xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c (revision 237f1bbfe3d84a74ad8e6e207660bdb3e6d9a84d)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 #include <linux/crc16.h>
35 
36 #include "kfd_priv.h"
37 #include "kfd_crat.h"
38 #include "kfd_topology.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_svm.h"
41 #include "kfd_debug.h"
42 #include "amdgpu_amdkfd.h"
43 #include "amdgpu_ras.h"
44 #include "amdgpu.h"
45 
46 /* topology_device_list - Master list of all topology devices */
47 static struct list_head topology_device_list;
48 static struct kfd_system_properties sys_props;
49 
50 static DECLARE_RWSEM(topology_lock);
51 static uint32_t topology_crat_proximity_domain;
52 
kfd_topology_device_by_proximity_domain_no_lock(uint32_t proximity_domain)53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
54 						uint32_t proximity_domain)
55 {
56 	struct kfd_topology_device *top_dev;
57 	struct kfd_topology_device *device = NULL;
58 
59 	list_for_each_entry(top_dev, &topology_device_list, list)
60 		if (top_dev->proximity_domain == proximity_domain) {
61 			device = top_dev;
62 			break;
63 		}
64 
65 	return device;
66 }
67 
kfd_topology_device_by_proximity_domain(uint32_t proximity_domain)68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
69 						uint32_t proximity_domain)
70 {
71 	struct kfd_topology_device *device = NULL;
72 
73 	down_read(&topology_lock);
74 
75 	device = kfd_topology_device_by_proximity_domain_no_lock(
76 							proximity_domain);
77 	up_read(&topology_lock);
78 
79 	return device;
80 }
81 
kfd_topology_device_by_id(uint32_t gpu_id)82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
83 {
84 	struct kfd_topology_device *top_dev = NULL;
85 	struct kfd_topology_device *ret = NULL;
86 
87 	down_read(&topology_lock);
88 
89 	list_for_each_entry(top_dev, &topology_device_list, list)
90 		if (top_dev->gpu_id == gpu_id) {
91 			ret = top_dev;
92 			break;
93 		}
94 
95 	up_read(&topology_lock);
96 
97 	return ret;
98 }
99 
kfd_device_by_id(uint32_t gpu_id)100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
101 {
102 	struct kfd_topology_device *top_dev;
103 
104 	top_dev = kfd_topology_device_by_id(gpu_id);
105 	if (!top_dev)
106 		return NULL;
107 
108 	return top_dev->gpu;
109 }
110 
111 /* Called with write topology_lock acquired */
kfd_release_topology_device(struct kfd_topology_device * dev)112 static void kfd_release_topology_device(struct kfd_topology_device *dev)
113 {
114 	struct kfd_mem_properties *mem;
115 	struct kfd_cache_properties *cache;
116 	struct kfd_iolink_properties *iolink;
117 	struct kfd_iolink_properties *p2plink;
118 	struct kfd_perf_properties *perf;
119 
120 	list_del(&dev->list);
121 
122 	while (dev->mem_props.next != &dev->mem_props) {
123 		mem = container_of(dev->mem_props.next,
124 				struct kfd_mem_properties, list);
125 		list_del(&mem->list);
126 		kfree(mem);
127 	}
128 
129 	while (dev->cache_props.next != &dev->cache_props) {
130 		cache = container_of(dev->cache_props.next,
131 				struct kfd_cache_properties, list);
132 		list_del(&cache->list);
133 		kfree(cache);
134 	}
135 
136 	while (dev->io_link_props.next != &dev->io_link_props) {
137 		iolink = container_of(dev->io_link_props.next,
138 				struct kfd_iolink_properties, list);
139 		list_del(&iolink->list);
140 		kfree(iolink);
141 	}
142 
143 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
144 		p2plink = container_of(dev->p2p_link_props.next,
145 				struct kfd_iolink_properties, list);
146 		list_del(&p2plink->list);
147 		kfree(p2plink);
148 	}
149 
150 	while (dev->perf_props.next != &dev->perf_props) {
151 		perf = container_of(dev->perf_props.next,
152 				struct kfd_perf_properties, list);
153 		list_del(&perf->list);
154 		kfree(perf);
155 	}
156 
157 	kfree(dev);
158 }
159 
kfd_release_topology_device_list(struct list_head * device_list)160 void kfd_release_topology_device_list(struct list_head *device_list)
161 {
162 	struct kfd_topology_device *dev;
163 
164 	while (!list_empty(device_list)) {
165 		dev = list_first_entry(device_list,
166 				       struct kfd_topology_device, list);
167 		kfd_release_topology_device(dev);
168 	}
169 }
170 
kfd_release_live_view(void)171 static void kfd_release_live_view(void)
172 {
173 	kfd_release_topology_device_list(&topology_device_list);
174 	memset(&sys_props, 0, sizeof(sys_props));
175 }
176 
kfd_create_topology_device(struct list_head * device_list)177 struct kfd_topology_device *kfd_create_topology_device(
178 				struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	dev = kfd_alloc_struct(dev);
183 	if (!dev) {
184 		pr_err("No memory to allocate a topology device");
185 		return NULL;
186 	}
187 
188 	INIT_LIST_HEAD(&dev->mem_props);
189 	INIT_LIST_HEAD(&dev->cache_props);
190 	INIT_LIST_HEAD(&dev->io_link_props);
191 	INIT_LIST_HEAD(&dev->p2p_link_props);
192 	INIT_LIST_HEAD(&dev->perf_props);
193 
194 	list_add_tail(&dev->list, device_list);
195 
196 	return dev;
197 }
198 
199 
200 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
201 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
202 				  fmt, __VA_ARGS__))
203 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
204 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
205 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
206 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
207 #define sysfs_show_32bit_val(buffer, offs, value) \
208 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
209 #define sysfs_show_str_val(buffer, offs, value) \
210 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
211 
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)212 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
213 		char *buffer)
214 {
215 	int offs = 0;
216 
217 	/* Making sure that the buffer is an empty string */
218 	buffer[0] = 0;
219 
220 	if (attr == &sys_props.attr_genid) {
221 		sysfs_show_32bit_val(buffer, offs,
222 				     sys_props.generation_count);
223 	} else if (attr == &sys_props.attr_props) {
224 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
225 				      sys_props.platform_oem);
226 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
227 				      sys_props.platform_id);
228 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
229 				      sys_props.platform_rev);
230 	} else {
231 		offs = -EINVAL;
232 	}
233 
234 	return offs;
235 }
236 
kfd_topology_kobj_release(struct kobject * kobj)237 static void kfd_topology_kobj_release(struct kobject *kobj)
238 {
239 	kfree(kobj);
240 }
241 
242 static const struct sysfs_ops sysprops_ops = {
243 	.show = sysprops_show,
244 };
245 
246 static const struct kobj_type sysprops_type = {
247 	.release = kfd_topology_kobj_release,
248 	.sysfs_ops = &sysprops_ops,
249 };
250 
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)251 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
252 		char *buffer)
253 {
254 	int offs = 0;
255 	struct kfd_iolink_properties *iolink;
256 
257 	/* Making sure that the buffer is an empty string */
258 	buffer[0] = 0;
259 
260 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
261 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
262 		return -EPERM;
263 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
264 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
265 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
266 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
267 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
268 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
269 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
270 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
271 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
272 			      iolink->min_bandwidth);
273 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
274 			      iolink->max_bandwidth);
275 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
276 			      iolink->rec_transfer_size);
277 	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
278 			      iolink->rec_sdma_eng_id_mask);
279 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
280 
281 	return offs;
282 }
283 
284 static const struct sysfs_ops iolink_ops = {
285 	.show = iolink_show,
286 };
287 
288 static const struct kobj_type iolink_type = {
289 	.release = kfd_topology_kobj_release,
290 	.sysfs_ops = &iolink_ops,
291 };
292 
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)293 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
294 		char *buffer)
295 {
296 	int offs = 0;
297 	struct kfd_mem_properties *mem;
298 
299 	/* Making sure that the buffer is an empty string */
300 	buffer[0] = 0;
301 
302 	mem = container_of(attr, struct kfd_mem_properties, attr);
303 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
304 		return -EPERM;
305 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
306 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
307 			      mem->size_in_bytes);
308 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
309 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
310 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
311 			      mem->mem_clk_max);
312 
313 	return offs;
314 }
315 
316 static const struct sysfs_ops mem_ops = {
317 	.show = mem_show,
318 };
319 
320 static const struct kobj_type mem_type = {
321 	.release = kfd_topology_kobj_release,
322 	.sysfs_ops = &mem_ops,
323 };
324 
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)325 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
326 		char *buffer)
327 {
328 	int offs = 0;
329 	uint32_t i, j;
330 	struct kfd_cache_properties *cache;
331 
332 	/* Making sure that the buffer is an empty string */
333 	buffer[0] = 0;
334 	cache = container_of(attr, struct kfd_cache_properties, attr);
335 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
336 		return -EPERM;
337 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
338 			cache->processor_id_low);
339 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
340 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
341 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
342 			      cache->cacheline_size);
343 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
344 			      cache->cachelines_per_tag);
345 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
346 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
347 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
348 
349 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
350 	for (i = 0; i < cache->sibling_map_size; i++)
351 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
352 			/* Check each bit */
353 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
354 						(cache->sibling_map[i] >> j) & 1);
355 
356 	/* Replace the last "," with end of line */
357 	buffer[offs-1] = '\n';
358 	return offs;
359 }
360 
361 static const struct sysfs_ops cache_ops = {
362 	.show = kfd_cache_show,
363 };
364 
365 static const struct kobj_type cache_type = {
366 	.release = kfd_topology_kobj_release,
367 	.sysfs_ops = &cache_ops,
368 };
369 
370 /****** Sysfs of Performance Counters ******/
371 
372 struct kfd_perf_attr {
373 	struct kobj_attribute attr;
374 	uint32_t data;
375 };
376 
perf_show(struct kobject * kobj,struct kobj_attribute * attrs,char * buf)377 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
378 			char *buf)
379 {
380 	int offs = 0;
381 	struct kfd_perf_attr *attr;
382 
383 	buf[0] = 0;
384 	attr = container_of(attrs, struct kfd_perf_attr, attr);
385 	if (!attr->data) /* invalid data for PMC */
386 		return 0;
387 	else
388 		return sysfs_show_32bit_val(buf, offs, attr->data);
389 }
390 
391 #define KFD_PERF_DESC(_name, _data)			\
392 {							\
393 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
394 	.data = _data,					\
395 }
396 
397 static struct kfd_perf_attr perf_attr_iommu[] = {
398 	KFD_PERF_DESC(max_concurrent, 0),
399 	KFD_PERF_DESC(num_counters, 0),
400 	KFD_PERF_DESC(counter_ids, 0),
401 };
402 /****************************************/
403 
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)404 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
405 		char *buffer)
406 {
407 	int offs = 0;
408 	struct kfd_topology_device *dev;
409 	uint32_t log_max_watch_addr;
410 
411 	/* Making sure that the buffer is an empty string */
412 	buffer[0] = 0;
413 
414 	if (strcmp(attr->name, "gpu_id") == 0) {
415 		dev = container_of(attr, struct kfd_topology_device,
416 				attr_gpuid);
417 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
418 			return -EPERM;
419 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
420 	}
421 
422 	if (strcmp(attr->name, "name") == 0) {
423 		dev = container_of(attr, struct kfd_topology_device,
424 				attr_name);
425 
426 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
427 			return -EPERM;
428 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
429 	}
430 
431 	dev = container_of(attr, struct kfd_topology_device,
432 			attr_props);
433 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
434 		return -EPERM;
435 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
436 			      dev->node_props.cpu_cores_count);
437 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
438 			      dev->gpu ? dev->node_props.simd_count : 0);
439 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
440 			      dev->node_props.mem_banks_count);
441 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
442 			      dev->node_props.caches_count);
443 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
444 			      dev->node_props.io_links_count);
445 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
446 			      dev->node_props.p2p_links_count);
447 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
448 			      dev->node_props.cpu_core_id_base);
449 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
450 			      dev->node_props.simd_id_base);
451 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
452 			      dev->node_props.max_waves_per_simd);
453 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
454 			      dev->node_props.lds_size_in_kb);
455 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
456 			      dev->node_props.gds_size_in_kb);
457 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
458 			      dev->node_props.num_gws);
459 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
460 			      dev->node_props.wave_front_size);
461 	sysfs_show_32bit_prop(buffer, offs, "array_count",
462 			      dev->gpu ? (dev->node_props.array_count *
463 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
464 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
465 			      dev->node_props.simd_arrays_per_engine);
466 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
467 			      dev->node_props.cu_per_simd_array);
468 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
469 			      dev->node_props.simd_per_cu);
470 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
471 			      dev->node_props.max_slots_scratch_cu);
472 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
473 			      dev->node_props.gfx_target_version);
474 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
475 			      dev->node_props.vendor_id);
476 	sysfs_show_32bit_prop(buffer, offs, "device_id",
477 			      dev->node_props.device_id);
478 	sysfs_show_32bit_prop(buffer, offs, "location_id",
479 			      dev->node_props.location_id);
480 	sysfs_show_32bit_prop(buffer, offs, "domain",
481 			      dev->node_props.domain);
482 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
483 			      dev->node_props.drm_render_minor);
484 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
485 			      dev->node_props.hive_id);
486 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
487 			      dev->node_props.num_sdma_engines);
488 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
489 			      dev->node_props.num_sdma_xgmi_engines);
490 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
491 			      dev->node_props.num_sdma_queues_per_engine);
492 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
493 			      dev->node_props.num_cp_queues);
494 	sysfs_show_32bit_prop(buffer, offs, "cwsr_size",
495 			      dev->node_props.cwsr_size);
496 	sysfs_show_32bit_prop(buffer, offs, "ctl_stack_size",
497 			      dev->node_props.ctl_stack_size);
498 
499 	if (dev->gpu) {
500 		log_max_watch_addr =
501 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
502 
503 		if (log_max_watch_addr) {
504 			dev->node_props.capability |=
505 					HSA_CAP_WATCH_POINTS_SUPPORTED;
506 
507 			dev->node_props.capability |=
508 				((log_max_watch_addr <<
509 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
510 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
511 		}
512 
513 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
514 			dev->node_props.capability |=
515 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
516 
517 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0) &&
518 			(dev->gpu->adev->sdma.supported_reset & AMDGPU_RESET_TYPE_PER_QUEUE))
519 				dev->node_props.capability2 |= HSA_CAP2_PER_SDMA_QUEUE_RESET_SUPPORTED;
520 
521 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
522 			dev->node_props.max_engine_clk_fcompute);
523 
524 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
525 
526 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
527 				      dev->gpu->kfd->mec_fw_version);
528 		sysfs_show_32bit_prop(buffer, offs, "capability",
529 				      dev->node_props.capability);
530 		sysfs_show_32bit_prop(buffer, offs, "capability2",
531 				      dev->node_props.capability2);
532 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
533 				      dev->node_props.debug_prop);
534 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
535 				      dev->gpu->kfd->sdma_fw_version);
536 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
537 				      dev->gpu->xcp &&
538 				      (dev->gpu->xcp->xcp_mgr->mode !=
539 				       AMDGPU_SPX_PARTITION_MODE) ?
540 				      dev->gpu->xcp->unique_id :
541 				      dev->gpu->adev->unique_id);
542 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
543 				      NUM_XCC(dev->gpu->xcc_mask));
544 	}
545 
546 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
547 				     cpufreq_quick_get_max(0)/1000);
548 }
549 
550 static const struct sysfs_ops node_ops = {
551 	.show = node_show,
552 };
553 
554 static const struct kobj_type node_type = {
555 	.release = kfd_topology_kobj_release,
556 	.sysfs_ops = &node_ops,
557 };
558 
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)559 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
560 {
561 	sysfs_remove_file(kobj, attr);
562 	kobject_del(kobj);
563 	kobject_put(kobj);
564 }
565 
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)566 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
567 {
568 	struct kfd_iolink_properties *p2plink;
569 	struct kfd_iolink_properties *iolink;
570 	struct kfd_cache_properties *cache;
571 	struct kfd_mem_properties *mem;
572 	struct kfd_perf_properties *perf;
573 
574 	if (dev->kobj_iolink) {
575 		list_for_each_entry(iolink, &dev->io_link_props, list)
576 			if (iolink->kobj) {
577 				kfd_remove_sysfs_file(iolink->kobj,
578 							&iolink->attr);
579 				iolink->kobj = NULL;
580 			}
581 		kobject_del(dev->kobj_iolink);
582 		kobject_put(dev->kobj_iolink);
583 		dev->kobj_iolink = NULL;
584 	}
585 
586 	if (dev->kobj_p2plink) {
587 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
588 			if (p2plink->kobj) {
589 				kfd_remove_sysfs_file(p2plink->kobj,
590 							&p2plink->attr);
591 				p2plink->kobj = NULL;
592 			}
593 		kobject_del(dev->kobj_p2plink);
594 		kobject_put(dev->kobj_p2plink);
595 		dev->kobj_p2plink = NULL;
596 	}
597 
598 	if (dev->kobj_cache) {
599 		list_for_each_entry(cache, &dev->cache_props, list)
600 			if (cache->kobj) {
601 				kfd_remove_sysfs_file(cache->kobj,
602 							&cache->attr);
603 				cache->kobj = NULL;
604 			}
605 		kobject_del(dev->kobj_cache);
606 		kobject_put(dev->kobj_cache);
607 		dev->kobj_cache = NULL;
608 	}
609 
610 	if (dev->kobj_mem) {
611 		list_for_each_entry(mem, &dev->mem_props, list)
612 			if (mem->kobj) {
613 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
614 				mem->kobj = NULL;
615 			}
616 		kobject_del(dev->kobj_mem);
617 		kobject_put(dev->kobj_mem);
618 		dev->kobj_mem = NULL;
619 	}
620 
621 	if (dev->kobj_perf) {
622 		list_for_each_entry(perf, &dev->perf_props, list) {
623 			kfree(perf->attr_group);
624 			perf->attr_group = NULL;
625 		}
626 		kobject_del(dev->kobj_perf);
627 		kobject_put(dev->kobj_perf);
628 		dev->kobj_perf = NULL;
629 	}
630 
631 	if (dev->kobj_node) {
632 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
633 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
634 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
635 		kobject_del(dev->kobj_node);
636 		kobject_put(dev->kobj_node);
637 		dev->kobj_node = NULL;
638 	}
639 }
640 
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)641 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
642 		uint32_t id)
643 {
644 	struct kfd_iolink_properties *p2plink;
645 	struct kfd_iolink_properties *iolink;
646 	struct kfd_cache_properties *cache;
647 	struct kfd_mem_properties *mem;
648 	struct kfd_perf_properties *perf;
649 	int ret;
650 	uint32_t i, num_attrs;
651 	struct attribute **attrs;
652 
653 	if (WARN_ON(dev->kobj_node))
654 		return -EEXIST;
655 
656 	/*
657 	 * Creating the sysfs folders
658 	 */
659 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
660 	if (!dev->kobj_node)
661 		return -ENOMEM;
662 
663 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
664 			sys_props.kobj_nodes, "%d", id);
665 	if (ret < 0) {
666 		kobject_put(dev->kobj_node);
667 		return ret;
668 	}
669 
670 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
671 	if (!dev->kobj_mem)
672 		return -ENOMEM;
673 
674 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
675 	if (!dev->kobj_cache)
676 		return -ENOMEM;
677 
678 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
679 	if (!dev->kobj_iolink)
680 		return -ENOMEM;
681 
682 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
683 	if (!dev->kobj_p2plink)
684 		return -ENOMEM;
685 
686 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
687 	if (!dev->kobj_perf)
688 		return -ENOMEM;
689 
690 	/*
691 	 * Creating sysfs files for node properties
692 	 */
693 	dev->attr_gpuid.name = "gpu_id";
694 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
695 	sysfs_attr_init(&dev->attr_gpuid);
696 	dev->attr_name.name = "name";
697 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
698 	sysfs_attr_init(&dev->attr_name);
699 	dev->attr_props.name = "properties";
700 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
701 	sysfs_attr_init(&dev->attr_props);
702 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
703 	if (ret < 0)
704 		return ret;
705 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
706 	if (ret < 0)
707 		return ret;
708 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
709 	if (ret < 0)
710 		return ret;
711 
712 	i = 0;
713 	list_for_each_entry(mem, &dev->mem_props, list) {
714 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
715 		if (!mem->kobj)
716 			return -ENOMEM;
717 		ret = kobject_init_and_add(mem->kobj, &mem_type,
718 				dev->kobj_mem, "%d", i);
719 		if (ret < 0) {
720 			kobject_put(mem->kobj);
721 			return ret;
722 		}
723 
724 		mem->attr.name = "properties";
725 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
726 		sysfs_attr_init(&mem->attr);
727 		ret = sysfs_create_file(mem->kobj, &mem->attr);
728 		if (ret < 0)
729 			return ret;
730 		i++;
731 	}
732 
733 	i = 0;
734 	list_for_each_entry(cache, &dev->cache_props, list) {
735 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
736 		if (!cache->kobj)
737 			return -ENOMEM;
738 		ret = kobject_init_and_add(cache->kobj, &cache_type,
739 				dev->kobj_cache, "%d", i);
740 		if (ret < 0) {
741 			kobject_put(cache->kobj);
742 			return ret;
743 		}
744 
745 		cache->attr.name = "properties";
746 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
747 		sysfs_attr_init(&cache->attr);
748 		ret = sysfs_create_file(cache->kobj, &cache->attr);
749 		if (ret < 0)
750 			return ret;
751 		i++;
752 	}
753 
754 	i = 0;
755 	list_for_each_entry(iolink, &dev->io_link_props, list) {
756 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
757 		if (!iolink->kobj)
758 			return -ENOMEM;
759 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
760 				dev->kobj_iolink, "%d", i);
761 		if (ret < 0) {
762 			kobject_put(iolink->kobj);
763 			return ret;
764 		}
765 
766 		iolink->attr.name = "properties";
767 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
768 		sysfs_attr_init(&iolink->attr);
769 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
770 		if (ret < 0)
771 			return ret;
772 		i++;
773 	}
774 
775 	i = 0;
776 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
777 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
778 		if (!p2plink->kobj)
779 			return -ENOMEM;
780 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
781 				dev->kobj_p2plink, "%d", i);
782 		if (ret < 0) {
783 			kobject_put(p2plink->kobj);
784 			return ret;
785 		}
786 
787 		p2plink->attr.name = "properties";
788 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
789 		sysfs_attr_init(&p2plink->attr);
790 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
791 		if (ret < 0)
792 			return ret;
793 		i++;
794 	}
795 
796 	/* All hardware blocks have the same number of attributes. */
797 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
798 	list_for_each_entry(perf, &dev->perf_props, list) {
799 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
800 			* num_attrs + sizeof(struct attribute_group),
801 			GFP_KERNEL);
802 		if (!perf->attr_group)
803 			return -ENOMEM;
804 
805 		attrs = (struct attribute **)(perf->attr_group + 1);
806 		if (!strcmp(perf->block_name, "iommu")) {
807 		/* Information of IOMMU's num_counters and counter_ids is shown
808 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
809 		 * duplicate here.
810 		 */
811 			perf_attr_iommu[0].data = perf->max_concurrent;
812 			for (i = 0; i < num_attrs; i++)
813 				attrs[i] = &perf_attr_iommu[i].attr.attr;
814 		}
815 		perf->attr_group->name = perf->block_name;
816 		perf->attr_group->attrs = attrs;
817 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
818 		if (ret < 0)
819 			return ret;
820 	}
821 
822 	return 0;
823 }
824 
825 /* Called with write topology lock acquired */
kfd_build_sysfs_node_tree(void)826 static int kfd_build_sysfs_node_tree(void)
827 {
828 	struct kfd_topology_device *dev;
829 	int ret;
830 	uint32_t i = 0;
831 
832 	list_for_each_entry(dev, &topology_device_list, list) {
833 		ret = kfd_build_sysfs_node_entry(dev, i);
834 		if (ret < 0)
835 			return ret;
836 		i++;
837 	}
838 
839 	return 0;
840 }
841 
842 /* Called with write topology lock acquired */
kfd_remove_sysfs_node_tree(void)843 static void kfd_remove_sysfs_node_tree(void)
844 {
845 	struct kfd_topology_device *dev;
846 
847 	list_for_each_entry(dev, &topology_device_list, list)
848 		kfd_remove_sysfs_node_entry(dev);
849 }
850 
kfd_topology_update_sysfs(void)851 static int kfd_topology_update_sysfs(void)
852 {
853 	int ret;
854 
855 	if (!sys_props.kobj_topology) {
856 		sys_props.kobj_topology =
857 				kfd_alloc_struct(sys_props.kobj_topology);
858 		if (!sys_props.kobj_topology)
859 			return -ENOMEM;
860 
861 		ret = kobject_init_and_add(sys_props.kobj_topology,
862 				&sysprops_type,  &kfd_device->kobj,
863 				"topology");
864 		if (ret < 0) {
865 			kobject_put(sys_props.kobj_topology);
866 			return ret;
867 		}
868 
869 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
870 				sys_props.kobj_topology);
871 		if (!sys_props.kobj_nodes)
872 			return -ENOMEM;
873 
874 		sys_props.attr_genid.name = "generation_id";
875 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
876 		sysfs_attr_init(&sys_props.attr_genid);
877 		ret = sysfs_create_file(sys_props.kobj_topology,
878 				&sys_props.attr_genid);
879 		if (ret < 0)
880 			return ret;
881 
882 		sys_props.attr_props.name = "system_properties";
883 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
884 		sysfs_attr_init(&sys_props.attr_props);
885 		ret = sysfs_create_file(sys_props.kobj_topology,
886 				&sys_props.attr_props);
887 		if (ret < 0)
888 			return ret;
889 	}
890 
891 	kfd_remove_sysfs_node_tree();
892 
893 	return kfd_build_sysfs_node_tree();
894 }
895 
kfd_topology_release_sysfs(void)896 static void kfd_topology_release_sysfs(void)
897 {
898 	kfd_remove_sysfs_node_tree();
899 	if (sys_props.kobj_topology) {
900 		sysfs_remove_file(sys_props.kobj_topology,
901 				&sys_props.attr_genid);
902 		sysfs_remove_file(sys_props.kobj_topology,
903 				&sys_props.attr_props);
904 		if (sys_props.kobj_nodes) {
905 			kobject_del(sys_props.kobj_nodes);
906 			kobject_put(sys_props.kobj_nodes);
907 			sys_props.kobj_nodes = NULL;
908 		}
909 		kobject_del(sys_props.kobj_topology);
910 		kobject_put(sys_props.kobj_topology);
911 		sys_props.kobj_topology = NULL;
912 	}
913 }
914 
915 /* Called with write topology_lock acquired */
kfd_topology_update_device_list(struct list_head * temp_list,struct list_head * master_list)916 static void kfd_topology_update_device_list(struct list_head *temp_list,
917 					struct list_head *master_list)
918 {
919 	while (!list_empty(temp_list)) {
920 		list_move_tail(temp_list->next, master_list);
921 		sys_props.num_devices++;
922 	}
923 }
924 
kfd_debug_print_topology(void)925 static void kfd_debug_print_topology(void)
926 {
927 	struct kfd_topology_device *dev;
928 
929 	down_read(&topology_lock);
930 
931 	dev = list_last_entry(&topology_device_list,
932 			struct kfd_topology_device, list);
933 	if (dev) {
934 		if (dev->node_props.cpu_cores_count &&
935 				dev->node_props.simd_count) {
936 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
937 				dev->node_props.device_id,
938 				dev->node_props.vendor_id);
939 		} else if (dev->node_props.cpu_cores_count)
940 			pr_info("Topology: Add CPU node\n");
941 		else if (dev->node_props.simd_count)
942 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
943 				dev->node_props.device_id,
944 				dev->node_props.vendor_id);
945 	}
946 	up_read(&topology_lock);
947 }
948 
949 /* Helper function for intializing platform_xx members of
950  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
951  */
kfd_update_system_properties(void)952 static void kfd_update_system_properties(void)
953 {
954 	struct kfd_topology_device *dev;
955 
956 	down_read(&topology_lock);
957 	dev = list_last_entry(&topology_device_list,
958 			struct kfd_topology_device, list);
959 	if (dev) {
960 		sys_props.platform_id = dev->oem_id64;
961 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
962 		sys_props.platform_rev = dev->oem_revision;
963 	}
964 	up_read(&topology_lock);
965 }
966 
find_system_memory(const struct dmi_header * dm,void * private)967 static void find_system_memory(const struct dmi_header *dm, void *private)
968 {
969 	struct dmi_mem_device *memdev = container_of(dm, struct dmi_mem_device, header);
970 	struct kfd_mem_properties *mem;
971 	struct kfd_topology_device *kdev =
972 		(struct kfd_topology_device *)private;
973 
974 	if (memdev->header.type != DMI_ENTRY_MEM_DEVICE)
975 		return;
976 	if (memdev->header.length < sizeof(struct dmi_mem_device))
977 		return;
978 
979 	list_for_each_entry(mem, &kdev->mem_props, list) {
980 		if (memdev->total_width != 0xFFFF && memdev->total_width != 0)
981 			mem->width = memdev->total_width;
982 		if (memdev->speed != 0)
983 			mem->mem_clk_max = memdev->speed;
984 	}
985 }
986 
987 /* kfd_add_non_crat_information - Add information that is not currently
988  *	defined in CRAT but is necessary for KFD topology
989  * @dev - topology device to which addition info is added
990  */
kfd_add_non_crat_information(struct kfd_topology_device * kdev)991 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
992 {
993 	/* Check if CPU only node. */
994 	if (!kdev->gpu) {
995 		/* Add system memory information */
996 		dmi_walk(find_system_memory, kdev);
997 	}
998 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
999 }
1000 
kfd_topology_init(void)1001 int kfd_topology_init(void)
1002 {
1003 	void *crat_image = NULL;
1004 	size_t image_size = 0;
1005 	int ret;
1006 	struct list_head temp_topology_device_list;
1007 	int cpu_only_node = 0;
1008 	struct kfd_topology_device *kdev;
1009 	int proximity_domain;
1010 
1011 	/* topology_device_list - Master list of all topology devices
1012 	 * temp_topology_device_list - temporary list created while parsing CRAT
1013 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1014 	 * topology_device_list
1015 	 */
1016 
1017 	/* Initialize the head for the both the lists */
1018 	INIT_LIST_HEAD(&topology_device_list);
1019 	INIT_LIST_HEAD(&temp_topology_device_list);
1020 	init_rwsem(&topology_lock);
1021 
1022 	memset(&sys_props, 0, sizeof(sys_props));
1023 
1024 	/* Proximity domains in ACPI CRAT tables start counting at
1025 	 * 0. The same should be true for virtual CRAT tables created
1026 	 * at this stage. GPUs added later in kfd_topology_add_device
1027 	 * use a counter.
1028 	 */
1029 	proximity_domain = 0;
1030 
1031 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1032 					    COMPUTE_UNIT_CPU, NULL,
1033 					    proximity_domain);
1034 	cpu_only_node = 1;
1035 	if (ret) {
1036 		pr_err("Error creating VCRAT table for CPU\n");
1037 		return ret;
1038 	}
1039 
1040 	ret = kfd_parse_crat_table(crat_image,
1041 				   &temp_topology_device_list,
1042 				   proximity_domain);
1043 	if (ret) {
1044 		pr_err("Error parsing VCRAT table for CPU\n");
1045 		goto err;
1046 	}
1047 
1048 	kdev = list_first_entry(&temp_topology_device_list,
1049 				struct kfd_topology_device, list);
1050 
1051 	down_write(&topology_lock);
1052 	kfd_topology_update_device_list(&temp_topology_device_list,
1053 					&topology_device_list);
1054 	topology_crat_proximity_domain = sys_props.num_devices-1;
1055 	ret = kfd_topology_update_sysfs();
1056 	up_write(&topology_lock);
1057 
1058 	if (!ret) {
1059 		sys_props.generation_count++;
1060 		kfd_update_system_properties();
1061 		kfd_debug_print_topology();
1062 	} else
1063 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1064 
1065 	/* For nodes with GPU, this information gets added
1066 	 * when GPU is detected (kfd_topology_add_device).
1067 	 */
1068 	if (cpu_only_node) {
1069 		/* Add additional information to CPU only node created above */
1070 		down_write(&topology_lock);
1071 		kdev = list_first_entry(&topology_device_list,
1072 				struct kfd_topology_device, list);
1073 		up_write(&topology_lock);
1074 		kfd_add_non_crat_information(kdev);
1075 	}
1076 
1077 err:
1078 	kfd_destroy_crat_image(crat_image);
1079 	return ret;
1080 }
1081 
kfd_topology_shutdown(void)1082 void kfd_topology_shutdown(void)
1083 {
1084 	down_write(&topology_lock);
1085 	kfd_topology_release_sysfs();
1086 	kfd_release_live_view();
1087 	up_write(&topology_lock);
1088 }
1089 
kfd_generate_gpu_id(struct kfd_node * gpu)1090 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1091 {
1092 	uint32_t gpu_id;
1093 	uint32_t buf[8];
1094 	uint64_t local_mem_size;
1095 	struct kfd_topology_device *dev;
1096 	bool is_unique;
1097 	uint8_t *crc_buf;
1098 
1099 	if (!gpu)
1100 		return 0;
1101 
1102 	crc_buf = (uint8_t *)&buf;
1103 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1104 			gpu->local_mem_info.local_mem_size_public;
1105 	buf[0] = gpu->adev->pdev->devfn;
1106 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1107 		(gpu->adev->pdev->subsystem_device << 16);
1108 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1109 	buf[3] = gpu->adev->pdev->device;
1110 	buf[4] = gpu->adev->pdev->bus->number;
1111 	buf[5] = lower_32_bits(local_mem_size);
1112 	buf[6] = upper_32_bits(local_mem_size);
1113 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1114 
1115 	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1116 		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1117 
1118 	/* There is a very small possibility when generating a
1119 	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1120 	 * that the value could be 0 or non-unique. So, check if
1121 	 * it is unique and non-zero. If not unique increment till
1122 	 * unique one is found. In case of overflow, restart from 1
1123 	 */
1124 
1125 	down_read(&topology_lock);
1126 	do {
1127 		is_unique = true;
1128 		if (!gpu_id)
1129 			gpu_id = 1;
1130 		list_for_each_entry(dev, &topology_device_list, list) {
1131 			if (dev->gpu && dev->gpu_id == gpu_id) {
1132 				is_unique = false;
1133 				break;
1134 			}
1135 		}
1136 		if (unlikely(!is_unique))
1137 			gpu_id = (gpu_id + 1) &
1138 				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1139 	} while (!is_unique);
1140 	up_read(&topology_lock);
1141 
1142 	return gpu_id;
1143 }
1144 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1145  *		the GPU device is not already present in the topology device
1146  *		list then return NULL. This means a new topology device has to
1147  *		be created for this GPU.
1148  */
kfd_assign_gpu(struct kfd_node * gpu)1149 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1150 {
1151 	struct kfd_topology_device *dev;
1152 	struct kfd_topology_device *out_dev = NULL;
1153 	struct kfd_mem_properties *mem;
1154 	struct kfd_cache_properties *cache;
1155 	struct kfd_iolink_properties *iolink;
1156 	struct kfd_iolink_properties *p2plink;
1157 
1158 	list_for_each_entry(dev, &topology_device_list, list) {
1159 		/* Discrete GPUs need their own topology device list
1160 		 * entries. Don't assign them to CPU/APU nodes.
1161 		 */
1162 		if (dev->node_props.cpu_cores_count)
1163 			continue;
1164 
1165 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1166 			dev->gpu = gpu;
1167 			out_dev = dev;
1168 
1169 			list_for_each_entry(mem, &dev->mem_props, list)
1170 				mem->gpu = dev->gpu;
1171 			list_for_each_entry(cache, &dev->cache_props, list)
1172 				cache->gpu = dev->gpu;
1173 			list_for_each_entry(iolink, &dev->io_link_props, list)
1174 				iolink->gpu = dev->gpu;
1175 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1176 				p2plink->gpu = dev->gpu;
1177 			break;
1178 		}
1179 	}
1180 	return out_dev;
1181 }
1182 
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1183 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1184 {
1185 	/*
1186 	 * TODO: Generate an event for thunk about the arrival/removal
1187 	 * of the GPU
1188 	 */
1189 }
1190 
1191 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1192  *		patch this after CRAT parsing.
1193  */
kfd_fill_mem_clk_max_info(struct kfd_topology_device * dev)1194 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1195 {
1196 	struct kfd_mem_properties *mem;
1197 	struct kfd_local_mem_info local_mem_info;
1198 
1199 	if (!dev)
1200 		return;
1201 
1202 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1203 	 * single bank of VRAM local memory.
1204 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1205 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1206 	 *	all the banks will report the same mem_clk_max information
1207 	 */
1208 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1209 					 dev->gpu->xcp);
1210 
1211 	list_for_each_entry(mem, &dev->mem_props, list)
1212 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1213 }
1214 
kfd_set_iolink_no_atomics(struct kfd_topology_device * dev,struct kfd_topology_device * target_gpu_dev,struct kfd_iolink_properties * link)1215 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1216 					struct kfd_topology_device *target_gpu_dev,
1217 					struct kfd_iolink_properties *link)
1218 {
1219 	/* xgmi always supports atomics between links. */
1220 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1221 		return;
1222 
1223 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1224 	if (target_gpu_dev) {
1225 		uint32_t cap;
1226 
1227 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1228 				PCI_EXP_DEVCAP2, &cap);
1229 
1230 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1231 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1232 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1233 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1234 	/* set gpu (dev) flags. */
1235 	} else {
1236 		if (!dev->gpu->kfd->pci_atomic_requested ||
1237 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1238 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1239 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1240 	}
1241 }
1242 
kfd_set_iolink_non_coherent(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1243 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1244 		struct kfd_iolink_properties *outbound_link,
1245 		struct kfd_iolink_properties *inbound_link)
1246 {
1247 	/* CPU -> GPU with PCIe */
1248 	if (!to_dev->gpu &&
1249 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1250 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1251 
1252 	if (to_dev->gpu) {
1253 		/* GPU <-> GPU with PCIe and
1254 		 * Vega20 with XGMI
1255 		 */
1256 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1257 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1258 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1259 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1260 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1261 		}
1262 	}
1263 }
1264 
1265 #define REC_SDMA_NUM_GPU	8
1266 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1267 							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1268 							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1269 							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1270 							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1271 							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1272 							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1273 							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1274 							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1275 
kfd_set_recommended_sdma_engines(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1276 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1277 					     struct kfd_iolink_properties *outbound_link,
1278 					     struct kfd_iolink_properties *inbound_link)
1279 {
1280 	struct kfd_node *gpu = outbound_link->gpu;
1281 	struct amdgpu_device *adev = gpu->adev;
1282 	unsigned int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1283 	unsigned int num_xgmi_sdma_engines = kfd_get_num_xgmi_sdma_engines(gpu);
1284 	unsigned int num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1285 	uint32_t sdma_eng_id_mask = (1 << num_sdma_engines) - 1;
1286 	uint32_t xgmi_sdma_eng_id_mask =
1287 			((1 << num_xgmi_sdma_engines) - 1) << num_sdma_engines;
1288 
1289 	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1290 		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1291 		num_xgmi_sdma_engines >= 6 && (!(adev->flags & AMD_IS_APU) &&
1292 		num_xgmi_nodes == 8);
1293 
1294 	if (support_rec_eng) {
1295 		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1296 		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1297 		unsigned int reshift = num_xgmi_sdma_engines == 6 ? 1 : 0;
1298 
1299 		outbound_link->rec_sdma_eng_id_mask =
1300 			1 << (rec_sdma_eng_map[src_socket_id][dst_socket_id] >> reshift);
1301 		inbound_link->rec_sdma_eng_id_mask =
1302 			1 << (rec_sdma_eng_map[dst_socket_id][src_socket_id] >> reshift);
1303 
1304 		/* If recommended engine is out of range, need to reset the mask */
1305 		if (outbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1306 			outbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1307 		if (inbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1308 			inbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1309 
1310 	} else {
1311 		uint32_t engine_mask = (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1312 				num_xgmi_sdma_engines && to_dev->gpu) ? xgmi_sdma_eng_id_mask :
1313 				sdma_eng_id_mask;
1314 
1315 		outbound_link->rec_sdma_eng_id_mask = engine_mask;
1316 		inbound_link->rec_sdma_eng_id_mask = engine_mask;
1317 	}
1318 }
1319 
kfd_fill_iolink_non_crat_info(struct kfd_topology_device * dev)1320 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1321 {
1322 	struct kfd_iolink_properties *link, *inbound_link;
1323 	struct kfd_topology_device *peer_dev;
1324 
1325 	if (!dev || !dev->gpu)
1326 		return;
1327 
1328 	/* GPU only creates direct links so apply flags setting to all */
1329 	list_for_each_entry(link, &dev->io_link_props, list) {
1330 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1331 		kfd_set_iolink_no_atomics(dev, NULL, link);
1332 		peer_dev = kfd_topology_device_by_proximity_domain(
1333 				link->node_to);
1334 
1335 		if (!peer_dev)
1336 			continue;
1337 
1338 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1339 		if (!peer_dev->gpu &&
1340 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1341 			/*
1342 			 * If the GPU is not part of a GPU hive, use its pci
1343 			 * device location as the hive ID to bind with the CPU.
1344 			 */
1345 			if (!dev->node_props.hive_id)
1346 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1347 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1348 		}
1349 
1350 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1351 									list) {
1352 			if (inbound_link->node_to != link->node_from)
1353 				continue;
1354 
1355 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1356 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1357 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1358 			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1359 		}
1360 	}
1361 
1362 	/* Create indirect links so apply flags setting to all */
1363 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1364 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1365 		kfd_set_iolink_no_atomics(dev, NULL, link);
1366 		peer_dev = kfd_topology_device_by_proximity_domain(
1367 				link->node_to);
1368 
1369 		if (!peer_dev)
1370 			continue;
1371 
1372 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1373 									list) {
1374 			if (inbound_link->node_to != link->node_from)
1375 				continue;
1376 
1377 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1378 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1379 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1380 		}
1381 	}
1382 }
1383 
kfd_build_p2p_node_entry(struct kfd_topology_device * dev,struct kfd_iolink_properties * p2plink)1384 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1385 				struct kfd_iolink_properties *p2plink)
1386 {
1387 	int ret;
1388 
1389 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1390 	if (!p2plink->kobj)
1391 		return -ENOMEM;
1392 
1393 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1394 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1395 	if (ret < 0) {
1396 		kobject_put(p2plink->kobj);
1397 		return ret;
1398 	}
1399 
1400 	p2plink->attr.name = "properties";
1401 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1402 	sysfs_attr_init(&p2plink->attr);
1403 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1404 	if (ret < 0)
1405 		return ret;
1406 
1407 	return 0;
1408 }
1409 
kfd_create_indirect_link_prop(struct kfd_topology_device * kdev,int gpu_node)1410 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1411 {
1412 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1413 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1414 	struct kfd_topology_device *cpu_dev;
1415 	int ret = 0;
1416 	int i, num_cpu;
1417 
1418 	num_cpu = 0;
1419 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1420 		if (cpu_dev->gpu)
1421 			break;
1422 		num_cpu++;
1423 	}
1424 
1425 	if (list_empty(&kdev->io_link_props))
1426 		return -ENODATA;
1427 
1428 	gpu_link = list_first_entry(&kdev->io_link_props,
1429 				    struct kfd_iolink_properties, list);
1430 
1431 	for (i = 0; i < num_cpu; i++) {
1432 		/* CPU <--> GPU */
1433 		if (gpu_link->node_to == i)
1434 			continue;
1435 
1436 		/* find CPU <-->  CPU links */
1437 		cpu_link = NULL;
1438 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1439 		if (cpu_dev) {
1440 			list_for_each_entry(tmp_link,
1441 					&cpu_dev->io_link_props, list) {
1442 				if (tmp_link->node_to == gpu_link->node_to) {
1443 					cpu_link = tmp_link;
1444 					break;
1445 				}
1446 			}
1447 		}
1448 
1449 		if (!cpu_link)
1450 			return -ENOMEM;
1451 
1452 		/* CPU <--> CPU <--> GPU, GPU node*/
1453 		props = kfd_alloc_struct(props);
1454 		if (!props)
1455 			return -ENOMEM;
1456 
1457 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1458 		props->weight = gpu_link->weight + cpu_link->weight;
1459 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1460 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1461 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1462 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1463 
1464 		props->node_from = gpu_node;
1465 		props->node_to = i;
1466 		kdev->node_props.p2p_links_count++;
1467 		list_add_tail(&props->list, &kdev->p2p_link_props);
1468 		ret = kfd_build_p2p_node_entry(kdev, props);
1469 		if (ret < 0)
1470 			return ret;
1471 
1472 		/* for small Bar, no CPU --> GPU in-direct links */
1473 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1474 			/* CPU <--> CPU <--> GPU, CPU node*/
1475 			props2 = kfd_alloc_struct(props2);
1476 			if (!props2)
1477 				return -ENOMEM;
1478 
1479 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1480 			props2->node_from = i;
1481 			props2->node_to = gpu_node;
1482 			props2->kobj = NULL;
1483 			cpu_dev->node_props.p2p_links_count++;
1484 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1485 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1486 			if (ret < 0)
1487 				return ret;
1488 		}
1489 	}
1490 	return ret;
1491 }
1492 
1493 #if defined(CONFIG_HSA_AMD_P2P)
kfd_add_peer_prop(struct kfd_topology_device * kdev,struct kfd_topology_device * peer,int from,int to)1494 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1495 		struct kfd_topology_device *peer, int from, int to)
1496 {
1497 	struct kfd_iolink_properties *props = NULL;
1498 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1499 	struct kfd_topology_device *cpu_dev;
1500 	int ret = 0;
1501 
1502 	if (!amdgpu_device_is_peer_accessible(
1503 				kdev->gpu->adev,
1504 				peer->gpu->adev))
1505 		return ret;
1506 
1507 	if (list_empty(&kdev->io_link_props))
1508 		return -ENODATA;
1509 
1510 	iolink1 = list_first_entry(&kdev->io_link_props,
1511 				   struct kfd_iolink_properties, list);
1512 
1513 	if (list_empty(&peer->io_link_props))
1514 		return -ENODATA;
1515 
1516 	iolink2 = list_first_entry(&peer->io_link_props,
1517 				   struct kfd_iolink_properties, list);
1518 
1519 	props = kfd_alloc_struct(props);
1520 	if (!props)
1521 		return -ENOMEM;
1522 
1523 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1524 
1525 	props->weight = iolink1->weight + iolink2->weight;
1526 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1527 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1528 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1529 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1530 
1531 	if (iolink1->node_to != iolink2->node_to) {
1532 		/* CPU->CPU  link*/
1533 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1534 		if (cpu_dev) {
1535 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1536 				if (iolink3->node_to != iolink2->node_to)
1537 					continue;
1538 
1539 				props->weight += iolink3->weight;
1540 				props->min_latency += iolink3->min_latency;
1541 				props->max_latency += iolink3->max_latency;
1542 				props->min_bandwidth = min(props->min_bandwidth,
1543 							   iolink3->min_bandwidth);
1544 				props->max_bandwidth = min(props->max_bandwidth,
1545 							   iolink3->max_bandwidth);
1546 				break;
1547 			}
1548 		} else {
1549 			WARN(1, "CPU node not found");
1550 		}
1551 	}
1552 
1553 	props->node_from = from;
1554 	props->node_to = to;
1555 	peer->node_props.p2p_links_count++;
1556 	list_add_tail(&props->list, &peer->p2p_link_props);
1557 	ret = kfd_build_p2p_node_entry(peer, props);
1558 
1559 	return ret;
1560 }
1561 #endif
1562 
kfd_dev_create_p2p_links(void)1563 static int kfd_dev_create_p2p_links(void)
1564 {
1565 	struct kfd_topology_device *dev;
1566 	struct kfd_topology_device *new_dev;
1567 #if defined(CONFIG_HSA_AMD_P2P)
1568 	uint32_t i;
1569 #endif
1570 	uint32_t k;
1571 	int ret = 0;
1572 
1573 	k = 0;
1574 	list_for_each_entry(dev, &topology_device_list, list)
1575 		k++;
1576 	if (k < 2)
1577 		return 0;
1578 
1579 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1580 	if (WARN_ON(!new_dev->gpu))
1581 		return 0;
1582 
1583 	k--;
1584 
1585 	/* create in-direct links */
1586 	ret = kfd_create_indirect_link_prop(new_dev, k);
1587 	if (ret < 0)
1588 		goto out;
1589 
1590 	/* create p2p links */
1591 #if defined(CONFIG_HSA_AMD_P2P)
1592 	i = 0;
1593 	list_for_each_entry(dev, &topology_device_list, list) {
1594 		if (dev == new_dev)
1595 			break;
1596 		if (!dev->gpu || !dev->gpu->adev ||
1597 		    (dev->gpu->kfd->hive_id &&
1598 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id &&
1599 		     amdgpu_xgmi_get_is_sharing_enabled(dev->gpu->adev, new_dev->gpu->adev)))
1600 			goto next;
1601 
1602 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1603 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1604 		if (ret < 0)
1605 			goto out;
1606 
1607 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1608 		if (ret < 0)
1609 			goto out;
1610 next:
1611 		i++;
1612 	}
1613 #endif
1614 
1615 out:
1616 	return ret;
1617 }
1618 
1619 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l1_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)1620 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1621 				struct kfd_gpu_cache_info *pcache_info,
1622 				int cu_bitmask,
1623 				int cache_type, unsigned int cu_processor_id,
1624 				int cu_block)
1625 {
1626 	unsigned int cu_sibling_map_mask;
1627 	int first_active_cu;
1628 	struct kfd_cache_properties *pcache = NULL;
1629 
1630 	cu_sibling_map_mask = cu_bitmask;
1631 	cu_sibling_map_mask >>= cu_block;
1632 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1633 	first_active_cu = ffs(cu_sibling_map_mask);
1634 
1635 	/* CU could be inactive. In case of shared cache find the first active
1636 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1637 	 * inactive active skip it
1638 	 */
1639 	if (first_active_cu) {
1640 		pcache = kfd_alloc_struct(pcache);
1641 		if (!pcache)
1642 			return -ENOMEM;
1643 
1644 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1645 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1646 		pcache->cache_level = pcache_info[cache_type].cache_level;
1647 		pcache->cache_size = pcache_info[cache_type].cache_size;
1648 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1649 
1650 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1651 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1652 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1653 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1654 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1655 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1656 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1657 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1658 
1659 		/* Sibling map is w.r.t processor_id_low, so shift out
1660 		 * inactive CU
1661 		 */
1662 		cu_sibling_map_mask =
1663 			cu_sibling_map_mask >> (first_active_cu - 1);
1664 
1665 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1666 		pcache->sibling_map[1] =
1667 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1668 		pcache->sibling_map[2] =
1669 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1670 		pcache->sibling_map[3] =
1671 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1672 
1673 		pcache->sibling_map_size = 4;
1674 		*props_ext = pcache;
1675 
1676 		return 0;
1677 	}
1678 	return 1;
1679 }
1680 
1681 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l2_l3_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct amdgpu_cu_info * cu_info,struct amdgpu_gfx_config * gfx_info,int cache_type,unsigned int cu_processor_id,struct kfd_node * knode)1682 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1683 				struct kfd_gpu_cache_info *pcache_info,
1684 				struct amdgpu_cu_info *cu_info,
1685 				struct amdgpu_gfx_config *gfx_info,
1686 				int cache_type, unsigned int cu_processor_id,
1687 				struct kfd_node *knode)
1688 {
1689 	unsigned int cu_sibling_map_mask = 0;
1690 	int first_active_cu;
1691 	int i, j, k, xcc, start, end;
1692 	int num_xcc = NUM_XCC(knode->xcc_mask);
1693 	struct kfd_cache_properties *pcache = NULL;
1694 	enum amdgpu_memory_partition mode;
1695 	struct amdgpu_device *adev = knode->adev;
1696 	bool found = false;
1697 
1698 	start = ffs(knode->xcc_mask) - 1;
1699 	end = start + num_xcc;
1700 
1701 	/* To find the bitmap in the first active cu in the first
1702 	 * xcc, it is based on the assumption that evrey xcc must
1703 	 * have at least one active cu.
1704 	 */
1705 	for (i = 0; i < gfx_info->max_shader_engines && !found; i++) {
1706 		for (j = 0; j < gfx_info->max_sh_per_se && !found; j++) {
1707 			if (cu_info->bitmap[start][i % 4][j % 4]) {
1708 				cu_sibling_map_mask =
1709 					cu_info->bitmap[start][i % 4][j % 4];
1710 				found = true;
1711 			}
1712 		}
1713 	}
1714 
1715 	cu_sibling_map_mask &=
1716 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1717 	first_active_cu = ffs(cu_sibling_map_mask);
1718 
1719 	/* CU could be inactive. In case of shared cache find the first active
1720 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1721 	 * inactive active skip it
1722 	 */
1723 	if (first_active_cu) {
1724 		pcache = kfd_alloc_struct(pcache);
1725 		if (!pcache)
1726 			return -ENOMEM;
1727 
1728 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1729 		pcache->processor_id_low = cu_processor_id
1730 					+ (first_active_cu - 1);
1731 		pcache->cache_level = pcache_info[cache_type].cache_level;
1732 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1733 
1734 		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1735 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4) ||
1736 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 5, 0))
1737 			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1738 		else
1739 			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1740 
1741 		pcache->cache_size = pcache_info[cache_type].cache_size;
1742 		/* Partition mode only affects L3 cache size */
1743 		if (mode && pcache->cache_level == 3)
1744 			pcache->cache_size /= mode;
1745 
1746 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1747 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1748 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1749 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1750 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1751 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1752 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1753 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1754 
1755 		/* Sibling map is w.r.t processor_id_low, so shift out
1756 		 * inactive CU
1757 		 */
1758 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1759 		k = 0;
1760 
1761 		for (xcc = start; xcc < end; xcc++) {
1762 			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1763 				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1764 					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1765 					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1766 					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1767 					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1768 					k += 4;
1769 
1770 					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1771 					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1772 				}
1773 			}
1774 		}
1775 		pcache->sibling_map_size = k;
1776 		*props_ext = pcache;
1777 		return 0;
1778 	}
1779 	return 1;
1780 }
1781 
1782 #define KFD_MAX_CACHE_TYPES 6
1783 
1784 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1785  * tables
1786  */
kfd_fill_cache_non_crat_info(struct kfd_topology_device * dev,struct kfd_node * kdev)1787 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1788 {
1789 	struct kfd_gpu_cache_info *pcache_info = NULL;
1790 	int i, j, k, xcc, start, end;
1791 	int ct = 0;
1792 	unsigned int cu_processor_id;
1793 	int ret;
1794 	unsigned int num_cu_shared;
1795 	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1796 	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1797 	int gpu_processor_id;
1798 	struct kfd_cache_properties *props_ext = NULL;
1799 	int num_of_entries = 0;
1800 	int num_of_cache_types = 0;
1801 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1802 
1803 
1804 	gpu_processor_id = dev->node_props.simd_id_base;
1805 
1806 	memset(cache_info, 0, sizeof(cache_info));
1807 	pcache_info = cache_info;
1808 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1809 	if (!num_of_cache_types) {
1810 		pr_warn("no cache info found\n");
1811 		return;
1812 	}
1813 
1814 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1815 	 * go through all available Compute Units.
1816 	 * The [i,j,k] loop will
1817 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1818 	 *			will parse through all available CU
1819 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1820 	 *			then it will consider only one CU from
1821 	 *			the shared unit
1822 	 */
1823 	start = ffs(kdev->xcc_mask) - 1;
1824 	end = start + NUM_XCC(kdev->xcc_mask);
1825 
1826 	for (ct = 0; ct < num_of_cache_types; ct++) {
1827 		cu_processor_id = gpu_processor_id;
1828 		if (pcache_info[ct].cache_level == 1) {
1829 			for (xcc = start; xcc < end; xcc++) {
1830 				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1831 					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1832 						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1833 
1834 							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1835 										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1836 										cu_processor_id, k);
1837 
1838 							if (ret < 0)
1839 								break;
1840 
1841 							if (!ret) {
1842 								num_of_entries++;
1843 								list_add_tail(&props_ext->list, &dev->cache_props);
1844 							}
1845 
1846 							/* Move to next CU block */
1847 							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1848 								gfx_info->max_cu_per_sh) ?
1849 								pcache_info[ct].num_cu_shared :
1850 								(gfx_info->max_cu_per_sh - k);
1851 							cu_processor_id += num_cu_shared;
1852 						}
1853 					}
1854 				}
1855 			}
1856 		} else {
1857 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1858 						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1859 
1860 			if (ret < 0)
1861 				break;
1862 
1863 			if (!ret) {
1864 				num_of_entries++;
1865 				list_add_tail(&props_ext->list, &dev->cache_props);
1866 			}
1867 		}
1868 	}
1869 	dev->node_props.caches_count += num_of_entries;
1870 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1871 }
1872 
kfd_topology_add_device_locked(struct kfd_node * gpu,struct kfd_topology_device ** dev)1873 static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1874 					  struct kfd_topology_device **dev)
1875 {
1876 	int proximity_domain = ++topology_crat_proximity_domain;
1877 	struct list_head temp_topology_device_list;
1878 	void *crat_image = NULL;
1879 	size_t image_size = 0;
1880 	int res;
1881 
1882 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1883 					    COMPUTE_UNIT_GPU, gpu,
1884 					    proximity_domain);
1885 	if (res) {
1886 		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1887 		topology_crat_proximity_domain--;
1888 		goto err;
1889 	}
1890 
1891 	INIT_LIST_HEAD(&temp_topology_device_list);
1892 
1893 	res = kfd_parse_crat_table(crat_image,
1894 				   &temp_topology_device_list,
1895 				   proximity_domain);
1896 	if (res) {
1897 		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1898 		topology_crat_proximity_domain--;
1899 		goto err;
1900 	}
1901 
1902 	kfd_topology_update_device_list(&temp_topology_device_list,
1903 					&topology_device_list);
1904 
1905 	*dev = kfd_assign_gpu(gpu);
1906 	if (WARN_ON(!*dev)) {
1907 		res = -ENODEV;
1908 		goto err;
1909 	}
1910 
1911 	/* Fill the cache affinity information here for the GPUs
1912 	 * using VCRAT
1913 	 */
1914 	kfd_fill_cache_non_crat_info(*dev, gpu);
1915 
1916 	/* Update the SYSFS tree, since we added another topology
1917 	 * device
1918 	 */
1919 	res = kfd_topology_update_sysfs();
1920 	if (!res)
1921 		sys_props.generation_count++;
1922 	else
1923 		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1924 			res);
1925 
1926 err:
1927 	kfd_destroy_crat_image(crat_image);
1928 	return res;
1929 }
1930 
kfd_topology_set_dbg_firmware_support(struct kfd_topology_device * dev)1931 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1932 {
1933 	bool firmware_supported = true;
1934 
1935 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1936 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1937 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1938 						AMDGPU_MES_API_VERSION_MASK) >>
1939 						AMDGPU_MES_API_VERSION_SHIFT;
1940 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1941 						AMDGPU_MES_VERSION_MASK;
1942 
1943 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1944 		goto out;
1945 	}
1946 
1947 	/*
1948 	 * Note: Any unlisted devices here are assumed to support exception handling.
1949 	 * Add additional checks here as needed.
1950 	 */
1951 	switch (KFD_GC_VERSION(dev->gpu)) {
1952 	case IP_VERSION(9, 0, 1):
1953 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1954 		break;
1955 	case IP_VERSION(9, 1, 0):
1956 	case IP_VERSION(9, 2, 1):
1957 	case IP_VERSION(9, 2, 2):
1958 	case IP_VERSION(9, 3, 0):
1959 	case IP_VERSION(9, 4, 0):
1960 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1961 		break;
1962 	case IP_VERSION(9, 4, 1):
1963 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1964 		break;
1965 	case IP_VERSION(9, 4, 2):
1966 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1967 		break;
1968 	case IP_VERSION(10, 1, 10):
1969 	case IP_VERSION(10, 1, 2):
1970 	case IP_VERSION(10, 1, 1):
1971 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1972 		break;
1973 	case IP_VERSION(10, 3, 0):
1974 	case IP_VERSION(10, 3, 2):
1975 	case IP_VERSION(10, 3, 1):
1976 	case IP_VERSION(10, 3, 4):
1977 	case IP_VERSION(10, 3, 5):
1978 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1979 		break;
1980 	case IP_VERSION(10, 1, 3):
1981 	case IP_VERSION(10, 3, 3):
1982 		firmware_supported = false;
1983 		break;
1984 	default:
1985 		break;
1986 	}
1987 
1988 out:
1989 	if (firmware_supported)
1990 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1991 }
1992 
kfd_topology_set_capabilities(struct kfd_topology_device * dev)1993 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1994 {
1995 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1996 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1997 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1998 
1999 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
2000 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
2001 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
2002 
2003 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
2004 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
2005 
2006 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
2007 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
2008 		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
2009 			dev->node_props.debug_prop |=
2010 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
2011 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
2012 		else
2013 			dev->node_props.debug_prop |=
2014 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
2015 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2016 
2017 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
2018 			dev->node_props.capability |=
2019 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2020 
2021 		if (!amdgpu_sriov_vf(dev->gpu->adev))
2022 			dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2023 
2024 	} else {
2025 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2026 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2027 
2028 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2029 			dev->node_props.capability |=
2030 				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2031 	}
2032 
2033 	kfd_topology_set_dbg_firmware_support(dev);
2034 }
2035 
kfd_topology_add_device(struct kfd_node * gpu)2036 int kfd_topology_add_device(struct kfd_node *gpu)
2037 {
2038 	uint32_t gpu_id;
2039 	struct kfd_topology_device *dev;
2040 	int res = 0;
2041 	int i;
2042 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2043 	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2044 	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2045 
2046 	if (gpu->xcp && !gpu->xcp->ddev) {
2047 		dev_warn(gpu->adev->dev,
2048 			 "Won't add GPU to topology since it has no drm node assigned.");
2049 		return 0;
2050 	} else {
2051 		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2052 	}
2053 
2054 	/* Check to see if this gpu device exists in the topology_device_list.
2055 	 * If so, assign the gpu to that device,
2056 	 * else create a Virtual CRAT for this gpu device and then parse that
2057 	 * CRAT to create a new topology device. Once created assign the gpu to
2058 	 * that topology device
2059 	 */
2060 	down_write(&topology_lock);
2061 	dev = kfd_assign_gpu(gpu);
2062 	if (!dev)
2063 		res = kfd_topology_add_device_locked(gpu, &dev);
2064 	up_write(&topology_lock);
2065 	if (res)
2066 		return res;
2067 
2068 	gpu_id = kfd_generate_gpu_id(gpu);
2069 	dev->gpu_id = gpu_id;
2070 	gpu->id = gpu_id;
2071 
2072 	kfd_dev_create_p2p_links();
2073 
2074 	/* TODO: Move the following lines to function
2075 	 *	kfd_add_non_crat_information
2076 	 */
2077 
2078 	/* Fill-in additional information that is not available in CRAT but
2079 	 * needed for the topology
2080 	 */
2081 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2082 		dev->node_props.name[i] = __tolower(asic_name[i]);
2083 		if (asic_name[i] == '\0')
2084 			break;
2085 	}
2086 	dev->node_props.name[i] = '\0';
2087 
2088 	dev->node_props.simd_arrays_per_engine =
2089 		gfx_info->max_sh_per_se;
2090 
2091 	dev->node_props.gfx_target_version =
2092 				gpu->kfd->device_info.gfx_target_version;
2093 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2094 	dev->node_props.device_id = gpu->adev->pdev->device;
2095 	dev->node_props.capability |=
2096 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2097 			HSA_CAP_ASIC_REVISION_MASK);
2098 
2099 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2100 	if (gpu->kfd->num_nodes > 1)
2101 		dev->node_props.location_id |= dev->gpu->node_id;
2102 
2103 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2104 	dev->node_props.max_engine_clk_fcompute =
2105 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2106 	dev->node_props.max_engine_clk_ccompute =
2107 		cpufreq_quick_get_max(0) / 1000;
2108 
2109 	if (gpu->xcp)
2110 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2111 	else
2112 		dev->node_props.drm_render_minor =
2113 				gpu->kfd->shared_resources.drm_render_minor;
2114 
2115 	dev->node_props.hive_id = gpu->kfd->hive_id;
2116 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2117 	dev->node_props.num_sdma_xgmi_engines =
2118 					kfd_get_num_xgmi_sdma_engines(gpu);
2119 	dev->node_props.num_sdma_queues_per_engine =
2120 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2121 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2122 	dev->node_props.num_gws = (dev->gpu->gws &&
2123 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2124 		dev->gpu->adev->gds.gws_size : 0;
2125 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2126 
2127 	kfd_fill_mem_clk_max_info(dev);
2128 	kfd_fill_iolink_non_crat_info(dev);
2129 
2130 	switch (dev->gpu->adev->asic_type) {
2131 	case CHIP_KAVERI:
2132 	case CHIP_HAWAII:
2133 	case CHIP_TONGA:
2134 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2135 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2136 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2137 		break;
2138 	case CHIP_CARRIZO:
2139 	case CHIP_FIJI:
2140 	case CHIP_POLARIS10:
2141 	case CHIP_POLARIS11:
2142 	case CHIP_POLARIS12:
2143 	case CHIP_VEGAM:
2144 		pr_debug("Adding doorbell packet type capability\n");
2145 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2146 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2147 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2148 		break;
2149 	default:
2150 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2151 			WARN(1, "Unexpected ASIC family %u",
2152 			     dev->gpu->adev->asic_type);
2153 		else
2154 			kfd_topology_set_capabilities(dev);
2155 	}
2156 
2157 	/*
2158 	 * Overwrite ATS capability according to needs_iommu_device to fix
2159 	 * potential missing corresponding bit in CRAT of BIOS.
2160 	 */
2161 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2162 
2163 	/* Fix errors in CZ CRAT.
2164 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2165 	 *		because it doesn't consider masked out CUs
2166 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2167 	 */
2168 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2169 		dev->node_props.simd_count =
2170 			cu_info->simd_per_cu * cu_info->number;
2171 		dev->node_props.max_waves_per_simd = 10;
2172 	}
2173 
2174 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2175 	dev->node_props.capability |=
2176 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2177 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2178 	dev->node_props.capability |=
2179 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2180 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2181 
2182 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2183 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2184 			HSA_CAP_RASEVENTNOTIFY : 0;
2185 
2186 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2187 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2188 
2189 	if (dev->gpu->adev->gmc.is_app_apu ||
2190 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2191 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2192 
2193 	kfd_queue_ctx_save_restore_size(dev);
2194 
2195 	kfd_debug_print_topology();
2196 
2197 	kfd_notify_gpu_change(gpu_id, 1);
2198 
2199 	return 0;
2200 }
2201 
2202 /**
2203  * kfd_topology_update_io_links() - Update IO links after device removal.
2204  * @proximity_domain: Proximity domain value of the dev being removed.
2205  *
2206  * The topology list currently is arranged in increasing order of
2207  * proximity domain.
2208  *
2209  * Two things need to be done when a device is removed:
2210  * 1. All the IO links to this device need to be removed.
2211  * 2. All nodes after the current device node need to move
2212  *    up once this device node is removed from the topology
2213  *    list. As a result, the proximity domain values for
2214  *    all nodes after the node being deleted reduce by 1.
2215  *    This would also cause the proximity domain values for
2216  *    io links to be updated based on new proximity domain
2217  *    values.
2218  *
2219  * Context: The caller must hold write topology_lock.
2220  */
kfd_topology_update_io_links(int proximity_domain)2221 static void kfd_topology_update_io_links(int proximity_domain)
2222 {
2223 	struct kfd_topology_device *dev;
2224 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2225 
2226 	list_for_each_entry(dev, &topology_device_list, list) {
2227 		if (dev->proximity_domain > proximity_domain)
2228 			dev->proximity_domain--;
2229 
2230 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2231 			/*
2232 			 * If there is an io link to the dev being deleted
2233 			 * then remove that IO link also.
2234 			 */
2235 			if (iolink->node_to == proximity_domain) {
2236 				list_del(&iolink->list);
2237 				dev->node_props.io_links_count--;
2238 			} else {
2239 				if (iolink->node_from > proximity_domain)
2240 					iolink->node_from--;
2241 				if (iolink->node_to > proximity_domain)
2242 					iolink->node_to--;
2243 			}
2244 		}
2245 
2246 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2247 			/*
2248 			 * If there is a p2p link to the dev being deleted
2249 			 * then remove that p2p link also.
2250 			 */
2251 			if (p2plink->node_to == proximity_domain) {
2252 				list_del(&p2plink->list);
2253 				dev->node_props.p2p_links_count--;
2254 			} else {
2255 				if (p2plink->node_from > proximity_domain)
2256 					p2plink->node_from--;
2257 				if (p2plink->node_to > proximity_domain)
2258 					p2plink->node_to--;
2259 			}
2260 		}
2261 	}
2262 }
2263 
kfd_topology_remove_device(struct kfd_node * gpu)2264 int kfd_topology_remove_device(struct kfd_node *gpu)
2265 {
2266 	struct kfd_topology_device *dev, *tmp;
2267 	uint32_t gpu_id;
2268 	int res = -ENODEV;
2269 	int i = 0;
2270 
2271 	down_write(&topology_lock);
2272 
2273 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2274 		if (dev->gpu == gpu) {
2275 			gpu_id = dev->gpu_id;
2276 			kfd_remove_sysfs_node_entry(dev);
2277 			kfd_release_topology_device(dev);
2278 			sys_props.num_devices--;
2279 			kfd_topology_update_io_links(i);
2280 			topology_crat_proximity_domain = sys_props.num_devices-1;
2281 			sys_props.generation_count++;
2282 			res = 0;
2283 			if (kfd_topology_update_sysfs() < 0)
2284 				kfd_topology_release_sysfs();
2285 			break;
2286 		}
2287 		i++;
2288 	}
2289 
2290 	up_write(&topology_lock);
2291 
2292 	if (!res)
2293 		kfd_notify_gpu_change(gpu_id, 0);
2294 
2295 	return res;
2296 }
2297 
2298 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2299  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2300  *	returned through @kdev
2301  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2302  *		-1: If end of list
2303  */
kfd_topology_enum_kfd_devices(uint8_t idx,struct kfd_node ** kdev)2304 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2305 {
2306 
2307 	struct kfd_topology_device *top_dev;
2308 	uint8_t device_idx = 0;
2309 
2310 	*kdev = NULL;
2311 	down_read(&topology_lock);
2312 
2313 	list_for_each_entry(top_dev, &topology_device_list, list) {
2314 		if (device_idx == idx) {
2315 			*kdev = top_dev->gpu;
2316 			up_read(&topology_lock);
2317 			return 0;
2318 		}
2319 
2320 		device_idx++;
2321 	}
2322 
2323 	up_read(&topology_lock);
2324 
2325 	return -1;
2326 
2327 }
2328 
kfd_cpumask_to_apic_id(const struct cpumask * cpumask)2329 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2330 {
2331 	int first_cpu_of_numa_node;
2332 
2333 	if (!cpumask || cpumask == cpu_none_mask)
2334 		return -1;
2335 	first_cpu_of_numa_node = cpumask_first(cpumask);
2336 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2337 		return -1;
2338 #ifdef CONFIG_X86_64
2339 	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2340 #else
2341 	return first_cpu_of_numa_node;
2342 #endif
2343 }
2344 
2345 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2346  *	of the given NUMA node (numa_node_id)
2347  * Return -1 on failure
2348  */
kfd_numa_node_to_apic_id(int numa_node_id)2349 int kfd_numa_node_to_apic_id(int numa_node_id)
2350 {
2351 	if (numa_node_id == -1) {
2352 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2353 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2354 	}
2355 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2356 }
2357 
2358 #if defined(CONFIG_DEBUG_FS)
2359 
kfd_debugfs_hqds_by_device(struct seq_file * m,void * data)2360 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2361 {
2362 	struct kfd_topology_device *dev;
2363 	unsigned int i = 0;
2364 	int r = 0;
2365 
2366 	down_read(&topology_lock);
2367 
2368 	list_for_each_entry(dev, &topology_device_list, list) {
2369 		if (!dev->gpu) {
2370 			i++;
2371 			continue;
2372 		}
2373 
2374 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2375 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2376 		if (r)
2377 			break;
2378 	}
2379 
2380 	up_read(&topology_lock);
2381 
2382 	return r;
2383 }
2384 
kfd_debugfs_rls_by_device(struct seq_file * m,void * data)2385 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2386 {
2387 	struct kfd_topology_device *dev;
2388 	unsigned int i = 0;
2389 	int r = 0;
2390 
2391 	down_read(&topology_lock);
2392 
2393 	list_for_each_entry(dev, &topology_device_list, list) {
2394 		if (!dev->gpu) {
2395 			i++;
2396 			continue;
2397 		}
2398 
2399 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2400 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2401 		if (r)
2402 			break;
2403 	}
2404 
2405 	up_read(&topology_lock);
2406 
2407 	return r;
2408 }
2409 
2410 #endif
2411