1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46
47 /*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77 struct kfd_procfs_tree {
78 struct kobject *kobj;
79 };
80
81 static struct kfd_procfs_tree procfs;
82
83 /*
84 * Structure for SDMA activity tracking
85 */
86 struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90 };
91
92 struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97 };
98
kfd_sdma_activity_worker(struct work_struct * work)99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246 cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251 }
252
253 /**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 int cu_cnt;
268 int wave_cnt;
269 int max_waves_per_cu;
270 struct kfd_node *dev = NULL;
271 struct kfd_process *proc = NULL;
272 struct kfd_process_device *pdd = NULL;
273 int i;
274 struct kfd_cu_occupancy cu_occupancy[AMDGPU_MAX_QUEUES];
275 u32 queue_format;
276
277 memset(cu_occupancy, 0x0, sizeof(cu_occupancy));
278
279 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
280 dev = pdd->dev;
281 if (dev->kfd2kgd->get_cu_occupancy == NULL)
282 return -EINVAL;
283
284 cu_cnt = 0;
285 proc = pdd->process;
286 if (pdd->qpd.queue_count == 0) {
287 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
288 dev->id, proc->pasid);
289 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
290 }
291
292 /* Collect wave count from device if it supports */
293 wave_cnt = 0;
294 max_waves_per_cu = 0;
295
296 /*
297 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
298 * For AQL queues, because of cooperative dispatch we multiply the wave count
299 * by number of XCCs in the partition to get the total wave counts across all
300 * XCCs in the partition.
301 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
302 */
303 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
304 &max_waves_per_cu, ffs(dev->xcc_mask) - 1);
305
306 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
307 if (cu_occupancy[i].wave_cnt != 0 &&
308 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
309 cu_occupancy[i].doorbell_off,
310 &queue_format)) {
311 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
312 wave_cnt += cu_occupancy[i].wave_cnt;
313 else
314 wave_cnt += (NUM_XCC(dev->xcc_mask) *
315 cu_occupancy[i].wave_cnt);
316 }
317 }
318
319 /* Translate wave count to number of compute units */
320 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
321 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
322 }
323
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)324 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
325 char *buffer)
326 {
327 if (strcmp(attr->name, "pasid") == 0) {
328 struct kfd_process *p = container_of(attr, struct kfd_process,
329 attr_pasid);
330
331 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
332 } else if (strncmp(attr->name, "vram_", 5) == 0) {
333 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
334 attr_vram);
335 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
336 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
337 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
338 attr_sdma);
339 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
340
341 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
342 kfd_sdma_activity_worker);
343
344 sdma_activity_work_handler.pdd = pdd;
345 sdma_activity_work_handler.sdma_activity_counter = 0;
346
347 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
348
349 flush_work(&sdma_activity_work_handler.sdma_activity_work);
350
351 return snprintf(buffer, PAGE_SIZE, "%llu\n",
352 (sdma_activity_work_handler.sdma_activity_counter)/
353 SDMA_ACTIVITY_DIVISOR);
354 } else {
355 pr_err("Invalid attribute");
356 return -EINVAL;
357 }
358
359 return 0;
360 }
361
kfd_procfs_kobj_release(struct kobject * kobj)362 static void kfd_procfs_kobj_release(struct kobject *kobj)
363 {
364 kfree(kobj);
365 }
366
367 static const struct sysfs_ops kfd_procfs_ops = {
368 .show = kfd_procfs_show,
369 };
370
371 static const struct kobj_type procfs_type = {
372 .release = kfd_procfs_kobj_release,
373 .sysfs_ops = &kfd_procfs_ops,
374 };
375
kfd_procfs_init(void)376 void kfd_procfs_init(void)
377 {
378 int ret = 0;
379
380 procfs.kobj = kfd_alloc_struct(procfs.kobj);
381 if (!procfs.kobj)
382 return;
383
384 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
385 &kfd_device->kobj, "proc");
386 if (ret) {
387 pr_warn("Could not create procfs proc folder");
388 /* If we fail to create the procfs, clean up */
389 kfd_procfs_shutdown();
390 }
391 }
392
kfd_procfs_shutdown(void)393 void kfd_procfs_shutdown(void)
394 {
395 if (procfs.kobj) {
396 kobject_del(procfs.kobj);
397 kobject_put(procfs.kobj);
398 procfs.kobj = NULL;
399 }
400 }
401
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)402 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
403 struct attribute *attr, char *buffer)
404 {
405 struct queue *q = container_of(kobj, struct queue, kobj);
406
407 if (!strcmp(attr->name, "size"))
408 return snprintf(buffer, PAGE_SIZE, "%llu",
409 q->properties.queue_size);
410 else if (!strcmp(attr->name, "type"))
411 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
412 else if (!strcmp(attr->name, "gpuid"))
413 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
414 else
415 pr_err("Invalid attribute");
416
417 return 0;
418 }
419
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)420 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
421 struct attribute *attr, char *buffer)
422 {
423 if (strcmp(attr->name, "evicted_ms") == 0) {
424 struct kfd_process_device *pdd = container_of(attr,
425 struct kfd_process_device,
426 attr_evict);
427 uint64_t evict_jiffies;
428
429 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
430
431 return snprintf(buffer,
432 PAGE_SIZE,
433 "%llu\n",
434 jiffies64_to_msecs(evict_jiffies));
435
436 /* Sysfs handle that gets CU occupancy is per device */
437 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
438 return kfd_get_cu_occupancy(attr, buffer);
439 } else {
440 pr_err("Invalid attribute");
441 }
442
443 return 0;
444 }
445
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)446 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
447 struct attribute *attr, char *buf)
448 {
449 struct kfd_process_device *pdd;
450
451 if (!strcmp(attr->name, "faults")) {
452 pdd = container_of(attr, struct kfd_process_device,
453 attr_faults);
454 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
455 }
456 if (!strcmp(attr->name, "page_in")) {
457 pdd = container_of(attr, struct kfd_process_device,
458 attr_page_in);
459 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
460 }
461 if (!strcmp(attr->name, "page_out")) {
462 pdd = container_of(attr, struct kfd_process_device,
463 attr_page_out);
464 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
465 }
466 return 0;
467 }
468
469 static struct attribute attr_queue_size = {
470 .name = "size",
471 .mode = KFD_SYSFS_FILE_MODE
472 };
473
474 static struct attribute attr_queue_type = {
475 .name = "type",
476 .mode = KFD_SYSFS_FILE_MODE
477 };
478
479 static struct attribute attr_queue_gpuid = {
480 .name = "gpuid",
481 .mode = KFD_SYSFS_FILE_MODE
482 };
483
484 static struct attribute *procfs_queue_attrs[] = {
485 &attr_queue_size,
486 &attr_queue_type,
487 &attr_queue_gpuid,
488 NULL
489 };
490 ATTRIBUTE_GROUPS(procfs_queue);
491
492 static const struct sysfs_ops procfs_queue_ops = {
493 .show = kfd_procfs_queue_show,
494 };
495
496 static const struct kobj_type procfs_queue_type = {
497 .sysfs_ops = &procfs_queue_ops,
498 .default_groups = procfs_queue_groups,
499 };
500
501 static const struct sysfs_ops procfs_stats_ops = {
502 .show = kfd_procfs_stats_show,
503 };
504
505 static const struct kobj_type procfs_stats_type = {
506 .sysfs_ops = &procfs_stats_ops,
507 .release = kfd_procfs_kobj_release,
508 };
509
510 static const struct sysfs_ops sysfs_counters_ops = {
511 .show = kfd_sysfs_counters_show,
512 };
513
514 static const struct kobj_type sysfs_counters_type = {
515 .sysfs_ops = &sysfs_counters_ops,
516 .release = kfd_procfs_kobj_release,
517 };
518
kfd_procfs_add_queue(struct queue * q)519 int kfd_procfs_add_queue(struct queue *q)
520 {
521 struct kfd_process *proc;
522 int ret;
523
524 if (!q || !q->process)
525 return -EINVAL;
526 proc = q->process;
527
528 /* Create proc/<pid>/queues/<queue id> folder */
529 if (!proc->kobj_queues)
530 return -EFAULT;
531 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
532 proc->kobj_queues, "%u", q->properties.queue_id);
533 if (ret < 0) {
534 pr_warn("Creating proc/<pid>/queues/%u failed",
535 q->properties.queue_id);
536 kobject_put(&q->kobj);
537 return ret;
538 }
539
540 return 0;
541 }
542
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)543 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
544 char *name)
545 {
546 int ret;
547
548 if (!kobj || !attr || !name)
549 return;
550
551 attr->name = name;
552 attr->mode = KFD_SYSFS_FILE_MODE;
553 sysfs_attr_init(attr);
554
555 ret = sysfs_create_file(kobj, attr);
556 if (ret)
557 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
558 }
559
kfd_procfs_add_sysfs_stats(struct kfd_process * p)560 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
561 {
562 int ret;
563 int i;
564 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
565
566 if (!p || !p->kobj)
567 return;
568
569 /*
570 * Create sysfs files for each GPU:
571 * - proc/<pid>/stats_<gpuid>/
572 * - proc/<pid>/stats_<gpuid>/evicted_ms
573 * - proc/<pid>/stats_<gpuid>/cu_occupancy
574 */
575 for (i = 0; i < p->n_pdds; i++) {
576 struct kfd_process_device *pdd = p->pdds[i];
577
578 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
579 "stats_%u", pdd->dev->id);
580 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
581 if (!pdd->kobj_stats)
582 return;
583
584 ret = kobject_init_and_add(pdd->kobj_stats,
585 &procfs_stats_type,
586 p->kobj,
587 stats_dir_filename);
588
589 if (ret) {
590 pr_warn("Creating KFD proc/stats_%s folder failed",
591 stats_dir_filename);
592 kobject_put(pdd->kobj_stats);
593 pdd->kobj_stats = NULL;
594 return;
595 }
596
597 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
598 "evicted_ms");
599 /* Add sysfs file to report compute unit occupancy */
600 if (pdd->dev->kfd2kgd->get_cu_occupancy)
601 kfd_sysfs_create_file(pdd->kobj_stats,
602 &pdd->attr_cu_occupancy,
603 "cu_occupancy");
604 }
605 }
606
kfd_procfs_add_sysfs_counters(struct kfd_process * p)607 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
608 {
609 int ret = 0;
610 int i;
611 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
612
613 if (!p || !p->kobj)
614 return;
615
616 /*
617 * Create sysfs files for each GPU which supports SVM
618 * - proc/<pid>/counters_<gpuid>/
619 * - proc/<pid>/counters_<gpuid>/faults
620 * - proc/<pid>/counters_<gpuid>/page_in
621 * - proc/<pid>/counters_<gpuid>/page_out
622 */
623 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
624 struct kfd_process_device *pdd = p->pdds[i];
625 struct kobject *kobj_counters;
626
627 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
628 "counters_%u", pdd->dev->id);
629 kobj_counters = kfd_alloc_struct(kobj_counters);
630 if (!kobj_counters)
631 return;
632
633 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
634 p->kobj, counters_dir_filename);
635 if (ret) {
636 pr_warn("Creating KFD proc/%s folder failed",
637 counters_dir_filename);
638 kobject_put(kobj_counters);
639 return;
640 }
641
642 pdd->kobj_counters = kobj_counters;
643 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
644 "faults");
645 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
646 "page_in");
647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
648 "page_out");
649 }
650 }
651
kfd_procfs_add_sysfs_files(struct kfd_process * p)652 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
653 {
654 int i;
655
656 if (!p || !p->kobj)
657 return;
658
659 /*
660 * Create sysfs files for each GPU:
661 * - proc/<pid>/vram_<gpuid>
662 * - proc/<pid>/sdma_<gpuid>
663 */
664 for (i = 0; i < p->n_pdds; i++) {
665 struct kfd_process_device *pdd = p->pdds[i];
666
667 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
668 pdd->dev->id);
669 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
670 pdd->vram_filename);
671
672 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
673 pdd->dev->id);
674 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
675 pdd->sdma_filename);
676 }
677 }
678
kfd_procfs_del_queue(struct queue * q)679 void kfd_procfs_del_queue(struct queue *q)
680 {
681 if (!q)
682 return;
683
684 kobject_del(&q->kobj);
685 kobject_put(&q->kobj);
686 }
687
kfd_process_create_wq(void)688 int kfd_process_create_wq(void)
689 {
690 if (!kfd_process_wq)
691 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
692 if (!kfd_restore_wq)
693 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
694 WQ_FREEZABLE);
695
696 if (!kfd_process_wq || !kfd_restore_wq) {
697 kfd_process_destroy_wq();
698 return -ENOMEM;
699 }
700
701 return 0;
702 }
703
kfd_process_destroy_wq(void)704 void kfd_process_destroy_wq(void)
705 {
706 if (kfd_process_wq) {
707 destroy_workqueue(kfd_process_wq);
708 kfd_process_wq = NULL;
709 }
710 if (kfd_restore_wq) {
711 destroy_workqueue(kfd_restore_wq);
712 kfd_restore_wq = NULL;
713 }
714 }
715
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)716 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
717 struct kfd_process_device *pdd, void **kptr)
718 {
719 struct kfd_node *dev = pdd->dev;
720
721 if (kptr && *kptr) {
722 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
723 *kptr = NULL;
724 }
725
726 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
727 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
728 NULL);
729 }
730
731 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
732 * This function should be only called right after the process
733 * is created and when kfd_processes_mutex is still being held
734 * to avoid concurrency. Because of that exclusiveness, we do
735 * not need to take p->mutex.
736 */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)737 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
738 uint64_t gpu_va, uint32_t size,
739 uint32_t flags, struct kgd_mem **mem, void **kptr)
740 {
741 struct kfd_node *kdev = pdd->dev;
742 int err;
743
744 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
745 pdd->drm_priv, mem, NULL,
746 flags, false);
747 if (err)
748 goto err_alloc_mem;
749
750 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
751 pdd->drm_priv);
752 if (err)
753 goto err_map_mem;
754
755 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
756 if (err) {
757 pr_debug("Sync memory failed, wait interrupted by user signal\n");
758 goto sync_memory_failed;
759 }
760
761 if (kptr) {
762 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
763 (struct kgd_mem *)*mem, kptr, NULL);
764 if (err) {
765 pr_debug("Map GTT BO to kernel failed\n");
766 goto sync_memory_failed;
767 }
768 }
769
770 return err;
771
772 sync_memory_failed:
773 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
774
775 err_map_mem:
776 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
777 NULL);
778 err_alloc_mem:
779 *mem = NULL;
780 *kptr = NULL;
781 return err;
782 }
783
784 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
785 * process for IB usage The memory reserved is for KFD to submit
786 * IB to AMDGPU from kernel. If the memory is reserved
787 * successfully, ib_kaddr will have the CPU/kernel
788 * address. Check ib_kaddr before accessing the memory.
789 */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)790 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
791 {
792 struct qcm_process_device *qpd = &pdd->qpd;
793 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
794 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
795 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
796 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
797 struct kgd_mem *mem;
798 void *kaddr;
799 int ret;
800
801 if (qpd->ib_kaddr || !qpd->ib_base)
802 return 0;
803
804 /* ib_base is only set for dGPU */
805 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
806 &mem, &kaddr);
807 if (ret)
808 return ret;
809
810 qpd->ib_mem = mem;
811 qpd->ib_kaddr = kaddr;
812
813 return 0;
814 }
815
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)816 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
817 {
818 struct qcm_process_device *qpd = &pdd->qpd;
819
820 if (!qpd->ib_kaddr || !qpd->ib_base)
821 return;
822
823 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
824 }
825
kfd_create_process(struct task_struct * thread)826 struct kfd_process *kfd_create_process(struct task_struct *thread)
827 {
828 struct kfd_process *process;
829 int ret;
830
831 if (!(thread->mm && mmget_not_zero(thread->mm)))
832 return ERR_PTR(-EINVAL);
833
834 /* Only the pthreads threading model is supported. */
835 if (thread->group_leader->mm != thread->mm) {
836 mmput(thread->mm);
837 return ERR_PTR(-EINVAL);
838 }
839
840 /*
841 * take kfd processes mutex before starting of process creation
842 * so there won't be a case where two threads of the same process
843 * create two kfd_process structures
844 */
845 mutex_lock(&kfd_processes_mutex);
846
847 if (kfd_is_locked()) {
848 pr_debug("KFD is locked! Cannot create process");
849 process = ERR_PTR(-EINVAL);
850 goto out;
851 }
852
853 /* A prior open of /dev/kfd could have already created the process. */
854 process = find_process(thread, false);
855 if (process) {
856 pr_debug("Process already found\n");
857 } else {
858 /* If the process just called exec(3), it is possible that the
859 * cleanup of the kfd_process (following the release of the mm
860 * of the old process image) is still in the cleanup work queue.
861 * Make sure to drain any job before trying to recreate any
862 * resource for this process.
863 */
864 flush_workqueue(kfd_process_wq);
865
866 process = create_process(thread);
867 if (IS_ERR(process))
868 goto out;
869
870 if (!procfs.kobj)
871 goto out;
872
873 process->kobj = kfd_alloc_struct(process->kobj);
874 if (!process->kobj) {
875 pr_warn("Creating procfs kobject failed");
876 goto out;
877 }
878 ret = kobject_init_and_add(process->kobj, &procfs_type,
879 procfs.kobj, "%d",
880 (int)process->lead_thread->pid);
881 if (ret) {
882 pr_warn("Creating procfs pid directory failed");
883 kobject_put(process->kobj);
884 goto out;
885 }
886
887 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
888 "pasid");
889
890 process->kobj_queues = kobject_create_and_add("queues",
891 process->kobj);
892 if (!process->kobj_queues)
893 pr_warn("Creating KFD proc/queues folder failed");
894
895 kfd_procfs_add_sysfs_stats(process);
896 kfd_procfs_add_sysfs_files(process);
897 kfd_procfs_add_sysfs_counters(process);
898
899 init_waitqueue_head(&process->wait_irq_drain);
900 }
901 out:
902 if (!IS_ERR(process))
903 kref_get(&process->ref);
904 mutex_unlock(&kfd_processes_mutex);
905 mmput(thread->mm);
906
907 return process;
908 }
909
kfd_get_process(const struct task_struct * thread)910 struct kfd_process *kfd_get_process(const struct task_struct *thread)
911 {
912 struct kfd_process *process;
913
914 if (!thread->mm)
915 return ERR_PTR(-EINVAL);
916
917 /* Only the pthreads threading model is supported. */
918 if (thread->group_leader->mm != thread->mm)
919 return ERR_PTR(-EINVAL);
920
921 process = find_process(thread, false);
922 if (!process)
923 return ERR_PTR(-EINVAL);
924
925 return process;
926 }
927
find_process_by_mm(const struct mm_struct * mm)928 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
929 {
930 struct kfd_process *process;
931
932 hash_for_each_possible_rcu(kfd_processes_table, process,
933 kfd_processes, (uintptr_t)mm)
934 if (process->mm == mm)
935 return process;
936
937 return NULL;
938 }
939
find_process(const struct task_struct * thread,bool ref)940 static struct kfd_process *find_process(const struct task_struct *thread,
941 bool ref)
942 {
943 struct kfd_process *p;
944 int idx;
945
946 idx = srcu_read_lock(&kfd_processes_srcu);
947 p = find_process_by_mm(thread->mm);
948 if (p && ref)
949 kref_get(&p->ref);
950 srcu_read_unlock(&kfd_processes_srcu, idx);
951
952 return p;
953 }
954
kfd_unref_process(struct kfd_process * p)955 void kfd_unref_process(struct kfd_process *p)
956 {
957 kref_put(&p->ref, kfd_process_ref_release);
958 }
959
960 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)961 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
962 {
963 struct task_struct *task = NULL;
964 struct kfd_process *p = NULL;
965
966 if (!pid) {
967 task = current;
968 get_task_struct(task);
969 } else {
970 task = get_pid_task(pid, PIDTYPE_PID);
971 }
972
973 if (task) {
974 p = find_process(task, true);
975 put_task_struct(task);
976 }
977
978 return p;
979 }
980
kfd_process_device_free_bos(struct kfd_process_device * pdd)981 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
982 {
983 struct kfd_process *p = pdd->process;
984 void *mem;
985 int id;
986 int i;
987
988 /*
989 * Remove all handles from idr and release appropriate
990 * local memory object
991 */
992 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
993
994 for (i = 0; i < p->n_pdds; i++) {
995 struct kfd_process_device *peer_pdd = p->pdds[i];
996
997 if (!peer_pdd->drm_priv)
998 continue;
999 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1000 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1001 }
1002
1003 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1004 pdd->drm_priv, NULL);
1005 kfd_process_device_remove_obj_handle(pdd, id);
1006 }
1007 }
1008
1009 /*
1010 * Just kunmap and unpin signal BO here. It will be freed in
1011 * kfd_process_free_outstanding_kfd_bos()
1012 */
kfd_process_kunmap_signal_bo(struct kfd_process * p)1013 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1014 {
1015 struct kfd_process_device *pdd;
1016 struct kfd_node *kdev;
1017 void *mem;
1018
1019 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1020 if (!kdev)
1021 return;
1022
1023 mutex_lock(&p->mutex);
1024
1025 pdd = kfd_get_process_device_data(kdev, p);
1026 if (!pdd)
1027 goto out;
1028
1029 mem = kfd_process_device_translate_handle(
1030 pdd, GET_IDR_HANDLE(p->signal_handle));
1031 if (!mem)
1032 goto out;
1033
1034 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1035
1036 out:
1037 mutex_unlock(&p->mutex);
1038 }
1039
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1040 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1041 {
1042 int i;
1043
1044 for (i = 0; i < p->n_pdds; i++)
1045 kfd_process_device_free_bos(p->pdds[i]);
1046 }
1047
kfd_process_destroy_pdds(struct kfd_process * p)1048 static void kfd_process_destroy_pdds(struct kfd_process *p)
1049 {
1050 int i;
1051
1052 for (i = 0; i < p->n_pdds; i++) {
1053 struct kfd_process_device *pdd = p->pdds[i];
1054
1055 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1056 pdd->dev->id, p->pasid);
1057
1058 kfd_process_device_destroy_cwsr_dgpu(pdd);
1059 kfd_process_device_destroy_ib_mem(pdd);
1060
1061 if (pdd->drm_file) {
1062 amdgpu_amdkfd_gpuvm_release_process_vm(
1063 pdd->dev->adev, pdd->drm_priv);
1064 fput(pdd->drm_file);
1065 }
1066
1067 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1068 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1069 get_order(KFD_CWSR_TBA_TMA_SIZE));
1070
1071 idr_destroy(&pdd->alloc_idr);
1072
1073 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1074
1075 if (pdd->dev->kfd->shared_resources.enable_mes)
1076 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1077 &pdd->proc_ctx_bo);
1078 /*
1079 * before destroying pdd, make sure to report availability
1080 * for auto suspend
1081 */
1082 if (pdd->runtime_inuse) {
1083 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1084 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1085 pdd->runtime_inuse = false;
1086 }
1087
1088 kfree(pdd);
1089 p->pdds[i] = NULL;
1090 }
1091 p->n_pdds = 0;
1092 }
1093
kfd_process_remove_sysfs(struct kfd_process * p)1094 static void kfd_process_remove_sysfs(struct kfd_process *p)
1095 {
1096 struct kfd_process_device *pdd;
1097 int i;
1098
1099 if (!p->kobj)
1100 return;
1101
1102 sysfs_remove_file(p->kobj, &p->attr_pasid);
1103 kobject_del(p->kobj_queues);
1104 kobject_put(p->kobj_queues);
1105 p->kobj_queues = NULL;
1106
1107 for (i = 0; i < p->n_pdds; i++) {
1108 pdd = p->pdds[i];
1109
1110 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1111 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1112
1113 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1114 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1115 sysfs_remove_file(pdd->kobj_stats,
1116 &pdd->attr_cu_occupancy);
1117 kobject_del(pdd->kobj_stats);
1118 kobject_put(pdd->kobj_stats);
1119 pdd->kobj_stats = NULL;
1120 }
1121
1122 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1123 pdd = p->pdds[i];
1124
1125 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1126 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1127 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1128 kobject_del(pdd->kobj_counters);
1129 kobject_put(pdd->kobj_counters);
1130 pdd->kobj_counters = NULL;
1131 }
1132
1133 kobject_del(p->kobj);
1134 kobject_put(p->kobj);
1135 p->kobj = NULL;
1136 }
1137
1138 /* No process locking is needed in this function, because the process
1139 * is not findable any more. We must assume that no other thread is
1140 * using it any more, otherwise we couldn't safely free the process
1141 * structure in the end.
1142 */
kfd_process_wq_release(struct work_struct * work)1143 static void kfd_process_wq_release(struct work_struct *work)
1144 {
1145 struct kfd_process *p = container_of(work, struct kfd_process,
1146 release_work);
1147 struct dma_fence *ef;
1148
1149 kfd_process_dequeue_from_all_devices(p);
1150 pqm_uninit(&p->pqm);
1151
1152 /* Signal the eviction fence after user mode queues are
1153 * destroyed. This allows any BOs to be freed without
1154 * triggering pointless evictions or waiting for fences.
1155 */
1156 synchronize_rcu();
1157 ef = rcu_access_pointer(p->ef);
1158 dma_fence_signal(ef);
1159
1160 kfd_process_remove_sysfs(p);
1161
1162 kfd_process_kunmap_signal_bo(p);
1163 kfd_process_free_outstanding_kfd_bos(p);
1164 svm_range_list_fini(p);
1165
1166 kfd_process_destroy_pdds(p);
1167 dma_fence_put(ef);
1168
1169 kfd_event_free_process(p);
1170
1171 kfd_pasid_free(p->pasid);
1172 mutex_destroy(&p->mutex);
1173
1174 put_task_struct(p->lead_thread);
1175
1176 kfree(p);
1177 }
1178
kfd_process_ref_release(struct kref * ref)1179 static void kfd_process_ref_release(struct kref *ref)
1180 {
1181 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1182
1183 INIT_WORK(&p->release_work, kfd_process_wq_release);
1184 queue_work(kfd_process_wq, &p->release_work);
1185 }
1186
kfd_process_alloc_notifier(struct mm_struct * mm)1187 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1188 {
1189 int idx = srcu_read_lock(&kfd_processes_srcu);
1190 struct kfd_process *p = find_process_by_mm(mm);
1191
1192 srcu_read_unlock(&kfd_processes_srcu, idx);
1193
1194 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1195 }
1196
kfd_process_free_notifier(struct mmu_notifier * mn)1197 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1198 {
1199 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1200 }
1201
kfd_process_notifier_release_internal(struct kfd_process * p)1202 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1203 {
1204 int i;
1205
1206 cancel_delayed_work_sync(&p->eviction_work);
1207 cancel_delayed_work_sync(&p->restore_work);
1208
1209 for (i = 0; i < p->n_pdds; i++) {
1210 struct kfd_process_device *pdd = p->pdds[i];
1211
1212 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1213 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1214 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1215 }
1216
1217 /* Indicate to other users that MM is no longer valid */
1218 p->mm = NULL;
1219 kfd_dbg_trap_disable(p);
1220
1221 if (atomic_read(&p->debugged_process_count) > 0) {
1222 struct kfd_process *target;
1223 unsigned int temp;
1224 int idx = srcu_read_lock(&kfd_processes_srcu);
1225
1226 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1227 if (target->debugger_process && target->debugger_process == p) {
1228 mutex_lock_nested(&target->mutex, 1);
1229 kfd_dbg_trap_disable(target);
1230 mutex_unlock(&target->mutex);
1231 if (atomic_read(&p->debugged_process_count) == 0)
1232 break;
1233 }
1234 }
1235
1236 srcu_read_unlock(&kfd_processes_srcu, idx);
1237 }
1238
1239 mmu_notifier_put(&p->mmu_notifier);
1240 }
1241
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1242 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1243 struct mm_struct *mm)
1244 {
1245 struct kfd_process *p;
1246
1247 /*
1248 * The kfd_process structure can not be free because the
1249 * mmu_notifier srcu is read locked
1250 */
1251 p = container_of(mn, struct kfd_process, mmu_notifier);
1252 if (WARN_ON(p->mm != mm))
1253 return;
1254
1255 mutex_lock(&kfd_processes_mutex);
1256 /*
1257 * Do early return if table is empty.
1258 *
1259 * This could potentially happen if this function is called concurrently
1260 * by mmu_notifier and by kfd_cleanup_pocesses.
1261 *
1262 */
1263 if (hash_empty(kfd_processes_table)) {
1264 mutex_unlock(&kfd_processes_mutex);
1265 return;
1266 }
1267 hash_del_rcu(&p->kfd_processes);
1268 mutex_unlock(&kfd_processes_mutex);
1269 synchronize_srcu(&kfd_processes_srcu);
1270
1271 kfd_process_notifier_release_internal(p);
1272 }
1273
1274 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1275 .release = kfd_process_notifier_release,
1276 .alloc_notifier = kfd_process_alloc_notifier,
1277 .free_notifier = kfd_process_free_notifier,
1278 };
1279
1280 /*
1281 * This code handles the case when driver is being unloaded before all
1282 * mm_struct are released. We need to safely free the kfd_process and
1283 * avoid race conditions with mmu_notifier that might try to free them.
1284 *
1285 */
kfd_cleanup_processes(void)1286 void kfd_cleanup_processes(void)
1287 {
1288 struct kfd_process *p;
1289 struct hlist_node *p_temp;
1290 unsigned int temp;
1291 HLIST_HEAD(cleanup_list);
1292
1293 /*
1294 * Move all remaining kfd_process from the process table to a
1295 * temp list for processing. Once done, callback from mmu_notifier
1296 * release will not see the kfd_process in the table and do early return,
1297 * avoiding double free issues.
1298 */
1299 mutex_lock(&kfd_processes_mutex);
1300 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1301 hash_del_rcu(&p->kfd_processes);
1302 synchronize_srcu(&kfd_processes_srcu);
1303 hlist_add_head(&p->kfd_processes, &cleanup_list);
1304 }
1305 mutex_unlock(&kfd_processes_mutex);
1306
1307 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1308 kfd_process_notifier_release_internal(p);
1309
1310 /*
1311 * Ensures that all outstanding free_notifier get called, triggering
1312 * the release of the kfd_process struct.
1313 */
1314 mmu_notifier_synchronize();
1315 }
1316
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1317 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1318 {
1319 unsigned long offset;
1320 int i;
1321
1322 if (p->has_cwsr)
1323 return 0;
1324
1325 for (i = 0; i < p->n_pdds; i++) {
1326 struct kfd_node *dev = p->pdds[i]->dev;
1327 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1328
1329 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1330 continue;
1331
1332 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1333 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1334 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1335 MAP_SHARED, offset);
1336
1337 if (IS_ERR_VALUE(qpd->tba_addr)) {
1338 int err = qpd->tba_addr;
1339
1340 dev_err(dev->adev->dev,
1341 "Failure to set tba address. error %d.\n", err);
1342 qpd->tba_addr = 0;
1343 qpd->cwsr_kaddr = NULL;
1344 return err;
1345 }
1346
1347 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1348
1349 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1350
1351 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1352 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1353 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1354 }
1355
1356 p->has_cwsr = true;
1357
1358 return 0;
1359 }
1360
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1361 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1362 {
1363 struct kfd_node *dev = pdd->dev;
1364 struct qcm_process_device *qpd = &pdd->qpd;
1365 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1366 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1367 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1368 struct kgd_mem *mem;
1369 void *kaddr;
1370 int ret;
1371
1372 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1373 return 0;
1374
1375 /* cwsr_base is only set for dGPU */
1376 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1377 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1378 if (ret)
1379 return ret;
1380
1381 qpd->cwsr_mem = mem;
1382 qpd->cwsr_kaddr = kaddr;
1383 qpd->tba_addr = qpd->cwsr_base;
1384
1385 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1386
1387 kfd_process_set_trap_debug_flag(&pdd->qpd,
1388 pdd->process->debug_trap_enabled);
1389
1390 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1391 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1392 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1393
1394 return 0;
1395 }
1396
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1397 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1398 {
1399 struct kfd_node *dev = pdd->dev;
1400 struct qcm_process_device *qpd = &pdd->qpd;
1401
1402 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1403 return;
1404
1405 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1406 }
1407
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1408 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1409 uint64_t tba_addr,
1410 uint64_t tma_addr)
1411 {
1412 if (qpd->cwsr_kaddr) {
1413 /* KFD trap handler is bound, record as second-level TBA/TMA
1414 * in first-level TMA. First-level trap will jump to second.
1415 */
1416 uint64_t *tma =
1417 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1418 tma[0] = tba_addr;
1419 tma[1] = tma_addr;
1420 } else {
1421 /* No trap handler bound, bind as first-level TBA/TMA. */
1422 qpd->tba_addr = tba_addr;
1423 qpd->tma_addr = tma_addr;
1424 }
1425 }
1426
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1427 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1428 {
1429 int i;
1430
1431 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1432 * boot time retry setting. Mixing processes with different
1433 * XNACK/retry settings can hang the GPU.
1434 *
1435 * Different GPUs can have different noretry settings depending
1436 * on HW bugs or limitations. We need to find at least one
1437 * XNACK mode for this process that's compatible with all GPUs.
1438 * Fortunately GPUs with retry enabled (noretry=0) can run code
1439 * built for XNACK-off. On GFXv9 it may perform slower.
1440 *
1441 * Therefore applications built for XNACK-off can always be
1442 * supported and will be our fallback if any GPU does not
1443 * support retry.
1444 */
1445 for (i = 0; i < p->n_pdds; i++) {
1446 struct kfd_node *dev = p->pdds[i]->dev;
1447
1448 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1449 * support the SVM APIs and don't need to be considered
1450 * for the XNACK mode selection.
1451 */
1452 if (!KFD_IS_SOC15(dev))
1453 continue;
1454 /* Aldebaran can always support XNACK because it can support
1455 * per-process XNACK mode selection. But let the dev->noretry
1456 * setting still influence the default XNACK mode.
1457 */
1458 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1459 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1460 pr_debug("SRIOV platform xnack not supported\n");
1461 return false;
1462 }
1463 continue;
1464 }
1465
1466 /* GFXv10 and later GPUs do not support shader preemption
1467 * during page faults. This can lead to poor QoS for queue
1468 * management and memory-manager-related preemptions or
1469 * even deadlocks.
1470 */
1471 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1472 return false;
1473
1474 if (dev->kfd->noretry)
1475 return false;
1476 }
1477
1478 return true;
1479 }
1480
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1481 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1482 bool enabled)
1483 {
1484 if (qpd->cwsr_kaddr) {
1485 uint64_t *tma =
1486 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1487 tma[2] = enabled;
1488 }
1489 }
1490
1491 /*
1492 * On return the kfd_process is fully operational and will be freed when the
1493 * mm is released
1494 */
create_process(const struct task_struct * thread)1495 static struct kfd_process *create_process(const struct task_struct *thread)
1496 {
1497 struct kfd_process *process;
1498 struct mmu_notifier *mn;
1499 int err = -ENOMEM;
1500
1501 process = kzalloc(sizeof(*process), GFP_KERNEL);
1502 if (!process)
1503 goto err_alloc_process;
1504
1505 kref_init(&process->ref);
1506 mutex_init(&process->mutex);
1507 process->mm = thread->mm;
1508 process->lead_thread = thread->group_leader;
1509 process->n_pdds = 0;
1510 process->queues_paused = false;
1511 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1512 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1513 process->last_restore_timestamp = get_jiffies_64();
1514 err = kfd_event_init_process(process);
1515 if (err)
1516 goto err_event_init;
1517 process->is_32bit_user_mode = in_compat_syscall();
1518 process->debug_trap_enabled = false;
1519 process->debugger_process = NULL;
1520 process->exception_enable_mask = 0;
1521 atomic_set(&process->debugged_process_count, 0);
1522 sema_init(&process->runtime_enable_sema, 0);
1523
1524 process->pasid = kfd_pasid_alloc();
1525 if (process->pasid == 0) {
1526 err = -ENOSPC;
1527 goto err_alloc_pasid;
1528 }
1529
1530 err = pqm_init(&process->pqm, process);
1531 if (err != 0)
1532 goto err_process_pqm_init;
1533
1534 /* init process apertures*/
1535 err = kfd_init_apertures(process);
1536 if (err != 0)
1537 goto err_init_apertures;
1538
1539 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1540 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1541
1542 err = svm_range_list_init(process);
1543 if (err)
1544 goto err_init_svm_range_list;
1545
1546 /* alloc_notifier needs to find the process in the hash table */
1547 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1548 (uintptr_t)process->mm);
1549
1550 /* Avoid free_notifier to start kfd_process_wq_release if
1551 * mmu_notifier_get failed because of pending signal.
1552 */
1553 kref_get(&process->ref);
1554
1555 /* MMU notifier registration must be the last call that can fail
1556 * because after this point we cannot unwind the process creation.
1557 * After this point, mmu_notifier_put will trigger the cleanup by
1558 * dropping the last process reference in the free_notifier.
1559 */
1560 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1561 if (IS_ERR(mn)) {
1562 err = PTR_ERR(mn);
1563 goto err_register_notifier;
1564 }
1565 BUG_ON(mn != &process->mmu_notifier);
1566
1567 kfd_unref_process(process);
1568 get_task_struct(process->lead_thread);
1569
1570 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1571
1572 return process;
1573
1574 err_register_notifier:
1575 hash_del_rcu(&process->kfd_processes);
1576 svm_range_list_fini(process);
1577 err_init_svm_range_list:
1578 kfd_process_free_outstanding_kfd_bos(process);
1579 kfd_process_destroy_pdds(process);
1580 err_init_apertures:
1581 pqm_uninit(&process->pqm);
1582 err_process_pqm_init:
1583 kfd_pasid_free(process->pasid);
1584 err_alloc_pasid:
1585 kfd_event_free_process(process);
1586 err_event_init:
1587 mutex_destroy(&process->mutex);
1588 kfree(process);
1589 err_alloc_process:
1590 return ERR_PTR(err);
1591 }
1592
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1593 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1594 struct kfd_process *p)
1595 {
1596 int i;
1597
1598 for (i = 0; i < p->n_pdds; i++)
1599 if (p->pdds[i]->dev == dev)
1600 return p->pdds[i];
1601
1602 return NULL;
1603 }
1604
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1605 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1606 struct kfd_process *p)
1607 {
1608 struct kfd_process_device *pdd = NULL;
1609 int retval = 0;
1610
1611 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1612 return NULL;
1613 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1614 if (!pdd)
1615 return NULL;
1616
1617 pdd->dev = dev;
1618 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1619 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1620 pdd->qpd.dqm = dev->dqm;
1621 pdd->qpd.pqm = &p->pqm;
1622 pdd->qpd.evicted = 0;
1623 pdd->qpd.mapped_gws_queue = false;
1624 pdd->process = p;
1625 pdd->bound = PDD_UNBOUND;
1626 pdd->already_dequeued = false;
1627 pdd->runtime_inuse = false;
1628 atomic64_set(&pdd->vram_usage, 0);
1629 pdd->sdma_past_activity_counter = 0;
1630 pdd->user_gpu_id = dev->id;
1631 atomic64_set(&pdd->evict_duration_counter, 0);
1632
1633 if (dev->kfd->shared_resources.enable_mes) {
1634 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1635 AMDGPU_MES_PROC_CTX_SIZE,
1636 &pdd->proc_ctx_bo,
1637 &pdd->proc_ctx_gpu_addr,
1638 &pdd->proc_ctx_cpu_ptr,
1639 false);
1640 if (retval) {
1641 dev_err(dev->adev->dev,
1642 "failed to allocate process context bo\n");
1643 goto err_free_pdd;
1644 }
1645 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1646 }
1647
1648 p->pdds[p->n_pdds++] = pdd;
1649 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1650 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1651 pdd->dev->adev,
1652 false,
1653 0);
1654
1655 /* Init idr used for memory handle translation */
1656 idr_init(&pdd->alloc_idr);
1657
1658 return pdd;
1659
1660 err_free_pdd:
1661 kfree(pdd);
1662 return NULL;
1663 }
1664
1665 /**
1666 * kfd_process_device_init_vm - Initialize a VM for a process-device
1667 *
1668 * @pdd: The process-device
1669 * @drm_file: Optional pointer to a DRM file descriptor
1670 *
1671 * If @drm_file is specified, it will be used to acquire the VM from
1672 * that file descriptor. If successful, the @pdd takes ownership of
1673 * the file descriptor.
1674 *
1675 * If @drm_file is NULL, a new VM is created.
1676 *
1677 * Returns 0 on success, -errno on failure.
1678 */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1679 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1680 struct file *drm_file)
1681 {
1682 struct amdgpu_fpriv *drv_priv;
1683 struct amdgpu_vm *avm;
1684 struct kfd_process *p;
1685 struct dma_fence *ef;
1686 struct kfd_node *dev;
1687 int ret;
1688
1689 if (!drm_file)
1690 return -EINVAL;
1691
1692 if (pdd->drm_priv)
1693 return -EBUSY;
1694
1695 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1696 if (ret)
1697 return ret;
1698 avm = &drv_priv->vm;
1699
1700 p = pdd->process;
1701 dev = pdd->dev;
1702
1703 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1704 &p->kgd_process_info,
1705 p->ef ? NULL : &ef);
1706 if (ret) {
1707 dev_err(dev->adev->dev, "Failed to create process VM object\n");
1708 return ret;
1709 }
1710
1711 if (!p->ef)
1712 RCU_INIT_POINTER(p->ef, ef);
1713
1714 pdd->drm_priv = drm_file->private_data;
1715
1716 ret = kfd_process_device_reserve_ib_mem(pdd);
1717 if (ret)
1718 goto err_reserve_ib_mem;
1719 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1720 if (ret)
1721 goto err_init_cwsr;
1722
1723 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1724 if (ret)
1725 goto err_set_pasid;
1726
1727 pdd->drm_file = drm_file;
1728
1729 return 0;
1730
1731 err_set_pasid:
1732 kfd_process_device_destroy_cwsr_dgpu(pdd);
1733 err_init_cwsr:
1734 kfd_process_device_destroy_ib_mem(pdd);
1735 err_reserve_ib_mem:
1736 pdd->drm_priv = NULL;
1737 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1738
1739 return ret;
1740 }
1741
1742 /*
1743 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1744 * to the device.
1745 * Unbinding occurs when the process dies or the device is removed.
1746 *
1747 * Assumes that the process lock is held.
1748 */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1749 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1750 struct kfd_process *p)
1751 {
1752 struct kfd_process_device *pdd;
1753 int err;
1754
1755 pdd = kfd_get_process_device_data(dev, p);
1756 if (!pdd) {
1757 dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1758 return ERR_PTR(-ENOMEM);
1759 }
1760
1761 if (!pdd->drm_priv)
1762 return ERR_PTR(-ENODEV);
1763
1764 /*
1765 * signal runtime-pm system to auto resume and prevent
1766 * further runtime suspend once device pdd is created until
1767 * pdd is destroyed.
1768 */
1769 if (!pdd->runtime_inuse) {
1770 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1771 if (err < 0) {
1772 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1773 return ERR_PTR(err);
1774 }
1775 }
1776
1777 /*
1778 * make sure that runtime_usage counter is incremented just once
1779 * per pdd
1780 */
1781 pdd->runtime_inuse = true;
1782
1783 return pdd;
1784 }
1785
1786 /* Create specific handle mapped to mem from process local memory idr
1787 * Assumes that the process lock is held.
1788 */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1789 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1790 void *mem)
1791 {
1792 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1793 }
1794
1795 /* Translate specific handle from process local memory idr
1796 * Assumes that the process lock is held.
1797 */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1798 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1799 int handle)
1800 {
1801 if (handle < 0)
1802 return NULL;
1803
1804 return idr_find(&pdd->alloc_idr, handle);
1805 }
1806
1807 /* Remove specific handle from process local memory idr
1808 * Assumes that the process lock is held.
1809 */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1810 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1811 int handle)
1812 {
1813 if (handle >= 0)
1814 idr_remove(&pdd->alloc_idr, handle);
1815 }
1816
1817 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1818 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1819 {
1820 struct kfd_process *p, *ret_p = NULL;
1821 unsigned int temp;
1822
1823 int idx = srcu_read_lock(&kfd_processes_srcu);
1824
1825 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1826 if (p->pasid == pasid) {
1827 kref_get(&p->ref);
1828 ret_p = p;
1829 break;
1830 }
1831 }
1832
1833 srcu_read_unlock(&kfd_processes_srcu, idx);
1834
1835 return ret_p;
1836 }
1837
1838 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1839 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1840 {
1841 struct kfd_process *p;
1842
1843 int idx = srcu_read_lock(&kfd_processes_srcu);
1844
1845 p = find_process_by_mm(mm);
1846 if (p)
1847 kref_get(&p->ref);
1848
1849 srcu_read_unlock(&kfd_processes_srcu, idx);
1850
1851 return p;
1852 }
1853
1854 /* kfd_process_evict_queues - Evict all user queues of a process
1855 *
1856 * Eviction is reference-counted per process-device. This means multiple
1857 * evictions from different sources can be nested safely.
1858 */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1859 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1860 {
1861 int r = 0;
1862 int i;
1863 unsigned int n_evicted = 0;
1864
1865 for (i = 0; i < p->n_pdds; i++) {
1866 struct kfd_process_device *pdd = p->pdds[i];
1867 struct device *dev = pdd->dev->adev->dev;
1868
1869 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1870 trigger);
1871
1872 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1873 &pdd->qpd);
1874 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1875 * we would like to set all the queues to be in evicted state to prevent
1876 * them been add back since they actually not be saved right now.
1877 */
1878 if (r && r != -EIO) {
1879 dev_err(dev, "Failed to evict process queues\n");
1880 goto fail;
1881 }
1882 n_evicted++;
1883
1884 pdd->dev->dqm->is_hws_hang = false;
1885 }
1886
1887 return r;
1888
1889 fail:
1890 /* To keep state consistent, roll back partial eviction by
1891 * restoring queues
1892 */
1893 for (i = 0; i < p->n_pdds; i++) {
1894 struct kfd_process_device *pdd = p->pdds[i];
1895
1896 if (n_evicted == 0)
1897 break;
1898
1899 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1900
1901 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1902 &pdd->qpd))
1903 dev_err(pdd->dev->adev->dev,
1904 "Failed to restore queues\n");
1905
1906 n_evicted--;
1907 }
1908
1909 return r;
1910 }
1911
1912 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1913 int kfd_process_restore_queues(struct kfd_process *p)
1914 {
1915 int r, ret = 0;
1916 int i;
1917
1918 for (i = 0; i < p->n_pdds; i++) {
1919 struct kfd_process_device *pdd = p->pdds[i];
1920 struct device *dev = pdd->dev->adev->dev;
1921
1922 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1923
1924 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1925 &pdd->qpd);
1926 if (r) {
1927 dev_err(dev, "Failed to restore process queues\n");
1928 if (!ret)
1929 ret = r;
1930 }
1931 }
1932
1933 return ret;
1934 }
1935
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1936 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1937 {
1938 int i;
1939
1940 for (i = 0; i < p->n_pdds; i++)
1941 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1942 return i;
1943 return -EINVAL;
1944 }
1945
1946 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)1947 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1948 uint32_t *gpuid, uint32_t *gpuidx)
1949 {
1950 int i;
1951
1952 for (i = 0; i < p->n_pdds; i++)
1953 if (p->pdds[i] && p->pdds[i]->dev == node) {
1954 *gpuid = p->pdds[i]->user_gpu_id;
1955 *gpuidx = i;
1956 return 0;
1957 }
1958 return -EINVAL;
1959 }
1960
signal_eviction_fence(struct kfd_process * p)1961 static int signal_eviction_fence(struct kfd_process *p)
1962 {
1963 struct dma_fence *ef;
1964 int ret;
1965
1966 rcu_read_lock();
1967 ef = dma_fence_get_rcu_safe(&p->ef);
1968 rcu_read_unlock();
1969 if (!ef)
1970 return -EINVAL;
1971
1972 ret = dma_fence_signal(ef);
1973 dma_fence_put(ef);
1974
1975 return ret;
1976 }
1977
evict_process_worker(struct work_struct * work)1978 static void evict_process_worker(struct work_struct *work)
1979 {
1980 int ret;
1981 struct kfd_process *p;
1982 struct delayed_work *dwork;
1983
1984 dwork = to_delayed_work(work);
1985
1986 /* Process termination destroys this worker thread. So during the
1987 * lifetime of this thread, kfd_process p will be valid
1988 */
1989 p = container_of(dwork, struct kfd_process, eviction_work);
1990
1991 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1992 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1993 if (!ret) {
1994 /* If another thread already signaled the eviction fence,
1995 * they are responsible stopping the queues and scheduling
1996 * the restore work.
1997 */
1998 if (signal_eviction_fence(p) ||
1999 mod_delayed_work(kfd_restore_wq, &p->restore_work,
2000 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2001 kfd_process_restore_queues(p);
2002
2003 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
2004 } else
2005 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
2006 }
2007
restore_process_helper(struct kfd_process * p)2008 static int restore_process_helper(struct kfd_process *p)
2009 {
2010 int ret = 0;
2011
2012 /* VMs may not have been acquired yet during debugging. */
2013 if (p->kgd_process_info) {
2014 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2015 p->kgd_process_info, &p->ef);
2016 if (ret)
2017 return ret;
2018 }
2019
2020 ret = kfd_process_restore_queues(p);
2021 if (!ret)
2022 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
2023 else
2024 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
2025
2026 return ret;
2027 }
2028
restore_process_worker(struct work_struct * work)2029 static void restore_process_worker(struct work_struct *work)
2030 {
2031 struct delayed_work *dwork;
2032 struct kfd_process *p;
2033 int ret = 0;
2034
2035 dwork = to_delayed_work(work);
2036
2037 /* Process termination destroys this worker thread. So during the
2038 * lifetime of this thread, kfd_process p will be valid
2039 */
2040 p = container_of(dwork, struct kfd_process, restore_work);
2041 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2042
2043 /* Setting last_restore_timestamp before successful restoration.
2044 * Otherwise this would have to be set by KGD (restore_process_bos)
2045 * before KFD BOs are unreserved. If not, the process can be evicted
2046 * again before the timestamp is set.
2047 * If restore fails, the timestamp will be set again in the next
2048 * attempt. This would mean that the minimum GPU quanta would be
2049 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2050 * functions)
2051 */
2052
2053 p->last_restore_timestamp = get_jiffies_64();
2054
2055 ret = restore_process_helper(p);
2056 if (ret) {
2057 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2058 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2059 if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2060 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2061 kfd_process_restore_queues(p);
2062 }
2063 }
2064
kfd_suspend_all_processes(void)2065 void kfd_suspend_all_processes(void)
2066 {
2067 struct kfd_process *p;
2068 unsigned int temp;
2069 int idx = srcu_read_lock(&kfd_processes_srcu);
2070
2071 WARN(debug_evictions, "Evicting all processes");
2072 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2073 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2074 pr_err("Failed to suspend process 0x%x\n", p->pasid);
2075 signal_eviction_fence(p);
2076 }
2077 srcu_read_unlock(&kfd_processes_srcu, idx);
2078 }
2079
kfd_resume_all_processes(void)2080 int kfd_resume_all_processes(void)
2081 {
2082 struct kfd_process *p;
2083 unsigned int temp;
2084 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2085
2086 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2087 if (restore_process_helper(p)) {
2088 pr_err("Restore process %d failed during resume\n",
2089 p->pasid);
2090 ret = -EFAULT;
2091 }
2092 }
2093 srcu_read_unlock(&kfd_processes_srcu, idx);
2094 return ret;
2095 }
2096
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2097 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2098 struct vm_area_struct *vma)
2099 {
2100 struct kfd_process_device *pdd;
2101 struct qcm_process_device *qpd;
2102
2103 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2104 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2105 return -EINVAL;
2106 }
2107
2108 pdd = kfd_get_process_device_data(dev, process);
2109 if (!pdd)
2110 return -EINVAL;
2111 qpd = &pdd->qpd;
2112
2113 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2114 get_order(KFD_CWSR_TBA_TMA_SIZE));
2115 if (!qpd->cwsr_kaddr) {
2116 dev_err(dev->adev->dev,
2117 "Error allocating per process CWSR buffer.\n");
2118 return -ENOMEM;
2119 }
2120
2121 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2122 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2123 /* Mapping pages to user process */
2124 return remap_pfn_range(vma, vma->vm_start,
2125 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2126 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2127 }
2128
2129 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2130 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2131 {
2132 uint32_t irq_drain_fence[8];
2133 uint8_t node_id = 0;
2134 int r = 0;
2135
2136 if (!KFD_IS_SOC15(pdd->dev))
2137 return 0;
2138
2139 pdd->process->irq_drain_is_open = true;
2140
2141 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2142 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2143 KFD_IRQ_FENCE_CLIENTID;
2144 irq_drain_fence[3] = pdd->process->pasid;
2145
2146 /*
2147 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2148 */
2149 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2150 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2151 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2152 irq_drain_fence[3] |= node_id << 16;
2153 }
2154
2155 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2156 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2157 irq_drain_fence)) {
2158 pdd->process->irq_drain_is_open = false;
2159 return 0;
2160 }
2161
2162 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2163 !READ_ONCE(pdd->process->irq_drain_is_open));
2164 if (r)
2165 pdd->process->irq_drain_is_open = false;
2166
2167 return r;
2168 }
2169
kfd_process_close_interrupt_drain(unsigned int pasid)2170 void kfd_process_close_interrupt_drain(unsigned int pasid)
2171 {
2172 struct kfd_process *p;
2173
2174 p = kfd_lookup_process_by_pasid(pasid);
2175
2176 if (!p)
2177 return;
2178
2179 WRITE_ONCE(p->irq_drain_is_open, false);
2180 wake_up_all(&p->wait_irq_drain);
2181 kfd_unref_process(p);
2182 }
2183
2184 struct send_exception_work_handler_workarea {
2185 struct work_struct work;
2186 struct kfd_process *p;
2187 unsigned int queue_id;
2188 uint64_t error_reason;
2189 };
2190
send_exception_work_handler(struct work_struct * work)2191 static void send_exception_work_handler(struct work_struct *work)
2192 {
2193 struct send_exception_work_handler_workarea *workarea;
2194 struct kfd_process *p;
2195 struct queue *q;
2196 struct mm_struct *mm;
2197 struct kfd_context_save_area_header __user *csa_header;
2198 uint64_t __user *err_payload_ptr;
2199 uint64_t cur_err;
2200 uint32_t ev_id;
2201
2202 workarea = container_of(work,
2203 struct send_exception_work_handler_workarea,
2204 work);
2205 p = workarea->p;
2206
2207 mm = get_task_mm(p->lead_thread);
2208
2209 if (!mm)
2210 return;
2211
2212 kthread_use_mm(mm);
2213
2214 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2215
2216 if (!q)
2217 goto out;
2218
2219 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2220
2221 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2222 get_user(cur_err, err_payload_ptr);
2223 cur_err |= workarea->error_reason;
2224 put_user(cur_err, err_payload_ptr);
2225 get_user(ev_id, &csa_header->err_event_id);
2226
2227 kfd_set_event(p, ev_id);
2228
2229 out:
2230 kthread_unuse_mm(mm);
2231 mmput(mm);
2232 }
2233
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2234 int kfd_send_exception_to_runtime(struct kfd_process *p,
2235 unsigned int queue_id,
2236 uint64_t error_reason)
2237 {
2238 struct send_exception_work_handler_workarea worker;
2239
2240 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2241
2242 worker.p = p;
2243 worker.queue_id = queue_id;
2244 worker.error_reason = error_reason;
2245
2246 schedule_work(&worker.work);
2247 flush_work(&worker.work);
2248 destroy_work_on_stack(&worker.work);
2249
2250 return 0;
2251 }
2252
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2253 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2254 {
2255 int i;
2256
2257 if (gpu_id) {
2258 for (i = 0; i < p->n_pdds; i++) {
2259 struct kfd_process_device *pdd = p->pdds[i];
2260
2261 if (pdd->user_gpu_id == gpu_id)
2262 return pdd;
2263 }
2264 }
2265 return NULL;
2266 }
2267
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2268 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2269 {
2270 int i;
2271
2272 if (!actual_gpu_id)
2273 return 0;
2274
2275 for (i = 0; i < p->n_pdds; i++) {
2276 struct kfd_process_device *pdd = p->pdds[i];
2277
2278 if (pdd->dev->id == actual_gpu_id)
2279 return pdd->user_gpu_id;
2280 }
2281 return -EINVAL;
2282 }
2283
2284 #if defined(CONFIG_DEBUG_FS)
2285
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2286 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2287 {
2288 struct kfd_process *p;
2289 unsigned int temp;
2290 int r = 0;
2291
2292 int idx = srcu_read_lock(&kfd_processes_srcu);
2293
2294 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2295 seq_printf(m, "Process %d PASID 0x%x:\n",
2296 p->lead_thread->tgid, p->pasid);
2297
2298 mutex_lock(&p->mutex);
2299 r = pqm_debugfs_mqds(m, &p->pqm);
2300 mutex_unlock(&p->mutex);
2301
2302 if (r)
2303 break;
2304 }
2305
2306 srcu_read_unlock(&kfd_processes_srcu, idx);
2307
2308 return r;
2309 }
2310
2311 #endif
2312