret;
656 	}
657 
658 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
659 	if (!dev->kobj_mem)
660 		return -ENOMEM;
661 
662 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
663 	if (!dev->kobj_cache)
664 		return -ENOMEM;
665 
666 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
667 	if (!dev->kobj_iolink)
668 		return -ENOMEM;
669 
670 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
671 	if (!dev->kobj_p2plink)
672 		return -ENOMEM;
673 
674 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
675 	if (!dev->kobj_perf)
676 		return -ENOMEM;
677 
678 	/*
679 	 * Creating sysfs files for node properties
680 	 */
681 	dev->attr_gpuid.name = "gpu_id";
682 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
683 	sysfs_attr_init(&dev->attr_gpuid);
684 	dev->attr_name.name = "name";
685 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
686 	sysfs_attr_init(&dev->attr_name);
687 	dev->attr_props.name = "properties";
688 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
689 	sysfs_attr_init(&dev->attr_props);
690 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
691 	if (ret < 0)
692 		return ret;
693 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
694 	if (ret < 0)
695 		return ret;
696 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
697 	if (ret < 0)
698 		return ret;
699 
700 	i = 0;
701 	list_for_each_entry(mem, &dev->mem_props, list) {
702 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
703 		if (!mem->kobj)
704 			return -ENOMEM;
705 		ret = kobject_init_and_add(mem->kobj, &mem_type,
706 				dev->kobj_mem, "%d", i);
707 		if (ret < 0) {
708 			kobject_put(mem->kobj);
709 			return ret;
710 		}
711 
712 		mem->attr.name = "properties";
713 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
714 		sysfs_attr_init(&mem->attr);
715 		ret = sysfs_create_file(mem->kobj, &mem->attr);
716 		if (ret < 0)
717 			return ret;
718 		i++;
719 	}
720 
721 	i = 0;
722 	list_for_each_entry(cache, &dev->cache_props, list) {
723 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
724 		if (!cache->kobj)
725 			return -ENOMEM;
726 		ret = kobject_init_and_add(cache->kobj, &cache_type,
727 				dev->kobj_cache, "%d", i);
728 		if (ret < 0) {
729 			kobject_put(cache->kobj);
730 			return ret;
731 		}
732 
733 		cache->attr.name = "properties";
734 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
735 		sysfs_attr_init(&cache->attr);
736 		ret = sysfs_create_file(cache->kobj, &cache->attr);
737 		if (ret < 0)
738 			return ret;
739 		i++;
740 	}
741 
742 	i = 0;
743 	list_for_each_entry(iolink, &dev->io_link_props, list) {
744 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
745 		if (!iolink->kobj)
746 			return -ENOMEM;
747 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
748 				dev->kobj_iolink, "%d", i);
749 		if (ret < 0) {
750 			kobject_put(iolink->kobj);
751 			return ret;
752 		}
753 
754 		iolink->attr.name = "properties";
755 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
756 		sysfs_attr_init(&iolink->attr);
757 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
758 		if (ret < 0)
759 			return ret;
760 		i++;
761 	}
762 
763 	i = 0;
764 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
765 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
766 		if (!p2plink->kobj)
767 			return -ENOMEM;
768 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
769 				dev->kobj_p2plink, "%d", i);
770 		if (ret < 0) {
771 			kobject_put(p2plink->kobj);
772 			return ret;
773 		}
774 
775 		p2plink->attr.name = "properties";
776 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
777 		sysfs_attr_init(&p2plink->attr);
778 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
779 		if (ret < 0)
780 			return ret;
781 		i++;
782 	}
783 
784 	/* All hardware blocks have the same number of attributes. */
785 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
786 	list_for_each_entry(perf, &dev->perf_props, list) {
787 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
788 			* num_attrs + sizeof(struct attribute_group),
789 			GFP_KERNEL);
790 		if (!perf->attr_group)
791 			return -ENOMEM;
792 
793 		attrs = (struct attribute **)(perf->attr_group + 1);
794 		if (!strcmp(perf->block_name, "iommu")) {
795 		/* Information of IOMMU's num_counters and counter_ids is shown
796 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
797 		 * duplicate here.
798 		 */
799 			perf_attr_iommu[0].data = perf->max_concurrent;
800 			for (i = 0; i < num_attrs; i++)
801 				attrs[i] = &perf_attr_iommu[i].attr.attr;
802 		}
803 		perf->attr_group->name = perf->block_name;
804 		perf->attr_group->attrs = attrs;
805 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
806 		if (ret < 0)
807 			return ret;
808 	}
809 
810 	return 0;
811 }
812 
813 /* Called with write topology lock acquired */
814 static int kfd_build_sysfs_node_tree(void)
815 {
816 	struct kfd_topology_device *dev;
817 	int ret;
818 	uint32_t i = 0;
819 
820 	list_for_each_entry(dev, &topology_device_list, list) {
821 		ret = kfd_build_sysfs_node_entry(dev, i);
822 		if (ret < 0)
823 			return ret;
824 		i++;
825 	}
826 
827 	return 0;
828 }
829 
830 /* Called with write topology lock acquired */
831 static void kfd_remove_sysfs_node_tree(void)
832 {
833 	struct kfd_topology_device *dev;
834 
835 	list_for_each_entry(dev, &topology_device_list, list)
836 		kfd_remove_sysfs_node_entry(dev);
837 }
838 
839 static int kfd_topology_update_sysfs(void)
840 {
841 	int ret;
842 
843 	if (!sys_props.kobj_topology) {
844 		sys_props.kobj_topology =
845 				kfd_alloc_struct(sys_props.kobj_topology);
846 		if (!sys_props.kobj_topology)
847 			return -ENOMEM;
848 
849 		ret = kobject_init_and_add(sys_props.kobj_topology,
850 				&sysprops_type,  &kfd_device->kobj,
851 				"topology");
852 		if (ret < 0) {
853 			kobject_put(sys_props.kobj_topology);
854 			return ret;
855 		}
856 
857 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
858 				sys_props.kobj_topology);
859 		if (!sys_props.kobj_nodes)
860 			return -ENOMEM;
861 
862 		sys_props.attr_genid.name = "generation_id";
863 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
864 		sysfs_attr_init(&sys_props.attr_genid);
865 		ret = sysfs_create_file(sys_props.kobj_topology,
866 				&sys_props.attr_genid);
867 		if (ret < 0)
868 			return ret;
869 
870 		sys_props.attr_props.name = "system_properties";
871 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
872 		sysfs_attr_init(&sys_props.attr_props);
873 		ret = sysfs_create_file(sys_props.kobj_topology,
874 				&sys_props.attr_props);
875 		if (ret < 0)
876 			return ret;
877 	}
878 
879 	kfd_remove_sysfs_node_tree();
880 
881 	return kfd_build_sysfs_node_tree();
882 }
883 
884 static void kfd_topology_release_sysfs(void)
885 {
886 	kfd_remove_sysfs_node_tree();
887 	if (sys_props.kobj_topology) {
888 		sysfs_remove_file(sys_props.kobj_topology,
889 				&sys_props.attr_genid);
890 		sysfs_remove_file(sys_props.kobj_topology,
891 				&sys_props.attr_props);
892 		if (sys_props.kobj_nodes) {
893 			kobject_del(sys_props.kobj_nodes);
894 			kobject_put(sys_props.kobj_nodes);
895 			sys_props.kobj_nodes = NULL;
896 		}
897 		kobject_del(sys_props.kobj_topology);
898 		kobject_put(sys_props.kobj_topology);
899 		sys_props.kobj_topology = NULL;
900 	}
901 }
902 
903 /* Called with write topology_lock acquired */
904 static void kfd_topology_update_device_list(struct list_head *temp_list,
905 					struct list_head *master_list)
906 {
907 	while (!list_empty(temp_list)) {
908 		list_move_tail(temp_list->next, master_list);
909 		sys_props.num_devices++;
910 	}
911 }
912 
913 static void kfd_debug_print_topology(void)
914 {
915 	struct kfd_topology_device *dev;
916 
917 	down_read(&topology_lock);
918 
919 	dev = list_last_entry(&topology_device_list,
920 			struct kfd_topology_device, list);
921 	if (dev) {
922 		if (dev->node_props.cpu_cores_count &&
923 				dev->node_props.simd_count) {
924 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
925 				dev->node_props.device_id,
926 				dev->node_props.vendor_id);
927 		} else if (dev->node_props.cpu_cores_count)
928 			pr_info("Topology: Add CPU node\n");
929 		else if (dev->node_props.simd_count)
930 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
931 				dev->node_props.device_id,
932 				dev->node_props.vendor_id);
933 	}
934 	up_read(&topology_lock);
935 }
936 
937 /* Helper function for intializing platform_xx members of
938  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
939  */
940 static void kfd_update_system_properties(void)
941 {
942 	struct kfd_topology_device *dev;
943 
944 	down_read(&topology_lock);
945 	dev = list_last_entry(&topology_device_list,
946 			struct kfd_topology_device, list);
947 	if (dev) {
948 		sys_props.platform_id = dev->oem_id64;
949 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
950 		sys_props.platform_rev = dev->oem_revision;
951 	}
952 	up_read(&topology_lock);
953 }
954 
955 static void find_system_memory(const struct dmi_header *dm, void *private)
956 {
957 	struct dmi_mem_device *memdev = container_of(dm, struct dmi_mem_device, header);
958 	struct kfd_mem_properties *mem;
959 	struct kfd_topology_device *kdev =
960 		(struct kfd_topology_device *)private;
961 
962 	if (memdev->header.type != DMI_ENTRY_MEM_DEVICE)
963 		return;
964 	if (memdev->header.length < sizeof(struct dmi_mem_device))
965 		return;
966 
967 	list_for_each_entry(mem, &kdev->mem_props, list) {
968 		if (memdev->total_width != 0xFFFF && memdev->total_width != 0)
969 			mem->width = memdev->total_width;
970 		if (memdev->speed != 0)
971 			mem->mem_clk_max = memdev->speed;
972 	}
973 }
974 
975 /* kfd_add_non_crat_information - Add information that is not currently
976  *	defined in CRAT but is necessary for KFD topology
977  * @dev - topology device to which addition info is added
978  */
979 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
980 {
981 	/* Check if CPU only node. */
982 	if (!kdev->gpu) {
983 		/* Add system memory information */
984 		dmi_walk(find_system_memory, kdev);
985 	}
986 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
987 }
988 
989 int kfd_topology_init(void)
990 {
991 	void *crat_image = NULL;
992 	size_t image_size = 0;
993 	int ret;
994 	struct list_head temp_topology_device_list;
995 	int cpu_only_node = 0;
996 	struct kfd_topology_device *kdev;
997 	int proximity_domain;
998 
999 	/* topology_device_list - Master list of all topology devices
1000 	 * temp_topology_device_list - temporary list created while parsing CRAT
1001 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1002 	 * topology_device_list
1003 	 */
1004 
1005 	/* Initialize the head for the both the lists */
1006 	INIT_LIST_HEAD(&topology_device_list);
1007 	INIT_LIST_HEAD(&temp_topology_device_list);
1008 	init_rwsem(&topology_lock);
1009 
1010 	memset(&sys_props, 0, sizeof(sys_props));
1011 
1012 	/* Proximity domains in ACPI CRAT tables start counting at
1013 	 * 0. The same should be true for virtual CRAT tables created
1014 	 * at this stage. GPUs added later in kfd_topology_add_device
1015 	 * use a counter.
1016 	 */
1017 	proximity_domain = 0;
1018 
1019 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1020 					    COMPUTE_UNIT_CPU, NULL,
1021 					    proximity_domain);
1022 	cpu_only_node = 1;
1023 	if (ret) {
1024 		pr_err("Error creating VCRAT table for CPU\n");
1025 		return ret;
1026 	}
1027 
1028 	ret = kfd_parse_crat_table(crat_image,
1029 				   &temp_topology_device_list,
1030 				   proximity_domain);
1031 	if (ret) {
1032 		pr_err("Error parsing VCRAT table for CPU\n");
1033 		goto err;
1034 	}
1035 
1036 	kdev = list_first_entry(&temp_topology_device_list,
1037 				struct kfd_topology_device, list);
1038 
1039 	down_write(&topology_lock);
1040 	kfd_topology_update_device_list(&temp_topology_device_list,
1041 					&topology_device_list);
1042 	topology_crat_proximity_domain = sys_props.num_devices-1;
1043 	ret = kfd_topology_update_sysfs();
1044 	up_write(&topology_lock);
1045 
1046 	if (!ret) {
1047 		sys_props.generation_count++;
1048 		kfd_update_system_properties();
1049 		kfd_debug_print_topology();
1050 	} else
1051 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1052 
1053 	/* For nodes with GPU, this information gets added
1054 	 * when GPU is detected (kfd_topology_add_device).
1055 	 */
1056 	if (cpu_only_node) {
1057 		/* Add additional information to CPU only node created above */
1058 		down_write(&topology_lock);
1059 		kdev = list_first_entry(&topology_device_list,
1060 				struct kfd_topology_device, list);
1061 		up_write(&topology_lock);
1062 		kfd_add_non_crat_information(kdev);
1063 	}
1064 
1065 err:
1066 	kfd_destroy_crat_image(crat_image);
1067 	return ret;
1068 }
1069 
1070 void kfd_topology_shutdown(void)
1071 {
1072 	down_write(&topology_lock);
1073 	kfd_topology_release_sysfs();
1074 	kfd_release_live_view();
1075 	up_write(&topology_lock);
1076 }
1077 
1078 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1079 {
1080 	uint32_t gpu_id;
1081 	uint32_t buf[8];
1082 	uint64_t local_mem_size;
1083 	struct kfd_topology_device *dev;
1084 	bool is_unique;
1085 	uint8_t *crc_buf;
1086 
1087 	if (!gpu)
1088 		return 0;
1089 
1090 	crc_buf = (uint8_t *)&buf;
1091 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1092 			gpu->local_mem_info.local_mem_size_public;
1093 	buf[0] = gpu->adev->pdev->devfn;
1094 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1095 		(gpu->adev->pdev->subsystem_device << 16);
1096 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1097 	buf[3] = gpu->adev->pdev->device;
1098 	buf[4] = gpu->adev->pdev->bus->number;
1099 	buf[5] = lower_32_bits(local_mem_size);
1100 	buf[6] = upper_32_bits(local_mem_size);
1101 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1102 
1103 	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1104 		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1105 
1106 	/* There is a very small possibility when generating a
1107 	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1108 	 * that the value could be 0 or non-unique. So, check if
1109 	 * it is unique and non-zero. If not unique increment till
1110 	 * unique one is found. In case of overflow, restart from 1
1111 	 */
1112 
1113 	down_read(&topology_lock);
1114 	do {
1115 		is_unique = true;
1116 		if (!gpu_id)
1117 			gpu_id = 1;
1118 		list_for_each_entry(dev, &topology_device_list, list) {
1119 			if (dev->gpu && dev->gpu_id == gpu_id) {
1120 				is_unique = false;
1121 				break;
1122 			}
1123 		}
1124 		if (unlikely(!is_unique))
1125 			gpu_id = (gpu_id + 1) &
1126 				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1127 	} while (!is_unique);
1128 	up_read(&topology_lock);
1129 
1130 	return gpu_id;
1131 }
1132 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1133  *		the GPU device is not already present in the topology device
1134  *		list then return NULL. This means a new topology device has to
1135  *		be created for this GPU.
1136  */
1137 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1138 {
1139 	struct kfd_topology_device *dev;
1140 	struct kfd_topology_device *out_dev = NULL;
1141 	struct kfd_mem_properties *mem;
1142 	struct kfd_cache_properties *cache;
1143 	struct kfd_iolink_properties *iolink;
1144 	struct kfd_iolink_properties *p2plink;
1145 
1146 	list_for_each_entry(dev, &topology_device_list, list) {
1147 		/* Discrete GPUs need their own topology device list
1148 		 * entries. Don't assign them to CPU/APU nodes.
1149 		 */
1150 		if (dev->node_props.cpu_cores_count)
1151 			continue;
1152 
1153 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1154 			dev->gpu = gpu;
1155 			out_dev = dev;
1156 
1157 			list_for_each_entry(mem, &dev->mem_props, list)
1158 				mem->gpu = dev->gpu;
1159 			list_for_each_entry(cache, &dev->cache_props, list)
1160 				cache->gpu = dev->gpu;
1161 			list_for_each_entry(iolink, &dev->io_link_props, list)
1162 				iolink->gpu = dev->gpu;
1163 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1164 				p2plink->gpu = dev->gpu;
1165 			break;
1166 		}
1167 	}
1168 	return out_dev;
1169 }
1170 
1171 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1172 {
1173 	/*
1174 	 * TODO: Generate an event for thunk about the arrival/removal
1175 	 * of the GPU
1176 	 */
1177 }
1178 
1179 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1180  *		patch this after CRAT parsing.
1181  */
1182 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1183 {
1184 	struct kfd_mem_properties *mem;
1185 	struct kfd_local_mem_info local_mem_info;
1186 
1187 	if (!dev)
1188 		return;
1189 
1190 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1191 	 * single bank of VRAM local memory.
1192 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1193 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1194 	 *	all the banks will report the same mem_clk_max information
1195 	 */
1196 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1197 					 dev->gpu->xcp);
1198 
1199 	list_for_each_entry(mem, &dev->mem_props, list)
1200 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1201 }
1202 
1203 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1204 					struct kfd_topology_device *target_gpu_dev,
1205 					struct kfd_iolink_properties *link)
1206 {
1207 	/* xgmi always supports atomics between links. */
1208 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1209 		return;
1210 
1211 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1212 	if (target_gpu_dev) {
1213 		uint32_t cap;
1214 
1215 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1216 				PCI_EXP_DEVCAP2, &cap);
1217 
1218 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1219 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1220 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1221 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1222 	/* set gpu (dev) flags. */
1223 	} else {
1224 		if (!dev->gpu->kfd->pci_atomic_requested ||
1225 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1226 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1227 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1228 	}
1229 }
1230 
1231 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1232 		struct kfd_iolink_properties *outbound_link,
1233 		struct kfd_iolink_properties *inbound_link)
1234 {
1235 	/* CPU -> GPU with PCIe */
1236 	if (!to_dev->gpu &&
1237 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1238 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1239 
1240 	if (to_dev->gpu) {
1241 		/* GPU <-> GPU with PCIe and
1242 		 * Vega20 with XGMI
1243 		 */
1244 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1245 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1246 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1247 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1248 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1249 		}
1250 	}
1251 }
1252 
1253 #define REC_SDMA_NUM_GPU	8
1254 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1255 							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1256 							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1257 							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1258 							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1259 							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1260 							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1261 							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1262 							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1263 
1264 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1265 					     struct kfd_iolink_properties *outbound_link,
1266 					     struct kfd_iolink_properties *inbound_link)
1267 {
1268 	struct kfd_node *gpu = outbound_link->gpu;
1269 	struct amdgpu_device *adev = gpu->adev;
1270 	int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1271 	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1272 		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1273 		kfd_get_num_xgmi_sdma_engines(gpu) >= 14 &&
1274 		(!(adev->flags & AMD_IS_APU) && num_xgmi_nodes == 8);
1275 
1276 	if (support_rec_eng) {
1277 		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1278 		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1279 
1280 		outbound_link->rec_sdma_eng_id_mask =
1281 			1 << rec_sdma_eng_map[src_socket_id][dst_socket_id];
1282 		inbound_link->rec_sdma_eng_id_mask =
1283 			1 << rec_sdma_eng_map[dst_socket_id][src_socket_id];
1284 	} else {
1285 		int num_sdma_eng = kfd_get_num_sdma_engines(gpu);
1286 		int i, eng_offset = 0;
1287 
1288 		if (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1289 		    kfd_get_num_xgmi_sdma_engines(gpu) && to_dev->gpu) {
1290 			eng_offset = num_sdma_eng;
1291 			num_sdma_eng = kfd_get_num_xgmi_sdma_engines(gpu);
1292 		}
1293 
1294 		for (i = 0; i < num_sdma_eng; i++) {
1295 			outbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1296 			inbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1297 		}
1298 	}
1299 }
1300 
1301 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1302 {
1303 	struct kfd_iolink_properties *link, *inbound_link;
1304 	struct kfd_topology_device *peer_dev;
1305 
1306 	if (!dev || !dev->gpu)
1307 		return;
1308 
1309 	/* GPU only creates direct links so apply flags setting to all */
1310 	list_for_each_entry(link, &dev->io_link_props, list) {
1311 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1312 		kfd_set_iolink_no_atomics(dev, NULL, link);
1313 		peer_dev = kfd_topology_device_by_proximity_domain(
1314 				link->node_to);
1315 
1316 		if (!peer_dev)
1317 			continue;
1318 
1319 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1320 		if (!peer_dev->gpu &&
1321 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1322 			/*
1323 			 * If the GPU is not part of a GPU hive, use its pci
1324 			 * device location as the hive ID to bind with the CPU.
1325 			 */
1326 			if (!dev->node_props.hive_id)
1327 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1328 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1329 		}
1330 
1331 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1332 									list) {
1333 			if (inbound_link->node_to != link->node_from)
1334 				continue;
1335 
1336 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1337 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1338 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1339 			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1340 		}
1341 	}
1342 
1343 	/* Create indirect links so apply flags setting to all */
1344 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1345 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1346 		kfd_set_iolink_no_atomics(dev, NULL, link);
1347 		peer_dev = kfd_topology_device_by_proximity_domain(
1348 				link->node_to);
1349 
1350 		if (!peer_dev)
1351 			continue;
1352 
1353 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1354 									list) {
1355 			if (inbound_link->node_to != link->node_from)
1356 				continue;
1357 
1358 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1359 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1360 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1361 		}
1362 	}
1363 }
1364 
1365 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1366 				struct kfd_iolink_properties *p2plink)
1367 {
1368 	int ret;
1369 
1370 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1371 	if (!p2plink->kobj)
1372 		return -ENOMEM;
1373 
1374 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1375 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1376 	if (ret < 0) {
1377 		kobject_put(p2plink->kobj);
1378 		return ret;
1379 	}
1380 
1381 	p2plink->attr.name = "properties";
1382 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1383 	sysfs_attr_init(&p2plink->attr);
1384 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1385 	if (ret < 0)
1386 		return ret;
1387 
1388 	return 0;
1389 }
1390 
1391 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1392 {
1393 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1394 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1395 	struct kfd_topology_device *cpu_dev;
1396 	int ret = 0;
1397 	int i, num_cpu;
1398 
1399 	num_cpu = 0;
1400 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1401 		if (cpu_dev->gpu)
1402 			break;
1403 		num_cpu++;
1404 	}
1405 
1406 	if (list_empty(&kdev->io_link_props))
1407 		return -ENODATA;
1408 
1409 	gpu_link = list_first_entry(&kdev->io_link_props,
1410 				    struct kfd_iolink_properties, list);
1411 
1412 	for (i = 0; i < num_cpu; i++) {
1413 		/* CPU <--> GPU */
1414 		if (gpu_link->node_to == i)
1415 			continue;
1416 
1417 		/* find CPU <-->  CPU links */
1418 		cpu_link = NULL;
1419 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1420 		if (cpu_dev) {
1421 			list_for_each_entry(tmp_link,
1422 					&cpu_dev->io_link_props, list) {
1423 				if (tmp_link->node_to == gpu_link->node_to) {
1424 					cpu_link = tmp_link;
1425 					break;
1426 				}
1427 			}
1428 		}
1429 
1430 		if (!cpu_link)
1431 			return -ENOMEM;
1432 
1433 		/* CPU <--> CPU <--> GPU, GPU node*/
1434 		props = kfd_alloc_struct(props);
1435 		if (!props)
1436 			return -ENOMEM;
1437 
1438 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1439 		props->weight = gpu_link->weight + cpu_link->weight;
1440 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1441 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1442 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1443 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1444 
1445 		props->node_from = gpu_node;
1446 		props->node_to = i;
1447 		kdev->node_props.p2p_links_count++;
1448 		list_add_tail(&props->list, &kdev->p2p_link_props);
1449 		ret = kfd_build_p2p_node_entry(kdev, props);
1450 		if (ret < 0)
1451 			return ret;
1452 
1453 		/* for small Bar, no CPU --> GPU in-direct links */
1454 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1455 			/* CPU <--> CPU <--> GPU, CPU node*/
1456 			props2 = kfd_alloc_struct(props2);
1457 			if (!props2)
1458 				return -ENOMEM;
1459 
1460 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1461 			props2->node_from = i;
1462 			props2->node_to = gpu_node;
1463 			props2->kobj = NULL;
1464 			cpu_dev->node_props.p2p_links_count++;
1465 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1466 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1467 			if (ret < 0)
1468 				return ret;
1469 		}
1470 	}
1471 	return ret;
1472 }
1473 
1474 #if defined(CONFIG_HSA_AMD_P2P)
1475 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1476 		struct kfd_topology_device *peer, int from, int to)
1477 {
1478 	struct kfd_iolink_properties *props = NULL;
1479 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1480 	struct kfd_topology_device *cpu_dev;
1481 	int ret = 0;
1482 
1483 	if (!amdgpu_device_is_peer_accessible(
1484 				kdev->gpu->adev,
1485 				peer->gpu->adev))
1486 		return ret;
1487 
1488 	if (list_empty(&kdev->io_link_props))
1489 		return -ENODATA;
1490 
1491 	iolink1 = list_first_entry(&kdev->io_link_props,
1492 				   struct kfd_iolink_properties, list);
1493 
1494 	if (list_empty(&peer->io_link_props))
1495 		return -ENODATA;
1496 
1497 	iolink2 = list_first_entry(&peer->io_link_props,
1498 				   struct kfd_iolink_properties, list);
1499 
1500 	props = kfd_alloc_struct(props);
1501 	if (!props)
1502 		return -ENOMEM;
1503 
1504 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1505 
1506 	props->weight = iolink1->weight + iolink2->weight;
1507 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1508 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1509 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1510 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1511 
1512 	if (iolink1->node_to != iolink2->node_to) {
1513 		/* CPU->CPU  link*/
1514 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1515 		if (cpu_dev) {
1516 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1517 				if (iolink3->node_to != iolink2->node_to)
1518 					continue;
1519 
1520 				props->weight += iolink3->weight;
1521 				props->min_latency += iolink3->min_latency;
1522 				props->max_latency += iolink3->max_latency;
1523 				props->min_bandwidth = min(props->min_bandwidth,
1524 							   iolink3->min_bandwidth);
1525 				props->max_bandwidth = min(props->max_bandwidth,
1526 							   iolink3->max_bandwidth);
1527 				break;
1528 			}
1529 		} else {
1530 			WARN(1, "CPU node not found");
1531 		}
1532 	}
1533 
1534 	props->node_from = from;
1535 	props->node_to = to;
1536 	peer->node_props.p2p_links_count++;
1537 	list_add_tail(&props->list, &peer->p2p_link_props);
1538 	ret = kfd_build_p2p_node_entry(peer, props);
1539 
1540 	return ret;
1541 }
1542 #endif
1543 
1544 static int kfd_dev_create_p2p_links(void)
1545 {
1546 	struct kfd_topology_device *dev;
1547 	struct kfd_topology_device *new_dev;
1548 #if defined(CONFIG_HSA_AMD_P2P)
1549 	uint32_t i;
1550 #endif
1551 	uint32_t k;
1552 	int ret = 0;
1553 
1554 	k = 0;
1555 	list_for_each_entry(dev, &topology_device_list, list)
1556 		k++;
1557 	if (k < 2)
1558 		return 0;
1559 
1560 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1561 	if (WARN_ON(!new_dev->gpu))
1562 		return 0;
1563 
1564 	k--;
1565 
1566 	/* create in-direct links */
1567 	ret = kfd_create_indirect_link_prop(new_dev, k);
1568 	if (ret < 0)
1569 		goto out;
1570 
1571 	/* create p2p links */
1572 #if defined(CONFIG_HSA_AMD_P2P)
1573 	i = 0;
1574 	list_for_each_entry(dev, &topology_device_list, list) {
1575 		if (dev == new_dev)
1576 			break;
1577 		if (!dev->gpu || !dev->gpu->adev ||
1578 		    (dev->gpu->kfd->hive_id &&
1579 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1580 			goto next;
1581 
1582 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1583 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1584 		if (ret < 0)
1585 			goto out;
1586 
1587 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1588 		if (ret < 0)
1589 			goto out;
1590 next:
1591 		i++;
1592 	}
1593 #endif
1594 
1595 out:
1596 	return ret;
1597 }
1598 
1599 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1600 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1601 				struct kfd_gpu_cache_info *pcache_info,
1602 				int cu_bitmask,
1603 				int cache_type, unsigned int cu_processor_id,
1604 				int cu_block)
1605 {
1606 	unsigned int cu_sibling_map_mask;
1607 	int first_active_cu;
1608 	struct kfd_cache_properties *pcache = NULL;
1609 
1610 	cu_sibling_map_mask = cu_bitmask;
1611 	cu_sibling_map_mask >>= cu_block;
1612 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1613 	first_active_cu = ffs(cu_sibling_map_mask);
1614 
1615 	/* CU could be inactive. In case of shared cache find the first active
1616 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1617 	 * inactive active skip it
1618 	 */
1619 	if (first_active_cu) {
1620 		pcache = kfd_alloc_struct(pcache);
1621 		if (!pcache)
1622 			return -ENOMEM;
1623 
1624 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1625 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1626 		pcache->cache_level = pcache_info[cache_type].cache_level;
1627 		pcache->cache_size = pcache_info[cache_type].cache_size;
1628 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1629 
1630 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1631 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1632 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1633 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1634 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1635 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1636 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1637 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1638 
1639 		/* Sibling map is w.r.t processor_id_low, so shift out
1640 		 * inactive CU
1641 		 */
1642 		cu_sibling_map_mask =
1643 			cu_sibling_map_mask >> (first_active_cu - 1);
1644 
1645 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1646 		pcache->sibling_map[1] =
1647 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1648 		pcache->sibling_map[2] =
1649 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1650 		pcache->sibling_map[3] =
1651 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1652 
1653 		pcache->sibling_map_size = 4;
1654 		*props_ext = pcache;
1655 
1656 		return 0;
1657 	}
1658 	return 1;
1659 }
1660 
1661 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1662 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1663 				struct kfd_gpu_cache_info *pcache_info,
1664 				struct amdgpu_cu_info *cu_info,
1665 				struct amdgpu_gfx_config *gfx_info,
1666 				int cache_type, unsigned int cu_processor_id,
1667 				struct kfd_node *knode)
1668 {
1669 	unsigned int cu_sibling_map_mask = 0;
1670 	int first_active_cu;
1671 	int i, j, k, xcc, start, end;
1672 	int num_xcc = NUM_XCC(knode->xcc_mask);
1673 	struct kfd_cache_properties *pcache = NULL;
1674 	enum amdgpu_memory_partition mode;
1675 	struct amdgpu_device *adev = knode->adev;
1676 	bool found = false;
1677 
1678 	start = ffs(knode->xcc_mask) - 1;
1679 	end = start + num_xcc;
1680 
1681 	/* To find the bitmap in the first active cu in the first
1682 	 * xcc, it is based on the assumption that evrey xcc must
1683 	 * have at least one active cu.
1684 	 */
1685 	for (i = 0; i < gfx_info->max_shader_engines && !found; i++) {
1686 		for (j = 0; j < gfx_info->max_sh_per_se && !found; j++) {
1687 			if (cu_info->bitmap[start][i % 4][j % 4]) {
1688 				cu_sibling_map_mask =
1689 					cu_info->bitmap[start][i % 4][j % 4];
1690 				found = true;
1691 			}
1692 		}
1693 	}
1694 
1695 	cu_sibling_map_mask &=
1696 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1697 	first_active_cu = ffs(cu_sibling_map_mask);
1698 
1699 	/* CU could be inactive. In case of shared cache find the first active
1700 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1701 	 * inactive active skip it
1702 	 */
1703 	if (first_active_cu) {
1704 		pcache = kfd_alloc_struct(pcache);
1705 		if (!pcache)
1706 			return -ENOMEM;
1707 
1708 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1709 		pcache->processor_id_low = cu_processor_id
1710 					+ (first_active_cu - 1);
1711 		pcache->cache_level = pcache_info[cache_type].cache_level;
1712 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1713 
1714 		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1715 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4) ||
1716 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 5, 0))
1717 			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1718 		else
1719 			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1720 
1721 		pcache->cache_size = pcache_info[cache_type].cache_size;
1722 		/* Partition mode only affects L3 cache size */
1723 		if (mode && pcache->cache_level == 3)
1724 			pcache->cache_size /= mode;
1725 
1726 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1727 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1728 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1729 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1730 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1731 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1732 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1733 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1734 
1735 		/* Sibling map is w.r.t processor_id_low, so shift out
1736 		 * inactive CU
1737 		 */
1738 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1739 		k = 0;
1740 
1741 		for (xcc = start; xcc < end; xcc++) {
1742 			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1743 				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1744 					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1745 					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1746 					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1747 					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1748 					k += 4;
1749 
1750 					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1751 					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1752 				}
1753 			}
1754 		}
1755 		pcache->sibling_map_size = k;
1756 		*props_ext = pcache;
1757 		return 0;
1758 	}
1759 	return 1;
1760 }
1761 
1762 #define KFD_MAX_CACHE_TYPES 6
1763 
1764 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1765  * tables
1766  */
1767 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1768 {
1769 	struct kfd_gpu_cache_info *pcache_info = NULL;
1770 	int i, j, k, xcc, start, end;
1771 	int ct = 0;
1772 	unsigned int cu_processor_id;
1773 	int ret;
1774 	unsigned int num_cu_shared;
1775 	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1776 	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1777 	int gpu_processor_id;
1778 	struct kfd_cache_properties *props_ext = NULL;
1779 	int num_of_entries = 0;
1780 	int num_of_cache_types = 0;
1781 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1782 
1783 
1784 	gpu_processor_id = dev->node_props.simd_id_base;
1785 
1786 	memset(cache_info, 0, sizeof(cache_info));
1787 	pcache_info = cache_info;
1788 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1789 	if (!num_of_cache_types) {
1790 		pr_warn("no cache info found\n");
1791 		return;
1792 	}
1793 
1794 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1795 	 * go through all available Compute Units.
1796 	 * The [i,j,k] loop will
1797 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1798 	 *			will parse through all available CU
1799 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1800 	 *			then it will consider only one CU from
1801 	 *			the shared unit
1802 	 */
1803 	start = ffs(kdev->xcc_mask) - 1;
1804 	end = start + NUM_XCC(kdev->xcc_mask);
1805 
1806 	for (ct = 0; ct < num_of_cache_types; ct++) {
1807 		cu_processor_id = gpu_processor_id;
1808 		if (pcache_info[ct].cache_level == 1) {
1809 			for (xcc = start; xcc < end; xcc++) {
1810 				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1811 					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1812 						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1813 
1814 							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1815 										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1816 										cu_processor_id, k);
1817 
1818 							if (ret < 0)
1819 								break;
1820 
1821 							if (!ret) {
1822 								num_of_entries++;
1823 								list_add_tail(&props_ext->list, &dev->cache_props);
1824 							}
1825 
1826 							/* Move to next CU block */
1827 							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1828 								gfx_info->max_cu_per_sh) ?
1829 								pcache_info[ct].num_cu_shared :
1830 								(gfx_info->max_cu_per_sh - k);
1831 							cu_processor_id += num_cu_shared;
1832 						}
1833 					}
1834 				}
1835 			}
1836 		} else {
1837 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1838 						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1839 
1840 			if (ret < 0)
1841 				break;
1842 
1843 			if (!ret) {
1844 				num_of_entries++;
1845 				list_add_tail(&props_ext->list, &dev->cache_props);
1846 			}
1847 		}
1848 	}
1849 	dev->node_props.caches_count += num_of_entries;
1850 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1851 }
1852 
1853 static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1854 					  struct kfd_topology_device **dev)
1855 {
1856 	int proximity_domain = ++topology_crat_proximity_domain;
1857 	struct list_head temp_topology_device_list;
1858 	void *crat_image = NULL;
1859 	size_t image_size = 0;
1860 	int res;
1861 
1862 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1863 					    COMPUTE_UNIT_GPU, gpu,
1864 					    proximity_domain);
1865 	if (res) {
1866 		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1867 		topology_crat_proximity_domain--;
1868 		goto err;
1869 	}
1870 
1871 	INIT_LIST_HEAD(&temp_topology_device_list);
1872 
1873 	res = kfd_parse_crat_table(crat_image,
1874 				   &temp_topology_device_list,
1875 				   proximity_domain);
1876 	if (res) {
1877 		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1878 		topology_crat_proximity_domain--;
1879 		goto err;
1880 	}
1881 
1882 	kfd_topology_update_device_list(&temp_topology_device_list,
1883 					&topology_device_list);
1884 
1885 	*dev = kfd_assign_gpu(gpu);
1886 	if (WARN_ON(!*dev)) {
1887 		res = -ENODEV;
1888 		goto err;
1889 	}
1890 
1891 	/* Fill the cache affinity information here for the GPUs
1892 	 * using VCRAT
1893 	 */
1894 	kfd_fill_cache_non_crat_info(*dev, gpu);
1895 
1896 	/* Update the SYSFS tree, since we added another topology
1897 	 * device
1898 	 */
1899 	res = kfd_topology_update_sysfs();
1900 	if (!res)
1901 		sys_props.generation_count++;
1902 	else
1903 		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1904 			res);
1905 
1906 err:
1907 	kfd_destroy_crat_image(crat_image);
1908 	return res;
1909 }
1910 
1911 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1912 {
1913 	bool firmware_supported = true;
1914 
1915 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1916 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1917 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1918 						AMDGPU_MES_API_VERSION_MASK) >>
1919 						AMDGPU_MES_API_VERSION_SHIFT;
1920 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1921 						AMDGPU_MES_VERSION_MASK;
1922 
1923 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1924 		goto out;
1925 	}
1926 
1927 	/*
1928 	 * Note: Any unlisted devices here are assumed to support exception handling.
1929 	 * Add additional checks here as needed.
1930 	 */
1931 	switch (KFD_GC_VERSION(dev->gpu)) {
1932 	case IP_VERSION(9, 0, 1):
1933 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1934 		break;
1935 	case IP_VERSION(9, 1, 0):
1936 	case IP_VERSION(9, 2, 1):
1937 	case IP_VERSION(9, 2, 2):
1938 	case IP_VERSION(9, 3, 0):
1939 	case IP_VERSION(9, 4, 0):
1940 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1941 		break;
1942 	case IP_VERSION(9, 4, 1):
1943 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1944 		break;
1945 	case IP_VERSION(9, 4, 2):
1946 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1947 		break;
1948 	case IP_VERSION(10, 1, 10):
1949 	case IP_VERSION(10, 1, 2):
1950 	case IP_VERSION(10, 1, 1):
1951 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1952 		break;
1953 	case IP_VERSION(10, 3, 0):
1954 	case IP_VERSION(10, 3, 2):
1955 	case IP_VERSION(10, 3, 1):
1956 	case IP_VERSION(10, 3, 4):
1957 	case IP_VERSION(10, 3, 5):
1958 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1959 		break;
1960 	case IP_VERSION(10, 1, 3):
1961 	case IP_VERSION(10, 3, 3):
1962 		firmware_supported = false;
1963 		break;
1964 	default:
1965 		break;
1966 	}
1967 
1968 out:
1969 	if (firmware_supported)
1970 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1971 }
1972 
1973 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1974 {
1975 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1976 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1977 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1978 
1979 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1980 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1981 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1982 
1983 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1984 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1985 
1986 	if (dev->gpu->adev->sdma.supported_reset & AMDGPU_RESET_TYPE_PER_QUEUE)
1987 		dev->node_props.capability2 |= HSA_CAP2_PER_SDMA_QUEUE_RESET_SUPPORTED;
1988 
1989 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1990 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
1991 		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
1992 			dev->node_props.debug_prop |=
1993 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1994 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1995 		else
1996 			dev->node_props.debug_prop |=
1997 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1998 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1999 
2000 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
2001 			dev->node_props.capability |=
2002 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2003 
2004 		dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2005 	} else {
2006 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2007 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2008 
2009 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2010 			dev->node_props.capability |=
2011 				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2012 	}
2013 
2014 	kfd_topology_set_dbg_firmware_support(dev);
2015 }
2016 
2017 int kfd_topology_add_device(struct kfd_node *gpu)
2018 {
2019 	uint32_t gpu_id;
2020 	struct kfd_topology_device *dev;
2021 	int res = 0;
2022 	int i;
2023 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2024 	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2025 	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2026 
2027 	if (gpu->xcp && !gpu->xcp->ddev) {
2028 		dev_warn(gpu->adev->dev,
2029 			 "Won't add GPU to topology since it has no drm node assigned.");
2030 		return 0;
2031 	} else {
2032 		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2033 	}
2034 
2035 	/* Check to see if this gpu device exists in the topology_device_list.
2036 	 * If so, assign the gpu to that device,
2037 	 * else create a Virtual CRAT for this gpu device and then parse that
2038 	 * CRAT to create a new topology device. Once created assign the gpu to
2039 	 * that topology device
2040 	 */
2041 	down_write(&topology_lock);
2042 	dev = kfd_assign_gpu(gpu);
2043 	if (!dev)
2044 		res = kfd_topology_add_device_locked(gpu, &dev);
2045 	up_write(&topology_lock);
2046 	if (res)
2047 		return res;
2048 
2049 	gpu_id = kfd_generate_gpu_id(gpu);
2050 	dev->gpu_id = gpu_id;
2051 	gpu->id = gpu_id;
2052 
2053 	kfd_dev_create_p2p_links();
2054 
2055 	/* TODO: Move the following lines to function
2056 	 *	kfd_add_non_crat_information
2057 	 */
2058 
2059 	/* Fill-in additional information that is not available in CRAT but
2060 	 * needed for the topology
2061 	 */
2062 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2063 		dev->node_props.name[i] = __tolower(asic_name[i]);
2064 		if (asic_name[i] == '\0')
2065 			break;
2066 	}
2067 	dev->node_props.name[i] = '\0';
2068 
2069 	dev->node_props.simd_arrays_per_engine =
2070 		gfx_info->max_sh_per_se;
2071 
2072 	dev->node_props.gfx_target_version =
2073 				gpu->kfd->device_info.gfx_target_version;
2074 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2075 	dev->node_props.device_id = gpu->adev->pdev->device;
2076 	dev->node_props.capability |=
2077 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2078 			HSA_CAP_ASIC_REVISION_MASK);
2079 
2080 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2081 	if (gpu->kfd->num_nodes > 1)
2082 		dev->node_props.location_id |= dev->gpu->node_id;
2083 
2084 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2085 	dev->node_props.max_engine_clk_fcompute =
2086 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2087 	dev->node_props.max_engine_clk_ccompute =
2088 		cpufreq_quick_get_max(0) / 1000;
2089 
2090 	if (gpu->xcp)
2091 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2092 	else
2093 		dev->node_props.drm_render_minor =
2094 				gpu->kfd->shared_resources.drm_render_minor;
2095 
2096 	dev->node_props.hive_id = gpu->kfd->hive_id;
2097 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2098 	dev->node_props.num_sdma_xgmi_engines =
2099 					kfd_get_num_xgmi_sdma_engines(gpu);
2100 	dev->node_props.num_sdma_queues_per_engine =
2101 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2102 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2103 	dev->node_props.num_gws = (dev->gpu->gws &&
2104 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2105 		dev->gpu->adev->gds.gws_size : 0;
2106 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2107 
2108 	kfd_fill_mem_clk_max_info(dev);
2109 	kfd_fill_iolink_non_crat_info(dev);
2110 
2111 	switch (dev->gpu->adev->asic_type) {
2112 	case CHIP_KAVERI:
2113 	case CHIP_HAWAII:
2114 	case CHIP_TONGA:
2115 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2116 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2117 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2118 		break;
2119 	case CHIP_CARRIZO:
2120 	case CHIP_FIJI:
2121 	case CHIP_POLARIS10:
2122 	case CHIP_POLARIS11:
2123 	case CHIP_POLARIS12:
2124 	case CHIP_VEGAM:
2125 		pr_debug("Adding doorbell packet type capability\n");
2126 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2127 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2128 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2129 		break;
2130 	default:
2131 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2132 			WARN(1, "Unexpected ASIC family %u",
2133 			     dev->gpu->adev->asic_type);
2134 		else
2135 			kfd_topology_set_capabilities(dev);
2136 	}
2137 
2138 	/*
2139 	 * Overwrite ATS capability according to needs_iommu_device to fix
2140 	 * potential missing corresponding bit in CRAT of BIOS.
2141 	 */
2142 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2143 
2144 	/* Fix errors in CZ CRAT.
2145 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2146 	 *		because it doesn't consider masked out CUs
2147 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2148 	 */
2149 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2150 		dev->node_props.simd_count =
2151 			cu_info->simd_per_cu * cu_info->number;
2152 		dev->node_props.max_waves_per_simd = 10;
2153 	}
2154 
2155 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2156 	dev->node_props.capability |=
2157 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2158 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2159 	dev->node_props.capability |=
2160 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2161 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2162 
2163 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2164 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2165 			HSA_CAP_RASEVENTNOTIFY : 0;
2166 
2167 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2168 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2169 
2170 	if (dev->gpu->adev->gmc.is_app_apu ||
2171 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2172 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2173 
2174 	kfd_queue_ctx_save_restore_size(dev);
2175 
2176 	kfd_debug_print_topology();
2177 
2178 	kfd_notify_gpu_change(gpu_id, 1);
2179 
2180 	return 0;
2181 }
2182 
2183 /**
2184  * kfd_topology_update_io_links() - Update IO links after device removal.
2185  * @proximity_domain: Proximity domain value of the dev being removed.
2186  *
2187  * The topology list currently is arranged in increasing order of
2188  * proximity domain.
2189  *
2190  * Two things need to be done when a device is removed:
2191  * 1. All the IO links to this device need to be removed.
2192  * 2. All nodes after the current device node need to move
2193  *    up once this device node is removed from the topology
2194  *    list. As a result, the proximity domain values for
2195  *    all nodes after the node being deleted reduce by 1.
2196  *    This would also cause the proximity domain values for
2197  *    io links to be updated based on new proximity domain
2198  *    values.
2199  *
2200  * Context: The caller must hold write topology_lock.
2201  */
2202 static void kfd_topology_update_io_links(int proximity_domain)
2203 {
2204 	struct kfd_topology_device *dev;
2205 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2206 
2207 	list_for_each_entry(dev, &topology_device_list, list) {
2208 		if (dev->proximity_domain > proximity_domain)
2209 			dev->proximity_domain--;
2210 
2211 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2212 			/*
2213 			 * If there is an io link to the dev being deleted
2214 			 * then remove that IO link also.
2215 			 */
2216 			if (iolink->node_to == proximity_domain) {
2217 				list_del(&iolink->list);
2218 				dev->node_props.io_links_count--;
2219 			} else {
2220 				if (iolink->node_from > proximity_domain)
2221 					iolink->node_from--;
2222 				if (iolink->node_to > proximity_domain)
2223 					iolink->node_to--;
2224 			}
2225 		}
2226 
2227 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2228 			/*
2229 			 * If there is a p2p link to the dev being deleted
2230 			 * then remove that p2p link also.
2231 			 */
2232 			if (p2plink->node_to == proximity_domain) {
2233 				list_del(&p2plink->list);
2234 				dev->node_props.p2p_links_count--;
2235 			} else {
2236 				if (p2plink->node_from > proximity_domain)
2237 					p2plink->node_from--;
2238 				if (p2plink->node_to > proximity_domain)
2239 					p2plink->node_to--;
2240 			}
2241 		}
2242 	}
2243 }
2244 
2245 int kfd_topology_remove_device(struct kfd_node *gpu)
2246 {
2247 	struct kfd_topology_device *dev, *tmp;
2248 	uint32_t gpu_id;
2249 	int res = -ENODEV;
2250 	int i = 0;
2251 
2252 	down_write(&topology_lock);
2253 
2254 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2255 		if (dev->gpu == gpu) {
2256 			gpu_id = dev->gpu_id;
2257 			kfd_remove_sysfs_node_entry(dev);
2258 			kfd_release_topology_device(dev);
2259 			sys_props.num_devices--;
2260 			kfd_topology_update_io_links(i);
2261 			topology_crat_proximity_domain = sys_props.num_devices-1;
2262 			sys_props.generation_count++;
2263 			res = 0;
2264 			if (kfd_topology_update_sysfs() < 0)
2265 				kfd_topology_release_sysfs();
2266 			break;
2267 		}
2268 		i++;
2269 	}
2270 
2271 	up_write(&topology_lock);
2272 
2273 	if (!res)
2274 		kfd_notify_gpu_change(gpu_id, 0);
2275 
2276 	return res;
2277 }
2278 
2279 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2280  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2281  *	returned through @kdev
2282  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2283  *		-1: If end of list
2284  */
2285 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2286 {
2287 
2288 	struct kfd_topology_device *top_dev;
2289 	uint8_t device_idx = 0;
2290 
2291 	*kdev = NULL;
2292 	down_read(&topology_lock);
2293 
2294 	list_for_each_entry(top_dev, &topology_device_list, list) {
2295 		if (device_idx == idx) {
2296 			*kdev = top_dev->gpu;
2297 			up_read(&topology_lock);
2298 			return 0;
2299 		}
2300 
2301 		device_idx++;
2302 	}
2303 
2304 	up_read(&topology_lock);
2305 
2306 	return -1;
2307 
2308 }
2309 
2310 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2311 {
2312 	int first_cpu_of_numa_node;
2313 
2314 	if (!cpumask || cpumask == cpu_none_mask)
2315 		return -1;
2316 	first_cpu_of_numa_node = cpumask_first(cpumask);
2317 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2318 		return -1;
2319 #ifdef CONFIG_X86_64
2320 	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2321 #else
2322 	return first_cpu_of_numa_node;
2323 #endif
2324 }
2325 
2326 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2327  *	of the given NUMA node (numa_node_id)
2328  * Return -1 on failure
2329  */
2330 int kfd_numa_node_to_apic_id(int numa_node_id)
2331 {
2332 	if (numa_node_id == -1) {
2333 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2334 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2335 	}
2336 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2337 }
2338 
2339 #if defined(CONFIG_DEBUG_FS)
2340 
2341 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2342 {
2343 	struct kfd_topology_device *dev;
2344 	unsigned int i = 0;
2345 	int r = 0;
2346 
2347 	down_read(&topology_lock);
2348 
2349 	list_for_each_entry(dev, &topology_device_list, list) {
2350 		if (!dev->gpu) {
2351 			i++;
2352 			continue;
2353 		}
2354 
2355 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2356 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2357 		if (r)
2358 			break;
2359 	}
2360 
2361 	up_read(&topology_lock);
2362 
2363 	return r;
2364 }
2365 
2366 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2367 {
2368 	struct kfd_topology_device *dev;
2369 	unsigned int i = 0;
2370 	int r = 0;
2371 
2372 	down_read(&topology_lock);
2373 
2374 	list_for_each_entry(dev, &topology_device_list, list) {
2375 		if (!dev->gpu) {
2376 			i++;
2377 			continue;
2378 		}
2379 
2380 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2381 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2382 		if (r)
2383 			break;
2384 	}
2385 
2386 	up_read(&topology_lock);
2387 
2388 	return r;
2389 }
2390 
2391 #endif
2392