xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume(struct kfd_node *kfd);
66 
kfd_device_info_set_sdma_info(struct kfd_dev * kfd)67 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68 {
69 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70 
71 	switch (sdma_version) {
72 	case IP_VERSION(4, 0, 0):/* VEGA10 */
73 	case IP_VERSION(4, 0, 1):/* VEGA12 */
74 	case IP_VERSION(4, 1, 0):/* RAVEN */
75 	case IP_VERSION(4, 1, 1):/* RAVEN */
76 	case IP_VERSION(4, 1, 2):/* RENOIR */
77 	case IP_VERSION(5, 2, 1):/* VANGOGH */
78 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81 		kfd->device_info.num_sdma_queues_per_engine = 2;
82 		break;
83 	case IP_VERSION(4, 2, 0):/* VEGA20 */
84 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
85 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86 	case IP_VERSION(4, 4, 2):
87 	case IP_VERSION(4, 4, 5):
88 	case IP_VERSION(5, 0, 0):/* NAVI10 */
89 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
90 	case IP_VERSION(5, 0, 2):/* NAVI14 */
91 	case IP_VERSION(5, 0, 5):/* NAVI12 */
92 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
93 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
94 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
95 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
96 	case IP_VERSION(6, 0, 0):
97 	case IP_VERSION(6, 0, 1):
98 	case IP_VERSION(6, 0, 2):
99 	case IP_VERSION(6, 0, 3):
100 	case IP_VERSION(6, 1, 0):
101 	case IP_VERSION(6, 1, 1):
102 	case IP_VERSION(6, 1, 2):
103 	case IP_VERSION(7, 0, 0):
104 	case IP_VERSION(7, 0, 1):
105 		kfd->device_info.num_sdma_queues_per_engine = 8;
106 		break;
107 	default:
108 		dev_warn(kfd_device,
109 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
110 			sdma_version);
111 		kfd->device_info.num_sdma_queues_per_engine = 8;
112 	}
113 
114 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
115 
116 	switch (sdma_version) {
117 	case IP_VERSION(6, 0, 0):
118 	case IP_VERSION(6, 0, 1):
119 	case IP_VERSION(6, 0, 2):
120 	case IP_VERSION(6, 0, 3):
121 	case IP_VERSION(6, 1, 0):
122 	case IP_VERSION(6, 1, 1):
123 	case IP_VERSION(6, 1, 2):
124 	case IP_VERSION(7, 0, 0):
125 	case IP_VERSION(7, 0, 1):
126 		/* Reserve 1 for paging and 1 for gfx */
127 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
128 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
129 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
130 			   kfd->adev->sdma.num_instances *
131 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
132 		break;
133 	default:
134 		break;
135 	}
136 }
137 
kfd_device_info_set_event_interrupt_class(struct kfd_dev * kfd)138 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
139 {
140 	uint32_t gc_version = KFD_GC_VERSION(kfd);
141 
142 	switch (gc_version) {
143 	case IP_VERSION(9, 0, 1): /* VEGA10 */
144 	case IP_VERSION(9, 1, 0): /* RAVEN */
145 	case IP_VERSION(9, 2, 1): /* VEGA12 */
146 	case IP_VERSION(9, 2, 2): /* RAVEN */
147 	case IP_VERSION(9, 3, 0): /* RENOIR */
148 	case IP_VERSION(9, 4, 0): /* VEGA20 */
149 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
150 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
151 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
152 		break;
153 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
154 	case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
155 		kfd->device_info.event_interrupt_class =
156 						&event_interrupt_class_v9_4_3;
157 		break;
158 	case IP_VERSION(10, 3, 1): /* VANGOGH */
159 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
160 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
161 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
162 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
163 	case IP_VERSION(10, 1, 4):
164 	case IP_VERSION(10, 1, 10): /* NAVI10 */
165 	case IP_VERSION(10, 1, 2): /* NAVI12 */
166 	case IP_VERSION(10, 1, 1): /* NAVI14 */
167 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
168 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
169 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
170 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
171 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
172 		break;
173 	case IP_VERSION(11, 0, 0):
174 	case IP_VERSION(11, 0, 1):
175 	case IP_VERSION(11, 0, 2):
176 	case IP_VERSION(11, 0, 3):
177 	case IP_VERSION(11, 0, 4):
178 	case IP_VERSION(11, 5, 0):
179 	case IP_VERSION(11, 5, 1):
180 	case IP_VERSION(11, 5, 2):
181 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
182 		break;
183 	case IP_VERSION(12, 0, 0):
184 	case IP_VERSION(12, 0, 1):
185 		/* GFX12_TODO: Change to v12 version. */
186 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187 		break;
188 	default:
189 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
190 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
191 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
192 	}
193 }
194 
kfd_device_info_init(struct kfd_dev * kfd,bool vf,uint32_t gfx_target_version)195 static void kfd_device_info_init(struct kfd_dev *kfd,
196 				 bool vf, uint32_t gfx_target_version)
197 {
198 	uint32_t gc_version = KFD_GC_VERSION(kfd);
199 	uint32_t asic_type = kfd->adev->asic_type;
200 
201 	kfd->device_info.max_pasid_bits = 16;
202 	kfd->device_info.max_no_of_hqd = 24;
203 	kfd->device_info.num_of_watch_points = 4;
204 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
205 	kfd->device_info.gfx_target_version = gfx_target_version;
206 
207 	if (KFD_IS_SOC15(kfd)) {
208 		kfd->device_info.doorbell_size = 8;
209 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
210 		kfd->device_info.supports_cwsr = true;
211 
212 		kfd_device_info_set_sdma_info(kfd);
213 
214 		kfd_device_info_set_event_interrupt_class(kfd);
215 
216 		if (gc_version < IP_VERSION(11, 0, 0)) {
217 			/* Navi2x+, Navi1x+ */
218 			if (gc_version == IP_VERSION(10, 3, 6))
219 				kfd->device_info.no_atomic_fw_version = 14;
220 			else if (gc_version == IP_VERSION(10, 3, 7))
221 				kfd->device_info.no_atomic_fw_version = 3;
222 			else if (gc_version >= IP_VERSION(10, 3, 0))
223 				kfd->device_info.no_atomic_fw_version = 92;
224 			else if (gc_version >= IP_VERSION(10, 1, 1))
225 				kfd->device_info.no_atomic_fw_version = 145;
226 
227 			/* Navi1x+ */
228 			if (gc_version >= IP_VERSION(10, 1, 1))
229 				kfd->device_info.needs_pci_atomics = true;
230 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
231 			/*
232 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
233 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
234 			 * PCIe atomics support.
235 			 */
236 			kfd->device_info.needs_pci_atomics = true;
237 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
238 		} else {
239 			kfd->device_info.needs_pci_atomics = true;
240 		}
241 	} else {
242 		kfd->device_info.doorbell_size = 4;
243 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
244 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
245 		kfd->device_info.num_sdma_queues_per_engine = 2;
246 
247 		if (asic_type != CHIP_KAVERI &&
248 		    asic_type != CHIP_HAWAII &&
249 		    asic_type != CHIP_TONGA)
250 			kfd->device_info.supports_cwsr = true;
251 
252 		if (asic_type != CHIP_HAWAII && !vf)
253 			kfd->device_info.needs_pci_atomics = true;
254 	}
255 }
256 
kgd2kfd_probe(struct amdgpu_device * adev,bool vf)257 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
258 {
259 	struct kfd_dev *kfd = NULL;
260 	const struct kfd2kgd_calls *f2g = NULL;
261 	uint32_t gfx_target_version = 0;
262 
263 	switch (adev->asic_type) {
264 #ifdef CONFIG_DRM_AMDGPU_CIK
265 	case CHIP_KAVERI:
266 		gfx_target_version = 70000;
267 		if (!vf)
268 			f2g = &gfx_v7_kfd2kgd;
269 		break;
270 #endif
271 	case CHIP_CARRIZO:
272 		gfx_target_version = 80001;
273 		if (!vf)
274 			f2g = &gfx_v8_kfd2kgd;
275 		break;
276 #ifdef CONFIG_DRM_AMDGPU_CIK
277 	case CHIP_HAWAII:
278 		gfx_target_version = 70001;
279 		if (!amdgpu_exp_hw_support)
280 			pr_info(
281 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
282 				);
283 		else if (!vf)
284 			f2g = &gfx_v7_kfd2kgd;
285 		break;
286 #endif
287 	case CHIP_TONGA:
288 		gfx_target_version = 80002;
289 		if (!vf)
290 			f2g = &gfx_v8_kfd2kgd;
291 		break;
292 	case CHIP_FIJI:
293 	case CHIP_POLARIS10:
294 		gfx_target_version = 80003;
295 		f2g = &gfx_v8_kfd2kgd;
296 		break;
297 	case CHIP_POLARIS11:
298 	case CHIP_POLARIS12:
299 	case CHIP_VEGAM:
300 		gfx_target_version = 80003;
301 		if (!vf)
302 			f2g = &gfx_v8_kfd2kgd;
303 		break;
304 	default:
305 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
306 		/* Vega 10 */
307 		case IP_VERSION(9, 0, 1):
308 			gfx_target_version = 90000;
309 			f2g = &gfx_v9_kfd2kgd;
310 			break;
311 		/* Raven */
312 		case IP_VERSION(9, 1, 0):
313 		case IP_VERSION(9, 2, 2):
314 			gfx_target_version = 90002;
315 			if (!vf)
316 				f2g = &gfx_v9_kfd2kgd;
317 			break;
318 		/* Vega12 */
319 		case IP_VERSION(9, 2, 1):
320 			gfx_target_version = 90004;
321 			if (!vf)
322 				f2g = &gfx_v9_kfd2kgd;
323 			break;
324 		/* Renoir */
325 		case IP_VERSION(9, 3, 0):
326 			gfx_target_version = 90012;
327 			if (!vf)
328 				f2g = &gfx_v9_kfd2kgd;
329 			break;
330 		/* Vega20 */
331 		case IP_VERSION(9, 4, 0):
332 			gfx_target_version = 90006;
333 			if (!vf)
334 				f2g = &gfx_v9_kfd2kgd;
335 			break;
336 		/* Arcturus */
337 		case IP_VERSION(9, 4, 1):
338 			gfx_target_version = 90008;
339 			f2g = &arcturus_kfd2kgd;
340 			break;
341 		/* Aldebaran */
342 		case IP_VERSION(9, 4, 2):
343 			gfx_target_version = 90010;
344 			f2g = &aldebaran_kfd2kgd;
345 			break;
346 		case IP_VERSION(9, 4, 3):
347 			gfx_target_version = adev->rev_id >= 1 ? 90402
348 					   : adev->flags & AMD_IS_APU ? 90400
349 					   : 90401;
350 			f2g = &gc_9_4_3_kfd2kgd;
351 			break;
352 		case IP_VERSION(9, 4, 4):
353 			gfx_target_version = 90402;
354 			f2g = &gc_9_4_3_kfd2kgd;
355 			break;
356 		/* Navi10 */
357 		case IP_VERSION(10, 1, 10):
358 			gfx_target_version = 100100;
359 			if (!vf)
360 				f2g = &gfx_v10_kfd2kgd;
361 			break;
362 		/* Navi12 */
363 		case IP_VERSION(10, 1, 2):
364 			gfx_target_version = 100101;
365 			f2g = &gfx_v10_kfd2kgd;
366 			break;
367 		/* Navi14 */
368 		case IP_VERSION(10, 1, 1):
369 			gfx_target_version = 100102;
370 			if (!vf)
371 				f2g = &gfx_v10_kfd2kgd;
372 			break;
373 		/* Cyan Skillfish */
374 		case IP_VERSION(10, 1, 3):
375 		case IP_VERSION(10, 1, 4):
376 			gfx_target_version = 100103;
377 			if (!vf)
378 				f2g = &gfx_v10_kfd2kgd;
379 			break;
380 		/* Sienna Cichlid */
381 		case IP_VERSION(10, 3, 0):
382 			gfx_target_version = 100300;
383 			f2g = &gfx_v10_3_kfd2kgd;
384 			break;
385 		/* Navy Flounder */
386 		case IP_VERSION(10, 3, 2):
387 			gfx_target_version = 100301;
388 			f2g = &gfx_v10_3_kfd2kgd;
389 			break;
390 		/* Van Gogh */
391 		case IP_VERSION(10, 3, 1):
392 			gfx_target_version = 100303;
393 			if (!vf)
394 				f2g = &gfx_v10_3_kfd2kgd;
395 			break;
396 		/* Dimgrey Cavefish */
397 		case IP_VERSION(10, 3, 4):
398 			gfx_target_version = 100302;
399 			f2g = &gfx_v10_3_kfd2kgd;
400 			break;
401 		/* Beige Goby */
402 		case IP_VERSION(10, 3, 5):
403 			gfx_target_version = 100304;
404 			f2g = &gfx_v10_3_kfd2kgd;
405 			break;
406 		/* Yellow Carp */
407 		case IP_VERSION(10, 3, 3):
408 			gfx_target_version = 100305;
409 			if (!vf)
410 				f2g = &gfx_v10_3_kfd2kgd;
411 			break;
412 		case IP_VERSION(10, 3, 6):
413 		case IP_VERSION(10, 3, 7):
414 			gfx_target_version = 100306;
415 			if (!vf)
416 				f2g = &gfx_v10_3_kfd2kgd;
417 			break;
418 		case IP_VERSION(11, 0, 0):
419 			gfx_target_version = 110000;
420 			f2g = &gfx_v11_kfd2kgd;
421 			break;
422 		case IP_VERSION(11, 0, 1):
423 		case IP_VERSION(11, 0, 4):
424 			gfx_target_version = 110003;
425 			f2g = &gfx_v11_kfd2kgd;
426 			break;
427 		case IP_VERSION(11, 0, 2):
428 			gfx_target_version = 110002;
429 			f2g = &gfx_v11_kfd2kgd;
430 			break;
431 		case IP_VERSION(11, 0, 3):
432 			/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
433 			gfx_target_version = 110001;
434 			f2g = &gfx_v11_kfd2kgd;
435 			break;
436 		case IP_VERSION(11, 5, 0):
437 			gfx_target_version = 110500;
438 			f2g = &gfx_v11_kfd2kgd;
439 			break;
440 		case IP_VERSION(11, 5, 1):
441 			gfx_target_version = 110501;
442 			f2g = &gfx_v11_kfd2kgd;
443 			break;
444 		case IP_VERSION(11, 5, 2):
445 			gfx_target_version = 110502;
446 			f2g = &gfx_v11_kfd2kgd;
447 			break;
448 		case IP_VERSION(12, 0, 0):
449 			gfx_target_version = 120000;
450 			f2g = &gfx_v12_kfd2kgd;
451 			break;
452 		case IP_VERSION(12, 0, 1):
453 			gfx_target_version = 120001;
454 			f2g = &gfx_v12_kfd2kgd;
455 			break;
456 		default:
457 			break;
458 		}
459 		break;
460 	}
461 
462 	if (!f2g) {
463 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
464 			dev_info(kfd_device,
465 				"GC IP %06x %s not supported in kfd\n",
466 				amdgpu_ip_version(adev, GC_HWIP, 0),
467 				vf ? "VF" : "");
468 		else
469 			dev_info(kfd_device, "%s %s not supported in kfd\n",
470 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
471 		return NULL;
472 	}
473 
474 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
475 	if (!kfd)
476 		return NULL;
477 
478 	kfd->adev = adev;
479 	kfd_device_info_init(kfd, vf, gfx_target_version);
480 	kfd->init_complete = false;
481 	kfd->kfd2kgd = f2g;
482 	atomic_set(&kfd->compute_profile, 0);
483 
484 	mutex_init(&kfd->doorbell_mutex);
485 
486 	ida_init(&kfd->doorbell_ida);
487 
488 	return kfd;
489 }
490 
kfd_cwsr_init(struct kfd_dev * kfd)491 static void kfd_cwsr_init(struct kfd_dev *kfd)
492 {
493 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
494 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
495 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
496 					     > KFD_CWSR_TMA_OFFSET);
497 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
498 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
499 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
500 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
501 					     > KFD_CWSR_TMA_OFFSET);
502 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
503 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
504 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
505 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
506 					     > KFD_CWSR_TMA_OFFSET);
507 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
508 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
509 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
510 			   KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
511 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
512 					     > KFD_CWSR_TMA_OFFSET);
513 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
514 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
515 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
516 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
517 					     > KFD_CWSR_TMA_OFFSET);
518 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
519 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
520 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
521 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
522 					     > KFD_CWSR_TMA_OFFSET);
523 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
524 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
525 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
526 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
527 					     > KFD_CWSR_TMA_OFFSET);
528 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
529 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
530 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
531 			/* The gfx11 cwsr trap handler must fit inside a single
532 			   page. */
533 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
534 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
535 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
536 		} else {
537 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex) > PAGE_SIZE);
538 			kfd->cwsr_isa = cwsr_trap_gfx12_hex;
539 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
540 		}
541 
542 		kfd->cwsr_enabled = true;
543 	}
544 }
545 
kfd_gws_init(struct kfd_node * node)546 static int kfd_gws_init(struct kfd_node *node)
547 {
548 	int ret = 0;
549 	struct kfd_dev *kfd = node->kfd;
550 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
551 
552 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
553 		return 0;
554 
555 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
556 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
557 			&& kfd->mec2_fw_version >= 0x81b3) ||
558 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
559 			&& kfd->mec2_fw_version >= 0x1b3)  ||
560 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
561 			&& kfd->mec2_fw_version >= 0x30)   ||
562 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
563 			&& kfd->mec2_fw_version >= 0x28) ||
564 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
565 		 KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
566 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
567 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
568 			&& kfd->mec2_fw_version >= 0x6b) ||
569 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
570 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
571 			&& mes_rev >= 68))))
572 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
573 				node->adev->gds.gws_size, &node->gws);
574 
575 	return ret;
576 }
577 
kfd_smi_init(struct kfd_node * dev)578 static void kfd_smi_init(struct kfd_node *dev)
579 {
580 	INIT_LIST_HEAD(&dev->smi_clients);
581 	spin_lock_init(&dev->smi_lock);
582 }
583 
kfd_init_node(struct kfd_node * node)584 static int kfd_init_node(struct kfd_node *node)
585 {
586 	int err = -1;
587 
588 	if (kfd_interrupt_init(node)) {
589 		dev_err(kfd_device, "Error initializing interrupts\n");
590 		goto kfd_interrupt_error;
591 	}
592 
593 	node->dqm = device_queue_manager_init(node);
594 	if (!node->dqm) {
595 		dev_err(kfd_device, "Error initializing queue manager\n");
596 		goto device_queue_manager_error;
597 	}
598 
599 	if (kfd_gws_init(node)) {
600 		dev_err(kfd_device, "Could not allocate %d gws\n",
601 			node->adev->gds.gws_size);
602 		goto gws_error;
603 	}
604 
605 	if (kfd_resume(node))
606 		goto kfd_resume_error;
607 
608 	if (kfd_topology_add_device(node)) {
609 		dev_err(kfd_device, "Error adding device to topology\n");
610 		goto kfd_topology_add_device_error;
611 	}
612 
613 	kfd_smi_init(node);
614 
615 	return 0;
616 
617 kfd_topology_add_device_error:
618 kfd_resume_error:
619 gws_error:
620 	device_queue_manager_uninit(node->dqm);
621 device_queue_manager_error:
622 	kfd_interrupt_exit(node);
623 kfd_interrupt_error:
624 	if (node->gws)
625 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
626 
627 	/* Cleanup the node memory here */
628 	kfree(node);
629 	return err;
630 }
631 
kfd_cleanup_nodes(struct kfd_dev * kfd,unsigned int num_nodes)632 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
633 {
634 	struct kfd_node *knode;
635 	unsigned int i;
636 
637 	for (i = 0; i < num_nodes; i++) {
638 		knode = kfd->nodes[i];
639 		device_queue_manager_uninit(knode->dqm);
640 		kfd_interrupt_exit(knode);
641 		kfd_topology_remove_device(knode);
642 		if (knode->gws)
643 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
644 		kfree(knode);
645 		kfd->nodes[i] = NULL;
646 	}
647 }
648 
kfd_setup_interrupt_bitmap(struct kfd_node * node,unsigned int kfd_node_idx)649 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
650 				       unsigned int kfd_node_idx)
651 {
652 	struct amdgpu_device *adev = node->adev;
653 	uint32_t xcc_mask = node->xcc_mask;
654 	uint32_t xcc, mapped_xcc;
655 	/*
656 	 * Interrupt bitmap is setup for processing interrupts from
657 	 * different XCDs and AIDs.
658 	 * Interrupt bitmap is defined as follows:
659 	 * 1. Bits 0-15 - correspond to the NodeId field.
660 	 *    Each bit corresponds to NodeId number. For example, if
661 	 *    a KFD node has interrupt bitmap set to 0x7, then this
662 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
663 	 *    in the IH cookie.
664 	 * 2. Bits 16-31 - unused.
665 	 *
666 	 * Please note that the kfd_node_idx argument passed to this
667 	 * function is not related to NodeId field received in the
668 	 * IH cookie.
669 	 *
670 	 * In CPX mode, a KFD node will process an interrupt if:
671 	 * - the Node Id matches the corresponding bit set in
672 	 *   Bits 0-15.
673 	 * - AND VMID reported in the interrupt lies within the
674 	 *   VMID range of the node.
675 	 */
676 	for_each_inst(xcc, xcc_mask) {
677 		mapped_xcc = GET_INST(GC, xcc);
678 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
679 	}
680 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
681 							node->interrupt_bitmap);
682 }
683 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)684 bool kgd2kfd_device_init(struct kfd_dev *kfd,
685 			 const struct kgd2kfd_shared_resources *gpu_resources)
686 {
687 	unsigned int size, map_process_packet_size, i;
688 	struct kfd_node *node;
689 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
690 	unsigned int max_proc_per_quantum;
691 	int partition_mode;
692 	int xcp_idx;
693 
694 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
695 			KGD_ENGINE_MEC1);
696 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
697 			KGD_ENGINE_MEC2);
698 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
699 			KGD_ENGINE_SDMA1);
700 	kfd->shared_resources = *gpu_resources;
701 
702 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
703 
704 	if (kfd->num_nodes == 0) {
705 		dev_err(kfd_device,
706 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
707 			kfd->adev->gfx.num_xcc_per_xcp);
708 		goto out;
709 	}
710 
711 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
712 	 * 32 and 64-bit requests are possible and must be
713 	 * supported.
714 	 */
715 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
716 	if (!kfd->pci_atomic_requested &&
717 	    kfd->device_info.needs_pci_atomics &&
718 	    (!kfd->device_info.no_atomic_fw_version ||
719 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
720 		dev_info(kfd_device,
721 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
722 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
723 			 kfd->mec_fw_version,
724 			 kfd->device_info.no_atomic_fw_version);
725 		return false;
726 	}
727 
728 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
729 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
730 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
731 
732 	/* For GFX9.4.3, we need special handling for VMIDs depending on
733 	 * partition mode.
734 	 * In CPX mode, the VMID range needs to be shared between XCDs.
735 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
736 	 * divide them equally, we change starting VMID to 4 and not use
737 	 * VMID 3.
738 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
739 	 * revisited.
740 	 */
741 	if (kfd->adev->xcp_mgr) {
742 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
743 								 AMDGPU_XCP_FL_LOCKED);
744 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
745 		    kfd->num_nodes != 1) {
746 			vmid_num_kfd /= 2;
747 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
748 		}
749 	}
750 
751 	/* Verify module parameters regarding mapped process number*/
752 	if (hws_max_conc_proc >= 0)
753 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
754 	else
755 		max_proc_per_quantum = vmid_num_kfd;
756 
757 	/* calculate max size of mqds needed for queues */
758 	size = max_num_of_queues_per_device *
759 			kfd->device_info.mqd_size_aligned;
760 
761 	/*
762 	 * calculate max size of runlist packet.
763 	 * There can be only 2 packets at once
764 	 */
765 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
766 				sizeof(struct pm4_mes_map_process_aldebaran) :
767 				sizeof(struct pm4_mes_map_process);
768 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
769 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
770 		+ sizeof(struct pm4_mes_runlist)) * 2;
771 
772 	/* Add size of HIQ & DIQ */
773 	size += KFD_KERNEL_QUEUE_SIZE * 2;
774 
775 	/* add another 512KB for all other allocations on gart (HPD, fences) */
776 	size += 512 * 1024;
777 
778 	if (amdgpu_amdkfd_alloc_gtt_mem(
779 			kfd->adev, size, &kfd->gtt_mem,
780 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
781 			false)) {
782 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
783 		goto alloc_gtt_mem_failure;
784 	}
785 
786 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
787 
788 	/* Initialize GTT sa with 512 byte chunk size */
789 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
790 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
791 		goto kfd_gtt_sa_init_error;
792 	}
793 
794 	if (kfd_doorbell_init(kfd)) {
795 		dev_err(kfd_device,
796 			"Error initializing doorbell aperture\n");
797 		goto kfd_doorbell_error;
798 	}
799 
800 	if (amdgpu_use_xgmi_p2p)
801 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
802 
803 	/*
804 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
805 	 * xGMI connected in the topology so assign a unique hive id per
806 	 * device based on the pci device location if device is in PCIe mode.
807 	 */
808 	if (!kfd->hive_id &&
809 	    (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
810 	     KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
811 	    kfd->num_nodes > 1)
812 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
813 
814 	kfd->noretry = kfd->adev->gmc.noretry;
815 
816 	kfd_cwsr_init(kfd);
817 
818 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
819 				kfd->num_nodes);
820 
821 	/* Allocate the KFD nodes */
822 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
823 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
824 		if (!node)
825 			goto node_alloc_error;
826 
827 		node->node_id = i;
828 		node->adev = kfd->adev;
829 		node->kfd = kfd;
830 		node->kfd2kgd = kfd->kfd2kgd;
831 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
832 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
833 		/* TODO : Check if error handling is needed */
834 		if (node->xcp) {
835 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
836 						    &node->xcc_mask);
837 			++xcp_idx;
838 		} else {
839 			node->xcc_mask =
840 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
841 		}
842 
843 		if (node->xcp) {
844 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
845 				node->node_id, node->xcp->mem_id,
846 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
847 		}
848 
849 		if ((KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
850 		     KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
851 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
852 		    kfd->num_nodes != 1) {
853 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
854 			 * 4-9 and second XCD gets VMID range 10-15.
855 			 */
856 
857 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
858 						first_vmid_kfd :
859 						first_vmid_kfd+vmid_num_kfd;
860 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
861 						last_vmid_kfd-vmid_num_kfd :
862 						last_vmid_kfd;
863 			node->compute_vmid_bitmap =
864 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
865 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
866 		} else {
867 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
868 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
869 			node->compute_vmid_bitmap =
870 				gpu_resources->compute_vmid_bitmap;
871 		}
872 		node->max_proc_per_quantum = max_proc_per_quantum;
873 		atomic_set(&node->sram_ecc_flag, 0);
874 
875 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
876 					&node->local_mem_info, node->xcp);
877 
878 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
879 		    KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4))
880 			kfd_setup_interrupt_bitmap(node, i);
881 
882 		/* Initialize the KFD node */
883 		if (kfd_init_node(node)) {
884 			dev_err(kfd_device, "Error initializing KFD node\n");
885 			goto node_init_error;
886 		}
887 
888 		spin_lock_init(&node->watch_points_lock);
889 
890 		kfd->nodes[i] = node;
891 	}
892 
893 	svm_range_set_max_pages(kfd->adev);
894 
895 	kfd->init_complete = true;
896 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
897 		 kfd->adev->pdev->device);
898 
899 	pr_debug("Starting kfd with the following scheduling policy %d\n",
900 		node->dqm->sched_policy);
901 
902 	goto out;
903 
904 node_init_error:
905 node_alloc_error:
906 	kfd_cleanup_nodes(kfd, i);
907 	kfd_doorbell_fini(kfd);
908 kfd_doorbell_error:
909 	kfd_gtt_sa_fini(kfd);
910 kfd_gtt_sa_init_error:
911 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
912 alloc_gtt_mem_failure:
913 	dev_err(kfd_device,
914 		"device %x:%x NOT added due to errors\n",
915 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
916 out:
917 	return kfd->init_complete;
918 }
919 
kgd2kfd_device_exit(struct kfd_dev * kfd)920 void kgd2kfd_device_exit(struct kfd_dev *kfd)
921 {
922 	if (kfd->init_complete) {
923 		/* Cleanup KFD nodes */
924 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
925 		/* Cleanup common/shared resources */
926 		kfd_doorbell_fini(kfd);
927 		ida_destroy(&kfd->doorbell_ida);
928 		kfd_gtt_sa_fini(kfd);
929 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
930 	}
931 
932 	kfree(kfd);
933 }
934 
kgd2kfd_pre_reset(struct kfd_dev * kfd,struct amdgpu_reset_context * reset_context)935 int kgd2kfd_pre_reset(struct kfd_dev *kfd,
936 		      struct amdgpu_reset_context *reset_context)
937 {
938 	struct kfd_node *node;
939 	int i;
940 
941 	if (!kfd->init_complete)
942 		return 0;
943 
944 	for (i = 0; i < kfd->num_nodes; i++) {
945 		node = kfd->nodes[i];
946 		kfd_smi_event_update_gpu_reset(node, false, reset_context);
947 	}
948 
949 	kgd2kfd_suspend(kfd, false);
950 
951 	for (i = 0; i < kfd->num_nodes; i++)
952 		kfd_signal_reset_event(kfd->nodes[i]);
953 
954 	return 0;
955 }
956 
957 /*
958  * Fix me. KFD won't be able to resume existing process for now.
959  * We will keep all existing process in a evicted state and
960  * wait the process to be terminated.
961  */
962 
kgd2kfd_post_reset(struct kfd_dev * kfd)963 int kgd2kfd_post_reset(struct kfd_dev *kfd)
964 {
965 	int ret;
966 	struct kfd_node *node;
967 	int i;
968 
969 	if (!kfd->init_complete)
970 		return 0;
971 
972 	for (i = 0; i < kfd->num_nodes; i++) {
973 		ret = kfd_resume(kfd->nodes[i]);
974 		if (ret)
975 			return ret;
976 	}
977 
978 	mutex_lock(&kfd_processes_mutex);
979 	--kfd_locked;
980 	mutex_unlock(&kfd_processes_mutex);
981 
982 	for (i = 0; i < kfd->num_nodes; i++) {
983 		node = kfd->nodes[i];
984 		atomic_set(&node->sram_ecc_flag, 0);
985 		kfd_smi_event_update_gpu_reset(node, true, NULL);
986 	}
987 
988 	return 0;
989 }
990 
kfd_is_locked(void)991 bool kfd_is_locked(void)
992 {
993 	lockdep_assert_held(&kfd_processes_mutex);
994 	return  (kfd_locked > 0);
995 }
996 
kgd2kfd_suspend(struct kfd_dev * kfd,bool run_pm)997 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
998 {
999 	struct kfd_node *node;
1000 	int i;
1001 
1002 	if (!kfd->init_complete)
1003 		return;
1004 
1005 	/* for runtime suspend, skip locking kfd */
1006 	if (!run_pm) {
1007 		mutex_lock(&kfd_processes_mutex);
1008 		/* For first KFD device suspend all the KFD processes */
1009 		if (++kfd_locked == 1)
1010 			kfd_suspend_all_processes();
1011 		mutex_unlock(&kfd_processes_mutex);
1012 	}
1013 
1014 	for (i = 0; i < kfd->num_nodes; i++) {
1015 		node = kfd->nodes[i];
1016 		node->dqm->ops.stop(node->dqm);
1017 	}
1018 }
1019 
kgd2kfd_resume(struct kfd_dev * kfd,bool run_pm)1020 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1021 {
1022 	int ret, i;
1023 
1024 	if (!kfd->init_complete)
1025 		return 0;
1026 
1027 	for (i = 0; i < kfd->num_nodes; i++) {
1028 		ret = kfd_resume(kfd->nodes[i]);
1029 		if (ret)
1030 			return ret;
1031 	}
1032 
1033 	/* for runtime resume, skip unlocking kfd */
1034 	if (!run_pm) {
1035 		mutex_lock(&kfd_processes_mutex);
1036 		if (--kfd_locked == 0)
1037 			ret = kfd_resume_all_processes();
1038 		WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1039 		mutex_unlock(&kfd_processes_mutex);
1040 	}
1041 
1042 	return ret;
1043 }
1044 
kfd_resume(struct kfd_node * node)1045 static int kfd_resume(struct kfd_node *node)
1046 {
1047 	int err = 0;
1048 
1049 	err = node->dqm->ops.start(node->dqm);
1050 	if (err)
1051 		dev_err(kfd_device,
1052 			"Error starting queue manager for device %x:%x\n",
1053 			node->adev->pdev->vendor, node->adev->pdev->device);
1054 
1055 	return err;
1056 }
1057 
kfd_queue_work(struct workqueue_struct * wq,struct work_struct * work)1058 static inline void kfd_queue_work(struct workqueue_struct *wq,
1059 				  struct work_struct *work)
1060 {
1061 	int cpu, new_cpu;
1062 
1063 	cpu = new_cpu = smp_processor_id();
1064 	do {
1065 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1066 		if (cpu_to_node(new_cpu) == numa_node_id())
1067 			break;
1068 	} while (cpu != new_cpu);
1069 
1070 	queue_work_on(new_cpu, wq, work);
1071 }
1072 
1073 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)1074 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1075 {
1076 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1077 	bool is_patched = false;
1078 	unsigned long flags;
1079 	struct kfd_node *node;
1080 
1081 	if (!kfd->init_complete)
1082 		return;
1083 
1084 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1085 		dev_err_once(kfd_device, "Ring entry too small\n");
1086 		return;
1087 	}
1088 
1089 	for (i = 0; i < kfd->num_nodes; i++) {
1090 		node = kfd->nodes[i];
1091 		spin_lock_irqsave(&node->interrupt_lock, flags);
1092 
1093 		if (node->interrupts_active
1094 		    && interrupt_is_wanted(node, ih_ring_entry,
1095 			    	patched_ihre, &is_patched)
1096 		    && enqueue_ih_ring_entry(node,
1097 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1098 			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1099 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1100 			return;
1101 		}
1102 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1103 	}
1104 
1105 }
1106 
kgd2kfd_quiesce_mm(struct mm_struct * mm,uint32_t trigger)1107 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1108 {
1109 	struct kfd_process *p;
1110 	int r;
1111 
1112 	/* Because we are called from arbitrary context (workqueue) as opposed
1113 	 * to process context, kfd_process could attempt to exit while we are
1114 	 * running so the lookup function increments the process ref count.
1115 	 */
1116 	p = kfd_lookup_process_by_mm(mm);
1117 	if (!p)
1118 		return -ESRCH;
1119 
1120 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1121 	r = kfd_process_evict_queues(p, trigger);
1122 
1123 	kfd_unref_process(p);
1124 	return r;
1125 }
1126 
kgd2kfd_resume_mm(struct mm_struct * mm)1127 int kgd2kfd_resume_mm(struct mm_struct *mm)
1128 {
1129 	struct kfd_process *p;
1130 	int r;
1131 
1132 	/* Because we are called from arbitrary context (workqueue) as opposed
1133 	 * to process context, kfd_process could attempt to exit while we are
1134 	 * running so the lookup function increments the process ref count.
1135 	 */
1136 	p = kfd_lookup_process_by_mm(mm);
1137 	if (!p)
1138 		return -ESRCH;
1139 
1140 	r = kfd_process_restore_queues(p);
1141 
1142 	kfd_unref_process(p);
1143 	return r;
1144 }
1145 
1146 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1147  *   prepare for safe eviction of KFD BOs that belong to the specified
1148  *   process.
1149  *
1150  * @mm: mm_struct that identifies the specified KFD process
1151  * @fence: eviction fence attached to KFD process BOs
1152  *
1153  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)1154 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1155 					       struct dma_fence *fence)
1156 {
1157 	struct kfd_process *p;
1158 	unsigned long active_time;
1159 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1160 
1161 	if (!fence)
1162 		return -EINVAL;
1163 
1164 	if (dma_fence_is_signaled(fence))
1165 		return 0;
1166 
1167 	p = kfd_lookup_process_by_mm(mm);
1168 	if (!p)
1169 		return -ENODEV;
1170 
1171 	if (fence->seqno == p->last_eviction_seqno)
1172 		goto out;
1173 
1174 	p->last_eviction_seqno = fence->seqno;
1175 
1176 	/* Avoid KFD process starvation. Wait for at least
1177 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1178 	 */
1179 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1180 	if (delay_jiffies > active_time)
1181 		delay_jiffies -= active_time;
1182 	else
1183 		delay_jiffies = 0;
1184 
1185 	/* During process initialization eviction_work.dwork is initialized
1186 	 * to kfd_evict_bo_worker
1187 	 */
1188 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1189 	     p->lead_thread->pid, delay_jiffies);
1190 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1191 out:
1192 	kfd_unref_process(p);
1193 	return 0;
1194 }
1195 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)1196 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1197 				unsigned int chunk_size)
1198 {
1199 	if (WARN_ON(buf_size < chunk_size))
1200 		return -EINVAL;
1201 	if (WARN_ON(buf_size == 0))
1202 		return -EINVAL;
1203 	if (WARN_ON(chunk_size == 0))
1204 		return -EINVAL;
1205 
1206 	kfd->gtt_sa_chunk_size = chunk_size;
1207 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1208 
1209 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1210 					   GFP_KERNEL);
1211 	if (!kfd->gtt_sa_bitmap)
1212 		return -ENOMEM;
1213 
1214 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1215 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1216 
1217 	mutex_init(&kfd->gtt_sa_lock);
1218 
1219 	return 0;
1220 }
1221 
kfd_gtt_sa_fini(struct kfd_dev * kfd)1222 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1223 {
1224 	mutex_destroy(&kfd->gtt_sa_lock);
1225 	bitmap_free(kfd->gtt_sa_bitmap);
1226 }
1227 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1228 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1229 						unsigned int bit_num,
1230 						unsigned int chunk_size)
1231 {
1232 	return start_addr + bit_num * chunk_size;
1233 }
1234 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1235 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1236 						unsigned int bit_num,
1237 						unsigned int chunk_size)
1238 {
1239 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1240 }
1241 
kfd_gtt_sa_allocate(struct kfd_node * node,unsigned int size,struct kfd_mem_obj ** mem_obj)1242 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1243 			struct kfd_mem_obj **mem_obj)
1244 {
1245 	unsigned int found, start_search, cur_size;
1246 	struct kfd_dev *kfd = node->kfd;
1247 
1248 	if (size == 0)
1249 		return -EINVAL;
1250 
1251 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1252 		return -ENOMEM;
1253 
1254 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1255 	if (!(*mem_obj))
1256 		return -ENOMEM;
1257 
1258 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1259 
1260 	start_search = 0;
1261 
1262 	mutex_lock(&kfd->gtt_sa_lock);
1263 
1264 kfd_gtt_restart_search:
1265 	/* Find the first chunk that is free */
1266 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1267 					kfd->gtt_sa_num_of_chunks,
1268 					start_search);
1269 
1270 	pr_debug("Found = %d\n", found);
1271 
1272 	/* If there wasn't any free chunk, bail out */
1273 	if (found == kfd->gtt_sa_num_of_chunks)
1274 		goto kfd_gtt_no_free_chunk;
1275 
1276 	/* Update fields of mem_obj */
1277 	(*mem_obj)->range_start = found;
1278 	(*mem_obj)->range_end = found;
1279 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1280 					kfd->gtt_start_gpu_addr,
1281 					found,
1282 					kfd->gtt_sa_chunk_size);
1283 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1284 					kfd->gtt_start_cpu_ptr,
1285 					found,
1286 					kfd->gtt_sa_chunk_size);
1287 
1288 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1289 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1290 
1291 	/* If we need only one chunk, mark it as allocated and get out */
1292 	if (size <= kfd->gtt_sa_chunk_size) {
1293 		pr_debug("Single bit\n");
1294 		__set_bit(found, kfd->gtt_sa_bitmap);
1295 		goto kfd_gtt_out;
1296 	}
1297 
1298 	/* Otherwise, try to see if we have enough contiguous chunks */
1299 	cur_size = size - kfd->gtt_sa_chunk_size;
1300 	do {
1301 		(*mem_obj)->range_end =
1302 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1303 					kfd->gtt_sa_num_of_chunks, ++found);
1304 		/*
1305 		 * If next free chunk is not contiguous than we need to
1306 		 * restart our search from the last free chunk we found (which
1307 		 * wasn't contiguous to the previous ones
1308 		 */
1309 		if ((*mem_obj)->range_end != found) {
1310 			start_search = found;
1311 			goto kfd_gtt_restart_search;
1312 		}
1313 
1314 		/*
1315 		 * If we reached end of buffer, bail out with error
1316 		 */
1317 		if (found == kfd->gtt_sa_num_of_chunks)
1318 			goto kfd_gtt_no_free_chunk;
1319 
1320 		/* Check if we don't need another chunk */
1321 		if (cur_size <= kfd->gtt_sa_chunk_size)
1322 			cur_size = 0;
1323 		else
1324 			cur_size -= kfd->gtt_sa_chunk_size;
1325 
1326 	} while (cur_size > 0);
1327 
1328 	pr_debug("range_start = %d, range_end = %d\n",
1329 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1330 
1331 	/* Mark the chunks as allocated */
1332 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1333 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1334 
1335 kfd_gtt_out:
1336 	mutex_unlock(&kfd->gtt_sa_lock);
1337 	return 0;
1338 
1339 kfd_gtt_no_free_chunk:
1340 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1341 	mutex_unlock(&kfd->gtt_sa_lock);
1342 	kfree(*mem_obj);
1343 	return -ENOMEM;
1344 }
1345 
kfd_gtt_sa_free(struct kfd_node * node,struct kfd_mem_obj * mem_obj)1346 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1347 {
1348 	struct kfd_dev *kfd = node->kfd;
1349 
1350 	/* Act like kfree when trying to free a NULL object */
1351 	if (!mem_obj)
1352 		return 0;
1353 
1354 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1355 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1356 
1357 	mutex_lock(&kfd->gtt_sa_lock);
1358 
1359 	/* Mark the chunks as free */
1360 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1361 		     mem_obj->range_end - mem_obj->range_start + 1);
1362 
1363 	mutex_unlock(&kfd->gtt_sa_lock);
1364 
1365 	kfree(mem_obj);
1366 	return 0;
1367 }
1368 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1369 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1370 {
1371 	/*
1372 	 * TODO: Currently update SRAM ECC flag for first node.
1373 	 * This needs to be updated later when we can
1374 	 * identify SRAM ECC error on other nodes also.
1375 	 */
1376 	if (kfd)
1377 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1378 }
1379 
kfd_inc_compute_active(struct kfd_node * node)1380 void kfd_inc_compute_active(struct kfd_node *node)
1381 {
1382 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1383 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1384 }
1385 
kfd_dec_compute_active(struct kfd_node * node)1386 void kfd_dec_compute_active(struct kfd_node *node)
1387 {
1388 	int count = atomic_dec_return(&node->kfd->compute_profile);
1389 
1390 	if (count == 0)
1391 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1392 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1393 }
1394 
kgd2kfd_smi_event_throttle(struct kfd_dev * kfd,uint64_t throttle_bitmask)1395 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1396 {
1397 	/*
1398 	 * TODO: For now, raise the throttling event only on first node.
1399 	 * This will need to change after we are able to determine
1400 	 * which node raised the throttling event.
1401 	 */
1402 	if (kfd && kfd->init_complete)
1403 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1404 							throttle_bitmask);
1405 }
1406 
1407 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1408  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1409  * When the device has more than two engines, we reserve two for PCIe to enable
1410  * full-duplex and the rest are used as XGMI.
1411  */
kfd_get_num_sdma_engines(struct kfd_node * node)1412 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1413 {
1414 	/* If XGMI is not supported, all SDMA engines are PCIe */
1415 	if (!node->adev->gmc.xgmi.supported)
1416 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1417 
1418 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1419 }
1420 
kfd_get_num_xgmi_sdma_engines(struct kfd_node * node)1421 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1422 {
1423 	/* After reserved for PCIe, the rest of engines are XGMI */
1424 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1425 		kfd_get_num_sdma_engines(node);
1426 }
1427 
kgd2kfd_check_and_lock_kfd(void)1428 int kgd2kfd_check_and_lock_kfd(void)
1429 {
1430 	mutex_lock(&kfd_processes_mutex);
1431 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1432 		mutex_unlock(&kfd_processes_mutex);
1433 		return -EBUSY;
1434 	}
1435 
1436 	++kfd_locked;
1437 	mutex_unlock(&kfd_processes_mutex);
1438 
1439 	return 0;
1440 }
1441 
kgd2kfd_unlock_kfd(void)1442 void kgd2kfd_unlock_kfd(void)
1443 {
1444 	mutex_lock(&kfd_processes_mutex);
1445 	--kfd_locked;
1446 	mutex_unlock(&kfd_processes_mutex);
1447 }
1448 
kgd2kfd_start_sched(struct kfd_dev * kfd,uint32_t node_id)1449 int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1450 {
1451 	struct kfd_node *node;
1452 	int ret;
1453 
1454 	if (!kfd->init_complete)
1455 		return 0;
1456 
1457 	if (node_id >= kfd->num_nodes) {
1458 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1459 			 node_id, kfd->num_nodes - 1);
1460 		return -EINVAL;
1461 	}
1462 	node = kfd->nodes[node_id];
1463 
1464 	ret = node->dqm->ops.unhalt(node->dqm);
1465 	if (ret)
1466 		dev_err(kfd_device, "Error in starting scheduler\n");
1467 
1468 	return ret;
1469 }
1470 
kgd2kfd_stop_sched(struct kfd_dev * kfd,uint32_t node_id)1471 int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1472 {
1473 	struct kfd_node *node;
1474 
1475 	if (!kfd->init_complete)
1476 		return 0;
1477 
1478 	if (node_id >= kfd->num_nodes) {
1479 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1480 			 node_id, kfd->num_nodes - 1);
1481 		return -EINVAL;
1482 	}
1483 
1484 	node = kfd->nodes[node_id];
1485 	return node->dqm->ops.halt(node->dqm);
1486 }
1487 
1488 #if defined(CONFIG_DEBUG_FS)
1489 
1490 /* This function will send a package to HIQ to hang the HWS
1491  * which will trigger a GPU reset and bring the HWS back to normal state
1492  */
kfd_debugfs_hang_hws(struct kfd_node * dev)1493 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1494 {
1495 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1496 		pr_err("HWS is not enabled");
1497 		return -EINVAL;
1498 	}
1499 
1500 	return dqm_debugfs_hang_hws(dev->dqm);
1501 }
1502 
1503 #endif
1504