xref: /linux/drivers/auxdisplay/panel.c (revision 16cd1c2657762c62a00ac78eecaa25868f7e601b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Front panel driver for Linux
4  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5  * Copyright (C) 2016-2017 Glider bvba
6  *
7  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
8  * connected to a parallel printer port.
9  *
10  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
11  * serial module compatible with Samsung's KS0074. The pins may be connected in
12  * any combination, everything is programmable.
13  *
14  * The keypad consists in a matrix of push buttons connecting input pins to
15  * data output pins or to the ground. The combinations have to be hard-coded
16  * in the driver, though several profiles exist and adding new ones is easy.
17  *
18  * Several profiles are provided for commonly found LCD+keypad modules on the
19  * market, such as those found in Nexcom's appliances.
20  *
21  * FIXME:
22  *      - the initialization/deinitialization process is very dirty and should
23  *        be rewritten. It may even be buggy.
24  *
25  * TODO:
26  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
27  *      - make the LCD a part of a virtual screen of Vx*Vy
28  *	- make the inputs list smp-safe
29  *      - change the keyboard to a double mapping : signals -> key_id -> values
30  *        so that applications can change values without knowing signals
31  *
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 #include <linux/module.h>
37 
38 #include <linux/types.h>
39 #include <linux/errno.h>
40 #include <linux/signal.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/miscdevice.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/fcntl.h>
48 #include <linux/init.h>
49 #include <linux/delay.h>
50 #include <linux/kernel.h>
51 #include <linux/ctype.h>
52 #include <linux/parport.h>
53 #include <linux/list.h>
54 
55 #include <linux/io.h>
56 #include <linux/uaccess.h>
57 
58 #include "charlcd.h"
59 #include "hd44780_common.h"
60 
61 #define LCD_MAXBYTES		256	/* max burst write */
62 
63 #define KEYPAD_BUFFER		64
64 
65 /* poll the keyboard this every second */
66 #define INPUT_POLL_TIME		(HZ / 50)
67 /* a key starts to repeat after this times INPUT_POLL_TIME */
68 #define KEYPAD_REP_START	(10)
69 /* a key repeats this times INPUT_POLL_TIME */
70 #define KEYPAD_REP_DELAY	(2)
71 
72 /* converts an r_str() input to an active high, bits string : 000BAOSE */
73 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
74 
75 #define PNL_PBUSY		0x80	/* inverted input, active low */
76 #define PNL_PACK		0x40	/* direct input, active low */
77 #define PNL_POUTPA		0x20	/* direct input, active high */
78 #define PNL_PSELECD		0x10	/* direct input, active high */
79 #define PNL_PERRORP		0x08	/* direct input, active low */
80 
81 #define PNL_PBIDIR		0x20	/* bi-directional ports */
82 /* high to read data in or-ed with data out */
83 #define PNL_PINTEN		0x10
84 #define PNL_PSELECP		0x08	/* inverted output, active low */
85 #define PNL_PINITP		0x04	/* direct output, active low */
86 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
87 #define PNL_PSTROBE		0x01	/* inverted output */
88 
89 #define PNL_PD0			0x01
90 #define PNL_PD1			0x02
91 #define PNL_PD2			0x04
92 #define PNL_PD3			0x08
93 #define PNL_PD4			0x10
94 #define PNL_PD5			0x20
95 #define PNL_PD6			0x40
96 #define PNL_PD7			0x80
97 
98 #define PIN_NONE		0
99 #define PIN_STROBE		1
100 #define PIN_D0			2
101 #define PIN_D1			3
102 #define PIN_D2			4
103 #define PIN_D3			5
104 #define PIN_D4			6
105 #define PIN_D5			7
106 #define PIN_D6			8
107 #define PIN_D7			9
108 #define PIN_AUTOLF		14
109 #define PIN_INITP		16
110 #define PIN_SELECP		17
111 #define PIN_NOT_SET		127
112 
113 #define NOT_SET			-1
114 
115 /* macros to simplify use of the parallel port */
116 #define r_ctr(x)        (parport_read_control((x)->port))
117 #define r_dtr(x)        (parport_read_data((x)->port))
118 #define r_str(x)        (parport_read_status((x)->port))
119 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
120 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
121 
122 /* this defines which bits are to be used and which ones to be ignored */
123 /* logical or of the output bits involved in the scan matrix */
124 static __u8 scan_mask_o;
125 /* logical or of the input bits involved in the scan matrix */
126 static __u8 scan_mask_i;
127 
128 enum input_type {
129 	INPUT_TYPE_STD,
130 	INPUT_TYPE_KBD,
131 };
132 
133 enum input_state {
134 	INPUT_ST_LOW,
135 	INPUT_ST_RISING,
136 	INPUT_ST_HIGH,
137 	INPUT_ST_FALLING,
138 };
139 
140 struct logical_input {
141 	struct list_head list;
142 	__u64 mask;
143 	__u64 value;
144 	enum input_type type;
145 	enum input_state state;
146 	__u8 rise_time, fall_time;
147 	__u8 rise_timer, fall_timer, high_timer;
148 
149 	union {
150 		struct {	/* valid when type == INPUT_TYPE_STD */
151 			void (*press_fct)(int);
152 			void (*release_fct)(int);
153 			int press_data;
154 			int release_data;
155 		} std;
156 		struct {	/* valid when type == INPUT_TYPE_KBD */
157 			char press_str[sizeof(void *) + sizeof(int)] __nonstring;
158 			char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
159 			char release_str[sizeof(void *) + sizeof(int)] __nonstring;
160 		} kbd;
161 	} u;
162 };
163 
164 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
165 
166 /* physical contacts history
167  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
168  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
169  * corresponds to the ground.
170  * Within each group, bits are stored in the same order as read on the port :
171  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
172  * So, each __u64 is represented like this :
173  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
174  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
175  */
176 
177 /* what has just been read from the I/O ports */
178 static __u64 phys_read;
179 /* previous phys_read */
180 static __u64 phys_read_prev;
181 /* stabilized phys_read (phys_read|phys_read_prev) */
182 static __u64 phys_curr;
183 /* previous phys_curr */
184 static __u64 phys_prev;
185 /* 0 means that at least one logical signal needs be computed */
186 static char inputs_stable;
187 
188 /* these variables are specific to the keypad */
189 static struct {
190 	bool enabled;
191 } keypad;
192 
193 static char keypad_buffer[KEYPAD_BUFFER];
194 static int keypad_buflen;
195 static int keypad_start;
196 static char keypressed;
197 static wait_queue_head_t keypad_read_wait;
198 
199 /* lcd-specific variables */
200 static struct {
201 	bool enabled;
202 	bool initialized;
203 
204 	int charset;
205 	int proto;
206 
207 	/* TODO: use union here? */
208 	struct {
209 		int e;
210 		int rs;
211 		int rw;
212 		int cl;
213 		int da;
214 		int bl;
215 	} pins;
216 
217 	struct charlcd *charlcd;
218 } lcd;
219 
220 /* Needed only for init */
221 static int selected_lcd_type = NOT_SET;
222 
223 /*
224  * Bit masks to convert LCD signals to parallel port outputs.
225  * _d_ are values for data port, _c_ are for control port.
226  * [0] = signal OFF, [1] = signal ON, [2] = mask
227  */
228 #define BIT_CLR		0
229 #define BIT_SET		1
230 #define BIT_MSK		2
231 #define BIT_STATES	3
232 /*
233  * one entry for each bit on the LCD
234  */
235 #define LCD_BIT_E	0
236 #define LCD_BIT_RS	1
237 #define LCD_BIT_RW	2
238 #define LCD_BIT_BL	3
239 #define LCD_BIT_CL	4
240 #define LCD_BIT_DA	5
241 #define LCD_BITS	6
242 
243 /*
244  * each bit can be either connected to a DATA or CTRL port
245  */
246 #define LCD_PORT_C	0
247 #define LCD_PORT_D	1
248 #define LCD_PORTS	2
249 
250 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
251 
252 /*
253  * LCD protocols
254  */
255 #define LCD_PROTO_PARALLEL      0
256 #define LCD_PROTO_SERIAL        1
257 #define LCD_PROTO_TI_DA8XX_LCD	2
258 
259 /*
260  * LCD character sets
261  */
262 #define LCD_CHARSET_NORMAL      0
263 #define LCD_CHARSET_KS0074      1
264 
265 /*
266  * LCD types
267  */
268 #define LCD_TYPE_NONE		0
269 #define LCD_TYPE_CUSTOM		1
270 #define LCD_TYPE_OLD		2
271 #define LCD_TYPE_KS0074		3
272 #define LCD_TYPE_HANTRONIX	4
273 #define LCD_TYPE_NEXCOM		5
274 
275 /*
276  * keypad types
277  */
278 #define KEYPAD_TYPE_NONE	0
279 #define KEYPAD_TYPE_OLD		1
280 #define KEYPAD_TYPE_NEW		2
281 #define KEYPAD_TYPE_NEXCOM	3
282 
283 /*
284  * panel profiles
285  */
286 #define PANEL_PROFILE_CUSTOM	0
287 #define PANEL_PROFILE_OLD	1
288 #define PANEL_PROFILE_NEW	2
289 #define PANEL_PROFILE_HANTRONIX	3
290 #define PANEL_PROFILE_NEXCOM	4
291 #define PANEL_PROFILE_LARGE	5
292 
293 /*
294  * Construct custom config from the kernel's configuration
295  */
296 #define DEFAULT_PARPORT         0
297 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
298 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
299 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
300 #define DEFAULT_LCD_HEIGHT      2
301 #define DEFAULT_LCD_WIDTH       40
302 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
303 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
304 
305 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
306 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
307 #define DEFAULT_LCD_PIN_RW      PIN_INITP
308 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
309 #define DEFAULT_LCD_PIN_SDA     PIN_D0
310 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
311 
312 #ifdef CONFIG_PANEL_PARPORT
313 #undef DEFAULT_PARPORT
314 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
315 #endif
316 
317 #ifdef CONFIG_PANEL_PROFILE
318 #undef DEFAULT_PROFILE
319 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
320 #endif
321 
322 #if DEFAULT_PROFILE == 0	/* custom */
323 #ifdef CONFIG_PANEL_KEYPAD
324 #undef DEFAULT_KEYPAD_TYPE
325 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
326 #endif
327 
328 #ifdef CONFIG_PANEL_LCD
329 #undef DEFAULT_LCD_TYPE
330 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
331 #endif
332 
333 #ifdef CONFIG_PANEL_LCD_HEIGHT
334 #undef DEFAULT_LCD_HEIGHT
335 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
336 #endif
337 
338 #ifdef CONFIG_PANEL_LCD_WIDTH
339 #undef DEFAULT_LCD_WIDTH
340 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
341 #endif
342 
343 #ifdef CONFIG_PANEL_LCD_BWIDTH
344 #undef DEFAULT_LCD_BWIDTH
345 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
346 #endif
347 
348 #ifdef CONFIG_PANEL_LCD_HWIDTH
349 #undef DEFAULT_LCD_HWIDTH
350 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
351 #endif
352 
353 #ifdef CONFIG_PANEL_LCD_CHARSET
354 #undef DEFAULT_LCD_CHARSET
355 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
356 #endif
357 
358 #ifdef CONFIG_PANEL_LCD_PROTO
359 #undef DEFAULT_LCD_PROTO
360 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
361 #endif
362 
363 #ifdef CONFIG_PANEL_LCD_PIN_E
364 #undef DEFAULT_LCD_PIN_E
365 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
366 #endif
367 
368 #ifdef CONFIG_PANEL_LCD_PIN_RS
369 #undef DEFAULT_LCD_PIN_RS
370 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
371 #endif
372 
373 #ifdef CONFIG_PANEL_LCD_PIN_RW
374 #undef DEFAULT_LCD_PIN_RW
375 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
376 #endif
377 
378 #ifdef CONFIG_PANEL_LCD_PIN_SCL
379 #undef DEFAULT_LCD_PIN_SCL
380 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
381 #endif
382 
383 #ifdef CONFIG_PANEL_LCD_PIN_SDA
384 #undef DEFAULT_LCD_PIN_SDA
385 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
386 #endif
387 
388 #ifdef CONFIG_PANEL_LCD_PIN_BL
389 #undef DEFAULT_LCD_PIN_BL
390 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
391 #endif
392 
393 #endif /* DEFAULT_PROFILE == 0 */
394 
395 /* global variables */
396 
397 /* Device single-open policy control */
398 static atomic_t keypad_available = ATOMIC_INIT(1);
399 
400 static struct pardevice *pprt;
401 
402 static int keypad_initialized;
403 
404 static DEFINE_SPINLOCK(pprt_lock);
405 static struct timer_list scan_timer;
406 
407 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
408 
409 static int parport = DEFAULT_PARPORT;
410 module_param(parport, int, 0000);
411 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
412 
413 static int profile = DEFAULT_PROFILE;
414 module_param(profile, int, 0000);
415 MODULE_PARM_DESC(profile,
416 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
417 		 "4=16x2 nexcom; default=40x2, old kp");
418 
419 static int keypad_type = NOT_SET;
420 module_param(keypad_type, int, 0000);
421 MODULE_PARM_DESC(keypad_type,
422 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
423 
424 static int lcd_type = NOT_SET;
425 module_param(lcd_type, int, 0000);
426 MODULE_PARM_DESC(lcd_type,
427 		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
428 
429 static int lcd_height = NOT_SET;
430 module_param(lcd_height, int, 0000);
431 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
432 
433 static int lcd_width = NOT_SET;
434 module_param(lcd_width, int, 0000);
435 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
436 
437 static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
438 module_param(lcd_bwidth, int, 0000);
439 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
440 
441 static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
442 module_param(lcd_hwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
444 
445 static int lcd_charset = NOT_SET;
446 module_param(lcd_charset, int, 0000);
447 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
448 
449 static int lcd_proto = NOT_SET;
450 module_param(lcd_proto, int, 0000);
451 MODULE_PARM_DESC(lcd_proto,
452 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
453 
454 /*
455  * These are the parallel port pins the LCD control signals are connected to.
456  * Set this to 0 if the signal is not used. Set it to its opposite value
457  * (negative) if the signal is negated. -MAXINT is used to indicate that the
458  * pin has not been explicitly specified.
459  *
460  * WARNING! no check will be performed about collisions with keypad !
461  */
462 
463 static int lcd_e_pin  = PIN_NOT_SET;
464 module_param(lcd_e_pin, int, 0000);
465 MODULE_PARM_DESC(lcd_e_pin,
466 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
467 
468 static int lcd_rs_pin = PIN_NOT_SET;
469 module_param(lcd_rs_pin, int, 0000);
470 MODULE_PARM_DESC(lcd_rs_pin,
471 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
472 
473 static int lcd_rw_pin = PIN_NOT_SET;
474 module_param(lcd_rw_pin, int, 0000);
475 MODULE_PARM_DESC(lcd_rw_pin,
476 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
477 
478 static int lcd_cl_pin = PIN_NOT_SET;
479 module_param(lcd_cl_pin, int, 0000);
480 MODULE_PARM_DESC(lcd_cl_pin,
481 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
482 
483 static int lcd_da_pin = PIN_NOT_SET;
484 module_param(lcd_da_pin, int, 0000);
485 MODULE_PARM_DESC(lcd_da_pin,
486 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
487 
488 static int lcd_bl_pin = PIN_NOT_SET;
489 module_param(lcd_bl_pin, int, 0000);
490 MODULE_PARM_DESC(lcd_bl_pin,
491 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
492 
493 /* Deprecated module parameters - consider not using them anymore */
494 
495 static int lcd_enabled = NOT_SET;
496 module_param(lcd_enabled, int, 0000);
497 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
498 
499 static int keypad_enabled = NOT_SET;
500 module_param(keypad_enabled, int, 0000);
501 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
502 
503 /* for some LCD drivers (ks0074) we need a charset conversion table. */
504 static const unsigned char lcd_char_conv_ks0074[256] = {
505 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
506 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
507 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
508 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
509 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
510 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
511 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
512 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
513 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
514 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
515 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
516 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
517 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
518 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
519 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
520 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
521 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
522 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
523 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
524 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
525 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
526 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
527 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
528 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
529 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
530 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
531 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
532 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
533 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
534 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
535 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
536 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
537 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
538 };
539 
540 static const char old_keypad_profile[][4][9] = {
541 	{"S0", "Left\n", "Left\n", ""},
542 	{"S1", "Down\n", "Down\n", ""},
543 	{"S2", "Up\n", "Up\n", ""},
544 	{"S3", "Right\n", "Right\n", ""},
545 	{"S4", "Esc\n", "Esc\n", ""},
546 	{"S5", "Ret\n", "Ret\n", ""},
547 	{"", "", "", ""}
548 };
549 
550 /* signals, press, repeat, release */
551 static const char new_keypad_profile[][4][9] = {
552 	{"S0", "Left\n", "Left\n", ""},
553 	{"S1", "Down\n", "Down\n", ""},
554 	{"S2", "Up\n", "Up\n", ""},
555 	{"S3", "Right\n", "Right\n", ""},
556 	{"S4s5", "", "Esc\n", "Esc\n"},
557 	{"s4S5", "", "Ret\n", "Ret\n"},
558 	{"S4S5", "Help\n", "", ""},
559 	/* add new signals above this line */
560 	{"", "", "", ""}
561 };
562 
563 /* signals, press, repeat, release */
564 static const char nexcom_keypad_profile[][4][9] = {
565 	{"a-p-e-", "Down\n", "Down\n", ""},
566 	{"a-p-E-", "Ret\n", "Ret\n", ""},
567 	{"a-P-E-", "Esc\n", "Esc\n", ""},
568 	{"a-P-e-", "Up\n", "Up\n", ""},
569 	/* add new signals above this line */
570 	{"", "", "", ""}
571 };
572 
573 static const char (*keypad_profile)[4][9] = old_keypad_profile;
574 
575 static DECLARE_BITMAP(bits, LCD_BITS);
576 
lcd_get_bits(unsigned int port,int * val)577 static void lcd_get_bits(unsigned int port, int *val)
578 {
579 	unsigned int bit, state;
580 
581 	for (bit = 0; bit < LCD_BITS; bit++) {
582 		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
583 		*val &= lcd_bits[port][bit][BIT_MSK];
584 		*val |= lcd_bits[port][bit][state];
585 	}
586 }
587 
588 /* sets data port bits according to current signals values */
set_data_bits(void)589 static int set_data_bits(void)
590 {
591 	int val;
592 
593 	val = r_dtr(pprt);
594 	lcd_get_bits(LCD_PORT_D, &val);
595 	w_dtr(pprt, val);
596 	return val;
597 }
598 
599 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)600 static int set_ctrl_bits(void)
601 {
602 	int val;
603 
604 	val = r_ctr(pprt);
605 	lcd_get_bits(LCD_PORT_C, &val);
606 	w_ctr(pprt, val);
607 	return val;
608 }
609 
610 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)611 static void panel_set_bits(void)
612 {
613 	set_data_bits();
614 	set_ctrl_bits();
615 }
616 
617 /*
618  * Converts a parallel port pin (from -25 to 25) to data and control ports
619  * masks, and data and control port bits. The signal will be considered
620  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
621  *
622  * Result will be used this way :
623  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
624  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
625  */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)626 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
627 {
628 	int d_bit, c_bit, inv;
629 
630 	d_val[0] = 0;
631 	c_val[0] = 0;
632 	d_val[1] = 0;
633 	c_val[1] = 0;
634 	d_val[2] = 0xFF;
635 	c_val[2] = 0xFF;
636 
637 	if (pin == 0)
638 		return;
639 
640 	inv = (pin < 0);
641 	if (inv)
642 		pin = -pin;
643 
644 	d_bit = 0;
645 	c_bit = 0;
646 
647 	switch (pin) {
648 	case PIN_STROBE:	/* strobe, inverted */
649 		c_bit = PNL_PSTROBE;
650 		inv = !inv;
651 		break;
652 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
653 		d_bit = 1 << (pin - 2);
654 		break;
655 	case PIN_AUTOLF:	/* autofeed, inverted */
656 		c_bit = PNL_PAUTOLF;
657 		inv = !inv;
658 		break;
659 	case PIN_INITP:		/* init, direct */
660 		c_bit = PNL_PINITP;
661 		break;
662 	case PIN_SELECP:	/* select_in, inverted */
663 		c_bit = PNL_PSELECP;
664 		inv = !inv;
665 		break;
666 	default:		/* unknown pin, ignore */
667 		break;
668 	}
669 
670 	if (c_bit) {
671 		c_val[2] &= ~c_bit;
672 		c_val[!inv] = c_bit;
673 	} else if (d_bit) {
674 		d_val[2] &= ~d_bit;
675 		d_val[!inv] = d_bit;
676 	}
677 }
678 
679 /*
680  * send a serial byte to the LCD panel. The caller is responsible for locking
681  * if needed.
682  */
lcd_send_serial(int byte)683 static void lcd_send_serial(int byte)
684 {
685 	int bit;
686 
687 	/*
688 	 * the data bit is set on D0, and the clock on STROBE.
689 	 * LCD reads D0 on STROBE's rising edge.
690 	 */
691 	for (bit = 0; bit < 8; bit++) {
692 		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
693 		panel_set_bits();
694 		if (byte & 1) {
695 			set_bit(LCD_BIT_DA, bits);
696 		} else {
697 			clear_bit(LCD_BIT_DA, bits);
698 		}
699 
700 		panel_set_bits();
701 		udelay(2);  /* maintain the data during 2 us before CLK up */
702 		set_bit(LCD_BIT_CL, bits);	/* CLK high */
703 		panel_set_bits();
704 		udelay(1);  /* maintain the strobe during 1 us */
705 		byte >>= 1;
706 	}
707 }
708 
709 /* turn the backlight on or off */
lcd_backlight(struct charlcd * charlcd,enum charlcd_onoff on)710 static void lcd_backlight(struct charlcd *charlcd, enum charlcd_onoff on)
711 {
712 	if (lcd.pins.bl == PIN_NONE)
713 		return;
714 
715 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
716 	spin_lock_irq(&pprt_lock);
717 	if (on)
718 		set_bit(LCD_BIT_BL, bits);
719 	else
720 		clear_bit(LCD_BIT_BL, bits);
721 	panel_set_bits();
722 	spin_unlock_irq(&pprt_lock);
723 }
724 
725 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(struct hd44780_common * hdc,int cmd)726 static void lcd_write_cmd_s(struct hd44780_common *hdc, int cmd)
727 {
728 	spin_lock_irq(&pprt_lock);
729 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
730 	lcd_send_serial(cmd & 0x0F);
731 	lcd_send_serial((cmd >> 4) & 0x0F);
732 	udelay(40);		/* the shortest command takes at least 40 us */
733 	spin_unlock_irq(&pprt_lock);
734 }
735 
736 /* send data to the LCD panel in serial mode */
lcd_write_data_s(struct hd44780_common * hdc,int data)737 static void lcd_write_data_s(struct hd44780_common *hdc, int data)
738 {
739 	spin_lock_irq(&pprt_lock);
740 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
741 	lcd_send_serial(data & 0x0F);
742 	lcd_send_serial((data >> 4) & 0x0F);
743 	udelay(40);		/* the shortest data takes at least 40 us */
744 	spin_unlock_irq(&pprt_lock);
745 }
746 
747 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(struct hd44780_common * hdc,int cmd)748 static void lcd_write_cmd_p8(struct hd44780_common *hdc, int cmd)
749 {
750 	spin_lock_irq(&pprt_lock);
751 	/* present the data to the data port */
752 	w_dtr(pprt, cmd);
753 	udelay(20);	/* maintain the data during 20 us before the strobe */
754 
755 	set_bit(LCD_BIT_E, bits);
756 	clear_bit(LCD_BIT_RS, bits);
757 	clear_bit(LCD_BIT_RW, bits);
758 	set_ctrl_bits();
759 
760 	udelay(40);	/* maintain the strobe during 40 us */
761 
762 	clear_bit(LCD_BIT_E, bits);
763 	set_ctrl_bits();
764 
765 	udelay(120);	/* the shortest command takes at least 120 us */
766 	spin_unlock_irq(&pprt_lock);
767 }
768 
769 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(struct hd44780_common * hdc,int data)770 static void lcd_write_data_p8(struct hd44780_common *hdc, int data)
771 {
772 	spin_lock_irq(&pprt_lock);
773 	/* present the data to the data port */
774 	w_dtr(pprt, data);
775 	udelay(20);	/* maintain the data during 20 us before the strobe */
776 
777 	set_bit(LCD_BIT_E, bits);
778 	set_bit(LCD_BIT_RS, bits);
779 	clear_bit(LCD_BIT_RW, bits);
780 	set_ctrl_bits();
781 
782 	udelay(40);	/* maintain the strobe during 40 us */
783 
784 	clear_bit(LCD_BIT_E, bits);
785 	set_ctrl_bits();
786 
787 	udelay(45);	/* the shortest data takes at least 45 us */
788 	spin_unlock_irq(&pprt_lock);
789 }
790 
791 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(struct hd44780_common * hdc,int cmd)792 static void lcd_write_cmd_tilcd(struct hd44780_common *hdc, int cmd)
793 {
794 	spin_lock_irq(&pprt_lock);
795 	/* present the data to the control port */
796 	w_ctr(pprt, cmd);
797 	udelay(60);
798 	spin_unlock_irq(&pprt_lock);
799 }
800 
801 /* send data to the TI LCD panel */
lcd_write_data_tilcd(struct hd44780_common * hdc,int data)802 static void lcd_write_data_tilcd(struct hd44780_common *hdc, int data)
803 {
804 	spin_lock_irq(&pprt_lock);
805 	/* present the data to the data port */
806 	w_dtr(pprt, data);
807 	udelay(60);
808 	spin_unlock_irq(&pprt_lock);
809 }
810 
811 static const struct charlcd_ops charlcd_ops = {
812 	.backlight	= lcd_backlight,
813 	.print		= hd44780_common_print,
814 	.gotoxy		= hd44780_common_gotoxy,
815 	.home		= hd44780_common_home,
816 	.clear_display	= hd44780_common_clear_display,
817 	.init_display	= hd44780_common_init_display,
818 	.shift_cursor	= hd44780_common_shift_cursor,
819 	.shift_display	= hd44780_common_shift_display,
820 	.display	= hd44780_common_display,
821 	.cursor		= hd44780_common_cursor,
822 	.blink		= hd44780_common_blink,
823 	.fontsize	= hd44780_common_fontsize,
824 	.lines		= hd44780_common_lines,
825 	.redefine_char	= hd44780_common_redefine_char,
826 };
827 
828 /* initialize the LCD driver */
lcd_init(void)829 static void lcd_init(void)
830 {
831 	struct charlcd *charlcd;
832 	struct hd44780_common *hdc;
833 
834 	charlcd = hd44780_common_alloc();
835 	if (!charlcd)
836 		return;
837 
838 	hdc = charlcd->drvdata;
839 	hdc->hd44780 = &lcd;
840 
841 	/*
842 	 * Init lcd struct with load-time values to preserve exact
843 	 * current functionality (at least for now).
844 	 */
845 	charlcd->height = lcd_height;
846 	charlcd->width = lcd_width;
847 	hdc->bwidth = lcd_bwidth;
848 	hdc->hwidth = lcd_hwidth;
849 
850 	switch (selected_lcd_type) {
851 	case LCD_TYPE_OLD:
852 		/* parallel mode, 8 bits */
853 		lcd.proto = LCD_PROTO_PARALLEL;
854 		lcd.charset = LCD_CHARSET_NORMAL;
855 		lcd.pins.e = PIN_STROBE;
856 		lcd.pins.rs = PIN_AUTOLF;
857 
858 		charlcd->width = 40;
859 		hdc->bwidth = 40;
860 		hdc->hwidth = 64;
861 		charlcd->height = 2;
862 		break;
863 	case LCD_TYPE_KS0074:
864 		/* serial mode, ks0074 */
865 		lcd.proto = LCD_PROTO_SERIAL;
866 		lcd.charset = LCD_CHARSET_KS0074;
867 		lcd.pins.bl = PIN_AUTOLF;
868 		lcd.pins.cl = PIN_STROBE;
869 		lcd.pins.da = PIN_D0;
870 
871 		charlcd->width = 16;
872 		hdc->bwidth = 40;
873 		hdc->hwidth = 16;
874 		charlcd->height = 2;
875 		break;
876 	case LCD_TYPE_NEXCOM:
877 		/* parallel mode, 8 bits, generic */
878 		lcd.proto = LCD_PROTO_PARALLEL;
879 		lcd.charset = LCD_CHARSET_NORMAL;
880 		lcd.pins.e = PIN_AUTOLF;
881 		lcd.pins.rs = PIN_SELECP;
882 		lcd.pins.rw = PIN_INITP;
883 
884 		charlcd->width = 16;
885 		hdc->bwidth = 40;
886 		hdc->hwidth = 64;
887 		charlcd->height = 2;
888 		break;
889 	case LCD_TYPE_CUSTOM:
890 		/* customer-defined */
891 		lcd.proto = DEFAULT_LCD_PROTO;
892 		lcd.charset = DEFAULT_LCD_CHARSET;
893 		/* default geometry will be set later */
894 		break;
895 	case LCD_TYPE_HANTRONIX:
896 		/* parallel mode, 8 bits, hantronix-like */
897 	default:
898 		lcd.proto = LCD_PROTO_PARALLEL;
899 		lcd.charset = LCD_CHARSET_NORMAL;
900 		lcd.pins.e = PIN_STROBE;
901 		lcd.pins.rs = PIN_SELECP;
902 
903 		charlcd->width = 16;
904 		hdc->bwidth = 40;
905 		hdc->hwidth = 64;
906 		charlcd->height = 2;
907 		break;
908 	}
909 
910 	/* Overwrite with module params set on loading */
911 	if (lcd_height != NOT_SET)
912 		charlcd->height = lcd_height;
913 	if (lcd_width != NOT_SET)
914 		charlcd->width = lcd_width;
915 	if (lcd_bwidth != NOT_SET)
916 		hdc->bwidth = lcd_bwidth;
917 	if (lcd_hwidth != NOT_SET)
918 		hdc->hwidth = lcd_hwidth;
919 	if (lcd_charset != NOT_SET)
920 		lcd.charset = lcd_charset;
921 	if (lcd_proto != NOT_SET)
922 		lcd.proto = lcd_proto;
923 	if (lcd_e_pin != PIN_NOT_SET)
924 		lcd.pins.e = lcd_e_pin;
925 	if (lcd_rs_pin != PIN_NOT_SET)
926 		lcd.pins.rs = lcd_rs_pin;
927 	if (lcd_rw_pin != PIN_NOT_SET)
928 		lcd.pins.rw = lcd_rw_pin;
929 	if (lcd_cl_pin != PIN_NOT_SET)
930 		lcd.pins.cl = lcd_cl_pin;
931 	if (lcd_da_pin != PIN_NOT_SET)
932 		lcd.pins.da = lcd_da_pin;
933 	if (lcd_bl_pin != PIN_NOT_SET)
934 		lcd.pins.bl = lcd_bl_pin;
935 
936 	/* this is used to catch wrong and default values */
937 	if (charlcd->width <= 0)
938 		charlcd->width = DEFAULT_LCD_WIDTH;
939 	if (hdc->bwidth <= 0)
940 		hdc->bwidth = DEFAULT_LCD_BWIDTH;
941 	if (hdc->hwidth <= 0)
942 		hdc->hwidth = DEFAULT_LCD_HWIDTH;
943 	if (charlcd->height <= 0)
944 		charlcd->height = DEFAULT_LCD_HEIGHT;
945 
946 	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
947 		charlcd->ops = &charlcd_ops;
948 		hdc->write_data = lcd_write_data_s;
949 		hdc->write_cmd = lcd_write_cmd_s;
950 
951 		if (lcd.pins.cl == PIN_NOT_SET)
952 			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
953 		if (lcd.pins.da == PIN_NOT_SET)
954 			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
955 
956 	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
957 		charlcd->ops = &charlcd_ops;
958 		hdc->write_data = lcd_write_data_p8;
959 		hdc->write_cmd = lcd_write_cmd_p8;
960 
961 		if (lcd.pins.e == PIN_NOT_SET)
962 			lcd.pins.e = DEFAULT_LCD_PIN_E;
963 		if (lcd.pins.rs == PIN_NOT_SET)
964 			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
965 		if (lcd.pins.rw == PIN_NOT_SET)
966 			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
967 	} else {
968 		charlcd->ops = &charlcd_ops;
969 		hdc->write_data = lcd_write_data_tilcd;
970 		hdc->write_cmd = lcd_write_cmd_tilcd;
971 	}
972 
973 	if (lcd.pins.bl == PIN_NOT_SET)
974 		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
975 
976 	if (lcd.pins.e == PIN_NOT_SET)
977 		lcd.pins.e = PIN_NONE;
978 	if (lcd.pins.rs == PIN_NOT_SET)
979 		lcd.pins.rs = PIN_NONE;
980 	if (lcd.pins.rw == PIN_NOT_SET)
981 		lcd.pins.rw = PIN_NONE;
982 	if (lcd.pins.bl == PIN_NOT_SET)
983 		lcd.pins.bl = PIN_NONE;
984 	if (lcd.pins.cl == PIN_NOT_SET)
985 		lcd.pins.cl = PIN_NONE;
986 	if (lcd.pins.da == PIN_NOT_SET)
987 		lcd.pins.da = PIN_NONE;
988 
989 	if (lcd.charset == NOT_SET)
990 		lcd.charset = DEFAULT_LCD_CHARSET;
991 
992 	if (lcd.charset == LCD_CHARSET_KS0074)
993 		charlcd->char_conv = lcd_char_conv_ks0074;
994 	else
995 		charlcd->char_conv = NULL;
996 
997 	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
998 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
999 	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1000 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1001 	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1002 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1003 	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1004 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1005 	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1006 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1007 	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1008 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1009 
1010 	lcd.charlcd = charlcd;
1011 	lcd.initialized = true;
1012 }
1013 
1014 /*
1015  * These are the file operation function for user access to /dev/keypad
1016  */
1017 
keypad_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1018 static ssize_t keypad_read(struct file *file,
1019 			   char __user *buf, size_t count, loff_t *ppos)
1020 {
1021 	unsigned i = *ppos;
1022 	char __user *tmp = buf;
1023 
1024 	if (keypad_buflen == 0) {
1025 		if (file->f_flags & O_NONBLOCK)
1026 			return -EAGAIN;
1027 
1028 		if (wait_event_interruptible(keypad_read_wait,
1029 					     keypad_buflen != 0))
1030 			return -EINTR;
1031 	}
1032 
1033 	for (; count-- > 0 && (keypad_buflen > 0);
1034 	     ++i, ++tmp, --keypad_buflen) {
1035 		put_user(keypad_buffer[keypad_start], tmp);
1036 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1037 	}
1038 	*ppos = i;
1039 
1040 	return tmp - buf;
1041 }
1042 
keypad_open(struct inode * inode,struct file * file)1043 static int keypad_open(struct inode *inode, struct file *file)
1044 {
1045 	int ret;
1046 
1047 	ret = -EBUSY;
1048 	if (!atomic_dec_and_test(&keypad_available))
1049 		goto fail;	/* open only once at a time */
1050 
1051 	ret = -EPERM;
1052 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1053 		goto fail;
1054 
1055 	keypad_buflen = 0;	/* flush the buffer on opening */
1056 	return 0;
1057  fail:
1058 	atomic_inc(&keypad_available);
1059 	return ret;
1060 }
1061 
keypad_release(struct inode * inode,struct file * file)1062 static int keypad_release(struct inode *inode, struct file *file)
1063 {
1064 	atomic_inc(&keypad_available);
1065 	return 0;
1066 }
1067 
1068 static const struct file_operations keypad_fops = {
1069 	.read    = keypad_read,		/* read */
1070 	.open    = keypad_open,		/* open */
1071 	.release = keypad_release,	/* close */
1072 	.llseek  = default_llseek,
1073 };
1074 
1075 static struct miscdevice keypad_dev = {
1076 	.minor	= KEYPAD_MINOR,
1077 	.name	= "keypad",
1078 	.fops	= &keypad_fops,
1079 };
1080 
keypad_send_key(const char * string,int max_len)1081 static void keypad_send_key(const char *string, int max_len)
1082 {
1083 	/* send the key to the device only if a process is attached to it. */
1084 	if (!atomic_read(&keypad_available)) {
1085 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1086 			keypad_buffer[(keypad_start + keypad_buflen++) %
1087 				      KEYPAD_BUFFER] = *string++;
1088 		}
1089 		wake_up_interruptible(&keypad_read_wait);
1090 	}
1091 }
1092 
1093 /* this function scans all the bits involving at least one logical signal,
1094  * and puts the results in the bitfield "phys_read" (one bit per established
1095  * contact), and sets "phys_read_prev" to "phys_read".
1096  *
1097  * Note: to debounce input signals, we will only consider as switched a signal
1098  * which is stable across 2 measures. Signals which are different between two
1099  * reads will be kept as they previously were in their logical form (phys_prev).
1100  * A signal which has just switched will have a 1 in
1101  * (phys_read ^ phys_read_prev).
1102  */
phys_scan_contacts(void)1103 static void phys_scan_contacts(void)
1104 {
1105 	int bit, bitval;
1106 	char oldval;
1107 	char bitmask;
1108 	char gndmask;
1109 
1110 	phys_prev = phys_curr;
1111 	phys_read_prev = phys_read;
1112 	phys_read = 0;		/* flush all signals */
1113 
1114 	/* keep track of old value, with all outputs disabled */
1115 	oldval = r_dtr(pprt) | scan_mask_o;
1116 	/* activate all keyboard outputs (active low) */
1117 	w_dtr(pprt, oldval & ~scan_mask_o);
1118 
1119 	/* will have a 1 for each bit set to gnd */
1120 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1121 	/* disable all matrix signals */
1122 	w_dtr(pprt, oldval);
1123 
1124 	/* now that all outputs are cleared, the only active input bits are
1125 	 * directly connected to the ground
1126 	 */
1127 
1128 	/* 1 for each grounded input */
1129 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1130 
1131 	/* grounded inputs are signals 40-44 */
1132 	phys_read |= (__u64)gndmask << 40;
1133 
1134 	if (bitmask != gndmask) {
1135 		/*
1136 		 * since clearing the outputs changed some inputs, we know
1137 		 * that some input signals are currently tied to some outputs.
1138 		 * So we'll scan them.
1139 		 */
1140 		for (bit = 0; bit < 8; bit++) {
1141 			bitval = BIT(bit);
1142 
1143 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1144 				continue;
1145 
1146 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1147 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1148 			phys_read |= (__u64)bitmask << (5 * bit);
1149 		}
1150 		w_dtr(pprt, oldval);	/* disable all outputs */
1151 	}
1152 	/*
1153 	 * this is easy: use old bits when they are flapping,
1154 	 * use new ones when stable
1155 	 */
1156 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1157 		    (phys_read & ~(phys_read ^ phys_read_prev));
1158 }
1159 
input_state_high(struct logical_input * input)1160 static inline int input_state_high(struct logical_input *input)
1161 {
1162 #if 0
1163 	/* FIXME:
1164 	 * this is an invalid test. It tries to catch
1165 	 * transitions from single-key to multiple-key, but
1166 	 * doesn't take into account the contacts polarity.
1167 	 * The only solution to the problem is to parse keys
1168 	 * from the most complex to the simplest combinations,
1169 	 * and mark them as 'caught' once a combination
1170 	 * matches, then unmatch it for all other ones.
1171 	 */
1172 
1173 	/* try to catch dangerous transitions cases :
1174 	 * someone adds a bit, so this signal was a false
1175 	 * positive resulting from a transition. We should
1176 	 * invalidate the signal immediately and not call the
1177 	 * release function.
1178 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1179 	 */
1180 	if (((phys_prev & input->mask) == input->value) &&
1181 	    ((phys_curr & input->mask) >  input->value)) {
1182 		input->state = INPUT_ST_LOW; /* invalidate */
1183 		return 1;
1184 	}
1185 #endif
1186 
1187 	if ((phys_curr & input->mask) == input->value) {
1188 		if ((input->type == INPUT_TYPE_STD) &&
1189 		    (input->high_timer == 0)) {
1190 			input->high_timer++;
1191 			if (input->u.std.press_fct)
1192 				input->u.std.press_fct(input->u.std.press_data);
1193 		} else if (input->type == INPUT_TYPE_KBD) {
1194 			/* will turn on the light */
1195 			keypressed = 1;
1196 
1197 			if (input->high_timer == 0) {
1198 				char *press_str = input->u.kbd.press_str;
1199 
1200 				if (press_str[0]) {
1201 					int s = sizeof(input->u.kbd.press_str);
1202 
1203 					keypad_send_key(press_str, s);
1204 				}
1205 			}
1206 
1207 			if (input->u.kbd.repeat_str[0]) {
1208 				char *repeat_str = input->u.kbd.repeat_str;
1209 
1210 				if (input->high_timer >= KEYPAD_REP_START) {
1211 					int s = sizeof(input->u.kbd.repeat_str);
1212 
1213 					input->high_timer -= KEYPAD_REP_DELAY;
1214 					keypad_send_key(repeat_str, s);
1215 				}
1216 				/* we will need to come back here soon */
1217 				inputs_stable = 0;
1218 			}
1219 
1220 			if (input->high_timer < 255)
1221 				input->high_timer++;
1222 		}
1223 		return 1;
1224 	}
1225 
1226 	/* else signal falling down. Let's fall through. */
1227 	input->state = INPUT_ST_FALLING;
1228 	input->fall_timer = 0;
1229 
1230 	return 0;
1231 }
1232 
input_state_falling(struct logical_input * input)1233 static inline void input_state_falling(struct logical_input *input)
1234 {
1235 #if 0
1236 	/* FIXME !!! same comment as in input_state_high */
1237 	if (((phys_prev & input->mask) == input->value) &&
1238 	    ((phys_curr & input->mask) >  input->value)) {
1239 		input->state = INPUT_ST_LOW;	/* invalidate */
1240 		return;
1241 	}
1242 #endif
1243 
1244 	if ((phys_curr & input->mask) == input->value) {
1245 		if (input->type == INPUT_TYPE_KBD) {
1246 			/* will turn on the light */
1247 			keypressed = 1;
1248 
1249 			if (input->u.kbd.repeat_str[0]) {
1250 				char *repeat_str = input->u.kbd.repeat_str;
1251 
1252 				if (input->high_timer >= KEYPAD_REP_START) {
1253 					int s = sizeof(input->u.kbd.repeat_str);
1254 
1255 					input->high_timer -= KEYPAD_REP_DELAY;
1256 					keypad_send_key(repeat_str, s);
1257 				}
1258 				/* we will need to come back here soon */
1259 				inputs_stable = 0;
1260 			}
1261 
1262 			if (input->high_timer < 255)
1263 				input->high_timer++;
1264 		}
1265 		input->state = INPUT_ST_HIGH;
1266 	} else if (input->fall_timer >= input->fall_time) {
1267 		/* call release event */
1268 		if (input->type == INPUT_TYPE_STD) {
1269 			void (*release_fct)(int) = input->u.std.release_fct;
1270 
1271 			if (release_fct)
1272 				release_fct(input->u.std.release_data);
1273 		} else if (input->type == INPUT_TYPE_KBD) {
1274 			char *release_str = input->u.kbd.release_str;
1275 
1276 			if (release_str[0]) {
1277 				int s = sizeof(input->u.kbd.release_str);
1278 
1279 				keypad_send_key(release_str, s);
1280 			}
1281 		}
1282 
1283 		input->state = INPUT_ST_LOW;
1284 	} else {
1285 		input->fall_timer++;
1286 		inputs_stable = 0;
1287 	}
1288 }
1289 
panel_process_inputs(void)1290 static void panel_process_inputs(void)
1291 {
1292 	struct logical_input *input;
1293 
1294 	keypressed = 0;
1295 	inputs_stable = 1;
1296 	list_for_each_entry(input, &logical_inputs, list) {
1297 		switch (input->state) {
1298 		case INPUT_ST_LOW:
1299 			if ((phys_curr & input->mask) != input->value)
1300 				break;
1301 			/* if all needed ones were already set previously,
1302 			 * this means that this logical signal has been
1303 			 * activated by the releasing of another combined
1304 			 * signal, so we don't want to match.
1305 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1306 			 *     don't match A.
1307 			 */
1308 			if ((phys_prev & input->mask) == input->value)
1309 				break;
1310 			input->rise_timer = 0;
1311 			input->state = INPUT_ST_RISING;
1312 			fallthrough;
1313 		case INPUT_ST_RISING:
1314 			if ((phys_curr & input->mask) != input->value) {
1315 				input->state = INPUT_ST_LOW;
1316 				break;
1317 			}
1318 			if (input->rise_timer < input->rise_time) {
1319 				inputs_stable = 0;
1320 				input->rise_timer++;
1321 				break;
1322 			}
1323 			input->high_timer = 0;
1324 			input->state = INPUT_ST_HIGH;
1325 			fallthrough;
1326 		case INPUT_ST_HIGH:
1327 			if (input_state_high(input))
1328 				break;
1329 			fallthrough;
1330 		case INPUT_ST_FALLING:
1331 			input_state_falling(input);
1332 		}
1333 	}
1334 }
1335 
panel_scan_timer(struct timer_list * unused)1336 static void panel_scan_timer(struct timer_list *unused)
1337 {
1338 	if (keypad.enabled && keypad_initialized) {
1339 		if (spin_trylock_irq(&pprt_lock)) {
1340 			phys_scan_contacts();
1341 
1342 			/* no need for the parport anymore */
1343 			spin_unlock_irq(&pprt_lock);
1344 		}
1345 
1346 		if (!inputs_stable || phys_curr != phys_prev)
1347 			panel_process_inputs();
1348 	}
1349 
1350 	if (keypressed && lcd.enabled && lcd.initialized)
1351 		charlcd_poke(lcd.charlcd);
1352 
1353 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1354 }
1355 
init_scan_timer(void)1356 static void init_scan_timer(void)
1357 {
1358 	if (scan_timer.function)
1359 		return;		/* already started */
1360 
1361 	timer_setup(&scan_timer, panel_scan_timer, 0);
1362 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1363 	add_timer(&scan_timer);
1364 }
1365 
1366 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1367  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1368  * corresponding to out and in bits respectively.
1369  * returns 1 if ok, 0 if error (in which case, nothing is written).
1370  */
input_name2mask(const char * name,__u64 * mask,__u64 * value,u8 * imask,u8 * omask)1371 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1372 			  u8 *imask, u8 *omask)
1373 {
1374 	const char sigtab[] = "EeSsPpAaBb";
1375 	u8 im, om;
1376 	__u64 m, v;
1377 
1378 	om = 0;
1379 	im = 0;
1380 	m = 0ULL;
1381 	v = 0ULL;
1382 	while (*name) {
1383 		int in, out, bit, neg;
1384 		const char *idx;
1385 
1386 		idx = strchr(sigtab, *name);
1387 		if (!idx)
1388 			return 0;	/* input name not found */
1389 
1390 		in = idx - sigtab;
1391 		neg = (in & 1);	/* odd (lower) names are negated */
1392 		in >>= 1;
1393 		im |= BIT(in);
1394 
1395 		name++;
1396 		if (*name >= '0' && *name <= '7') {
1397 			out = *name - '0';
1398 			om |= BIT(out);
1399 		} else if (*name == '-') {
1400 			out = 8;
1401 		} else {
1402 			return 0;	/* unknown bit name */
1403 		}
1404 
1405 		bit = (out * 5) + in;
1406 
1407 		m |= 1ULL << bit;
1408 		if (!neg)
1409 			v |= 1ULL << bit;
1410 		name++;
1411 	}
1412 	*mask = m;
1413 	*value = v;
1414 	if (imask)
1415 		*imask |= im;
1416 	if (omask)
1417 		*omask |= om;
1418 	return 1;
1419 }
1420 
1421 /* tries to bind a key to the signal name <name>. The key will send the
1422  * strings <press>, <repeat>, <release> for these respective events.
1423  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1424  */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)1425 static struct logical_input *panel_bind_key(const char *name, const char *press,
1426 					    const char *repeat,
1427 					    const char *release)
1428 {
1429 	struct logical_input *key;
1430 
1431 	key = kzalloc(sizeof(*key), GFP_KERNEL);
1432 	if (!key)
1433 		return NULL;
1434 
1435 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1436 			     &scan_mask_o)) {
1437 		kfree(key);
1438 		return NULL;
1439 	}
1440 
1441 	key->type = INPUT_TYPE_KBD;
1442 	key->state = INPUT_ST_LOW;
1443 	key->rise_time = 1;
1444 	key->fall_time = 1;
1445 
1446 	strtomem_pad(key->u.kbd.press_str, press, '\0');
1447 	strtomem_pad(key->u.kbd.repeat_str, repeat, '\0');
1448 	strtomem_pad(key->u.kbd.release_str, release, '\0');
1449 	list_add(&key->list, &logical_inputs);
1450 	return key;
1451 }
1452 
1453 #if 0
1454 /* tries to bind a callback function to the signal name <name>. The function
1455  * <press_fct> will be called with the <press_data> arg when the signal is
1456  * activated, and so on for <release_fct>/<release_data>
1457  * Returns the pointer to the new signal if ok, NULL if the signal could not
1458  * be bound.
1459  */
1460 static struct logical_input *panel_bind_callback(char *name,
1461 						 void (*press_fct)(int),
1462 						 int press_data,
1463 						 void (*release_fct)(int),
1464 						 int release_data)
1465 {
1466 	struct logical_input *callback;
1467 
1468 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1469 	if (!callback)
1470 		return NULL;
1471 
1472 	memset(callback, 0, sizeof(struct logical_input));
1473 	if (!input_name2mask(name, &callback->mask, &callback->value,
1474 			     &scan_mask_i, &scan_mask_o))
1475 		return NULL;
1476 
1477 	callback->type = INPUT_TYPE_STD;
1478 	callback->state = INPUT_ST_LOW;
1479 	callback->rise_time = 1;
1480 	callback->fall_time = 1;
1481 	callback->u.std.press_fct = press_fct;
1482 	callback->u.std.press_data = press_data;
1483 	callback->u.std.release_fct = release_fct;
1484 	callback->u.std.release_data = release_data;
1485 	list_add(&callback->list, &logical_inputs);
1486 	return callback;
1487 }
1488 #endif
1489 
keypad_init(void)1490 static void keypad_init(void)
1491 {
1492 	int keynum;
1493 
1494 	init_waitqueue_head(&keypad_read_wait);
1495 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
1496 
1497 	/* Let's create all known keys */
1498 
1499 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1500 		panel_bind_key(keypad_profile[keynum][0],
1501 			       keypad_profile[keynum][1],
1502 			       keypad_profile[keynum][2],
1503 			       keypad_profile[keynum][3]);
1504 	}
1505 
1506 	init_scan_timer();
1507 	keypad_initialized = 1;
1508 }
1509 
1510 /**************************************************/
1511 /* device initialization                          */
1512 /**************************************************/
1513 
panel_attach(struct parport * port)1514 static void panel_attach(struct parport *port)
1515 {
1516 	int selected_keypad_type = NOT_SET;
1517 	struct pardev_cb panel_cb;
1518 
1519 	/* take care of an eventual profile */
1520 	switch (profile) {
1521 	case PANEL_PROFILE_CUSTOM:
1522 		/* custom profile */
1523 		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1524 		selected_lcd_type = DEFAULT_LCD_TYPE;
1525 		break;
1526 	case PANEL_PROFILE_OLD:
1527 		/* 8 bits, 2*16, old keypad */
1528 		selected_keypad_type = KEYPAD_TYPE_OLD;
1529 		selected_lcd_type = LCD_TYPE_OLD;
1530 
1531 		/* TODO: This two are a little hacky, sort it out later */
1532 		if (lcd_width == NOT_SET)
1533 			lcd_width = 16;
1534 		if (lcd_hwidth == NOT_SET)
1535 			lcd_hwidth = 16;
1536 		break;
1537 	case PANEL_PROFILE_NEW:
1538 		/* serial, 2*16, new keypad */
1539 		selected_keypad_type = KEYPAD_TYPE_NEW;
1540 		selected_lcd_type = LCD_TYPE_KS0074;
1541 		break;
1542 	case PANEL_PROFILE_HANTRONIX:
1543 		/* 8 bits, 2*16 hantronix-like, no keypad */
1544 		selected_keypad_type = KEYPAD_TYPE_NONE;
1545 		selected_lcd_type = LCD_TYPE_HANTRONIX;
1546 		break;
1547 	case PANEL_PROFILE_NEXCOM:
1548 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1549 		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1550 		selected_lcd_type = LCD_TYPE_NEXCOM;
1551 		break;
1552 	case PANEL_PROFILE_LARGE:
1553 		/* 8 bits, 2*40, old keypad */
1554 		selected_keypad_type = KEYPAD_TYPE_OLD;
1555 		selected_lcd_type = LCD_TYPE_OLD;
1556 		break;
1557 	}
1558 
1559 	/*
1560 	 * Overwrite selection with module param values (both keypad and lcd),
1561 	 * where the deprecated params have lower prio.
1562 	 */
1563 	if (keypad_enabled != NOT_SET)
1564 		selected_keypad_type = keypad_enabled;
1565 	if (keypad_type != NOT_SET)
1566 		selected_keypad_type = keypad_type;
1567 
1568 	keypad.enabled = (selected_keypad_type > 0);
1569 
1570 	if (lcd_enabled != NOT_SET)
1571 		selected_lcd_type = lcd_enabled;
1572 	if (lcd_type != NOT_SET)
1573 		selected_lcd_type = lcd_type;
1574 
1575 	lcd.enabled = (selected_lcd_type > 0);
1576 
1577 	if (lcd.enabled) {
1578 		/*
1579 		 * Init lcd struct with load-time values to preserve exact
1580 		 * current functionality (at least for now).
1581 		 */
1582 		lcd.charset = lcd_charset;
1583 		lcd.proto = lcd_proto;
1584 		lcd.pins.e = lcd_e_pin;
1585 		lcd.pins.rs = lcd_rs_pin;
1586 		lcd.pins.rw = lcd_rw_pin;
1587 		lcd.pins.cl = lcd_cl_pin;
1588 		lcd.pins.da = lcd_da_pin;
1589 		lcd.pins.bl = lcd_bl_pin;
1590 	}
1591 
1592 	switch (selected_keypad_type) {
1593 	case KEYPAD_TYPE_OLD:
1594 		keypad_profile = old_keypad_profile;
1595 		break;
1596 	case KEYPAD_TYPE_NEW:
1597 		keypad_profile = new_keypad_profile;
1598 		break;
1599 	case KEYPAD_TYPE_NEXCOM:
1600 		keypad_profile = nexcom_keypad_profile;
1601 		break;
1602 	default:
1603 		keypad_profile = NULL;
1604 		break;
1605 	}
1606 
1607 	if (!lcd.enabled && !keypad.enabled) {
1608 		/* no device enabled, let's exit */
1609 		pr_err("panel driver disabled.\n");
1610 		return;
1611 	}
1612 
1613 	if (port->number != parport)
1614 		return;
1615 
1616 	if (pprt) {
1617 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
1618 		       __func__, port->number, parport);
1619 		return;
1620 	}
1621 
1622 	memset(&panel_cb, 0, sizeof(panel_cb));
1623 	panel_cb.private = &pprt;
1624 	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1625 
1626 	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1627 	if (!pprt) {
1628 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1629 		       __func__, port->number, parport);
1630 		return;
1631 	}
1632 
1633 	if (parport_claim(pprt)) {
1634 		pr_err("could not claim access to parport%d. Aborting.\n",
1635 		       parport);
1636 		goto err_unreg_device;
1637 	}
1638 
1639 	/* must init LCD first, just in case an IRQ from the keypad is
1640 	 * generated at keypad init
1641 	 */
1642 	if (lcd.enabled) {
1643 		lcd_init();
1644 		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1645 			goto err_unreg_device;
1646 	}
1647 
1648 	if (keypad.enabled) {
1649 		keypad_init();
1650 		if (misc_register(&keypad_dev))
1651 			goto err_lcd_unreg;
1652 	}
1653 	return;
1654 
1655 err_lcd_unreg:
1656 	if (scan_timer.function)
1657 		timer_delete_sync(&scan_timer);
1658 	if (lcd.enabled)
1659 		charlcd_unregister(lcd.charlcd);
1660 err_unreg_device:
1661 	hd44780_common_free(lcd.charlcd);
1662 	lcd.charlcd = NULL;
1663 	parport_unregister_device(pprt);
1664 	pprt = NULL;
1665 }
1666 
panel_detach(struct parport * port)1667 static void panel_detach(struct parport *port)
1668 {
1669 	if (port->number != parport)
1670 		return;
1671 
1672 	if (!pprt) {
1673 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1674 		       __func__, port->number, parport);
1675 		return;
1676 	}
1677 	if (scan_timer.function)
1678 		timer_delete_sync(&scan_timer);
1679 
1680 	if (keypad.enabled) {
1681 		misc_deregister(&keypad_dev);
1682 		keypad_initialized = 0;
1683 	}
1684 
1685 	if (lcd.enabled) {
1686 		charlcd_unregister(lcd.charlcd);
1687 		lcd.initialized = false;
1688 		hd44780_common_free(lcd.charlcd);
1689 		lcd.charlcd = NULL;
1690 	}
1691 
1692 	/* TODO: free all input signals */
1693 	parport_release(pprt);
1694 	parport_unregister_device(pprt);
1695 	pprt = NULL;
1696 }
1697 
1698 static struct parport_driver panel_driver = {
1699 	.name = "panel",
1700 	.match_port = panel_attach,
1701 	.detach = panel_detach,
1702 };
1703 module_parport_driver(panel_driver);
1704 
1705 MODULE_AUTHOR("Willy Tarreau");
1706 MODULE_LICENSE("GPL");
1707