xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 #include <linux/crc16.h>
35 
36 #include "kfd_priv.h"
37 #include "kfd_crat.h"
38 #include "kfd_topology.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_svm.h"
41 #include "kfd_debug.h"
42 #include "amdgpu_amdkfd.h"
43 #include "amdgpu_ras.h"
44 #include "amdgpu.h"
45 
46 /* topology_device_list - Master list of all topology devices */
47 static struct list_head topology_device_list;
48 static struct kfd_system_properties sys_props;
49 
50 static DECLARE_RWSEM(topology_lock);
51 static uint32_t topology_crat_proximity_domain;
52 
kfd_topology_device_by_proximity_domain_no_lock(uint32_t proximity_domain)53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
54 						uint32_t proximity_domain)
55 {
56 	struct kfd_topology_device *top_dev;
57 	struct kfd_topology_device *device = NULL;
58 
59 	list_for_each_entry(top_dev, &topology_device_list, list)
60 		if (top_dev->proximity_domain == proximity_domain) {
61 			device = top_dev;
62 			break;
63 		}
64 
65 	return device;
66 }
67 
kfd_topology_device_by_proximity_domain(uint32_t proximity_domain)68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
69 						uint32_t proximity_domain)
70 {
71 	struct kfd_topology_device *device = NULL;
72 
73 	down_read(&topology_lock);
74 
75 	device = kfd_topology_device_by_proximity_domain_no_lock(
76 							proximity_domain);
77 	up_read(&topology_lock);
78 
79 	return device;
80 }
81 
kfd_topology_device_by_id(uint32_t gpu_id)82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
83 {
84 	struct kfd_topology_device *top_dev = NULL;
85 	struct kfd_topology_device *ret = NULL;
86 
87 	down_read(&topology_lock);
88 
89 	list_for_each_entry(top_dev, &topology_device_list, list)
90 		if (top_dev->gpu_id == gpu_id) {
91 			ret = top_dev;
92 			break;
93 		}
94 
95 	up_read(&topology_lock);
96 
97 	return ret;
98 }
99 
kfd_device_by_id(uint32_t gpu_id)100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
101 {
102 	struct kfd_topology_device *top_dev;
103 
104 	top_dev = kfd_topology_device_by_id(gpu_id);
105 	if (!top_dev)
106 		return NULL;
107 
108 	return top_dev->gpu;
109 }
110 
111 /* Called with write topology_lock acquired */
kfd_release_topology_device(struct kfd_topology_device * dev)112 static void kfd_release_topology_device(struct kfd_topology_device *dev)
113 {
114 	struct kfd_mem_properties *mem;
115 	struct kfd_cache_properties *cache;
116 	struct kfd_iolink_properties *iolink;
117 	struct kfd_iolink_properties *p2plink;
118 	struct kfd_perf_properties *perf;
119 
120 	list_del(&dev->list);
121 
122 	while (dev->mem_props.next != &dev->mem_props) {
123 		mem = container_of(dev->mem_props.next,
124 				struct kfd_mem_properties, list);
125 		list_del(&mem->list);
126 		kfree(mem);
127 	}
128 
129 	while (dev->cache_props.next != &dev->cache_props) {
130 		cache = container_of(dev->cache_props.next,
131 				struct kfd_cache_properties, list);
132 		list_del(&cache->list);
133 		kfree(cache);
134 	}
135 
136 	while (dev->io_link_props.next != &dev->io_link_props) {
137 		iolink = container_of(dev->io_link_props.next,
138 				struct kfd_iolink_properties, list);
139 		list_del(&iolink->list);
140 		kfree(iolink);
141 	}
142 
143 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
144 		p2plink = container_of(dev->p2p_link_props.next,
145 				struct kfd_iolink_properties, list);
146 		list_del(&p2plink->list);
147 		kfree(p2plink);
148 	}
149 
150 	while (dev->perf_props.next != &dev->perf_props) {
151 		perf = container_of(dev->perf_props.next,
152 				struct kfd_perf_properties, list);
153 		list_del(&perf->list);
154 		kfree(perf);
155 	}
156 
157 	kfree(dev);
158 }
159 
kfd_release_topology_device_list(struct list_head * device_list)160 void kfd_release_topology_device_list(struct list_head *device_list)
161 {
162 	struct kfd_topology_device *dev;
163 
164 	while (!list_empty(device_list)) {
165 		dev = list_first_entry(device_list,
166 				       struct kfd_topology_device, list);
167 		kfd_release_topology_device(dev);
168 	}
169 }
170 
kfd_release_live_view(void)171 static void kfd_release_live_view(void)
172 {
173 	kfd_release_topology_device_list(&topology_device_list);
174 	memset(&sys_props, 0, sizeof(sys_props));
175 }
176 
kfd_create_topology_device(struct list_head * device_list)177 struct kfd_topology_device *kfd_create_topology_device(
178 				struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	dev = kfd_alloc_struct(dev);
183 	if (!dev) {
184 		pr_err("No memory to allocate a topology device");
185 		return NULL;
186 	}
187 
188 	INIT_LIST_HEAD(&dev->mem_props);
189 	INIT_LIST_HEAD(&dev->cache_props);
190 	INIT_LIST_HEAD(&dev->io_link_props);
191 	INIT_LIST_HEAD(&dev->p2p_link_props);
192 	INIT_LIST_HEAD(&dev->perf_props);
193 
194 	list_add_tail(&dev->list, device_list);
195 
196 	return dev;
197 }
198 
199 
200 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
201 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
202 				  fmt, __VA_ARGS__))
203 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
204 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
205 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
206 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
207 #define sysfs_show_32bit_val(buffer, offs, value) \
208 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
209 #define sysfs_show_str_val(buffer, offs, value) \
210 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
211 
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)212 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
213 		char *buffer)
214 {
215 	int offs = 0;
216 
217 	/* Making sure that the buffer is an empty string */
218 	buffer[0] = 0;
219 
220 	if (attr == &sys_props.attr_genid) {
221 		sysfs_show_32bit_val(buffer, offs,
222 				     sys_props.generation_count);
223 	} else if (attr == &sys_props.attr_props) {
224 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
225 				      sys_props.platform_oem);
226 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
227 				      sys_props.platform_id);
228 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
229 				      sys_props.platform_rev);
230 	} else {
231 		offs = -EINVAL;
232 	}
233 
234 	return offs;
235 }
236 
kfd_topology_kobj_release(struct kobject * kobj)237 static void kfd_topology_kobj_release(struct kobject *kobj)
238 {
239 	kfree(kobj);
240 }
241 
242 static const struct sysfs_ops sysprops_ops = {
243 	.show = sysprops_show,
244 };
245 
246 static const struct kobj_type sysprops_type = {
247 	.release = kfd_topology_kobj_release,
248 	.sysfs_ops = &sysprops_ops,
249 };
250 
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)251 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
252 		char *buffer)
253 {
254 	int offs = 0;
255 	struct kfd_iolink_properties *iolink;
256 
257 	/* Making sure that the buffer is an empty string */
258 	buffer[0] = 0;
259 
260 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
261 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
262 		return -EPERM;
263 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
264 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
265 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
266 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
267 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
268 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
269 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
270 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
271 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
272 			      iolink->min_bandwidth);
273 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
274 			      iolink->max_bandwidth);
275 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
276 			      iolink->rec_transfer_size);
277 	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
278 			      iolink->rec_sdma_eng_id_mask);
279 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
280 
281 	return offs;
282 }
283 
284 static const struct sysfs_ops iolink_ops = {
285 	.show = iolink_show,
286 };
287 
288 static const struct kobj_type iolink_type = {
289 	.release = kfd_topology_kobj_release,
290 	.sysfs_ops = &iolink_ops,
291 };
292 
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)293 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
294 		char *buffer)
295 {
296 	int offs = 0;
297 	struct kfd_mem_properties *mem;
298 
299 	/* Making sure that the buffer is an empty string */
300 	buffer[0] = 0;
301 
302 	mem = container_of(attr, struct kfd_mem_properties, attr);
303 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
304 		return -EPERM;
305 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
306 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
307 			      mem->size_in_bytes);
308 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
309 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
310 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
311 			      mem->mem_clk_max);
312 
313 	return offs;
314 }
315 
316 static const struct sysfs_ops mem_ops = {
317 	.show = mem_show,
318 };
319 
320 static const struct kobj_type mem_type = {
321 	.release = kfd_topology_kobj_release,
322 	.sysfs_ops = &mem_ops,
323 };
324 
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)325 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
326 		char *buffer)
327 {
328 	int offs = 0;
329 	uint32_t i, j;
330 	struct kfd_cache_properties *cache;
331 
332 	/* Making sure that the buffer is an empty string */
333 	buffer[0] = 0;
334 	cache = container_of(attr, struct kfd_cache_properties, attr);
335 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
336 		return -EPERM;
337 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
338 			cache->processor_id_low);
339 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
340 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
341 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
342 			      cache->cacheline_size);
343 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
344 			      cache->cachelines_per_tag);
345 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
346 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
347 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
348 
349 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
350 	for (i = 0; i < cache->sibling_map_size; i++)
351 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
352 			/* Check each bit */
353 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
354 						(cache->sibling_map[i] >> j) & 1);
355 
356 	/* Replace the last "," with end of line */
357 	buffer[offs-1] = '\n';
358 	return offs;
359 }
360 
361 static const struct sysfs_ops cache_ops = {
362 	.show = kfd_cache_show,
363 };
364 
365 static const struct kobj_type cache_type = {
366 	.release = kfd_topology_kobj_release,
367 	.sysfs_ops = &cache_ops,
368 };
369 
370 /****** Sysfs of Performance Counters ******/
371 
372 struct kfd_perf_attr {
373 	struct kobj_attribute attr;
374 	uint32_t data;
375 };
376 
perf_show(struct kobject * kobj,struct kobj_attribute * attrs,char * buf)377 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
378 			char *buf)
379 {
380 	int offs = 0;
381 	struct kfd_perf_attr *attr;
382 
383 	buf[0] = 0;
384 	attr = container_of(attrs, struct kfd_perf_attr, attr);
385 	if (!attr->data) /* invalid data for PMC */
386 		return 0;
387 	else
388 		return sysfs_show_32bit_val(buf, offs, attr->data);
389 }
390 
391 #define KFD_PERF_DESC(_name, _data)			\
392 {							\
393 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
394 	.data = _data,					\
395 }
396 
397 static struct kfd_perf_attr perf_attr_iommu[] = {
398 	KFD_PERF_DESC(max_concurrent, 0),
399 	KFD_PERF_DESC(num_counters, 0),
400 	KFD_PERF_DESC(counter_ids, 0),
401 };
402 /****************************************/
403 
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)404 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
405 		char *buffer)
406 {
407 	int offs = 0;
408 	struct kfd_topology_device *dev;
409 	uint32_t log_max_watch_addr;
410 
411 	/* Making sure that the buffer is an empty string */
412 	buffer[0] = 0;
413 
414 	if (strcmp(attr->name, "gpu_id") == 0) {
415 		dev = container_of(attr, struct kfd_topology_device,
416 				attr_gpuid);
417 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
418 			return -EPERM;
419 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
420 	}
421 
422 	if (strcmp(attr->name, "name") == 0) {
423 		dev = container_of(attr, struct kfd_topology_device,
424 				attr_name);
425 
426 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
427 			return -EPERM;
428 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
429 	}
430 
431 	dev = container_of(attr, struct kfd_topology_device,
432 			attr_props);
433 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
434 		return -EPERM;
435 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
436 			      dev->node_props.cpu_cores_count);
437 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
438 			      dev->gpu ? dev->node_props.simd_count : 0);
439 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
440 			      dev->node_props.mem_banks_count);
441 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
442 			      dev->node_props.caches_count);
443 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
444 			      dev->node_props.io_links_count);
445 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
446 			      dev->node_props.p2p_links_count);
447 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
448 			      dev->node_props.cpu_core_id_base);
449 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
450 			      dev->node_props.simd_id_base);
451 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
452 			      dev->node_props.max_waves_per_simd);
453 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
454 			      dev->node_props.lds_size_in_kb);
455 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
456 			      dev->node_props.gds_size_in_kb);
457 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
458 			      dev->node_props.num_gws);
459 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
460 			      dev->node_props.wave_front_size);
461 	sysfs_show_32bit_prop(buffer, offs, "array_count",
462 			      dev->gpu ? (dev->node_props.array_count *
463 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
464 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
465 			      dev->node_props.simd_arrays_per_engine);
466 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
467 			      dev->node_props.cu_per_simd_array);
468 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
469 			      dev->node_props.simd_per_cu);
470 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
471 			      dev->node_props.max_slots_scratch_cu);
472 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
473 			      dev->node_props.gfx_target_version);
474 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
475 			      dev->node_props.vendor_id);
476 	sysfs_show_32bit_prop(buffer, offs, "device_id",
477 			      dev->node_props.device_id);
478 	sysfs_show_32bit_prop(buffer, offs, "location_id",
479 			      dev->node_props.location_id);
480 	sysfs_show_32bit_prop(buffer, offs, "domain",
481 			      dev->node_props.domain);
482 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
483 			      dev->node_props.drm_render_minor);
484 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
485 			      dev->node_props.hive_id);
486 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
487 			      dev->node_props.num_sdma_engines);
488 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
489 			      dev->node_props.num_sdma_xgmi_engines);
490 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
491 			      dev->node_props.num_sdma_queues_per_engine);
492 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
493 			      dev->node_props.num_cp_queues);
494 
495 	if (dev->gpu) {
496 		log_max_watch_addr =
497 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
498 
499 		if (log_max_watch_addr) {
500 			dev->node_props.capability |=
501 					HSA_CAP_WATCH_POINTS_SUPPORTED;
502 
503 			dev->node_props.capability |=
504 				((log_max_watch_addr <<
505 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
506 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
507 		}
508 
509 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
510 			dev->node_props.capability |=
511 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
512 
513 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0) &&
514 			(dev->gpu->adev->sdma.supported_reset & AMDGPU_RESET_TYPE_PER_QUEUE))
515 				dev->node_props.capability2 |= HSA_CAP2_PER_SDMA_QUEUE_RESET_SUPPORTED;
516 
517 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
518 			dev->node_props.max_engine_clk_fcompute);
519 
520 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
521 
522 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
523 				      dev->gpu->kfd->mec_fw_version);
524 		sysfs_show_32bit_prop(buffer, offs, "capability",
525 				      dev->node_props.capability);
526 		sysfs_show_32bit_prop(buffer, offs, "capability2",
527 				      dev->node_props.capability2);
528 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
529 				      dev->node_props.debug_prop);
530 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
531 				      dev->gpu->kfd->sdma_fw_version);
532 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
533 				      dev->gpu->xcp &&
534 				      (dev->gpu->xcp->xcp_mgr->mode !=
535 				       AMDGPU_SPX_PARTITION_MODE) ?
536 				      dev->gpu->xcp->unique_id :
537 				      dev->gpu->adev->unique_id);
538 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
539 				      NUM_XCC(dev->gpu->xcc_mask));
540 	}
541 
542 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
543 				     cpufreq_quick_get_max(0)/1000);
544 }
545 
546 static const struct sysfs_ops node_ops = {
547 	.show = node_show,
548 };
549 
550 static const struct kobj_type node_type = {
551 	.release = kfd_topology_kobj_release,
552 	.sysfs_ops = &node_ops,
553 };
554 
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)555 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
556 {
557 	sysfs_remove_file(kobj, attr);
558 	kobject_del(kobj);
559 	kobject_put(kobj);
560 }
561 
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)562 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
563 {
564 	struct kfd_iolink_properties *p2plink;
565 	struct kfd_iolink_properties *iolink;
566 	struct kfd_cache_properties *cache;
567 	struct kfd_mem_properties *mem;
568 	struct kfd_perf_properties *perf;
569 
570 	if (dev->kobj_iolink) {
571 		list_for_each_entry(iolink, &dev->io_link_props, list)
572 			if (iolink->kobj) {
573 				kfd_remove_sysfs_file(iolink->kobj,
574 							&iolink->attr);
575 				iolink->kobj = NULL;
576 			}
577 		kobject_del(dev->kobj_iolink);
578 		kobject_put(dev->kobj_iolink);
579 		dev->kobj_iolink = NULL;
580 	}
581 
582 	if (dev->kobj_p2plink) {
583 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
584 			if (p2plink->kobj) {
585 				kfd_remove_sysfs_file(p2plink->kobj,
586 							&p2plink->attr);
587 				p2plink->kobj = NULL;
588 			}
589 		kobject_del(dev->kobj_p2plink);
590 		kobject_put(dev->kobj_p2plink);
591 		dev->kobj_p2plink = NULL;
592 	}
593 
594 	if (dev->kobj_cache) {
595 		list_for_each_entry(cache, &dev->cache_props, list)
596 			if (cache->kobj) {
597 				kfd_remove_sysfs_file(cache->kobj,
598 							&cache->attr);
599 				cache->kobj = NULL;
600 			}
601 		kobject_del(dev->kobj_cache);
602 		kobject_put(dev->kobj_cache);
603 		dev->kobj_cache = NULL;
604 	}
605 
606 	if (dev->kobj_mem) {
607 		list_for_each_entry(mem, &dev->mem_props, list)
608 			if (mem->kobj) {
609 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
610 				mem->kobj = NULL;
611 			}
612 		kobject_del(dev->kobj_mem);
613 		kobject_put(dev->kobj_mem);
614 		dev->kobj_mem = NULL;
615 	}
616 
617 	if (dev->kobj_perf) {
618 		list_for_each_entry(perf, &dev->perf_props, list) {
619 			kfree(perf->attr_group);
620 			perf->attr_group = NULL;
621 		}
622 		kobject_del(dev->kobj_perf);
623 		kobject_put(dev->kobj_perf);
624 		dev->kobj_perf = NULL;
625 	}
626 
627 	if (dev->kobj_node) {
628 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
629 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
630 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
631 		kobject_del(dev->kobj_node);
632 		kobject_put(dev->kobj_node);
633 		dev->kobj_node = NULL;
634 	}
635 }
636 
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)637 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
638 		uint32_t id)
639 {
640 	struct kfd_iolink_properties *p2plink;
641 	struct kfd_iolink_properties *iolink;
642 	struct kfd_cache_properties *cache;
643 	struct kfd_mem_properties *mem;
644 	struct kfd_perf_properties *perf;
645 	int ret;
646 	uint32_t i, num_attrs;
647 	struct attribute **attrs;
648 
649 	if (WARN_ON(dev->kobj_node))
650 		return -EEXIST;
651 
652 	/*
653 	 * Creating the sysfs folders
654 	 */
655 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
656 	if (!dev->kobj_node)
657 		return -ENOMEM;
658 
659 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
660 			sys_props.kobj_nodes, "%d", id);
661 	if (ret < 0) {
662 		kobject_put(dev->kobj_node);
663 		return ret;
664 	}
665 
666 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
667 	if (!dev->kobj_mem)
668 		return -ENOMEM;
669 
670 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
671 	if (!dev->kobj_cache)
672 		return -ENOMEM;
673 
674 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
675 	if (!dev->kobj_iolink)
676 		return -ENOMEM;
677 
678 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
679 	if (!dev->kobj_p2plink)
680 		return -ENOMEM;
681 
682 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
683 	if (!dev->kobj_perf)
684 		return -ENOMEM;
685 
686 	/*
687 	 * Creating sysfs files for node properties
688 	 */
689 	dev->attr_gpuid.name = "gpu_id";
690 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
691 	sysfs_attr_init(&dev->attr_gpuid);
692 	dev->attr_name.name = "name";
693 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
694 	sysfs_attr_init(&dev->attr_name);
695 	dev->attr_props.name = "properties";
696 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
697 	sysfs_attr_init(&dev->attr_props);
698 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
699 	if (ret < 0)
700 		return ret;
701 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
702 	if (ret < 0)
703 		return ret;
704 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
705 	if (ret < 0)
706 		return ret;
707 
708 	i = 0;
709 	list_for_each_entry(mem, &dev->mem_props, list) {
710 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
711 		if (!mem->kobj)
712 			return -ENOMEM;
713 		ret = kobject_init_and_add(mem->kobj, &mem_type,
714 				dev->kobj_mem, "%d", i);
715 		if (ret < 0) {
716 			kobject_put(mem->kobj);
717 			return ret;
718 		}
719 
720 		mem->attr.name = "properties";
721 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
722 		sysfs_attr_init(&mem->attr);
723 		ret = sysfs_create_file(mem->kobj, &mem->attr);
724 		if (ret < 0)
725 			return ret;
726 		i++;
727 	}
728 
729 	i = 0;
730 	list_for_each_entry(cache, &dev->cache_props, list) {
731 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
732 		if (!cache->kobj)
733 			return -ENOMEM;
734 		ret = kobject_init_and_add(cache->kobj, &cache_type,
735 				dev->kobj_cache, "%d", i);
736 		if (ret < 0) {
737 			kobject_put(cache->kobj);
738 			return ret;
739 		}
740 
741 		cache->attr.name = "properties";
742 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
743 		sysfs_attr_init(&cache->attr);
744 		ret = sysfs_create_file(cache->kobj, &cache->attr);
745 		if (ret < 0)
746 			return ret;
747 		i++;
748 	}
749 
750 	i = 0;
751 	list_for_each_entry(iolink, &dev->io_link_props, list) {
752 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
753 		if (!iolink->kobj)
754 			return -ENOMEM;
755 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
756 				dev->kobj_iolink, "%d", i);
757 		if (ret < 0) {
758 			kobject_put(iolink->kobj);
759 			return ret;
760 		}
761 
762 		iolink->attr.name = "properties";
763 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
764 		sysfs_attr_init(&iolink->attr);
765 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
766 		if (ret < 0)
767 			return ret;
768 		i++;
769 	}
770 
771 	i = 0;
772 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
773 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
774 		if (!p2plink->kobj)
775 			return -ENOMEM;
776 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
777 				dev->kobj_p2plink, "%d", i);
778 		if (ret < 0) {
779 			kobject_put(p2plink->kobj);
780 			return ret;
781 		}
782 
783 		p2plink->attr.name = "properties";
784 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
785 		sysfs_attr_init(&p2plink->attr);
786 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
787 		if (ret < 0)
788 			return ret;
789 		i++;
790 	}
791 
792 	/* All hardware blocks have the same number of attributes. */
793 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
794 	list_for_each_entry(perf, &dev->perf_props, list) {
795 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
796 			* num_attrs + sizeof(struct attribute_group),
797 			GFP_KERNEL);
798 		if (!perf->attr_group)
799 			return -ENOMEM;
800 
801 		attrs = (struct attribute **)(perf->attr_group + 1);
802 		if (!strcmp(perf->block_name, "iommu")) {
803 		/* Information of IOMMU's num_counters and counter_ids is shown
804 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
805 		 * duplicate here.
806 		 */
807 			perf_attr_iommu[0].data = perf->max_concurrent;
808 			for (i = 0; i < num_attrs; i++)
809 				attrs[i] = &perf_attr_iommu[i].attr.attr;
810 		}
811 		perf->attr_group->name = perf->block_name;
812 		perf->attr_group->attrs = attrs;
813 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
814 		if (ret < 0)
815 			return ret;
816 	}
817 
818 	return 0;
819 }
820 
821 /* Called with write topology lock acquired */
kfd_build_sysfs_node_tree(void)822 static int kfd_build_sysfs_node_tree(void)
823 {
824 	struct kfd_topology_device *dev;
825 	int ret;
826 	uint32_t i = 0;
827 
828 	list_for_each_entry(dev, &topology_device_list, list) {
829 		ret = kfd_build_sysfs_node_entry(dev, i);
830 		if (ret < 0)
831 			return ret;
832 		i++;
833 	}
834 
835 	return 0;
836 }
837 
838 /* Called with write topology lock acquired */
kfd_remove_sysfs_node_tree(void)839 static void kfd_remove_sysfs_node_tree(void)
840 {
841 	struct kfd_topology_device *dev;
842 
843 	list_for_each_entry(dev, &topology_device_list, list)
844 		kfd_remove_sysfs_node_entry(dev);
845 }
846 
kfd_topology_update_sysfs(void)847 static int kfd_topology_update_sysfs(void)
848 {
849 	int ret;
850 
851 	if (!sys_props.kobj_topology) {
852 		sys_props.kobj_topology =
853 				kfd_alloc_struct(sys_props.kobj_topology);
854 		if (!sys_props.kobj_topology)
855 			return -ENOMEM;
856 
857 		ret = kobject_init_and_add(sys_props.kobj_topology,
858 				&sysprops_type,  &kfd_device->kobj,
859 				"topology");
860 		if (ret < 0) {
861 			kobject_put(sys_props.kobj_topology);
862 			return ret;
863 		}
864 
865 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
866 				sys_props.kobj_topology);
867 		if (!sys_props.kobj_nodes)
868 			return -ENOMEM;
869 
870 		sys_props.attr_genid.name = "generation_id";
871 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
872 		sysfs_attr_init(&sys_props.attr_genid);
873 		ret = sysfs_create_file(sys_props.kobj_topology,
874 				&sys_props.attr_genid);
875 		if (ret < 0)
876 			return ret;
877 
878 		sys_props.attr_props.name = "system_properties";
879 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
880 		sysfs_attr_init(&sys_props.attr_props);
881 		ret = sysfs_create_file(sys_props.kobj_topology,
882 				&sys_props.attr_props);
883 		if (ret < 0)
884 			return ret;
885 	}
886 
887 	kfd_remove_sysfs_node_tree();
888 
889 	return kfd_build_sysfs_node_tree();
890 }
891 
kfd_topology_release_sysfs(void)892 static void kfd_topology_release_sysfs(void)
893 {
894 	kfd_remove_sysfs_node_tree();
895 	if (sys_props.kobj_topology) {
896 		sysfs_remove_file(sys_props.kobj_topology,
897 				&sys_props.attr_genid);
898 		sysfs_remove_file(sys_props.kobj_topology,
899 				&sys_props.attr_props);
900 		if (sys_props.kobj_nodes) {
901 			kobject_del(sys_props.kobj_nodes);
902 			kobject_put(sys_props.kobj_nodes);
903 			sys_props.kobj_nodes = NULL;
904 		}
905 		kobject_del(sys_props.kobj_topology);
906 		kobject_put(sys_props.kobj_topology);
907 		sys_props.kobj_topology = NULL;
908 	}
909 }
910 
911 /* Called with write topology_lock acquired */
kfd_topology_update_device_list(struct list_head * temp_list,struct list_head * master_list)912 static void kfd_topology_update_device_list(struct list_head *temp_list,
913 					struct list_head *master_list)
914 {
915 	while (!list_empty(temp_list)) {
916 		list_move_tail(temp_list->next, master_list);
917 		sys_props.num_devices++;
918 	}
919 }
920 
kfd_debug_print_topology(void)921 static void kfd_debug_print_topology(void)
922 {
923 	struct kfd_topology_device *dev;
924 
925 	down_read(&topology_lock);
926 
927 	dev = list_last_entry(&topology_device_list,
928 			struct kfd_topology_device, list);
929 	if (dev) {
930 		if (dev->node_props.cpu_cores_count &&
931 				dev->node_props.simd_count) {
932 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
933 				dev->node_props.device_id,
934 				dev->node_props.vendor_id);
935 		} else if (dev->node_props.cpu_cores_count)
936 			pr_info("Topology: Add CPU node\n");
937 		else if (dev->node_props.simd_count)
938 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
939 				dev->node_props.device_id,
940 				dev->node_props.vendor_id);
941 	}
942 	up_read(&topology_lock);
943 }
944 
945 /* Helper function for intializing platform_xx members of
946  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
947  */
kfd_update_system_properties(void)948 static void kfd_update_system_properties(void)
949 {
950 	struct kfd_topology_device *dev;
951 
952 	down_read(&topology_lock);
953 	dev = list_last_entry(&topology_device_list,
954 			struct kfd_topology_device, list);
955 	if (dev) {
956 		sys_props.platform_id = dev->oem_id64;
957 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
958 		sys_props.platform_rev = dev->oem_revision;
959 	}
960 	up_read(&topology_lock);
961 }
962 
find_system_memory(const struct dmi_header * dm,void * private)963 static void find_system_memory(const struct dmi_header *dm, void *private)
964 {
965 	struct dmi_mem_device *memdev = container_of(dm, struct dmi_mem_device, header);
966 	struct kfd_mem_properties *mem;
967 	struct kfd_topology_device *kdev =
968 		(struct kfd_topology_device *)private;
969 
970 	if (memdev->header.type != DMI_ENTRY_MEM_DEVICE)
971 		return;
972 	if (memdev->header.length < sizeof(struct dmi_mem_device))
973 		return;
974 
975 	list_for_each_entry(mem, &kdev->mem_props, list) {
976 		if (memdev->total_width != 0xFFFF && memdev->total_width != 0)
977 			mem->width = memdev->total_width;
978 		if (memdev->speed != 0)
979 			mem->mem_clk_max = memdev->speed;
980 	}
981 }
982 
983 /* kfd_add_non_crat_information - Add information that is not currently
984  *	defined in CRAT but is necessary for KFD topology
985  * @dev - topology device to which addition info is added
986  */
kfd_add_non_crat_information(struct kfd_topology_device * kdev)987 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
988 {
989 	/* Check if CPU only node. */
990 	if (!kdev->gpu) {
991 		/* Add system memory information */
992 		dmi_walk(find_system_memory, kdev);
993 	}
994 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
995 }
996 
kfd_topology_init(void)997 int kfd_topology_init(void)
998 {
999 	void *crat_image = NULL;
1000 	size_t image_size = 0;
1001 	int ret;
1002 	struct list_head temp_topology_device_list;
1003 	int cpu_only_node = 0;
1004 	struct kfd_topology_device *kdev;
1005 	int proximity_domain;
1006 
1007 	/* topology_device_list - Master list of all topology devices
1008 	 * temp_topology_device_list - temporary list created while parsing CRAT
1009 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1010 	 * topology_device_list
1011 	 */
1012 
1013 	/* Initialize the head for the both the lists */
1014 	INIT_LIST_HEAD(&topology_device_list);
1015 	INIT_LIST_HEAD(&temp_topology_device_list);
1016 	init_rwsem(&topology_lock);
1017 
1018 	memset(&sys_props, 0, sizeof(sys_props));
1019 
1020 	/* Proximity domains in ACPI CRAT tables start counting at
1021 	 * 0. The same should be true for virtual CRAT tables created
1022 	 * at this stage. GPUs added later in kfd_topology_add_device
1023 	 * use a counter.
1024 	 */
1025 	proximity_domain = 0;
1026 
1027 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1028 					    COMPUTE_UNIT_CPU, NULL,
1029 					    proximity_domain);
1030 	cpu_only_node = 1;
1031 	if (ret) {
1032 		pr_err("Error creating VCRAT table for CPU\n");
1033 		return ret;
1034 	}
1035 
1036 	ret = kfd_parse_crat_table(crat_image,
1037 				   &temp_topology_device_list,
1038 				   proximity_domain);
1039 	if (ret) {
1040 		pr_err("Error parsing VCRAT table for CPU\n");
1041 		goto err;
1042 	}
1043 
1044 	kdev = list_first_entry(&temp_topology_device_list,
1045 				struct kfd_topology_device, list);
1046 
1047 	down_write(&topology_lock);
1048 	kfd_topology_update_device_list(&temp_topology_device_list,
1049 					&topology_device_list);
1050 	topology_crat_proximity_domain = sys_props.num_devices-1;
1051 	ret = kfd_topology_update_sysfs();
1052 	up_write(&topology_lock);
1053 
1054 	if (!ret) {
1055 		sys_props.generation_count++;
1056 		kfd_update_system_properties();
1057 		kfd_debug_print_topology();
1058 	} else
1059 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1060 
1061 	/* For nodes with GPU, this information gets added
1062 	 * when GPU is detected (kfd_topology_add_device).
1063 	 */
1064 	if (cpu_only_node) {
1065 		/* Add additional information to CPU only node created above */
1066 		down_write(&topology_lock);
1067 		kdev = list_first_entry(&topology_device_list,
1068 				struct kfd_topology_device, list);
1069 		up_write(&topology_lock);
1070 		kfd_add_non_crat_information(kdev);
1071 	}
1072 
1073 err:
1074 	kfd_destroy_crat_image(crat_image);
1075 	return ret;
1076 }
1077 
kfd_topology_shutdown(void)1078 void kfd_topology_shutdown(void)
1079 {
1080 	down_write(&topology_lock);
1081 	kfd_topology_release_sysfs();
1082 	kfd_release_live_view();
1083 	up_write(&topology_lock);
1084 }
1085 
kfd_generate_gpu_id(struct kfd_node * gpu)1086 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1087 {
1088 	uint32_t gpu_id;
1089 	uint32_t buf[8];
1090 	uint64_t local_mem_size;
1091 	struct kfd_topology_device *dev;
1092 	bool is_unique;
1093 	uint8_t *crc_buf;
1094 
1095 	if (!gpu)
1096 		return 0;
1097 
1098 	crc_buf = (uint8_t *)&buf;
1099 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1100 			gpu->local_mem_info.local_mem_size_public;
1101 	buf[0] = gpu->adev->pdev->devfn;
1102 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1103 		(gpu->adev->pdev->subsystem_device << 16);
1104 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1105 	buf[3] = gpu->adev->pdev->device;
1106 	buf[4] = gpu->adev->pdev->bus->number;
1107 	buf[5] = lower_32_bits(local_mem_size);
1108 	buf[6] = upper_32_bits(local_mem_size);
1109 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1110 
1111 	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1112 		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1113 
1114 	/* There is a very small possibility when generating a
1115 	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1116 	 * that the value could be 0 or non-unique. So, check if
1117 	 * it is unique and non-zero. If not unique increment till
1118 	 * unique one is found. In case of overflow, restart from 1
1119 	 */
1120 
1121 	down_read(&topology_lock);
1122 	do {
1123 		is_unique = true;
1124 		if (!gpu_id)
1125 			gpu_id = 1;
1126 		list_for_each_entry(dev, &topology_device_list, list) {
1127 			if (dev->gpu && dev->gpu_id == gpu_id) {
1128 				is_unique = false;
1129 				break;
1130 			}
1131 		}
1132 		if (unlikely(!is_unique))
1133 			gpu_id = (gpu_id + 1) &
1134 				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1135 	} while (!is_unique);
1136 	up_read(&topology_lock);
1137 
1138 	return gpu_id;
1139 }
1140 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1141  *		the GPU device is not already present in the topology device
1142  *		list then return NULL. This means a new topology device has to
1143  *		be created for this GPU.
1144  */
kfd_assign_gpu(struct kfd_node * gpu)1145 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1146 {
1147 	struct kfd_topology_device *dev;
1148 	struct kfd_topology_device *out_dev = NULL;
1149 	struct kfd_mem_properties *mem;
1150 	struct kfd_cache_properties *cache;
1151 	struct kfd_iolink_properties *iolink;
1152 	struct kfd_iolink_properties *p2plink;
1153 
1154 	list_for_each_entry(dev, &topology_device_list, list) {
1155 		/* Discrete GPUs need their own topology device list
1156 		 * entries. Don't assign them to CPU/APU nodes.
1157 		 */
1158 		if (dev->node_props.cpu_cores_count)
1159 			continue;
1160 
1161 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1162 			dev->gpu = gpu;
1163 			out_dev = dev;
1164 
1165 			list_for_each_entry(mem, &dev->mem_props, list)
1166 				mem->gpu = dev->gpu;
1167 			list_for_each_entry(cache, &dev->cache_props, list)
1168 				cache->gpu = dev->gpu;
1169 			list_for_each_entry(iolink, &dev->io_link_props, list)
1170 				iolink->gpu = dev->gpu;
1171 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1172 				p2plink->gpu = dev->gpu;
1173 			break;
1174 		}
1175 	}
1176 	return out_dev;
1177 }
1178 
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1179 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1180 {
1181 	/*
1182 	 * TODO: Generate an event for thunk about the arrival/removal
1183 	 * of the GPU
1184 	 */
1185 }
1186 
1187 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1188  *		patch this after CRAT parsing.
1189  */
kfd_fill_mem_clk_max_info(struct kfd_topology_device * dev)1190 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1191 {
1192 	struct kfd_mem_properties *mem;
1193 	struct kfd_local_mem_info local_mem_info;
1194 
1195 	if (!dev)
1196 		return;
1197 
1198 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1199 	 * single bank of VRAM local memory.
1200 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1201 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1202 	 *	all the banks will report the same mem_clk_max information
1203 	 */
1204 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1205 					 dev->gpu->xcp);
1206 
1207 	list_for_each_entry(mem, &dev->mem_props, list)
1208 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1209 }
1210 
kfd_set_iolink_no_atomics(struct kfd_topology_device * dev,struct kfd_topology_device * target_gpu_dev,struct kfd_iolink_properties * link)1211 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1212 					struct kfd_topology_device *target_gpu_dev,
1213 					struct kfd_iolink_properties *link)
1214 {
1215 	/* xgmi always supports atomics between links. */
1216 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1217 		return;
1218 
1219 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1220 	if (target_gpu_dev) {
1221 		uint32_t cap;
1222 
1223 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1224 				PCI_EXP_DEVCAP2, &cap);
1225 
1226 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1227 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1228 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1229 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1230 	/* set gpu (dev) flags. */
1231 	} else {
1232 		if (!dev->gpu->kfd->pci_atomic_requested ||
1233 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1234 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1235 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1236 	}
1237 }
1238 
kfd_set_iolink_non_coherent(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1239 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1240 		struct kfd_iolink_properties *outbound_link,
1241 		struct kfd_iolink_properties *inbound_link)
1242 {
1243 	/* CPU -> GPU with PCIe */
1244 	if (!to_dev->gpu &&
1245 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1246 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1247 
1248 	if (to_dev->gpu) {
1249 		/* GPU <-> GPU with PCIe and
1250 		 * Vega20 with XGMI
1251 		 */
1252 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1253 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1254 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1255 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1256 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1257 		}
1258 	}
1259 }
1260 
1261 #define REC_SDMA_NUM_GPU	8
1262 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1263 							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1264 							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1265 							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1266 							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1267 							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1268 							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1269 							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1270 							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1271 
kfd_set_recommended_sdma_engines(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1272 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1273 					     struct kfd_iolink_properties *outbound_link,
1274 					     struct kfd_iolink_properties *inbound_link)
1275 {
1276 	struct kfd_node *gpu = outbound_link->gpu;
1277 	struct amdgpu_device *adev = gpu->adev;
1278 	unsigned int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1279 	unsigned int num_xgmi_sdma_engines = kfd_get_num_xgmi_sdma_engines(gpu);
1280 	unsigned int num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1281 	uint32_t sdma_eng_id_mask = (1 << num_sdma_engines) - 1;
1282 	uint32_t xgmi_sdma_eng_id_mask =
1283 			((1 << num_xgmi_sdma_engines) - 1) << num_sdma_engines;
1284 
1285 	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1286 		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1287 		num_xgmi_sdma_engines >= 6 && (!(adev->flags & AMD_IS_APU) &&
1288 		num_xgmi_nodes == 8);
1289 
1290 	if (support_rec_eng) {
1291 		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1292 		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1293 		unsigned int reshift = num_xgmi_sdma_engines == 6 ? 1 : 0;
1294 
1295 		outbound_link->rec_sdma_eng_id_mask =
1296 			1 << (rec_sdma_eng_map[src_socket_id][dst_socket_id] >> reshift);
1297 		inbound_link->rec_sdma_eng_id_mask =
1298 			1 << (rec_sdma_eng_map[dst_socket_id][src_socket_id] >> reshift);
1299 
1300 		/* If recommended engine is out of range, need to reset the mask */
1301 		if (outbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1302 			outbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1303 		if (inbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1304 			inbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1305 
1306 	} else {
1307 		uint32_t engine_mask = (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1308 				num_xgmi_sdma_engines && to_dev->gpu) ? xgmi_sdma_eng_id_mask :
1309 				sdma_eng_id_mask;
1310 
1311 		outbound_link->rec_sdma_eng_id_mask = engine_mask;
1312 		inbound_link->rec_sdma_eng_id_mask = engine_mask;
1313 	}
1314 }
1315 
kfd_fill_iolink_non_crat_info(struct kfd_topology_device * dev)1316 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1317 {
1318 	struct kfd_iolink_properties *link, *inbound_link;
1319 	struct kfd_topology_device *peer_dev;
1320 
1321 	if (!dev || !dev->gpu)
1322 		return;
1323 
1324 	/* GPU only creates direct links so apply flags setting to all */
1325 	list_for_each_entry(link, &dev->io_link_props, list) {
1326 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1327 		kfd_set_iolink_no_atomics(dev, NULL, link);
1328 		peer_dev = kfd_topology_device_by_proximity_domain(
1329 				link->node_to);
1330 
1331 		if (!peer_dev)
1332 			continue;
1333 
1334 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1335 		if (!peer_dev->gpu &&
1336 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1337 			/*
1338 			 * If the GPU is not part of a GPU hive, use its pci
1339 			 * device location as the hive ID to bind with the CPU.
1340 			 */
1341 			if (!dev->node_props.hive_id)
1342 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1343 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1344 		}
1345 
1346 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1347 									list) {
1348 			if (inbound_link->node_to != link->node_from)
1349 				continue;
1350 
1351 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1352 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1353 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1354 			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1355 		}
1356 	}
1357 
1358 	/* Create indirect links so apply flags setting to all */
1359 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1360 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1361 		kfd_set_iolink_no_atomics(dev, NULL, link);
1362 		peer_dev = kfd_topology_device_by_proximity_domain(
1363 				link->node_to);
1364 
1365 		if (!peer_dev)
1366 			continue;
1367 
1368 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1369 									list) {
1370 			if (inbound_link->node_to != link->node_from)
1371 				continue;
1372 
1373 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1374 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1375 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1376 		}
1377 	}
1378 }
1379 
kfd_build_p2p_node_entry(struct kfd_topology_device * dev,struct kfd_iolink_properties * p2plink)1380 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1381 				struct kfd_iolink_properties *p2plink)
1382 {
1383 	int ret;
1384 
1385 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1386 	if (!p2plink->kobj)
1387 		return -ENOMEM;
1388 
1389 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1390 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1391 	if (ret < 0) {
1392 		kobject_put(p2plink->kobj);
1393 		return ret;
1394 	}
1395 
1396 	p2plink->attr.name = "properties";
1397 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1398 	sysfs_attr_init(&p2plink->attr);
1399 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1400 	if (ret < 0)
1401 		return ret;
1402 
1403 	return 0;
1404 }
1405 
kfd_create_indirect_link_prop(struct kfd_topology_device * kdev,int gpu_node)1406 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1407 {
1408 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1409 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1410 	struct kfd_topology_device *cpu_dev;
1411 	int ret = 0;
1412 	int i, num_cpu;
1413 
1414 	num_cpu = 0;
1415 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1416 		if (cpu_dev->gpu)
1417 			break;
1418 		num_cpu++;
1419 	}
1420 
1421 	if (list_empty(&kdev->io_link_props))
1422 		return -ENODATA;
1423 
1424 	gpu_link = list_first_entry(&kdev->io_link_props,
1425 				    struct kfd_iolink_properties, list);
1426 
1427 	for (i = 0; i < num_cpu; i++) {
1428 		/* CPU <--> GPU */
1429 		if (gpu_link->node_to == i)
1430 			continue;
1431 
1432 		/* find CPU <-->  CPU links */
1433 		cpu_link = NULL;
1434 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1435 		if (cpu_dev) {
1436 			list_for_each_entry(tmp_link,
1437 					&cpu_dev->io_link_props, list) {
1438 				if (tmp_link->node_to == gpu_link->node_to) {
1439 					cpu_link = tmp_link;
1440 					break;
1441 				}
1442 			}
1443 		}
1444 
1445 		if (!cpu_link)
1446 			return -ENOMEM;
1447 
1448 		/* CPU <--> CPU <--> GPU, GPU node*/
1449 		props = kfd_alloc_struct(props);
1450 		if (!props)
1451 			return -ENOMEM;
1452 
1453 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1454 		props->weight = gpu_link->weight + cpu_link->weight;
1455 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1456 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1457 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1458 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1459 
1460 		props->node_from = gpu_node;
1461 		props->node_to = i;
1462 		kdev->node_props.p2p_links_count++;
1463 		list_add_tail(&props->list, &kdev->p2p_link_props);
1464 		ret = kfd_build_p2p_node_entry(kdev, props);
1465 		if (ret < 0)
1466 			return ret;
1467 
1468 		/* for small Bar, no CPU --> GPU in-direct links */
1469 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1470 			/* CPU <--> CPU <--> GPU, CPU node*/
1471 			props2 = kfd_alloc_struct(props2);
1472 			if (!props2)
1473 				return -ENOMEM;
1474 
1475 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1476 			props2->node_from = i;
1477 			props2->node_to = gpu_node;
1478 			props2->kobj = NULL;
1479 			cpu_dev->node_props.p2p_links_count++;
1480 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1481 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1482 			if (ret < 0)
1483 				return ret;
1484 		}
1485 	}
1486 	return ret;
1487 }
1488 
1489 #if defined(CONFIG_HSA_AMD_P2P)
kfd_add_peer_prop(struct kfd_topology_device * kdev,struct kfd_topology_device * peer,int from,int to)1490 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1491 		struct kfd_topology_device *peer, int from, int to)
1492 {
1493 	struct kfd_iolink_properties *props = NULL;
1494 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1495 	struct kfd_topology_device *cpu_dev;
1496 	int ret = 0;
1497 
1498 	if (!amdgpu_device_is_peer_accessible(
1499 				kdev->gpu->adev,
1500 				peer->gpu->adev))
1501 		return ret;
1502 
1503 	if (list_empty(&kdev->io_link_props))
1504 		return -ENODATA;
1505 
1506 	iolink1 = list_first_entry(&kdev->io_link_props,
1507 				   struct kfd_iolink_properties, list);
1508 
1509 	if (list_empty(&peer->io_link_props))
1510 		return -ENODATA;
1511 
1512 	iolink2 = list_first_entry(&peer->io_link_props,
1513 				   struct kfd_iolink_properties, list);
1514 
1515 	props = kfd_alloc_struct(props);
1516 	if (!props)
1517 		return -ENOMEM;
1518 
1519 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1520 
1521 	props->weight = iolink1->weight + iolink2->weight;
1522 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1523 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1524 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1525 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1526 
1527 	if (iolink1->node_to != iolink2->node_to) {
1528 		/* CPU->CPU  link*/
1529 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1530 		if (cpu_dev) {
1531 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1532 				if (iolink3->node_to != iolink2->node_to)
1533 					continue;
1534 
1535 				props->weight += iolink3->weight;
1536 				props->min_latency += iolink3->min_latency;
1537 				props->max_latency += iolink3->max_latency;
1538 				props->min_bandwidth = min(props->min_bandwidth,
1539 							   iolink3->min_bandwidth);
1540 				props->max_bandwidth = min(props->max_bandwidth,
1541 							   iolink3->max_bandwidth);
1542 				break;
1543 			}
1544 		} else {
1545 			WARN(1, "CPU node not found");
1546 		}
1547 	}
1548 
1549 	props->node_from = from;
1550 	props->node_to = to;
1551 	peer->node_props.p2p_links_count++;
1552 	list_add_tail(&props->list, &peer->p2p_link_props);
1553 	ret = kfd_build_p2p_node_entry(peer, props);
1554 
1555 	return ret;
1556 }
1557 #endif
1558 
kfd_dev_create_p2p_links(void)1559 static int kfd_dev_create_p2p_links(void)
1560 {
1561 	struct kfd_topology_device *dev;
1562 	struct kfd_topology_device *new_dev;
1563 #if defined(CONFIG_HSA_AMD_P2P)
1564 	uint32_t i;
1565 #endif
1566 	uint32_t k;
1567 	int ret = 0;
1568 
1569 	k = 0;
1570 	list_for_each_entry(dev, &topology_device_list, list)
1571 		k++;
1572 	if (k < 2)
1573 		return 0;
1574 
1575 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1576 	if (WARN_ON(!new_dev->gpu))
1577 		return 0;
1578 
1579 	k--;
1580 
1581 	/* create in-direct links */
1582 	ret = kfd_create_indirect_link_prop(new_dev, k);
1583 	if (ret < 0)
1584 		goto out;
1585 
1586 	/* create p2p links */
1587 #if defined(CONFIG_HSA_AMD_P2P)
1588 	i = 0;
1589 	list_for_each_entry(dev, &topology_device_list, list) {
1590 		if (dev == new_dev)
1591 			break;
1592 		if (!dev->gpu || !dev->gpu->adev ||
1593 		    (dev->gpu->kfd->hive_id &&
1594 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id &&
1595 		     amdgpu_xgmi_get_is_sharing_enabled(dev->gpu->adev, new_dev->gpu->adev)))
1596 			goto next;
1597 
1598 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1599 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1600 		if (ret < 0)
1601 			goto out;
1602 
1603 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1604 		if (ret < 0)
1605 			goto out;
1606 next:
1607 		i++;
1608 	}
1609 #endif
1610 
1611 out:
1612 	return ret;
1613 }
1614 
1615 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l1_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)1616 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1617 				struct kfd_gpu_cache_info *pcache_info,
1618 				int cu_bitmask,
1619 				int cache_type, unsigned int cu_processor_id,
1620 				int cu_block)
1621 {
1622 	unsigned int cu_sibling_map_mask;
1623 	int first_active_cu;
1624 	struct kfd_cache_properties *pcache = NULL;
1625 
1626 	cu_sibling_map_mask = cu_bitmask;
1627 	cu_sibling_map_mask >>= cu_block;
1628 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1629 	first_active_cu = ffs(cu_sibling_map_mask);
1630 
1631 	/* CU could be inactive. In case of shared cache find the first active
1632 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1633 	 * inactive active skip it
1634 	 */
1635 	if (first_active_cu) {
1636 		pcache = kfd_alloc_struct(pcache);
1637 		if (!pcache)
1638 			return -ENOMEM;
1639 
1640 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1641 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1642 		pcache->cache_level = pcache_info[cache_type].cache_level;
1643 		pcache->cache_size = pcache_info[cache_type].cache_size;
1644 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1645 
1646 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1647 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1648 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1649 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1650 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1651 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1652 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1653 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1654 
1655 		/* Sibling map is w.r.t processor_id_low, so shift out
1656 		 * inactive CU
1657 		 */
1658 		cu_sibling_map_mask =
1659 			cu_sibling_map_mask >> (first_active_cu - 1);
1660 
1661 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1662 		pcache->sibling_map[1] =
1663 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1664 		pcache->sibling_map[2] =
1665 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1666 		pcache->sibling_map[3] =
1667 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1668 
1669 		pcache->sibling_map_size = 4;
1670 		*props_ext = pcache;
1671 
1672 		return 0;
1673 	}
1674 	return 1;
1675 }
1676 
1677 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l2_l3_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct amdgpu_cu_info * cu_info,struct amdgpu_gfx_config * gfx_info,int cache_type,unsigned int cu_processor_id,struct kfd_node * knode)1678 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1679 				struct kfd_gpu_cache_info *pcache_info,
1680 				struct amdgpu_cu_info *cu_info,
1681 				struct amdgpu_gfx_config *gfx_info,
1682 				int cache_type, unsigned int cu_processor_id,
1683 				struct kfd_node *knode)
1684 {
1685 	unsigned int cu_sibling_map_mask = 0;
1686 	int first_active_cu;
1687 	int i, j, k, xcc, start, end;
1688 	int num_xcc = NUM_XCC(knode->xcc_mask);
1689 	struct kfd_cache_properties *pcache = NULL;
1690 	enum amdgpu_memory_partition mode;
1691 	struct amdgpu_device *adev = knode->adev;
1692 	bool found = false;
1693 
1694 	start = ffs(knode->xcc_mask) - 1;
1695 	end = start + num_xcc;
1696 
1697 	/* To find the bitmap in the first active cu in the first
1698 	 * xcc, it is based on the assumption that evrey xcc must
1699 	 * have at least one active cu.
1700 	 */
1701 	for (i = 0; i < gfx_info->max_shader_engines && !found; i++) {
1702 		for (j = 0; j < gfx_info->max_sh_per_se && !found; j++) {
1703 			if (cu_info->bitmap[start][i % 4][j % 4]) {
1704 				cu_sibling_map_mask =
1705 					cu_info->bitmap[start][i % 4][j % 4];
1706 				found = true;
1707 			}
1708 		}
1709 	}
1710 
1711 	cu_sibling_map_mask &=
1712 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1713 	first_active_cu = ffs(cu_sibling_map_mask);
1714 
1715 	/* CU could be inactive. In case of shared cache find the first active
1716 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1717 	 * inactive active skip it
1718 	 */
1719 	if (first_active_cu) {
1720 		pcache = kfd_alloc_struct(pcache);
1721 		if (!pcache)
1722 			return -ENOMEM;
1723 
1724 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1725 		pcache->processor_id_low = cu_processor_id
1726 					+ (first_active_cu - 1);
1727 		pcache->cache_level = pcache_info[cache_type].cache_level;
1728 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1729 
1730 		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1731 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4) ||
1732 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 5, 0))
1733 			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1734 		else
1735 			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1736 
1737 		pcache->cache_size = pcache_info[cache_type].cache_size;
1738 		/* Partition mode only affects L3 cache size */
1739 		if (mode && pcache->cache_level == 3)
1740 			pcache->cache_size /= mode;
1741 
1742 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1743 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1744 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1745 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1746 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1747 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1748 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1749 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1750 
1751 		/* Sibling map is w.r.t processor_id_low, so shift out
1752 		 * inactive CU
1753 		 */
1754 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1755 		k = 0;
1756 
1757 		for (xcc = start; xcc < end; xcc++) {
1758 			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1759 				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1760 					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1761 					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1762 					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1763 					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1764 					k += 4;
1765 
1766 					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1767 					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1768 				}
1769 			}
1770 		}
1771 		pcache->sibling_map_size = k;
1772 		*props_ext = pcache;
1773 		return 0;
1774 	}
1775 	return 1;
1776 }
1777 
1778 #define KFD_MAX_CACHE_TYPES 6
1779 
1780 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1781  * tables
1782  */
kfd_fill_cache_non_crat_info(struct kfd_topology_device * dev,struct kfd_node * kdev)1783 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1784 {
1785 	struct kfd_gpu_cache_info *pcache_info = NULL;
1786 	int i, j, k, xcc, start, end;
1787 	int ct = 0;
1788 	unsigned int cu_processor_id;
1789 	int ret;
1790 	unsigned int num_cu_shared;
1791 	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1792 	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1793 	int gpu_processor_id;
1794 	struct kfd_cache_properties *props_ext = NULL;
1795 	int num_of_entries = 0;
1796 	int num_of_cache_types = 0;
1797 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1798 
1799 
1800 	gpu_processor_id = dev->node_props.simd_id_base;
1801 
1802 	memset(cache_info, 0, sizeof(cache_info));
1803 	pcache_info = cache_info;
1804 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1805 	if (!num_of_cache_types) {
1806 		pr_warn("no cache info found\n");
1807 		return;
1808 	}
1809 
1810 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1811 	 * go through all available Compute Units.
1812 	 * The [i,j,k] loop will
1813 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1814 	 *			will parse through all available CU
1815 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1816 	 *			then it will consider only one CU from
1817 	 *			the shared unit
1818 	 */
1819 	start = ffs(kdev->xcc_mask) - 1;
1820 	end = start + NUM_XCC(kdev->xcc_mask);
1821 
1822 	for (ct = 0; ct < num_of_cache_types; ct++) {
1823 		cu_processor_id = gpu_processor_id;
1824 		if (pcache_info[ct].cache_level == 1) {
1825 			for (xcc = start; xcc < end; xcc++) {
1826 				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1827 					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1828 						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1829 
1830 							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1831 										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1832 										cu_processor_id, k);
1833 
1834 							if (ret < 0)
1835 								break;
1836 
1837 							if (!ret) {
1838 								num_of_entries++;
1839 								list_add_tail(&props_ext->list, &dev->cache_props);
1840 							}
1841 
1842 							/* Move to next CU block */
1843 							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1844 								gfx_info->max_cu_per_sh) ?
1845 								pcache_info[ct].num_cu_shared :
1846 								(gfx_info->max_cu_per_sh - k);
1847 							cu_processor_id += num_cu_shared;
1848 						}
1849 					}
1850 				}
1851 			}
1852 		} else {
1853 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1854 						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1855 
1856 			if (ret < 0)
1857 				break;
1858 
1859 			if (!ret) {
1860 				num_of_entries++;
1861 				list_add_tail(&props_ext->list, &dev->cache_props);
1862 			}
1863 		}
1864 	}
1865 	dev->node_props.caches_count += num_of_entries;
1866 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1867 }
1868 
kfd_topology_add_device_locked(struct kfd_node * gpu,struct kfd_topology_device ** dev)1869 static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1870 					  struct kfd_topology_device **dev)
1871 {
1872 	int proximity_domain = ++topology_crat_proximity_domain;
1873 	struct list_head temp_topology_device_list;
1874 	void *crat_image = NULL;
1875 	size_t image_size = 0;
1876 	int res;
1877 
1878 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1879 					    COMPUTE_UNIT_GPU, gpu,
1880 					    proximity_domain);
1881 	if (res) {
1882 		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1883 		topology_crat_proximity_domain--;
1884 		goto err;
1885 	}
1886 
1887 	INIT_LIST_HEAD(&temp_topology_device_list);
1888 
1889 	res = kfd_parse_crat_table(crat_image,
1890 				   &temp_topology_device_list,
1891 				   proximity_domain);
1892 	if (res) {
1893 		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1894 		topology_crat_proximity_domain--;
1895 		goto err;
1896 	}
1897 
1898 	kfd_topology_update_device_list(&temp_topology_device_list,
1899 					&topology_device_list);
1900 
1901 	*dev = kfd_assign_gpu(gpu);
1902 	if (WARN_ON(!*dev)) {
1903 		res = -ENODEV;
1904 		goto err;
1905 	}
1906 
1907 	/* Fill the cache affinity information here for the GPUs
1908 	 * using VCRAT
1909 	 */
1910 	kfd_fill_cache_non_crat_info(*dev, gpu);
1911 
1912 	/* Update the SYSFS tree, since we added another topology
1913 	 * device
1914 	 */
1915 	res = kfd_topology_update_sysfs();
1916 	if (!res)
1917 		sys_props.generation_count++;
1918 	else
1919 		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1920 			res);
1921 
1922 err:
1923 	kfd_destroy_crat_image(crat_image);
1924 	return res;
1925 }
1926 
kfd_topology_set_dbg_firmware_support(struct kfd_topology_device * dev)1927 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1928 {
1929 	bool firmware_supported = true;
1930 
1931 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1932 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1933 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1934 						AMDGPU_MES_API_VERSION_MASK) >>
1935 						AMDGPU_MES_API_VERSION_SHIFT;
1936 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1937 						AMDGPU_MES_VERSION_MASK;
1938 
1939 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1940 		goto out;
1941 	}
1942 
1943 	/*
1944 	 * Note: Any unlisted devices here are assumed to support exception handling.
1945 	 * Add additional checks here as needed.
1946 	 */
1947 	switch (KFD_GC_VERSION(dev->gpu)) {
1948 	case IP_VERSION(9, 0, 1):
1949 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1950 		break;
1951 	case IP_VERSION(9, 1, 0):
1952 	case IP_VERSION(9, 2, 1):
1953 	case IP_VERSION(9, 2, 2):
1954 	case IP_VERSION(9, 3, 0):
1955 	case IP_VERSION(9, 4, 0):
1956 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1957 		break;
1958 	case IP_VERSION(9, 4, 1):
1959 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1960 		break;
1961 	case IP_VERSION(9, 4, 2):
1962 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1963 		break;
1964 	case IP_VERSION(10, 1, 10):
1965 	case IP_VERSION(10, 1, 2):
1966 	case IP_VERSION(10, 1, 1):
1967 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1968 		break;
1969 	case IP_VERSION(10, 3, 0):
1970 	case IP_VERSION(10, 3, 2):
1971 	case IP_VERSION(10, 3, 1):
1972 	case IP_VERSION(10, 3, 4):
1973 	case IP_VERSION(10, 3, 5):
1974 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1975 		break;
1976 	case IP_VERSION(10, 1, 3):
1977 	case IP_VERSION(10, 3, 3):
1978 		firmware_supported = false;
1979 		break;
1980 	default:
1981 		break;
1982 	}
1983 
1984 out:
1985 	if (firmware_supported)
1986 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1987 }
1988 
kfd_topology_set_capabilities(struct kfd_topology_device * dev)1989 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1990 {
1991 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1992 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1993 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1994 
1995 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1996 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1997 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1998 
1999 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
2000 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
2001 
2002 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
2003 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
2004 		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
2005 			dev->node_props.debug_prop |=
2006 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
2007 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
2008 		else
2009 			dev->node_props.debug_prop |=
2010 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
2011 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2012 
2013 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
2014 			dev->node_props.capability |=
2015 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2016 
2017 		if (!amdgpu_sriov_vf(dev->gpu->adev))
2018 			dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2019 
2020 	} else {
2021 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2022 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2023 
2024 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2025 			dev->node_props.capability |=
2026 				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2027 	}
2028 
2029 	kfd_topology_set_dbg_firmware_support(dev);
2030 }
2031 
kfd_topology_add_device(struct kfd_node * gpu)2032 int kfd_topology_add_device(struct kfd_node *gpu)
2033 {
2034 	uint32_t gpu_id;
2035 	struct kfd_topology_device *dev;
2036 	int res = 0;
2037 	int i;
2038 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2039 	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2040 	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2041 
2042 	if (gpu->xcp && !gpu->xcp->ddev) {
2043 		dev_warn(gpu->adev->dev,
2044 			 "Won't add GPU to topology since it has no drm node assigned.");
2045 		return 0;
2046 	} else {
2047 		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2048 	}
2049 
2050 	/* Check to see if this gpu device exists in the topology_device_list.
2051 	 * If so, assign the gpu to that device,
2052 	 * else create a Virtual CRAT for this gpu device and then parse that
2053 	 * CRAT to create a new topology device. Once created assign the gpu to
2054 	 * that topology device
2055 	 */
2056 	down_write(&topology_lock);
2057 	dev = kfd_assign_gpu(gpu);
2058 	if (!dev)
2059 		res = kfd_topology_add_device_locked(gpu, &dev);
2060 	up_write(&topology_lock);
2061 	if (res)
2062 		return res;
2063 
2064 	gpu_id = kfd_generate_gpu_id(gpu);
2065 	dev->gpu_id = gpu_id;
2066 	gpu->id = gpu_id;
2067 
2068 	kfd_dev_create_p2p_links();
2069 
2070 	/* TODO: Move the following lines to function
2071 	 *	kfd_add_non_crat_information
2072 	 */
2073 
2074 	/* Fill-in additional information that is not available in CRAT but
2075 	 * needed for the topology
2076 	 */
2077 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2078 		dev->node_props.name[i] = __tolower(asic_name[i]);
2079 		if (asic_name[i] == '\0')
2080 			break;
2081 	}
2082 	dev->node_props.name[i] = '\0';
2083 
2084 	dev->node_props.simd_arrays_per_engine =
2085 		gfx_info->max_sh_per_se;
2086 
2087 	dev->node_props.gfx_target_version =
2088 				gpu->kfd->device_info.gfx_target_version;
2089 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2090 	dev->node_props.device_id = gpu->adev->pdev->device;
2091 	dev->node_props.capability |=
2092 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2093 			HSA_CAP_ASIC_REVISION_MASK);
2094 
2095 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2096 	if (gpu->kfd->num_nodes > 1)
2097 		dev->node_props.location_id |= dev->gpu->node_id;
2098 
2099 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2100 	dev->node_props.max_engine_clk_fcompute =
2101 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2102 	dev->node_props.max_engine_clk_ccompute =
2103 		cpufreq_quick_get_max(0) / 1000;
2104 
2105 	if (gpu->xcp)
2106 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2107 	else
2108 		dev->node_props.drm_render_minor =
2109 				gpu->kfd->shared_resources.drm_render_minor;
2110 
2111 	dev->node_props.hive_id = gpu->kfd->hive_id;
2112 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2113 	dev->node_props.num_sdma_xgmi_engines =
2114 					kfd_get_num_xgmi_sdma_engines(gpu);
2115 	dev->node_props.num_sdma_queues_per_engine =
2116 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2117 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2118 	dev->node_props.num_gws = (dev->gpu->gws &&
2119 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2120 		dev->gpu->adev->gds.gws_size : 0;
2121 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2122 
2123 	kfd_fill_mem_clk_max_info(dev);
2124 	kfd_fill_iolink_non_crat_info(dev);
2125 
2126 	switch (dev->gpu->adev->asic_type) {
2127 	case CHIP_KAVERI:
2128 	case CHIP_HAWAII:
2129 	case CHIP_TONGA:
2130 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2131 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2132 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2133 		break;
2134 	case CHIP_CARRIZO:
2135 	case CHIP_FIJI:
2136 	case CHIP_POLARIS10:
2137 	case CHIP_POLARIS11:
2138 	case CHIP_POLARIS12:
2139 	case CHIP_VEGAM:
2140 		pr_debug("Adding doorbell packet type capability\n");
2141 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2142 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2143 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2144 		break;
2145 	default:
2146 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2147 			WARN(1, "Unexpected ASIC family %u",
2148 			     dev->gpu->adev->asic_type);
2149 		else
2150 			kfd_topology_set_capabilities(dev);
2151 	}
2152 
2153 	/*
2154 	 * Overwrite ATS capability according to needs_iommu_device to fix
2155 	 * potential missing corresponding bit in CRAT of BIOS.
2156 	 */
2157 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2158 
2159 	/* Fix errors in CZ CRAT.
2160 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2161 	 *		because it doesn't consider masked out CUs
2162 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2163 	 */
2164 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2165 		dev->node_props.simd_count =
2166 			cu_info->simd_per_cu * cu_info->number;
2167 		dev->node_props.max_waves_per_simd = 10;
2168 	}
2169 
2170 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2171 	dev->node_props.capability |=
2172 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2173 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2174 	dev->node_props.capability |=
2175 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2176 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2177 
2178 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2179 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2180 			HSA_CAP_RASEVENTNOTIFY : 0;
2181 
2182 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2183 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2184 
2185 	if (dev->gpu->adev->gmc.is_app_apu ||
2186 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2187 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2188 
2189 	kfd_queue_ctx_save_restore_size(dev);
2190 
2191 	kfd_debug_print_topology();
2192 
2193 	kfd_notify_gpu_change(gpu_id, 1);
2194 
2195 	return 0;
2196 }
2197 
2198 /**
2199  * kfd_topology_update_io_links() - Update IO links after device removal.
2200  * @proximity_domain: Proximity domain value of the dev being removed.
2201  *
2202  * The topology list currently is arranged in increasing order of
2203  * proximity domain.
2204  *
2205  * Two things need to be done when a device is removed:
2206  * 1. All the IO links to this device need to be removed.
2207  * 2. All nodes after the current device node need to move
2208  *    up once this device node is removed from the topology
2209  *    list. As a result, the proximity domain values for
2210  *    all nodes after the node being deleted reduce by 1.
2211  *    This would also cause the proximity domain values for
2212  *    io links to be updated based on new proximity domain
2213  *    values.
2214  *
2215  * Context: The caller must hold write topology_lock.
2216  */
kfd_topology_update_io_links(int proximity_domain)2217 static void kfd_topology_update_io_links(int proximity_domain)
2218 {
2219 	struct kfd_topology_device *dev;
2220 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2221 
2222 	list_for_each_entry(dev, &topology_device_list, list) {
2223 		if (dev->proximity_domain > proximity_domain)
2224 			dev->proximity_domain--;
2225 
2226 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2227 			/*
2228 			 * If there is an io link to the dev being deleted
2229 			 * then remove that IO link also.
2230 			 */
2231 			if (iolink->node_to == proximity_domain) {
2232 				list_del(&iolink->list);
2233 				dev->node_props.io_links_count--;
2234 			} else {
2235 				if (iolink->node_from > proximity_domain)
2236 					iolink->node_from--;
2237 				if (iolink->node_to > proximity_domain)
2238 					iolink->node_to--;
2239 			}
2240 		}
2241 
2242 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2243 			/*
2244 			 * If there is a p2p link to the dev being deleted
2245 			 * then remove that p2p link also.
2246 			 */
2247 			if (p2plink->node_to == proximity_domain) {
2248 				list_del(&p2plink->list);
2249 				dev->node_props.p2p_links_count--;
2250 			} else {
2251 				if (p2plink->node_from > proximity_domain)
2252 					p2plink->node_from--;
2253 				if (p2plink->node_to > proximity_domain)
2254 					p2plink->node_to--;
2255 			}
2256 		}
2257 	}
2258 }
2259 
kfd_topology_remove_device(struct kfd_node * gpu)2260 int kfd_topology_remove_device(struct kfd_node *gpu)
2261 {
2262 	struct kfd_topology_device *dev, *tmp;
2263 	uint32_t gpu_id;
2264 	int res = -ENODEV;
2265 	int i = 0;
2266 
2267 	down_write(&topology_lock);
2268 
2269 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2270 		if (dev->gpu == gpu) {
2271 			gpu_id = dev->gpu_id;
2272 			kfd_remove_sysfs_node_entry(dev);
2273 			kfd_release_topology_device(dev);
2274 			sys_props.num_devices--;
2275 			kfd_topology_update_io_links(i);
2276 			topology_crat_proximity_domain = sys_props.num_devices-1;
2277 			sys_props.generation_count++;
2278 			res = 0;
2279 			if (kfd_topology_update_sysfs() < 0)
2280 				kfd_topology_release_sysfs();
2281 			break;
2282 		}
2283 		i++;
2284 	}
2285 
2286 	up_write(&topology_lock);
2287 
2288 	if (!res)
2289 		kfd_notify_gpu_change(gpu_id, 0);
2290 
2291 	return res;
2292 }
2293 
2294 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2295  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2296  *	returned through @kdev
2297  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2298  *		-1: If end of list
2299  */
kfd_topology_enum_kfd_devices(uint8_t idx,struct kfd_node ** kdev)2300 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2301 {
2302 
2303 	struct kfd_topology_device *top_dev;
2304 	uint8_t device_idx = 0;
2305 
2306 	*kdev = NULL;
2307 	down_read(&topology_lock);
2308 
2309 	list_for_each_entry(top_dev, &topology_device_list, list) {
2310 		if (device_idx == idx) {
2311 			*kdev = top_dev->gpu;
2312 			up_read(&topology_lock);
2313 			return 0;
2314 		}
2315 
2316 		device_idx++;
2317 	}
2318 
2319 	up_read(&topology_lock);
2320 
2321 	return -1;
2322 
2323 }
2324 
kfd_cpumask_to_apic_id(const struct cpumask * cpumask)2325 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2326 {
2327 	int first_cpu_of_numa_node;
2328 
2329 	if (!cpumask || cpumask == cpu_none_mask)
2330 		return -1;
2331 	first_cpu_of_numa_node = cpumask_first(cpumask);
2332 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2333 		return -1;
2334 #ifdef CONFIG_X86_64
2335 	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2336 #else
2337 	return first_cpu_of_numa_node;
2338 #endif
2339 }
2340 
2341 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2342  *	of the given NUMA node (numa_node_id)
2343  * Return -1 on failure
2344  */
kfd_numa_node_to_apic_id(int numa_node_id)2345 int kfd_numa_node_to_apic_id(int numa_node_id)
2346 {
2347 	if (numa_node_id == -1) {
2348 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2349 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2350 	}
2351 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2352 }
2353 
2354 #if defined(CONFIG_DEBUG_FS)
2355 
kfd_debugfs_hqds_by_device(struct seq_file * m,void * data)2356 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2357 {
2358 	struct kfd_topology_device *dev;
2359 	unsigned int i = 0;
2360 	int r = 0;
2361 
2362 	down_read(&topology_lock);
2363 
2364 	list_for_each_entry(dev, &topology_device_list, list) {
2365 		if (!dev->gpu) {
2366 			i++;
2367 			continue;
2368 		}
2369 
2370 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2371 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2372 		if (r)
2373 			break;
2374 	}
2375 
2376 	up_read(&topology_lock);
2377 
2378 	return r;
2379 }
2380 
kfd_debugfs_rls_by_device(struct seq_file * m,void * data)2381 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2382 {
2383 	struct kfd_topology_device *dev;
2384 	unsigned int i = 0;
2385 	int r = 0;
2386 
2387 	down_read(&topology_lock);
2388 
2389 	list_for_each_entry(dev, &topology_device_list, list) {
2390 		if (!dev->gpu) {
2391 			i++;
2392 			continue;
2393 		}
2394 
2395 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2396 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2397 		if (r)
2398 			break;
2399 	}
2400 
2401 	up_read(&topology_lock);
2402 
2403 	return r;
2404 }
2405 
2406 #endif
2407